drm/ttm: Improved fencing of buffer object lists
[pandora-kernel.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <asm/atomic.h>
41
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49
50 static struct attribute ttm_bo_count = {
51         .name = "bo_count",
52         .mode = S_IRUGO
53 };
54
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57         int i;
58
59         for (i = 0; i <= TTM_PL_PRIV5; i++)
60                 if (flags & (1 << i)) {
61                         *mem_type = i;
62                         return 0;
63                 }
64         return -EINVAL;
65 }
66
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70
71         printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72         printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73         printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74         printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75         printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76         printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77                 man->available_caching);
78         printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79                 man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90                 bo, bo->mem.num_pages, bo->mem.size >> 10,
91                 bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98                         i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140
141         BUG_ON(atomic_read(&bo->list_kref.refcount));
142         BUG_ON(atomic_read(&bo->kref.refcount));
143         BUG_ON(atomic_read(&bo->cpu_writers));
144         BUG_ON(bo->sync_obj != NULL);
145         BUG_ON(bo->mem.mm_node != NULL);
146         BUG_ON(!list_empty(&bo->lru));
147         BUG_ON(!list_empty(&bo->ddestroy));
148
149         if (bo->ttm)
150                 ttm_tt_destroy(bo->ttm);
151         atomic_dec(&bo->glob->bo_count);
152         if (bo->destroy)
153                 bo->destroy(bo);
154         else {
155                 ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156                 kfree(bo);
157         }
158 }
159
160 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
161 {
162         if (interruptible) {
163                 return wait_event_interruptible(bo->event_queue,
164                                                atomic_read(&bo->reserved) == 0);
165         } else {
166                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167                 return 0;
168         }
169 }
170 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171
172 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
173 {
174         struct ttm_bo_device *bdev = bo->bdev;
175         struct ttm_mem_type_manager *man;
176
177         BUG_ON(!atomic_read(&bo->reserved));
178
179         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
180
181                 BUG_ON(!list_empty(&bo->lru));
182
183                 man = &bdev->man[bo->mem.mem_type];
184                 list_add_tail(&bo->lru, &man->lru);
185                 kref_get(&bo->list_kref);
186
187                 if (bo->ttm != NULL) {
188                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
189                         kref_get(&bo->list_kref);
190                 }
191         }
192 }
193
194 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
195 {
196         int put_count = 0;
197
198         if (!list_empty(&bo->swap)) {
199                 list_del_init(&bo->swap);
200                 ++put_count;
201         }
202         if (!list_empty(&bo->lru)) {
203                 list_del_init(&bo->lru);
204                 ++put_count;
205         }
206
207         /*
208          * TODO: Add a driver hook to delete from
209          * driver-specific LRU's here.
210          */
211
212         return put_count;
213 }
214
215 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
216                           bool interruptible,
217                           bool no_wait, bool use_sequence, uint32_t sequence)
218 {
219         struct ttm_bo_global *glob = bo->glob;
220         int ret;
221
222         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
223                 /**
224                  * Deadlock avoidance for multi-bo reserving.
225                  */
226                 if (use_sequence && bo->seq_valid) {
227                         /**
228                          * We've already reserved this one.
229                          */
230                         if (unlikely(sequence == bo->val_seq))
231                                 return -EDEADLK;
232                         /**
233                          * Already reserved by a thread that will not back
234                          * off for us. We need to back off.
235                          */
236                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
237                                 return -EAGAIN;
238                 }
239
240                 if (no_wait)
241                         return -EBUSY;
242
243                 spin_unlock(&glob->lru_lock);
244                 ret = ttm_bo_wait_unreserved(bo, interruptible);
245                 spin_lock(&glob->lru_lock);
246
247                 if (unlikely(ret))
248                         return ret;
249         }
250
251         if (use_sequence) {
252                 /**
253                  * Wake up waiters that may need to recheck for deadlock,
254                  * if we decreased the sequence number.
255                  */
256                 if (unlikely((bo->val_seq - sequence < (1 << 31))
257                              || !bo->seq_valid))
258                         wake_up_all(&bo->event_queue);
259
260                 bo->val_seq = sequence;
261                 bo->seq_valid = true;
262         } else {
263                 bo->seq_valid = false;
264         }
265
266         return 0;
267 }
268 EXPORT_SYMBOL(ttm_bo_reserve);
269
270 static void ttm_bo_ref_bug(struct kref *list_kref)
271 {
272         BUG();
273 }
274
275 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
276                          bool never_free)
277 {
278         kref_sub(&bo->list_kref, count,
279                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
280 }
281
282 int ttm_bo_reserve(struct ttm_buffer_object *bo,
283                    bool interruptible,
284                    bool no_wait, bool use_sequence, uint32_t sequence)
285 {
286         struct ttm_bo_global *glob = bo->glob;
287         int put_count = 0;
288         int ret;
289
290         spin_lock(&glob->lru_lock);
291         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
292                                     sequence);
293         if (likely(ret == 0))
294                 put_count = ttm_bo_del_from_lru(bo);
295         spin_unlock(&glob->lru_lock);
296
297         ttm_bo_list_ref_sub(bo, put_count, true);
298
299         return ret;
300 }
301
302 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
303 {
304         ttm_bo_add_to_lru(bo);
305         atomic_set(&bo->reserved, 0);
306         wake_up_all(&bo->event_queue);
307 }
308
309 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
310 {
311         struct ttm_bo_global *glob = bo->glob;
312
313         spin_lock(&glob->lru_lock);
314         ttm_bo_unreserve_locked(bo);
315         spin_unlock(&glob->lru_lock);
316 }
317 EXPORT_SYMBOL(ttm_bo_unreserve);
318
319 /*
320  * Call bo->mutex locked.
