drm/i915: Implement WaSwitchSolVfFArbitrationPriority
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49         /* Be paranoid as we can arrive here with only partial
50          * state retrieved from the hardware during setup.
51          */
52         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58         u32 fbc_ctl;
59
60         /* Disable compression */
61         fbc_ctl = I915_READ(FBC_CONTROL);
62         if ((fbc_ctl & FBC_CTL_EN) == 0)
63                 return;
64
65         fbc_ctl &= ~FBC_CTL_EN;
66         I915_WRITE(FBC_CONTROL, fbc_ctl);
67
68         /* Wait for compressing bit to clear */
69         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70                 DRM_DEBUG_KMS("FBC idle timed out\n");
71                 return;
72         }
73
74         DRM_DEBUG_KMS("disabled FBC\n");
75 }
76
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79         struct drm_device *dev = crtc->dev;
80         struct drm_i915_private *dev_priv = dev->dev_private;
81         struct drm_framebuffer *fb = crtc->fb;
82         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83         struct drm_i915_gem_object *obj = intel_fb->obj;
84         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85         int cfb_pitch;
86         int plane, i;
87         u32 fbc_ctl, fbc_ctl2;
88
89         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90         if (fb->pitches[0] < cfb_pitch)
91                 cfb_pitch = fb->pitches[0];
92
93         /* FBC_CTL wants 64B units */
94         cfb_pitch = (cfb_pitch / 64) - 1;
95         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96
97         /* Clear old tags */
98         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99                 I915_WRITE(FBC_TAG + (i * 4), 0);
100
101         /* Set it up... */
102         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103         fbc_ctl2 |= plane;
104         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105         I915_WRITE(FBC_FENCE_OFF, crtc->y);
106
107         /* enable it... */
108         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109         if (IS_I945GM(dev))
110                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113         fbc_ctl |= obj->fence_reg;
114         I915_WRITE(FBC_CONTROL, fbc_ctl);
115
116         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
117                       cfb_pitch, crtc->y, intel_crtc->plane);
118 }
119
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122         struct drm_i915_private *dev_priv = dev->dev_private;
123
124         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129         struct drm_device *dev = crtc->dev;
130         struct drm_i915_private *dev_priv = dev->dev_private;
131         struct drm_framebuffer *fb = crtc->fb;
132         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133         struct drm_i915_gem_object *obj = intel_fb->obj;
134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136         unsigned long stall_watermark = 200;
137         u32 dpfc_ctl;
138
139         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142
143         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147
148         /* enable it... */
149         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150
151         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
152 }
153
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156         struct drm_i915_private *dev_priv = dev->dev_private;
157         u32 dpfc_ctl;
158
159         /* Disable compression */
160         dpfc_ctl = I915_READ(DPFC_CONTROL);
161         if (dpfc_ctl & DPFC_CTL_EN) {
162                 dpfc_ctl &= ~DPFC_CTL_EN;
163                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164
165                 DRM_DEBUG_KMS("disabled FBC\n");
166         }
167 }
168
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171         struct drm_i915_private *dev_priv = dev->dev_private;
172
173         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         u32 blt_ecoskpd;
180
181         /* Make sure blitter notifies FBC of writes */
182         gen6_gt_force_wake_get(dev_priv);
183         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185                 GEN6_BLITTER_LOCK_SHIFT;
186         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190                          GEN6_BLITTER_LOCK_SHIFT);
191         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192         POSTING_READ(GEN6_BLITTER_ECOSKPD);
193         gen6_gt_force_wake_put(dev_priv);
194 }
195
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198         struct drm_device *dev = crtc->dev;
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_framebuffer *fb = crtc->fb;
201         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202         struct drm_i915_gem_object *obj = intel_fb->obj;
203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205         unsigned long stall_watermark = 200;
206         u32 dpfc_ctl;
207
208         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209         dpfc_ctl &= DPFC_RESERVED;
210         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211         /* Set persistent mode for front-buffer rendering, ala X. */
212         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215
216         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221         /* enable it... */
222         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223
224         if (IS_GEN6(dev)) {
225                 I915_WRITE(SNB_DPFC_CTL_SA,
226                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228                 sandybridge_blit_fbc_update(dev);
229         }
230
231         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
232 }
233
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236         struct drm_i915_private *dev_priv = dev->dev_private;
237         u32 dpfc_ctl;
238
239         /* Disable compression */
240         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241         if (dpfc_ctl & DPFC_CTL_EN) {
242                 dpfc_ctl &= ~DPFC_CTL_EN;
243                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244
245                 DRM_DEBUG_KMS("disabled FBC\n");
246         }
247 }
248
249 static bool ironlake_fbc_enabled(struct drm_device *dev)
250 {
251         struct drm_i915_private *dev_priv = dev->dev_private;
252
253         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
254 }
255
256 bool intel_fbc_enabled(struct drm_device *dev)
257 {
258         struct drm_i915_private *dev_priv = dev->dev_private;
259
260         if (!dev_priv->display.fbc_enabled)
261                 return false;
262
263         return dev_priv->display.fbc_enabled(dev);
264 }
265
266 static void intel_fbc_work_fn(struct work_struct *__work)
267 {
268         struct intel_fbc_work *work =
269                 container_of(to_delayed_work(__work),
270                              struct intel_fbc_work, work);
271         struct drm_device *dev = work->crtc->dev;
272         struct drm_i915_private *dev_priv = dev->dev_private;
273
274         mutex_lock(&dev->struct_mutex);
275         if (work == dev_priv->fbc_work) {
276                 /* Double check that we haven't switched fb without cancelling
277                  * the prior work.
278                  */
279                 if (work->crtc->fb == work->fb) {
280                         dev_priv->display.enable_fbc(work->crtc,
281                                                      work->interval);
282
283                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
284                         dev_priv->cfb_fb = work->crtc->fb->base.id;
285                         dev_priv->cfb_y = work->crtc->y;
286                 }
287
288                 dev_priv->fbc_work = NULL;
289         }
290         mutex_unlock(&dev->struct_mutex);
291
292         kfree(work);
293 }
294
295 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
296 {
297         if (dev_priv->fbc_work == NULL)
298                 return;
299
300         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
301
302         /* Synchronisation is provided by struct_mutex and checking of
303          * dev_priv->fbc_work, so we can perform the cancellation
304          * entirely asynchronously.
305          */
306         if (cancel_delayed_work(&dev_priv->fbc_work->work))
307                 /* tasklet was killed before being run, clean up */
308                 kfree(dev_priv->fbc_work);
309
310         /* Mark the work as no longer wanted so that if it does
311          * wake-up (because the work was already running and waiting
312          * for our mutex), it will discover that is no longer
313          * necessary to run.
314          */
315         dev_priv->fbc_work = NULL;
316 }
317
318 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
319 {
320         struct intel_fbc_work *work;
321         struct drm_device *dev = crtc->dev;
322         struct drm_i915_private *dev_priv = dev->dev_private;
323
324         if (!dev_priv->display.enable_fbc)
325                 return;
326
327         intel_cancel_fbc_work(dev_priv);
328
329         work = kzalloc(sizeof *work, GFP_KERNEL);
330         if (work == NULL) {
331                 dev_priv->display.enable_fbc(crtc, interval);
332                 return;
333         }
334
335         work->crtc = crtc;
336         work->fb = crtc->fb;
337         work->interval = interval;
338         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
339
340         dev_priv->fbc_work = work;
341
342         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
343
344         /* Delay the actual enabling to let pageflipping cease and the
345          * display to settle before starting the compression. Note that
346          * this delay also serves a second purpose: it allows for a
347          * vblank to pass after disabling the FBC before we attempt
348          * to modify the control registers.
349          *
350          * A more complicated solution would involve tracking vblanks
351          * following the termination of the page-flipping sequence
352          * and indeed performing the enable as a co-routine and not
353          * waiting synchronously upon the vblank.
354          */
355         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
356 }
357
358 void intel_disable_fbc(struct drm_device *dev)
359 {
360         struct drm_i915_private *dev_priv = dev->dev_private;
361
362         intel_cancel_fbc_work(dev_priv);
363
364         if (!dev_priv->display.disable_fbc)
365                 return;
366
367         dev_priv->display.disable_fbc(dev);
368         dev_priv->cfb_plane = -1;
369 }
370
371 /**
372  * intel_update_fbc - enable/disable FBC as needed
373  * @dev: the drm_device
374  *
375  * Set up the framebuffer compression hardware at mode set time.  We
376  * enable it if possible:
377  *   - plane A only (on pre-965)
378  *   - no pixel mulitply/line duplication
379  *   - no alpha buffer discard
380  *   - no dual wide
381  *   - framebuffer <= 2048 in width, 1536 in height
382  *
383  * We can't assume that any compression will take place (worst case),
384  * so the compressed buffer has to be the same size as the uncompressed
385  * one.  It also must reside (along with the line length buffer) in
386  * stolen memory.
387  *
388  * We need to enable/disable FBC on a global basis.
389  */
390 void intel_update_fbc(struct drm_device *dev)
391 {
392         struct drm_i915_private *dev_priv = dev->dev_private;
393         struct drm_crtc *crtc = NULL, *tmp_crtc;
394         struct intel_crtc *intel_crtc;
395         struct drm_framebuffer *fb;
396         struct intel_framebuffer *intel_fb;
397         struct drm_i915_gem_object *obj;
398         int enable_fbc;
399
400         if (!i915_powersave)
401                 return;
402
403         if (!I915_HAS_FBC(dev))
404                 return;
405
406         /*
407          * If FBC is already on, we just have to verify that we can
408          * keep it that way...
