Merge tag 'v3.14-rc6' into drm-intel-next-queued
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39         if (space < 0)
40                 space += ring->size;
41         return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46         struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48         ring->tail &= ring->size - 1;
49         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50                 return;
51         ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         u32 scratch_addr = ring->scratch.gtt_offset + 128;
179         int ret;
180
181
182         ret = intel_ring_begin(ring, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(ring, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212                          u32 invalidate_domains, u32 flush_domains)
213 {
214         u32 flags = 0;
215         u32 scratch_addr = ring->scratch.gtt_offset + 128;
216         int ret;
217
218         /* Force SNB workarounds for PIPE_CONTROL flushes */
219         ret = intel_emit_post_sync_nonzero_flush(ring);
220         if (ret)
221                 return ret;
222
223         /* Just flush everything.  Experiments have shown that reducing the
224          * number of bits based on the write domains has little performance
225          * impact.
226          */
227         if (flush_domains) {
228                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230                 /*
231                  * Ensure that any following seqno writes only happen
232                  * when the render cache is indeed flushed.
233                  */
234                 flags |= PIPE_CONTROL_CS_STALL;
235         }
236         if (invalidate_domains) {
237                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243                 /*
244                  * TLB invalidate requires a post-sync write.
245                  */
246                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247         }
248
249         ret = intel_ring_begin(ring, 4);
250         if (ret)
251                 return ret;
252
253         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254         intel_ring_emit(ring, flags);
255         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256         intel_ring_emit(ring, 0);
257         intel_ring_advance(ring);
258
259         return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265         int ret;
266
267         ret = intel_ring_begin(ring, 4);
268         if (ret)
269                 return ret;
270
271         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
274         intel_ring_emit(ring, 0);
275         intel_ring_emit(ring, 0);
276         intel_ring_advance(ring);
277
278         return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283         int ret;
284
285         if (!ring->fbc_dirty)
286                 return 0;
287
288         ret = intel_ring_begin(ring, 6);
289         if (ret)
290                 return ret;
291         /* WaFbcNukeOn3DBlt:ivb/hsw */
292         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293         intel_ring_emit(ring, MSG_FBC_REND_STATE);
294         intel_ring_emit(ring, value);
295         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         u32 scratch_addr = ring->scratch.gtt_offset + 128;
310         int ret;
311
312         /*
313          * Ensure that any following seqno writes only happen when the render
314          * cache is indeed flushed.
315          *
316          * Workaround: 4th PIPE_CONTROL command (except the ones with only
317          * read-cache invalidate bits set) must have the CS_STALL bit set. We
318          * don't try to be clever and just set it unconditionally.
319          */
320         flags |= PIPE_CONTROL_CS_STALL;
321
322         /* Just flush everything.  Experiments have shown that reducing the
323          * number of bits based on the write domains has little performance
324          * impact.
325          */
326         if (flush_domains) {
327                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329         }
330         if (invalidate_domains) {
331                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337                 /*
338                  * TLB invalidate requires a post-sync write.
339                  */
340                 flags |= PIPE_CONTROL_QW_WRITE;
341                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343                 /* Workaround: we must issue a pipe_control with CS-stall bit
344                  * set before a pipe_control command that has the state cache
345                  * invalidate bit set. */
346                 gen7_render_ring_cs_stall_wa(ring);
347         }
348
349         ret = intel_ring_begin(ring, 4);
350         if (ret)
351                 return ret;
352
353         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354         intel_ring_emit(ring, flags);
355         intel_ring_emit(ring, scratch_addr);
356         intel_ring_emit(ring, 0);
357         intel_ring_advance(ring);
358
359         if (!invalidate_domains && flush_domains)
360                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362         return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367                        u32 invalidate_domains, u32 flush_domains)
368 {
369         u32 flags = 0;
370         u32 scratch_addr = ring->scratch.gtt_offset + 128;
371         int ret;
372
373         flags |= PIPE_CONTROL_CS_STALL;
374
375         if (flush_domains) {
376                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378         }
379         if (invalidate_domains) {
380                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386                 flags |= PIPE_CONTROL_QW_WRITE;
387                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388         }
389
390         ret = intel_ring_begin(ring, 6);
391         if (ret)
392                 return ret;
393
394         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395         intel_ring_emit(ring, flags);
396         intel_ring_emit(ring, scratch_addr);
397         intel_ring_emit(ring, 0);
398         intel_ring_emit(ring, 0);
399         intel_ring_emit(ring, 0);
400         intel_ring_advance(ring);
401
402         return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407                             u32 value)
408 {
409         drm_i915_private_t *dev_priv = ring->dev->dev_private;
410         I915_WRITE_TAIL(ring, value);
411 }
412
413 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415         drm_i915_private_t *dev_priv = ring->dev->dev_private;
416         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
417                         RING_ACTHD(ring->mmio_base) : ACTHD;
418
419         return I915_READ(acthd_reg);
420 }
421
422 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
423 {
424         struct drm_i915_private *dev_priv = ring->dev->dev_private;
425         u32 addr;
426
427         addr = dev_priv->status_page_dmah->busaddr;
428         if (INTEL_INFO(ring->dev)->gen >= 4)
429                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
430         I915_WRITE(HWS_PGA, addr);
431 }
432
433 static int init_ring_common(struct intel_ring_buffer *ring)
434 {
435         struct drm_device *dev = ring->dev;
436         drm_i915_private_t *dev_priv = dev->dev_private;
437         struct drm_i915_gem_object *obj = ring->obj;
438         int ret = 0;
439         u32 head;
440
441         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
442
443         if (I915_NEED_GFX_HWS(dev))
444                 intel_ring_setup_status_page(ring);
445         else
446                 ring_setup_phys_status_page(ring);
447
448         /* Stop the ring if it's running. */
449         I915_WRITE_CTL(ring, 0);
450         I915_WRITE_HEAD(ring, 0);
451         ring->write_tail(ring, 0);
452
453         head = I915_READ_HEAD(ring) & HEAD_ADDR;
454
455         /* G45 ring initialization fails to reset head to zero */
456         if (head != 0) {
457                 DRM_DEBUG_KMS("%s head not reset to zero "
458                               "ctl %08x head %08x tail %08x start %08x\n",
459                               ring->name,
460                               I915_READ_CTL(ring),
461                               I915_READ_HEAD(ring),
462                               I915_READ_TAIL(ring),
463                               I915_READ_START(ring));
464
465                 I915_WRITE_HEAD(ring, 0);
466
467                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
468                         DRM_ERROR("failed to set %s head to zero "
469                                   "ctl %08x head %08x tail %08x start %08x\n",
470                                   ring->name,
471                                   I915_READ_CTL(ring),
472                                   I915_READ_HEAD(ring),
473                                   I915_READ_TAIL(ring),
474                                   I915_READ_START(ring));
475                 }
476         }
477
478         /* Initialize the ring. This must happen _after_ we've cleared the ring
479          * registers with the above sequence (the readback of the HEAD registers
480          * also enforces ordering), otherwise the hw might lose the new ring
481          * register values. */
482         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
483         I915_WRITE_CTL(ring,
484                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
485                         | RING_VALID);
486
487         /* If the head is still not zero, the ring is dead */
488         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
489                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
490                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
491                 DRM_ERROR("%s initialization failed "
492                                 "ctl %08x head %08x tail %08x start %08x\n",
493                                 ring->name,
494                                 I915_READ_CTL(ring),
495                                 I915_READ_HEAD(ring),
496                                 I915_READ_TAIL(ring),
497                                 I915_READ_START(ring));
498                 ret = -EIO;
499                 goto out;
500         }
501
502         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
503                 i915_kernel_lost_context(ring->dev);
504         else {
505                 ring->head = I915_READ_HEAD(ring);
506                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
507                 ring->space = ring_space(ring);
508                 ring->last_retired_head = -1;
509         }
510
511         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
512
513 out:
514         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
515
516         return ret;
517 }
518
519 static int
520 init_pipe_control(struct intel_ring_buffer *ring)
521 {
522         int ret;
523
524         if (ring->scratch.obj)
525                 return 0;
526
527         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
528         if (ring->scratch.obj == NULL) {
529                 DRM_ERROR("Failed to allocate seqno page\n");
530                 ret = -ENOMEM;
531                 goto err;
532         }
533
534         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
535         if (ret)
536                 goto err_unref;
537
538         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
539         if (ret)
540                 goto err_unref;
541
542         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
543         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
544         if (ring->scratch.cpu_page == NULL) {
545                 ret = -ENOMEM;
546                 goto err_unpin;
547         }
548
549         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
550                          ring->name, ring->scratch.gtt_offset);
551         return 0;
552
553 err_unpin:
554         i915_gem_object_ggtt_unpin(ring->scratch.obj);
555 err_unref:
556         drm_gem_object_unreference(&ring->scratch.obj->base);
557 err:
558         return ret;
559 }
560
561 static int init_render_ring(struct intel_ring_buffer *ring)
562 {
563         struct drm_device *dev = ring->dev;
564         struct drm_i915_private *dev_priv = dev->dev_private;
565         int ret = init_ring_common(ring);
566
567         if (INTEL_INFO(dev)->gen > 3)
568                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
569
570         /* We need to disable the AsyncFlip performance optimisations in order
571          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
572          * programmed to '1' on all products.
