drm/i915/vlv: re-order power wells so DPIO common comes after TX
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->primary->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->primary->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233         else
234                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238
239         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241         /* enable it... */
242         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244         if (IS_GEN6(dev)) {
245                 I915_WRITE(SNB_DPFC_CTL_SA,
246                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248                 sandybridge_blit_fbc_update(dev);
249         }
250
251         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         u32 dpfc_ctl;
258
259         /* Disable compression */
260         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261         if (dpfc_ctl & DPFC_CTL_EN) {
262                 dpfc_ctl &= ~DPFC_CTL_EN;
263                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265                 DRM_DEBUG_KMS("disabled FBC\n");
266         }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278         struct drm_device *dev = crtc->dev;
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         struct drm_framebuffer *fb = crtc->primary->fb;
281         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282         struct drm_i915_gem_object *obj = intel_fb->obj;
283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284         u32 dpfc_ctl;
285
286         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289         else
290                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295         if (IS_IVYBRIDGE(dev)) {
296                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298                            I915_READ(ILK_DISPLAY_CHICKEN1) |
299                            ILK_FBCQ_DIS);
300         } else {
301                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304                            HSW_FBCQ_DIS);
305         }
306
307         I915_WRITE(SNB_DPFC_CTL_SA,
308                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311         sandybridge_blit_fbc_update(dev);
312
313         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         if (!dev_priv->display.fbc_enabled)
321                 return false;
322
323         return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328         struct intel_fbc_work *work =
329                 container_of(to_delayed_work(__work),
330                              struct intel_fbc_work, work);
331         struct drm_device *dev = work->crtc->dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         mutex_lock(&dev->struct_mutex);
335         if (work == dev_priv->fbc.fbc_work) {
336                 /* Double check that we haven't switched fb without cancelling
337                  * the prior work.
338                  */
339                 if (work->crtc->primary->fb == work->fb) {
340                         dev_priv->display.enable_fbc(work->crtc);
341
342                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
344                         dev_priv->fbc.y = work->crtc->y;
345                 }
346
347                 dev_priv->fbc.fbc_work = NULL;
348         }
349         mutex_unlock(&dev->struct_mutex);
350
351         kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356         if (dev_priv->fbc.fbc_work == NULL)
357                 return;
358
359         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361         /* Synchronisation is provided by struct_mutex and checking of
362          * dev_priv->fbc.fbc_work, so we can perform the cancellation
363          * entirely asynchronously.
364          */
365         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366                 /* tasklet was killed before being run, clean up */
367                 kfree(dev_priv->fbc.fbc_work);
368
369         /* Mark the work as no longer wanted so that if it does
370          * wake-up (because the work was already running and waiting
371          * for our mutex), it will discover that is no longer
372          * necessary to run.
373          */
374         dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379         struct intel_fbc_work *work;
380         struct drm_device *dev = crtc->dev;
381         struct drm_i915_private *dev_priv = dev->dev_private;
382
383         if (!dev_priv->display.enable_fbc)
384                 return;
385
386         intel_cancel_fbc_work(dev_priv);
387
388         work = kzalloc(sizeof(*work), GFP_KERNEL);
389         if (work == NULL) {
390                 DRM_ERROR("Failed to allocate FBC work structure\n");
391                 dev_priv->display.enable_fbc(crtc);
392                 return;
393         }
394
395         work->crtc = crtc;
396         work->fb = crtc->primary->fb;
397         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399         dev_priv->fbc.fbc_work = work;
400
401         /* Delay the actual enabling to let pageflipping cease and the
402          * display to settle before starting the compression. Note that
403          * this delay also serves a second purpose: it allows for a
404          * vblank to pass after disabling the FBC before we attempt
405          * to modify the control registers.
406          *
407          * A more complicated solution would involve tracking vblanks
408          * following the termination of the page-flipping sequence
409          * and indeed performing the enable as a co-routine and not
410          * waiting synchronously upon the vblank.
411          *
412          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413          */
414         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419         struct drm_i915_private *dev_priv = dev->dev_private;
420
421         intel_cancel_fbc_work(dev_priv);
422
423         if (!dev_priv->display.disable_fbc)
424                 return;
425
426         dev_priv->display.disable_fbc(dev);
427         dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431                               enum no_fbc_reason reason)
432 {
433         if (dev_priv->fbc.no_fbc_reason == reason)
434                 return false;
435
436         dev_priv->fbc.no_fbc_reason = reason;
437         return true;
438 }
439
440 /**
441  * intel_update_fbc - enable/disable FBC as needed
442  * @dev: the drm_device
443  *
444  * Set up the framebuffer compression hardware at mode set time.  We
445  * enable it if possible:
446  *   - plane A only (on pre-965)
447  *   - no pixel mulitply/line duplication
448  *   - no alpha buffer discard
449  *   - no dual wide
450  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
451  *
452  * We can't assume that any compression will take place (worst case),
453  * so the compressed buffer has to be the same size as the uncompressed
454  * one.  It also must reside (along with the line length buffer) in
455  * stolen memory.
456  *
457  * We need to enable/disable FBC on a global basis.
458  */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461         struct drm_i915_private *dev_priv = dev->dev_private;
462         struct drm_crtc *crtc = NULL, *tmp_crtc;
463         struct intel_crtc *intel_crtc;
464         struct drm_framebuffer *fb;
465         struct intel_framebuffer *intel_fb;
466         struct drm_i915_gem_object *obj;
467         const struct drm_display_mode *adjusted_mode;
468         unsigned int max_width, max_height;
469
470         if (!HAS_FBC(dev)) {
471                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472                 return;
473         }
474
475         if (!i915.powersave) {
476                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477                         DRM_DEBUG_KMS("fbc disabled per module param\n");
478                 return;
479         }
480
481         /*
482          * If FBC is already on, we just have to verify that we can
483          * keep it that way...
484          * Need to disable if:
485          *   - more than one pipe is active
486          *   - changing FBC params (stride, fence, mode)
487          *   - new fb is too large to fit in compressed buffer
488          *   - going to an unsupported config (interlace, pixel multiply, etc.)
489          */
490         for_each_crtc(dev, tmp_crtc) {
491                 if (intel_crtc_active(tmp_crtc) &&
492                     to_intel_crtc(tmp_crtc)->primary_enabled) {
493                         if (crtc) {
494                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496                                 goto out_disable;
497                         }
498                         crtc = tmp_crtc;
499                 }
500         }
501
502         if (!crtc || crtc->primary->fb == NULL) {
503                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504                         DRM_DEBUG_KMS("no output, disabling\n");
505                 goto out_disable;
506         }
507
508         intel_crtc = to_intel_crtc(crtc);
509         fb = crtc->primary->fb;
510         intel_fb = to_intel_framebuffer(fb);
511         obj = intel_fb->obj;
512         adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514         if (i915.enable_fbc < 0 &&
515             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517                         DRM_DEBUG_KMS("disabled per chip default\n");
518                 goto out_disable;
519         }
520         if (!i915.enable_fbc) {
521                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522                         DRM_DEBUG_KMS("fbc disabled per module param\n");
523                 goto out_disable;
524         }
525         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528                         DRM_DEBUG_KMS("mode incompatible with compression, "
529                                       "disabling\n");
530                 goto out_disable;
531         }
532
533         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
534                 max_width = 4096;
535                 max_height = 2048;
536         } else {
537                 max_width = 2048;
538                 max_height = 1536;
539         }
540         if (intel_crtc->config.pipe_src_w > max_width ||
541             intel_crtc->config.pipe_src_h > max_height) {
542                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
543                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
544                 goto out_disable;
545         }
546         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
547             intel_crtc->plane != PLANE_A) {
548                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
549                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
550                 goto out_disable;
551         }
552
553         /* The use of a CPU fence is mandatory in order to detect writes
554          * by the CPU to the scanout and trigger updates to the FBC.
555          */
556         if (obj->tiling_mode != I915_TILING_X ||
557             obj->fence_reg == I915_FENCE_REG_NONE) {
558                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
559                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
560                 goto out_disable;
561         }
562
563         /* If the kernel debugger is active, always disable compression */
564         if (in_dbg_master())
565                 goto out_disable;
566
567         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
568                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
569                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
570                 goto out_disable;
571         }
572
573         /* If the scanout has not changed, don't modify the FBC settings.
574          * Note that we make the fundamental assumption that the fb->obj
575          * cannot be unpinned (and have its GTT offset and fence revoked)
576          * without first being decoupled from the scanout and FBC disabled.
577          */
578         if (dev_priv->fbc.plane == intel_crtc->plane &&
579             dev_priv->fbc.fb_id == fb->base.id &&
580             dev_priv->fbc.y == crtc->y)
581                 return;
582
583         if (intel_fbc_enabled(dev)) {
584                 /* We update FBC along two paths, after changing fb/crtc
585                  * configuration (modeswitching) and after page-flipping
586                  * finishes. For the latter, we know that not only did
587                  * we disable the FBC at the start of the page-flip
588                  * sequence, but also more than one vblank has passed.
589                  *
590                  * For the former case of modeswitching, it is possible
591                  * to switch between two FBC valid configurations
592                  * instantaneously so we do need to disable the FBC
593                  * before we can modify its control registers. We also
594                  * have to wait for the next vblank for that to take
595                  * effect. However, since we delay enabling FBC we can
596                  * assume that a vblank has passed since disabling and
597                  * that we can safely alter the registers in the deferred
598                  * callback.
599                  *
600                  * In the scenario that we go from a valid to invalid
601                  * and then back to valid FBC configuration we have
602                  * no strict enforcement that a vblank occurred since
603                  * disabling the FBC. However, along all current pipe
604                  * disabling paths we do need to wait for a vblank at
605                  * some point. And we wait before enabling FBC anyway.
606                  */
607                 DRM_DEBUG_KMS("disabling active FBC for update\n");
608                 intel_disable_fbc(dev);
609         }
610
611         intel_enable_fbc(crtc);
612         dev_priv->fbc.no_fbc_reason = FBC_OK;
613         return;
614
615 out_disable:
616         /* Multiple disables should be harmless */
617         if (intel_fbc_enabled(dev)) {
618                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
619                 intel_disable_fbc(dev);
620         }
621         i915_gem_stolen_cleanup_compression(dev);
622 }
623
624 static void i915_pineview_get_mem_freq(struct drm_device *dev)
625 {
626         struct drm_i915_private *dev_priv = dev->dev_private;
627         u32 tmp;
628
629         tmp = I915_READ(CLKCFG);
630
631         switch (tmp & CLKCFG_FSB_MASK) {
632         case CLKCFG_FSB_533:
633                 dev_priv->fsb_freq = 533; /* 133*4 */
634                 break;
635         case CLKCFG_FSB_800:
636                 dev_priv->fsb_freq = 800; /* 200*4 */
637                 break;
638         case CLKCFG_FSB_667:
639                 dev_priv->fsb_freq =  667; /* 167*4 */
640                 break;
641         case CLKCFG_FSB_400:
642                 dev_priv->fsb_freq = 400; /* 100*4 */
643                 break;
644         }
645
646         switch (tmp & CLKCFG_MEM_MASK) {
647         case CLKCFG_MEM_533:
648                 dev_priv->mem_freq = 533;
649                 break;
650         case CLKCFG_MEM_667:
651                 dev_priv->mem_freq = 667;
652                 break;
653         case CLKCFG_MEM_800:
654                 dev_priv->mem_freq = 800;
655                 break;
656         }
657
658         /* detect pineview DDR3 setting */
659         tmp = I915_READ(CSHRDDR3CTL);
660         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
661 }
662
663 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
664 {
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         u16 ddrpll, csipll;
667
668         ddrpll = I915_READ16(DDRMPLL1);
669         csipll = I915_READ16(CSIPLL0);
670
671         switch (ddrpll & 0xff) {
672         case 0xc:
673                 dev_priv->mem_freq = 800;
674                 break;
675         case 0x10:
676                 dev_priv->mem_freq = 1066;
677                 break;
678         case 0x14:
679                 dev_priv->mem_freq = 1333;
680                 break;
681         case 0x18:
682                 dev_priv->mem_freq = 1600;
683                 break;
684         default:
685                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
686                                  ddrpll & 0xff);
687                 dev_priv->mem_freq = 0;
688                 break;
689         }
690
691         dev_priv->ips.r_t = dev_priv->mem_freq;
692
693         switch (csipll & 0x3ff) {
694         case 0x00c:
695                 dev_priv->fsb_freq = 3200;
696                 break;
697         case 0x00e:
698                 dev_priv->fsb_freq = 3733;
699                 break;
700         case 0x010:
701                 dev_priv->fsb_freq = 4266;
702                 break;
703         case 0x012:
704                 dev_priv->fsb_freq = 4800;
705                 break;
706         case 0x014:
707                 dev_priv->fsb_freq = 5333;
708                 break;
709         case 0x016:
710                 dev_priv->fsb_freq = 5866;
711                 break;
712         case 0x018:
713                 dev_priv->fsb_freq = 6400;
714                 break;
715         default:
716                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
717                                  csipll & 0x3ff);
718                 dev_priv->fsb_freq = 0;
719                 break;
720         }
721
722         if (dev_priv->fsb_freq == 3200) {
723                 dev_priv->ips.c_m = 0;
724         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
725                 dev_priv->ips.c_m = 1;
726         } else {
727                 dev_priv->ips.c_m = 2;
728         }
729 }
730
731 static const struct cxsr_latency cxsr_latency_table[] = {
732         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
733         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
734         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
735         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
736         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
737
738         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
739         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
740         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
741         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
742         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
743
744         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
745         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
746         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
747         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
748         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
749
750         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
751         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
752         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
753         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
754         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
755
756         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
757         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
758         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
759         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
760         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
761
762         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
763         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
764         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
765         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
766         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
767 };
768
769 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
770                                                          int is_ddr3,
771                                                          int fsb,
772                                                          int mem)
773 {
774         const struct cxsr_latency *latency;
775         int i;
776
777         if (fsb == 0 || mem == 0)
778                 return NULL;
779
780         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
781                 latency = &cxsr_latency_table[i];
782                 if (is_desktop == latency->is_desktop &&
783                     is_ddr3 == latency->is_ddr3 &&
784                     fsb == latency->fsb_freq && mem == latency->mem_freq)
785                         return latency;
786         }
787
788         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
789
790         return NULL;
791 }
792
793 static void pineview_disable_cxsr(struct drm_device *dev)
794 {
795         struct drm_i915_private *dev_priv = dev->dev_private;
796
797         /* deactivate cxsr */
798         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
799 }
800
801 /*
802  * Latency for FIFO fetches is dependent on several factors:
803  *   - memory configuration (speed, channels)
804  *   - chipset
805  *   - current MCH state
806  * It can be fairly high in some situations, so here we assume a fairly
807  * pessimal value.  It's a tradeoff between extra memory fetches (if we
808  * set this value too high, the FIFO will fetch frequently to stay full)
809  * and power consumption (set it too low to save power and we might see
810  * FIFO underruns and display "flicker").
811  *
812  * A value of 5us seems to be a good balance; safe for very low end
813  * platforms but not overly aggressive on lower latency configs.
814  */
815 static const int latency_ns = 5000;
816
817 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
818 {
819         struct drm_i915_private *dev_priv = dev->dev_private;
820         uint32_t dsparb = I915_READ(DSPARB);
821         int size;
822
823         size = dsparb & 0x7f;
824         if (plane)
825                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
826
827         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
828                       plane ? "B" : "A", size);
829
830         return size;
831 }
832
833 static int i830_get_fifo_size(struct drm_device *dev, int plane)
834 {
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         uint32_t dsparb = I915_READ(DSPARB);
837         int size;
838
839         size = dsparb & 0x1ff;
840         if (plane)
841                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
842         size >>= 1; /* Convert to cachelines */
843
844         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845                       plane ? "B" : "A", size);
846
847         return size;
848 }
849
850 static int i845_get_fifo_size(struct drm_device *dev, int plane)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         uint32_t dsparb = I915_READ(DSPARB);
854         int size;
855
856         size = dsparb & 0x7f;
857         size >>= 2; /* Convert to cachelines */
858
859         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
860                       plane ? "B" : "A",
861                       size);
862
863         return size;
864 }
865
866 /* Pineview has different values for various configs */
867 static const struct intel_watermark_params pineview_display_wm = {
868         PINEVIEW_DISPLAY_FIFO,
869         PINEVIEW_MAX_WM,
870         PINEVIEW_DFT_WM,
871         PINEVIEW_GUARD_WM,
872         PINEVIEW_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params pineview_display_hplloff_wm = {
875         PINEVIEW_DISPLAY_FIFO,
876         PINEVIEW_MAX_WM,
877         PINEVIEW_DFT_HPLLOFF_WM,
878         PINEVIEW_GUARD_WM,
879         PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_cursor_wm = {
882         PINEVIEW_CURSOR_FIFO,
883         PINEVIEW_CURSOR_MAX_WM,
884         PINEVIEW_CURSOR_DFT_WM,
885         PINEVIEW_CURSOR_GUARD_WM,
886         PINEVIEW_FIFO_LINE_SIZE,
887 };
888 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
889         PINEVIEW_CURSOR_FIFO,
890         PINEVIEW_CURSOR_MAX_WM,
891         PINEVIEW_CURSOR_DFT_WM,
892         PINEVIEW_CURSOR_GUARD_WM,
893         PINEVIEW_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params g4x_wm_info = {
896         G4X_FIFO_SIZE,
897         G4X_MAX_WM,
898         G4X_MAX_WM,
899         2,
900         G4X_FIFO_LINE_SIZE,
901 };
902 static const struct intel_watermark_params g4x_cursor_wm_info = {
903         I965_CURSOR_FIFO,
904         I965_CURSOR_MAX_WM,
905         I965_CURSOR_DFT_WM,
906         2,
907         G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params valleyview_wm_info = {
910         VALLEYVIEW_FIFO_SIZE,
911         VALLEYVIEW_MAX_WM,
912         VALLEYVIEW_MAX_WM,
913         2,
914         G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_cursor_wm_info = {
917         I965_CURSOR_FIFO,
918         VALLEYVIEW_CURSOR_MAX_WM,
919         I965_CURSOR_DFT_WM,
920         2,
921         G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params i965_cursor_wm_info = {
924         I965_CURSOR_FIFO,
925         I965_CURSOR_MAX_WM,
926         I965_CURSOR_DFT_WM,
927         2,
928         I915_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i945_wm_info = {
931         I945_FIFO_SIZE,
932         I915_MAX_WM,
933         1,
934         2,
935         I915_FIFO_LINE_SIZE
936 };
937 static const struct intel_watermark_params i915_wm_info = {
938         I915_FIFO_SIZE,
939         I915_MAX_WM,
940         1,
941         2,
942         I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i830_wm_info = {
945         I855GM_FIFO_SIZE,
946         I915_MAX_WM,
947         1,
948         2,
949         I830_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i845_wm_info = {
952         I830_FIFO_SIZE,
953         I915_MAX_WM,
954         1,
955         2,
956         I830_FIFO_LINE_SIZE
957 };
958
959 /**
960  * intel_calculate_wm - calculate watermark level
961  * @clock_in_khz: pixel clock
962  * @wm: chip FIFO params
963  * @pixel_size: display pixel size
964  * @latency_ns: memory latency for the platform
965  *
966  * Calculate the watermark level (the level at which the display plane will
967  * start fetching from memory again).  Each chip has a different display
968  * FIFO size and allocation, so the caller needs to figure that out and pass
969  * in the correct intel_watermark_params structure.
970  *
971  * As the pixel clock runs, the FIFO will be drained at a rate that depends
972  * on the pixel size.  When it reaches the watermark level, it'll start
973  * fetching FIFO line sized based chunks from memory until the FIFO fills
974  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
975  * will occur, and a display engine hang could result.
976  */
977 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
978                                         const struct intel_watermark_params *wm,
979                                         int fifo_size,
980                                         int pixel_size,
981                                         unsigned long latency_ns)
982 {
983         long entries_required, wm_size;
984
985         /*
986          * Note: we need to make sure we don't overflow for various clock &
987          * latency values.
988          * clocks go from a few thousand to several hundred thousand.
