drm/tegra: dc: Unify enabling the display controller
[pandora-kernel.git] / drivers / gpu / drm / tegra / dc.c
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14
15 #include <soc/tegra/pmc.h>
16
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24
25 struct tegra_dc_soc_info {
26         bool supports_border_color;
27         bool supports_interlacing;
28         bool supports_cursor;
29         bool supports_block_linear;
30         unsigned int pitch_align;
31         bool has_powergate;
32 };
33
34 struct tegra_plane {
35         struct drm_plane base;
36         unsigned int index;
37 };
38
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41         return container_of(plane, struct tegra_plane, base);
42 }
43
44 struct tegra_dc_state {
45         struct drm_crtc_state base;
46
47         struct clk *clk;
48         unsigned long pclk;
49         unsigned int div;
50
51         u32 planes;
52 };
53
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56         if (state)
57                 return container_of(state, struct tegra_dc_state, base);
58
59         return NULL;
60 }
61
62 struct tegra_plane_state {
63         struct drm_plane_state base;
64
65         struct tegra_bo_tiling tiling;
66         u32 format;
67         u32 swap;
68 };
69
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73         if (state)
74                 return container_of(state, struct tegra_plane_state, base);
75
76         return NULL;
77 }
78
79 /*
80  * Reads the active copy of a register. This takes the dc->lock spinlock to
81  * prevent races with the VBLANK processing which also needs access to the
82  * active copy of some registers.
83  */
84 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
85 {
86         unsigned long flags;
87         u32 value;
88
89         spin_lock_irqsave(&dc->lock, flags);
90
91         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
92         value = tegra_dc_readl(dc, offset);
93         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
94
95         spin_unlock_irqrestore(&dc->lock, flags);
96         return value;
97 }
98
99 /*
100  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
101  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
102  * Latching happens mmediately if the display controller is in STOP mode or
103  * on the next frame boundary otherwise.
104  *
105  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
106  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
107  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
108  * into the ACTIVE copy, either immediately if the display controller is in
109  * STOP mode, or at the next frame boundary otherwise.
110  */
111 void tegra_dc_commit(struct tegra_dc *dc)
112 {
113         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
114         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
115 }
116
117 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
118 {
119         /* assume no swapping of fetched data */
120         if (swap)
121                 *swap = BYTE_SWAP_NOSWAP;
122
123         switch (fourcc) {
124         case DRM_FORMAT_XBGR8888:
125                 *format = WIN_COLOR_DEPTH_R8G8B8A8;
126                 break;
127
128         case DRM_FORMAT_XRGB8888:
129                 *format = WIN_COLOR_DEPTH_B8G8R8A8;
130                 break;
131
132         case DRM_FORMAT_RGB565:
133                 *format = WIN_COLOR_DEPTH_B5G6R5;
134                 break;
135
136         case DRM_FORMAT_UYVY:
137                 *format = WIN_COLOR_DEPTH_YCbCr422;
138                 break;
139
140         case DRM_FORMAT_YUYV:
141                 if (swap)
142                         *swap = BYTE_SWAP_SWAP2;
143
144                 *format = WIN_COLOR_DEPTH_YCbCr422;
145                 break;
146
147         case DRM_FORMAT_YUV420:
148                 *format = WIN_COLOR_DEPTH_YCbCr420P;
149                 break;
150
151         case DRM_FORMAT_YUV422:
152                 *format = WIN_COLOR_DEPTH_YCbCr422P;
153                 break;
154
155         default:
156                 return -EINVAL;
157         }
158
159         return 0;
160 }
161
162 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
163 {
164         switch (format) {
165         case WIN_COLOR_DEPTH_YCbCr422:
166         case WIN_COLOR_DEPTH_YUV422:
167                 if (planar)
168                         *planar = false;
169
170                 return true;
171
172         case WIN_COLOR_DEPTH_YCbCr420P:
173         case WIN_COLOR_DEPTH_YUV420P:
174         case WIN_COLOR_DEPTH_YCbCr422P:
175         case WIN_COLOR_DEPTH_YUV422P:
176         case WIN_COLOR_DEPTH_YCbCr422R:
177         case WIN_COLOR_DEPTH_YUV422R:
178         case WIN_COLOR_DEPTH_YCbCr422RA:
179         case WIN_COLOR_DEPTH_YUV422RA:
180                 if (planar)
181                         *planar = true;
182
183                 return true;
184         }
185
186         if (planar)
187                 *planar = false;
188
189         return false;
190 }
191
192 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
193                                   unsigned int bpp)
194 {
195         fixed20_12 outf = dfixed_init(out);
196         fixed20_12 inf = dfixed_init(in);
197         u32 dda_inc;
198         int max;
199
200         if (v)
201                 max = 15;
202         else {
203                 switch (bpp) {
204                 case 2:
205                         max = 8;
206                         break;
207
208                 default:
209                         WARN_ON_ONCE(1);
210                         /* fallthrough */
211                 case 4:
212                         max = 4;
213                         break;
214                 }
215         }
216
217         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
218         inf.full -= dfixed_const(1);
219
220         dda_inc = dfixed_div(inf, outf);
221         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
222
223         return dda_inc;
224 }
225
226 static inline u32 compute_initial_dda(unsigned int in)
227 {
228         fixed20_12 inf = dfixed_init(in);
229         return dfixed_frac(inf);
230 }
231
232 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
233                                   const struct tegra_dc_window *window)
234 {
235         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
236         unsigned long value, flags;
237         bool yuv, planar;
238
239         /*
240          * For YUV planar modes, the number of bytes per pixel takes into
241          * account only the luma component and therefore is 1.
242          */
243         yuv = tegra_dc_format_is_yuv(window->format, &planar);
244         if (!yuv)
245                 bpp = window->bits_per_pixel / 8;
246         else
247                 bpp = planar ? 1 : 2;
248
249         spin_lock_irqsave(&dc->lock, flags);
250
251         value = WINDOW_A_SELECT << index;
252         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
253
254         tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
255         tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
256
257         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
258         tegra_dc_writel(dc, value, DC_WIN_POSITION);
259
260         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
261         tegra_dc_writel(dc, value, DC_WIN_SIZE);
262
263         h_offset = window->src.x * bpp;
264         v_offset = window->src.y;
265         h_size = window->src.w * bpp;
266         v_size = window->src.h;
267
268         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
269         tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
270
271         /*
272          * For DDA computations the number of bytes per pixel for YUV planar
273          * modes needs to take into account all Y, U and V components.