573          *
574          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
575          */
576         if (INTEL_INFO(dev)->gen >= 6)
577                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
578
579         /* Required for the hardware to program scanline values for waiting */
580         if (INTEL_INFO(dev)->gen == 6)
581                 I915_WRITE(GFX_MODE,
582                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
583
584         if (IS_GEN7(dev))
585                 I915_WRITE(GFX_MODE_GEN7,
586                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
587                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
588
589         if (INTEL_INFO(dev)->gen >= 5) {
590                 ret = init_pipe_control(ring);
591                 if (ret)
592                         return ret;
593         }
594
595         if (IS_GEN6(dev)) {
596                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
597                  * "If this bit is set, STCunit will have LRA as replacement
598                  *  policy. [...] This bit must be reset.  LRA replacement
599                  *  policy is not supported."
600                  */
601                 I915_WRITE(CACHE_MODE_0,
602                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
603
604                 /* This is not explicitly set for GEN6, so read the register.
605                  * see intel_ring_mi_set_context() for why we care.
606                  * TODO: consider explicitly setting the bit for GEN5
607                  */
608                 ring->itlb_before_ctx_switch =
609                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
610         }
611
612         if (INTEL_INFO(dev)->gen >= 6)
613                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
614
615         if (HAS_L3_DPF(dev))
616                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
617
618         return ret;
619 }
620
621 static void render_ring_cleanup(struct intel_ring_buffer *ring)
622 {
623         struct drm_device *dev = ring->dev;
624
625         if (ring->scratch.obj == NULL)
626                 return;
627
628         if (INTEL_INFO(dev)->gen >= 5) {
629                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
630                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
631         }
632
633         drm_gem_object_unreference(&ring->scratch.obj->base);
634         ring->scratch.obj = NULL;
635 }
636
637 static void
638 update_mboxes(struct intel_ring_buffer *ring,
639               u32 mmio_offset)
640 {
641 /* NB: In order to be able to do semaphore MBOX updates for varying number
642  * of rings, it's easiest if we round up each individual update to a
643  * multiple of 2 (since ring updates must always be a multiple of 2)
644  * even though the actual update only requires 3 dwords.
645  */
646 #define MBOX_UPDATE_DWORDS 4
647         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
648         intel_ring_emit(ring, mmio_offset);
649         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
650         intel_ring_emit(ring, MI_NOOP);
651 }
652
653 /**
654  * gen6_add_request - Update the semaphore mailbox registers
655  * 
656  * @ring - ring that is adding a request
657  * @seqno - return seqno stuck into the ring
658  *
659  * Update the mailbox registers in the *other* rings with the current seqno.
660  * This acts like a signal in the canonical semaphore.
661  */
662 static int
663 gen6_add_request(struct intel_ring_buffer *ring)
664 {
665         struct drm_device *dev = ring->dev;
666         struct drm_i915_private *dev_priv = dev->dev_private;
667         struct intel_ring_buffer *useless;
668         int i, ret, num_dwords = 4;
669
670         if (i915_semaphore_is_enabled(dev))
671                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
672 #undef MBOX_UPDATE_DWORDS
673
674         ret = intel_ring_begin(ring, num_dwords);
675         if (ret)
676                 return ret;
677
678         if (i915_semaphore_is_enabled(dev)) {
679                 for_each_ring(useless, dev_priv, i) {
680                         u32 mbox_reg = ring->signal_mbox[i];
681                         if (mbox_reg != GEN6_NOSYNC)
682                                 update_mboxes(ring, mbox_reg);
683                 }
684         }
685
686         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
687         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
688         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
689         intel_ring_emit(ring, MI_USER_INTERRUPT);
690         __intel_ring_advance(ring);
691
692         return 0;
693 }
694
695 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
696                                               u32 seqno)
697 {
698         struct drm_i915_private *dev_priv = dev->dev_private;
699         return dev_priv->last_seqno < seqno;
700 }
701
702 /**
703  * intel_ring_sync - sync the waiter to the signaller on seqno
704  *
705  * @waiter - ring that is waiting
706  * @signaller - ring which has, or will signal
707  * @seqno - seqno which the waiter will block on
708  */
709 static int
710 gen6_ring_sync(struct intel_ring_buffer *waiter,
711                struct intel_ring_buffer *signaller,
712                u32 seqno)
713 {
714         int ret;
715         u32 dw1 = MI_SEMAPHORE_MBOX |
716                   MI_SEMAPHORE_COMPARE |
717                   MI_SEMAPHORE_REGISTER;
718
719         /* Throughout all of the GEM code, seqno passed implies our current
720          * seqno is >= the last seqno executed. However for hardware the
721          * comparison is strictly greater than.