321  */
322 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
323 {
324         struct ttm_bo_device *bdev = bo->bdev;
325         struct ttm_bo_global *glob = bo->glob;
326         int ret = 0;
327         uint32_t page_flags = 0;
328
329         TTM_ASSERT_LOCKED(&bo->mutex);
330         bo->ttm = NULL;
331
332         if (bdev->need_dma32)
333                 page_flags |= TTM_PAGE_FLAG_DMA32;
334
335         switch (bo->type) {
336         case ttm_bo_type_device:
337                 if (zero_alloc)
338                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
339         case ttm_bo_type_kernel:
340                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
341                                         page_flags, glob->dummy_read_page);
342                 if (unlikely(bo->ttm == NULL))
343                         ret = -ENOMEM;
344                 break;
345         case ttm_bo_type_user:
346                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
347                                         page_flags | TTM_PAGE_FLAG_USER,
348                                         glob->dummy_read_page);
349                 if (unlikely(bo->ttm == NULL)) {
350                         ret = -ENOMEM;
351                         break;
352                 }
353
354                 ret = ttm_tt_set_user(bo->ttm, current,
355                                       bo->buffer_start, bo->num_pages);
356                 if (unlikely(ret != 0))
357                         ttm_tt_destroy(bo->ttm);
358                 break;
359         default:
360                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
361                 ret = -EINVAL;
362                 break;
363         }
364
365         return ret;
366 }
367
368 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
369                                   struct ttm_mem_reg *mem,
370                                   bool evict, bool interruptible,
371                                   bool no_wait_reserve, bool no_wait_gpu)
372 {
373         struct ttm_bo_device *bdev = bo->bdev;
374         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
375         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
376         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
377         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
378         int ret = 0;
379
380         if (old_is_pci || new_is_pci ||
381             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0))
382                 ttm_bo_unmap_virtual(bo);
383
384         /*
385          * Create and bind a ttm if required.
386          */
387
388         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
389                 ret = ttm_bo_add_ttm(bo, false);
390                 if (ret)
391                         goto out_err;
392
393                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
394                 if (ret)
395                         goto out_err;
396
397                 if (mem->mem_type != TTM_PL_SYSTEM) {
398                         ret = ttm_tt_bind(bo->ttm, mem);
399                         if (ret)
400                                 goto out_err;
401                 }
402
403                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
404                         bo->mem = *mem;
405                         mem->mm_node = NULL;
406                         goto moved;
407                 }
408
409         }
410
411         if (bdev->driver->move_notify)
412                 bdev->driver->move_notify(bo, mem);
413
414         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
415             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
416                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
417         else if (bdev->driver->move)
418                 ret = bdev->driver->move(bo, evict, interruptible,
419                                          no_wait_reserve, no_wait_gpu, mem);
420         else
421                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
422
423         if (ret)
424                 goto out_err;
425
426 moved:
427         if (bo->evicted) {
428                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
429                 if (ret)
430                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
431                 bo->evicted = false;
432         }
433
434         if (bo->mem.mm_node) {
435                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
436                     bdev->man[bo->mem.mem_type].gpu_offset;
437                 bo->cur_placement = bo->mem.placement;
438         } else
439                 bo->offset = 0;
440
441         return 0;
442
443 out_err:
444         new_man = &bdev->man[bo->mem.mem_type];
445         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
446                 ttm_tt_unbind(bo->ttm);
447                 ttm_tt_destroy(bo->ttm);
448                 bo->ttm = NULL;
449         }
450
451         return ret;
452 }
453
454 /**
455  * Call bo::reserved.
456  * Will release GPU memory type usage on destruction.
457  * This is the place to put in driver specific hooks to release
458  * driver private resources.
459  * Will release the bo::reserved lock.
460  */
461
462 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
463 {
464         if (bo->ttm) {
465                 ttm_tt_unbind(bo->ttm);
466                 ttm_tt_destroy(bo->ttm);
467                 bo->ttm = NULL;
468         }
469
470         ttm_bo_mem_put(bo, &bo->mem);
471
472         atomic_set(&bo->reserved, 0);
473
474         /*
475          * Make processes trying to reserve really pick it up.
476          */
477         smp_mb__after_atomic_dec();
478         wake_up_all(&bo->event_queue);
479 }
480
481 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
482 {
483         struct ttm_bo_device *bdev = bo->bdev;
484         struct ttm_bo_global *glob = bo->glob;
485         struct ttm_bo_driver *driver;
486         void *sync_obj = NULL;
487         void *sync_obj_arg;
488         int put_count;
489         int ret;
490
491         spin_lock(&bdev->fence_lock);
492         (void) ttm_bo_wait(bo, false, false, true);
493         if (!bo->sync_obj) {
494
495                 spin_lock(&glob->lru_lock);
496
497                 /**
498                  * Lock inversion between bo:reserve and bdev::fence_lock here,
499                  * but that's OK, since we're only trylocking.
500                  */
501
502                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
503
504                 if (unlikely(ret == -EBUSY))
505                         goto queue;
506
507                 spin_unlock(&bdev->fence_lock);
508                 put_count = ttm_bo_del_from_lru(bo);
509
510                 spin_unlock(&glob->lru_lock);
511                 ttm_bo_cleanup_memtype_use(bo);
512
513                 ttm_bo_list_ref_sub(bo, put_count, true);
514
515                 return;
516         } else {
517                 spin_lock(&glob->lru_lock);
518         }
519 queue:
520         driver = bdev->driver;
521         if (bo->sync_obj)
522                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
523         sync_obj_arg = bo->sync_obj_arg;
524
525         kref_get(&bo->list_kref);
526         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
527         spin_unlock(&glob->lru_lock);
528         spin_unlock(&bdev->fence_lock);
529
530         if (sync_obj) {
531                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
532                 driver->sync_obj_unref(&sync_obj);
533         }
534         schedule_delayed_work(&bdev->wq,
535                               ((HZ / 100) < 1) ? 1 : HZ / 100);
536 }
537
538 /**
539  * function ttm_bo_cleanup_refs
540  * If bo idle, remove from delayed- and lru lists, and unref.
541  * If not idle, do nothing.
542  *
543  * @interruptible         Any sleeps should occur interruptibly.
544  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
545  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
546  */
547
548 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
549                                bool interruptible,
550                                bool no_wait_reserve,
551                                bool no_wait_gpu)
552 {
553         struct ttm_bo_device *bdev = bo->bdev;
554         struct ttm_bo_global *glob = bo->glob;
555         int put_count;
556         int ret = 0;
557
558 retry:
559         spin_lock(&bdev->fence_lock);
560         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
561         spin_unlock(&bdev->fence_lock);
562
563         if (unlikely(ret != 0))
564                 return ret;
565
566         spin_lock(&glob->lru_lock);
567         ret = ttm_bo_reserve_locked(bo, interruptible,
568                                     no_wait_reserve, false, 0);
569
570         if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
571                 spin_unlock(&glob->lru_lock);
572                 return ret;
573         }
574
575         /**
576          * We can re-check for sync object without taking
577          * the bo::lock since setting the sync object requires
578          * also bo::reserved. A busy object at this point may
579          * be caused by another thread recently starting an accelerated
580          * eviction.