989          * latency is usually a few thousand
990          */
991         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
992                 1000;
993         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
994
995         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
996
997         wm_size = fifo_size - (entries_required + wm->guard_size);
998
999         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001         /* Don't promote wm_size to unsigned... */
1002         if (wm_size > (long)wm->max_wm)
1003                 wm_size = wm->max_wm;
1004         if (wm_size <= 0)
1005                 wm_size = wm->default_wm;
1006         return wm_size;
1007 }
1008
1009 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1010 {
1011         struct drm_crtc *crtc, *enabled = NULL;
1012
1013         for_each_crtc(dev, crtc) {
1014                 if (intel_crtc_active(crtc)) {
1015                         if (enabled)
1016                                 return NULL;
1017                         enabled = crtc;
1018                 }
1019         }
1020
1021         return enabled;
1022 }
1023
1024 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025 {
1026         struct drm_device *dev = unused_crtc->dev;
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_crtc *crtc;
1029         const struct cxsr_latency *latency;
1030         u32 reg;
1031         unsigned long wm;
1032
1033         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1035         if (!latency) {
1036                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037                 pineview_disable_cxsr(dev);
1038                 return;
1039         }
1040
1041         crtc = single_enabled_crtc(dev);
1042         if (crtc) {
1043                 const struct drm_display_mode *adjusted_mode;
1044                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1045                 int clock;
1046
1047                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048                 clock = adjusted_mode->crtc_clock;
1049
1050                 /* Display SR */
1051                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1052                                         pineview_display_wm.fifo_size,
1053                                         pixel_size, latency->display_sr);
1054                 reg = I915_READ(DSPFW1);
1055                 reg &= ~DSPFW_SR_MASK;
1056                 reg |= wm << DSPFW_SR_SHIFT;
1057                 I915_WRITE(DSPFW1, reg);
1058                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060                 /* cursor SR */
1061                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062                                         pineview_display_wm.fifo_size,
1063                                         pixel_size, latency->cursor_sr);
1064                 reg = I915_READ(DSPFW3);
1065                 reg &= ~DSPFW_CURSOR_SR_MASK;
1066                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067                 I915_WRITE(DSPFW3, reg);
1068
1069                 /* Display HPLL off SR */
1070                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071                                         pineview_display_hplloff_wm.fifo_size,
1072                                         pixel_size, latency->display_hpll_disable);
1073                 reg = I915_READ(DSPFW3);
1074                 reg &= ~DSPFW_HPLL_SR_MASK;
1075                 reg |= wm & DSPFW_HPLL_SR_MASK;
1076                 I915_WRITE(DSPFW3, reg);
1077
1078                 /* cursor HPLL off SR */
1079                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080                                         pineview_display_hplloff_wm.fifo_size,
1081                                         pixel_size, latency->cursor_hpll_disable);
1082                 reg = I915_READ(DSPFW3);
1083                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085                 I915_WRITE(DSPFW3, reg);
1086                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088                 /* activate cxsr */
1089                 I915_WRITE(DSPFW3,
1090                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1092         } else {
1093                 pineview_disable_cxsr(dev);
1094                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1095         }
1096 }
1097
1098 static bool g4x_compute_wm0(struct drm_device *dev,
1099                             int plane,
1100                             const struct intel_watermark_params *display,
1101                             int display_latency_ns,
1102                             const struct intel_watermark_params *cursor,
1103                             int cursor_latency_ns,
1104                             int *plane_wm,
1105                             int *cursor_wm)
1106 {
1107         struct drm_crtc *crtc;
1108         const struct drm_display_mode *adjusted_mode;
1109         int htotal, hdisplay, clock, pixel_size;
1110         int line_time_us, line_count;
1111         int entries, tlb_miss;
1112
1113         crtc = intel_get_crtc_for_plane(dev, plane);
1114         if (!intel_crtc_active(crtc)) {
1115                 *cursor_wm = cursor->guard_size;
1116                 *plane_wm = display->guard_size;
1117                 return false;
1118         }
1119
1120         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121         clock = adjusted_mode->crtc_clock;
1122         htotal = adjusted_mode->crtc_htotal;
1123         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1125
1126         /* Use the small buffer method to calculate plane watermark */
1127         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129         if (tlb_miss > 0)
1130                 entries += tlb_miss;
1131         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132         *plane_wm = entries + display->guard_size;
1133         if (*plane_wm > (int)display->max_wm)
1134                 *plane_wm = display->max_wm;
1135
1136         /* Use the large buffer method to calculate cursor watermark */
1137         line_time_us = max(htotal * 1000 / clock, 1);
1138         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1140         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141         if (tlb_miss > 0)
1142                 entries += tlb_miss;
1143         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144         *cursor_wm = entries + cursor->guard_size;
1145         if (*cursor_wm > (int)cursor->max_wm)
1146                 *cursor_wm = (int)cursor->max_wm;
1147
1148         return true;
1149 }
1150
1151 /*
1152  * Check the wm result.
1153  *
1154  * If any calculated watermark values is larger than the maximum value that
1155  * can be programmed into the associated watermark register, that watermark
1156  * must be disabled.
1157  */
1158 static bool g4x_check_srwm(struct drm_device *dev,
1159                            int display_wm, int cursor_wm,
1160                            const struct intel_watermark_params *display,
1161                            const struct intel_watermark_params *cursor)
1162 {
1163         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164                       display_wm, cursor_wm);
1165
1166         if (display_wm > display->max_wm) {
1167                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168                               display_wm, display->max_wm);
1169                 return false;
1170         }
1171
1172         if (cursor_wm > cursor->max_wm) {
1173                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174                               cursor_wm, cursor->max_wm);
1175                 return false;
1176         }
1177
1178         if (!(display_wm || cursor_wm)) {
1179                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180                 return false;
1181         }
1182
1183         return true;
1184 }
1185
1186 static bool g4x_compute_srwm(struct drm_device *dev,
1187                              int plane,
1188                              int latency_ns,
1189                              const struct intel_watermark_params *display,
1190                              const struct intel_watermark_params *cursor,
1191                              int *display_wm, int *cursor_wm)
1192 {
1193         struct drm_crtc *crtc;
1194         const struct drm_display_mode *adjusted_mode;
1195         int hdisplay, htotal, pixel_size, clock;
1196         unsigned long line_time_us;
1197         int line_count, line_size;
1198         int small, large;
1199         int entries;
1200
1201         if (!latency_ns) {
1202                 *display_wm = *cursor_wm = 0;
1203                 return false;
1204         }
1205
1206         crtc = intel_get_crtc_for_plane(dev, plane);
1207         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208         clock = adjusted_mode->crtc_clock;
1209         htotal = adjusted_mode->crtc_htotal;
1210         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1212
1213         line_time_us = max(htotal * 1000 / clock, 1);
1214         line_count = (latency_ns / line_time_us + 1000) / 1000;
1215         line_size = hdisplay * pixel_size;
1216
1217         /* Use the minimum of the small and large buffer method for primary */
1218         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219         large = line_count * line_size;
1220
1221         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222         *display_wm = entries + display->guard_size;
1223
1224         /* calculate the self-refresh watermark for display cursor */
1225         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1226         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227         *cursor_wm = entries + cursor->guard_size;
1228
1229         return g4x_check_srwm(dev,
1230                               *display_wm, *cursor_wm,
1231                               display, cursor);
1232 }
1233
1234 static bool vlv_compute_drain_latency(struct drm_device *dev,
1235                                      int plane,
1236                                      int *plane_prec_mult,
1237                                      int *plane_dl,
1238                                      int *cursor_prec_mult,
1239                                      int *cursor_dl)
1240 {
1241         struct drm_crtc *crtc;
1242         int clock, pixel_size;
1243         int entries;
1244
1245         crtc = intel_get_crtc_for_plane(dev, plane);
1246         if (!intel_crtc_active(crtc))
1247                 return false;
1248
1249         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1251
1252         entries = (clock / 1000) * pixel_size;
1253         *plane_prec_mult = (entries > 256) ?
1254                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256                                                      pixel_size);
1257
1258         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1259         *cursor_prec_mult = (entries > 256) ?
1260                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263         return true;
1264 }
1265
1266 /*
1267  * Update drain latency registers of memory arbiter
1268  *
1269  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270  * to be programmed. Each plane has a drain latency multiplier and a drain
1271  * latency value.
1272  */
1273
1274 static void vlv_update_drain_latency(struct drm_device *dev)
1275 {
1276         struct drm_i915_private *dev_priv = dev->dev_private;
1277         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280                                                         either 16 or 32 */
1281
1282         /* For plane A, Cursor A */
1283         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284                                       &cursor_prec_mult, &cursora_dl)) {
1285                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290                 I915_WRITE(VLV_DDL1, cursora_prec |
1291                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1292                                 planea_prec | planea_dl);
1293         }
1294
1295         /* For plane B, Cursor B */
1296         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297                                       &cursor_prec_mult, &cursorb_dl)) {
1298                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303                 I915_WRITE(VLV_DDL2, cursorb_prec |
1304                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1305                                 planeb_prec | planeb_dl);
1306         }
1307 }
1308
1309 #define single_plane_enabled(mask) is_power_of_2(mask)
1310
1311 static void valleyview_update_wm(struct drm_crtc *crtc)
1312 {
1313         struct drm_device *dev = crtc->dev;
1314         static const int sr_latency_ns = 12000;
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317         int plane_sr, cursor_sr;
1318         int ignore_plane_sr, ignore_cursor_sr;
1319         unsigned int enabled = 0;
1320
1321         vlv_update_drain_latency(dev);
1322
1323         if (g4x_compute_wm0(dev, PIPE_A,
1324                             &valleyview_wm_info, latency_ns,
1325                             &valleyview_cursor_wm_info, latency_ns,
1326                             &planea_wm, &cursora_wm))
1327                 enabled |= 1 << PIPE_A;
1328
1329         if (g4x_compute_wm0(dev, PIPE_B,
1330                             &valleyview_wm_info, latency_ns,
1331                             &valleyview_cursor_wm_info, latency_ns,
1332                             &planeb_wm, &cursorb_wm))
1333                 enabled |= 1 << PIPE_B;
1334
1335         if (single_plane_enabled(enabled) &&
1336             g4x_compute_srwm(dev, ffs(enabled) - 1,
1337                              sr_latency_ns,
1338                              &valleyview_wm_info,
1339                              &valleyview_cursor_wm_info,
1340                              &plane_sr, &ignore_cursor_sr) &&
1341             g4x_compute_srwm(dev, ffs(enabled) - 1,
1342                              2*sr_latency_ns,
1343                              &valleyview_wm_info,
1344                              &valleyview_cursor_wm_info,
1345                              &ignore_plane_sr, &cursor_sr)) {
1346                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347         } else {
1348                 I915_WRITE(FW_BLC_SELF_VLV,
1349                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350                 plane_sr = cursor_sr = 0;
1351         }
1352
1353         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354                       planea_wm, cursora_wm,
1355                       planeb_wm, cursorb_wm,
1356                       plane_sr, cursor_sr);
1357
1358         I915_WRITE(DSPFW1,
1359                    (plane_sr << DSPFW_SR_SHIFT) |
1360                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362                    planea_wm);
1363         I915_WRITE(DSPFW2,
1364                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1366         I915_WRITE(DSPFW3,
1367                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369 }
1370
1371 static void g4x_update_wm(struct drm_crtc *crtc)
1372 {
1373         struct drm_device *dev = crtc->dev;
1374         static const int sr_latency_ns = 12000;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377         int plane_sr, cursor_sr;
1378         unsigned int enabled = 0;
1379
1380         if (g4x_compute_wm0(dev, PIPE_A,
1381                             &g4x_wm_info, latency_ns,
1382                             &g4x_cursor_wm_info, latency_ns,
1383                             &planea_wm, &cursora_wm))
1384                 enabled |= 1 << PIPE_A;
1385
1386         if (g4x_compute_wm0(dev, PIPE_B,
1387                             &g4x_wm_info, latency_ns,
1388                             &g4x_cursor_wm_info, latency_ns,
1389                             &planeb_wm, &cursorb_wm))
1390                 enabled |= 1 << PIPE_B;
1391
1392         if (single_plane_enabled(enabled) &&
1393             g4x_compute_srwm(dev, ffs(enabled) - 1,
1394                              sr_latency_ns,
1395                              &g4x_wm_info,
1396                              &g4x_cursor_wm_info,
1397                              &plane_sr, &cursor_sr)) {
1398                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399         } else {
1400                 I915_WRITE(FW_BLC_SELF,
1401                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402                 plane_sr = cursor_sr = 0;
1403         }
1404
1405         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406                       planea_wm, cursora_wm,
1407                       planeb_wm, cursorb_wm,
1408                       plane_sr, cursor_sr);
1409
1410         I915_WRITE(DSPFW1,
1411                    (plane_sr << DSPFW_SR_SHIFT) |
1412                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414                    planea_wm);
1415         I915_WRITE(DSPFW2,
1416                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1418         /* HPLL off in SR has some issues on G4x... disable it */
1419         I915_WRITE(DSPFW3,
1420                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1422 }
1423
1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
1425 {
1426         struct drm_device *dev = unused_crtc->dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         struct drm_crtc *crtc;
1429         int srwm = 1;
1430         int cursor_sr = 16;
1431
1432         /* Calc sr entries for one plane configs */
1433         crtc = single_enabled_crtc(dev);
1434         if (crtc) {
1435                 /* self-refresh has much higher latency */
1436                 static const int sr_latency_ns = 12000;
1437                 const struct drm_display_mode *adjusted_mode =
1438                         &to_intel_crtc(crtc)->config.adjusted_mode;
1439                 int clock = adjusted_mode->crtc_clock;
1440                 int htotal = adjusted_mode->crtc_htotal;
1441                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1443                 unsigned long line_time_us;
1444                 int entries;
1445
1446                 line_time_us = max(htotal * 1000 / clock, 1);
1447
1448                 /* Use ns/us then divide to preserve precision */
1449                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450                         pixel_size * hdisplay;
1451                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452                 srwm = I965_FIFO_SIZE - entries;
1453                 if (srwm < 0)
1454                         srwm = 1;
1455                 srwm &= 0x1ff;
1456                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457                               entries, srwm);
1458
1459                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1461                 entries = DIV_ROUND_UP(entries,
1462                                           i965_cursor_wm_info.cacheline_size);
1463                 cursor_sr = i965_cursor_wm_info.fifo_size -
1464                         (entries + i965_cursor_wm_info.guard_size);
1465
1466                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1467                         cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470                               "cursor %d\n", srwm, cursor_sr);
1471
1472                 if (IS_CRESTLINE(dev))
1473                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474         } else {
1475                 /* Turn off self refresh if both pipes are enabled */
1476                 if (IS_CRESTLINE(dev))
1477                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478                                    & ~FW_BLC_SELF_EN);
1479         }
1480
1481         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482                       srwm);
1483
1484         /* 965 has limitations... */
1485         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486                    (8 << 16) | (8 << 8) | (8 << 0));
1487         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1488         /* update cursor SR watermark */
1489         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 }
1491
1492 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1493 {
1494         struct drm_device *dev = unused_crtc->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         const struct intel_watermark_params *wm_info;
1497         uint32_t fwater_lo;
1498         uint32_t fwater_hi;
1499         int cwm, srwm = 1;
1500         int fifo_size;
1501         int planea_wm, planeb_wm;
1502         struct drm_crtc *crtc, *enabled = NULL;
1503
1504         if (IS_I945GM(dev))
1505                 wm_info = &i945_wm_info;
1506         else if (!IS_GEN2(dev))
1507                 wm_info = &i915_wm_info;
1508         else
1509                 wm_info = &i830_wm_info;
1510
1511         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512         crtc = intel_get_crtc_for_plane(dev, 0);
1513         if (intel_crtc_active(crtc)) {
1514                 const struct drm_display_mode *adjusted_mode;
1515                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1516                 if (IS_GEN2(dev))
1517                         cpp = 4;
1518
1519                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521                                                wm_info, fifo_size, cpp,
1522                                                latency_ns);
1523                 enabled = crtc;
1524         } else
1525                 planea_wm = fifo_size - wm_info->guard_size;
1526
1527         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528         crtc = intel_get_crtc_for_plane(dev, 1);
1529         if (intel_crtc_active(crtc)) {
1530                 const struct drm_display_mode *adjusted_mode;
1531                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1532                 if (IS_GEN2(dev))
1533                         cpp = 4;
1534
1535                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537                                                wm_info, fifo_size, cpp,
1538                                                latency_ns);
1539                 if (enabled == NULL)
1540                         enabled = crtc;
1541                 else
1542                         enabled = NULL;
1543         } else
1544                 planeb_wm = fifo_size - wm_info->guard_size;
1545
1546         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548         if (IS_I915GM(dev) && enabled) {
1549                 struct intel_framebuffer *fb;
1550
1551                 fb = to_intel_framebuffer(enabled->primary->fb);
1552
1553                 /* self-refresh seems busted with untiled */
1554                 if (fb->obj->tiling_mode == I915_TILING_NONE)
1555                         enabled = NULL;
1556         }
1557
1558         /*
1559          * Overlay gets an aggressive default since video jitter is bad.
1560          */
1561         cwm = 2;
1562
1563         /* Play safe and disable self-refresh before adjusting watermarks. */
1564         if (IS_I945G(dev) || IS_I945GM(dev))
1565                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1566         else if (IS_I915GM(dev))
1567                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1568
1569         /* Calc sr entries for one plane configs */
1570         if (HAS_FW_BLC(dev) && enabled) {
1571                 /* self-refresh has much higher latency */
1572                 static const int sr_latency_ns = 6000;
1573                 const struct drm_display_mode *adjusted_mode =
1574                         &to_intel_crtc(enabled)->config.adjusted_mode;
1575                 int clock = adjusted_mode->crtc_clock;
1576                 int htotal = adjusted_mode->crtc_htotal;
1577                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1578                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1579                 unsigned long line_time_us;
1580                 int entries;
1581
1582                 line_time_us = max(htotal * 1000 / clock, 1);
1583
1584                 /* Use ns/us then divide to preserve precision */
1585                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586                         pixel_size * hdisplay;
1587                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589                 srwm = wm_info->fifo_size - entries;
1590                 if (srwm < 0)
1591                         srwm = 1;
1592
1593                 if (IS_I945G(dev) || IS_I945GM(dev))
1594                         I915_WRITE(FW_BLC_SELF,
1595                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596                 else if (IS_I915GM(dev))
1597                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598         }
1599
1600         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601                       planea_wm, planeb_wm, cwm, srwm);
1602
1603         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604         fwater_hi = (cwm & 0x1f);
1605
1606         /* Set request length to 8 cachelines per fetch */
1607         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608         fwater_hi = fwater_hi | (1 << 8);
1609
1610         I915_WRITE(FW_BLC, fwater_lo);
1611         I915_WRITE(FW_BLC2, fwater_hi);
1612
1613         if (HAS_FW_BLC(dev)) {
1614                 if (enabled) {
1615                         if (IS_I945G(dev) || IS_I945GM(dev))
1616                                 I915_WRITE(FW_BLC_SELF,
1617                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1618                         else if (IS_I915GM(dev))
1619                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1620                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1621                 } else
1622                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1623         }
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628         struct drm_device *dev = unused_crtc->dev;
1629         struct drm_i915_private *dev_priv = dev->dev_private;
1630         struct drm_crtc *crtc;
1631         const struct drm_display_mode *adjusted_mode;
1632         uint32_t fwater_lo;
1633         int planea_wm;
1634
1635         crtc = single_enabled_crtc(dev);
1636         if (crtc == NULL)
1637                 return;
1638
1639         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1640         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641                                        &i845_wm_info,
1642                                        dev_priv->display.get_fifo_size(dev, 0),
1643                                        4, latency_ns);
1644         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645         fwater_lo |= (3<<8) | planea_wm;
1646
1647         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649         I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1653                                     struct drm_crtc *crtc)
1654 {
1655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1656         uint32_t pixel_rate;
1657
1658         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1659
1660         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1661          * adjust the pixel_rate here. */
1662
1663         if (intel_crtc->config.pch_pfit.enabled) {
1664                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1665                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1666
1667                 pipe_w = intel_crtc->config.pipe_src_w;
1668                 pipe_h = intel_crtc->config.pipe_src_h;
1669                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670                 pfit_h = pfit_size & 0xFFFF;
1671                 if (pipe_w < pfit_w)
1672                         pipe_w = pfit_w;
1673                 if (pipe_h < pfit_h)
1674                         pipe_h = pfit_h;
1675
1676                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1677                                      pfit_w * pfit_h);
1678         }
1679
1680         return pixel_rate;
1681 }
1682
1683 /* latency must be in 0.1us units. */
1684 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1685                                uint32_t latency)
1686 {
1687         uint64_t ret;
1688
1689         if (WARN(latency == 0, "Latency value missing\n"))
1690                 return UINT_MAX;
1691
1692         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1693         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1694
1695         return ret;
1696 }
1697
1698 /* latency must be in 0.1us units. */
1699 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1700                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1701                                uint32_t latency)
1702 {
1703         uint32_t ret;
1704
1705         if (WARN(latency == 0, "Latency value missing\n"))
1706                 return UINT_MAX;
1707
1708         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1709         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1710         ret = DIV_ROUND_UP(ret, 64) + 2;
1711         return ret;
1712 }
1713
1714 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1715                            uint8_t bytes_per_pixel)
1716 {
1717         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1718 }
1719
1720 struct ilk_pipe_wm_parameters {
1721         bool active;
1722         uint32_t pipe_htotal;
1723         uint32_t pixel_rate;
1724         struct intel_plane_wm_parameters pri;
1725         struct intel_plane_wm_parameters spr;
1726         struct intel_plane_wm_parameters cur;
1727 };
1728
1729 struct ilk_wm_maximums {
1730         uint16_t pri;
1731         uint16_t spr;
1732         uint16_t cur;
1733         uint16_t fbc;
1734 };
1735
1736 /* used in computing the new watermarks state */
1737 struct intel_wm_config {
1738         unsigned int num_pipes_active;
1739         bool sprites_enabled;
1740         bool sprites_scaled;
1741 };
1742
1743 /*
1744  * For both WM_PIPE and WM_LP.
1745  * mem_value must be in 0.1us units.
1746  */
1747 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1748                                    uint32_t mem_value,
1749                                    bool is_lp)
1750 {
1751         uint32_t method1, method2;
1752
1753         if (!params->active || !params->pri.enabled)
1754                 return 0;
1755
1756         method1 = ilk_wm_method1(params->pixel_rate,
1757                                  params->pri.bytes_per_pixel,
1758                                  mem_value);
1759
1760         if (!is_lp)
1761                 return method1;
1762
1763         method2 = ilk_wm_method2(params->pixel_rate,
1764                                  params->pipe_htotal,
1765                                  params->pri.horiz_pixels,
1766                                  params->pri.bytes_per_pixel,
1767                                  mem_value);
1768
1769         return min(method1, method2);
1770 }
1771
1772 /*
1773  * For both WM_PIPE and WM_LP.
1774  * mem_value must be in 0.1us units.
1775  */
1776 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1777                                    uint32_t mem_value)
1778 {
1779         uint32_t method1, method2;
1780
1781         if (!params->active || !params->spr.enabled)
1782                 return 0;
1783
1784         method1 = ilk_wm_method1(params->pixel_rate,
1785                                  params->spr.bytes_per_pixel,
1786                                  mem_value);
1787         method2 = ilk_wm_method2(params->pixel_rate,
1788                                  params->pipe_htotal,
1789                                  params->spr.horiz_pixels,
1790                                  params->spr.bytes_per_pixel,
1791                                  mem_value);
1792         return min(method1, method2);
1793 }
1794
1795 /*
1796  * For both WM_PIPE and WM_LP.
1797  * mem_value must be in 0.1us units.