722          */
723         seqno -= 1;
724
725         WARN_ON(signaller->semaphore_register[waiter->id] ==
726                 MI_SEMAPHORE_SYNC_INVALID);
727
728         ret = intel_ring_begin(waiter, 4);
729         if (ret)
730                 return ret;
731
732         /* If seqno wrap happened, omit the wait with no-ops */
733         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
734                 intel_ring_emit(waiter,
735                                 dw1 |
736                                 signaller->semaphore_register[waiter->id]);
737                 intel_ring_emit(waiter, seqno);
738                 intel_ring_emit(waiter, 0);
739                 intel_ring_emit(waiter, MI_NOOP);
740         } else {
741                 intel_ring_emit(waiter, MI_NOOP);
742                 intel_ring_emit(waiter, MI_NOOP);
743                 intel_ring_emit(waiter, MI_NOOP);
744                 intel_ring_emit(waiter, MI_NOOP);
745         }
746         intel_ring_advance(waiter);
747
748         return 0;
749 }
750
751 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
752 do {                                                                    \
753         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
754                  PIPE_CONTROL_DEPTH_STALL);                             \
755         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
756         intel_ring_emit(ring__, 0);                                                     \
757         intel_ring_emit(ring__, 0);                                                     \
758 } while (0)
759
760 static int
761 pc_render_add_request(struct intel_ring_buffer *ring)
762 {
763         u32 scratch_addr = ring->scratch.gtt_offset + 128;
764         int ret;
765
766         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
767          * incoherent with writes to memory, i.e. completely fubar,
768          * so we need to use PIPE_NOTIFY instead.
769          *
770          * However, we also need to workaround the qword write
771          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
772          * memory before requesting an interrupt.
773          */
774         ret = intel_ring_begin(ring, 32);
775         if (ret)
776                 return ret;
777
778         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
779                         PIPE_CONTROL_WRITE_FLUSH |
780                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
781         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
782         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
783         intel_ring_emit(ring, 0);
784         PIPE_CONTROL_FLUSH(ring, scratch_addr);
785         scratch_addr += 128; /* write to separate cachelines */
786         PIPE_CONTROL_FLUSH(ring, scratch_addr);
787         scratch_addr += 128;
788         PIPE_CONTROL_FLUSH(ring, scratch_addr);
789         scratch_addr += 128;
790         PIPE_CONTROL_FLUSH(ring, scratch_addr);
791         scratch_addr += 128;
792         PIPE_CONTROL_FLUSH(ring, scratch_addr);
793         scratch_addr += 128;
794         PIPE_CONTROL_FLUSH(ring, scratch_addr);
795
796         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
797                         PIPE_CONTROL_WRITE_FLUSH |
798                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
799                         PIPE_CONTROL_NOTIFY);
800         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
801         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
802         intel_ring_emit(ring, 0);
803         __intel_ring_advance(ring);
804
805         return 0;
806 }
807
808 static u32
809 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
810 {
811         /* Workaround to force correct ordering between irq and seqno writes on
812          * ivb (and maybe also on snb) by reading from a CS register (like
813          * ACTHD) before reading the status page. */
814         if (!lazy_coherency)
815                 intel_ring_get_active_head(ring);
816         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
817 }
818
819 static u32
820 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
821 {
822         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
823 }
824
825 static void
826 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
827 {
828         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
829 }
830
831 static u32
832 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
833 {
834         return ring->scratch.cpu_page[0];
835 }
836
837 static void
838 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
839 {
840         ring->scratch.cpu_page[0] = seqno;
841 }
842
843 static bool
844 gen5_ring_get_irq(struct intel_ring_buffer *ring)
845 {
846         struct drm_device *dev = ring->dev;
847         drm_i915_private_t *dev_priv = dev->dev_private;
848         unsigned long flags;
849
850         if (!dev->irq_enabled)
851                 return false;
852
853         spin_lock_irqsave(&dev_priv->irq_lock, flags);
854         if (ring->irq_refcount++ == 0)
855                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
856         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
857
858         return true;
859 }
860
861 static void
862 gen5_ring_put_irq(struct intel_ring_buffer *ring)
863 {
864         struct drm_device *dev = ring->dev;
865         drm_i915_private_t *dev_priv = dev->dev_private;
866         unsigned long flags;
867
868         spin_lock_irqsave(&dev_priv->irq_lock, flags);
869         if (--ring->irq_refcount == 0)
870                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
871         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
872 }
873
874 static bool
875 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
876 {
877         struct drm_device *dev = ring->dev;
878         drm_i915_private_t *dev_priv = dev->dev_private;
879         unsigned long flags;
880
881         if (!dev->irq_enabled)
882                 return false;
883
884         spin_lock_irqsave(&dev_priv->irq_lock, flags);
885         if (ring->irq_refcount++ == 0) {
886                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
887                 I915_WRITE(IMR, dev_priv->irq_mask);
888                 POSTING_READ(IMR);
889         }
890         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
891
892         return true;
893 }
894
895 static void
896 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
897 {
898         struct drm_device *dev = ring->dev;
899         drm_i915_private_t *dev_priv = dev->dev_private;
900         unsigned long flags;
901
902         spin_lock_irqsave(&dev_priv->irq_lock, flags);
903         if (--ring->irq_refcount == 0) {
904                 dev_priv->irq_mask |= ring->irq_enable_mask;
905                 I915_WRITE(IMR, dev_priv->irq_mask);
906                 POSTING_READ(IMR);
907         }
908         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
909 }
910
911 static bool
912 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
913 {
914         struct drm_device *dev = ring->dev;
915         drm_i915_private_t *dev_priv = dev->dev_private;
916         unsigned long flags;
917
918         if (!dev->irq_enabled)
919                 return false;
920
921         spin_lock_irqsave(&dev_priv->irq_lock, flags);
922         if (ring->irq_refcount++ == 0) {
923                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
924                 I915_WRITE16(IMR, dev_priv->irq_mask);
925                 POSTING_READ16(IMR);
926         }
927         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
928
929         return true;
930 }
931
932 static void
933 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
934 {
935         struct drm_device *dev = ring->dev;
936         drm_i915_private_t *dev_priv = dev->dev_private;
937         unsigned long flags;
938
939         spin_lock_irqsave(&dev_priv->irq_lock, flags);
940         if (--ring->irq_refcount == 0) {
941                 dev_priv->irq_mask |= ring->irq_enable_mask;
942                 I915_WRITE16(IMR, dev_priv->irq_mask);
943                 POSTING_READ16(IMR);
944         }
945         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
946 }
947
948 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
949 {
950         struct drm_device *dev = ring->dev;
951         drm_i915_private_t *dev_priv = ring->dev->dev_private;
952         u32 mmio = 0;
953
954         /* The ring status page addresses are no longer next to the rest of
955          * the ring registers as of gen7.