409          * Need to disable if:
410          *   - more than one pipe is active
411          *   - changing FBC params (stride, fence, mode)
412          *   - new fb is too large to fit in compressed buffer
413          *   - going to an unsupported config (interlace, pixel multiply, etc.)
414          */
415         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
416                 if (intel_crtc_active(tmp_crtc) &&
417                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
418                         if (crtc) {
419                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
420                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
421                                 goto out_disable;
422                         }
423                         crtc = tmp_crtc;
424                 }
425         }
426
427         if (!crtc || crtc->fb == NULL) {
428                 DRM_DEBUG_KMS("no output, disabling\n");
429                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
430                 goto out_disable;
431         }
432
433         intel_crtc = to_intel_crtc(crtc);
434         fb = crtc->fb;
435         intel_fb = to_intel_framebuffer(fb);
436         obj = intel_fb->obj;
437
438         enable_fbc = i915_enable_fbc;
439         if (enable_fbc < 0) {
440                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
441                 enable_fbc = 1;
442                 if (INTEL_INFO(dev)->gen <= 6)
443                         enable_fbc = 0;
444         }
445         if (!enable_fbc) {
446                 DRM_DEBUG_KMS("fbc disabled per module param\n");
447                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
448                 goto out_disable;
449         }
450         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
451             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
452                 DRM_DEBUG_KMS("mode incompatible with compression, "
453                               "disabling\n");
454                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
455                 goto out_disable;
456         }
457         if ((crtc->mode.hdisplay > 2048) ||
458             (crtc->mode.vdisplay > 1536)) {
459                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
460                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
461                 goto out_disable;
462         }
463         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
464                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
465                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
466                 goto out_disable;
467         }
468
469         /* The use of a CPU fence is mandatory in order to detect writes
470          * by the CPU to the scanout and trigger updates to the FBC.
471          */
472         if (obj->tiling_mode != I915_TILING_X ||
473             obj->fence_reg == I915_FENCE_REG_NONE) {
474                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
475                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
476                 goto out_disable;
477         }
478
479         /* If the kernel debugger is active, always disable compression */
480         if (in_dbg_master())
481                 goto out_disable;
482
483         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
484                 DRM_INFO("not enough stolen space for compressed buffer (need %zd bytes), disabling\n", intel_fb->obj->base.size);
485                 DRM_INFO("hint: you may be able to increase stolen memory size in the BIOS to avoid this\n");
486                 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
487                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
488                 goto out_disable;
489         }
490
491         /* If the scanout has not changed, don't modify the FBC settings.
492          * Note that we make the fundamental assumption that the fb->obj
493          * cannot be unpinned (and have its GTT offset and fence revoked)
494          * without first being decoupled from the scanout and FBC disabled.
495          */
496         if (dev_priv->cfb_plane == intel_crtc->plane &&
497             dev_priv->cfb_fb == fb->base.id &&
498             dev_priv->cfb_y == crtc->y)
499                 return;
500
501         if (intel_fbc_enabled(dev)) {
502                 /* We update FBC along two paths, after changing fb/crtc
503                  * configuration (modeswitching) and after page-flipping
504                  * finishes. For the latter, we know that not only did
505                  * we disable the FBC at the start of the page-flip
506                  * sequence, but also more than one vblank has passed.
507                  *
508                  * For the former case of modeswitching, it is possible
509                  * to switch between two FBC valid configurations
510                  * instantaneously so we do need to disable the FBC
511                  * before we can modify its control registers. We also
512                  * have to wait for the next vblank for that to take
513                  * effect. However, since we delay enabling FBC we can
514                  * assume that a vblank has passed since disabling and
515                  * that we can safely alter the registers in the deferred
516                  * callback.
517                  *
518                  * In the scenario that we go from a valid to invalid
519                  * and then back to valid FBC configuration we have
520                  * no strict enforcement that a vblank occurred since
521                  * disabling the FBC. However, along all current pipe
522                  * disabling paths we do need to wait for a vblank at
523                  * some point. And we wait before enabling FBC anyway.
524                  */
525                 DRM_DEBUG_KMS("disabling active FBC for update\n");
526                 intel_disable_fbc(dev);
527         }
528
529         intel_enable_fbc(crtc, 500);
530         return;
531
532 out_disable:
533         /* Multiple disables should be harmless */
534         if (intel_fbc_enabled(dev)) {
535                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
536                 intel_disable_fbc(dev);
537         }
538         i915_gem_stolen_cleanup_compression(dev);
539 }
540
541 static void i915_pineview_get_mem_freq(struct drm_device *dev)
542 {
543         drm_i915_private_t *dev_priv = dev->dev_private;
544         u32 tmp;
545
546         tmp = I915_READ(CLKCFG);
547
548         switch (tmp & CLKCFG_FSB_MASK) {
549         case CLKCFG_FSB_533:
550                 dev_priv->fsb_freq = 533; /* 133*4 */
551                 break;
552         case CLKCFG_FSB_800:
553                 dev_priv->fsb_freq = 800; /* 200*4 */
554                 break;
555         case CLKCFG_FSB_667:
556                 dev_priv->fsb_freq =  667; /* 167*4 */
557                 break;
558         case CLKCFG_FSB_400:
559                 dev_priv->fsb_freq = 400; /* 100*4 */
560                 break;
561         }
562
563         switch (tmp & CLKCFG_MEM_MASK) {
564         case CLKCFG_MEM_533:
565                 dev_priv->mem_freq = 533;
566                 break;
567         case CLKCFG_MEM_667:
568                 dev_priv->mem_freq = 667;
569                 break;
570         case CLKCFG_MEM_800:
571                 dev_priv->mem_freq = 800;
572                 break;
573         }
574
575         /* detect pineview DDR3 setting */
576         tmp = I915_READ(CSHRDDR3CTL);
577         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
578 }
579
580 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
581 {
582         drm_i915_private_t *dev_priv = dev->dev_private;
583         u16 ddrpll, csipll;
584
585         ddrpll = I915_READ16(DDRMPLL1);
586         csipll = I915_READ16(CSIPLL0);
587
588         switch (ddrpll & 0xff) {
589         case 0xc:
590                 dev_priv->mem_freq = 800;
591                 break;
592         case 0x10:
593                 dev_priv->mem_freq = 1066;
594                 break;
595         case 0x14:
596                 dev_priv->mem_freq = 1333;
597                 break;
598         case 0x18:
599                 dev_priv->mem_freq = 1600;
600                 break;
601         default:
602                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
603                                  ddrpll & 0xff);
604                 dev_priv->mem_freq = 0;
605                 break;
606         }
607
608         dev_priv->ips.r_t = dev_priv->mem_freq;
609
610         switch (csipll & 0x3ff) {
611         case 0x00c:
612                 dev_priv->fsb_freq = 3200;
613                 break;
614         case 0x00e:
615                 dev_priv->fsb_freq = 3733;
616                 break;
617         case 0x010:
618                 dev_priv->fsb_freq = 4266;
619                 break;
620         case 0x012:
621                 dev_priv->fsb_freq = 4800;
622                 break;
623         case 0x014:
624                 dev_priv->fsb_freq = 5333;
625                 break;
626         case 0x016:
627                 dev_priv->fsb_freq = 5866;
628                 break;
629         case 0x018:
630                 dev_priv->fsb_freq = 6400;
631                 break;
632         default:
633                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
634                                  csipll & 0x3ff);
635                 dev_priv->fsb_freq = 0;
636                 break;
637         }
638
639         if (dev_priv->fsb_freq == 3200) {
640                 dev_priv->ips.c_m = 0;
641         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
642                 dev_priv->ips.c_m = 1;
643         } else {
644                 dev_priv->ips.c_m = 2;
645         }
646 }
647
648 static const struct cxsr_latency cxsr_latency_table[] = {
649         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
650         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
651         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
652         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
653         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
654
655         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
656         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
657         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
658         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
659         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
660
661         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
662         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
663         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
664         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
665         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
666
667         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
668         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
669         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
670         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
671         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
672
673         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
674         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
675         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
676         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
677         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
678
679         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
680         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
681         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
682         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
683         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
684 };
685
686 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
687                                                          int is_ddr3,
688                                                          int fsb,
689                                                          int mem)
690 {
691         const struct cxsr_latency *latency;
692         int i;
693
694         if (fsb == 0 || mem == 0)
695                 return NULL;
696
697         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
698                 latency = &cxsr_latency_table[i];
699                 if (is_desktop == latency->is_desktop &&
700                     is_ddr3 == latency->is_ddr3 &&
701                     fsb == latency->fsb_freq && mem == latency->mem_freq)
702                         return latency;
703         }
704
705         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
706
707         return NULL;
708 }
709
710 static void pineview_disable_cxsr(struct drm_device *dev)
711 {
712         struct drm_i915_private *dev_priv = dev->dev_private;
713
714         /* deactivate cxsr */
715         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
716 }
717
718 /*
719  * Latency for FIFO fetches is dependent on several factors:
720  *   - memory configuration (speed, channels)
721  *   - chipset
722  *   - current MCH state
723  * It can be fairly high in some situations, so here we assume a fairly
724  * pessimal value.  It's a tradeoff between extra memory fetches (if we
725  * set this value too high, the FIFO will fetch frequently to stay full)
726  * and power consumption (set it too low to save power and we might see
727  * FIFO underruns and display "flicker").