1798  */
1799 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1800                                    uint32_t mem_value)
1801 {
1802         if (!params->active || !params->cur.enabled)
1803                 return 0;
1804
1805         return ilk_wm_method2(params->pixel_rate,
1806                               params->pipe_htotal,
1807                               params->cur.horiz_pixels,
1808                               params->cur.bytes_per_pixel,
1809                               mem_value);
1810 }
1811
1812 /* Only for WM_LP. */
1813 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1814                                    uint32_t pri_val)
1815 {
1816         if (!params->active || !params->pri.enabled)
1817                 return 0;
1818
1819         return ilk_wm_fbc(pri_val,
1820                           params->pri.horiz_pixels,
1821                           params->pri.bytes_per_pixel);
1822 }
1823
1824 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1825 {
1826         if (INTEL_INFO(dev)->gen >= 8)
1827                 return 3072;
1828         else if (INTEL_INFO(dev)->gen >= 7)
1829                 return 768;
1830         else
1831                 return 512;
1832 }
1833
1834 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1835                                          int level, bool is_sprite)
1836 {
1837         if (INTEL_INFO(dev)->gen >= 8)
1838                 /* BDW primary/sprite plane watermarks */
1839                 return level == 0 ? 255 : 2047;
1840         else if (INTEL_INFO(dev)->gen >= 7)
1841                 /* IVB/HSW primary/sprite plane watermarks */
1842                 return level == 0 ? 127 : 1023;
1843         else if (!is_sprite)
1844                 /* ILK/SNB primary plane watermarks */
1845                 return level == 0 ? 127 : 511;
1846         else
1847                 /* ILK/SNB sprite plane watermarks */
1848                 return level == 0 ? 63 : 255;
1849 }
1850
1851 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1852                                           int level)
1853 {
1854         if (INTEL_INFO(dev)->gen >= 7)
1855                 return level == 0 ? 63 : 255;
1856         else
1857                 return level == 0 ? 31 : 63;
1858 }
1859
1860 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1861 {
1862         if (INTEL_INFO(dev)->gen >= 8)
1863                 return 31;
1864         else
1865                 return 15;
1866 }
1867
1868 /* Calculate the maximum primary/sprite plane watermark */
1869 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1870                                      int level,
1871                                      const struct intel_wm_config *config,
1872                                      enum intel_ddb_partitioning ddb_partitioning,
1873                                      bool is_sprite)
1874 {
1875         unsigned int fifo_size = ilk_display_fifo_size(dev);
1876
1877         /* if sprites aren't enabled, sprites get nothing */
1878         if (is_sprite && !config->sprites_enabled)
1879                 return 0;
1880
1881         /* HSW allows LP1+ watermarks even with multiple pipes */
1882         if (level == 0 || config->num_pipes_active > 1) {
1883                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1884
1885                 /*
1886                  * For some reason the non self refresh
1887                  * FIFO size is only half of the self
1888                  * refresh FIFO size on ILK/SNB.
1889                  */
1890                 if (INTEL_INFO(dev)->gen <= 6)
1891                         fifo_size /= 2;
1892         }
1893
1894         if (config->sprites_enabled) {
1895                 /* level 0 is always calculated with 1:1 split */
1896                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1897                         if (is_sprite)
1898                                 fifo_size *= 5;
1899                         fifo_size /= 6;
1900                 } else {
1901                         fifo_size /= 2;
1902                 }
1903         }
1904
1905         /* clamp to max that the registers can hold */
1906         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1907 }
1908
1909 /* Calculate the maximum cursor plane watermark */
1910 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1911                                       int level,
1912                                       const struct intel_wm_config *config)
1913 {
1914         /* HSW LP1+ watermarks w/ multiple pipes */
1915         if (level > 0 && config->num_pipes_active > 1)
1916                 return 64;
1917
1918         /* otherwise just report max that registers can hold */
1919         return ilk_cursor_wm_reg_max(dev, level);
1920 }
1921
1922 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1923                                     int level,
1924                                     const struct intel_wm_config *config,
1925                                     enum intel_ddb_partitioning ddb_partitioning,
1926                                     struct ilk_wm_maximums *max)
1927 {
1928         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1929         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1930         max->cur = ilk_cursor_wm_max(dev, level, config);
1931         max->fbc = ilk_fbc_wm_reg_max(dev);
1932 }
1933
1934 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1935                                         int level,
1936                                         struct ilk_wm_maximums *max)
1937 {
1938         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1939         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1940         max->cur = ilk_cursor_wm_reg_max(dev, level);
1941         max->fbc = ilk_fbc_wm_reg_max(dev);
1942 }
1943
1944 static bool ilk_validate_wm_level(int level,
1945                                   const struct ilk_wm_maximums *max,
1946                                   struct intel_wm_level *result)
1947 {
1948         bool ret;
1949
1950         /* already determined to be invalid? */
1951         if (!result->enable)
1952                 return false;
1953
1954         result->enable = result->pri_val <= max->pri &&
1955                          result->spr_val <= max->spr &&
1956                          result->cur_val <= max->cur;
1957
1958         ret = result->enable;
1959
1960         /*
1961          * HACK until we can pre-compute everything,
1962          * and thus fail gracefully if LP0 watermarks
1963          * are exceeded...
1964          */
1965         if (level == 0 && !result->enable) {
1966                 if (result->pri_val > max->pri)
1967                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1968                                       level, result->pri_val, max->pri);
1969                 if (result->spr_val > max->spr)
1970                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1971                                       level, result->spr_val, max->spr);
1972                 if (result->cur_val > max->cur)
1973                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1974                                       level, result->cur_val, max->cur);
1975
1976                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1977                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1978                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1979                 result->enable = true;
1980         }
1981
1982         return ret;
1983 }
1984
1985 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1986                                  int level,
1987                                  const struct ilk_pipe_wm_parameters *p,
1988                                  struct intel_wm_level *result)
1989 {
1990         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1991         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1992         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1993
1994         /* WM1+ latency values stored in 0.5us units */
1995         if (level > 0) {
1996                 pri_latency *= 5;
1997                 spr_latency *= 5;
1998                 cur_latency *= 5;
1999         }
2000
2001         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2002         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2003         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2004         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2005         result->enable = true;
2006 }
2007
2008 static uint32_t
2009 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2010 {
2011         struct drm_i915_private *dev_priv = dev->dev_private;
2012         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2013         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2014         u32 linetime, ips_linetime;
2015
2016         if (!intel_crtc_active(crtc))
2017                 return 0;
2018
2019         /* The WM are computed with base on how long it takes to fill a single
2020          * row at the given clock rate, multiplied by 8.
2021          * */
2022         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2023                                      mode->crtc_clock);
2024         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2025                                          intel_ddi_get_cdclk_freq(dev_priv));
2026
2027         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2028                PIPE_WM_LINETIME_TIME(linetime);
2029 }
2030
2031 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2032 {
2033         struct drm_i915_private *dev_priv = dev->dev_private;
2034
2035         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2036                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2037
2038                 wm[0] = (sskpd >> 56) & 0xFF;
2039                 if (wm[0] == 0)
2040                         wm[0] = sskpd & 0xF;
2041                 wm[1] = (sskpd >> 4) & 0xFF;
2042                 wm[2] = (sskpd >> 12) & 0xFF;
2043                 wm[3] = (sskpd >> 20) & 0x1FF;
2044                 wm[4] = (sskpd >> 32) & 0x1FF;
2045         } else if (INTEL_INFO(dev)->gen >= 6) {
2046                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2047
2048                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2049                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2050                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2051                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2052         } else if (INTEL_INFO(dev)->gen >= 5) {
2053                 uint32_t mltr = I915_READ(MLTR_ILK);
2054
2055                 /* ILK primary LP0 latency is 700 ns */
2056                 wm[0] = 7;
2057                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2058                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2059         }
2060 }
2061
2062 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2063 {
2064         /* ILK sprite LP0 latency is 1300 ns */
2065         if (INTEL_INFO(dev)->gen == 5)
2066                 wm[0] = 13;
2067 }
2068
2069 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2070 {
2071         /* ILK cursor LP0 latency is 1300 ns */
2072         if (INTEL_INFO(dev)->gen == 5)
2073                 wm[0] = 13;
2074
2075         /* WaDoubleCursorLP3Latency:ivb */
2076         if (IS_IVYBRIDGE(dev))
2077                 wm[3] *= 2;
2078 }
2079
2080 int ilk_wm_max_level(const struct drm_device *dev)
2081 {
2082         /* how many WM levels are we expecting */
2083         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2084                 return 4;
2085         else if (INTEL_INFO(dev)->gen >= 6)
2086                 return 3;
2087         else
2088                 return 2;
2089 }
2090
2091 static void intel_print_wm_latency(struct drm_device *dev,
2092                                    const char *name,
2093                                    const uint16_t wm[5])
2094 {
2095         int level, max_level = ilk_wm_max_level(dev);
2096
2097         for (level = 0; level <= max_level; level++) {
2098                 unsigned int latency = wm[level];
2099
2100                 if (latency == 0) {
2101                         DRM_ERROR("%s WM%d latency not provided\n",
2102                                   name, level);
2103                         continue;
2104                 }
2105
2106                 /* WM1+ latency values in 0.5us units */
2107                 if (level > 0)
2108                         latency *= 5;
2109
2110                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2111                               name, level, wm[level],
2112                               latency / 10, latency % 10);
2113         }
2114 }
2115
2116 static void ilk_setup_wm_latency(struct drm_device *dev)
2117 {
2118         struct drm_i915_private *dev_priv = dev->dev_private;
2119
2120         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2121
2122         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2123                sizeof(dev_priv->wm.pri_latency));
2124         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2125                sizeof(dev_priv->wm.pri_latency));
2126
2127         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2128         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2129
2130         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2131         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2132         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2133 }
2134
2135 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2136                                       struct ilk_pipe_wm_parameters *p)
2137 {
2138         struct drm_device *dev = crtc->dev;
2139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2140         enum pipe pipe = intel_crtc->pipe;
2141         struct drm_plane *plane;
2142
2143         if (!intel_crtc_active(crtc))
2144                 return;
2145
2146         p->active = true;
2147         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2148         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2149         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2150         p->cur.bytes_per_pixel = 4;
2151         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2152         p->cur.horiz_pixels = intel_crtc->cursor_width;
2153         /* TODO: for now, assume primary and cursor planes are always enabled. */
2154         p->pri.enabled = true;
2155         p->cur.enabled = true;
2156
2157         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2158                 struct intel_plane *intel_plane = to_intel_plane(plane);
2159
2160                 if (intel_plane->pipe == pipe) {
2161                         p->spr = intel_plane->wm;
2162                         break;
2163                 }
2164         }
2165 }
2166
2167 static void ilk_compute_wm_config(struct drm_device *dev,
2168                                   struct intel_wm_config *config)
2169 {
2170         struct intel_crtc *intel_crtc;
2171
2172         /* Compute the currently _active_ config */
2173         for_each_intel_crtc(dev, intel_crtc) {
2174                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2175
2176                 if (!wm->pipe_enabled)
2177                         continue;
2178
2179                 config->sprites_enabled |= wm->sprites_enabled;
2180                 config->sprites_scaled |= wm->sprites_scaled;
2181                 config->num_pipes_active++;
2182         }
2183 }
2184
2185 /* Compute new watermarks for the pipe */
2186 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2187                                   const struct ilk_pipe_wm_parameters *params,
2188                                   struct intel_pipe_wm *pipe_wm)
2189 {
2190         struct drm_device *dev = crtc->dev;
2191         const struct drm_i915_private *dev_priv = dev->dev_private;
2192         int level, max_level = ilk_wm_max_level(dev);
2193         /* LP0 watermark maximums depend on this pipe alone */
2194         struct intel_wm_config config = {
2195                 .num_pipes_active = 1,
2196                 .sprites_enabled = params->spr.enabled,
2197                 .sprites_scaled = params->spr.scaled,
2198         };
2199         struct ilk_wm_maximums max;
2200
2201         pipe_wm->pipe_enabled = params->active;
2202         pipe_wm->sprites_enabled = params->spr.enabled;
2203         pipe_wm->sprites_scaled = params->spr.scaled;
2204
2205         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2206         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2207                 max_level = 1;
2208
2209         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2210         if (params->spr.scaled)
2211                 max_level = 0;
2212
2213         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2214
2215         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2216                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2217
2218         /* LP0 watermarks always use 1/2 DDB partitioning */
2219         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2220
2221         /* At least LP0 must be valid */
2222         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2223                 return false;
2224
2225         ilk_compute_wm_reg_maximums(dev, 1, &max);
2226
2227         for (level = 1; level <= max_level; level++) {
2228                 struct intel_wm_level wm = {};
2229
2230                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2231
2232                 /*
2233                  * Disable any watermark level that exceeds the
2234                  * register maximums since such watermarks are
2235                  * always invalid.
2236                  */
2237                 if (!ilk_validate_wm_level(level, &max, &wm))
2238                         break;
2239
2240                 pipe_wm->wm[level] = wm;
2241         }
2242
2243         return true;
2244 }
2245
2246 /*
2247  * Merge the watermarks from all active pipes for a specific level.
2248  */
2249 static void ilk_merge_wm_level(struct drm_device *dev,
2250                                int level,
2251                                struct intel_wm_level *ret_wm)
2252 {
2253         const struct intel_crtc *intel_crtc;
2254
2255         ret_wm->enable = true;
2256
2257         for_each_intel_crtc(dev, intel_crtc) {
2258                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2259                 const struct intel_wm_level *wm = &active->wm[level];
2260
2261                 if (!active->pipe_enabled)
2262                         continue;
2263
2264                 /*
2265                  * The watermark values may have been used in the past,
2266                  * so we must maintain them in the registers for some
2267                  * time even if the level is now disabled.
2268                  */
2269                 if (!wm->enable)
2270                         ret_wm->enable = false;
2271
2272                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2273                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2274                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2275                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2276         }
2277 }
2278
2279 /*
2280  * Merge all low power watermarks for all active pipes.
2281  */
2282 static void ilk_wm_merge(struct drm_device *dev,
2283                          const struct intel_wm_config *config,
2284                          const struct ilk_wm_maximums *max,
2285                          struct intel_pipe_wm *merged)
2286 {
2287         int level, max_level = ilk_wm_max_level(dev);
2288         int last_enabled_level = max_level;
2289
2290         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2291         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2292             config->num_pipes_active > 1)
2293                 return;
2294
2295         /* ILK: FBC WM must be disabled always */
2296         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2297
2298         /* merge each WM1+ level */
2299         for (level = 1; level <= max_level; level++) {
2300                 struct intel_wm_level *wm = &merged->wm[level];
2301
2302                 ilk_merge_wm_level(dev, level, wm);
2303
2304                 if (level > last_enabled_level)
2305                         wm->enable = false;
2306                 else if (!ilk_validate_wm_level(level, max, wm))
2307                         /* make sure all following levels get disabled */
2308                         last_enabled_level = level - 1;
2309
2310                 /*
2311                  * The spec says it is preferred to disable
2312                  * FBC WMs instead of disabling a WM level.
2313                  */
2314                 if (wm->fbc_val > max->fbc) {
2315                         if (wm->enable)
2316                                 merged->fbc_wm_enabled = false;
2317                         wm->fbc_val = 0;
2318                 }
2319         }
2320
2321         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2322         /*
2323          * FIXME this is racy. FBC might get enabled later.
2324          * What we should check here is whether FBC can be
2325          * enabled sometime later.
2326          */
2327         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2328                 for (level = 2; level <= max_level; level++) {
2329                         struct intel_wm_level *wm = &merged->wm[level];
2330
2331                         wm->enable = false;
2332                 }
2333         }
2334 }
2335
2336 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2337 {
2338         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2339         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2340 }
2341
2342 /* The value we need to program into the WM_LPx latency field */
2343 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2344 {
2345         struct drm_i915_private *dev_priv = dev->dev_private;
2346
2347         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2348                 return 2 * level;
2349         else
2350                 return dev_priv->wm.pri_latency[level];
2351 }
2352
2353 static void ilk_compute_wm_results(struct drm_device *dev,
2354                                    const struct intel_pipe_wm *merged,
2355                                    enum intel_ddb_partitioning partitioning,
2356                                    struct ilk_wm_values *results)
2357 {
2358         struct intel_crtc *intel_crtc;
2359         int level, wm_lp;
2360
2361         results->enable_fbc_wm = merged->fbc_wm_enabled;
2362         results->partitioning = partitioning;
2363
2364         /* LP1+ register values */
2365         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2366                 const struct intel_wm_level *r;
2367
2368                 level = ilk_wm_lp_to_level(wm_lp, merged);
2369
2370                 r = &merged->wm[level];
2371
2372                 /*
2373                  * Maintain the watermark values even if the level is
2374                  * disabled. Doing otherwise could cause underruns.
2375                  */
2376                 results->wm_lp[wm_lp - 1] =
2377                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2378                         (r->pri_val << WM1_LP_SR_SHIFT) |
2379                         r->cur_val;
2380
2381                 if (r->enable)
2382                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2383
2384                 if (INTEL_INFO(dev)->gen >= 8)
2385                         results->wm_lp[wm_lp - 1] |=
2386                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2387                 else
2388                         results->wm_lp[wm_lp - 1] |=
2389                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2390
2391                 /*
2392                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2393                  * level is disabled. Doing otherwise could cause underruns.
2394                  */
2395                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2396                         WARN_ON(wm_lp != 1);
2397                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2398                 } else
2399                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2400         }
2401
2402         /* LP0 register values */
2403         for_each_intel_crtc(dev, intel_crtc) {
2404                 enum pipe pipe = intel_crtc->pipe;
2405                 const struct intel_wm_level *r =
2406                         &intel_crtc->wm.active.wm[0];
2407
2408                 if (WARN_ON(!r->enable))
2409                         continue;
2410
2411                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2412
2413                 results->wm_pipe[pipe] =
2414                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2415                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2416                         r->cur_val;
2417         }
2418 }
2419
2420 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2421  * case both are at the same level. Prefer r1 in case they're the same. */
2422 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2423                                                   struct intel_pipe_wm *r1,
2424                                                   struct intel_pipe_wm *r2)
2425 {
2426         int level, max_level = ilk_wm_max_level(dev);
2427         int level1 = 0, level2 = 0;
2428
2429         for (level = 1; level <= max_level; level++) {
2430                 if (r1->wm[level].enable)
2431                         level1 = level;
2432                 if (r2->wm[level].enable)
2433                         level2 = level;
2434         }
2435
2436         if (level1 == level2) {
2437                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2438                         return r2;
2439                 else
2440                         return r1;
2441         } else if (level1 > level2) {
2442                 return r1;
2443         } else {
2444                 return r2;
2445         }
2446 }
2447
2448 /* dirty bits used to track which watermarks need changes */
2449 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2450 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2451 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2452 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2453 #define WM_DIRTY_FBC (1 << 24)
2454 #define WM_DIRTY_DDB (1 << 25)
2455
2456 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2457                                          const struct ilk_wm_values *old,
2458                                          const struct ilk_wm_values *new)
2459 {
2460         unsigned int dirty = 0;
2461         enum pipe pipe;
2462         int wm_lp;
2463
2464         for_each_pipe(pipe) {
2465                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2466                         dirty |= WM_DIRTY_LINETIME(pipe);
2467                         /* Must disable LP1+ watermarks too */
2468                         dirty |= WM_DIRTY_LP_ALL;
2469                 }
2470
2471                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2472                         dirty |= WM_DIRTY_PIPE(pipe);
2473                         /* Must disable LP1+ watermarks too */
2474                         dirty |= WM_DIRTY_LP_ALL;
2475                 }
2476         }
2477
2478         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2479                 dirty |= WM_DIRTY_FBC;
2480                 /* Must disable LP1+ watermarks too */
2481                 dirty |= WM_DIRTY_LP_ALL;
2482         }
2483
2484         if (old->partitioning != new->partitioning) {
2485                 dirty |= WM_DIRTY_DDB;
2486                 /* Must disable LP1+ watermarks too */
2487                 dirty |= WM_DIRTY_LP_ALL;
2488         }
2489
2490         /* LP1+ watermarks already deemed dirty, no need to continue */
2491         if (dirty & WM_DIRTY_LP_ALL)
2492                 return dirty;
2493
2494         /* Find the lowest numbered LP1+ watermark in need of an update... */
2495         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2496                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2497                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2498                         break;
2499         }
2500
2501         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2502         for (; wm_lp <= 3; wm_lp++)
2503                 dirty |= WM_DIRTY_LP(wm_lp);
2504
2505         return dirty;
2506 }
2507
2508 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2509                                unsigned int dirty)
2510 {
2511         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2512         bool changed = false;
2513
2514         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2515                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2516                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2517                 changed = true;
2518         }
2519         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2520                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2521                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2522                 changed = true;
2523         }
2524         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2525                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2526                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2527                 changed = true;
2528         }
2529
2530         /*
2531          * Don't touch WM1S_LP_EN here.
2532          * Doing so could cause underruns.
2533          */
2534
2535         return changed;
2536 }
2537
2538 /*
2539  * The spec says we shouldn't write when we don't need, because every write
2540  * causes WMs to be re-evaluated, expending some power.
2541  */
2542 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2543                                 struct ilk_wm_values *results)
2544 {
2545         struct drm_device *dev = dev_priv->dev;
2546         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2547         unsigned int dirty;
2548         uint32_t val;
2549
2550         dirty = ilk_compute_wm_dirty(dev, previous, results);
2551         if (!dirty)
2552                 return;
2553
2554         _ilk_disable_lp_wm(dev_priv, dirty);
2555
2556         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2557                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2558         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2559                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2560         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2561                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2562
2563         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2564                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2565         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2566                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2567         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2568                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2569
2570         if (dirty & WM_DIRTY_DDB) {
2571                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2572                         val = I915_READ(WM_MISC);
2573                         if (results->partitioning == INTEL_DDB_PART_1_2)
2574                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2575                         else
2576                                 val |= WM_MISC_DATA_PARTITION_5_6;
2577                         I915_WRITE(WM_MISC, val);
2578                 } else {
2579                         val = I915_READ(DISP_ARB_CTL2);
2580                         if (results->partitioning == INTEL_DDB_PART_1_2)
2581                                 val &= ~DISP_DATA_PARTITION_5_6;
2582                         else
2583                                 val |= DISP_DATA_PARTITION_5_6;
2584                         I915_WRITE(DISP_ARB_CTL2, val);
2585                 }
2586         }
2587
2588         if (dirty & WM_DIRTY_FBC) {
2589                 val = I915_READ(DISP_ARB_CTL);
2590                 if (results->enable_fbc_wm)
2591                         val &= ~DISP_FBC_WM_DIS;
2592                 else
2593                         val |= DISP_FBC_WM_DIS;
2594                 I915_WRITE(DISP_ARB_CTL, val);
2595         }
2596
2597         if (dirty & WM_DIRTY_LP(1) &&
2598             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2599                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2600
2601         if (INTEL_INFO(dev)->gen >= 7) {
2602                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2603                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2604                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2605                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2606         }
2607
2608         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2609                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2610         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2611                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2612         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2613                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2614
2615         dev_priv->wm.hw = *results;
2616 }
2617
2618 static bool ilk_disable_lp_wm(struct drm_device *dev)
2619 {
2620         struct drm_i915_private *dev_priv = dev->dev_private;
2621
2622         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2623 }
2624
2625 static void ilk_update_wm(struct drm_crtc *crtc)
2626 {
2627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2628         struct drm_device *dev = crtc->dev;
2629         struct drm_i915_private *dev_priv = dev->dev_private;
2630         struct ilk_wm_maximums max;
2631         struct ilk_pipe_wm_parameters params = {};
2632         struct ilk_wm_values results = {};
2633         enum intel_ddb_partitioning partitioning;
2634         struct intel_pipe_wm pipe_wm = {};
2635         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2636         struct intel_wm_config config = {};
2637
2638         ilk_compute_wm_parameters(crtc, &params);
2639
2640         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2641
2642         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2643                 return;
2644
2645         intel_crtc->wm.active = pipe_wm;
2646
2647         ilk_compute_wm_config(dev, &config);
2648
2649         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2650         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2651
2652         /* 5/6 split only in single pipe config on IVB+ */
2653         if (INTEL_INFO(dev)->gen >= 7 &&
2654             config.num_pipes_active == 1 && config.sprites_enabled) {
2655                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2656                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2657
2658                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2659         } else {
2660                 best_lp_wm = &lp_wm_1_2;
2661         }
2662
2663         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2664                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2665
2666         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2667
2668         ilk_write_wm_values(dev_priv, &results);
2669 }
2670
2671 static void ilk_update_sprite_wm(struct drm_plane *plane,
2672                                      struct drm_crtc *crtc,
2673                                      uint32_t sprite_width, int pixel_size,
2674                                      bool enabled, bool scaled)
2675 {
2676         struct drm_device *dev = plane->dev;
2677         struct intel_plane *intel_plane = to_intel_plane(plane);
2678
2679         intel_plane->wm.enabled = enabled;
2680         intel_plane->wm.scaled = scaled;
2681         intel_plane->wm.horiz_pixels = sprite_width;
2682         intel_plane->wm.bytes_per_pixel = pixel_size;
2683
2684         /*
2685          * IVB workaround: must disable low power watermarks for at least
2686          * one frame before enabling scaling.  LP watermarks can be re-enabled
2687          * when scaling is disabled.