956          */
957         if (IS_GEN7(dev)) {
958                 switch (ring->id) {
959                 case RCS:
960                         mmio = RENDER_HWS_PGA_GEN7;
961                         break;
962                 case BCS:
963                         mmio = BLT_HWS_PGA_GEN7;
964                         break;
965                 case VCS:
966                         mmio = BSD_HWS_PGA_GEN7;
967                         break;
968                 case VECS:
969                         mmio = VEBOX_HWS_PGA_GEN7;
970                         break;
971                 }
972         } else if (IS_GEN6(ring->dev)) {
973                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
974         } else {
975                 /* XXX: gen8 returns to sanity */
976                 mmio = RING_HWS_PGA(ring->mmio_base);
977         }
978
979         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
980         POSTING_READ(mmio);
981
982         /* Flush the TLB for this page */
983         if (INTEL_INFO(dev)->gen >= 6) {
984                 u32 reg = RING_INSTPM(ring->mmio_base);
985                 I915_WRITE(reg,
986                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
987                                               INSTPM_SYNC_FLUSH));
988                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
989                              1000))
990                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
991                                   ring->name);
992         }
993 }
994
995 static int
996 bsd_ring_flush(struct intel_ring_buffer *ring,
997                u32     invalidate_domains,
998                u32     flush_domains)
999 {
1000         int ret;
1001
1002         ret = intel_ring_begin(ring, 2);
1003         if (ret)
1004                 return ret;
1005
1006         intel_ring_emit(ring, MI_FLUSH);
1007         intel_ring_emit(ring, MI_NOOP);
1008         intel_ring_advance(ring);
1009         return 0;
1010 }
1011
1012 static int
1013 i9xx_add_request(struct intel_ring_buffer *ring)
1014 {
1015         int ret;
1016
1017         ret = intel_ring_begin(ring, 4);
1018         if (ret)
1019                 return ret;
1020
1021         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1022         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1023         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1024         intel_ring_emit(ring, MI_USER_INTERRUPT);
1025         __intel_ring_advance(ring);
1026
1027         return 0;
1028 }
1029
1030 static bool
1031 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1032 {
1033         struct drm_device *dev = ring->dev;
1034         drm_i915_private_t *dev_priv = dev->dev_private;
1035         unsigned long flags;
1036
1037         if (!dev->irq_enabled)
1038                return false;
1039
1040         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1041         if (ring->irq_refcount++ == 0) {
1042                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1043                         I915_WRITE_IMR(ring,
1044                                        ~(ring->irq_enable_mask |
1045                                          GT_PARITY_ERROR(dev)));
1046                 else
1047                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1048                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1049         }
1050         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1051
1052         return true;
1053 }
1054
1055 static void
1056 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1057 {
1058         struct drm_device *dev = ring->dev;
1059         drm_i915_private_t *dev_priv = dev->dev_private;
1060         unsigned long flags;
1061
1062         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1063         if (--ring->irq_refcount == 0) {
1064                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1065                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1066                 else
1067                         I915_WRITE_IMR(ring, ~0);
1068                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1069         }
1070         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1071 }
1072
1073 static bool
1074 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1075 {
1076         struct drm_device *dev = ring->dev;
1077         struct drm_i915_private *dev_priv = dev->dev_private;
1078         unsigned long flags;
1079
1080         if (!dev->irq_enabled)
1081                 return false;
1082
1083         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1084         if (ring->irq_refcount++ == 0) {
1085                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1086                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1087         }
1088         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1089
1090         return true;
1091 }
1092
1093 static void
1094 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1095 {
1096         struct drm_device *dev = ring->dev;
1097         struct drm_i915_private *dev_priv = dev->dev_private;
1098         unsigned long flags;
1099
1100         if (!dev->irq_enabled)
1101                 return;
1102
1103         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1104         if (--ring->irq_refcount == 0) {
1105                 I915_WRITE_IMR(ring, ~0);
1106                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1107         }
1108         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1109 }
1110
1111 static bool
1112 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1113 {
1114         struct drm_device *dev = ring->dev;
1115         struct drm_i915_private *dev_priv = dev->dev_private;
1116         unsigned long flags;
1117
1118         if (!dev->irq_enabled)
1119                 return false;
1120
1121         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1122         if (ring->irq_refcount++ == 0) {
1123                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1124                         I915_WRITE_IMR(ring,
1125                                        ~(ring->irq_enable_mask |
1126                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1127                 } else {
1128                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1129                 }
1130                 POSTING_READ(RING_IMR(ring->mmio_base));
1131         }
1132         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1133
1134         return true;
1135 }
1136
1137 static void
1138 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1139 {
1140         struct drm_device *dev = ring->dev;
1141         struct drm_i915_private *dev_priv = dev->dev_private;
1142         unsigned long flags;
1143
1144         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1145         if (--ring->irq_refcount == 0) {
1146                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1147                         I915_WRITE_IMR(ring,
1148                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1149                 } else {
1150                         I915_WRITE_IMR(ring, ~0);
1151                 }
1152                 POSTING_READ(RING_IMR(ring->mmio_base));
1153         }
1154         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1155 }
1156
1157 static int
1158 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1159                          u32 offset, u32 length,
1160                          unsigned flags)
1161 {
1162         int ret;
1163
1164         ret = intel_ring_begin(ring, 2);
1165         if (ret)
1166                 return ret;
1167
1168         intel_ring_emit(ring,
1169                         MI_BATCH_BUFFER_START |
1170                         MI_BATCH_GTT |
1171                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1172         intel_ring_emit(ring, offset);
1173         intel_ring_advance(ring);
1174
1175         return 0;
1176 }
1177
1178 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1179 #define I830_BATCH_LIMIT (256*1024)
1180 static int
1181 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1182                                 u32 offset, u32 len,
1183                                 unsigned flags)
1184 {
1185         int ret;
1186
1187         if (flags & I915_DISPATCH_PINNED) {
1188                 ret = intel_ring_begin(ring, 4);
1189                 if (ret)
1190                         return ret;
1191
1192                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1193                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1194                 intel_ring_emit(ring, offset + len - 8);
1195                 intel_ring_emit(ring, MI_NOOP);
1196                 intel_ring_advance(ring);
1197         } else {
1198                 u32 cs_offset = ring->scratch.gtt_offset;
1199
1200                 if (len > I830_BATCH_LIMIT)
1201                         return -ENOSPC;
1202
1203                 ret = intel_ring_begin(ring, 9+3);
1204                 if (ret)
1205                         return ret;
1206                 /* Blit the batch (which has now all relocs applied) to the stable batch
1207                  * scratch bo area (so that the CS never stumbles over its tlb