274          */
275         if (yuv && planar)
276                 bpp = 2;
277
278         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
279         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
280
281         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
282         tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
283
284         h_dda = compute_initial_dda(window->src.x);
285         v_dda = compute_initial_dda(window->src.y);
286
287         tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
288         tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
289
290         tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
291         tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
292
293         tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
294
295         if (yuv && planar) {
296                 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
297                 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
298                 value = window->stride[1] << 16 | window->stride[0];
299                 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
300         } else {
301                 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
302         }
303
304         if (window->bottom_up)
305                 v_offset += window->src.h - 1;
306
307         tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
308         tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
309
310         if (dc->soc->supports_block_linear) {
311                 unsigned long height = window->tiling.value;
312
313                 switch (window->tiling.mode) {
314                 case TEGRA_BO_TILING_MODE_PITCH:
315                         value = DC_WINBUF_SURFACE_KIND_PITCH;
316                         break;
317
318                 case TEGRA_BO_TILING_MODE_TILED:
319                         value = DC_WINBUF_SURFACE_KIND_TILED;
320                         break;
321
322                 case TEGRA_BO_TILING_MODE_BLOCK:
323                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
324                                 DC_WINBUF_SURFACE_KIND_BLOCK;
325                         break;
326                 }
327
328                 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
329         } else {
330                 switch (window->tiling.mode) {
331                 case TEGRA_BO_TILING_MODE_PITCH:
332                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
333                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
334                         break;
335
336                 case TEGRA_BO_TILING_MODE_TILED:
337                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
338                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
339                         break;
340
341                 case TEGRA_BO_TILING_MODE_BLOCK:
342                         /*
343                          * No need to handle this here because ->atomic_check
344                          * will already have filtered it out.
345                          */
346                         break;
347                 }
348
349                 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
350         }
351
352         value = WIN_ENABLE;
353
354         if (yuv) {
355                 /* setup default colorspace conversion coefficients */
356                 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
357                 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
358                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
359                 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
360                 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
361                 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
362                 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
363                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
364
365                 value |= CSC_ENABLE;
366         } else if (window->bits_per_pixel < 24) {
367                 value |= COLOR_EXPAND;
368         }
369
370         if (window->bottom_up)
371                 value |= V_DIRECTION;
372
373         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
374
375         /*
376          * Disable blending and assume Window A is the bottom-most window,
377          * Window C is the top-most window and Window B is in the middle.
378          */
379         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
380         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
381
382         switch (index) {
383         case 0:
384                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
385                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
386                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
387                 break;
388
389         case 1:
390                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
391                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
392                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
393                 break;
394
395         case 2:
396                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
397                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
398                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
399                 break;
400         }
401
402         spin_unlock_irqrestore(&dc->lock, flags);
403 }
404
405 static void tegra_plane_destroy(struct drm_plane *plane)
406 {
407         struct tegra_plane *p = to_tegra_plane(plane);
408
409         drm_plane_cleanup(plane);
410         kfree(p);
411 }
412
413 static const u32 tegra_primary_plane_formats[] = {
414         DRM_FORMAT_XBGR8888,
415         DRM_FORMAT_XRGB8888,
416         DRM_FORMAT_RGB565,
417 };
418
419 static void tegra_primary_plane_destroy(struct drm_plane *plane)
420 {
421         tegra_plane_destroy(plane);
422 }
423
424 static void tegra_plane_reset(struct drm_plane *plane)
425 {
426         struct tegra_plane_state *state;
427
428         if (plane->state && plane->state->fb)
429                 drm_framebuffer_unreference(plane->state->fb);
430
431         kfree(plane->state);
432         plane->state = NULL;
433
434         state = kzalloc(sizeof(*state), GFP_KERNEL);
435         if (state) {
436                 plane->state = &state->base;
437                 plane->state->plane = plane;
438         }
439 }
440
441 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
442 {
443         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
444         struct tegra_plane_state *copy;
445
446         copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
447         if (!copy)
448                 return NULL;
449
450         if (copy->base.fb)
451                 drm_framebuffer_reference(copy->base.fb);
452
453         return &copy->base;
454 }
455
456 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
457                                              struct drm_plane_state *state)
458 {
459         if (state->fb)
460                 drm_framebuffer_unreference(state->fb);
461
462         kfree(state);
463 }
464
465 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
466         .update_plane = drm_atomic_helper_update_plane,
467         .disable_plane = drm_atomic_helper_disable_plane,
468         .destroy = tegra_primary_plane_destroy,
469         .reset = tegra_plane_reset,
470         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
471         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
472 };
473
474 static int tegra_plane_prepare_fb(struct drm_plane *plane,
475                                   struct drm_framebuffer *fb)
476 {
477         return 0;
478 }
479
480 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
481                                    struct drm_framebuffer *fb)
482 {
483 }
484
485 static int tegra_plane_state_add(struct tegra_plane *plane,
486                                  struct drm_plane_state *state)
487 {
488         struct drm_crtc_state *crtc_state;
489         struct tegra_dc_state *tegra;
490
491         /* Propagate errors from allocation or locking failures. */
492         crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
493         if (IS_ERR(crtc_state))
494                 return PTR_ERR(crtc_state);
495
496         tegra = to_dc_state(crtc_state);
497
498         tegra->planes |= WIN_A_ACT_REQ << plane->index;
499
500         return 0;
501 }
502
503 static int tegra_plane_atomic_check(struct drm_plane *plane,
504                                     struct drm_plane_state *state)
505 {
506         struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
507         struct tegra_bo_tiling *tiling = &plane_state->tiling;
508         struct tegra_plane *tegra = to_tegra_plane(plane);
509         struct tegra_dc *dc = to_tegra_dc(state->crtc);
510         int err;
511
512         /* no need for further checks if the plane is being disabled */
513         if (!state->crtc)
514                 return 0;
515
516         err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
517                               &plane_state->swap);
518         if (err < 0)
519                 return err;
520
521         err = tegra_fb_get_tiling(state->fb, tiling);
522         if (err < 0)
523                 return err;
524
525         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
526             !dc->soc->supports_block_linear) {
527                 DRM_ERROR("hardware doesn't support block linear mode\n");
528                 return -EINVAL;
529         }
530
531         /*
532          * Tegra doesn't support different strides for U and V planes so we
533          * error out if the user tries to display a framebuffer with such a
534          * configuration.