728  *
729  * A value of 5us seems to be a good balance; safe for very low end
730  * platforms but not overly aggressive on lower latency configs.
731  */
732 static const int latency_ns = 5000;
733
734 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
735 {
736         struct drm_i915_private *dev_priv = dev->dev_private;
737         uint32_t dsparb = I915_READ(DSPARB);
738         int size;
739
740         size = dsparb & 0x7f;
741         if (plane)
742                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
743
744         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
745                       plane ? "B" : "A", size);
746
747         return size;
748 }
749
750 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
751 {
752         struct drm_i915_private *dev_priv = dev->dev_private;
753         uint32_t dsparb = I915_READ(DSPARB);
754         int size;
755
756         size = dsparb & 0x1ff;
757         if (plane)
758                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
759         size >>= 1; /* Convert to cachelines */
760
761         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
762                       plane ? "B" : "A", size);
763
764         return size;
765 }
766
767 static int i845_get_fifo_size(struct drm_device *dev, int plane)
768 {
769         struct drm_i915_private *dev_priv = dev->dev_private;
770         uint32_t dsparb = I915_READ(DSPARB);
771         int size;
772
773         size = dsparb & 0x7f;
774         size >>= 2; /* Convert to cachelines */
775
776         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
777                       plane ? "B" : "A",
778                       size);
779
780         return size;
781 }
782
783 static int i830_get_fifo_size(struct drm_device *dev, int plane)
784 {
785         struct drm_i915_private *dev_priv = dev->dev_private;
786         uint32_t dsparb = I915_READ(DSPARB);
787         int size;
788
789         size = dsparb & 0x7f;
790         size >>= 1; /* Convert to cachelines */
791
792         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
793                       plane ? "B" : "A", size);
794
795         return size;
796 }
797
798 /* Pineview has different values for various configs */
799 static const struct intel_watermark_params pineview_display_wm = {
800         PINEVIEW_DISPLAY_FIFO,
801         PINEVIEW_MAX_WM,
802         PINEVIEW_DFT_WM,
803         PINEVIEW_GUARD_WM,
804         PINEVIEW_FIFO_LINE_SIZE
805 };
806 static const struct intel_watermark_params pineview_display_hplloff_wm = {
807         PINEVIEW_DISPLAY_FIFO,
808         PINEVIEW_MAX_WM,
809         PINEVIEW_DFT_HPLLOFF_WM,
810         PINEVIEW_GUARD_WM,
811         PINEVIEW_FIFO_LINE_SIZE
812 };
813 static const struct intel_watermark_params pineview_cursor_wm = {
814         PINEVIEW_CURSOR_FIFO,
815         PINEVIEW_CURSOR_MAX_WM,
816         PINEVIEW_CURSOR_DFT_WM,
817         PINEVIEW_CURSOR_GUARD_WM,
818         PINEVIEW_FIFO_LINE_SIZE,
819 };
820 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
821         PINEVIEW_CURSOR_FIFO,
822         PINEVIEW_CURSOR_MAX_WM,
823         PINEVIEW_CURSOR_DFT_WM,
824         PINEVIEW_CURSOR_GUARD_WM,
825         PINEVIEW_FIFO_LINE_SIZE
826 };
827 static const struct intel_watermark_params g4x_wm_info = {
828         G4X_FIFO_SIZE,
829         G4X_MAX_WM,
830         G4X_MAX_WM,
831         2,
832         G4X_FIFO_LINE_SIZE,
833 };
834 static const struct intel_watermark_params g4x_cursor_wm_info = {
835         I965_CURSOR_FIFO,
836         I965_CURSOR_MAX_WM,
837         I965_CURSOR_DFT_WM,
838         2,
839         G4X_FIFO_LINE_SIZE,
840 };
841 static const struct intel_watermark_params valleyview_wm_info = {
842         VALLEYVIEW_FIFO_SIZE,
843         VALLEYVIEW_MAX_WM,
844         VALLEYVIEW_MAX_WM,
845         2,
846         G4X_FIFO_LINE_SIZE,
847 };
848 static const struct intel_watermark_params valleyview_cursor_wm_info = {
849         I965_CURSOR_FIFO,
850         VALLEYVIEW_CURSOR_MAX_WM,
851         I965_CURSOR_DFT_WM,
852         2,
853         G4X_FIFO_LINE_SIZE,
854 };
855 static const struct intel_watermark_params i965_cursor_wm_info = {
856         I965_CURSOR_FIFO,
857         I965_CURSOR_MAX_WM,
858         I965_CURSOR_DFT_WM,
859         2,
860         I915_FIFO_LINE_SIZE,
861 };
862 static const struct intel_watermark_params i945_wm_info = {
863         I945_FIFO_SIZE,
864         I915_MAX_WM,
865         1,
866         2,
867         I915_FIFO_LINE_SIZE
868 };
869 static const struct intel_watermark_params i915_wm_info = {
870         I915_FIFO_SIZE,
871         I915_MAX_WM,
872         1,
873         2,
874         I915_FIFO_LINE_SIZE
875 };
876 static const struct intel_watermark_params i855_wm_info = {
877         I855GM_FIFO_SIZE,
878         I915_MAX_WM,
879         1,
880         2,
881         I830_FIFO_LINE_SIZE
882 };
883 static const struct intel_watermark_params i830_wm_info = {
884         I830_FIFO_SIZE,
885         I915_MAX_WM,
886         1,
887         2,
888         I830_FIFO_LINE_SIZE
889 };
890
891 static const struct intel_watermark_params ironlake_display_wm_info = {
892         ILK_DISPLAY_FIFO,
893         ILK_DISPLAY_MAXWM,
894         ILK_DISPLAY_DFTWM,
895         2,
896         ILK_FIFO_LINE_SIZE
897 };
898 static const struct intel_watermark_params ironlake_cursor_wm_info = {
899         ILK_CURSOR_FIFO,
900         ILK_CURSOR_MAXWM,
901         ILK_CURSOR_DFTWM,
902         2,
903         ILK_FIFO_LINE_SIZE
904 };
905 static const struct intel_watermark_params ironlake_display_srwm_info = {
906         ILK_DISPLAY_SR_FIFO,
907         ILK_DISPLAY_MAX_SRWM,
908         ILK_DISPLAY_DFT_SRWM,
909         2,
910         ILK_FIFO_LINE_SIZE
911 };
912 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
913         ILK_CURSOR_SR_FIFO,
914         ILK_CURSOR_MAX_SRWM,
915         ILK_CURSOR_DFT_SRWM,
916         2,
917         ILK_FIFO_LINE_SIZE
918 };
919
920 static const struct intel_watermark_params sandybridge_display_wm_info = {
921         SNB_DISPLAY_FIFO,
922         SNB_DISPLAY_MAXWM,
923         SNB_DISPLAY_DFTWM,
924         2,
925         SNB_FIFO_LINE_SIZE
926 };
927 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
928         SNB_CURSOR_FIFO,
929         SNB_CURSOR_MAXWM,
930         SNB_CURSOR_DFTWM,
931         2,
932         SNB_FIFO_LINE_SIZE
933 };
934 static const struct intel_watermark_params sandybridge_display_srwm_info = {
935         SNB_DISPLAY_SR_FIFO,
936         SNB_DISPLAY_MAX_SRWM,
937         SNB_DISPLAY_DFT_SRWM,
938         2,
939         SNB_FIFO_LINE_SIZE
940 };
941 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
942         SNB_CURSOR_SR_FIFO,
943         SNB_CURSOR_MAX_SRWM,
944         SNB_CURSOR_DFT_SRWM,
945         2,
946         SNB_FIFO_LINE_SIZE
947 };
948
949
950 /**
951  * intel_calculate_wm - calculate watermark level
952  * @clock_in_khz: pixel clock
953  * @wm: chip FIFO params
954  * @pixel_size: display pixel size
955  * @latency_ns: memory latency for the platform
956  *
957  * Calculate the watermark level (the level at which the display plane will
958  * start fetching from memory again).  Each chip has a different display
959  * FIFO size and allocation, so the caller needs to figure that out and pass
960  * in the correct intel_watermark_params structure.
961  *
962  * As the pixel clock runs, the FIFO will be drained at a rate that depends
963  * on the pixel size.  When it reaches the watermark level, it'll start
964  * fetching FIFO line sized based chunks from memory until the FIFO fills
965  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
966  * will occur, and a display engine hang could result.
967  */
968 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
969                                         const struct intel_watermark_params *wm,
970                                         int fifo_size,
971                                         int pixel_size,
972                                         unsigned long latency_ns)
973 {
974         long entries_required, wm_size;
975
976         /*
977          * Note: we need to make sure we don't overflow for various clock &
978          * latency values.
979          * clocks go from a few thousand to several hundred thousand.