1208                  * invalidation bug) ... */
1209                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1210                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1211                                 XY_SRC_COPY_BLT_WRITE_RGB);
1212                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1213                 intel_ring_emit(ring, 0);
1214                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1215                 intel_ring_emit(ring, cs_offset);
1216                 intel_ring_emit(ring, 0);
1217                 intel_ring_emit(ring, 4096);
1218                 intel_ring_emit(ring, offset);
1219                 intel_ring_emit(ring, MI_FLUSH);
1220
1221                 /* ... and execute it. */
1222                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1223                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1224                 intel_ring_emit(ring, cs_offset + len - 8);
1225                 intel_ring_advance(ring);
1226         }
1227
1228         return 0;
1229 }
1230
1231 static int
1232 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1233                          u32 offset, u32 len,
1234                          unsigned flags)
1235 {
1236         int ret;
1237
1238         ret = intel_ring_begin(ring, 2);
1239         if (ret)
1240                 return ret;
1241
1242         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1243         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1244         intel_ring_advance(ring);
1245
1246         return 0;
1247 }
1248
1249 static void cleanup_status_page(struct intel_ring_buffer *ring)
1250 {
1251         struct drm_i915_gem_object *obj;
1252
1253         obj = ring->status_page.obj;
1254         if (obj == NULL)
1255                 return;
1256
1257         kunmap(sg_page(obj->pages->sgl));
1258         i915_gem_object_ggtt_unpin(obj);
1259         drm_gem_object_unreference(&obj->base);
1260         ring->status_page.obj = NULL;
1261 }
1262
1263 static int init_status_page(struct intel_ring_buffer *ring)
1264 {
1265         struct drm_device *dev = ring->dev;
1266         struct drm_i915_gem_object *obj;
1267         int ret;
1268
1269         obj = i915_gem_alloc_object(dev, 4096);
1270         if (obj == NULL) {
1271                 DRM_ERROR("Failed to allocate status page\n");
1272                 ret = -ENOMEM;
1273                 goto err;
1274         }
1275
1276         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1277         if (ret)
1278                 goto err_unref;
1279
1280         ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1281         if (ret)
1282                 goto err_unref;
1283
1284         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1285         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1286         if (ring->status_page.page_addr == NULL) {
1287                 ret = -ENOMEM;
1288                 goto err_unpin;
1289         }
1290         ring->status_page.obj = obj;
1291         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1292
1293         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1294                         ring->name, ring->status_page.gfx_addr);
1295
1296         return 0;
1297
1298 err_unpin:
1299         i915_gem_object_ggtt_unpin(obj);
1300 err_unref:
1301         drm_gem_object_unreference(&obj->base);
1302 err:
1303         return ret;
1304 }
1305
1306 static int init_phys_status_page(struct intel_ring_buffer *ring)
1307 {
1308         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1309
1310         if (!dev_priv->status_page_dmah) {
1311                 dev_priv->status_page_dmah =
1312                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1313                 if (!dev_priv->status_page_dmah)
1314                         return -ENOMEM;
1315         }
1316
1317         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1318         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1319
1320         return 0;
1321 }
1322
1323 static int intel_init_ring_buffer(struct drm_device *dev,
1324                                   struct intel_ring_buffer *ring)
1325 {
1326         struct drm_i915_gem_object *obj;
1327         struct drm_i915_private *dev_priv = dev->dev_private;
1328         int ret;
1329
1330         ring->dev = dev;
1331         INIT_LIST_HEAD(&ring->active_list);
1332         INIT_LIST_HEAD(&ring->request_list);
1333         ring->size = 32 * PAGE_SIZE;
1334         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1335
1336         init_waitqueue_head(&ring->irq_queue);
1337
1338         if (I915_NEED_GFX_HWS(dev)) {
1339                 ret = init_status_page(ring);
1340                 if (ret)
1341                         return ret;
1342         } else {
1343                 BUG_ON(ring->id != RCS);
1344                 ret = init_phys_status_page(ring);
1345                 if (ret)
1346                         return ret;
1347         }
1348
1349         obj = NULL;
1350         if (!HAS_LLC(dev))
1351                 obj = i915_gem_object_create_stolen(dev, ring->size);
1352         if (obj == NULL)
1353                 obj = i915_gem_alloc_object(dev, ring->size);
1354         if (obj == NULL) {
1355                 DRM_ERROR("Failed to allocate ringbuffer\n");
1356                 ret = -ENOMEM;
1357                 goto err_hws;
1358         }
1359
1360         ring->obj = obj;
1361
1362         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1363         if (ret)
1364                 goto err_unref;
1365
1366         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1367         if (ret)
1368                 goto err_unpin;
1369
1370         ring->virtual_start =
1371                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1372                            ring->size);
1373         if (ring->virtual_start == NULL) {
1374                 DRM_ERROR("Failed to map ringbuffer.\n");
1375                 ret = -EINVAL;
1376                 goto err_unpin;
1377         }
1378
1379         ret = ring->init(ring);
1380         if (ret)
1381                 goto err_unmap;
1382
1383         /* Workaround an erratum on the i830 which causes a hang if
1384          * the TAIL pointer points to within the last 2 cachelines
1385          * of the buffer.
1386          */
1387         ring->effective_size = ring->size;
1388         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1389                 ring->effective_size -= 128;
1390
1391         i915_cmd_parser_init_ring(ring);
1392
1393         return 0;
1394
1395 err_unmap:
1396         iounmap(ring->virtual_start);
1397 err_unpin:
1398         i915_gem_object_ggtt_unpin(obj);
1399 err_unref:
1400         drm_gem_object_unreference(&obj->base);
1401         ring->obj = NULL;
1402 err_hws:
1403         cleanup_status_page(ring);
1404         return ret;
1405 }
1406
1407 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1408 {
1409         struct drm_i915_private *dev_priv;
1410         int ret;
1411
1412         if (ring->obj == NULL)
1413                 return;
1414
1415         /* Disable the ring buffer. The ring must be idle at this point */
1416         dev_priv = ring->dev->dev_private;
1417         ret = intel_ring_idle(ring);
1418         if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1419                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1420                           ring->name, ret);
1421
1422         I915_WRITE_CTL(ring, 0);
1423
1424         iounmap(ring->virtual_start);
1425
1426         i915_gem_object_ggtt_unpin(ring->obj);
1427         drm_gem_object_unreference(&ring->obj->base);
1428         ring->obj = NULL;
1429         ring->preallocated_lazy_request = NULL;
1430         ring->outstanding_lazy_seqno = 0;
1431
1432         if (ring->cleanup)
1433                 ring->cleanup(ring);
1434
1435         cleanup_status_page(ring);
1436 }
1437
1438 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1439 {
1440         struct drm_i915_gem_request *request;
1441         u32 seqno = 0, tail;
1442         int ret;
1443
1444         if (ring->last_retired_head != -1) {
1445                 ring->head = ring->last_retired_head;
1446                 ring->last_retired_head = -1;
1447
1448                 ring->space = ring_space(ring);
1449                 if (ring->space >= n)
1450                         return 0;
1451         }
1452
1453         list_for_each_entry(request, &ring->request_list, list) {
1454                 int space;
1455
1456                 if (request->tail == -1)
1457                         continue;
1458
1459                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1460                 if (space < 0)
1461                         space += ring->size;
1462                 if (space >= n) {
1463                         seqno = request->seqno;
1464                         tail = request->tail;
1465                         break;
1466                 }
1467
1468                 /* Consume this request in case we need more space than
1469                  * is available and so need to prevent a race between
1470                  * updating last_retired_head and direct reads of
1471                  * I915_RING_HEAD. It also provides a nice sanity check.