535          */
536         if (drm_format_num_planes(state->fb->pixel_format) > 2) {
537                 if (state->fb->pitches[2] != state->fb->pitches[1]) {
538                         DRM_ERROR("unsupported UV-plane configuration\n");
539                         return -EINVAL;
540                 }
541         }
542
543         err = tegra_plane_state_add(tegra, state);
544         if (err < 0)
545                 return err;
546
547         return 0;
548 }
549
550 static void tegra_plane_atomic_update(struct drm_plane *plane,
551                                       struct drm_plane_state *old_state)
552 {
553         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
554         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
555         struct drm_framebuffer *fb = plane->state->fb;
556         struct tegra_plane *p = to_tegra_plane(plane);
557         struct tegra_dc_window window;
558         unsigned int i;
559
560         /* rien ne va plus */
561         if (!plane->state->crtc || !plane->state->fb)
562                 return;
563
564         memset(&window, 0, sizeof(window));
565         window.src.x = plane->state->src_x >> 16;
566         window.src.y = plane->state->src_y >> 16;
567         window.src.w = plane->state->src_w >> 16;
568         window.src.h = plane->state->src_h >> 16;
569         window.dst.x = plane->state->crtc_x;
570         window.dst.y = plane->state->crtc_y;
571         window.dst.w = plane->state->crtc_w;
572         window.dst.h = plane->state->crtc_h;
573         window.bits_per_pixel = fb->bits_per_pixel;
574         window.bottom_up = tegra_fb_is_bottom_up(fb);
575
576         /* copy from state */
577         window.tiling = state->tiling;
578         window.format = state->format;
579         window.swap = state->swap;
580
581         for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
582                 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
583
584                 window.base[i] = bo->paddr + fb->offsets[i];
585                 window.stride[i] = fb->pitches[i];
586         }
587
588         tegra_dc_setup_window(dc, p->index, &window);
589 }
590
591 static void tegra_plane_atomic_disable(struct drm_plane *plane,
592                                        struct drm_plane_state *old_state)
593 {
594         struct tegra_plane *p = to_tegra_plane(plane);
595         struct tegra_dc *dc;
596         unsigned long flags;
597         u32 value;
598
599         /* rien ne va plus */
600         if (!old_state || !old_state->crtc)
601                 return;
602
603         dc = to_tegra_dc(old_state->crtc);
604
605         spin_lock_irqsave(&dc->lock, flags);
606
607         value = WINDOW_A_SELECT << p->index;
608         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
609
610         value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
611         value &= ~WIN_ENABLE;
612         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
613
614         spin_unlock_irqrestore(&dc->lock, flags);
615 }
616
617 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
618         .prepare_fb = tegra_plane_prepare_fb,
619         .cleanup_fb = tegra_plane_cleanup_fb,
620         .atomic_check = tegra_plane_atomic_check,
621         .atomic_update = tegra_plane_atomic_update,
622         .atomic_disable = tegra_plane_atomic_disable,
623 };
624
625 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
626                                                        struct tegra_dc *dc)
627 {
628         /*
629          * Ideally this would use drm_crtc_mask(), but that would require the
630          * CRTC to already be in the mode_config's list of CRTCs. However, it
631          * will only be added to that list in the drm_crtc_init_with_planes()
632          * (in tegra_dc_init()), which in turn requires registration of these
633          * planes. So we have ourselves a nice little chicken and egg problem
634          * here.
635          *
636          * We work around this by manually creating the mask from the number
637          * of CRTCs that have been registered, and should therefore always be
638          * the same as drm_crtc_index() after registration.
639          */
640         unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
641         struct tegra_plane *plane;
642         unsigned int num_formats;
643         const u32 *formats;
644         int err;
645
646         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
647         if (!plane)
648                 return ERR_PTR(-ENOMEM);
649
650         num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
651         formats = tegra_primary_plane_formats;
652
653         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
654                                        &tegra_primary_plane_funcs, formats,
655                                        num_formats, DRM_PLANE_TYPE_PRIMARY);
656         if (err < 0) {
657                 kfree(plane);
658                 return ERR_PTR(err);
659         }
660
661         drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
662
663         return &plane->base;
664 }
665
666 static const u32 tegra_cursor_plane_formats[] = {
667         DRM_FORMAT_RGBA8888,
668 };
669
670 static int tegra_cursor_atomic_check(struct drm_plane *plane,
671                                      struct drm_plane_state *state)
672 {
673         struct tegra_plane *tegra = to_tegra_plane(plane);
674         int err;
675
676         /* no need for further checks if the plane is being disabled */
677         if (!state->crtc)
678                 return 0;
679
680         /* scaling not supported for cursor */
681         if ((state->src_w >> 16 != state->crtc_w) ||
682             (state->src_h >> 16 != state->crtc_h))
683                 return -EINVAL;
684
685         /* only square cursors supported */
686         if (state->src_w != state->src_h)
687                 return -EINVAL;
688
689         if (state->crtc_w != 32 && state->crtc_w != 64 &&
690             state->crtc_w != 128 && state->crtc_w != 256)
691                 return -EINVAL;
692
693         err = tegra_plane_state_add(tegra, state);
694         if (err < 0)
695                 return err;
696
697         return 0;
698 }
699
700 static void tegra_cursor_atomic_update(struct drm_plane *plane,
701                                        struct drm_plane_state *old_state)
702 {
703         struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
704         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
705         struct drm_plane_state *state = plane->state;
706         u32 value = CURSOR_CLIP_DISPLAY;
707
708         /* rien ne va plus */
709         if (!plane->state->crtc || !plane->state->fb)
710                 return;
711
712         switch (state->crtc_w) {
713         case 32:
714                 value |= CURSOR_SIZE_32x32;
715                 break;
716
717         case 64:
718                 value |= CURSOR_SIZE_64x64;
719                 break;
720
721         case 128:
722                 value |= CURSOR_SIZE_128x128;
723                 break;
724
725         case 256:
726                 value |= CURSOR_SIZE_256x256;
727                 break;
728
729         default:
730                 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
731                      state->crtc_h);
732                 return;
733         }
734
735         value |= (bo->paddr >> 10) & 0x3fffff;
736         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
737
738 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
739         value = (bo->paddr >> 32) & 0x3;
740         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
741 #endif
742
743         /* enable cursor and set blend mode */
744         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
745         value |= CURSOR_ENABLE;
746         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
747
748         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
749         value &= ~CURSOR_DST_BLEND_MASK;
750         value &= ~CURSOR_SRC_BLEND_MASK;
751         value |= CURSOR_MODE_NORMAL;
752         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
753         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
754         value |= CURSOR_ALPHA;
755         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
756
757         /* position the cursor */
758         value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
759         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
760
761 }
762
763 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
764                                         struct drm_plane_state *old_state)
765 {
766         struct tegra_dc *dc;
767         u32 value;
768
769         /* rien ne va plus */
770         if (!old_state || !old_state->crtc)
771                 return;
772
773         dc = to_tegra_dc(old_state->crtc);
774
775         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
776         value &= ~CURSOR_ENABLE;
777         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
778 }
779
780 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
781         .update_plane = drm_atomic_helper_update_plane,
782         .disable_plane = drm_atomic_helper_disable_plane,
783         .destroy = tegra_plane_destroy,
784         .reset = tegra_plane_reset,
785         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
786         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
787 };
788
789 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
790         .prepare_fb = tegra_plane_prepare_fb,
791         .cleanup_fb = tegra_plane_cleanup_fb,
792         .atomic_check = tegra_cursor_atomic_check,
793         .atomic_update = tegra_cursor_atomic_update,
794         .atomic_disable = tegra_cursor_atomic_disable,
795 };
796
797 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
798                                                       struct tegra_dc *dc)
799 {
800         struct tegra_plane *plane;
801         unsigned int num_formats;
802         const u32 *formats;
803         int err;
804
805         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
806         if (!plane)
807                 return ERR_PTR(-ENOMEM);
808
809         /*
810          * We'll treat the cursor as an overlay plane with index 6 here so
811          * that the update and activation request bits in DC_CMD_STATE_CONTROL
812          * match up.