581          */
582
583         if (unlikely(bo->sync_obj)) {
584                 atomic_set(&bo->reserved, 0);
585                 wake_up_all(&bo->event_queue);
586                 spin_unlock(&glob->lru_lock);
587                 goto retry;
588         }
589
590         put_count = ttm_bo_del_from_lru(bo);
591         list_del_init(&bo->ddestroy);
592         ++put_count;
593
594         spin_unlock(&glob->lru_lock);
595         ttm_bo_cleanup_memtype_use(bo);
596
597         ttm_bo_list_ref_sub(bo, put_count, true);
598
599         return 0;
600 }
601
602 /**
603  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
604  * encountered buffers.
605  */
606
607 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
608 {
609         struct ttm_bo_global *glob = bdev->glob;
610         struct ttm_buffer_object *entry = NULL;
611         int ret = 0;
612
613         spin_lock(&glob->lru_lock);
614         if (list_empty(&bdev->ddestroy))
615                 goto out_unlock;
616
617         entry = list_first_entry(&bdev->ddestroy,
618                 struct ttm_buffer_object, ddestroy);
619         kref_get(&entry->list_kref);
620
621         for (;;) {
622                 struct ttm_buffer_object *nentry = NULL;
623
624                 if (entry->ddestroy.next != &bdev->ddestroy) {
625                         nentry = list_first_entry(&entry->ddestroy,
626                                 struct ttm_buffer_object, ddestroy);
627                         kref_get(&nentry->list_kref);
628                 }
629
630                 spin_unlock(&glob->lru_lock);
631                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
632                                           !remove_all);
633                 kref_put(&entry->list_kref, ttm_bo_release_list);
634                 entry = nentry;
635
636                 if (ret || !entry)
637                         goto out;
638
639                 spin_lock(&glob->lru_lock);
640                 if (list_empty(&entry->ddestroy))
641                         break;
642         }
643
644 out_unlock:
645         spin_unlock(&glob->lru_lock);
646 out:
647         if (entry)
648                 kref_put(&entry->list_kref, ttm_bo_release_list);
649         return ret;
650 }
651
652 static void ttm_bo_delayed_workqueue(struct work_struct *work)
653 {
654         struct ttm_bo_device *bdev =
655             container_of(work, struct ttm_bo_device, wq.work);
656
657         if (ttm_bo_delayed_delete(bdev, false)) {
658                 schedule_delayed_work(&bdev->wq,
659                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
660         }
661 }
662
663 static void ttm_bo_release(struct kref *kref)
664 {
665         struct ttm_buffer_object *bo =
666             container_of(kref, struct ttm_buffer_object, kref);
667         struct ttm_bo_device *bdev = bo->bdev;
668
669         if (likely(bo->vm_node != NULL)) {
670                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
671                 drm_mm_put_block(bo->vm_node);
672                 bo->vm_node = NULL;
673         }
674         write_unlock(&bdev->vm_lock);
675         ttm_bo_cleanup_refs_or_queue(bo);
676         kref_put(&bo->list_kref, ttm_bo_release_list);
677         write_lock(&bdev->vm_lock);
678 }
679
680 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
681 {
682         struct ttm_buffer_object *bo = *p_bo;
683         struct ttm_bo_device *bdev = bo->bdev;
684
685         *p_bo = NULL;
686         write_lock(&bdev->vm_lock);
687         kref_put(&bo->kref, ttm_bo_release);
688         write_unlock(&bdev->vm_lock);
689 }
690 EXPORT_SYMBOL(ttm_bo_unref);
691
692 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
693 {
694         return cancel_delayed_work_sync(&bdev->wq);
695 }
696 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
697
698 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
699 {
700         if (resched)
701                 schedule_delayed_work(&bdev->wq,
702                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
703 }
704 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
705
706 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
707                         bool no_wait_reserve, bool no_wait_gpu)
708 {
709         struct ttm_bo_device *bdev = bo->bdev;
710         struct ttm_mem_reg evict_mem;
711         struct ttm_placement placement;
712         int ret = 0;
713
714         spin_lock(&bdev->fence_lock);
715         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
716         spin_unlock(&bdev->fence_lock);
717
718         if (unlikely(ret != 0)) {
719                 if (ret != -ERESTARTSYS) {
720                         printk(KERN_ERR TTM_PFX
721                                "Failed to expire sync object before "
722                                "buffer eviction.\n");
723                 }
724                 goto out;
725         }
726
727         BUG_ON(!atomic_read(&bo->reserved));
728
729         evict_mem = bo->mem;
730         evict_mem.mm_node = NULL;
731         evict_mem.bus.io_reserved = false;
732
733         placement.fpfn = 0;
734         placement.lpfn = 0;
735         placement.num_placement = 0;
736         placement.num_busy_placement = 0;
737         bdev->driver->evict_flags(bo, &placement);
738         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
739                                 no_wait_reserve, no_wait_gpu);
740         if (ret) {
741                 if (ret != -ERESTARTSYS) {
742                         printk(KERN_ERR TTM_PFX
743                                "Failed to find memory space for "
744                                "buffer 0x%p eviction.\n", bo);
745                         ttm_bo_mem_space_debug(bo, &placement);
746                 }
747                 goto out;
748         }
749
750         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
751                                      no_wait_reserve, no_wait_gpu);
752         if (ret) {
753                 if (ret != -ERESTARTSYS)
754                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
755                 ttm_bo_mem_put(bo, &evict_mem);
756                 goto out;
757         }
758         bo->evicted = true;
759 out:
760         return ret;
761 }
762
763 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
764                                 uint32_t mem_type,
765                                 bool interruptible, bool no_wait_reserve,
766                                 bool no_wait_gpu)
767 {
768         struct ttm_bo_global *glob = bdev->glob;
769         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
770         struct ttm_buffer_object *bo;
771         int ret, put_count = 0;
772
773 retry:
774         spin_lock(&glob->lru_lock);
775         if (list_empty(&man->lru)) {
776                 spin_unlock(&glob->lru_lock);
777                 return -EBUSY;
778         }
779
780         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
781         kref_get(&bo->list_kref);
782
783         if (!list_empty(&bo->ddestroy)) {
784                 spin_unlock(&glob->lru_lock);
785                 ret = ttm_bo_cleanup_refs(bo, interruptible,
786                                           no_wait_reserve, no_wait_gpu);
787                 kref_put(&bo->list_kref, ttm_bo_release_list);
788
789                 if (likely(ret == 0 || ret == -ERESTARTSYS))
790                         return ret;
791
792                 goto retry;
793         }
794
795         ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
796
797         if (unlikely(ret == -EBUSY)) {
798                 spin_unlock(&glob->lru_lock);
799                 if (likely(!no_wait_gpu))
800                         ret = ttm_bo_wait_unreserved(bo, interruptible);
801
802                 kref_put(&bo->list_kref, ttm_bo_release_list);
803
804                 /**
805                  * We *need* to retry after releasing the lru lock.