980          * latency is usually a few thousand
981          */
982         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
983                 1000;
984         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
985
986         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
987
988         wm_size = fifo_size - (entries_required + wm->guard_size);
989
990         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
991
992         /* Don't promote wm_size to unsigned... */
993         if (wm_size > (long)wm->max_wm)
994                 wm_size = wm->max_wm;
995         if (wm_size <= 0)
996                 wm_size = wm->default_wm;
997         return wm_size;
998 }
999
1000 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1001 {
1002         struct drm_crtc *crtc, *enabled = NULL;
1003
1004         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1005                 if (intel_crtc_active(crtc)) {
1006                         if (enabled)
1007                                 return NULL;
1008                         enabled = crtc;
1009                 }
1010         }
1011
1012         return enabled;
1013 }
1014
1015 static void pineview_update_wm(struct drm_device *dev)
1016 {
1017         struct drm_i915_private *dev_priv = dev->dev_private;
1018         struct drm_crtc *crtc;
1019         const struct cxsr_latency *latency;
1020         u32 reg;
1021         unsigned long wm;
1022
1023         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1024                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1025         if (!latency) {
1026                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1027                 pineview_disable_cxsr(dev);
1028                 return;
1029         }
1030
1031         crtc = single_enabled_crtc(dev);
1032         if (crtc) {
1033                 int clock = crtc->mode.clock;
1034                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1035
1036                 /* Display SR */
1037                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1038                                         pineview_display_wm.fifo_size,
1039                                         pixel_size, latency->display_sr);
1040                 reg = I915_READ(DSPFW1);
1041                 reg &= ~DSPFW_SR_MASK;
1042                 reg |= wm << DSPFW_SR_SHIFT;
1043                 I915_WRITE(DSPFW1, reg);
1044                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1045
1046                 /* cursor SR */
1047                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1048                                         pineview_display_wm.fifo_size,
1049                                         pixel_size, latency->cursor_sr);
1050                 reg = I915_READ(DSPFW3);
1051                 reg &= ~DSPFW_CURSOR_SR_MASK;
1052                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1053                 I915_WRITE(DSPFW3, reg);
1054
1055                 /* Display HPLL off SR */
1056                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1057                                         pineview_display_hplloff_wm.fifo_size,
1058                                         pixel_size, latency->display_hpll_disable);
1059                 reg = I915_READ(DSPFW3);
1060                 reg &= ~DSPFW_HPLL_SR_MASK;
1061                 reg |= wm & DSPFW_HPLL_SR_MASK;
1062                 I915_WRITE(DSPFW3, reg);
1063
1064                 /* cursor HPLL off SR */
1065                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1066                                         pineview_display_hplloff_wm.fifo_size,
1067                                         pixel_size, latency->cursor_hpll_disable);
1068                 reg = I915_READ(DSPFW3);
1069                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1070                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1071                 I915_WRITE(DSPFW3, reg);
1072                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1073
1074                 /* activate cxsr */
1075                 I915_WRITE(DSPFW3,
1076                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1077                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1078         } else {
1079                 pineview_disable_cxsr(dev);
1080                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1081         }
1082 }
1083
1084 static bool g4x_compute_wm0(struct drm_device *dev,
1085                             int plane,
1086                             const struct intel_watermark_params *display,
1087                             int display_latency_ns,
1088                             const struct intel_watermark_params *cursor,
1089                             int cursor_latency_ns,
1090                             int *plane_wm,
1091                             int *cursor_wm)
1092 {
1093         struct drm_crtc *crtc;
1094         int htotal, hdisplay, clock, pixel_size;
1095         int line_time_us, line_count;
1096         int entries, tlb_miss;
1097
1098         crtc = intel_get_crtc_for_plane(dev, plane);
1099         if (!intel_crtc_active(crtc)) {
1100                 *cursor_wm = cursor->guard_size;
1101                 *plane_wm = display->guard_size;
1102                 return false;
1103         }
1104
1105         htotal = crtc->mode.htotal;
1106         hdisplay = crtc->mode.hdisplay;
1107         clock = crtc->mode.clock;
1108         pixel_size = crtc->fb->bits_per_pixel / 8;
1109
1110         /* Use the small buffer method to calculate plane watermark */
1111         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1112         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1113         if (tlb_miss > 0)
1114                 entries += tlb_miss;
1115         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1116         *plane_wm = entries + display->guard_size;
1117         if (*plane_wm > (int)display->max_wm)
1118                 *plane_wm = display->max_wm;
1119
1120         /* Use the large buffer method to calculate cursor watermark */
1121         line_time_us = ((htotal * 1000) / clock);
1122         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1123         entries = line_count * 64 * pixel_size;
1124         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1125         if (tlb_miss > 0)
1126                 entries += tlb_miss;
1127         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1128         *cursor_wm = entries + cursor->guard_size;
1129         if (*cursor_wm > (int)cursor->max_wm)
1130                 *cursor_wm = (int)cursor->max_wm;
1131
1132         return true;
1133 }
1134
1135 /*
1136  * Check the wm result.
1137  *
1138  * If any calculated watermark values is larger than the maximum value that
1139  * can be programmed into the associated watermark register, that watermark
1140  * must be disabled.
1141  */
1142 static bool g4x_check_srwm(struct drm_device *dev,
1143                            int display_wm, int cursor_wm,
1144                            const struct intel_watermark_params *display,
1145                            const struct intel_watermark_params *cursor)
1146 {
1147         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1148                       display_wm, cursor_wm);
1149
1150         if (display_wm > display->max_wm) {
1151                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1152                               display_wm, display->max_wm);
1153                 return false;
1154         }
1155
1156         if (cursor_wm > cursor->max_wm) {
1157                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1158                               cursor_wm, cursor->max_wm);
1159                 return false;
1160         }
1161
1162         if (!(display_wm || cursor_wm)) {
1163                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1164                 return false;
1165         }
1166
1167         return true;
1168 }
1169
1170 static bool g4x_compute_srwm(struct drm_device *dev,
1171                              int plane,
1172                              int latency_ns,
1173                              const struct intel_watermark_params *display,
1174                              const struct intel_watermark_params *cursor,
1175                              int *display_wm, int *cursor_wm)
1176 {
1177         struct drm_crtc *crtc;
1178         int hdisplay, htotal, pixel_size, clock;
1179         unsigned long line_time_us;
1180         int line_count, line_size;
1181         int small, large;
1182         int entries;
1183
1184         if (!latency_ns) {
1185                 *display_wm = *cursor_wm = 0;
1186                 return false;
1187         }
1188
1189         crtc = intel_get_crtc_for_plane(dev, plane);
1190         hdisplay = crtc->mode.hdisplay;
1191         htotal = crtc->mode.htotal;
1192         clock = crtc->mode.clock;
1193         pixel_size = crtc->fb->bits_per_pixel / 8;
1194
1195         line_time_us = (htotal * 1000) / clock;
1196         line_count = (latency_ns / line_time_us + 1000) / 1000;
1197         line_size = hdisplay * pixel_size;
1198
1199         /* Use the minimum of the small and large buffer method for primary */
1200         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1201         large = line_count * line_size;
1202
1203         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1204         *display_wm = entries + display->guard_size;
1205
1206         /* calculate the self-refresh watermark for display cursor */
1207         entries = line_count * pixel_size * 64;
1208         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1209         *cursor_wm = entries + cursor->guard_size;
1210
1211         return g4x_check_srwm(dev,
1212                               *display_wm, *cursor_wm,
1213                               display, cursor);
1214 }
1215
1216 static bool vlv_compute_drain_latency(struct drm_device *dev,
1217                                      int plane,
1218                                      int *plane_prec_mult,
1219                                      int *plane_dl,
1220                                      int *cursor_prec_mult,
1221                                      int *cursor_dl)
1222 {
1223         struct drm_crtc *crtc;
1224         int clock, pixel_size;
1225         int entries;
1226
1227         crtc = intel_get_crtc_for_plane(dev, plane);
1228         if (!intel_crtc_active(crtc))
1229                 return false;
1230
1231         clock = crtc->mode.clock;       /* VESA DOT Clock */
1232         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1233
1234         entries = (clock / 1000) * pixel_size;
1235         *plane_prec_mult = (entries > 256) ?
1236                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1237         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1238                                                      pixel_size);
1239
1240         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1241         *cursor_prec_mult = (entries > 256) ?
1242                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1243         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1244
1245         return true;
1246 }
1247
1248 /*
1249  * Update drain latency registers of memory arbiter
1250  *
1251  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1252  * to be programmed. Each plane has a drain latency multiplier and a drain
1253  * latency value.