813          */
814         plane->index = 6;
815
816         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
817         formats = tegra_cursor_plane_formats;
818
819         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
820                                        &tegra_cursor_plane_funcs, formats,
821                                        num_formats, DRM_PLANE_TYPE_CURSOR);
822         if (err < 0) {
823                 kfree(plane);
824                 return ERR_PTR(err);
825         }
826
827         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
828
829         return &plane->base;
830 }
831
832 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
833 {
834         tegra_plane_destroy(plane);
835 }
836
837 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
838         .update_plane = drm_atomic_helper_update_plane,
839         .disable_plane = drm_atomic_helper_disable_plane,
840         .destroy = tegra_overlay_plane_destroy,
841         .reset = tegra_plane_reset,
842         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
843         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
844 };
845
846 static const uint32_t tegra_overlay_plane_formats[] = {
847         DRM_FORMAT_XBGR8888,
848         DRM_FORMAT_XRGB8888,
849         DRM_FORMAT_RGB565,
850         DRM_FORMAT_UYVY,
851         DRM_FORMAT_YUYV,
852         DRM_FORMAT_YUV420,
853         DRM_FORMAT_YUV422,
854 };
855
856 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
857         .prepare_fb = tegra_plane_prepare_fb,
858         .cleanup_fb = tegra_plane_cleanup_fb,
859         .atomic_check = tegra_plane_atomic_check,
860         .atomic_update = tegra_plane_atomic_update,
861         .atomic_disable = tegra_plane_atomic_disable,
862 };
863
864 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
865                                                        struct tegra_dc *dc,
866                                                        unsigned int index)
867 {
868         struct tegra_plane *plane;
869         unsigned int num_formats;
870         const u32 *formats;
871         int err;
872
873         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
874         if (!plane)
875                 return ERR_PTR(-ENOMEM);
876
877         plane->index = index;
878
879         num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
880         formats = tegra_overlay_plane_formats;
881
882         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
883                                        &tegra_overlay_plane_funcs, formats,
884                                        num_formats, DRM_PLANE_TYPE_OVERLAY);
885         if (err < 0) {
886                 kfree(plane);
887                 return ERR_PTR(err);
888         }
889
890         drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
891
892         return &plane->base;
893 }
894
895 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
896 {
897         struct drm_plane *plane;
898         unsigned int i;
899
900         for (i = 0; i < 2; i++) {
901                 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
902                 if (IS_ERR(plane))
903                         return PTR_ERR(plane);
904         }
905
906         return 0;
907 }
908
909 void tegra_dc_enable_vblank(struct tegra_dc *dc)
910 {
911         unsigned long value, flags;
912
913         spin_lock_irqsave(&dc->lock, flags);
914
915         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
916         value |= VBLANK_INT;
917         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
918
919         spin_unlock_irqrestore(&dc->lock, flags);
920 }
921
922 void tegra_dc_disable_vblank(struct tegra_dc *dc)
923 {
924         unsigned long value, flags;
925
926         spin_lock_irqsave(&dc->lock, flags);
927
928         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
929         value &= ~VBLANK_INT;
930         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
931
932         spin_unlock_irqrestore(&dc->lock, flags);
933 }
934
935 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
936 {
937         struct drm_device *drm = dc->base.dev;
938         struct drm_crtc *crtc = &dc->base;
939         unsigned long flags, base;
940         struct tegra_bo *bo;
941
942         spin_lock_irqsave(&drm->event_lock, flags);
943
944         if (!dc->event) {
945                 spin_unlock_irqrestore(&drm->event_lock, flags);
946                 return;
947         }
948
949         bo = tegra_fb_get_plane(crtc->primary->fb, 0);
950
951         spin_lock(&dc->lock);
952
953         /* check if new start address has been latched */
954         tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
955         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
956         base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
957         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
958
959         spin_unlock(&dc->lock);
960
961         if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
962                 drm_crtc_send_vblank_event(crtc, dc->event);
963                 drm_crtc_vblank_put(crtc);
964                 dc->event = NULL;
965         }
966
967         spin_unlock_irqrestore(&drm->event_lock, flags);
968 }
969
970 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
971 {
972         struct tegra_dc *dc = to_tegra_dc(crtc);
973         struct drm_device *drm = crtc->dev;
974         unsigned long flags;
975
976         spin_lock_irqsave(&drm->event_lock, flags);
977
978         if (dc->event && dc->event->base.file_priv == file) {
979                 dc->event->base.destroy(&dc->event->base);
980                 drm_crtc_vblank_put(crtc);
981                 dc->event = NULL;
982         }
983
984         spin_unlock_irqrestore(&drm->event_lock, flags);
985 }
986
987 static void tegra_dc_destroy(struct drm_crtc *crtc)
988 {
989         drm_crtc_cleanup(crtc);
990 }
991
992 static void tegra_crtc_reset(struct drm_crtc *crtc)
993 {
994         struct tegra_dc_state *state;
995
996         kfree(crtc->state);
997         crtc->state = NULL;
998
999         state = kzalloc(sizeof(*state), GFP_KERNEL);
1000         if (state)
1001                 crtc->state = &state->base;
1002 }
1003
1004 static struct drm_crtc_state *
1005 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1006 {
1007         struct tegra_dc_state *state = to_dc_state(crtc->state);
1008         struct tegra_dc_state *copy;
1009
1010         copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1011         if (!copy)
1012                 return NULL;
1013
1014         copy->base.mode_changed = false;
1015         copy->base.planes_changed = false;
1016         copy->base.event = NULL;
1017
1018         return &copy->base;
1019 }
1020
1021 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1022                                             struct drm_crtc_state *state)
1023 {
1024         kfree(state);
1025 }
1026
1027 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1028         .page_flip = drm_atomic_helper_page_flip,
1029         .set_config = drm_atomic_helper_set_config,
1030         .destroy = tegra_dc_destroy,
1031         .reset = tegra_crtc_reset,
1032         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1033         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1034 };
1035
1036 static void tegra_dc_stop(struct tegra_dc *dc)
1037 {
1038         u32 value;
1039
1040         /* stop the display controller */
1041         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1042         value &= ~DISP_CTRL_MODE_MASK;
1043         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1044
1045         tegra_dc_commit(dc);
1046 }
1047
1048 static bool tegra_dc_idle(struct tegra_dc *dc)
1049 {
1050         u32 value;
1051
1052         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1053
1054         return (value & DISP_CTRL_MODE_MASK) == 0;
1055 }
1056
1057 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1058 {
1059         timeout = jiffies + msecs_to_jiffies(timeout);
1060
1061         while (time_before(jiffies, timeout)) {
1062                 if (tegra_dc_idle(dc))
1063                         return 0;
1064
1065                 usleep_range(1000, 2000);
1066         }
1067
1068         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1069         return -ETIMEDOUT;
1070 }
1071
1072 static void tegra_crtc_disable(struct drm_crtc *crtc)
1073 {
1074         struct tegra_dc *dc = to_tegra_dc(crtc);
1075         u32 value;
1076
1077         if (!tegra_dc_idle(dc)) {
1078                 tegra_dc_stop(dc);
1079
1080                 /*
1081                  * Ignore the return value, there isn't anything useful to do
1082                  * in case this fails.