806                  */
807
808                 if (unlikely(ret != 0))
809                         return ret;
810                 goto retry;
811         }
812
813         put_count = ttm_bo_del_from_lru(bo);
814         spin_unlock(&glob->lru_lock);
815
816         BUG_ON(ret != 0);
817
818         ttm_bo_list_ref_sub(bo, put_count, true);
819
820         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
821         ttm_bo_unreserve(bo);
822
823         kref_put(&bo->list_kref, ttm_bo_release_list);
824         return ret;
825 }
826
827 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
828 {
829         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
830
831         if (mem->mm_node)
832                 (*man->func->put_node)(man, mem);
833 }
834 EXPORT_SYMBOL(ttm_bo_mem_put);
835
836 /**
837  * Repeatedly evict memory from the LRU for @mem_type until we create enough
838  * space, or we've evicted everything and there isn't enough space.
839  */
840 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
841                                         uint32_t mem_type,
842                                         struct ttm_placement *placement,
843                                         struct ttm_mem_reg *mem,
844                                         bool interruptible,
845                                         bool no_wait_reserve,
846                                         bool no_wait_gpu)
847 {
848         struct ttm_bo_device *bdev = bo->bdev;
849         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
850         int ret;
851
852         do {
853                 ret = (*man->func->get_node)(man, bo, placement, mem);
854                 if (unlikely(ret != 0))
855                         return ret;
856                 if (mem->mm_node)
857                         break;
858                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
859                                                 no_wait_reserve, no_wait_gpu);
860                 if (unlikely(ret != 0))
861                         return ret;
862         } while (1);
863         if (mem->mm_node == NULL)
864                 return -ENOMEM;
865         mem->mem_type = mem_type;
866         return 0;
867 }
868
869 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
870                                       uint32_t cur_placement,
871                                       uint32_t proposed_placement)
872 {
873         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
874         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
875
876         /**
877          * Keep current caching if possible.
878          */
879
880         if ((cur_placement & caching) != 0)
881                 result |= (cur_placement & caching);
882         else if ((man->default_caching & caching) != 0)
883                 result |= man->default_caching;
884         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
885                 result |= TTM_PL_FLAG_CACHED;
886         else if ((TTM_PL_FLAG_WC & caching) != 0)
887                 result |= TTM_PL_FLAG_WC;
888         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
889                 result |= TTM_PL_FLAG_UNCACHED;
890
891         return result;
892 }
893
894 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
895                                  bool disallow_fixed,
896                                  uint32_t mem_type,
897                                  uint32_t proposed_placement,
898                                  uint32_t *masked_placement)
899 {
900         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
901
902         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
903                 return false;
904
905         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
906                 return false;
907
908         if ((proposed_placement & man->available_caching) == 0)
909                 return false;
910
911         cur_flags |= (proposed_placement & man->available_caching);
912
913         *masked_placement = cur_flags;
914         return true;
915 }
916
917 /**
918  * Creates space for memory region @mem according to its type.
919  *
920  * This function first searches for free space in compatible memory types in
921  * the priority order defined by the driver.  If free space isn't found, then
922  * ttm_bo_mem_force_space is attempted in priority order to evict and find
923  * space.
924  */
925 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
926                         struct ttm_placement *placement,
927                         struct ttm_mem_reg *mem,
928                         bool interruptible, bool no_wait_reserve,
929                         bool no_wait_gpu)
930 {
931         struct ttm_bo_device *bdev = bo->bdev;
932         struct ttm_mem_type_manager *man;
933         uint32_t mem_type = TTM_PL_SYSTEM;
934         uint32_t cur_flags = 0;
935         bool type_found = false;
936         bool type_ok = false;
937         bool has_erestartsys = false;
938         int i, ret;
939
940         mem->mm_node = NULL;
941         for (i = 0; i < placement->num_placement; ++i) {
942                 ret = ttm_mem_type_from_flags(placement->placement[i],
943                                                 &mem_type);
944                 if (ret)
945                         return ret;
946                 man = &bdev->man[mem_type];
947
948                 type_ok = ttm_bo_mt_compatible(man,
949                                                 bo->type == ttm_bo_type_user,
950                                                 mem_type,
951                                                 placement->placement[i],
952                                                 &cur_flags);
953
954                 if (!type_ok)
955                         continue;
956
957                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
958                                                   cur_flags);
959                 /*
960                  * Use the access and other non-mapping-related flag bits from
961                  * the memory placement flags to the current flags
962                  */
963                 ttm_flag_masked(&cur_flags, placement->placement[i],
964                                 ~TTM_PL_MASK_MEMTYPE);
965
966                 if (mem_type == TTM_PL_SYSTEM)
967                         break;
968
969                 if (man->has_type && man->use_type) {
970                         type_found = true;
971                         ret = (*man->func->get_node)(man, bo, placement, mem);
972                         if (unlikely(ret))
973                                 return ret;
974                 }
975                 if (mem->mm_node)
976                         break;
977         }
978
979         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
980                 mem->mem_type = mem_type;
981                 mem->placement = cur_flags;
982                 return 0;
983         }
984
985         if (!type_found)
986                 return -EINVAL;
987
988         for (i = 0; i < placement->num_busy_placement; ++i) {
989                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
990                                                 &mem_type);
991                 if (ret)
992                         return ret;
993                 man = &bdev->man[mem_type];
994                 if (!man->has_type)
995                         continue;
996                 if (!ttm_bo_mt_compatible(man,
997                                                 bo->type == ttm_bo_type_user,
998                                                 mem_type,
999                                                 placement->busy_placement[i],
1000                                                 &cur_flags))
1001                         continue;
1002
1003                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1004                                                   cur_flags);
1005                 /*
1006                  * Use the access and other non-mapping-related flag bits from
1007                  * the memory placement flags to the current flags
1008                  */
1009                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1010                                 ~TTM_PL_MASK_MEMTYPE);
1011
1012
1013                 if (mem_type == TTM_PL_SYSTEM) {
1014                         mem->mem_type = mem_type;
1015                         mem->placement = cur_flags;
1016                         mem->mm_node = NULL;
1017                         return 0;
1018                 }
1019
1020                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1021                                                 interruptible, no_wait_reserve, no_wait_gpu);
1022                 if (ret == 0 && mem->mm_node) {
1023                         mem->placement = cur_flags;
1024                         return 0;
1025                 }
1026                 if (ret == -ERESTARTSYS)
1027                         has_erestartsys = true;
1028         }
1029         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1030         return ret;
1031 }
1032 EXPORT_SYMBOL(ttm_bo_mem_space);
1033
1034 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1035 {
1036         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1037                 return -EBUSY;
1038
1039         return wait_event_interruptible(bo->event_queue,
1040                                         atomic_read(&bo->cpu_writers) == 0);
1041 }
1042 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1043
1044 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1045                         struct ttm_placement *placement,
1046                         bool interruptible, bool no_wait_reserve,
1047                         bool no_wait_gpu)
1048 {
1049         int ret = 0;
1050         struct ttm_mem_reg mem;
1051         struct ttm_bo_device *bdev = bo->bdev;
1052
1053         BUG_ON(!atomic_read(&bo->reserved));
1054
1055         /*
1056          * FIXME: It's possible to pipeline buffer moves.