1254  */
1255
1256 static void vlv_update_drain_latency(struct drm_device *dev)
1257 {
1258         struct drm_i915_private *dev_priv = dev->dev_private;
1259         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1260         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1261         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1262                                                         either 16 or 32 */
1263
1264         /* For plane A, Cursor A */
1265         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1266                                       &cursor_prec_mult, &cursora_dl)) {
1267                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1268                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1269                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1270                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1271
1272                 I915_WRITE(VLV_DDL1, cursora_prec |
1273                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1274                                 planea_prec | planea_dl);
1275         }
1276
1277         /* For plane B, Cursor B */
1278         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1279                                       &cursor_prec_mult, &cursorb_dl)) {
1280                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1281                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1282                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1283                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1284
1285                 I915_WRITE(VLV_DDL2, cursorb_prec |
1286                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1287                                 planeb_prec | planeb_dl);
1288         }
1289 }
1290
1291 #define single_plane_enabled(mask) is_power_of_2(mask)
1292
1293 static void valleyview_update_wm(struct drm_device *dev)
1294 {
1295         static const int sr_latency_ns = 12000;
1296         struct drm_i915_private *dev_priv = dev->dev_private;
1297         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1298         int plane_sr, cursor_sr;
1299         int ignore_plane_sr, ignore_cursor_sr;
1300         unsigned int enabled = 0;
1301
1302         vlv_update_drain_latency(dev);
1303
1304         if (g4x_compute_wm0(dev, 0,
1305                             &valleyview_wm_info, latency_ns,
1306                             &valleyview_cursor_wm_info, latency_ns,
1307                             &planea_wm, &cursora_wm))
1308                 enabled |= 1;
1309
1310         if (g4x_compute_wm0(dev, 1,
1311                             &valleyview_wm_info, latency_ns,
1312                             &valleyview_cursor_wm_info, latency_ns,
1313                             &planeb_wm, &cursorb_wm))
1314                 enabled |= 2;
1315
1316         if (single_plane_enabled(enabled) &&
1317             g4x_compute_srwm(dev, ffs(enabled) - 1,
1318                              sr_latency_ns,
1319                              &valleyview_wm_info,
1320                              &valleyview_cursor_wm_info,
1321                              &plane_sr, &ignore_cursor_sr) &&
1322             g4x_compute_srwm(dev, ffs(enabled) - 1,
1323                              2*sr_latency_ns,
1324                              &valleyview_wm_info,
1325                              &valleyview_cursor_wm_info,
1326                              &ignore_plane_sr, &cursor_sr)) {
1327                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1328         } else {
1329                 I915_WRITE(FW_BLC_SELF_VLV,
1330                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1331                 plane_sr = cursor_sr = 0;
1332         }
1333
1334         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1335                       planea_wm, cursora_wm,
1336                       planeb_wm, cursorb_wm,
1337                       plane_sr, cursor_sr);
1338
1339         I915_WRITE(DSPFW1,
1340                    (plane_sr << DSPFW_SR_SHIFT) |
1341                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1342                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1343                    planea_wm);
1344         I915_WRITE(DSPFW2,
1345                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1346                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1347         I915_WRITE(DSPFW3,
1348                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1349                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1350 }
1351
1352 static void g4x_update_wm(struct drm_device *dev)
1353 {
1354         static const int sr_latency_ns = 12000;
1355         struct drm_i915_private *dev_priv = dev->dev_private;
1356         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1357         int plane_sr, cursor_sr;
1358         unsigned int enabled = 0;
1359
1360         if (g4x_compute_wm0(dev, 0,
1361                             &g4x_wm_info, latency_ns,
1362                             &g4x_cursor_wm_info, latency_ns,
1363                             &planea_wm, &cursora_wm))
1364                 enabled |= 1;
1365
1366         if (g4x_compute_wm0(dev, 1,
1367                             &g4x_wm_info, latency_ns,
1368                             &g4x_cursor_wm_info, latency_ns,
1369                             &planeb_wm, &cursorb_wm))
1370                 enabled |= 2;
1371
1372         if (single_plane_enabled(enabled) &&
1373             g4x_compute_srwm(dev, ffs(enabled) - 1,
1374                              sr_latency_ns,
1375                              &g4x_wm_info,
1376                              &g4x_cursor_wm_info,
1377                              &plane_sr, &cursor_sr)) {
1378                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1379         } else {
1380                 I915_WRITE(FW_BLC_SELF,
1381                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1382                 plane_sr = cursor_sr = 0;
1383         }
1384
1385         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1386                       planea_wm, cursora_wm,
1387                       planeb_wm, cursorb_wm,
1388                       plane_sr, cursor_sr);
1389
1390         I915_WRITE(DSPFW1,
1391                    (plane_sr << DSPFW_SR_SHIFT) |
1392                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1393                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1394                    planea_wm);
1395         I915_WRITE(DSPFW2,
1396                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1397                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1398         /* HPLL off in SR has some issues on G4x... disable it */
1399         I915_WRITE(DSPFW3,
1400                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1401                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1402 }
1403
1404 static void i965_update_wm(struct drm_device *dev)
1405 {
1406         struct drm_i915_private *dev_priv = dev->dev_private;
1407         struct drm_crtc *crtc;
1408         int srwm = 1;
1409         int cursor_sr = 16;
1410
1411         /* Calc sr entries for one plane configs */
1412         crtc = single_enabled_crtc(dev);
1413         if (crtc) {
1414                 /* self-refresh has much higher latency */
1415                 static const int sr_latency_ns = 12000;
1416                 int clock = crtc->mode.clock;
1417                 int htotal = crtc->mode.htotal;
1418                 int hdisplay = crtc->mode.hdisplay;
1419                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1420                 unsigned long line_time_us;
1421                 int entries;
1422
1423                 line_time_us = ((htotal * 1000) / clock);
1424
1425                 /* Use ns/us then divide to preserve precision */
1426                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1427                         pixel_size * hdisplay;
1428                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1429                 srwm = I965_FIFO_SIZE - entries;
1430                 if (srwm < 0)
1431                         srwm = 1;
1432                 srwm &= 0x1ff;
1433                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1434                               entries, srwm);
1435
1436                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1437                         pixel_size * 64;
1438                 entries = DIV_ROUND_UP(entries,
1439                                           i965_cursor_wm_info.cacheline_size);
1440                 cursor_sr = i965_cursor_wm_info.fifo_size -
1441                         (entries + i965_cursor_wm_info.guard_size);
1442
1443                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1444                         cursor_sr = i965_cursor_wm_info.max_wm;
1445
1446                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1447                               "cursor %d\n", srwm, cursor_sr);
1448
1449                 if (IS_CRESTLINE(dev))
1450                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1451         } else {
1452                 /* Turn off self refresh if both pipes are enabled */
1453                 if (IS_CRESTLINE(dev))
1454                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1455                                    & ~FW_BLC_SELF_EN);
1456         }
1457
1458         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1459                       srwm);
1460
1461         /* 965 has limitations... */
1462         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1463                    (8 << 16) | (8 << 8) | (8 << 0));
1464         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1465         /* update cursor SR watermark */
1466         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1467 }
1468
1469 static void i9xx_update_wm(struct drm_device *dev)
1470 {
1471         struct drm_i915_private *dev_priv = dev->dev_private;
1472         const struct intel_watermark_params *wm_info;
1473         uint32_t fwater_lo;
1474         uint32_t fwater_hi;
1475         int cwm, srwm = 1;
1476         int fifo_size;
1477         int planea_wm, planeb_wm;
1478         struct drm_crtc *crtc, *enabled = NULL;
1479
1480         if (IS_I945GM(dev))
1481                 wm_info = &i945_wm_info;
1482         else if (!IS_GEN2(dev))
1483                 wm_info = &i915_wm_info;
1484         else
1485                 wm_info = &i855_wm_info;
1486
1487         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1488         crtc = intel_get_crtc_for_plane(dev, 0);
1489         if (intel_crtc_active(crtc)) {
1490                 int cpp = crtc->fb->bits_per_pixel / 8;
1491                 if (IS_GEN2(dev))
1492                         cpp = 4;
1493
1494                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1495                                                wm_info, fifo_size, cpp,
1496                                                latency_ns);
1497                 enabled = crtc;
1498         } else
1499                 planea_wm = fifo_size - wm_info->guard_size;
1500
1501         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1502         crtc = intel_get_crtc_for_plane(dev, 1);
1503         if (intel_crtc_active(crtc)) {
1504                 int cpp = crtc->fb->bits_per_pixel / 8;
1505                 if (IS_GEN2(dev))
1506                         cpp = 4;
1507
1508                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1509                                                wm_info, fifo_size, cpp,
1510                                                latency_ns);
1511                 if (enabled == NULL)
1512                         enabled = crtc;
1513                 else
1514                         enabled = NULL;
1515         } else
1516                 planeb_wm = fifo_size - wm_info->guard_size;
1517
1518         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1519
1520         /*
1521          * Overlay gets an aggressive default since video jitter is bad.
1522          */
1523         cwm = 2;
1524
1525         /* Play safe and disable self-refresh before adjusting watermarks. */
1526         if (IS_I945G(dev) || IS_I945GM(dev))
1527                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1528         else if (IS_I915GM(dev))
1529                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1530
1531         /* Calc sr entries for one plane configs */
1532         if (HAS_FW_BLC(dev) && enabled) {
1533                 /* self-refresh has much higher latency */
1534                 static const int sr_latency_ns = 6000;
1535                 int clock = enabled->mode.clock;
1536                 int htotal = enabled->mode.htotal;
1537                 int hdisplay = enabled->mode.hdisplay;
1538                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1539                 unsigned long line_time_us;
1540                 int entries;
1541
1542                 line_time_us = (htotal * 1000) / clock;
1543
1544                 /* Use ns/us then divide to preserve precision */
1545                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1546                         pixel_size * hdisplay;
1547                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1548                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1549                 srwm = wm_info->fifo_size - entries;
1550                 if (srwm < 0)
1551                         srwm = 1;
1552
1553                 if (IS_I945G(dev) || IS_I945GM(dev))
1554                         I915_WRITE(FW_BLC_SELF,
1555                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1556                 else if (IS_I915GM(dev))
1557                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1558         }
1559
1560         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1561                       planea_wm, planeb_wm, cwm, srwm);
1562
1563         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1564         fwater_hi = (cwm & 0x1f);
1565
1566         /* Set request length to 8 cachelines per fetch */
1567         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1568         fwater_hi = fwater_hi | (1 << 8);
1569
1570         I915_WRITE(FW_BLC, fwater_lo);
1571         I915_WRITE(FW_BLC2, fwater_hi);
1572
1573         if (HAS_FW_BLC(dev)) {
1574                 if (enabled) {
1575                         if (IS_I945G(dev) || IS_I945GM(dev))
1576                                 I915_WRITE(FW_BLC_SELF,
1577                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1578                         else if (IS_I915GM(dev))
1579                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1580                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1581                 } else
1582                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1583         }
1584 }
1585
1586 static void i830_update_wm(struct drm_device *dev)
1587 {
1588         struct drm_i915_private *dev_priv = dev->dev_private;
1589         struct drm_crtc *crtc;
1590         uint32_t fwater_lo;
1591         int planea_wm;
1592
1593         crtc = single_enabled_crtc(dev);
1594         if (crtc == NULL)
1595                 return;
1596
1597         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1598                                        dev_priv->display.get_fifo_size(dev, 0),
1599                                        4, latency_ns);
1600         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1601         fwater_lo |= (3<<8) | planea_wm;
1602
1603         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1604
1605         I915_WRITE(FW_BLC, fwater_lo);
1606 }
1607
1608 #define ILK_LP0_PLANE_LATENCY           700
1609 #define ILK_LP0_CURSOR_LATENCY          1300
1610
1611 /*
1612  * Check the wm result.