1083                  */
1084                 tegra_dc_wait_idle(dc, 100);
1085         }
1086
1087         /*
1088          * This should really be part of the RGB encoder driver, but clearing
1089          * these bits has the side-effect of stopping the display controller.
1090          * When that happens no VBLANK interrupts will be raised. At the same
1091          * time the encoder is disabled before the display controller, so the
1092          * above code is always going to timeout waiting for the controller
1093          * to go idle.
1094          *
1095          * Given the close coupling between the RGB encoder and the display
1096          * controller doing it here is still kind of okay. None of the other
1097          * encoder drivers require these bits to be cleared.
1098          *
1099          * XXX: Perhaps given that the display controller is switched off at
1100          * this point anyway maybe clearing these bits isn't even useful for
1101          * the RGB encoder?
1102          */
1103         if (dc->rgb) {
1104                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1105                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1106                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1107                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1108         }
1109
1110         drm_crtc_vblank_off(crtc);
1111 }
1112
1113 static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
1114                                   const struct drm_display_mode *mode,
1115                                   struct drm_display_mode *adjusted)
1116 {
1117         return true;
1118 }
1119
1120 static int tegra_dc_set_timings(struct tegra_dc *dc,
1121                                 struct drm_display_mode *mode)
1122 {
1123         unsigned int h_ref_to_sync = 1;
1124         unsigned int v_ref_to_sync = 1;
1125         unsigned long value;
1126
1127         tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1128
1129         value = (v_ref_to_sync << 16) | h_ref_to_sync;
1130         tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1131
1132         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1133                 ((mode->hsync_end - mode->hsync_start) <<  0);
1134         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1135
1136         value = ((mode->vtotal - mode->vsync_end) << 16) |
1137                 ((mode->htotal - mode->hsync_end) <<  0);
1138         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1139
1140         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1141                 ((mode->hsync_start - mode->hdisplay) <<  0);
1142         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1143
1144         value = (mode->vdisplay << 16) | mode->hdisplay;
1145         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1146
1147         return 0;
1148 }
1149
1150 int tegra_dc_setup_clock(struct tegra_dc *dc, struct clk *parent,
1151                          unsigned long pclk, unsigned int div)
1152 {
1153         u32 value;
1154         int err;
1155
1156         err = clk_set_parent(dc->clk, parent);
1157         if (err < 0) {
1158                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1159                 return err;
1160         }
1161
1162         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), div);
1163
1164         value = SHIFT_CLK_DIVIDER(div) | PIXEL_CLK_DIVIDER_PCD1;
1165         tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1166
1167         return 0;
1168 }
1169
1170 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1171                                struct drm_crtc_state *crtc_state,
1172                                struct clk *clk, unsigned long pclk,
1173                                unsigned int div)
1174 {
1175         struct tegra_dc_state *state = to_dc_state(crtc_state);
1176
1177         state->clk = clk;
1178         state->pclk = pclk;
1179         state->div = div;
1180
1181         return 0;
1182 }
1183
1184 static void tegra_dc_commit_state(struct tegra_dc *dc,
1185                                   struct tegra_dc_state *state)
1186 {
1187         u32 value;
1188         int err;
1189
1190         err = clk_set_parent(dc->clk, state->clk);
1191         if (err < 0)
1192                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1193
1194         /*
1195          * Outputs may not want to change the parent clock rate. This is only
1196          * relevant to Tegra20 where only a single display PLL is available.
1197          * Since that PLL would typically be used for HDMI, an internal LVDS
1198          * panel would need to be driven by some other clock such as PLL_P
1199          * which is shared with other peripherals. Changing the clock rate
1200          * should therefore be avoided.
1201          */
1202         if (state->pclk > 0) {
1203                 err = clk_set_rate(state->clk, state->pclk);
1204                 if (err < 0)
1205                         dev_err(dc->dev,
1206                                 "failed to set clock rate to %lu Hz\n",
1207                                 state->pclk);
1208         }
1209
1210         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1211                       state->div);
1212         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1213
1214         value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1215         tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1216 }
1217
1218 static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc)
1219 {
1220         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1221         struct tegra_dc_state *state = to_dc_state(crtc->state);
1222         struct tegra_dc *dc = to_tegra_dc(crtc);
1223         u32 value;
1224
1225         tegra_dc_commit_state(dc, state);
1226
1227         /* program display mode */
1228         tegra_dc_set_timings(dc, mode);
1229
1230         if (dc->soc->supports_border_color)
1231                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1232
1233         /* interlacing isn't supported yet, so disable it */
1234         if (dc->soc->supports_interlacing) {
1235                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1236                 value &= ~INTERLACE_ENABLE;
1237                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1238         }
1239
1240         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1241         value &= ~DISP_CTRL_MODE_MASK;
1242         value |= DISP_CTRL_MODE_C_DISPLAY;
1243         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1244
1245         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1246         value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1247                  PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1248         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1249
1250         tegra_dc_commit(dc);
1251 }
1252
1253 static void tegra_crtc_prepare(struct drm_crtc *crtc)
1254 {
1255         struct tegra_dc *dc = to_tegra_dc(crtc);
1256         unsigned int syncpt;
1257         unsigned long value;
1258
1259         drm_crtc_vblank_off(crtc);
1260
1261         if (dc->pipe)
1262                 syncpt = SYNCPT_VBLANK1;
1263         else
1264                 syncpt = SYNCPT_VBLANK0;
1265
1266         /* initialize display controller */
1267         tegra_dc_writel(dc, 0x00000100, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1268         tegra_dc_writel(dc, 0x100 | syncpt, DC_CMD_CONT_SYNCPT_VSYNC);
1269
1270         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
1271         tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1272
1273         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1274                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1275         tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1276
1277         /* initialize timer */
1278         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1279                 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1280         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1281
1282         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1283                 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1284         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1285
1286         value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1287         tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1288
1289         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1290         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1291 }
1292
1293 static void tegra_crtc_commit(struct drm_crtc *crtc)
1294 {
1295         drm_crtc_vblank_on(crtc);
1296 }
1297
1298 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1299                                    struct drm_crtc_state *state)
1300 {
1301         return 0;
1302 }
1303
1304 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc)
1305 {
1306         struct tegra_dc *dc = to_tegra_dc(crtc);
1307
1308         if (crtc->state->event) {
1309                 crtc->state->event->pipe = drm_crtc_index(crtc);
1310
1311                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1312
1313                 dc->event = crtc->state->event;