1472                  */
1473                 request->tail = -1;
1474         }
1475
1476         if (seqno == 0)
1477                 return -ENOSPC;
1478
1479         ret = i915_wait_seqno(ring, seqno);
1480         if (ret)
1481                 return ret;
1482
1483         ring->head = tail;
1484         ring->space = ring_space(ring);
1485         if (WARN_ON(ring->space < n))
1486                 return -ENOSPC;
1487
1488         return 0;
1489 }
1490
1491 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1492 {
1493         struct drm_device *dev = ring->dev;
1494         struct drm_i915_private *dev_priv = dev->dev_private;
1495         unsigned long end;
1496         int ret;
1497
1498         ret = intel_ring_wait_request(ring, n);
1499         if (ret != -ENOSPC)
1500                 return ret;
1501
1502         /* force the tail write in case we have been skipping them */
1503         __intel_ring_advance(ring);
1504
1505         trace_i915_ring_wait_begin(ring);
1506         /* With GEM the hangcheck timer should kick us out of the loop,
1507          * leaving it early runs the risk of corrupting GEM state (due
1508          * to running on almost untested codepaths). But on resume
1509          * timers don't work yet, so prevent a complete hang in that
1510          * case by choosing an insanely large timeout. */
1511         end = jiffies + 60 * HZ;
1512
1513         do {
1514                 ring->head = I915_READ_HEAD(ring);
1515                 ring->space = ring_space(ring);
1516                 if (ring->space >= n) {
1517                         trace_i915_ring_wait_end(ring);
1518                         return 0;
1519                 }
1520
1521                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1522                     dev->primary->master) {
1523                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1524                         if (master_priv->sarea_priv)
1525                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1526                 }
1527
1528                 msleep(1);
1529
1530                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1531                                            dev_priv->mm.interruptible);
1532                 if (ret)
1533                         return ret;
1534         } while (!time_after(jiffies, end));
1535         trace_i915_ring_wait_end(ring);
1536         return -EBUSY;
1537 }
1538
1539 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1540 {
1541         uint32_t __iomem *virt;
1542         int rem = ring->size - ring->tail;
1543
1544         if (ring->space < rem) {
1545                 int ret = ring_wait_for_space(ring, rem);
1546                 if (ret)
1547                         return ret;
1548         }
1549
1550         virt = ring->virtual_start + ring->tail;
1551         rem /= 4;
1552         while (rem--)
1553                 iowrite32(MI_NOOP, virt++);
1554
1555         ring->tail = 0;
1556         ring->space = ring_space(ring);
1557
1558         return 0;
1559 }
1560
1561 int intel_ring_idle(struct intel_ring_buffer *ring)
1562 {
1563         u32 seqno;
1564         int ret;
1565
1566         /* We need to add any requests required to flush the objects and ring */
1567         if (ring->outstanding_lazy_seqno) {
1568                 ret = i915_add_request(ring, NULL);
1569                 if (ret)
1570                         return ret;
1571         }
1572
1573         /* Wait upon the last request to be completed */
1574         if (list_empty(&ring->request_list))
1575                 return 0;
1576
1577         seqno = list_entry(ring->request_list.prev,
1578                            struct drm_i915_gem_request,
1579                            list)->seqno;
1580
1581         return i915_wait_seqno(ring, seqno);
1582 }
1583
1584 static int
1585 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1586 {
1587         if (ring->outstanding_lazy_seqno)
1588                 return 0;
1589
1590         if (ring->preallocated_lazy_request == NULL) {
1591                 struct drm_i915_gem_request *request;
1592
1593                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1594                 if (request == NULL)
1595                         return -ENOMEM;
1596
1597                 ring->preallocated_lazy_request = request;
1598         }
1599
1600         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1601 }
1602
1603 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1604                                 int bytes)
1605 {
1606         int ret;
1607
1608         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1609                 ret = intel_wrap_ring_buffer(ring);
1610                 if (unlikely(ret))
1611                         return ret;
1612         }
1613
1614         if (unlikely(ring->space < bytes)) {
1615                 ret = ring_wait_for_space(ring, bytes);
1616                 if (unlikely(ret))
1617                         return ret;
1618         }
1619
1620         return 0;
1621 }
1622
1623 int intel_ring_begin(struct intel_ring_buffer *ring,
1624                      int num_dwords)
1625 {
1626         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1627         int ret;
1628
1629         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1630                                    dev_priv->mm.interruptible);
1631         if (ret)
1632                 return ret;
1633
1634         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1635         if (ret)
1636                 return ret;
1637
1638         /* Preallocate the olr before touching the ring */
1639         ret = intel_ring_alloc_seqno(ring);
1640         if (ret)
1641                 return ret;
1642
1643         ring->space -= num_dwords * sizeof(uint32_t);
1644         return 0;
1645 }
1646
1647 /* Align the ring tail to a cacheline boundary */
1648 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1649 {
1650         int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1651         int ret;
1652
1653         if (num_dwords == 0)
1654                 return 0;
1655
1656         ret = intel_ring_begin(ring, num_dwords);
1657         if (ret)
1658                 return ret;
1659
1660         while (num_dwords--)
1661                 intel_ring_emit(ring, MI_NOOP);
1662
1663         intel_ring_advance(ring);
1664
1665         return 0;
1666 }
1667
1668 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1669 {
1670         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1671
1672         BUG_ON(ring->outstanding_lazy_seqno);
1673
1674         if (INTEL_INFO(ring->dev)->gen >= 6) {
1675                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1676                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1677                 if (HAS_VEBOX(ring->dev))
1678                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1679         }
1680
1681         ring->set_seqno(ring, seqno);
1682         ring->hangcheck.seqno = seqno;
1683 }
1684
1685 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1686                                      u32 value)
1687 {
1688         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1689
1690        /* Every tail move must follow the sequence below */
1691
1692         /* Disable notification that the ring is IDLE. The GT
1693          * will then assume that it is busy and bring it out of rc6.
1694          */
1695         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1696                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1697
1698         /* Clear the context id. Here be magic! */
1699         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1700
1701         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1702         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1703                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1704                      50))
1705                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1706
1707         /* Now that the ring is fully powered up, update the tail */
1708         I915_WRITE_TAIL(ring, value);
1709         POSTING_READ(RING_TAIL(ring->mmio_base));
1710
1711         /* Let the ring send IDLE messages to the GT again,
1712          * and so let it sleep to conserve power when idle.
1713          */
1714         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1715                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1716 }
1717
1718 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1719                                u32 invalidate, u32 flush)
1720 {
1721         uint32_t cmd;
1722         int ret;
1723
1724         ret = intel_ring_begin(ring, 4);
1725         if (ret)
1726                 return ret;
1727
1728         cmd = MI_FLUSH_DW;
1729         if (INTEL_INFO(ring->dev)->gen >= 8)
1730                 cmd += 1;
1731         /*
1732          * Bspec vol 1c.5 - video engine command streamer:
1733          * "If ENABLED, all TLBs will be invalidated once the flush
1734          * operation is complete. This bit is only valid when the
1735          * Post-Sync Operation field is a value of 1h or 3h."