1613  *
1614  * If any calculated watermark values is larger than the maximum value that
1615  * can be programmed into the associated watermark register, that watermark
1616  * must be disabled.
1617  */
1618 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1619                                 int fbc_wm, int display_wm, int cursor_wm,
1620                                 const struct intel_watermark_params *display,
1621                                 const struct intel_watermark_params *cursor)
1622 {
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624
1625         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1626                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1627
1628         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1629                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1630                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1631
1632                 /* fbc has it's own way to disable FBC WM */
1633                 I915_WRITE(DISP_ARB_CTL,
1634                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1635                 return false;
1636         }
1637
1638         if (display_wm > display->max_wm) {
1639                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1640                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1641                 return false;
1642         }
1643
1644         if (cursor_wm > cursor->max_wm) {
1645                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1646                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1647                 return false;
1648         }
1649
1650         if (!(fbc_wm || display_wm || cursor_wm)) {
1651                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1652                 return false;
1653         }
1654
1655         return true;
1656 }
1657
1658 /*
1659  * Compute watermark values of WM[1-3],
1660  */
1661 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1662                                   int latency_ns,
1663                                   const struct intel_watermark_params *display,
1664                                   const struct intel_watermark_params *cursor,
1665                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1666 {
1667         struct drm_crtc *crtc;
1668         unsigned long line_time_us;
1669         int hdisplay, htotal, pixel_size, clock;
1670         int line_count, line_size;
1671         int small, large;
1672         int entries;
1673
1674         if (!latency_ns) {
1675                 *fbc_wm = *display_wm = *cursor_wm = 0;
1676                 return false;
1677         }
1678
1679         crtc = intel_get_crtc_for_plane(dev, plane);
1680         hdisplay = crtc->mode.hdisplay;
1681         htotal = crtc->mode.htotal;
1682         clock = crtc->mode.clock;
1683         pixel_size = crtc->fb->bits_per_pixel / 8;
1684
1685         line_time_us = (htotal * 1000) / clock;
1686         line_count = (latency_ns / line_time_us + 1000) / 1000;
1687         line_size = hdisplay * pixel_size;
1688
1689         /* Use the minimum of the small and large buffer method for primary */
1690         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1691         large = line_count * line_size;
1692
1693         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1694         *display_wm = entries + display->guard_size;
1695
1696         /*
1697          * Spec says:
1698          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1699          */
1700         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1701
1702         /* calculate the self-refresh watermark for display cursor */
1703         entries = line_count * pixel_size * 64;
1704         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1705         *cursor_wm = entries + cursor->guard_size;
1706
1707         return ironlake_check_srwm(dev, level,
1708                                    *fbc_wm, *display_wm, *cursor_wm,
1709                                    display, cursor);
1710 }
1711
1712 static void ironlake_update_wm(struct drm_device *dev)
1713 {
1714         struct drm_i915_private *dev_priv = dev->dev_private;
1715         int fbc_wm, plane_wm, cursor_wm;
1716         unsigned int enabled;
1717
1718         enabled = 0;
1719         if (g4x_compute_wm0(dev, 0,
1720                             &ironlake_display_wm_info,
1721                             ILK_LP0_PLANE_LATENCY,
1722                             &ironlake_cursor_wm_info,
1723                             ILK_LP0_CURSOR_LATENCY,
1724                             &plane_wm, &cursor_wm)) {
1725                 I915_WRITE(WM0_PIPEA_ILK,
1726                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1727                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1728                               " plane %d, " "cursor: %d\n",
1729                               plane_wm, cursor_wm);
1730                 enabled |= 1;
1731         }
1732
1733         if (g4x_compute_wm0(dev, 1,
1734                             &ironlake_display_wm_info,
1735                             ILK_LP0_PLANE_LATENCY,
1736                             &ironlake_cursor_wm_info,
1737                             ILK_LP0_CURSOR_LATENCY,
1738                             &plane_wm, &cursor_wm)) {
1739                 I915_WRITE(WM0_PIPEB_ILK,
1740                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1741                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1742                               " plane %d, cursor: %d\n",
1743                               plane_wm, cursor_wm);
1744                 enabled |= 2;
1745         }
1746
1747         /*
1748          * Calculate and update the self-refresh watermark only when one
1749          * display plane is used.
1750          */
1751         I915_WRITE(WM3_LP_ILK, 0);
1752         I915_WRITE(WM2_LP_ILK, 0);
1753         I915_WRITE(WM1_LP_ILK, 0);
1754
1755         if (!single_plane_enabled(enabled))
1756                 return;
1757         enabled = ffs(enabled) - 1;
1758
1759         /* WM1 */
1760         if (!ironlake_compute_srwm(dev, 1, enabled,
1761                                    ILK_READ_WM1_LATENCY() * 500,
1762                                    &ironlake_display_srwm_info,
1763                                    &ironlake_cursor_srwm_info,
1764                                    &fbc_wm, &plane_wm, &cursor_wm))
1765                 return;
1766
1767         I915_WRITE(WM1_LP_ILK,
1768                    WM1_LP_SR_EN |
1769                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1770                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1771                    (plane_wm << WM1_LP_SR_SHIFT) |
1772                    cursor_wm);
1773
1774         /* WM2 */
1775         if (!ironlake_compute_srwm(dev, 2, enabled,
1776                                    ILK_READ_WM2_LATENCY() * 500,
1777                                    &ironlake_display_srwm_info,
1778                                    &ironlake_cursor_srwm_info,
1779                                    &fbc_wm, &plane_wm, &cursor_wm))
1780                 return;
1781
1782         I915_WRITE(WM2_LP_ILK,
1783                    WM2_LP_EN |
1784                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1785                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1786                    (plane_wm << WM1_LP_SR_SHIFT) |
1787                    cursor_wm);
1788
1789         /*
1790          * WM3 is unsupported on ILK, probably because we don't have latency
1791          * data for that power state
1792          */
1793 }
1794
1795 static void sandybridge_update_wm(struct drm_device *dev)
1796 {
1797         struct drm_i915_private *dev_priv = dev->dev_private;
1798         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1799         u32 val;
1800         int fbc_wm, plane_wm, cursor_wm;
1801         unsigned int enabled;
1802
1803         enabled = 0;
1804         if (g4x_compute_wm0(dev, 0,
1805                             &sandybridge_display_wm_info, latency,
1806                             &sandybridge_cursor_wm_info, latency,
1807                             &plane_wm, &cursor_wm)) {
1808                 val = I915_READ(WM0_PIPEA_ILK);
1809                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1810                 I915_WRITE(WM0_PIPEA_ILK, val |
1811                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1812                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1813                               " plane %d, " "cursor: %d\n",
1814                               plane_wm, cursor_wm);
1815                 enabled |= 1;
1816         }
1817
1818         if (g4x_compute_wm0(dev, 1,
1819                             &sandybridge_display_wm_info, latency,
1820                             &sandybridge_cursor_wm_info, latency,
1821                             &plane_wm, &cursor_wm)) {
1822                 val = I915_READ(WM0_PIPEB_ILK);
1823                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1824                 I915_WRITE(WM0_PIPEB_ILK, val |
1825                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1826                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1827                               " plane %d, cursor: %d\n",
1828                               plane_wm, cursor_wm);
1829                 enabled |= 2;
1830         }
1831
1832         /*
1833          * Calculate and update the self-refresh watermark only when one
1834          * display plane is used.
1835          *
1836          * SNB support 3 levels of watermark.