2688          *
2689          * WaCxSRDisabledForSpriteScaling:ivb
2690          */
2691         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2692                 intel_wait_for_vblank(dev, intel_plane->pipe);
2693
2694         ilk_update_wm(crtc);
2695 }
2696
2697 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2698 {
2699         struct drm_device *dev = crtc->dev;
2700         struct drm_i915_private *dev_priv = dev->dev_private;
2701         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2703         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2704         enum pipe pipe = intel_crtc->pipe;
2705         static const unsigned int wm0_pipe_reg[] = {
2706                 [PIPE_A] = WM0_PIPEA_ILK,
2707                 [PIPE_B] = WM0_PIPEB_ILK,
2708                 [PIPE_C] = WM0_PIPEC_IVB,
2709         };
2710
2711         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2712         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2713                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2714
2715         active->pipe_enabled = intel_crtc_active(crtc);
2716
2717         if (active->pipe_enabled) {
2718                 u32 tmp = hw->wm_pipe[pipe];
2719
2720                 /*
2721                  * For active pipes LP0 watermark is marked as
2722                  * enabled, and LP1+ watermaks as disabled since
2723                  * we can't really reverse compute them in case
2724                  * multiple pipes are active.
2725                  */
2726                 active->wm[0].enable = true;
2727                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2728                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2729                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2730                 active->linetime = hw->wm_linetime[pipe];
2731         } else {
2732                 int level, max_level = ilk_wm_max_level(dev);
2733
2734                 /*
2735                  * For inactive pipes, all watermark levels
2736                  * should be marked as enabled but zeroed,
2737                  * which is what we'd compute them to.
2738                  */
2739                 for (level = 0; level <= max_level; level++)
2740                         active->wm[level].enable = true;
2741         }
2742 }
2743
2744 void ilk_wm_get_hw_state(struct drm_device *dev)
2745 {
2746         struct drm_i915_private *dev_priv = dev->dev_private;
2747         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2748         struct drm_crtc *crtc;
2749
2750         for_each_crtc(dev, crtc)
2751                 ilk_pipe_wm_get_hw_state(crtc);
2752
2753         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2754         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2755         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2756
2757         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2758         if (INTEL_INFO(dev)->gen >= 7) {
2759                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2760                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2761         }
2762
2763         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2764                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2765                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2766         else if (IS_IVYBRIDGE(dev))
2767                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2768                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2769
2770         hw->enable_fbc_wm =
2771                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2772 }
2773
2774 /**
2775  * intel_update_watermarks - update FIFO watermark values based on current modes
2776  *
2777  * Calculate watermark values for the various WM regs based on current mode
2778  * and plane configuration.
2779  *
2780  * There are several cases to deal with here:
2781  *   - normal (i.e. non-self-refresh)
2782  *   - self-refresh (SR) mode
2783  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2784  *   - lines are small relative to FIFO size (buffer can hold more than 2
2785  *     lines), so need to account for TLB latency
2786  *
2787  *   The normal calculation is:
2788  *     watermark = dotclock * bytes per pixel * latency
2789  *   where latency is platform & configuration dependent (we assume pessimal
2790  *   values here).
2791  *
2792  *   The SR calculation is:
2793  *     watermark = (trunc(latency/line time)+1) * surface width *
2794  *       bytes per pixel
2795  *   where
2796  *     line time = htotal / dotclock
2797  *     surface width = hdisplay for normal plane and 64 for cursor
2798  *   and latency is assumed to be high, as above.
2799  *
2800  * The final value programmed to the register should always be rounded up,
2801  * and include an extra 2 entries to account for clock crossings.
2802  *
2803  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2804  * to set the non-SR watermarks to 8.
2805  */
2806 void intel_update_watermarks(struct drm_crtc *crtc)
2807 {
2808         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2809
2810         if (dev_priv->display.update_wm)
2811                 dev_priv->display.update_wm(crtc);
2812 }
2813
2814 void intel_update_sprite_watermarks(struct drm_plane *plane,
2815                                     struct drm_crtc *crtc,
2816                                     uint32_t sprite_width, int pixel_size,
2817                                     bool enabled, bool scaled)
2818 {
2819         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2820
2821         if (dev_priv->display.update_sprite_wm)
2822                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2823                                                    pixel_size, enabled, scaled);
2824 }
2825
2826 static struct drm_i915_gem_object *
2827 intel_alloc_context_page(struct drm_device *dev)
2828 {
2829         struct drm_i915_gem_object *ctx;
2830         int ret;
2831
2832         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2833
2834         ctx = i915_gem_alloc_object(dev, 4096);
2835         if (!ctx) {
2836                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2837                 return NULL;
2838         }
2839
2840         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2841         if (ret) {
2842                 DRM_ERROR("failed to pin power context: %d\n", ret);
2843                 goto err_unref;
2844         }
2845
2846         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2847         if (ret) {
2848                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2849                 goto err_unpin;
2850         }
2851
2852         return ctx;
2853
2854 err_unpin:
2855         i915_gem_object_ggtt_unpin(ctx);
2856 err_unref:
2857         drm_gem_object_unreference(&ctx->base);
2858         return NULL;
2859 }
2860
2861 /**
2862  * Lock protecting IPS related data structures
2863  */
2864 DEFINE_SPINLOCK(mchdev_lock);
2865
2866 /* Global for IPS driver to get at the current i915 device. Protected by
2867  * mchdev_lock. */
2868 static struct drm_i915_private *i915_mch_dev;
2869
2870 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2871 {
2872         struct drm_i915_private *dev_priv = dev->dev_private;
2873         u16 rgvswctl;
2874
2875         assert_spin_locked(&mchdev_lock);
2876
2877         rgvswctl = I915_READ16(MEMSWCTL);
2878         if (rgvswctl & MEMCTL_CMD_STS) {
2879                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2880                 return false; /* still busy with another command */
2881         }
2882
2883         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2884                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2885         I915_WRITE16(MEMSWCTL, rgvswctl);
2886         POSTING_READ16(MEMSWCTL);
2887
2888         rgvswctl |= MEMCTL_CMD_STS;
2889         I915_WRITE16(MEMSWCTL, rgvswctl);
2890
2891         return true;
2892 }
2893
2894 static void ironlake_enable_drps(struct drm_device *dev)
2895 {
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         u32 rgvmodectl = I915_READ(MEMMODECTL);
2898         u8 fmax, fmin, fstart, vstart;
2899
2900         spin_lock_irq(&mchdev_lock);
2901
2902         /* Enable temp reporting */
2903         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2904         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2905
2906         /* 100ms RC evaluation intervals */
2907         I915_WRITE(RCUPEI, 100000);
2908         I915_WRITE(RCDNEI, 100000);
2909
2910         /* Set max/min thresholds to 90ms and 80ms respectively */
2911         I915_WRITE(RCBMAXAVG, 90000);
2912         I915_WRITE(RCBMINAVG, 80000);
2913
2914         I915_WRITE(MEMIHYST, 1);
2915
2916         /* Set up min, max, and cur for interrupt handling */
2917         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2918         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2919         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2920                 MEMMODE_FSTART_SHIFT;
2921
2922         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2923                 PXVFREQ_PX_SHIFT;
2924
2925         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2926         dev_priv->ips.fstart = fstart;
2927
2928         dev_priv->ips.max_delay = fstart;
2929         dev_priv->ips.min_delay = fmin;
2930         dev_priv->ips.cur_delay = fstart;
2931
2932         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2933                          fmax, fmin, fstart);
2934
2935         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2936
2937         /*
2938          * Interrupts will be enabled in ironlake_irq_postinstall
2939          */
2940
2941         I915_WRITE(VIDSTART, vstart);
2942         POSTING_READ(VIDSTART);
2943
2944         rgvmodectl |= MEMMODE_SWMODE_EN;
2945         I915_WRITE(MEMMODECTL, rgvmodectl);
2946
2947         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2948                 DRM_ERROR("stuck trying to change perf mode\n");
2949         mdelay(1);
2950
2951         ironlake_set_drps(dev, fstart);
2952
2953         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2954                 I915_READ(0x112e0);
2955         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2956         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2957         getrawmonotonic(&dev_priv->ips.last_time2);
2958
2959         spin_unlock_irq(&mchdev_lock);
2960 }
2961
2962 static void ironlake_disable_drps(struct drm_device *dev)
2963 {
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         u16 rgvswctl;
2966
2967         spin_lock_irq(&mchdev_lock);
2968
2969         rgvswctl = I915_READ16(MEMSWCTL);
2970
2971         /* Ack interrupts, disable EFC interrupt */
2972         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2973         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2974         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2975         I915_WRITE(DEIIR, DE_PCU_EVENT);
2976         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2977
2978         /* Go back to the starting frequency */
2979         ironlake_set_drps(dev, dev_priv->ips.fstart);
2980         mdelay(1);
2981         rgvswctl |= MEMCTL_CMD_STS;
2982         I915_WRITE(MEMSWCTL, rgvswctl);
2983         mdelay(1);
2984
2985         spin_unlock_irq(&mchdev_lock);
2986 }
2987
2988 /* There's a funny hw issue where the hw returns all 0 when reading from
2989  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2990  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2991  * all limits and the gpu stuck at whatever frequency it is at atm).
2992  */
2993 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2994 {
2995         u32 limits;
2996
2997         /* Only set the down limit when we've reached the lowest level to avoid
2998          * getting more interrupts, otherwise leave this clear. This prevents a
2999          * race in the hw when coming out of rc6: There's a tiny window where
3000          * the hw runs at the minimal clock before selecting the desired
3001          * frequency, if the down threshold expires in that window we will not
3002          * receive a down interrupt. */
3003         limits = dev_priv->rps.max_freq_softlimit << 24;
3004         if (val <= dev_priv->rps.min_freq_softlimit)
3005                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3006
3007         return limits;
3008 }
3009
3010 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3011 {
3012         int new_power;
3013
3014         new_power = dev_priv->rps.power;
3015         switch (dev_priv->rps.power) {
3016         case LOW_POWER:
3017                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3018                         new_power = BETWEEN;
3019                 break;
3020
3021         case BETWEEN:
3022                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3023                         new_power = LOW_POWER;
3024                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3025                         new_power = HIGH_POWER;
3026                 break;
3027
3028         case HIGH_POWER:
3029                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3030                         new_power = BETWEEN;
3031                 break;
3032         }
3033         /* Max/min bins are special */
3034         if (val == dev_priv->rps.min_freq_softlimit)
3035                 new_power = LOW_POWER;
3036         if (val == dev_priv->rps.max_freq_softlimit)
3037                 new_power = HIGH_POWER;
3038         if (new_power == dev_priv->rps.power)
3039                 return;
3040
3041         /* Note the units here are not exactly 1us, but 1280ns. */
3042         switch (new_power) {
3043         case LOW_POWER:
3044                 /* Upclock if more than 95% busy over 16ms */
3045                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3046                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3047
3048                 /* Downclock if less than 85% busy over 32ms */
3049                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3050                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3051
3052                 I915_WRITE(GEN6_RP_CONTROL,
3053                            GEN6_RP_MEDIA_TURBO |
3054                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3055                            GEN6_RP_MEDIA_IS_GFX |
3056                            GEN6_RP_ENABLE |
3057                            GEN6_RP_UP_BUSY_AVG |
3058                            GEN6_RP_DOWN_IDLE_AVG);
3059                 break;
3060
3061         case BETWEEN:
3062                 /* Upclock if more than 90% busy over 13ms */
3063                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3064                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3065
3066                 /* Downclock if less than 75% busy over 32ms */
3067                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3068                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3069
3070                 I915_WRITE(GEN6_RP_CONTROL,
3071                            GEN6_RP_MEDIA_TURBO |
3072                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3073                            GEN6_RP_MEDIA_IS_GFX |
3074                            GEN6_RP_ENABLE |
3075                            GEN6_RP_UP_BUSY_AVG |
3076                            GEN6_RP_DOWN_IDLE_AVG);
3077                 break;
3078
3079         case HIGH_POWER:
3080                 /* Upclock if more than 85% busy over 10ms */
3081                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3082                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3083
3084                 /* Downclock if less than 60% busy over 32ms */
3085                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3086                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3087
3088                 I915_WRITE(GEN6_RP_CONTROL,
3089                            GEN6_RP_MEDIA_TURBO |
3090                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3091                            GEN6_RP_MEDIA_IS_GFX |
3092                            GEN6_RP_ENABLE |
3093                            GEN6_RP_UP_BUSY_AVG |
3094                            GEN6_RP_DOWN_IDLE_AVG);
3095                 break;
3096         }
3097
3098         dev_priv->rps.power = new_power;
3099         dev_priv->rps.last_adj = 0;
3100 }
3101
3102 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3103 {
3104         u32 mask = 0;
3105
3106         if (val > dev_priv->rps.min_freq_softlimit)
3107                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3108         if (val < dev_priv->rps.max_freq_softlimit)
3109                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3110
3111         /* IVB and SNB hard hangs on looping batchbuffer
3112          * if GEN6_PM_UP_EI_EXPIRED is masked.
3113          */
3114         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3115                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3116
3117         if (IS_GEN8(dev_priv->dev))
3118                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3119
3120         return ~mask;
3121 }
3122
3123 /* gen6_set_rps is called to update the frequency request, but should also be
3124  * called when the range (min_delay and max_delay) is modified so that we can
3125  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3126 void gen6_set_rps(struct drm_device *dev, u8 val)
3127 {
3128         struct drm_i915_private *dev_priv = dev->dev_private;
3129
3130         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3131         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3132         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3133
3134         /* min/max delay may still have been modified so be sure to
3135          * write the limits value.
3136          */
3137         if (val != dev_priv->rps.cur_freq) {
3138                 gen6_set_rps_thresholds(dev_priv, val);
3139
3140                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3141                         I915_WRITE(GEN6_RPNSWREQ,
3142                                    HSW_FREQUENCY(val));
3143                 else
3144                         I915_WRITE(GEN6_RPNSWREQ,
3145                                    GEN6_FREQUENCY(val) |
3146                                    GEN6_OFFSET(0) |
3147                                    GEN6_AGGRESSIVE_TURBO);
3148         }
3149
3150         /* Make sure we continue to get interrupts
3151          * until we hit the minimum or maximum frequencies.
3152          */
3153         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3154         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3155
3156         POSTING_READ(GEN6_RPNSWREQ);
3157
3158         dev_priv->rps.cur_freq = val;
3159         trace_intel_gpu_freq_change(val * 50);
3160 }
3161
3162 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3163  *
3164  * * If Gfx is Idle, then
3165  * 1. Mask Turbo interrupts
3166  * 2. Bring up Gfx clock
3167  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3168  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3169  * 5. Unmask Turbo interrupts
3170 */
3171 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3172 {
3173         /*
3174          * When we are idle.  Drop to min voltage state.
3175          */
3176
3177         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3178                 return;
3179
3180         /* Mask turbo interrupt so that they will not come in between */
3181         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3182
3183         vlv_force_gfx_clock(dev_priv, true);
3184
3185         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3186
3187         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3188                                         dev_priv->rps.min_freq_softlimit);
3189
3190         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3191                                 & GENFREQSTATUS) == 0, 5))
3192                 DRM_ERROR("timed out waiting for Punit\n");
3193
3194         vlv_force_gfx_clock(dev_priv, false);
3195
3196         I915_WRITE(GEN6_PMINTRMSK,
3197                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3198 }
3199
3200 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3201 {
3202         struct drm_device *dev = dev_priv->dev;
3203
3204         mutex_lock(&dev_priv->rps.hw_lock);
3205         if (dev_priv->rps.enabled) {
3206                 if (IS_VALLEYVIEW(dev))
3207                         vlv_set_rps_idle(dev_priv);
3208                 else
3209                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3210                 dev_priv->rps.last_adj = 0;
3211         }
3212         mutex_unlock(&dev_priv->rps.hw_lock);
3213 }
3214
3215 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3216 {
3217         struct drm_device *dev = dev_priv->dev;
3218
3219         mutex_lock(&dev_priv->rps.hw_lock);
3220         if (dev_priv->rps.enabled) {
3221                 if (IS_VALLEYVIEW(dev))
3222                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3223                 else
3224                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3225                 dev_priv->rps.last_adj = 0;
3226         }
3227         mutex_unlock(&dev_priv->rps.hw_lock);
3228 }
3229
3230 void valleyview_set_rps(struct drm_device *dev, u8 val)
3231 {
3232         struct drm_i915_private *dev_priv = dev->dev_private;
3233
3234         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3235         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3236         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3237
3238         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3239                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3240                          dev_priv->rps.cur_freq,
3241                          vlv_gpu_freq(dev_priv, val), val);
3242
3243         if (val != dev_priv->rps.cur_freq)
3244                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3245
3246         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3247
3248         dev_priv->rps.cur_freq = val;
3249         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3250 }
3251
3252 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3253 {
3254         struct drm_i915_private *dev_priv = dev->dev_private;
3255
3256         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3257         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3258                                    ~dev_priv->pm_rps_events);
3259         /* Complete PM interrupt masking here doesn't race with the rps work
3260          * item again unmasking PM interrupts because that is using a different
3261          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3262          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3263          * gen8_enable_rps will clean up. */
3264
3265         spin_lock_irq(&dev_priv->irq_lock);
3266         dev_priv->rps.pm_iir = 0;
3267         spin_unlock_irq(&dev_priv->irq_lock);
3268
3269         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3270 }
3271
3272 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3273 {
3274         struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3277         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3278                                 ~dev_priv->pm_rps_events);
3279         /* Complete PM interrupt masking here doesn't race with the rps work
3280          * item again unmasking PM interrupts because that is using a different
3281          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3282          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3283
3284         spin_lock_irq(&dev_priv->irq_lock);
3285         dev_priv->rps.pm_iir = 0;
3286         spin_unlock_irq(&dev_priv->irq_lock);
3287
3288         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3289 }
3290
3291 static void gen6_disable_rps(struct drm_device *dev)
3292 {
3293         struct drm_i915_private *dev_priv = dev->dev_private;
3294
3295         I915_WRITE(GEN6_RC_CONTROL, 0);
3296         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3297
3298         if (IS_BROADWELL(dev))
3299                 gen8_disable_rps_interrupts(dev);
3300         else
3301                 gen6_disable_rps_interrupts(dev);
3302 }
3303
3304 static void valleyview_disable_rps(struct drm_device *dev)
3305 {
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307
3308         I915_WRITE(GEN6_RC_CONTROL, 0);
3309
3310         gen6_disable_rps_interrupts(dev);
3311 }
3312
3313 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3314 {
3315         if (IS_VALLEYVIEW(dev)) {
3316                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3317                         mode = GEN6_RC_CTL_RC6_ENABLE;
3318                 else
3319                         mode = 0;
3320         }
3321         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3322                  (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3323                  (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3324                  (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3325 }
3326
3327 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3328 {
3329         /* No RC6 before Ironlake */
3330         if (INTEL_INFO(dev)->gen < 5)
3331                 return 0;
3332
3333         /* RC6 is only on Ironlake mobile not on desktop */
3334         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3335                 return 0;
3336
3337         /* Respect the kernel parameter if it is set */
3338         if (enable_rc6 >= 0) {
3339                 int mask;
3340
3341                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3342                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3343                                INTEL_RC6pp_ENABLE;
3344                 else
3345                         mask = INTEL_RC6_ENABLE;
3346
3347                 if ((enable_rc6 & mask) != enable_rc6)
3348                         DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3349                                  enable_rc6 & mask, enable_rc6, mask);
3350
3351                 return enable_rc6 & mask;
3352         }
3353
3354         /* Disable RC6 on Ironlake */
3355         if (INTEL_INFO(dev)->gen == 5)
3356                 return 0;
3357
3358         if (IS_IVYBRIDGE(dev))
3359                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3360
3361         return INTEL_RC6_ENABLE;
3362 }
3363
3364 int intel_enable_rc6(const struct drm_device *dev)
3365 {
3366         return i915.enable_rc6;
3367 }
3368
3369 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3370 {
3371         struct drm_i915_private *dev_priv = dev->dev_private;
3372
3373         spin_lock_irq(&dev_priv->irq_lock);
3374         WARN_ON(dev_priv->rps.pm_iir);
3375         bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3376         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3377         spin_unlock_irq(&dev_priv->irq_lock);
3378 }
3379
3380 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3381 {
3382         struct drm_i915_private *dev_priv = dev->dev_private;
3383
3384         spin_lock_irq(&dev_priv->irq_lock);
3385         WARN_ON(dev_priv->rps.pm_iir);
3386         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3387         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3388         spin_unlock_irq(&dev_priv->irq_lock);
3389 }
3390
3391 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3392 {
3393         /* All of these values are in units of 50MHz */
3394         dev_priv->rps.cur_freq          = 0;
3395         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3396         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3397         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3398         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3399         /* XXX: only BYT has a special efficient freq */
3400         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3401         /* hw_max = RP0 until we check for overclocking */
3402         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3403
3404         /* Preserve min/max settings in case of re-init */
3405         if (dev_priv->rps.max_freq_softlimit == 0)
3406                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3407
3408         if (dev_priv->rps.min_freq_softlimit == 0)
3409                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3410 }
3411
3412 static void gen8_enable_rps(struct drm_device *dev)
3413 {
3414         struct drm_i915_private *dev_priv = dev->dev_private;
3415         struct intel_engine_cs *ring;
3416         uint32_t rc6_mask = 0, rp_state_cap;
3417         int unused;
3418
3419         /* 1a: Software RC state - RC0 */
3420         I915_WRITE(GEN6_RC_STATE, 0);
3421
3422         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3423          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3424         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3425
3426         /* 2a: Disable RC states. */
3427         I915_WRITE(GEN6_RC_CONTROL, 0);
3428
3429         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3430         parse_rp_state_cap(dev_priv, rp_state_cap);
3431
3432         /* 2b: Program RC6 thresholds.*/
3433         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3434         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3435         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3436         for_each_ring(ring, dev_priv, unused)
3437                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3438         I915_WRITE(GEN6_RC_SLEEP, 0);
3439         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3440
3441         /* 3: Enable RC6 */
3442         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3443                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3444         intel_print_rc6_info(dev, rc6_mask);
3445         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3446                                     GEN6_RC_CTL_EI_MODE(1) |
3447                                     rc6_mask);
3448
3449         /* 4 Program defaults and thresholds for RPS*/
3450         I915_WRITE(GEN6_RPNSWREQ,
3451                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3452         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3453                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3454         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3455         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3456
3457         /* Docs recommend 900MHz, and 300 MHz respectively */
3458         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3459                    dev_priv->rps.max_freq_softlimit << 24 |
3460                    dev_priv->rps.min_freq_softlimit << 16);
3461
3462         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3463         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3464         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3465         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3466
3467         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3468
3469         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
3470         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
3471         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
3472
3473         /* 5: Enable RPS */
3474         I915_WRITE(GEN6_RP_CONTROL,
3475                    GEN6_RP_MEDIA_TURBO |
3476                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3477                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
3478                    GEN6_RP_ENABLE |
3479                    GEN6_RP_UP_BUSY_AVG |
3480                    GEN6_RP_DOWN_IDLE_AVG);
3481
3482         /* 6: Ring frequency + overclocking (our driver does this later */
3483
3484         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3485
3486         gen8_enable_rps_interrupts(dev);
3487
3488         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3489 }
3490
3491 static void gen6_enable_rps(struct drm_device *dev)
3492 {
3493         struct drm_i915_private *dev_priv = dev->dev_private;
3494         struct intel_engine_cs *ring;
3495         u32 rp_state_cap;
3496         u32 gt_perf_status;
3497         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3498         u32 gtfifodbg;
3499         int rc6_mode;
3500         int i, ret;
3501
3502         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3503
3504         /* Here begins a magic sequence of register writes to enable
3505          * auto-downclocking.