1314                 crtc->state->event = NULL;
1315         }
1316 }
1317
1318 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc)
1319 {
1320         struct tegra_dc_state *state = to_dc_state(crtc->state);
1321         struct tegra_dc *dc = to_tegra_dc(crtc);
1322
1323         tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1324         tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1325 }
1326
1327 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1328         .disable = tegra_crtc_disable,
1329         .mode_fixup = tegra_crtc_mode_fixup,
1330         .mode_set = drm_helper_crtc_mode_set,
1331         .mode_set_nofb = tegra_crtc_mode_set_nofb,
1332         .mode_set_base = drm_helper_crtc_mode_set_base,
1333         .prepare = tegra_crtc_prepare,
1334         .commit = tegra_crtc_commit,
1335         .atomic_check = tegra_crtc_atomic_check,
1336         .atomic_begin = tegra_crtc_atomic_begin,
1337         .atomic_flush = tegra_crtc_atomic_flush,
1338 };
1339
1340 static irqreturn_t tegra_dc_irq(int irq, void *data)
1341 {
1342         struct tegra_dc *dc = data;
1343         unsigned long status;
1344
1345         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1346         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1347
1348         if (status & FRAME_END_INT) {
1349                 /*
1350                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1351                 */
1352         }
1353
1354         if (status & VBLANK_INT) {
1355                 /*
1356                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1357                 */
1358                 drm_crtc_handle_vblank(&dc->base);
1359                 tegra_dc_finish_page_flip(dc);
1360         }
1361
1362         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1363                 /*
1364                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1365                 */
1366         }
1367
1368         return IRQ_HANDLED;
1369 }
1370
1371 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1372 {
1373         struct drm_info_node *node = s->private;
1374         struct tegra_dc *dc = node->info_ent->data;
1375
1376 #define DUMP_REG(name)                                          \
1377         seq_printf(s, "%-40s %#05x %08x\n", #name, name,        \
1378                    tegra_dc_readl(dc, name))
1379
1380         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1381         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1382         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1383         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1384         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1385         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1386         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1387         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1388         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1389         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1390         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1391         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1392         DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1393         DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1394         DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1395         DUMP_REG(DC_CMD_SIGNAL_RAISE);
1396         DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1397         DUMP_REG(DC_CMD_INT_STATUS);
1398         DUMP_REG(DC_CMD_INT_MASK);
1399         DUMP_REG(DC_CMD_INT_ENABLE);
1400         DUMP_REG(DC_CMD_INT_TYPE);
1401         DUMP_REG(DC_CMD_INT_POLARITY);
1402         DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1403         DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1404         DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1405         DUMP_REG(DC_CMD_STATE_ACCESS);
1406         DUMP_REG(DC_CMD_STATE_CONTROL);
1407         DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1408         DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1409         DUMP_REG(DC_COM_CRC_CONTROL);
1410         DUMP_REG(DC_COM_CRC_CHECKSUM);
1411         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1412         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1413         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1414         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1415         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1416         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1417         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1418         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1419         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1420         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1421         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1422         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1423         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1424         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1425         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1426         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1427         DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1428         DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1429         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1430         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1431         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1432         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1433         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1434         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1435         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1436         DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1437         DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1438         DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1439         DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1440         DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1441         DUMP_REG(DC_COM_SPI_CONTROL);
1442         DUMP_REG(DC_COM_SPI_START_BYTE);
1443         DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1444         DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1445         DUMP_REG(DC_COM_HSPI_CS_DC);
1446         DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1447         DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1448         DUMP_REG(DC_COM_GPIO_CTRL);
1449         DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1450         DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1451         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1452         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1453         DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1454         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1455         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1456         DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1457         DUMP_REG(DC_DISP_REF_TO_SYNC);
1458         DUMP_REG(DC_DISP_SYNC_WIDTH);
1459         DUMP_REG(DC_DISP_BACK_PORCH);
1460         DUMP_REG(DC_DISP_ACTIVE);
1461         DUMP_REG(DC_DISP_FRONT_PORCH);
1462         DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1463         DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1464         DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1465         DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1466         DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1467         DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1468         DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1469         DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1470         DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1471         DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1472         DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1473         DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1474         DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1475         DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1476         DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1477         DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1478         DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1479         DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1480         DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1481         DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1482         DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1483         DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1484         DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1485         DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1486         DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1487         DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1488         DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1489         DUMP_REG(DC_DISP_M0_CONTROL);
1490         DUMP_REG(DC_DISP_M1_CONTROL);
1491         DUMP_REG(DC_DISP_DI_CONTROL);