1736          */
1737         if (invalidate & I915_GEM_GPU_DOMAINS)
1738                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1739                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1740         intel_ring_emit(ring, cmd);
1741         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1742         if (INTEL_INFO(ring->dev)->gen >= 8) {
1743                 intel_ring_emit(ring, 0); /* upper addr */
1744                 intel_ring_emit(ring, 0); /* value */
1745         } else  {
1746                 intel_ring_emit(ring, 0);
1747                 intel_ring_emit(ring, MI_NOOP);
1748         }
1749         intel_ring_advance(ring);
1750         return 0;
1751 }
1752
1753 static int
1754 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1755                               u32 offset, u32 len,
1756                               unsigned flags)
1757 {
1758         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1759         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1760                 !(flags & I915_DISPATCH_SECURE);
1761         int ret;
1762
1763         ret = intel_ring_begin(ring, 4);
1764         if (ret)
1765                 return ret;
1766
1767         /* FIXME(BDW): Address space and security selectors. */
1768         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1769         intel_ring_emit(ring, offset);
1770         intel_ring_emit(ring, 0);
1771         intel_ring_emit(ring, MI_NOOP);
1772         intel_ring_advance(ring);
1773
1774         return 0;
1775 }
1776
1777 static int
1778 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1779                               u32 offset, u32 len,
1780                               unsigned flags)
1781 {
1782         int ret;
1783
1784         ret = intel_ring_begin(ring, 2);
1785         if (ret)
1786                 return ret;
1787
1788         intel_ring_emit(ring,
1789                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1790                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1791         /* bit0-7 is the length on GEN6+ */
1792         intel_ring_emit(ring, offset);
1793         intel_ring_advance(ring);
1794
1795         return 0;
1796 }
1797
1798 static int
1799 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1800                               u32 offset, u32 len,
1801                               unsigned flags)
1802 {
1803         int ret;
1804
1805         ret = intel_ring_begin(ring, 2);
1806         if (ret)
1807                 return ret;
1808
1809         intel_ring_emit(ring,
1810                         MI_BATCH_BUFFER_START |
1811                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1812         /* bit0-7 is the length on GEN6+ */
1813         intel_ring_emit(ring, offset);
1814         intel_ring_advance(ring);
1815
1816         return 0;
1817 }
1818
1819 /* Blitter support (SandyBridge+) */
1820
1821 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1822                            u32 invalidate, u32 flush)
1823 {
1824         struct drm_device *dev = ring->dev;
1825         uint32_t cmd;
1826         int ret;
1827
1828         ret = intel_ring_begin(ring, 4);
1829         if (ret)
1830                 return ret;
1831
1832         cmd = MI_FLUSH_DW;
1833         if (INTEL_INFO(ring->dev)->gen >= 8)
1834                 cmd += 1;
1835         /*
1836          * Bspec vol 1c.3 - blitter engine command streamer:
1837          * "If ENABLED, all TLBs will be invalidated once the flush
1838          * operation is complete. This bit is only valid when the
1839          * Post-Sync Operation field is a value of 1h or 3h."
1840          */
1841         if (invalidate & I915_GEM_DOMAIN_RENDER)
1842                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1843                         MI_FLUSH_DW_OP_STOREDW;
1844         intel_ring_emit(ring, cmd);
1845         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1846         if (INTEL_INFO(ring->dev)->gen >= 8) {
1847                 intel_ring_emit(ring, 0); /* upper addr */
1848                 intel_ring_emit(ring, 0); /* value */
1849         } else  {
1850                 intel_ring_emit(ring, 0);
1851                 intel_ring_emit(ring, MI_NOOP);
1852         }
1853         intel_ring_advance(ring);
1854
1855         if (IS_GEN7(dev) && !invalidate && flush)
1856                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1857
1858         return 0;
1859 }
1860
1861 int intel_init_render_ring_buffer(struct drm_device *dev)
1862 {
1863         drm_i915_private_t *dev_priv = dev->dev_private;
1864         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1865
1866         ring->name = "render ring";
1867         ring->id = RCS;
1868         ring->mmio_base = RENDER_RING_BASE;
1869
1870         if (INTEL_INFO(dev)->gen >= 6) {
1871                 ring->add_request = gen6_add_request;
1872                 ring->flush = gen7_render_ring_flush;
1873                 if (INTEL_INFO(dev)->gen == 6)
1874                         ring->flush = gen6_render_ring_flush;
1875                 if (INTEL_INFO(dev)->gen >= 8) {
1876                         ring->flush = gen8_render_ring_flush;
1877                         ring->irq_get = gen8_ring_get_irq;
1878                         ring->irq_put = gen8_ring_put_irq;
1879                 } else {
1880                         ring->irq_get = gen6_ring_get_irq;
1881                         ring->irq_put = gen6_ring_put_irq;
1882                 }
1883                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1884                 ring->get_seqno = gen6_ring_get_seqno;
1885                 ring->set_seqno = ring_set_seqno;
1886                 ring->sync_to = gen6_ring_sync;
1887                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1888                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1889                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1890                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1891                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1892                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1893                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1894                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1895         } else if (IS_GEN5(dev)) {
1896                 ring->add_request = pc_render_add_request;
1897                 ring->flush = gen4_render_ring_flush;
1898                 ring->get_seqno = pc_render_get_seqno;
1899                 ring->set_seqno = pc_render_set_seqno;
1900                 ring->irq_get = gen5_ring_get_irq;
1901                 ring->irq_put = gen5_ring_put_irq;
1902                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1903                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1904         } else {
1905                 ring->add_request = i9xx_add_request;
1906                 if (INTEL_INFO(dev)->gen < 4)
1907                         ring->flush = gen2_render_ring_flush;
1908                 else
1909                         ring->flush = gen4_render_ring_flush;
1910                 ring->get_seqno = ring_get_seqno;
1911                 ring->set_seqno = ring_set_seqno;
1912                 if (IS_GEN2(dev)) {
1913                         ring->irq_get = i8xx_ring_get_irq;
1914                         ring->irq_put = i8xx_ring_put_irq;
1915                 } else {
1916                         ring->irq_get = i9xx_ring_get_irq;
1917                         ring->irq_put = i9xx_ring_put_irq;
1918                 }
1919                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1920         }
1921         ring->write_tail = ring_write_tail;
1922         if (IS_HASWELL(dev))
1923                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1924         else if (IS_GEN8(dev))
1925                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1926         else if (INTEL_INFO(dev)->gen >= 6)
1927                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1928         else if (INTEL_INFO(dev)->gen >= 4)
1929                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1930         else if (IS_I830(dev) || IS_845G(dev))
1931                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1932         else
1933                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1934         ring->init = init_render_ring;
1935         ring->cleanup = render_ring_cleanup;
1936
1937         /* Workaround batchbuffer to combat CS tlb bug. */
1938         if (HAS_BROKEN_CS_TLB(dev)) {
1939                 struct drm_i915_gem_object *obj;
1940                 int ret;
1941
1942                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1943                 if (obj == NULL) {
1944                         DRM_ERROR("Failed to allocate batch bo\n");
1945                         return -ENOMEM;
1946                 }
1947
1948                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1949                 if (ret != 0) {
1950                         drm_gem_object_unreference(&obj->base);
1951                         DRM_ERROR("Failed to ping batch bo\n");
1952                         return ret;
1953                 }
1954
1955                 ring->scratch.obj = obj;
1956                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1957         }
1958
1959         return intel_init_ring_buffer(dev, ring);
1960 }
1961
1962 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1963 {
1964         drm_i915_private_t *dev_priv = dev->dev_private;
1965         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1966         int ret;
1967
1968         ring->name = "render ring";
1969         ring->id = RCS;
1970         ring->mmio_base = RENDER_RING_BASE;
1971
1972         if (INTEL_INFO(dev)->gen >= 6) {
1973                 /* non-kms not supported on gen6+ */
1974                 return -ENODEV;
1975         }
1976
1977         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1978          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1979          * the special gen5 functions. */