3506          *
3507          * Perhaps there might be some value in exposing these to
3508          * userspace...
3509          */
3510         I915_WRITE(GEN6_RC_STATE, 0);
3511
3512         /* Clear the DBG now so we don't confuse earlier errors */
3513         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3514                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3515                 I915_WRITE(GTFIFODBG, gtfifodbg);
3516         }
3517
3518         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3519
3520         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3521         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3522
3523         parse_rp_state_cap(dev_priv, rp_state_cap);
3524
3525         /* disable the counters and set deterministic thresholds */
3526         I915_WRITE(GEN6_RC_CONTROL, 0);
3527
3528         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3529         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3530         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3531         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3532         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3533
3534         for_each_ring(ring, dev_priv, i)
3535                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3536
3537         I915_WRITE(GEN6_RC_SLEEP, 0);
3538         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3539         if (IS_IVYBRIDGE(dev))
3540                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3541         else
3542                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3543         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3544         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3545
3546         /* Check if we are enabling RC6 */
3547         rc6_mode = intel_enable_rc6(dev_priv->dev);
3548         if (rc6_mode & INTEL_RC6_ENABLE)
3549                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3550
3551         /* We don't use those on Haswell */
3552         if (!IS_HASWELL(dev)) {
3553                 if (rc6_mode & INTEL_RC6p_ENABLE)
3554                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3555
3556                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3557                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3558         }
3559
3560         intel_print_rc6_info(dev, rc6_mask);
3561
3562         I915_WRITE(GEN6_RC_CONTROL,
3563                    rc6_mask |
3564                    GEN6_RC_CTL_EI_MODE(1) |
3565                    GEN6_RC_CTL_HW_ENABLE);
3566
3567         /* Power down if completely idle for over 50ms */
3568         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3569         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3570
3571         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3572         if (ret)
3573                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3574
3575         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3576         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3577                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3578                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3579                                  (pcu_mbox & 0xff) * 50);
3580                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3581         }
3582
3583         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3584         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3585
3586         gen6_enable_rps_interrupts(dev);
3587
3588         rc6vids = 0;
3589         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3590         if (IS_GEN6(dev) && ret) {
3591                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3592         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3593                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3594                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3595                 rc6vids &= 0xffff00;
3596                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3597                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3598                 if (ret)
3599                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3600         }
3601
3602         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3603 }
3604
3605 static void __gen6_update_ring_freq(struct drm_device *dev)
3606 {
3607         struct drm_i915_private *dev_priv = dev->dev_private;
3608         int min_freq = 15;
3609         unsigned int gpu_freq;
3610         unsigned int max_ia_freq, min_ring_freq;
3611         int scaling_factor = 180;
3612         struct cpufreq_policy *policy;
3613
3614         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3615
3616         policy = cpufreq_cpu_get(0);
3617         if (policy) {
3618                 max_ia_freq = policy->cpuinfo.max_freq;
3619                 cpufreq_cpu_put(policy);
3620         } else {
3621                 /*
3622                  * Default to measured freq if none found, PCU will ensure we
3623                  * don't go over
3624                  */
3625                 max_ia_freq = tsc_khz;
3626         }
3627
3628         /* Convert from kHz to MHz */
3629         max_ia_freq /= 1000;
3630
3631         min_ring_freq = I915_READ(DCLK) & 0xf;
3632         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3633         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3634
3635         /*
3636          * For each potential GPU frequency, load a ring frequency we'd like
3637          * to use for memory access.  We do this by specifying the IA frequency
3638          * the PCU should use as a reference to determine the ring frequency.
3639          */
3640         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3641              gpu_freq--) {
3642                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3643                 unsigned int ia_freq = 0, ring_freq = 0;
3644
3645                 if (INTEL_INFO(dev)->gen >= 8) {
3646                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3647                         ring_freq = max(min_ring_freq, gpu_freq);
3648                 } else if (IS_HASWELL(dev)) {
3649                         ring_freq = mult_frac(gpu_freq, 5, 4);
3650                         ring_freq = max(min_ring_freq, ring_freq);
3651                         /* leave ia_freq as the default, chosen by cpufreq */
3652                 } else {
3653                         /* On older processors, there is no separate ring
3654                          * clock domain, so in order to boost the bandwidth
3655                          * of the ring, we need to upclock the CPU (ia_freq).
3656                          *
3657                          * For GPU frequencies less than 750MHz,
3658                          * just use the lowest ring freq.
3659                          */
3660                         if (gpu_freq < min_freq)
3661                                 ia_freq = 800;
3662                         else
3663                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3664                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3665                 }
3666
3667                 sandybridge_pcode_write(dev_priv,
3668                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3669                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3670                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3671                                         gpu_freq);
3672         }
3673 }
3674
3675 void gen6_update_ring_freq(struct drm_device *dev)
3676 {
3677         struct drm_i915_private *dev_priv = dev->dev_private;
3678
3679         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3680                 return;
3681
3682         mutex_lock(&dev_priv->rps.hw_lock);
3683         __gen6_update_ring_freq(dev);
3684         mutex_unlock(&dev_priv->rps.hw_lock);
3685 }
3686
3687 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3688 {
3689         u32 val, rp0;
3690
3691         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3692
3693         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3694         /* Clamp to max */
3695         rp0 = min_t(u32, rp0, 0xea);
3696
3697         return rp0;
3698 }
3699
3700 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3701 {
3702         u32 val, rpe;
3703
3704         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3705         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3706         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3707         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3708
3709         return rpe;
3710 }
3711
3712 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3713 {
3714         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3715 }
3716
3717 /* Check that the pctx buffer wasn't move under us. */
3718 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3719 {
3720         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3721
3722         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3723                              dev_priv->vlv_pctx->stolen->start);
3724 }
3725
3726 static void valleyview_setup_pctx(struct drm_device *dev)
3727 {
3728         struct drm_i915_private *dev_priv = dev->dev_private;
3729         struct drm_i915_gem_object *pctx;
3730         unsigned long pctx_paddr;
3731         u32 pcbr;
3732         int pctx_size = 24*1024;
3733
3734         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3735
3736         pcbr = I915_READ(VLV_PCBR);
3737         if (pcbr) {
3738                 /* BIOS set it up already, grab the pre-alloc'd space */
3739                 int pcbr_offset;
3740
3741                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3742                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3743                                                                       pcbr_offset,
3744                                                                       I915_GTT_OFFSET_NONE,
3745                                                                       pctx_size);
3746                 goto out;
3747         }
3748
3749         /*
3750          * From the Gunit register HAS:
3751          * The Gfx driver is expected to program this register and ensure
3752          * proper allocation within Gfx stolen memory.  For example, this
3753          * register should be programmed such than the PCBR range does not
3754          * overlap with other ranges, such as the frame buffer, protected
3755          * memory, or any other relevant ranges.
3756          */
3757         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3758         if (!pctx) {
3759                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3760                 return;
3761         }
3762
3763         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3764         I915_WRITE(VLV_PCBR, pctx_paddr);
3765
3766 out:
3767         dev_priv->vlv_pctx = pctx;
3768 }
3769
3770 static void valleyview_cleanup_pctx(struct drm_device *dev)
3771 {
3772         struct drm_i915_private *dev_priv = dev->dev_private;
3773
3774         if (WARN_ON(!dev_priv->vlv_pctx))
3775                 return;
3776
3777         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3778         dev_priv->vlv_pctx = NULL;
3779 }
3780
3781 static void valleyview_init_gt_powersave(struct drm_device *dev)
3782 {
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784
3785         valleyview_setup_pctx(dev);
3786
3787         mutex_lock(&dev_priv->rps.hw_lock);
3788
3789         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3790         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3791         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3792                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3793                          dev_priv->rps.max_freq);
3794
3795         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3796         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3797                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3798                          dev_priv->rps.efficient_freq);
3799
3800         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3801         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3802                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3803                          dev_priv->rps.min_freq);
3804
3805         /* Preserve min/max settings in case of re-init */
3806         if (dev_priv->rps.max_freq_softlimit == 0)
3807                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3808
3809         if (dev_priv->rps.min_freq_softlimit == 0)
3810                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3811
3812         mutex_unlock(&dev_priv->rps.hw_lock);
3813 }
3814
3815 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
3816 {
3817         valleyview_cleanup_pctx(dev);
3818 }
3819
3820 static void valleyview_enable_rps(struct drm_device *dev)
3821 {
3822         struct drm_i915_private *dev_priv = dev->dev_private;
3823         struct intel_engine_cs *ring;
3824         u32 gtfifodbg, val, rc6_mode = 0;
3825         int i;
3826
3827         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3828
3829         valleyview_check_pctx(dev_priv);
3830
3831         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3832                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3833                                  gtfifodbg);
3834                 I915_WRITE(GTFIFODBG, gtfifodbg);
3835         }
3836
3837         /* If VLV, Forcewake all wells, else re-direct to regular path */
3838         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3839
3840         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3841         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3842         I915_WRITE(GEN6_RP_UP_EI, 66000);
3843         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3844
3845         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3846
3847         I915_WRITE(GEN6_RP_CONTROL,
3848                    GEN6_RP_MEDIA_TURBO |
3849                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3850                    GEN6_RP_MEDIA_IS_GFX |
3851                    GEN6_RP_ENABLE |
3852                    GEN6_RP_UP_BUSY_AVG |
3853                    GEN6_RP_DOWN_IDLE_CONT);
3854
3855         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3856         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3857         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3858
3859         for_each_ring(ring, dev_priv, i)
3860                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3861
3862         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3863
3864         /* allows RC6 residency counter to work */
3865         I915_WRITE(VLV_COUNTER_CONTROL,
3866                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3867                                       VLV_MEDIA_RC6_COUNT_EN |
3868                                       VLV_RENDER_RC6_COUNT_EN));
3869         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3870                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3871
3872         intel_print_rc6_info(dev, rc6_mode);
3873
3874         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3875
3876         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3877
3878         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3879         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3880
3881         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3882         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3883                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3884                          dev_priv->rps.cur_freq);
3885
3886         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3887                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3888                          dev_priv->rps.efficient_freq);
3889
3890         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3891
3892         gen6_enable_rps_interrupts(dev);
3893
3894         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3895 }
3896
3897 void ironlake_teardown_rc6(struct drm_device *dev)
3898 {
3899         struct drm_i915_private *dev_priv = dev->dev_private;
3900
3901         if (dev_priv->ips.renderctx) {
3902                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3903                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3904                 dev_priv->ips.renderctx = NULL;
3905         }
3906
3907         if (dev_priv->ips.pwrctx) {
3908                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3909                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3910                 dev_priv->ips.pwrctx = NULL;
3911         }
3912 }
3913
3914 static void ironlake_disable_rc6(struct drm_device *dev)
3915 {
3916         struct drm_i915_private *dev_priv = dev->dev_private;
3917
3918         if (I915_READ(PWRCTXA)) {
3919                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3920                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3921                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3922                          50);
3923
3924                 I915_WRITE(PWRCTXA, 0);
3925                 POSTING_READ(PWRCTXA);
3926
3927                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3928                 POSTING_READ(RSTDBYCTL);
3929         }
3930 }
3931
3932 static int ironlake_setup_rc6(struct drm_device *dev)
3933 {
3934         struct drm_i915_private *dev_priv = dev->dev_private;
3935
3936         if (dev_priv->ips.renderctx == NULL)
3937                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3938         if (!dev_priv->ips.renderctx)
3939                 return -ENOMEM;
3940
3941         if (dev_priv->ips.pwrctx == NULL)
3942                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3943         if (!dev_priv->ips.pwrctx) {
3944                 ironlake_teardown_rc6(dev);
3945                 return -ENOMEM;
3946         }
3947
3948         return 0;
3949 }
3950
3951 static void ironlake_enable_rc6(struct drm_device *dev)
3952 {
3953         struct drm_i915_private *dev_priv = dev->dev_private;
3954         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
3955         bool was_interruptible;
3956         int ret;
3957
3958         /* rc6 disabled by default due to repeated reports of hanging during
3959          * boot and resume.
3960          */
3961         if (!intel_enable_rc6(dev))
3962                 return;
3963
3964         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3965
3966         ret = ironlake_setup_rc6(dev);
3967         if (ret)
3968                 return;
3969
3970         was_interruptible = dev_priv->mm.interruptible;
3971         dev_priv->mm.interruptible = false;
3972
3973         /*
3974          * GPU can automatically power down the render unit if given a page
3975          * to save state.
3976          */
3977         ret = intel_ring_begin(ring, 6);
3978         if (ret) {
3979                 ironlake_teardown_rc6(dev);
3980                 dev_priv->mm.interruptible = was_interruptible;
3981                 return;
3982         }
3983
3984         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3985         intel_ring_emit(ring, MI_SET_CONTEXT);
3986         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3987                         MI_MM_SPACE_GTT |
3988                         MI_SAVE_EXT_STATE_EN |
3989                         MI_RESTORE_EXT_STATE_EN |
3990                         MI_RESTORE_INHIBIT);
3991         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3992         intel_ring_emit(ring, MI_NOOP);
3993         intel_ring_emit(ring, MI_FLUSH);
3994         intel_ring_advance(ring);
3995
3996         /*
3997          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3998          * does an implicit flush, combined with MI_FLUSH above, it should be
3999          * safe to assume that renderctx is valid
4000          */
4001         ret = intel_ring_idle(ring);
4002         dev_priv->mm.interruptible = was_interruptible;
4003         if (ret) {
4004                 DRM_ERROR("failed to enable ironlake power savings\n");
4005                 ironlake_teardown_rc6(dev);
4006                 return;
4007         }
4008
4009         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4010         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4011
4012         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4013 }
4014
4015 static unsigned long intel_pxfreq(u32 vidfreq)
4016 {
4017         unsigned long freq;
4018         int div = (vidfreq & 0x3f0000) >> 16;
4019         int post = (vidfreq & 0x3000) >> 12;
4020         int pre = (vidfreq & 0x7);
4021
4022         if (!pre)
4023                 return 0;
4024
4025         freq = ((div * 133333) / ((1<<post) * pre));
4026
4027         return freq;
4028 }
4029
4030 static const struct cparams {
4031         u16 i;
4032         u16 t;
4033         u16 m;
4034         u16 c;
4035 } cparams[] = {
4036         { 1, 1333, 301, 28664 },
4037         { 1, 1066, 294, 24460 },
4038         { 1, 800, 294, 25192 },
4039         { 0, 1333, 276, 27605 },
4040         { 0, 1066, 276, 27605 },
4041         { 0, 800, 231, 23784 },
4042 };
4043
4044 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4045 {
4046         u64 total_count, diff, ret;
4047         u32 count1, count2, count3, m = 0, c = 0;
4048         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4049         int i;
4050
4051         assert_spin_locked(&mchdev_lock);
4052
4053         diff1 = now - dev_priv->ips.last_time1;
4054
4055         /* Prevent division-by-zero if we are asking too fast.
4056          * Also, we don't get interesting results if we are polling
4057          * faster than once in 10ms, so just return the saved value
4058          * in such cases.