1492         DUMP_REG(DC_DISP_PP_CONTROL);
1493         DUMP_REG(DC_DISP_PP_SELECT_A);
1494         DUMP_REG(DC_DISP_PP_SELECT_B);
1495         DUMP_REG(DC_DISP_PP_SELECT_C);
1496         DUMP_REG(DC_DISP_PP_SELECT_D);
1497         DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1498         DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1499         DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1500         DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1501         DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1502         DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1503         DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1504         DUMP_REG(DC_DISP_BORDER_COLOR);
1505         DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1506         DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1507         DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1508         DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1509         DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1510         DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1511         DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1512         DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1513         DUMP_REG(DC_DISP_CURSOR_POSITION);
1514         DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1515         DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1516         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1517         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1518         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1519         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1520         DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1521         DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1522         DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1523         DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1524         DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1525         DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1526         DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1527         DUMP_REG(DC_DISP_SD_CONTROL);
1528         DUMP_REG(DC_DISP_SD_CSC_COEFF);
1529         DUMP_REG(DC_DISP_SD_LUT(0));
1530         DUMP_REG(DC_DISP_SD_LUT(1));
1531         DUMP_REG(DC_DISP_SD_LUT(2));
1532         DUMP_REG(DC_DISP_SD_LUT(3));
1533         DUMP_REG(DC_DISP_SD_LUT(4));
1534         DUMP_REG(DC_DISP_SD_LUT(5));
1535         DUMP_REG(DC_DISP_SD_LUT(6));
1536         DUMP_REG(DC_DISP_SD_LUT(7));
1537         DUMP_REG(DC_DISP_SD_LUT(8));
1538         DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1539         DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1540         DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1541         DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1542         DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1543         DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1544         DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1545         DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1546         DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1547         DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1548         DUMP_REG(DC_DISP_SD_BL_TF(0));
1549         DUMP_REG(DC_DISP_SD_BL_TF(1));
1550         DUMP_REG(DC_DISP_SD_BL_TF(2));
1551         DUMP_REG(DC_DISP_SD_BL_TF(3));
1552         DUMP_REG(DC_DISP_SD_BL_CONTROL);
1553         DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1554         DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1555         DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1556         DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1557         DUMP_REG(DC_WIN_WIN_OPTIONS);
1558         DUMP_REG(DC_WIN_BYTE_SWAP);
1559         DUMP_REG(DC_WIN_BUFFER_CONTROL);
1560         DUMP_REG(DC_WIN_COLOR_DEPTH);
1561         DUMP_REG(DC_WIN_POSITION);
1562         DUMP_REG(DC_WIN_SIZE);
1563         DUMP_REG(DC_WIN_PRESCALED_SIZE);
1564         DUMP_REG(DC_WIN_H_INITIAL_DDA);
1565         DUMP_REG(DC_WIN_V_INITIAL_DDA);
1566         DUMP_REG(DC_WIN_DDA_INC);
1567         DUMP_REG(DC_WIN_LINE_STRIDE);
1568         DUMP_REG(DC_WIN_BUF_STRIDE);
1569         DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1570         DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1571         DUMP_REG(DC_WIN_DV_CONTROL);
1572         DUMP_REG(DC_WIN_BLEND_NOKEY);
1573         DUMP_REG(DC_WIN_BLEND_1WIN);
1574         DUMP_REG(DC_WIN_BLEND_2WIN_X);
1575         DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1576         DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1577         DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1578         DUMP_REG(DC_WINBUF_START_ADDR);
1579         DUMP_REG(DC_WINBUF_START_ADDR_NS);
1580         DUMP_REG(DC_WINBUF_START_ADDR_U);
1581         DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1582         DUMP_REG(DC_WINBUF_START_ADDR_V);
1583         DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1584         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1585         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1586         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1587         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1588         DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1589         DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1590         DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1591         DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1592
1593 #undef DUMP_REG
1594
1595         return 0;
1596 }
1597
1598 static struct drm_info_list debugfs_files[] = {
1599         { "regs", tegra_dc_show_regs, 0, NULL },
1600 };
1601
1602 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1603 {
1604         unsigned int i;
1605         char *name;
1606         int err;
1607
1608         name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1609         dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1610         kfree(name);
1611
1612         if (!dc->debugfs)
1613                 return -ENOMEM;
1614
1615         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1616                                     GFP_KERNEL);
1617         if (!dc->debugfs_files) {
1618                 err = -ENOMEM;
1619                 goto remove;
1620         }
1621
1622         for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1623                 dc->debugfs_files[i].data = dc;
1624
1625         err = drm_debugfs_create_files(dc->debugfs_files,
1626                                        ARRAY_SIZE(debugfs_files),
1627                                        dc->debugfs, minor);
1628         if (err < 0)
1629                 goto free;
1630
1631         dc->minor = minor;
1632
1633         return 0;
1634
1635 free:
1636         kfree(dc->debugfs_files);
1637         dc->debugfs_files = NULL;
1638 remove:
1639         debugfs_remove(dc->debugfs);
1640         dc->debugfs = NULL;
1641
1642         return err;
1643 }
1644
1645 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1646 {
1647         drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1648                                  dc->minor);
1649         dc->minor = NULL;
1650
1651         kfree(dc->debugfs_files);
1652         dc->debugfs_files = NULL;
1653
1654         debugfs_remove(dc->debugfs);
1655         dc->debugfs = NULL;
1656
1657         return 0;
1658 }
1659
1660 static int tegra_dc_init(struct host1x_client *client)
1661 {
1662         struct drm_device *drm = dev_get_drvdata(client->parent);
1663         struct tegra_dc *dc = host1x_client_to_dc(client);
1664         struct tegra_drm *tegra = drm->dev_private;
1665         struct drm_plane *primary = NULL;
1666         struct drm_plane *cursor = NULL;
1667         int err;
1668
1669         if (tegra->domain) {
1670                 err = iommu_attach_device(tegra->domain, dc->dev);
1671                 if (err < 0) {
1672                         dev_err(dc->dev, "failed to attach to domain: %d\n",
1673                                 err);
1674                         return err;
1675                 }
1676
1677                 dc->domain = tegra->domain;
1678         }
1679
1680         primary = tegra_dc_primary_plane_create(drm, dc);
1681         if (IS_ERR(primary)) {
1682                 err = PTR_ERR(primary);
1683                 goto cleanup;
1684         }
1685
1686         if (dc->soc->supports_cursor) {
1687                 cursor = tegra_dc_cursor_plane_create(drm, dc);
1688                 if (IS_ERR(cursor)) {
1689                         err = PTR_ERR(cursor);
1690                         goto cleanup;
1691                 }
1692         }
1693
1694         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1695                                         &tegra_crtc_funcs);
1696         if (err < 0)
1697                 goto cleanup;
1698
1699         drm_mode_crtc_set_gamma_size(&dc->base, 256);
1700         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1701
1702         /*
1703          * Keep track of the minimum pitch alignment across all display
1704          * controllers.