1980         ring->add_request = i9xx_add_request;
1981         if (INTEL_INFO(dev)->gen < 4)
1982                 ring->flush = gen2_render_ring_flush;
1983         else
1984                 ring->flush = gen4_render_ring_flush;
1985         ring->get_seqno = ring_get_seqno;
1986         ring->set_seqno = ring_set_seqno;
1987         if (IS_GEN2(dev)) {
1988                 ring->irq_get = i8xx_ring_get_irq;
1989                 ring->irq_put = i8xx_ring_put_irq;
1990         } else {
1991                 ring->irq_get = i9xx_ring_get_irq;
1992                 ring->irq_put = i9xx_ring_put_irq;
1993         }
1994         ring->irq_enable_mask = I915_USER_INTERRUPT;
1995         ring->write_tail = ring_write_tail;
1996         if (INTEL_INFO(dev)->gen >= 4)
1997                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1998         else if (IS_I830(dev) || IS_845G(dev))
1999                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2000         else
2001                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2002         ring->init = init_render_ring;
2003         ring->cleanup = render_ring_cleanup;
2004
2005         ring->dev = dev;
2006         INIT_LIST_HEAD(&ring->active_list);
2007         INIT_LIST_HEAD(&ring->request_list);
2008
2009         ring->size = size;
2010         ring->effective_size = ring->size;
2011         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2012                 ring->effective_size -= 128;
2013
2014         ring->virtual_start = ioremap_wc(start, size);
2015         if (ring->virtual_start == NULL) {
2016                 DRM_ERROR("can not ioremap virtual address for"
2017                           " ring buffer\n");
2018                 return -ENOMEM;
2019         }
2020
2021         if (!I915_NEED_GFX_HWS(dev)) {
2022                 ret = init_phys_status_page(ring);
2023                 if (ret)
2024                         return ret;
2025         }
2026
2027         return 0;
2028 }
2029
2030 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2031 {
2032         drm_i915_private_t *dev_priv = dev->dev_private;
2033         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2034
2035         ring->name = "bsd ring";
2036         ring->id = VCS;
2037
2038         ring->write_tail = ring_write_tail;
2039         if (INTEL_INFO(dev)->gen >= 6) {
2040                 ring->mmio_base = GEN6_BSD_RING_BASE;
2041                 /* gen6 bsd needs a special wa for tail updates */
2042                 if (IS_GEN6(dev))
2043                         ring->write_tail = gen6_bsd_ring_write_tail;
2044                 ring->flush = gen6_bsd_ring_flush;
2045                 ring->add_request = gen6_add_request;
2046                 ring->get_seqno = gen6_ring_get_seqno;
2047                 ring->set_seqno = ring_set_seqno;
2048                 if (INTEL_INFO(dev)->gen >= 8) {
2049                         ring->irq_enable_mask =
2050                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2051                         ring->irq_get = gen8_ring_get_irq;
2052                         ring->irq_put = gen8_ring_put_irq;
2053                         ring->dispatch_execbuffer =
2054                                 gen8_ring_dispatch_execbuffer;
2055                 } else {
2056                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2057                         ring->irq_get = gen6_ring_get_irq;
2058                         ring->irq_put = gen6_ring_put_irq;
2059                         ring->dispatch_execbuffer =
2060                                 gen6_ring_dispatch_execbuffer;
2061                 }
2062                 ring->sync_to = gen6_ring_sync;
2063                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2064                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2065                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2066                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2067                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2068                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2069                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2070                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2071         } else {
2072                 ring->mmio_base = BSD_RING_BASE;
2073                 ring->flush = bsd_ring_flush;
2074                 ring->add_request = i9xx_add_request;
2075                 ring->get_seqno = ring_get_seqno;
2076                 ring->set_seqno = ring_set_seqno;
2077                 if (IS_GEN5(dev)) {
2078                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2079                         ring->irq_get = gen5_ring_get_irq;
2080                         ring->irq_put = gen5_ring_put_irq;
2081                 } else {
2082                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2083                         ring->irq_get = i9xx_ring_get_irq;
2084                         ring->irq_put = i9xx_ring_put_irq;
2085                 }
2086                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2087         }
2088         ring->init = init_ring_common;
2089
2090         return intel_init_ring_buffer(dev, ring);
2091 }
2092
2093 int intel_init_blt_ring_buffer(struct drm_device *dev)
2094 {
2095         drm_i915_private_t *dev_priv = dev->dev_private;
2096         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2097
2098         ring->name = "blitter ring";
2099         ring->id = BCS;
2100
2101         ring->mmio_base = BLT_RING_BASE;
2102         ring->write_tail = ring_write_tail;
2103         ring->flush = gen6_ring_flush;
2104         ring->add_request = gen6_add_request;
2105         ring->get_seqno = gen6_ring_get_seqno;
2106         ring->set_seqno = ring_set_seqno;
2107         if (INTEL_INFO(dev)->gen >= 8) {
2108                 ring->irq_enable_mask =
2109                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2110                 ring->irq_get = gen8_ring_get_irq;
2111                 ring->irq_put = gen8_ring_put_irq;
2112                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2113         } else {
2114                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2115                 ring->irq_get = gen6_ring_get_irq;
2116                 ring->irq_put = gen6_ring_put_irq;
2117                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2118         }
2119         ring->sync_to = gen6_ring_sync;
2120         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2121         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2122         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2123         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2124         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2125         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2126         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2127         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2128         ring->init = init_ring_common;
2129
2130         return intel_init_ring_buffer(dev, ring);
2131 }
2132
2133 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2134 {
2135         drm_i915_private_t *dev_priv = dev->dev_private;
2136         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2137
2138         ring->name = "video enhancement ring";
2139         ring->id = VECS;
2140
2141         ring->mmio_base = VEBOX_RING_BASE;
2142         ring->write_tail = ring_write_tail;
2143         ring->flush = gen6_ring_flush;
2144         ring->add_request = gen6_add_request;
2145         ring->get_seqno = gen6_ring_get_seqno;
2146         ring->set_seqno = ring_set_seqno;
2147
2148         if (INTEL_INFO(dev)->gen >= 8) {
2149                 ring->irq_enable_mask =
2150                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2151                 ring->irq_get = gen8_ring_get_irq;
2152                 ring->irq_put = gen8_ring_put_irq;
2153                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2154         } else {
2155                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2156                 ring->irq_get = hsw_vebox_get_irq;
2157                 ring->irq_put = hsw_vebox_put_irq;
2158                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2159         }
2160         ring->sync_to = gen6_ring_sync;
2161         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2162         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2163         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2164         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2165         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2166         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2167         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2168         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2169         ring->init = init_ring_common;
2170
2171         return intel_init_ring_buffer(dev, ring);
2172 }
2173
2174 int
2175 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2176 {
2177         int ret;
2178
2179         if (!ring->gpu_caches_dirty)
2180                 return 0;
2181
2182         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2183         if (ret)
2184                 return ret;
2185
2186         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2187
2188         ring->gpu_caches_dirty = false;
2189         return 0;
2190 }
2191
2192 int
2193 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2194 {
2195         uint32_t flush_domains;
2196         int ret;
2197
2198         flush_domains = 0;
2199         if (ring->gpu_caches_dirty)
2200                 flush_domains = I915_GEM_GPU_DOMAINS;
2201
2202         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2203         if (ret)
2204                 return ret;
2205
2206         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2207
2208         ring->gpu_caches_dirty = false;
2209         return 0;
2210 }