4059          */
4060         if (diff1 <= 10)
4061                 return dev_priv->ips.chipset_power;
4062
4063         count1 = I915_READ(DMIEC);
4064         count2 = I915_READ(DDREC);
4065         count3 = I915_READ(CSIEC);
4066
4067         total_count = count1 + count2 + count3;
4068
4069         /* FIXME: handle per-counter overflow */
4070         if (total_count < dev_priv->ips.last_count1) {
4071                 diff = ~0UL - dev_priv->ips.last_count1;
4072                 diff += total_count;
4073         } else {
4074                 diff = total_count - dev_priv->ips.last_count1;
4075         }
4076
4077         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4078                 if (cparams[i].i == dev_priv->ips.c_m &&
4079                     cparams[i].t == dev_priv->ips.r_t) {
4080                         m = cparams[i].m;
4081                         c = cparams[i].c;
4082                         break;
4083                 }
4084         }
4085
4086         diff = div_u64(diff, diff1);
4087         ret = ((m * diff) + c);
4088         ret = div_u64(ret, 10);
4089
4090         dev_priv->ips.last_count1 = total_count;
4091         dev_priv->ips.last_time1 = now;
4092
4093         dev_priv->ips.chipset_power = ret;
4094
4095         return ret;
4096 }
4097
4098 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4099 {
4100         struct drm_device *dev = dev_priv->dev;
4101         unsigned long val;
4102
4103         if (INTEL_INFO(dev)->gen != 5)
4104                 return 0;
4105
4106         spin_lock_irq(&mchdev_lock);
4107
4108         val = __i915_chipset_val(dev_priv);
4109
4110         spin_unlock_irq(&mchdev_lock);
4111
4112         return val;
4113 }
4114
4115 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4116 {
4117         unsigned long m, x, b;
4118         u32 tsfs;
4119
4120         tsfs = I915_READ(TSFS);
4121
4122         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4123         x = I915_READ8(TR1);
4124
4125         b = tsfs & TSFS_INTR_MASK;
4126
4127         return ((m * x) / 127) - b;
4128 }
4129
4130 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4131 {
4132         struct drm_device *dev = dev_priv->dev;
4133         static const struct v_table {
4134                 u16 vd; /* in .1 mil */
4135                 u16 vm; /* in .1 mil */
4136         } v_table[] = {
4137                 { 0, 0, },
4138                 { 375, 0, },
4139                 { 500, 0, },
4140                 { 625, 0, },
4141                 { 750, 0, },
4142                 { 875, 0, },
4143                 { 1000, 0, },
4144                 { 1125, 0, },
4145                 { 4125, 3000, },
4146                 { 4125, 3000, },
4147                 { 4125, 3000, },
4148                 { 4125, 3000, },
4149                 { 4125, 3000, },
4150                 { 4125, 3000, },
4151                 { 4125, 3000, },
4152                 { 4125, 3000, },
4153                 { 4125, 3000, },
4154                 { 4125, 3000, },
4155                 { 4125, 3000, },
4156                 { 4125, 3000, },
4157                 { 4125, 3000, },
4158                 { 4125, 3000, },
4159                 { 4125, 3000, },
4160                 { 4125, 3000, },
4161                 { 4125, 3000, },
4162                 { 4125, 3000, },
4163                 { 4125, 3000, },
4164                 { 4125, 3000, },
4165                 { 4125, 3000, },
4166                 { 4125, 3000, },
4167                 { 4125, 3000, },
4168                 { 4125, 3000, },
4169                 { 4250, 3125, },
4170                 { 4375, 3250, },
4171                 { 4500, 3375, },
4172                 { 4625, 3500, },
4173                 { 4750, 3625, },
4174                 { 4875, 3750, },
4175                 { 5000, 3875, },
4176                 { 5125, 4000, },
4177                 { 5250, 4125, },
4178                 { 5375, 4250, },
4179                 { 5500, 4375, },
4180                 { 5625, 4500, },
4181                 { 5750, 4625, },
4182                 { 5875, 4750, },
4183                 { 6000, 4875, },
4184                 { 6125, 5000, },
4185                 { 6250, 5125, },
4186                 { 6375, 5250, },
4187                 { 6500, 5375, },
4188                 { 6625, 5500, },
4189                 { 6750, 5625, },
4190                 { 6875, 5750, },
4191                 { 7000, 5875, },
4192                 { 7125, 6000, },
4193                 { 7250, 6125, },
4194                 { 7375, 6250, },
4195                 { 7500, 6375, },
4196                 { 7625, 6500, },
4197                 { 7750, 6625, },
4198                 { 7875, 6750, },
4199                 { 8000, 6875, },
4200                 { 8125, 7000, },
4201                 { 8250, 7125, },
4202                 { 8375, 7250, },
4203                 { 8500, 7375, },
4204                 { 8625, 7500, },
4205                 { 8750, 7625, },
4206                 { 8875, 7750, },
4207                 { 9000, 7875, },
4208                 { 9125, 8000, },
4209                 { 9250, 8125, },
4210                 { 9375, 8250, },
4211                 { 9500, 8375, },
4212                 { 9625, 8500, },
4213                 { 9750, 8625, },
4214                 { 9875, 8750, },
4215                 { 10000, 8875, },
4216                 { 10125, 9000, },
4217                 { 10250, 9125, },
4218                 { 10375, 9250, },
4219                 { 10500, 9375, },
4220                 { 10625, 9500, },
4221                 { 10750, 9625, },
4222                 { 10875, 9750, },
4223                 { 11000, 9875, },
4224                 { 11125, 10000, },
4225                 { 11250, 10125, },
4226                 { 11375, 10250, },
4227                 { 11500, 10375, },
4228                 { 11625, 10500, },
4229                 { 11750, 10625, },
4230                 { 11875, 10750, },
4231                 { 12000, 10875, },
4232                 { 12125, 11000, },
4233                 { 12250, 11125, },
4234                 { 12375, 11250, },
4235                 { 12500, 11375, },
4236                 { 12625, 11500, },
4237                 { 12750, 11625, },
4238                 { 12875, 11750, },
4239                 { 13000, 11875, },
4240                 { 13125, 12000, },
4241                 { 13250, 12125, },
4242                 { 13375, 12250, },
4243                 { 13500, 12375, },
4244                 { 13625, 12500, },
4245                 { 13750, 12625, },
4246                 { 13875, 12750, },
4247                 { 14000, 12875, },
4248                 { 14125, 13000, },
4249                 { 14250, 13125, },
4250                 { 14375, 13250, },
4251                 { 14500, 13375, },
4252                 { 14625, 13500, },
4253                 { 14750, 13625, },
4254                 { 14875, 13750, },
4255                 { 15000, 13875, },
4256                 { 15125, 14000, },
4257                 { 15250, 14125, },
4258                 { 15375, 14250, },
4259                 { 15500, 14375, },
4260                 { 15625, 14500, },
4261                 { 15750, 14625, },
4262                 { 15875, 14750, },
4263                 { 16000, 14875, },
4264                 { 16125, 15000, },
4265         };
4266         if (INTEL_INFO(dev)->is_mobile)
4267                 return v_table[pxvid].vm;
4268         else
4269                 return v_table[pxvid].vd;
4270 }
4271
4272 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4273 {
4274         struct timespec now, diff1;
4275         u64 diff;
4276         unsigned long diffms;
4277         u32 count;
4278
4279         assert_spin_locked(&mchdev_lock);
4280
4281         getrawmonotonic(&now);
4282         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4283
4284         /* Don't divide by 0 */
4285         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4286         if (!diffms)
4287                 return;
4288
4289         count = I915_READ(GFXEC);
4290
4291         if (count < dev_priv->ips.last_count2) {
4292                 diff = ~0UL - dev_priv->ips.last_count2;
4293                 diff += count;
4294         } else {
4295                 diff = count - dev_priv->ips.last_count2;
4296         }
4297
4298         dev_priv->ips.last_count2 = count;
4299         dev_priv->ips.last_time2 = now;
4300
4301         /* More magic constants... */
4302         diff = diff * 1181;
4303         diff = div_u64(diff, diffms * 10);
4304         dev_priv->ips.gfx_power = diff;
4305 }
4306
4307 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4308 {
4309         struct drm_device *dev = dev_priv->dev;
4310
4311         if (INTEL_INFO(dev)->gen != 5)
4312                 return;
4313
4314         spin_lock_irq(&mchdev_lock);
4315
4316         __i915_update_gfx_val(dev_priv);
4317
4318         spin_unlock_irq(&mchdev_lock);
4319 }
4320
4321 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4322 {
4323         unsigned long t, corr, state1, corr2, state2;
4324         u32 pxvid, ext_v;
4325
4326         assert_spin_locked(&mchdev_lock);
4327
4328         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4329         pxvid = (pxvid >> 24) & 0x7f;
4330         ext_v = pvid_to_extvid(dev_priv, pxvid);
4331
4332         state1 = ext_v;
4333
4334         t = i915_mch_val(dev_priv);
4335
4336         /* Revel in the empirically derived constants */
4337
4338         /* Correction factor in 1/100000 units */
4339         if (t > 80)
4340                 corr = ((t * 2349) + 135940);
4341         else if (t >= 50)
4342                 corr = ((t * 964) + 29317);
4343         else /* < 50 */
4344                 corr = ((t * 301) + 1004);
4345
4346         corr = corr * ((150142 * state1) / 10000 - 78642);
4347         corr /= 100000;
4348         corr2 = (corr * dev_priv->ips.corr);
4349
4350         state2 = (corr2 * state1) / 10000;
4351         state2 /= 100; /* convert to mW */
4352
4353         __i915_update_gfx_val(dev_priv);
4354
4355         return dev_priv->ips.gfx_power + state2;
4356 }
4357
4358 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4359 {
4360         struct drm_device *dev = dev_priv->dev;
4361         unsigned long val;
4362
4363         if (INTEL_INFO(dev)->gen != 5)
4364                 return 0;
4365
4366         spin_lock_irq(&mchdev_lock);
4367
4368         val = __i915_gfx_val(dev_priv);
4369
4370         spin_unlock_irq(&mchdev_lock);
4371
4372         return val;
4373 }
4374
4375 /**
4376  * i915_read_mch_val - return value for IPS use
4377  *
4378  * Calculate and return a value for the IPS driver to use when deciding whether
4379  * we have thermal and power headroom to increase CPU or GPU power budget.
4380  */
4381 unsigned long i915_read_mch_val(void)
4382 {
4383         struct drm_i915_private *dev_priv;
4384         unsigned long chipset_val, graphics_val, ret = 0;
4385
4386         spin_lock_irq(&mchdev_lock);
4387         if (!i915_mch_dev)
4388                 goto out_unlock;
4389         dev_priv = i915_mch_dev;
4390
4391         chipset_val = __i915_chipset_val(dev_priv);
4392         graphics_val = __i915_gfx_val(dev_priv);
4393
4394         ret = chipset_val + graphics_val;
4395
4396 out_unlock:
4397         spin_unlock_irq(&mchdev_lock);
4398
4399         return ret;
4400 }
4401 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4402
4403 /**
4404  * i915_gpu_raise - raise GPU frequency limit
4405  *
4406  * Raise the limit; IPS indicates we have thermal headroom.
4407  */
4408 bool i915_gpu_raise(void)
4409 {
4410         struct drm_i915_private *dev_priv;
4411         bool ret = true;
4412
4413         spin_lock_irq(&mchdev_lock);
4414         if (!i915_mch_dev) {
4415                 ret = false;
4416                 goto out_unlock;
4417         }
4418         dev_priv = i915_mch_dev;
4419
4420         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4421                 dev_priv->ips.max_delay--;
4422
4423 out_unlock:
4424         spin_unlock_irq(&mchdev_lock);
4425
4426         return ret;
4427 }
4428 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4429
4430 /**
4431  * i915_gpu_lower - lower GPU frequency limit
4432  *
4433  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4434  * frequency maximum.
4435  */
4436 bool i915_gpu_lower(void)
4437 {
4438         struct drm_i915_private *dev_priv;
4439         bool ret = true;
4440
4441         spin_lock_irq(&mchdev_lock);
4442         if (!i915_mch_dev) {
4443                 ret = false;
4444                 goto out_unlock;
4445         }
4446         dev_priv = i915_mch_dev;
4447
4448         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4449                 dev_priv->ips.max_delay++;
4450
4451 out_unlock:
4452         spin_unlock_irq(&mchdev_lock);
4453
4454         return ret;
4455 }
4456 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4457
4458 /**
4459  * i915_gpu_busy - indicate GPU business to IPS
4460  *
4461  * Tell the IPS driver whether or not the GPU is busy.
4462  */
4463 bool i915_gpu_busy(void)
4464 {
4465         struct drm_i915_private *dev_priv;
4466         struct intel_engine_cs *ring;
4467         bool ret = false;
4468         int i;
4469
4470         spin_lock_irq(&mchdev_lock);
4471         if (!i915_mch_dev)
4472                 goto out_unlock;
4473         dev_priv = i915_mch_dev;
4474
4475         for_each_ring(ring, dev_priv, i)
4476                 ret |= !list_empty(&ring->request_list);
4477
4478 out_unlock:
4479         spin_unlock_irq(&mchdev_lock);
4480
4481         return ret;
4482 }
4483 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4484
4485 /**
4486  * i915_gpu_turbo_disable - disable graphics turbo
4487  *
4488  * Disable graphics turbo by resetting the max frequency and setting the
4489  * current frequency to the default.
4490  */
4491 bool i915_gpu_turbo_disable(void)
4492 {
4493         struct drm_i915_private *dev_priv;
4494         bool ret = true;
4495
4496         spin_lock_irq(&mchdev_lock);
4497         if (!i915_mch_dev) {
4498                 ret = false;
4499                 goto out_unlock;
4500         }
4501         dev_priv = i915_mch_dev;
4502
4503         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4504
4505         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4506                 ret = false;
4507
4508 out_unlock:
4509         spin_unlock_irq(&mchdev_lock);
4510
4511         return ret;
4512 }
4513 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4514
4515 /**
4516  * Tells the intel_ips driver that the i915 driver is now loaded, if
4517  * IPS got loaded first.
4518  *
4519  * This awkward dance is so that neither module has to depend on the
4520  * other in order for IPS to do the appropriate communication of
4521  * GPU turbo limits to i915.
4522  */
4523 static void
4524 ips_ping_for_i915_load(void)
4525 {
4526         void (*link)(void);
4527
4528         link = symbol_get(ips_link_to_i915_driver);
4529         if (link) {
4530                 link();
4531                 symbol_put(ips_link_to_i915_driver);
4532         }
4533 }
4534
4535 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4536 {
4537         /* We only register the i915 ips part with intel-ips once everything is
4538          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4539         spin_lock_irq(&mchdev_lock);
4540         i915_mch_dev = dev_priv;
4541         spin_unlock_irq(&mchdev_lock);
4542
4543         ips_ping_for_i915_load();
4544 }
4545
4546 void intel_gpu_ips_teardown(void)
4547 {
4548         spin_lock_irq(&mchdev_lock);
4549         i915_mch_dev = NULL;
4550         spin_unlock_irq(&mchdev_lock);
4551 }
4552
4553 static void intel_init_emon(struct drm_device *dev)
4554 {
4555         struct drm_i915_private *dev_priv = dev->dev_private;
4556         u32 lcfuse;
4557         u8 pxw[16];
4558         int i;
4559
4560         /* Disable to program */
4561         I915_WRITE(ECR, 0);
4562         POSTING_READ(ECR);
4563
4564         /* Program energy weights for various events */
4565         I915_WRITE(SDEW, 0x15040d00);
4566         I915_WRITE(CSIEW0, 0x007f0000);
4567         I915_WRITE(CSIEW1, 0x1e220004);
4568         I915_WRITE(CSIEW2, 0x04000004);
4569
4570         for (i = 0; i < 5; i++)
4571                 I915_WRITE(PEW + (i * 4), 0);
4572         for (i = 0; i < 3; i++)
4573                 I915_WRITE(DEW + (i * 4), 0);
4574
4575         /* Program P-state weights to account for frequency power adjustment */
4576         for (i = 0; i < 16; i++) {
4577                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4578                 unsigned long freq = intel_pxfreq(pxvidfreq);
4579                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4580                         PXVFREQ_PX_SHIFT;
4581                 unsigned long val;
4582
4583                 val = vid * vid;
4584                 val *= (freq / 1000);
4585                 val *= 255;
4586                 val /= (127*127*900);
4587                 if (val > 0xff)
4588                         DRM_ERROR("bad pxval: %ld\n", val);
4589                 pxw[i] = val;
4590         }
4591         /* Render standby states get 0 weight */
4592         pxw[14] = 0;
4593         pxw[15] = 0;
4594
4595         for (i = 0; i < 4; i++) {
4596                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4597                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4598                 I915_WRITE(PXW + (i * 4), val);
4599         }
4600
4601         /* Adjust magic regs to magic values (more experimental results) */
4602         I915_WRITE(OGW0, 0);
4603         I915_WRITE(OGW1, 0);
4604         I915_WRITE(EG0, 0x00007f00);
4605         I915_WRITE(EG1, 0x0000000e);
4606         I915_WRITE(EG2, 0x000e0000);
4607         I915_WRITE(EG3, 0x68000300);
4608         I915_WRITE(EG4, 0x42000000);
4609         I915_WRITE(EG5, 0x00140031);
4610         I915_WRITE(EG6, 0);
4611         I915_WRITE(EG7, 0);
4612
4613         for (i = 0; i < 8; i++)
4614                 I915_WRITE(PXWL + (i * 4), 0);
4615
4616         /* Enable PMON + select events */
4617         I915_WRITE(ECR, 0x80000019);
4618
4619         lcfuse = I915_READ(LCFUSE02);
4620
4621         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4622 }
4623
4624 void intel_init_gt_powersave(struct drm_device *dev)
4625 {
4626         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4627
4628         if (IS_VALLEYVIEW(dev))
4629                 valleyview_init_gt_powersave(dev);
4630 }
4631
4632 void intel_cleanup_gt_powersave(struct drm_device *dev)
4633 {
4634         if (IS_VALLEYVIEW(dev))
4635                 valleyview_cleanup_gt_powersave(dev);
4636 }
4637
4638 void intel_disable_gt_powersave(struct drm_device *dev)
4639 {
4640         struct drm_i915_private *dev_priv = dev->dev_private;
4641
4642         /* Interrupts should be disabled already to avoid re-arming. */
4643         WARN_ON(dev->irq_enabled);
4644
4645         if (IS_IRONLAKE_M(dev)) {
4646                 ironlake_disable_drps(dev);
4647                 ironlake_disable_rc6(dev);
4648         } else if (IS_GEN6(dev) || IS_GEN7(dev) || IS_BROADWELL(dev)) {
4649                 if (cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work))
4650                         intel_runtime_pm_put(dev_priv);
4651
4652                 cancel_work_sync(&dev_priv->rps.work);
4653                 mutex_lock(&dev_priv->rps.hw_lock);
4654                 if (IS_VALLEYVIEW(dev))
4655                         valleyview_disable_rps(dev);
4656                 else
4657                         gen6_disable_rps(dev);
4658                 dev_priv->rps.enabled = false;
4659                 mutex_unlock(&dev_priv->rps.hw_lock);
4660         }
4661 }
4662
4663 static void intel_gen6_powersave_work(struct work_struct *work)
4664 {
4665         struct drm_i915_private *dev_priv =
4666                 container_of(work, struct drm_i915_private,
4667                              rps.delayed_resume_work.work);
4668         struct drm_device *dev = dev_priv->dev;
4669
4670         mutex_lock(&dev_priv->rps.hw_lock);
4671
4672         if (IS_VALLEYVIEW(dev)) {
4673                 valleyview_enable_rps(dev);
4674         } else if (IS_BROADWELL(dev)) {
4675                 gen8_enable_rps(dev);
4676                 __gen6_update_ring_freq(dev);
4677         } else {
4678                 gen6_enable_rps(dev);
4679                 __gen6_update_ring_freq(dev);
4680         }
4681         dev_priv->rps.enabled = true;
4682         mutex_unlock(&dev_priv->rps.hw_lock);
4683
4684         intel_runtime_pm_put(dev_priv);
4685 }
4686
4687 void intel_enable_gt_powersave(struct drm_device *dev)
4688 {
4689         struct drm_i915_private *dev_priv = dev->dev_private;
4690
4691         if (IS_IRONLAKE_M(dev)) {
4692                 mutex_lock(&dev->struct_mutex);
4693                 ironlake_enable_drps(dev);
4694                 ironlake_enable_rc6(dev);
4695                 intel_init_emon(dev);
4696                 mutex_unlock(&dev->struct_mutex);
4697         } else if (IS_GEN6(dev) || IS_GEN7(dev) || IS_BROADWELL(dev)) {
4698                 /*
4699                  * PCU communication is slow and this doesn't need to be
4700                  * done at any specific time, so do this out of our fast path
4701                  * to make resume and init faster.
4702                  *
4703                  * We depend on the HW RC6 power context save/restore
4704                  * mechanism when entering D3 through runtime PM suspend. So
4705                  * disable RPM until RPS/RC6 is properly setup. We can only
4706                  * get here via the driver load/system resume/runtime resume
4707                  * paths, so the _noresume version is enough (and in case of
4708                  * runtime resume it's necessary).
4709                  */
4710                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4711                                            round_jiffies_up_relative(HZ)))
4712                         intel_runtime_pm_get_noresume(dev_priv);
4713         }
4714 }
4715
4716 void intel_reset_gt_powersave(struct drm_device *dev)
4717 {
4718         struct drm_i915_private *dev_priv = dev->dev_private;
4719
4720         dev_priv->rps.enabled = false;
4721         intel_enable_gt_powersave(dev);
4722 }
4723
4724 static void ibx_init_clock_gating(struct drm_device *dev)
4725 {
4726         struct drm_i915_private *dev_priv = dev->dev_private;
4727
4728         /*
4729          * On Ibex Peak and Cougar Point, we need to disable clock
4730          * gating for the panel power sequencer or it will fail to
4731          * start up when no ports are active.
4732          */
4733         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4734 }
4735
4736 static void g4x_disable_trickle_feed(struct drm_device *dev)
4737 {
4738         struct drm_i915_private *dev_priv = dev->dev_private;
4739         int pipe;
4740
4741         for_each_pipe(pipe) {
4742                 I915_WRITE(DSPCNTR(pipe),
4743                            I915_READ(DSPCNTR(pipe)) |
4744                            DISPPLANE_TRICKLE_FEED_DISABLE);
4745                 intel_flush_primary_plane(dev_priv, pipe);
4746         }
4747 }
4748
4749 static void ilk_init_lp_watermarks(struct drm_device *dev)
4750 {
4751         struct drm_i915_private *dev_priv = dev->dev_private;
4752
4753         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4754         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4755         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4756
4757         /*
4758          * Don't touch WM1S_LP_EN here.
4759          * Doing so could cause underruns.
4760          */
4761 }
4762
4763 static void ironlake_init_clock_gating(struct drm_device *dev)
4764 {
4765         struct drm_i915_private *dev_priv = dev->dev_private;
4766         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4767
4768         /*
4769          * Required for FBC
4770          * WaFbcDisableDpfcClockGating:ilk
4771          */
4772         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4773                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4774                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4775
4776         I915_WRITE(PCH_3DCGDIS0,
4777                    MARIUNIT_CLOCK_GATE_DISABLE |
4778                    SVSMUNIT_CLOCK_GATE_DISABLE);
4779         I915_WRITE(PCH_3DCGDIS1,
4780                    VFMUNIT_CLOCK_GATE_DISABLE);
4781
4782         /*
4783          * According to the spec the following bits should be set in
4784          * order to enable memory self-refresh
4785          * The bit 22/21 of 0x42004
4786          * The bit 5 of 0x42020
4787          * The bit 15 of 0x45000
4788          */
4789         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4790                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4791                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4792         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4793         I915_WRITE(DISP_ARB_CTL,
4794                    (I915_READ(DISP_ARB_CTL) |
4795                     DISP_FBC_WM_DIS));
4796
4797         ilk_init_lp_watermarks(dev);
4798
4799         /*
4800          * Based on the document from hardware guys the following bits
4801          * should be set unconditionally in order to enable FBC.
4802          * The bit 22 of 0x42000
4803          * The bit 22 of 0x42004
4804          * The bit 7,8,9 of 0x42020.
4805          */
4806         if (IS_IRONLAKE_M(dev)) {
4807                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4808                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4809                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4810                            ILK_FBCQ_DIS);
4811                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4812                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4813                            ILK_DPARB_GATE);
4814         }
4815
4816         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4817
4818         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4819                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4820                    ILK_ELPIN_409_SELECT);
4821         I915_WRITE(_3D_CHICKEN2,
4822                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4823                    _3D_CHICKEN2_WM_READ_PIPELINED);
4824
4825         /* WaDisableRenderCachePipelinedFlush:ilk */
4826         I915_WRITE(CACHE_MODE_0,
4827                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4828
4829         /* WaDisable_RenderCache_OperationalFlush:ilk */
4830         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4831
4832         g4x_disable_trickle_feed(dev);
4833
4834         ibx_init_clock_gating(dev);
4835 }
4836
4837 static void cpt_init_clock_gating(struct drm_device *dev)
4838 {
4839         struct drm_i915_private *dev_priv = dev->dev_private;
4840         int pipe;
4841         uint32_t val;
4842
4843         /*
4844          * On Ibex Peak and Cougar Point, we need to disable clock
4845          * gating for the panel power sequencer or it will fail to
4846          * start up when no ports are active.
4847          */
4848         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4849                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4850                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4851         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4852                    DPLS_EDP_PPS_FIX_DIS);
4853         /* The below fixes the weird display corruption, a few pixels shifted
4854          * downward, on (only) LVDS of some HP laptops with IVY.
4855          */
4856         for_each_pipe(pipe) {
4857                 val = I915_READ(TRANS_CHICKEN2(pipe));
4858                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4859                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4860                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4861                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4862                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4863                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4864                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4865                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4866         }
4867         /* WADP0ClockGatingDisable */
4868         for_each_pipe(pipe) {
4869                 I915_WRITE(TRANS_CHICKEN1(pipe),
4870                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4871         }
4872 }
4873
4874 static void gen6_check_mch_setup(struct drm_device *dev)
4875 {
4876         struct drm_i915_private *dev_priv = dev->dev_private;
4877         uint32_t tmp;
4878
4879         tmp = I915_READ(MCH_SSKPD);
4880         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4881                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4882                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4883                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4884         }
4885 }
4886
4887 static void gen6_init_clock_gating(struct drm_device *dev)
4888 {
4889         struct drm_i915_private *dev_priv = dev->dev_private;
4890         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4891
4892         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4893
4894         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4895                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4896                    ILK_ELPIN_409_SELECT);
4897
4898         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4899         I915_WRITE(_3D_CHICKEN,
4900                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4901
4902         /* WaSetupGtModeTdRowDispatch:snb */
4903         if (IS_SNB_GT1(dev))
4904                 I915_WRITE(GEN6_GT_MODE,
4905                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4906
4907         /* WaDisable_RenderCache_OperationalFlush:snb */
4908         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4909
4910         /*
4911          * BSpec recoomends 8x4 when MSAA is used,
4912          * however in practice 16x4 seems fastest.