1837          *
1838          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1839          * and disabled in the descending order
1840          *
1841          */
1842         I915_WRITE(WM3_LP_ILK, 0);
1843         I915_WRITE(WM2_LP_ILK, 0);
1844         I915_WRITE(WM1_LP_ILK, 0);
1845
1846         if (!single_plane_enabled(enabled) ||
1847             dev_priv->sprite_scaling_enabled)
1848                 return;
1849         enabled = ffs(enabled) - 1;
1850
1851         /* WM1 */
1852         if (!ironlake_compute_srwm(dev, 1, enabled,
1853                                    SNB_READ_WM1_LATENCY() * 500,
1854                                    &sandybridge_display_srwm_info,
1855                                    &sandybridge_cursor_srwm_info,
1856                                    &fbc_wm, &plane_wm, &cursor_wm))
1857                 return;
1858
1859         I915_WRITE(WM1_LP_ILK,
1860                    WM1_LP_SR_EN |
1861                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1862                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1863                    (plane_wm << WM1_LP_SR_SHIFT) |
1864                    cursor_wm);
1865
1866         /* WM2 */
1867         if (!ironlake_compute_srwm(dev, 2, enabled,
1868                                    SNB_READ_WM2_LATENCY() * 500,
1869                                    &sandybridge_display_srwm_info,
1870                                    &sandybridge_cursor_srwm_info,
1871                                    &fbc_wm, &plane_wm, &cursor_wm))
1872                 return;
1873
1874         I915_WRITE(WM2_LP_ILK,
1875                    WM2_LP_EN |
1876                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1877                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1878                    (plane_wm << WM1_LP_SR_SHIFT) |
1879                    cursor_wm);
1880
1881         /* WM3 */
1882         if (!ironlake_compute_srwm(dev, 3, enabled,
1883                                    SNB_READ_WM3_LATENCY() * 500,
1884                                    &sandybridge_display_srwm_info,
1885                                    &sandybridge_cursor_srwm_info,
1886                                    &fbc_wm, &plane_wm, &cursor_wm))
1887                 return;
1888
1889         I915_WRITE(WM3_LP_ILK,
1890                    WM3_LP_EN |
1891                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1892                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1893                    (plane_wm << WM1_LP_SR_SHIFT) |
1894                    cursor_wm);
1895 }
1896
1897 static void ivybridge_update_wm(struct drm_device *dev)
1898 {
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1901         u32 val;
1902         int fbc_wm, plane_wm, cursor_wm;
1903         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1904         unsigned int enabled;
1905
1906         enabled = 0;
1907         if (g4x_compute_wm0(dev, 0,
1908                             &sandybridge_display_wm_info, latency,
1909                             &sandybridge_cursor_wm_info, latency,
1910                             &plane_wm, &cursor_wm)) {
1911                 val = I915_READ(WM0_PIPEA_ILK);
1912                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1913                 I915_WRITE(WM0_PIPEA_ILK, val |
1914                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1915                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1916                               " plane %d, " "cursor: %d\n",
1917                               plane_wm, cursor_wm);
1918                 enabled |= 1;
1919         }
1920
1921         if (g4x_compute_wm0(dev, 1,
1922                             &sandybridge_display_wm_info, latency,
1923                             &sandybridge_cursor_wm_info, latency,
1924                             &plane_wm, &cursor_wm)) {
1925                 val = I915_READ(WM0_PIPEB_ILK);
1926                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1927                 I915_WRITE(WM0_PIPEB_ILK, val |
1928                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1929                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1930                               " plane %d, cursor: %d\n",
1931                               plane_wm, cursor_wm);
1932                 enabled |= 2;
1933         }
1934
1935         if (g4x_compute_wm0(dev, 2,
1936                             &sandybridge_display_wm_info, latency,
1937                             &sandybridge_cursor_wm_info, latency,
1938                             &plane_wm, &cursor_wm)) {
1939                 val = I915_READ(WM0_PIPEC_IVB);
1940                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1941                 I915_WRITE(WM0_PIPEC_IVB, val |
1942                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1943                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1944                               " plane %d, cursor: %d\n",
1945                               plane_wm, cursor_wm);
1946                 enabled |= 3;
1947         }
1948
1949         /*
1950          * Calculate and update the self-refresh watermark only when one
1951          * display plane is used.
1952          *
1953          * SNB support 3 levels of watermark.
1954          *
1955          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1956          * and disabled in the descending order
1957          *
1958          */
1959         I915_WRITE(WM3_LP_ILK, 0);
1960         I915_WRITE(WM2_LP_ILK, 0);
1961         I915_WRITE(WM1_LP_ILK, 0);
1962
1963         if (!single_plane_enabled(enabled) ||
1964             dev_priv->sprite_scaling_enabled)
1965                 return;
1966         enabled = ffs(enabled) - 1;
1967
1968         /* WM1 */
1969         if (!ironlake_compute_srwm(dev, 1, enabled,
1970                                    SNB_READ_WM1_LATENCY() * 500,
1971                                    &sandybridge_display_srwm_info,
1972                                    &sandybridge_cursor_srwm_info,
1973                                    &fbc_wm, &plane_wm, &cursor_wm))
1974                 return;
1975
1976         I915_WRITE(WM1_LP_ILK,
1977                    WM1_LP_SR_EN |
1978                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1979                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1980                    (plane_wm << WM1_LP_SR_SHIFT) |
1981                    cursor_wm);
1982
1983         /* WM2 */
1984         if (!ironlake_compute_srwm(dev, 2, enabled,
1985                                    SNB_READ_WM2_LATENCY() * 500,
1986                                    &sandybridge_display_srwm_info,
1987                                    &sandybridge_cursor_srwm_info,
1988                                    &fbc_wm, &plane_wm, &cursor_wm))
1989                 return;
1990
1991         I915_WRITE(WM2_LP_ILK,
1992                    WM2_LP_EN |
1993                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1994                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1995                    (plane_wm << WM1_LP_SR_SHIFT) |
1996                    cursor_wm);
1997
1998         /* WM3, note we have to correct the cursor latency */
1999         if (!ironlake_compute_srwm(dev, 3, enabled,
2000                                    SNB_READ_WM3_LATENCY() * 500,
2001                                    &sandybridge_display_srwm_info,
2002                                    &sandybridge_cursor_srwm_info,
2003                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2004             !ironlake_compute_srwm(dev, 3, enabled,
2005                                    2 * SNB_READ_WM3_LATENCY() * 500,
2006                                    &sandybridge_display_srwm_info,
2007                                    &sandybridge_cursor_srwm_info,
2008                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2009                 return;
2010
2011         I915_WRITE(WM3_LP_ILK,
2012                    WM3_LP_EN |
2013                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2014                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2015                    (plane_wm << WM1_LP_SR_SHIFT) |
2016                    cursor_wm);
2017 }
2018
2019 static void
2020 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2021                                  struct drm_display_mode *mode)
2022 {
2023         struct drm_i915_private *dev_priv = dev->dev_private;
2024         u32 temp;
2025
2026         temp = I915_READ(PIPE_WM_LINETIME(pipe));
2027         temp &= ~PIPE_WM_LINETIME_MASK;
2028
2029         /* The WM are computed with base on how long it takes to fill a single
2030          * row at the given clock rate, multiplied by 8.
2031          * */
2032         temp |= PIPE_WM_LINETIME_TIME(
2033                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2034
2035         /* IPS watermarks are only used by pipe A, and are ignored by
2036          * pipes B and C.  They are calculated similarly to the common
2037          * linetime values, except that we are using CD clock frequency
2038          * in MHz instead of pixel rate for the division.
2039          *
2040          * This is a placeholder for the IPS watermark calculation code.
2041          */
2042
2043         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2044 }
2045
2046 static bool
2047 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2048                               uint32_t sprite_width, int pixel_size,
2049                               const struct intel_watermark_params *display,
2050                               int display_latency_ns, int *sprite_wm)
2051 {
2052         struct drm_crtc *crtc;
2053         int clock;
2054         int entries, tlb_miss;
2055
2056         crtc = intel_get_crtc_for_plane(dev, plane);
2057         if (!intel_crtc_active(crtc)) {
2058                 *sprite_wm = display->guard_size;
2059                 return false;
2060         }
2061
2062         clock = crtc->mode.clock;
2063
2064         /* Use the small buffer method to calculate the sprite watermark */
2065         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2066         tlb_miss = display->fifo_size*display->cacheline_size -
2067                 sprite_width * 8;
2068         if (tlb_miss > 0)
2069                 entries += tlb_miss;
2070         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2071         *sprite_wm = entries + display->guard_size;
2072         if (*sprite_wm > (int)display->max_wm)
2073                 *sprite_wm = display->max_wm;
2074
2075         return true;
2076 }
2077
2078 static bool
2079 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2080                                 uint32_t sprite_width, int pixel_size,
2081                                 const struct intel_watermark_params *display,
2082                                 int latency_ns, int *sprite_wm)
2083 {
2084         struct drm_crtc *crtc;
2085         unsigned long line_time_us;
2086         int clock;
2087         int line_count, line_size;
2088         int small, large;
2089         int entries;
2090
2091         if (!latency_ns) {
2092                 *sprite_wm = 0;
2093                 return false;
2094         }
2095
2096         crtc = intel_get_crtc_for_plane(dev, plane);
2097         clock = crtc->mode.clock;
2098         if (!clock) {
2099                 *sprite_wm = 0;
2100                 return false;
2101         }
2102
2103         line_time_us = (sprite_width * 1000) / clock;
2104         if (!line_time_us) {
2105                 *sprite_wm = 0;
2106                 return false;
2107         }
2108
2109         line_count = (latency_ns / line_time_us + 1000) / 1000;
2110         line_size = sprite_width * pixel_size;
2111
2112         /* Use the minimum of the small and large buffer method for primary */
2113         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2114         large = line_count * line_size;
2115
2116         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2117         *sprite_wm = entries + display->guard_size;
2118
2119         return *sprite_wm > 0x3ff ? false : true;
2120 }
2121
2122 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2123                                          uint32_t sprite_width, int pixel_size)
2124 {
2125         struct drm_i915_private *dev_priv = dev->dev_private;
2126         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2127         u32 val;
2128         int sprite_wm, reg;
2129         int ret;
2130
2131         switch (pipe) {
2132         case 0:
2133                 reg = WM0_PIPEA_ILK;
2134                 break;
2135         case 1:
2136                 reg = WM0_PIPEB_ILK;
2137                 break;
2138         case 2:
2139                 reg = WM0_PIPEC_IVB;
2140                 break;
2141         default:
2142                 return; /* bad pipe */
2143         }
2144
2145         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2146                                             &sandybridge_display_wm_info,
2147                                             latency, &sprite_wm);
2148         if (!ret) {
2149                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2150                               pipe);
2151                 return;
2152         }
2153
2154         val = I915_READ(reg);
2155         val &= ~WM0_PIPE_SPRITE_MASK;
2156         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2157         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2158
2159
2160         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2161                                               pixel_size,
2162                                               &sandybridge_display_srwm_info,
2163                                               SNB_READ_WM1_LATENCY() * 500,
2164                                               &sprite_wm);
2165         if (!ret) {
2166                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2167                               pipe);
2168                 return;
2169         }
2170         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2171
2172         /* Only IVB has two more LP watermarks for sprite */
2173         if (!IS_IVYBRIDGE(dev))
2174                 return;
2175
2176         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2177                                               pixel_size,
2178                                               &sandybridge_display_srwm_info,
2179                                               SNB_READ_WM2_LATENCY() * 500,
2180                                               &sprite_wm);
2181         if (!ret) {
2182                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2183                               pipe);
2184                 return;
2185         }
2186         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2187
2188         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2189                                               pixel_size,
2190                                               &sandybridge_display_srwm_info,
2191                                               SNB_READ_WM3_LATENCY() * 500,
2192                                               &sprite_wm);
2193         if (!ret) {
2194                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2195                               pipe);
2196                 return;
2197         }
2198         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2199 }
2200
2201 /**
2202  * intel_update_watermarks - update FIFO watermark values based on current modes
2203  *
2204  * Calculate watermark values for the various WM regs based on current mode
2205  * and plane configuration.