1057          * Have the driver move function wait for idle when necessary,
1058          * instead of doing it here.
1059          */
1060         spin_lock(&bdev->fence_lock);
1061         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1062         spin_unlock(&bdev->fence_lock);
1063         if (ret)
1064                 return ret;
1065         mem.num_pages = bo->num_pages;
1066         mem.size = mem.num_pages << PAGE_SHIFT;
1067         mem.page_alignment = bo->mem.page_alignment;
1068         mem.bus.io_reserved = false;
1069         /*
1070          * Determine where to move the buffer.
1071          */
1072         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1073         if (ret)
1074                 goto out_unlock;
1075         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1076 out_unlock:
1077         if (ret && mem.mm_node)
1078                 ttm_bo_mem_put(bo, &mem);
1079         return ret;
1080 }
1081
1082 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1083                              struct ttm_mem_reg *mem)
1084 {
1085         int i;
1086
1087         if (mem->mm_node && placement->lpfn != 0 &&
1088             (mem->start < placement->fpfn ||
1089              mem->start + mem->num_pages > placement->lpfn))
1090                 return -1;
1091
1092         for (i = 0; i < placement->num_placement; i++) {
1093                 if ((placement->placement[i] & mem->placement &
1094                         TTM_PL_MASK_CACHING) &&
1095                         (placement->placement[i] & mem->placement &
1096                         TTM_PL_MASK_MEM))
1097                         return i;
1098         }
1099         return -1;
1100 }
1101
1102 int ttm_bo_validate(struct ttm_buffer_object *bo,
1103                         struct ttm_placement *placement,
1104                         bool interruptible, bool no_wait_reserve,
1105                         bool no_wait_gpu)
1106 {
1107         int ret;
1108
1109         BUG_ON(!atomic_read(&bo->reserved));
1110         /* Check that range is valid */
1111         if (placement->lpfn || placement->fpfn)
1112                 if (placement->fpfn > placement->lpfn ||
1113                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1114                         return -EINVAL;
1115         /*
1116          * Check whether we need to move buffer.
1117          */
1118         ret = ttm_bo_mem_compat(placement, &bo->mem);
1119         if (ret < 0) {
1120                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1121                 if (ret)
1122                         return ret;
1123         } else {
1124                 /*
1125                  * Use the access and other non-mapping-related flag bits from
1126                  * the compatible memory placement flags to the active flags
1127                  */
1128                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1129                                 ~TTM_PL_MASK_MEMTYPE);
1130         }
1131         /*
1132          * We might need to add a TTM.
1133          */
1134         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1135                 ret = ttm_bo_add_ttm(bo, true);
1136                 if (ret)
1137                         return ret;
1138         }
1139         return 0;
1140 }
1141 EXPORT_SYMBOL(ttm_bo_validate);
1142
1143 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1144                                 struct ttm_placement *placement)
1145 {
1146         BUG_ON((placement->fpfn || placement->lpfn) &&
1147                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1148
1149         return 0;
1150 }
1151
1152 int ttm_bo_init(struct ttm_bo_device *bdev,
1153                 struct ttm_buffer_object *bo,
1154                 unsigned long size,
1155                 enum ttm_bo_type type,
1156                 struct ttm_placement *placement,
1157                 uint32_t page_alignment,
1158                 unsigned long buffer_start,
1159                 bool interruptible,
1160                 struct file *persistant_swap_storage,
1161                 size_t acc_size,
1162                 void (*destroy) (struct ttm_buffer_object *))
1163 {
1164         int ret = 0;
1165         unsigned long num_pages;
1166
1167         size += buffer_start & ~PAGE_MASK;
1168         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1169         if (num_pages == 0) {
1170                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1171                 if (destroy)
1172                         (*destroy)(bo);
1173                 else
1174                         kfree(bo);
1175                 return -EINVAL;
1176         }
1177         bo->destroy = destroy;
1178
1179         kref_init(&bo->kref);
1180         kref_init(&bo->list_kref);
1181         atomic_set(&bo->cpu_writers, 0);
1182         atomic_set(&bo->reserved, 1);
1183         init_waitqueue_head(&bo->event_queue);
1184         INIT_LIST_HEAD(&bo->lru);
1185         INIT_LIST_HEAD(&bo->ddestroy);
1186         INIT_LIST_HEAD(&bo->swap);
1187         bo->bdev = bdev;
1188         bo->glob = bdev->glob;
1189         bo->type = type;
1190         bo->num_pages = num_pages;
1191         bo->mem.size = num_pages << PAGE_SHIFT;
1192         bo->mem.mem_type = TTM_PL_SYSTEM;
1193         bo->mem.num_pages = bo->num_pages;
1194         bo->mem.mm_node = NULL;
1195         bo->mem.page_alignment = page_alignment;
1196         bo->mem.bus.io_reserved = false;
1197         bo->buffer_start = buffer_start & PAGE_MASK;
1198         bo->priv_flags = 0;
1199         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1200         bo->seq_valid = false;
1201         bo->persistant_swap_storage = persistant_swap_storage;
1202         bo->acc_size = acc_size;
1203         atomic_inc(&bo->glob->bo_count);
1204
1205         ret = ttm_bo_check_placement(bo, placement);
1206         if (unlikely(ret != 0))
1207                 goto out_err;
1208
1209         /*
1210          * For ttm_bo_type_device buffers, allocate
1211          * address space from the device.