1705          */
1706         if (dc->soc->pitch_align > tegra->pitch_align)
1707                 tegra->pitch_align = dc->soc->pitch_align;
1708
1709         err = tegra_dc_rgb_init(drm, dc);
1710         if (err < 0 && err != -ENODEV) {
1711                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1712                 goto cleanup;
1713         }
1714
1715         err = tegra_dc_add_planes(drm, dc);
1716         if (err < 0)
1717                 goto cleanup;
1718
1719         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1720                 err = tegra_dc_debugfs_init(dc, drm->primary);
1721                 if (err < 0)
1722                         dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1723         }
1724
1725         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1726                                dev_name(dc->dev), dc);
1727         if (err < 0) {
1728                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1729                         err);
1730                 goto cleanup;
1731         }
1732
1733         return 0;
1734
1735 cleanup:
1736         if (cursor)
1737                 drm_plane_cleanup(cursor);
1738
1739         if (primary)
1740                 drm_plane_cleanup(primary);
1741
1742         if (tegra->domain) {
1743                 iommu_detach_device(tegra->domain, dc->dev);
1744                 dc->domain = NULL;
1745         }
1746
1747         return err;
1748 }
1749
1750 static int tegra_dc_exit(struct host1x_client *client)
1751 {
1752         struct tegra_dc *dc = host1x_client_to_dc(client);
1753         int err;
1754
1755         devm_free_irq(dc->dev, dc->irq, dc);
1756
1757         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1758                 err = tegra_dc_debugfs_exit(dc);
1759                 if (err < 0)
1760                         dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1761         }
1762
1763         err = tegra_dc_rgb_exit(dc);
1764         if (err) {
1765                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1766                 return err;
1767         }
1768
1769         if (dc->domain) {
1770                 iommu_detach_device(dc->domain, dc->dev);
1771                 dc->domain = NULL;
1772         }
1773
1774         return 0;
1775 }
1776
1777 static const struct host1x_client_ops dc_client_ops = {
1778         .init = tegra_dc_init,
1779         .exit = tegra_dc_exit,
1780 };
1781
1782 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1783         .supports_border_color = true,
1784         .supports_interlacing = false,
1785         .supports_cursor = false,
1786         .supports_block_linear = false,
1787         .pitch_align = 8,
1788         .has_powergate = false,
1789 };
1790
1791 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1792         .supports_border_color = true,
1793         .supports_interlacing = false,
1794         .supports_cursor = false,
1795         .supports_block_linear = false,
1796         .pitch_align = 8,
1797         .has_powergate = false,
1798 };
1799
1800 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1801         .supports_border_color = true,
1802         .supports_interlacing = false,
1803         .supports_cursor = false,
1804         .supports_block_linear = false,
1805         .pitch_align = 64,
1806         .has_powergate = true,
1807 };
1808
1809 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1810         .supports_border_color = false,
1811         .supports_interlacing = true,
1812         .supports_cursor = true,
1813         .supports_block_linear = true,
1814         .pitch_align = 64,
1815         .has_powergate = true,
1816 };
1817
1818 static const struct of_device_id tegra_dc_of_match[] = {
1819         {
1820                 .compatible = "nvidia,tegra124-dc",
1821                 .data = &tegra124_dc_soc_info,
1822         }, {
1823                 .compatible = "nvidia,tegra114-dc",
1824                 .data = &tegra114_dc_soc_info,
1825         }, {
1826                 .compatible = "nvidia,tegra30-dc",
1827                 .data = &tegra30_dc_soc_info,
1828         }, {
1829                 .compatible = "nvidia,tegra20-dc",
1830                 .data = &tegra20_dc_soc_info,
1831         }, {
1832                 /* sentinel */
1833         }
1834 };
1835 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1836
1837 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1838 {
1839         struct device_node *np;
1840         u32 value = 0;
1841         int err;
1842
1843         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1844         if (err < 0) {
1845                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1846
1847                 /*
1848                  * If the nvidia,head property isn't present, try to find the
1849                  * correct head number by looking up the position of this
1850                  * display controller's node within the device tree. Assuming
1851                  * that the nodes are ordered properly in the DTS file and
1852                  * that the translation into a flattened device tree blob
1853                  * preserves that ordering this will actually yield the right
1854                  * head number.
1855                  *
1856                  * If those assumptions don't hold, this will still work for
1857                  * cases where only a single display controller is used.
1858                  */
1859                 for_each_matching_node(np, tegra_dc_of_match) {
1860                         if (np == dc->dev->of_node)
1861                                 break;
1862
1863                         value++;
1864                 }
1865         }
1866
1867         dc->pipe = value;
1868
1869         return 0;
1870 }
1871
1872 static int tegra_dc_probe(struct platform_device *pdev)
1873 {
1874         const struct of_device_id *id;
1875         struct resource *regs;
1876         struct tegra_dc *dc;
1877         int err;
1878
1879         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1880         if (!dc)
1881                 return -ENOMEM;
1882
1883         id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1884         if (!id)
1885                 return -ENODEV;
1886
1887         spin_lock_init(&dc->lock);
1888         INIT_LIST_HEAD(&dc->list);
1889         dc->dev = &pdev->dev;
1890         dc->soc = id->data;
1891
1892         err = tegra_dc_parse_dt(dc);
1893         if (err < 0)
1894                 return err;
1895
1896         dc->clk = devm_clk_get(&pdev->dev, NULL);
1897         if (IS_ERR(dc->clk)) {
1898                 dev_err(&pdev->dev, "failed to get clock\n");
1899                 return PTR_ERR(dc->clk);
1900         }
1901
1902         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1903         if (IS_ERR(dc->rst)) {
1904                 dev_err(&pdev->dev, "failed to get reset\n");
1905                 return PTR_ERR(dc->rst);
1906         }
1907
1908         if (dc->soc->has_powergate) {
1909                 if (dc->pipe == 0)
1910                         dc->powergate = TEGRA_POWERGATE_DIS;
1911                 else
1912                         dc->powergate = TEGRA_POWERGATE_DISB;
1913
1914                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1915                                                         dc->rst);
1916                 if (err < 0) {
1917                         dev_err(&pdev->dev, "failed to power partition: %d\n",
1918                                 err);
1919                         return err;
1920                 }
1921         } else {
1922                 err = clk_prepare_enable(dc->clk);
1923                 if (err < 0) {
1924                         dev_err(&pdev->dev, "failed to enable clock: %d\n",
1925                                 err);
1926                         return err;
1927                 }
1928
1929                 err = reset_control_deassert(dc->rst);
1930                 if (err < 0) {
1931                         dev_err(&pdev->dev, "failed to deassert reset: %d\n",
1932                                 err);
1933                         return err;
1934                 }
1935         }
1936
1937         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1938         dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1939         if (IS_ERR(dc->regs))
1940                 return PTR_ERR(dc->regs);
1941
1942         dc->irq = platform_get_irq(pdev, 0);
1943         if (dc->irq < 0) {
1944                 dev_err(&pdev->dev, "failed to get IRQ\n");
1945                 return -ENXIO;
1946         }
1947
1948         INIT_LIST_HEAD(&dc->client.list);
1949         dc->client.ops = &dc_client_ops;
1950         dc->client.dev = &pdev->dev;
1951
1952         err = tegra_dc_rgb_probe(dc);
1953         if (err < 0 && err != -ENODEV) {
1954                 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1955                 return err;
1956         }
1957
1958         err = host1x_client_register(&dc->client);
1959         if (err < 0) {
1960                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1961                         err);
1962                 return err;
1963         }
1964
1965         platform_set_drvdata(pdev, dc);
1966
1967         return 0;
1968 }
1969
1970 static int tegra_dc_remove(struct platform_device *pdev)
1971 {
1972         struct tegra_dc *dc = platform_get_drvdata(pdev);
1973         int err;
1974
1975         err = host1x_client_unregister(&dc->client);
1976         if (err < 0) {
1977                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1978                         err);
1979                 return err;
1980         }
1981
1982         err = tegra_dc_rgb_remove(dc);
1983         if (err < 0) {
1984                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
1985                 return err;
1986         }
1987
1988         reset_control_assert(dc->rst);
1989
1990         if (dc->soc->has_powergate)
1991                 tegra_powergate_power_off(dc->powergate);
1992
1993         clk_disable_unprepare(dc->clk);
1994
1995         return 0;
1996 }
1997
1998 struct platform_driver tegra_dc_driver = {
1999         .driver = {
2000                 .name = "tegra-dc",
2001                 .owner = THIS_MODULE,
2002                 .of_match_table = tegra_dc_of_match,
2003         },
2004         .probe = tegra_dc_probe,
2005         .remove = tegra_dc_remove,
2006 };