4913          *
4914          * Note that PS/WM thread counts depend on the WIZ hashing
4915          * disable bit, which we don't touch here, but it's good
4916          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4917          */
4918         I915_WRITE(GEN6_GT_MODE,
4919                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4920
4921         ilk_init_lp_watermarks(dev);
4922
4923         I915_WRITE(CACHE_MODE_0,
4924                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4925
4926         I915_WRITE(GEN6_UCGCTL1,
4927                    I915_READ(GEN6_UCGCTL1) |
4928                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4929                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4930
4931         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4932          * gating disable must be set.  Failure to set it results in
4933          * flickering pixels due to Z write ordering failures after
4934          * some amount of runtime in the Mesa "fire" demo, and Unigine
4935          * Sanctuary and Tropics, and apparently anything else with
4936          * alpha test or pixel discard.
4937          *
4938          * According to the spec, bit 11 (RCCUNIT) must also be set,
4939          * but we didn't debug actual testcases to find it out.
4940          *
4941          * WaDisableRCCUnitClockGating:snb
4942          * WaDisableRCPBUnitClockGating:snb
4943          */
4944         I915_WRITE(GEN6_UCGCTL2,
4945                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4946                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4947
4948         /* WaStripsFansDisableFastClipPerformanceFix:snb */
4949         I915_WRITE(_3D_CHICKEN3,
4950                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4951
4952         /*
4953          * Bspec says:
4954          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4955          * 3DSTATE_SF number of SF output attributes is more than 16."
4956          */
4957         I915_WRITE(_3D_CHICKEN3,
4958                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4959
4960         /*
4961          * According to the spec the following bits should be
4962          * set in order to enable memory self-refresh and fbc:
4963          * The bit21 and bit22 of 0x42000
4964          * The bit21 and bit22 of 0x42004
4965          * The bit5 and bit7 of 0x42020
4966          * The bit14 of 0x70180
4967          * The bit14 of 0x71180
4968          *
4969          * WaFbcAsynchFlipDisableFbcQueue:snb
4970          */
4971         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4972                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4973                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4974         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4975                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4976                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4977         I915_WRITE(ILK_DSPCLK_GATE_D,
4978                    I915_READ(ILK_DSPCLK_GATE_D) |
4979                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4980                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4981
4982         g4x_disable_trickle_feed(dev);
4983
4984         cpt_init_clock_gating(dev);
4985
4986         gen6_check_mch_setup(dev);
4987 }
4988
4989 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4990 {
4991         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4992
4993         /*
4994          * WaVSThreadDispatchOverride:ivb,vlv
4995          *
4996          * This actually overrides the dispatch
4997          * mode for all thread types.
4998          */
4999         reg &= ~GEN7_FF_SCHED_MASK;
5000         reg |= GEN7_FF_TS_SCHED_HW;
5001         reg |= GEN7_FF_VS_SCHED_HW;
5002         reg |= GEN7_FF_DS_SCHED_HW;
5003
5004         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5005 }
5006
5007 static void lpt_init_clock_gating(struct drm_device *dev)
5008 {
5009         struct drm_i915_private *dev_priv = dev->dev_private;
5010
5011         /*
5012          * TODO: this bit should only be enabled when really needed, then
5013          * disabled when not needed anymore in order to save power.
5014          */
5015         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5016                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5017                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5018                            PCH_LP_PARTITION_LEVEL_DISABLE);
5019
5020         /* WADPOClockGatingDisable:hsw */
5021         I915_WRITE(_TRANSA_CHICKEN1,
5022                    I915_READ(_TRANSA_CHICKEN1) |
5023                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5024 }
5025
5026 static void lpt_suspend_hw(struct drm_device *dev)
5027 {
5028         struct drm_i915_private *dev_priv = dev->dev_private;
5029
5030         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5031                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5032
5033                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5034                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5035         }
5036 }
5037
5038 static void gen8_init_clock_gating(struct drm_device *dev)
5039 {
5040         struct drm_i915_private *dev_priv = dev->dev_private;
5041         enum pipe pipe;
5042
5043         I915_WRITE(WM3_LP_ILK, 0);
5044         I915_WRITE(WM2_LP_ILK, 0);
5045         I915_WRITE(WM1_LP_ILK, 0);
5046
5047         /* FIXME(BDW): Check all the w/a, some might only apply to
5048          * pre-production hw. */
5049
5050         /* WaDisablePartialInstShootdown:bdw */
5051         I915_WRITE(GEN8_ROW_CHICKEN,
5052                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5053
5054         /* WaDisableThreadStallDopClockGating:bdw */
5055         /* FIXME: Unclear whether we really need this on production bdw. */
5056         I915_WRITE(GEN8_ROW_CHICKEN,
5057                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5058
5059         /*
5060          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5061          * pre-production hardware
5062          */
5063         I915_WRITE(HALF_SLICE_CHICKEN3,
5064                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5065         I915_WRITE(HALF_SLICE_CHICKEN3,
5066                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5067         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5068
5069         I915_WRITE(_3D_CHICKEN3,
5070                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5071
5072         I915_WRITE(COMMON_SLICE_CHICKEN2,
5073                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5074
5075         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5076                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5077
5078         /* WaDisableDopClockGating:bdw May not be needed for production */
5079         I915_WRITE(GEN7_ROW_CHICKEN2,
5080                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5081
5082         /* WaSwitchSolVfFArbitrationPriority:bdw */
5083         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5084
5085         /* WaPsrDPAMaskVBlankInSRD:bdw */
5086         I915_WRITE(CHICKEN_PAR1_1,
5087                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5088
5089         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5090         for_each_pipe(pipe) {
5091                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5092                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5093                            BDW_DPRS_MASK_VBLANK_SRD);
5094         }
5095
5096         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5097          * workaround for for a possible hang in the unlikely event a TLB
5098          * invalidation occurs during a PSD flush.
5099          */
5100         I915_WRITE(HDC_CHICKEN0,
5101                    I915_READ(HDC_CHICKEN0) |
5102                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5103
5104         /* WaVSRefCountFullforceMissDisable:bdw */
5105         /* WaDSRefCountFullforceMissDisable:bdw */
5106         I915_WRITE(GEN7_FF_THREAD_MODE,
5107                    I915_READ(GEN7_FF_THREAD_MODE) &
5108                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5109
5110         /*
5111          * BSpec recommends 8x4 when MSAA is used,
5112          * however in practice 16x4 seems fastest.
5113          *
5114          * Note that PS/WM thread counts depend on the WIZ hashing
5115          * disable bit, which we don't touch here, but it's good
5116          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5117          */
5118         I915_WRITE(GEN7_GT_MODE,
5119                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5120
5121         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5122                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5123
5124         /* WaDisableSDEUnitClockGating:bdw */
5125         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5126                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5127
5128         /* Wa4x4STCOptimizationDisable:bdw */
5129         I915_WRITE(CACHE_MODE_1,
5130                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5131 }
5132
5133 static void haswell_init_clock_gating(struct drm_device *dev)
5134 {
5135         struct drm_i915_private *dev_priv = dev->dev_private;
5136
5137         ilk_init_lp_watermarks(dev);
5138
5139         /* L3 caching of data atomics doesn't work -- disable it. */
5140         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5141         I915_WRITE(HSW_ROW_CHICKEN3,
5142                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5143
5144         /* This is required by WaCatErrorRejectionIssue:hsw */
5145         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5146                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5147                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5148
5149         /* WaVSRefCountFullforceMissDisable:hsw */
5150         I915_WRITE(GEN7_FF_THREAD_MODE,
5151                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5152
5153         /* WaDisable_RenderCache_OperationalFlush:hsw */
5154         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5155
5156         /* enable HiZ Raw Stall Optimization */
5157         I915_WRITE(CACHE_MODE_0_GEN7,
5158                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5159
5160         /* WaDisable4x2SubspanOptimization:hsw */
5161         I915_WRITE(CACHE_MODE_1,
5162                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5163
5164         /*
5165          * BSpec recommends 8x4 when MSAA is used,
5166          * however in practice 16x4 seems fastest.
5167          *
5168          * Note that PS/WM thread counts depend on the WIZ hashing
5169          * disable bit, which we don't touch here, but it's good
5170          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5171          */
5172         I915_WRITE(GEN7_GT_MODE,
5173                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5174
5175         /* WaSwitchSolVfFArbitrationPriority:hsw */
5176         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5177
5178         /* WaRsPkgCStateDisplayPMReq:hsw */
5179         I915_WRITE(CHICKEN_PAR1_1,
5180                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5181
5182         lpt_init_clock_gating(dev);
5183 }
5184
5185 static void ivybridge_init_clock_gating(struct drm_device *dev)
5186 {
5187         struct drm_i915_private *dev_priv = dev->dev_private;
5188         uint32_t snpcr;
5189
5190         ilk_init_lp_watermarks(dev);
5191
5192         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5193
5194         /* WaDisableEarlyCull:ivb */
5195         I915_WRITE(_3D_CHICKEN3,
5196                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5197
5198         /* WaDisableBackToBackFlipFix:ivb */
5199         I915_WRITE(IVB_CHICKEN3,
5200                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5201                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5202
5203         /* WaDisablePSDDualDispatchEnable:ivb */
5204         if (IS_IVB_GT1(dev))
5205                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5206                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5207
5208         /* WaDisable_RenderCache_OperationalFlush:ivb */
5209         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5210
5211         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5212         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5213                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5214
5215         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5216         I915_WRITE(GEN7_L3CNTLREG1,
5217                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5218         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5219                    GEN7_WA_L3_CHICKEN_MODE);
5220         if (IS_IVB_GT1(dev))
5221                 I915_WRITE(GEN7_ROW_CHICKEN2,
5222                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5223         else {
5224                 /* must write both registers */
5225                 I915_WRITE(GEN7_ROW_CHICKEN2,
5226                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5227                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5228                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5229         }
5230
5231         /* WaForceL3Serialization:ivb */
5232         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5233                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5234
5235         /*
5236          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5237          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5238          */
5239         I915_WRITE(GEN6_UCGCTL2,
5240                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5241
5242         /* This is required by WaCatErrorRejectionIssue:ivb */
5243         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5244                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5245                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5246
5247         g4x_disable_trickle_feed(dev);
5248
5249         gen7_setup_fixed_func_scheduler(dev_priv);
5250
5251         if (0) { /* causes HiZ corruption on ivb:gt1 */
5252                 /* enable HiZ Raw Stall Optimization */
5253                 I915_WRITE(CACHE_MODE_0_GEN7,
5254                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5255         }
5256
5257         /* WaDisable4x2SubspanOptimization:ivb */
5258         I915_WRITE(CACHE_MODE_1,
5259                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5260
5261         /*
5262          * BSpec recommends 8x4 when MSAA is used,
5263          * however in practice 16x4 seems fastest.
5264          *
5265          * Note that PS/WM thread counts depend on the WIZ hashing
5266          * disable bit, which we don't touch here, but it's good
5267          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5268          */
5269         I915_WRITE(GEN7_GT_MODE,
5270                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5271
5272         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5273         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5274         snpcr |= GEN6_MBC_SNPCR_MED;
5275         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5276
5277         if (!HAS_PCH_NOP(dev))
5278                 cpt_init_clock_gating(dev);
5279
5280         gen6_check_mch_setup(dev);
5281 }
5282
5283 static void valleyview_init_clock_gating(struct drm_device *dev)
5284 {
5285         struct drm_i915_private *dev_priv = dev->dev_private;
5286         u32 val;
5287
5288         mutex_lock(&dev_priv->rps.hw_lock);
5289         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5290         mutex_unlock(&dev_priv->rps.hw_lock);
5291         switch ((val >> 6) & 3) {
5292         case 0:
5293         case 1:
5294                 dev_priv->mem_freq = 800;
5295                 break;
5296         case 2:
5297                 dev_priv->mem_freq = 1066;
5298                 break;
5299         case 3:
5300                 dev_priv->mem_freq = 1333;
5301                 break;
5302         }
5303         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5304
5305         dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
5306         DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
5307                          dev_priv->vlv_cdclk_freq);
5308
5309         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5310
5311         /* WaDisableEarlyCull:vlv */
5312         I915_WRITE(_3D_CHICKEN3,
5313                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5314
5315         /* WaDisableBackToBackFlipFix:vlv */
5316         I915_WRITE(IVB_CHICKEN3,
5317                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5318                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5319
5320         /* WaPsdDispatchEnable:vlv */
5321         /* WaDisablePSDDualDispatchEnable:vlv */
5322         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5323                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5324                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5325
5326         /* WaDisable_RenderCache_OperationalFlush:vlv */
5327         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5328
5329         /* WaForceL3Serialization:vlv */
5330         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5331                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5332
5333         /* WaDisableDopClockGating:vlv */
5334         I915_WRITE(GEN7_ROW_CHICKEN2,
5335                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5336
5337         /* This is required by WaCatErrorRejectionIssue:vlv */
5338         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5339                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5340                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5341
5342         gen7_setup_fixed_func_scheduler(dev_priv);
5343
5344         /*
5345          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5346          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5347          */
5348         I915_WRITE(GEN6_UCGCTL2,
5349                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5350
5351         /* WaDisableL3Bank2xClockGate:vlv
5352          * Disabling L3 clock gating- MMIO 940c[25] = 1
5353          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5354         I915_WRITE(GEN7_UCGCTL4,
5355                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5356
5357         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5358
5359         /*
5360          * BSpec says this must be set, even though
5361          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5362          */
5363         I915_WRITE(CACHE_MODE_1,
5364                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5365
5366         /*
5367          * WaIncreaseL3CreditsForVLVB0:vlv
5368          * This is the hardware default actually.
5369          */
5370         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5371
5372         /*
5373          * WaDisableVLVClockGating_VBIIssue:vlv
5374          * Disable clock gating on th GCFG unit to prevent a delay
5375          * in the reporting of vblank events.
5376          */
5377         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5378 }
5379
5380 static void cherryview_init_clock_gating(struct drm_device *dev)
5381 {
5382         struct drm_i915_private *dev_priv = dev->dev_private;
5383
5384         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5385
5386         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5387
5388         /* WaDisablePartialInstShootdown:chv */
5389         I915_WRITE(GEN8_ROW_CHICKEN,
5390                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5391
5392         /* WaDisableThreadStallDopClockGating:chv */
5393         I915_WRITE(GEN8_ROW_CHICKEN,
5394                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5395
5396         /* WaVSRefCountFullforceMissDisable:chv */
5397         /* WaDSRefCountFullforceMissDisable:chv */
5398         I915_WRITE(GEN7_FF_THREAD_MODE,
5399                    I915_READ(GEN7_FF_THREAD_MODE) &
5400                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5401
5402         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5403         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5404                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5405
5406         /* WaDisableCSUnitClockGating:chv */
5407         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5408                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5409
5410         /* WaDisableSDEUnitClockGating:chv */
5411         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5412                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5413
5414         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5415         I915_WRITE(HALF_SLICE_CHICKEN3,
5416                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5417
5418         /* WaDisableGunitClockGating:chv (pre-production hw) */
5419         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5420                    GINT_DIS);
5421
5422         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5423         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5424                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5425
5426         /* WaDisableDopClockGating:chv (pre-production hw) */
5427         I915_WRITE(GEN7_ROW_CHICKEN2,
5428                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5429         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5430                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5431 }
5432
5433 static void g4x_init_clock_gating(struct drm_device *dev)
5434 {
5435         struct drm_i915_private *dev_priv = dev->dev_private;
5436         uint32_t dspclk_gate;
5437
5438         I915_WRITE(RENCLK_GATE_D1, 0);
5439         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5440                    GS_UNIT_CLOCK_GATE_DISABLE |
5441                    CL_UNIT_CLOCK_GATE_DISABLE);
5442         I915_WRITE(RAMCLK_GATE_D, 0);
5443         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5444                 OVRUNIT_CLOCK_GATE_DISABLE |
5445                 OVCUNIT_CLOCK_GATE_DISABLE;
5446         if (IS_GM45(dev))
5447                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5448         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5449
5450         /* WaDisableRenderCachePipelinedFlush */
5451         I915_WRITE(CACHE_MODE_0,
5452                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5453
5454         /* WaDisable_RenderCache_OperationalFlush:g4x */
5455         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5456
5457         g4x_disable_trickle_feed(dev);
5458 }
5459
5460 static void crestline_init_clock_gating(struct drm_device *dev)
5461 {
5462         struct drm_i915_private *dev_priv = dev->dev_private;
5463
5464         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5465         I915_WRITE(RENCLK_GATE_D2, 0);
5466         I915_WRITE(DSPCLK_GATE_D, 0);
5467         I915_WRITE(RAMCLK_GATE_D, 0);
5468         I915_WRITE16(DEUC, 0);
5469         I915_WRITE(MI_ARB_STATE,
5470                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5471
5472         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5473         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5474 }
5475
5476 static void broadwater_init_clock_gating(struct drm_device *dev)
5477 {
5478         struct drm_i915_private *dev_priv = dev->dev_private;
5479
5480         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5481                    I965_RCC_CLOCK_GATE_DISABLE |
5482                    I965_RCPB_CLOCK_GATE_DISABLE |
5483                    I965_ISC_CLOCK_GATE_DISABLE |
5484                    I965_FBC_CLOCK_GATE_DISABLE);
5485         I915_WRITE(RENCLK_GATE_D2, 0);
5486         I915_WRITE(MI_ARB_STATE,
5487                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5488
5489         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5490         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5491 }
5492
5493 static void gen3_init_clock_gating(struct drm_device *dev)
5494 {
5495         struct drm_i915_private *dev_priv = dev->dev_private;
5496         u32 dstate = I915_READ(D_STATE);
5497
5498         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5499                 DSTATE_DOT_CLOCK_GATING;
5500         I915_WRITE(D_STATE, dstate);
5501
5502         if (IS_PINEVIEW(dev))
5503                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5504
5505         /* IIR "flip pending" means done if this bit is set */
5506         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5507 }
5508
5509 static void i85x_init_clock_gating(struct drm_device *dev)
5510 {
5511         struct drm_i915_private *dev_priv = dev->dev_private;
5512
5513         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5514 }
5515
5516 static void i830_init_clock_gating(struct drm_device *dev)
5517 {
5518         struct drm_i915_private *dev_priv = dev->dev_private;
5519
5520         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5521 }
5522
5523 void intel_init_clock_gating(struct drm_device *dev)
5524 {
5525         struct drm_i915_private *dev_priv = dev->dev_private;
5526
5527         dev_priv->display.init_clock_gating(dev);
5528 }
5529
5530 void intel_suspend_hw(struct drm_device *dev)
5531 {
5532         if (HAS_PCH_LPT(dev))
5533                 lpt_suspend_hw(dev);
5534 }
5535
5536 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5537         for (i = 0;                                                     \
5538              i < (power_domains)->power_well_count &&                   \
5539                  ((power_well) = &(power_domains)->power_wells[i]);     \
5540              i++)                                                       \
5541                 if ((power_well)->domains & (domain_mask))
5542
5543 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5544         for (i = (power_domains)->power_well_count - 1;                  \
5545              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5546              i--)                                                        \
5547                 if ((power_well)->domains & (domain_mask))
5548
5549 /**
5550  * We should only use the power well if we explicitly asked the hardware to
5551  * enable it, so check if it's enabled and also check if we've requested it to
5552  * be enabled.
5553  */
5554 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5555                                    struct i915_power_well *power_well)
5556 {
5557         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5558                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5559 }
5560
5561 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5562                                     enum intel_display_power_domain domain)
5563 {
5564         struct i915_power_domains *power_domains;
5565
5566         power_domains = &dev_priv->power_domains;
5567
5568         return power_domains->domain_use_count[domain];
5569 }
5570
5571 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5572                                  enum intel_display_power_domain domain)
5573 {
5574         struct i915_power_domains *power_domains;
5575         struct i915_power_well *power_well;
5576         bool is_enabled;
5577         int i;
5578
5579         if (dev_priv->pm.suspended)
5580                 return false;
5581
5582         power_domains = &dev_priv->power_domains;
5583
5584         is_enabled = true;
5585
5586         mutex_lock(&power_domains->lock);
5587         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5588                 if (power_well->always_on)
5589                         continue;
5590
5591                 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5592                         is_enabled = false;
5593                         break;
5594                 }
5595         }
5596         mutex_unlock(&power_domains->lock);
5597
5598         return is_enabled;
5599 }
5600
5601 /*
5602  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5603  * when not needed anymore. We have 4 registers that can request the power well
5604  * to be enabled, and it will only be disabled if none of the registers is
5605  * requesting it to be enabled.
5606  */
5607 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5608 {
5609         struct drm_device *dev = dev_priv->dev;
5610         unsigned long irqflags;
5611
5612         /*
5613          * After we re-enable the power well, if we touch VGA register 0x3d5
5614          * we'll get unclaimed register interrupts. This stops after we write
5615          * anything to the VGA MSR register. The vgacon module uses this
5616          * register all the time, so if we unbind our driver and, as a
5617          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5618          * console_unlock(). So make here we touch the VGA MSR register, making
5619          * sure vgacon can keep working normally without triggering interrupts
5620          * and error messages.