1212          */
1213         if (bo->type == ttm_bo_type_device) {
1214                 ret = ttm_bo_setup_vm(bo);
1215                 if (ret)
1216                         goto out_err;
1217         }
1218
1219         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1220         if (ret)
1221                 goto out_err;
1222
1223         ttm_bo_unreserve(bo);
1224         return 0;
1225
1226 out_err:
1227         ttm_bo_unreserve(bo);
1228         ttm_bo_unref(&bo);
1229
1230         return ret;
1231 }
1232 EXPORT_SYMBOL(ttm_bo_init);
1233
1234 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1235                                  unsigned long num_pages)
1236 {
1237         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1238             PAGE_MASK;
1239
1240         return glob->ttm_bo_size + 2 * page_array_size;
1241 }
1242
1243 int ttm_bo_create(struct ttm_bo_device *bdev,
1244                         unsigned long size,
1245                         enum ttm_bo_type type,
1246                         struct ttm_placement *placement,
1247                         uint32_t page_alignment,
1248                         unsigned long buffer_start,
1249                         bool interruptible,
1250                         struct file *persistant_swap_storage,
1251                         struct ttm_buffer_object **p_bo)
1252 {
1253         struct ttm_buffer_object *bo;
1254         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1255         int ret;
1256
1257         size_t acc_size =
1258             ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1259         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1260         if (unlikely(ret != 0))
1261                 return ret;
1262
1263         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1264
1265         if (unlikely(bo == NULL)) {
1266                 ttm_mem_global_free(mem_glob, acc_size);
1267                 return -ENOMEM;
1268         }
1269
1270         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1271                                 buffer_start, interruptible,
1272                                 persistant_swap_storage, acc_size, NULL);
1273         if (likely(ret == 0))
1274                 *p_bo = bo;
1275
1276         return ret;
1277 }
1278
1279 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1280                                         unsigned mem_type, bool allow_errors)
1281 {
1282         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1283         struct ttm_bo_global *glob = bdev->glob;
1284         int ret;
1285
1286         /*
1287          * Can't use standard list traversal since we're unlocking.
1288          */
1289
1290         spin_lock(&glob->lru_lock);
1291         while (!list_empty(&man->lru)) {
1292                 spin_unlock(&glob->lru_lock);
1293                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1294                 if (ret) {
1295                         if (allow_errors) {
1296                                 return ret;
1297                         } else {
1298                                 printk(KERN_ERR TTM_PFX
1299                                         "Cleanup eviction failed\n");
1300                         }
1301                 }
1302                 spin_lock(&glob->lru_lock);
1303         }
1304         spin_unlock(&glob->lru_lock);
1305         return 0;
1306 }
1307
1308 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1309 {
1310         struct ttm_mem_type_manager *man;
1311         int ret = -EINVAL;
1312
1313         if (mem_type >= TTM_NUM_MEM_TYPES) {
1314                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1315                 return ret;
1316         }
1317         man = &bdev->man[mem_type];
1318
1319         if (!man->has_type) {
1320                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1321                        "memory manager type %u\n", mem_type);
1322                 return ret;
1323         }
1324
1325         man->use_type = false;
1326         man->has_type = false;
1327
1328         ret = 0;
1329         if (mem_type > 0) {
1330                 ttm_bo_force_list_clean(bdev, mem_type, false);
1331
1332                 ret = (*man->func->takedown)(man);
1333         }
1334
1335         return ret;
1336 }
1337 EXPORT_SYMBOL(ttm_bo_clean_mm);
1338
1339 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1340 {
1341         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1342
1343         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1344                 printk(KERN_ERR TTM_PFX
1345                        "Illegal memory manager memory type %u.\n",
1346                        mem_type);
1347                 return -EINVAL;
1348         }
1349
1350         if (!man->has_type) {
1351                 printk(KERN_ERR TTM_PFX
1352                        "Memory type %u has not been initialized.\n",
1353                        mem_type);
1354                 return 0;
1355         }
1356
1357         return ttm_bo_force_list_clean(bdev, mem_type, true);
1358 }
1359 EXPORT_SYMBOL(ttm_bo_evict_mm);
1360
1361 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1362                         unsigned long p_size)
1363 {
1364         int ret = -EINVAL;
1365         struct ttm_mem_type_manager *man;
1366
1367         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1368         man = &bdev->man[type];
1369         BUG_ON(man->has_type);
1370
1371         ret = bdev->driver->init_mem_type(bdev, type, man);
1372         if (ret)
1373                 return ret;
1374         man->bdev = bdev;
1375
1376         ret = 0;
1377         if (type != TTM_PL_SYSTEM) {
1378                 ret = (*man->func->init)(man, p_size);
1379                 if (ret)
1380                         return ret;
1381         }
1382         man->has_type = true;
1383         man->use_type = true;
1384         man->size = p_size;
1385
1386         INIT_LIST_HEAD(&man->lru);
1387
1388         return 0;
1389 }
1390 EXPORT_SYMBOL(ttm_bo_init_mm);
1391
1392 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1393 {
1394         struct ttm_bo_global *glob =
1395                 container_of(kobj, struct ttm_bo_global, kobj);
1396
1397         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1398         __free_page(glob->dummy_read_page);
1399         kfree(glob);
1400 }
1401
1402 void ttm_bo_global_release(struct drm_global_reference *ref)
1403 {
1404         struct ttm_bo_global *glob = ref->object;
1405
1406         kobject_del(&glob->kobj);
1407         kobject_put(&glob->kobj);
1408 }
1409 EXPORT_SYMBOL(ttm_bo_global_release);
1410
1411 int ttm_bo_global_init(struct drm_global_reference *ref)
1412 {
1413         struct ttm_bo_global_ref *bo_ref =
1414                 container_of(ref, struct ttm_bo_global_ref, ref);
1415         struct ttm_bo_global *glob = ref->object;
1416         int ret;
1417
1418         mutex_init(&glob->device_list_mutex);
1419         spin_lock_init(&glob->lru_lock);
1420         glob->mem_glob = bo_ref->mem_glob;
1421         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1422
1423         if (unlikely(glob->dummy_read_page == NULL)) {
1424                 ret = -ENOMEM;
1425                 goto out_no_drp;
1426         }
1427
1428         INIT_LIST_HEAD(&glob->swap_lru);
1429         INIT_LIST_HEAD(&glob->device_list);
1430
1431         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1432         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1433         if (unlikely(ret != 0)) {
1434                 printk(KERN_ERR TTM_PFX
1435                        "Could not register buffer object swapout.\n");
1436                 goto out_no_shrink;
1437         }
1438
1439         glob->ttm_bo_extra_size =
1440                 ttm_round_pot(sizeof(struct ttm_tt)) +
1441                 ttm_round_pot(sizeof(struct ttm_backend));
1442
1443         glob->ttm_bo_size = glob->ttm_bo_extra_size +
1444                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1445
1446         atomic_set(&glob->bo_count, 0);
1447
1448         ret = kobject_init_and_add(
1449                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1450         if (unlikely(ret != 0))
1451                 kobject_put(&glob->kobj);
1452         return ret;
1453 out_no_shrink:
1454         __free_page(glob->dummy_read_page);
1455 out_no_drp:
1456         kfree(glob);
1457         return ret;
1458 }
1459 EXPORT_SYMBOL(ttm_bo_global_init);
1460
1461
1462 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1463 {
1464         int ret = 0;
1465         unsigned i = TTM_NUM_MEM_TYPES;
1466         struct ttm_mem_type_manager *man;
1467         struct ttm_bo_global *glob = bdev->glob;
1468
1469         while (i--) {
1470                 man = &bdev->man[i];
1471                 if (man->has_type) {
1472                         man->use_type = false;
1473                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1474                                 ret = -EBUSY;
1475                                 printk(KERN_ERR TTM_PFX
1476                                        "DRM memory manager type %d "
1477                                        "is not clean.\n", i);
1478                         }
1479                         man->has_type = false;
1480                 }
1481         }
1482
1483         mutex_lock(&glob->device_list_mutex);
1484         list_del(&bdev->device_list);
1485         mutex_unlock(&glob->device_list_mutex);
1486
1487         if (!cancel_delayed_work(&bdev->wq))
1488                 flush_scheduled_work();
1489
1490         while (ttm_bo_delayed_delete(bdev, true))
1491                 ;
1492
1493         spin_lock(&glob->lru_lock);
1494         if (list_empty(&bdev->ddestroy))
1495                 TTM_DEBUG("Delayed destroy list was clean\n");
1496
1497         if (list_empty(&bdev->man[0].lru))
1498                 TTM_DEBUG("Swap list was clean\n");
1499         spin_unlock(&glob->lru_lock);
1500
1501         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1502         write_lock(&bdev->vm_lock);
1503         drm_mm_takedown(&bdev->addr_space_mm);
1504         write_unlock(&bdev->vm_lock);
1505
1506         return ret;
1507 }
1508 EXPORT_SYMBOL(ttm_bo_device_release);
1509
1510 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1511                        struct ttm_bo_global *glob,
1512                        struct ttm_bo_driver *driver,
1513                        uint64_t file_page_offset,
1514                        bool need_dma32)
1515 {
1516         int ret = -EINVAL;
1517
1518         rwlock_init(&bdev->vm_lock);
1519         bdev->driver = driver;
1520
1521         memset(bdev->man, 0, sizeof(bdev->man));
1522
1523         /*
1524          * Initialize the system memory buffer type.
1525          * Other types need to be driver / IOCTL initialized.
1526          */
1527         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1528         if (unlikely(ret != 0))
1529                 goto out_no_sys;
1530
1531         bdev->addr_space_rb = RB_ROOT;
1532         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1533         if (unlikely(ret != 0))
1534                 goto out_no_addr_mm;
1535
1536         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1537         bdev->nice_mode = true;
1538         INIT_LIST_HEAD(&bdev->ddestroy);
1539         bdev->dev_mapping = NULL;
1540         bdev->glob = glob;
1541         bdev->need_dma32 = need_dma32;
1542         spin_lock_init(&bdev->fence_lock);
1543         mutex_lock(&glob->device_list_mutex);
1544         list_add_tail(&bdev->device_list, &glob->device_list);
1545         mutex_unlock(&glob->device_list_mutex);
1546
1547         return 0;
1548 out_no_addr_mm:
1549         ttm_bo_clean_mm(bdev, 0);
1550 out_no_sys:
1551         return ret;
1552 }
1553 EXPORT_SYMBOL(ttm_bo_device_init);
1554
1555 /*
1556  * buffer object vm functions.
1557  */
1558
1559 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1560 {
1561         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1562
1563         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1564                 if (mem->mem_type == TTM_PL_SYSTEM)
1565                         return false;
1566
1567                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1568                         return false;
1569
1570                 if (mem->placement & TTM_PL_FLAG_CACHED)
1571                         return false;
1572         }
1573         return true;
1574 }
1575
1576 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1577 {
1578         struct ttm_bo_device *bdev = bo->bdev;
1579         loff_t offset = (loff_t) bo->addr_space_offset;
1580         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1581
1582         if (!bdev->dev_mapping)
1583                 return;
1584         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1585         ttm_mem_io_free(bdev, &bo->mem);
1586 }
1587 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1588
1589 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1590 {
1591         struct ttm_bo_device *bdev = bo->bdev;
1592         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1593         struct rb_node *parent = NULL;
1594         struct ttm_buffer_object *cur_bo;
1595         unsigned long offset = bo->vm_node->start;
1596         unsigned long cur_offset;
1597
1598         while (*cur) {
1599                 parent = *cur;
1600                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1601                 cur_offset = cur_bo->vm_node->start;
1602                 if (offset < cur_offset)
1603                         cur = &parent->rb_left;
1604                 else if (offset > cur_offset)
1605                         cur = &parent->rb_right;
1606                 else
1607                         BUG();
1608         }
1609
1610         rb_link_node(&bo->vm_rb, parent, cur);
1611         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1612 }
1613
1614 /**
1615  * ttm_bo_setup_vm:
1616  *
1617  * @bo: the buffer to allocate address space for
1618  *
1619  * Allocate address space in the drm device so that applications
1620  * can mmap the buffer and access the contents. This only
1621  * applies to ttm_bo_type_device objects as others are not
1622  * placed in the drm device address space.