5621          */
5622         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5623         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5624         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5625
5626         if (IS_BROADWELL(dev)) {
5627                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5628                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5629                            dev_priv->de_irq_mask[PIPE_B]);
5630                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5631                            ~dev_priv->de_irq_mask[PIPE_B] |
5632                            GEN8_PIPE_VBLANK);
5633                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5634                            dev_priv->de_irq_mask[PIPE_C]);
5635                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5636                            ~dev_priv->de_irq_mask[PIPE_C] |
5637                            GEN8_PIPE_VBLANK);
5638                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5639                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5640         }
5641 }
5642
5643 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5644                                struct i915_power_well *power_well, bool enable)
5645 {
5646         bool is_enabled, enable_requested;
5647         uint32_t tmp;
5648
5649         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5650         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5651         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5652
5653         if (enable) {
5654                 if (!enable_requested)
5655                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5656                                    HSW_PWR_WELL_ENABLE_REQUEST);
5657
5658                 if (!is_enabled) {
5659                         DRM_DEBUG_KMS("Enabling power well\n");
5660                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5661                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5662                                 DRM_ERROR("Timeout enabling power well\n");
5663                 }
5664
5665                 hsw_power_well_post_enable(dev_priv);
5666         } else {
5667                 if (enable_requested) {
5668                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5669                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5670                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5671                 }
5672         }
5673 }
5674
5675 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5676                                    struct i915_power_well *power_well)
5677 {
5678         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5679
5680         /*
5681          * We're taking over the BIOS, so clear any requests made by it since
5682          * the driver is in charge now.
5683          */
5684         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5685                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5686 }
5687
5688 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5689                                   struct i915_power_well *power_well)
5690 {
5691         hsw_set_power_well(dev_priv, power_well, true);
5692 }
5693
5694 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5695                                    struct i915_power_well *power_well)
5696 {
5697         hsw_set_power_well(dev_priv, power_well, false);
5698 }
5699
5700 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5701                                            struct i915_power_well *power_well)
5702 {
5703 }
5704
5705 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5706                                              struct i915_power_well *power_well)
5707 {
5708         return true;
5709 }
5710
5711 void __vlv_set_power_well(struct drm_i915_private *dev_priv,
5712                           enum punit_power_well power_well_id, bool enable)
5713 {
5714         u32 mask;
5715         u32 state;
5716         u32 ctrl;
5717
5718         if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC && enable) {
5719                 /*
5720                  * Enable the CRI clock source so we can get at the display
5721                  * and the reference clock for VGA hotplug / manual detection.
5722                  */
5723                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
5724                            DPLL_REFA_CLK_ENABLE_VLV |
5725                            DPLL_INTEGRATED_CRI_CLK_VLV);
5726                 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
5727         }
5728
5729         mask = PUNIT_PWRGT_MASK(power_well_id);
5730         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5731                          PUNIT_PWRGT_PWR_GATE(power_well_id);
5732
5733         mutex_lock(&dev_priv->rps.hw_lock);
5734
5735 #define COND \
5736         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5737
5738         if (COND)
5739                 goto out;
5740
5741         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5742         ctrl &= ~mask;
5743         ctrl |= state;
5744         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5745
5746         if (wait_for(COND, 100))
5747                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5748                           state,
5749                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5750
5751 #undef COND
5752
5753 out:
5754         mutex_unlock(&dev_priv->rps.hw_lock);
5755 }
5756
5757 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5758                                struct i915_power_well *power_well, bool enable)
5759 {
5760         enum punit_power_well power_well_id = power_well->data;
5761
5762         __vlv_set_power_well(dev_priv, power_well_id, enable);
5763 }
5764
5765 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5766                                    struct i915_power_well *power_well)
5767 {
5768         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5769 }
5770
5771 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5772                                   struct i915_power_well *power_well)
5773 {
5774         vlv_set_power_well(dev_priv, power_well, true);
5775 }
5776
5777 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5778                                    struct i915_power_well *power_well)
5779 {
5780         vlv_set_power_well(dev_priv, power_well, false);
5781 }
5782
5783 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5784                                    struct i915_power_well *power_well)
5785 {
5786         int power_well_id = power_well->data;
5787         bool enabled = false;
5788         u32 mask;
5789         u32 state;
5790         u32 ctrl;
5791
5792         mask = PUNIT_PWRGT_MASK(power_well_id);
5793         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5794
5795         mutex_lock(&dev_priv->rps.hw_lock);
5796
5797         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5798         /*
5799          * We only ever set the power-on and power-gate states, anything
5800          * else is unexpected.
5801          */
5802         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5803                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5804         if (state == ctrl)
5805                 enabled = true;
5806
5807         /*
5808          * A transient state at this point would mean some unexpected party
5809          * is poking at the power controls too.
5810          */
5811         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5812         WARN_ON(ctrl != state);
5813
5814         mutex_unlock(&dev_priv->rps.hw_lock);
5815
5816         return enabled;
5817 }
5818
5819 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5820                                           struct i915_power_well *power_well)
5821 {
5822         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5823
5824         vlv_set_power_well(dev_priv, power_well, true);
5825
5826         spin_lock_irq(&dev_priv->irq_lock);
5827         valleyview_enable_display_irqs(dev_priv);
5828         spin_unlock_irq(&dev_priv->irq_lock);
5829
5830         /*
5831          * During driver initialization/resume we can avoid restoring the
5832          * part of the HW/SW state that will be inited anyway explicitly.
5833          */
5834         if (dev_priv->power_domains.initializing)
5835                 return;
5836
5837         intel_hpd_init(dev_priv->dev);
5838
5839         i915_redisable_vga_power_on(dev_priv->dev);
5840 }
5841
5842 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5843                                            struct i915_power_well *power_well)
5844 {
5845         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5846
5847         spin_lock_irq(&dev_priv->irq_lock);
5848         valleyview_disable_display_irqs(dev_priv);
5849         spin_unlock_irq(&dev_priv->irq_lock);
5850
5851         vlv_set_power_well(dev_priv, power_well, false);
5852 }
5853
5854 static void check_power_well_state(struct drm_i915_private *dev_priv,
5855                                    struct i915_power_well *power_well)
5856 {
5857         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5858
5859         if (power_well->always_on || !i915.disable_power_well) {
5860                 if (!enabled)
5861                         goto mismatch;
5862
5863                 return;
5864         }
5865
5866         if (enabled != (power_well->count > 0))
5867                 goto mismatch;
5868
5869         return;
5870
5871 mismatch:
5872         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5873                   power_well->name, power_well->always_on, enabled,
5874                   power_well->count, i915.disable_power_well);
5875 }
5876
5877 void intel_display_power_get(struct drm_i915_private *dev_priv,
5878                              enum intel_display_power_domain domain)
5879 {
5880         struct i915_power_domains *power_domains;
5881         struct i915_power_well *power_well;
5882         int i;
5883
5884         intel_runtime_pm_get(dev_priv);
5885
5886         power_domains = &dev_priv->power_domains;
5887
5888         mutex_lock(&power_domains->lock);
5889
5890         for_each_power_well(i, power_well, BIT(domain), power_domains) {
5891                 if (!power_well->count++) {
5892                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5893                         power_well->ops->enable(dev_priv, power_well);
5894                 }
5895
5896                 check_power_well_state(dev_priv, power_well);
5897         }
5898
5899         power_domains->domain_use_count[domain]++;
5900
5901         mutex_unlock(&power_domains->lock);
5902 }
5903
5904 void intel_display_power_put(struct drm_i915_private *dev_priv,
5905                              enum intel_display_power_domain domain)
5906 {
5907         struct i915_power_domains *power_domains;
5908         struct i915_power_well *power_well;
5909         int i;
5910
5911         power_domains = &dev_priv->power_domains;
5912
5913         mutex_lock(&power_domains->lock);
5914
5915         WARN_ON(!power_domains->domain_use_count[domain]);
5916         power_domains->domain_use_count[domain]--;
5917
5918         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5919                 WARN_ON(!power_well->count);
5920
5921                 if (!--power_well->count && i915.disable_power_well) {
5922                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5923                         power_well->ops->disable(dev_priv, power_well);
5924                 }
5925
5926                 check_power_well_state(dev_priv, power_well);
5927         }
5928
5929         mutex_unlock(&power_domains->lock);
5930
5931         intel_runtime_pm_put(dev_priv);
5932 }
5933
5934 static struct i915_power_domains *hsw_pwr;
5935
5936 /* Display audio driver power well request */
5937 void i915_request_power_well(void)
5938 {
5939         struct drm_i915_private *dev_priv;
5940
5941         if (WARN_ON(!hsw_pwr))
5942                 return;
5943
5944         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5945                                 power_domains);
5946         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5947 }
5948 EXPORT_SYMBOL_GPL(i915_request_power_well);
5949
5950 /* Display audio driver power well release */
5951 void i915_release_power_well(void)
5952 {
5953         struct drm_i915_private *dev_priv;
5954
5955         if (WARN_ON(!hsw_pwr))
5956                 return;
5957
5958         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5959                                 power_domains);
5960         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5961 }
5962 EXPORT_SYMBOL_GPL(i915_release_power_well);
5963
5964 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5965
5966 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
5967         BIT(POWER_DOMAIN_PIPE_A) |                      \
5968         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
5969         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
5970         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
5971         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
5972         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
5973         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
5974         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
5975         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
5976         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
5977         BIT(POWER_DOMAIN_PORT_CRT) |                    \
5978         BIT(POWER_DOMAIN_INIT))
5979 #define HSW_DISPLAY_POWER_DOMAINS (                             \
5980         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
5981         BIT(POWER_DOMAIN_INIT))
5982
5983 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
5984         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
5985         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5986 #define BDW_DISPLAY_POWER_DOMAINS (                             \
5987         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
5988         BIT(POWER_DOMAIN_INIT))
5989
5990 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
5991 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
5992
5993 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
5994         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5995         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5996         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5997         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5998         BIT(POWER_DOMAIN_PORT_CRT) |            \
5999         BIT(POWER_DOMAIN_INIT))
6000
6001 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6002         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6003         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6004         BIT(POWER_DOMAIN_INIT))
6005
6006 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6007         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6008         BIT(POWER_DOMAIN_INIT))
6009
6010 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6011         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6012         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6013         BIT(POWER_DOMAIN_INIT))
6014
6015 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6016         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6017         BIT(POWER_DOMAIN_INIT))
6018
6019 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6020         .sync_hw = i9xx_always_on_power_well_noop,
6021         .enable = i9xx_always_on_power_well_noop,
6022         .disable = i9xx_always_on_power_well_noop,
6023         .is_enabled = i9xx_always_on_power_well_enabled,
6024 };
6025
6026 static struct i915_power_well i9xx_always_on_power_well[] = {
6027         {
6028                 .name = "always-on",
6029                 .always_on = 1,
6030                 .domains = POWER_DOMAIN_MASK,
6031                 .ops = &i9xx_always_on_power_well_ops,
6032         },
6033 };
6034
6035 static const struct i915_power_well_ops hsw_power_well_ops = {
6036         .sync_hw = hsw_power_well_sync_hw,
6037         .enable = hsw_power_well_enable,
6038         .disable = hsw_power_well_disable,
6039         .is_enabled = hsw_power_well_enabled,
6040 };
6041
6042 static struct i915_power_well hsw_power_wells[] = {
6043         {
6044                 .name = "always-on",
6045                 .always_on = 1,
6046                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6047                 .ops = &i9xx_always_on_power_well_ops,
6048         },
6049         {
6050                 .name = "display",
6051                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6052                 .ops = &hsw_power_well_ops,
6053         },
6054 };
6055
6056 static struct i915_power_well bdw_power_wells[] = {
6057         {
6058                 .name = "always-on",
6059                 .always_on = 1,
6060                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6061                 .ops = &i9xx_always_on_power_well_ops,
6062         },
6063         {
6064                 .name = "display",
6065                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6066                 .ops = &hsw_power_well_ops,
6067         },
6068 };
6069
6070 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6071         .sync_hw = vlv_power_well_sync_hw,
6072         .enable = vlv_display_power_well_enable,
6073         .disable = vlv_display_power_well_disable,
6074         .is_enabled = vlv_power_well_enabled,
6075 };
6076
6077 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6078         .sync_hw = vlv_power_well_sync_hw,
6079         .enable = vlv_power_well_enable,
6080         .disable = vlv_power_well_disable,
6081         .is_enabled = vlv_power_well_enabled,
6082 };
6083
6084 static struct i915_power_well vlv_power_wells[] = {
6085         {
6086                 .name = "always-on",
6087                 .always_on = 1,
6088                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6089                 .ops = &i9xx_always_on_power_well_ops,
6090         },
6091         {
6092                 .name = "display",
6093                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6094                 .data = PUNIT_POWER_WELL_DISP2D,
6095                 .ops = &vlv_display_power_well_ops,
6096         },
6097         {
6098                 .name = "dpio-tx-b-01",
6099                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6100                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6101                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6102                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6103                 .ops = &vlv_dpio_power_well_ops,
6104                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6105         },
6106         {
6107                 .name = "dpio-tx-b-23",
6108                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6109                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6110                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6111                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6112                 .ops = &vlv_dpio_power_well_ops,
6113                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6114         },
6115         {
6116                 .name = "dpio-tx-c-01",
6117                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6118                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6119                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6120                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6121                 .ops = &vlv_dpio_power_well_ops,
6122                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6123         },
6124         {
6125                 .name = "dpio-tx-c-23",
6126                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6127                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6128                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6129                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6130                 .ops = &vlv_dpio_power_well_ops,
6131                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6132         },
6133         {
6134                 .name = "dpio-common",
6135                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6136                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6137                 .ops = &vlv_dpio_power_well_ops,
6138         },
6139 };
6140
6141 #define set_power_wells(power_domains, __power_wells) ({                \
6142         (power_domains)->power_wells = (__power_wells);                 \
6143         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
6144 })
6145
6146 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6147 {
6148         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6149
6150         mutex_init(&power_domains->lock);
6151
6152         /*
6153          * The enabling order will be from lower to higher indexed wells,
6154          * the disabling order is reversed.
6155          */
6156         if (IS_HASWELL(dev_priv->dev)) {
6157                 set_power_wells(power_domains, hsw_power_wells);
6158                 hsw_pwr = power_domains;
6159         } else if (IS_BROADWELL(dev_priv->dev)) {
6160                 set_power_wells(power_domains, bdw_power_wells);
6161                 hsw_pwr = power_domains;
6162         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6163                 set_power_wells(power_domains, vlv_power_wells);
6164         } else {
6165                 set_power_wells(power_domains, i9xx_always_on_power_well);
6166         }
6167
6168         return 0;
6169 }
6170
6171 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6172 {
6173         hsw_pwr = NULL;
6174 }
6175
6176 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6177 {
6178         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6179         struct i915_power_well *power_well;
6180         int i;
6181
6182         mutex_lock(&power_domains->lock);
6183         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
6184                 power_well->ops->sync_hw(dev_priv, power_well);
6185         mutex_unlock(&power_domains->lock);
6186 }
6187
6188 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6189 {
6190         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6191
6192         power_domains->initializing = true;
6193         /* For now, we need the power well to be always enabled. */
6194         intel_display_set_init_power(dev_priv, true);
6195         intel_power_domains_resume(dev_priv);
6196         power_domains->initializing = false;
6197 }
6198
6199 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6200 {
6201         intel_runtime_pm_get(dev_priv);
6202 }
6203
6204 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6205 {
6206         intel_runtime_pm_put(dev_priv);
6207 }
6208
6209 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6210 {
6211         struct drm_device *dev = dev_priv->dev;
6212         struct device *device = &dev->pdev->dev;
6213
6214         if (!HAS_RUNTIME_PM(dev))
6215                 return;
6216
6217         pm_runtime_get_sync(device);
6218         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6219 }
6220
6221 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6222 {
6223         struct drm_device *dev = dev_priv->dev;
6224         struct device *device = &dev->pdev->dev;
6225
6226         if (!HAS_RUNTIME_PM(dev))
6227                 return;
6228
6229         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6230         pm_runtime_get_noresume(device);
6231 }
6232
6233 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6234 {
6235         struct drm_device *dev = dev_priv->dev;
6236         struct device *device = &dev->pdev->dev;
6237
6238         if (!HAS_RUNTIME_PM(dev))
6239                 return;
6240
6241         pm_runtime_mark_last_busy(device);
6242         pm_runtime_put_autosuspend(device);
6243 }
6244
6245 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6246 {
6247         struct drm_device *dev = dev_priv->dev;
6248         struct device *device = &dev->pdev->dev;
6249
6250         if (!HAS_RUNTIME_PM(dev))
6251                 return;
6252
6253         pm_runtime_set_active(device);
6254
6255         /*
6256          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6257          * requirement.
6258          */
6259         if (!intel_enable_rc6(dev)) {
6260                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6261                 return;
6262         }
6263
6264         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6265         pm_runtime_mark_last_busy(device);
6266         pm_runtime_use_autosuspend(device);
6267
6268         pm_runtime_put_autosuspend(device);
6269 }
6270
6271 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6272 {
6273         struct drm_device *dev = dev_priv->dev;
6274         struct device *device = &dev->pdev->dev;
6275
6276         if (!HAS_RUNTIME_PM(dev))
6277                 return;
6278
6279         if (!intel_enable_rc6(dev))
6280                 return;
6281
6282         /* Make sure we're not suspended first. */
6283         pm_runtime_get_sync(device);
6284         pm_runtime_disable(device);
6285 }
6286
6287 /* Set up chip specific power management-related functions */
6288 void intel_init_pm(struct drm_device *dev)
6289 {
6290         struct drm_i915_private *dev_priv = dev->dev_private;
6291
6292         if (HAS_FBC(dev)) {
6293                 if (INTEL_INFO(dev)->gen >= 7) {
6294                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6295                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6296                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6297                 } else if (INTEL_INFO(dev)->gen >= 5) {
6298                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6299                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6300                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6301                 } else if (IS_GM45(dev)) {
6302                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6303                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6304                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6305                 } else {
6306                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6307                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6308                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6309
6310                         /* This value was pulled out of someone's hat */
6311                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6312                 }
6313         }
6314
6315         /* For cxsr */
6316         if (IS_PINEVIEW(dev))
6317                 i915_pineview_get_mem_freq(dev);
6318         else if (IS_GEN5(dev))
6319                 i915_ironlake_get_mem_freq(dev);
6320
6321         /* For FIFO watermark updates */
6322         if (HAS_PCH_SPLIT(dev)) {
6323                 ilk_setup_wm_latency(dev);
6324
6325                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6326                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6327                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6328                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6329                         dev_priv->display.update_wm = ilk_update_wm;
6330                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6331                 } else {
6332                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6333                                       "Disable CxSR\n");
6334                 }
6335
6336                 if (IS_GEN5(dev))
6337                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6338                 else if (IS_GEN6(dev))
6339                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6340                 else if (IS_IVYBRIDGE(dev))
6341                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6342                 else if (IS_HASWELL(dev))
6343                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6344                 else if (INTEL_INFO(dev)->gen == 8)
6345                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6346         } else if (IS_CHERRYVIEW(dev)) {
6347                 dev_priv->display.update_wm = valleyview_update_wm;
6348                 dev_priv->display.init_clock_gating =
6349                         cherryview_init_clock_gating;
6350         } else if (IS_VALLEYVIEW(dev)) {
6351                 dev_priv->display.update_wm = valleyview_update_wm;
6352                 dev_priv->display.init_clock_gating =
6353                         valleyview_init_clock_gating;
6354         } else if (IS_PINEVIEW(dev)) {
6355                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6356                                             dev_priv->is_ddr3,
6357                                             dev_priv->fsb_freq,
6358                                             dev_priv->mem_freq)) {
6359                         DRM_INFO("failed to find known CxSR latency "
6360                                  "(found ddr%s fsb freq %d, mem freq %d), "
6361                                  "disabling CxSR\n",
6362                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6363                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6364                         /* Disable CxSR and never update its watermark again */
6365                         pineview_disable_cxsr(dev);
6366                         dev_priv->display.update_wm = NULL;
6367                 } else
6368                         dev_priv->display.update_wm = pineview_update_wm;
6369                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6370         } else if (IS_G4X(dev)) {
6371                 dev_priv->display.update_wm = g4x_update_wm;
6372                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6373         } else if (IS_GEN4(dev)) {
6374                 dev_priv->display.update_wm = i965_update_wm;
6375                 if (IS_CRESTLINE(dev))
6376                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6377                 else if (IS_BROADWATER(dev))
6378                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6379         } else if (IS_GEN3(dev)) {
6380                 dev_priv->display.update_wm = i9xx_update_wm;
6381                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6382                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6383         } else if (IS_GEN2(dev)) {
6384                 if (INTEL_INFO(dev)->num_pipes == 1) {
6385                         dev_priv->display.update_wm = i845_update_wm;
6386                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6387                 } else {
6388                         dev_priv->display.update_wm = i9xx_update_wm;
6389                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6390                 }
6391
6392                 if (IS_I85X(dev) || IS_I865G(dev))
6393                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6394                 else
6395                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6396         } else {
6397                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6398         }
6399 }
6400
6401 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6402 {
6403         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6404
6405         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6406                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6407                 return -EAGAIN;
6408         }
6409
6410         I915_WRITE(GEN6_PCODE_DATA, *val);
6411         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6412
6413         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6414                      500)) {
6415                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6416                 return -ETIMEDOUT;
6417         }
6418
6419         *val = I915_READ(GEN6_PCODE_DATA);
6420         I915_WRITE(GEN6_PCODE_DATA, 0);
6421
6422         return 0;
6423 }
6424
6425 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6426 {
6427         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6428
6429         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6430                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6431                 return -EAGAIN;
6432         }
6433
6434         I915_WRITE(GEN6_PCODE_DATA, val);
6435         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6436
6437         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6438                      500)) {
6439                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6440                 return -ETIMEDOUT;
6441         }
6442
6443         I915_WRITE(GEN6_PCODE_DATA, 0);
6444
6445         return 0;
6446 }
6447
6448 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6449 {
6450         int div;
6451
6452         /* 4 x czclk */
6453         switch (dev_priv->mem_freq) {
6454         case 800:
6455                 div = 10;
6456                 break;
6457         case 1066:
6458                 div = 12;
6459                 break;
6460         case 1333:
6461                 div = 16;
6462                 break;
6463         default:
6464                 return -1;
6465         }
6466
6467         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6468 }
6469
6470 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6471 {
6472         int mul;
6473
6474         /* 4 x czclk */
6475         switch (dev_priv->mem_freq) {
6476         case 800:
6477                 mul = 10;
6478                 break;
6479         case 1066:
6480                 mul = 12;
6481                 break;
6482         case 1333:
6483                 mul = 16;
6484                 break;
6485         default:
6486                 return -1;
6487         }
6488
6489         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6490 }
6491
6492 void intel_pm_setup(struct drm_device *dev)
6493 {
6494         struct drm_i915_private *dev_priv = dev->dev_private;
6495
6496         mutex_init(&dev_priv->rps.hw_lock);
6497
6498         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6499                           intel_gen6_powersave_work);
6500
6501         dev_priv->pm.suspended = false;
6502         dev_priv->pm.irqs_disabled = false;
6503 }