1623  */
1624
1625 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1626 {
1627         struct ttm_bo_device *bdev = bo->bdev;
1628         int ret;
1629
1630 retry_pre_get:
1631         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1632         if (unlikely(ret != 0))
1633                 return ret;
1634
1635         write_lock(&bdev->vm_lock);
1636         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1637                                          bo->mem.num_pages, 0, 0);
1638
1639         if (unlikely(bo->vm_node == NULL)) {
1640                 ret = -ENOMEM;
1641                 goto out_unlock;
1642         }
1643
1644         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1645                                               bo->mem.num_pages, 0);
1646
1647         if (unlikely(bo->vm_node == NULL)) {
1648                 write_unlock(&bdev->vm_lock);
1649                 goto retry_pre_get;
1650         }
1651
1652         ttm_bo_vm_insert_rb(bo);
1653         write_unlock(&bdev->vm_lock);
1654         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1655
1656         return 0;
1657 out_unlock:
1658         write_unlock(&bdev->vm_lock);
1659         return ret;
1660 }
1661
1662 int ttm_bo_wait(struct ttm_buffer_object *bo,
1663                 bool lazy, bool interruptible, bool no_wait)
1664 {
1665         struct ttm_bo_driver *driver = bo->bdev->driver;
1666         struct ttm_bo_device *bdev = bo->bdev;
1667         void *sync_obj;
1668         void *sync_obj_arg;
1669         int ret = 0;
1670
1671         if (likely(bo->sync_obj == NULL))
1672                 return 0;
1673
1674         while (bo->sync_obj) {
1675
1676                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1677                         void *tmp_obj = bo->sync_obj;
1678                         bo->sync_obj = NULL;
1679                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1680                         spin_unlock(&bdev->fence_lock);
1681                         driver->sync_obj_unref(&tmp_obj);
1682                         spin_lock(&bdev->fence_lock);
1683                         continue;
1684                 }
1685
1686                 if (no_wait)
1687                         return -EBUSY;
1688
1689                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1690                 sync_obj_arg = bo->sync_obj_arg;
1691                 spin_unlock(&bdev->fence_lock);
1692                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1693                                             lazy, interruptible);
1694                 if (unlikely(ret != 0)) {
1695                         driver->sync_obj_unref(&sync_obj);
1696                         spin_lock(&bdev->fence_lock);
1697                         return ret;
1698                 }
1699                 spin_lock(&bdev->fence_lock);
1700                 if (likely(bo->sync_obj == sync_obj &&
1701                            bo->sync_obj_arg == sync_obj_arg)) {
1702                         void *tmp_obj = bo->sync_obj;
1703                         bo->sync_obj = NULL;
1704                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1705                                   &bo->priv_flags);
1706                         spin_unlock(&bdev->fence_lock);
1707                         driver->sync_obj_unref(&sync_obj);
1708                         driver->sync_obj_unref(&tmp_obj);
1709                         spin_lock(&bdev->fence_lock);
1710                 } else {
1711                         spin_unlock(&bdev->fence_lock);
1712                         driver->sync_obj_unref(&sync_obj);
1713                         spin_lock(&bdev->fence_lock);
1714                 }
1715         }
1716         return 0;
1717 }
1718 EXPORT_SYMBOL(ttm_bo_wait);
1719
1720 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1721 {
1722         struct ttm_bo_device *bdev = bo->bdev;
1723         int ret = 0;
1724
1725         /*
1726          * Using ttm_bo_reserve makes sure the lru lists are updated.
1727          */
1728
1729         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1730         if (unlikely(ret != 0))
1731                 return ret;
1732         spin_lock(&bdev->fence_lock);
1733         ret = ttm_bo_wait(bo, false, true, no_wait);
1734         spin_unlock(&bdev->fence_lock);
1735         if (likely(ret == 0))
1736                 atomic_inc(&bo->cpu_writers);
1737         ttm_bo_unreserve(bo);
1738         return ret;
1739 }
1740 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1741
1742 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1743 {
1744         if (atomic_dec_and_test(&bo->cpu_writers))
1745                 wake_up_all(&bo->event_queue);
1746 }
1747 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1748
1749 /**
1750  * A buffer object shrink method that tries to swap out the first
1751  * buffer object on the bo_global::swap_lru list.
1752  */
1753
1754 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1755 {
1756         struct ttm_bo_global *glob =
1757             container_of(shrink, struct ttm_bo_global, shrink);
1758         struct ttm_buffer_object *bo;
1759         int ret = -EBUSY;
1760         int put_count;
1761         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1762
1763         spin_lock(&glob->lru_lock);
1764         while (ret == -EBUSY) {
1765                 if (unlikely(list_empty(&glob->swap_lru))) {
1766                         spin_unlock(&glob->lru_lock);
1767                         return -EBUSY;
1768                 }
1769
1770                 bo = list_first_entry(&glob->swap_lru,
1771                                       struct ttm_buffer_object, swap);
1772                 kref_get(&bo->list_kref);
1773
1774                 if (!list_empty(&bo->ddestroy)) {
1775                         spin_unlock(&glob->lru_lock);
1776                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1777                         kref_put(&bo->list_kref, ttm_bo_release_list);
1778                         continue;
1779                 }
1780
1781                 /**
1782                  * Reserve buffer. Since we unlock while sleeping, we need
1783                  * to re-check that nobody removed us from the swap-list while
1784                  * we slept.
1785                  */
1786
1787                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1788                 if (unlikely(ret == -EBUSY)) {
1789                         spin_unlock(&glob->lru_lock);
1790                         ttm_bo_wait_unreserved(bo, false);
1791                         kref_put(&bo->list_kref, ttm_bo_release_list);
1792                         spin_lock(&glob->lru_lock);
1793                 }
1794         }
1795
1796         BUG_ON(ret != 0);
1797         put_count = ttm_bo_del_from_lru(bo);
1798         spin_unlock(&glob->lru_lock);
1799
1800         ttm_bo_list_ref_sub(bo, put_count, true);
1801
1802         /**
1803          * Wait for GPU, then move to system cached.
1804          */
1805
1806         spin_lock(&bo->bdev->fence_lock);
1807         ret = ttm_bo_wait(bo, false, false, false);
1808         spin_unlock(&bo->bdev->fence_lock);
1809
1810         if (unlikely(ret != 0))
1811                 goto out;
1812
1813         if ((bo->mem.placement & swap_placement) != swap_placement) {
1814                 struct ttm_mem_reg evict_mem;
1815
1816                 evict_mem = bo->mem;
1817                 evict_mem.mm_node = NULL;
1818                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1819                 evict_mem.mem_type = TTM_PL_SYSTEM;
1820
1821                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1822                                              false, false, false);
1823                 if (unlikely(ret != 0))
1824                         goto out;
1825         }
1826
1827         ttm_bo_unmap_virtual(bo);
1828
1829         /**
1830          * Swap out. Buffer will be swapped in again as soon as
1831          * anyone tries to access a ttm page.
1832          */
1833
1834         if (bo->bdev->driver->swap_notify)
1835                 bo->bdev->driver->swap_notify(bo);
1836
1837         ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
1838 out:
1839
1840         /**
1841          *
1842          * Unreserve without putting on LRU to avoid swapping out an
1843          * already swapped buffer.
1844          */
1845
1846         atomic_set(&bo->reserved, 0);
1847         wake_up_all(&bo->event_queue);
1848         kref_put(&bo->list_kref, ttm_bo_release_list);
1849         return ret;
1850 }
1851
1852 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1853 {
1854         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1855                 ;
1856 }
1857 EXPORT_SYMBOL(ttm_bo_swapout_all);