2206  *
2207  * There are several cases to deal with here:
2208  *   - normal (i.e. non-self-refresh)
2209  *   - self-refresh (SR) mode
2210  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2211  *   - lines are small relative to FIFO size (buffer can hold more than 2
2212  *     lines), so need to account for TLB latency
2213  *
2214  *   The normal calculation is:
2215  *     watermark = dotclock * bytes per pixel * latency
2216  *   where latency is platform & configuration dependent (we assume pessimal
2217  *   values here).
2218  *
2219  *   The SR calculation is:
2220  *     watermark = (trunc(latency/line time)+1) * surface width *
2221  *       bytes per pixel
2222  *   where
2223  *     line time = htotal / dotclock
2224  *     surface width = hdisplay for normal plane and 64 for cursor
2225  *   and latency is assumed to be high, as above.
2226  *
2227  * The final value programmed to the register should always be rounded up,
2228  * and include an extra 2 entries to account for clock crossings.
2229  *
2230  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2231  * to set the non-SR watermarks to 8.
2232  */
2233 void intel_update_watermarks(struct drm_device *dev)
2234 {
2235         struct drm_i915_private *dev_priv = dev->dev_private;
2236
2237         if (dev_priv->display.update_wm)
2238                 dev_priv->display.update_wm(dev);
2239 }
2240
2241 void intel_update_linetime_watermarks(struct drm_device *dev,
2242                 int pipe, struct drm_display_mode *mode)
2243 {
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245
2246         if (dev_priv->display.update_linetime_wm)
2247                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2248 }
2249
2250 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2251                                     uint32_t sprite_width, int pixel_size)
2252 {
2253         struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255         if (dev_priv->display.update_sprite_wm)
2256                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2257                                                    pixel_size);
2258 }
2259
2260 static struct drm_i915_gem_object *
2261 intel_alloc_context_page(struct drm_device *dev)
2262 {
2263         struct drm_i915_gem_object *ctx;
2264         int ret;
2265
2266         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2267
2268         ctx = i915_gem_alloc_object(dev, 4096);
2269         if (!ctx) {
2270                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2271                 return NULL;
2272         }
2273
2274         ret = i915_gem_object_pin(ctx, 4096, true, false);
2275         if (ret) {
2276                 DRM_ERROR("failed to pin power context: %d\n", ret);
2277                 goto err_unref;
2278         }
2279
2280         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2281         if (ret) {
2282                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2283                 goto err_unpin;
2284         }
2285
2286         return ctx;
2287
2288 err_unpin:
2289         i915_gem_object_unpin(ctx);
2290 err_unref:
2291         drm_gem_object_unreference(&ctx->base);
2292         return NULL;
2293 }
2294
2295 /**
2296  * Lock protecting IPS related data structures
2297  */
2298 DEFINE_SPINLOCK(mchdev_lock);
2299
2300 /* Global for IPS driver to get at the current i915 device. Protected by
2301  * mchdev_lock. */
2302 static struct drm_i915_private *i915_mch_dev;
2303
2304 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2305 {
2306         struct drm_i915_private *dev_priv = dev->dev_private;
2307         u16 rgvswctl;
2308
2309         assert_spin_locked(&mchdev_lock);
2310
2311         rgvswctl = I915_READ16(MEMSWCTL);
2312         if (rgvswctl & MEMCTL_CMD_STS) {
2313                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2314                 return false; /* still busy with another command */
2315         }
2316
2317         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2318                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2319         I915_WRITE16(MEMSWCTL, rgvswctl);
2320         POSTING_READ16(MEMSWCTL);
2321
2322         rgvswctl |= MEMCTL_CMD_STS;
2323         I915_WRITE16(MEMSWCTL, rgvswctl);
2324
2325         return true;
2326 }
2327
2328 static void ironlake_enable_drps(struct drm_device *dev)
2329 {
2330         struct drm_i915_private *dev_priv = dev->dev_private;
2331         u32 rgvmodectl = I915_READ(MEMMODECTL);
2332         u8 fmax, fmin, fstart, vstart;
2333
2334         spin_lock_irq(&mchdev_lock);
2335
2336         /* Enable temp reporting */
2337         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2338         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2339
2340         /* 100ms RC evaluation intervals */
2341         I915_WRITE(RCUPEI, 100000);
2342         I915_WRITE(RCDNEI, 100000);
2343
2344         /* Set max/min thresholds to 90ms and 80ms respectively */
2345         I915_WRITE(RCBMAXAVG, 90000);
2346         I915_WRITE(RCBMINAVG, 80000);
2347
2348         I915_WRITE(MEMIHYST, 1);
2349
2350         /* Set up min, max, and cur for interrupt handling */
2351         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2352         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2353         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2354                 MEMMODE_FSTART_SHIFT;
2355
2356         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2357                 PXVFREQ_PX_SHIFT;
2358
2359         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2360         dev_priv->ips.fstart = fstart;
2361
2362         dev_priv->ips.max_delay = fstart;
2363         dev_priv->ips.min_delay = fmin;
2364         dev_priv->ips.cur_delay = fstart;
2365
2366         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2367                          fmax, fmin, fstart);
2368
2369         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2370
2371         /*
2372          * Interrupts will be enabled in ironlake_irq_postinstall
2373          */
2374
2375         I915_WRITE(VIDSTART, vstart);
2376         POSTING_READ(VIDSTART);
2377
2378         rgvmodectl |= MEMMODE_SWMODE_EN;
2379         I915_WRITE(MEMMODECTL, rgvmodectl);
2380
2381         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2382                 DRM_ERROR("stuck trying to change perf mode\n");
2383         mdelay(1);
2384
2385         ironlake_set_drps(dev, fstart);
2386
2387         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2388                 I915_READ(0x112e0);
2389         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2390         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2391         getrawmonotonic(&dev_priv->ips.last_time2);
2392
2393         spin_unlock_irq(&mchdev_lock);
2394 }
2395
2396 static void ironlake_disable_drps(struct drm_device *dev)
2397 {
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399         u16 rgvswctl;
2400
2401         spin_lock_irq(&mchdev_lock);
2402
2403         rgvswctl = I915_READ16(MEMSWCTL);
2404
2405         /* Ack interrupts, disable EFC interrupt */
2406         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2407         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2408         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2409         I915_WRITE(DEIIR, DE_PCU_EVENT);
2410         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2411
2412         /* Go back to the starting frequency */
2413         ironlake_set_drps(dev, dev_priv->ips.fstart);
2414         mdelay(1);
2415         rgvswctl |= MEMCTL_CMD_STS;
2416         I915_WRITE(MEMSWCTL, rgvswctl);
2417         mdelay(1);
2418
2419         spin_unlock_irq(&mchdev_lock);
2420 }
2421
2422 /* There's a funny hw issue where the hw returns all 0 when reading from
2423  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2424  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2425  * all limits and the gpu stuck at whatever frequency it is at atm).
2426  */
2427 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2428 {
2429         u32 limits;
2430
2431         limits = 0;
2432
2433         if (*val >= dev_priv->rps.max_delay)
2434                 *val = dev_priv->rps.max_delay;
2435         limits |= dev_priv->rps.max_delay << 24;
2436
2437         /* Only set the down limit when we've reached the lowest level to avoid
2438          * getting more interrupts, otherwise leave this clear. This prevents a
2439          * race in the hw when coming out of rc6: There's a tiny window where
2440          * the hw runs at the minimal clock before selecting the desired
2441          * frequency, if the down threshold expires in that window we will not
2442          * receive a down interrupt. */
2443         if (*val <= dev_priv->rps.min_delay) {
2444                 *val = dev_priv->rps.min_delay;
2445                 limits |= dev_priv->rps.min_delay << 16;
2446         }
2447
2448         return limits;
2449 }
2450
2451 void gen6_set_rps(struct drm_device *dev, u8 val)
2452 {
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         u32 limits = gen6_rps_limits(dev_priv, &val);
2455
2456         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2457         WARN_ON(val > dev_priv->rps.max_delay);
2458         WARN_ON(val < dev_priv->rps.min_delay);
2459
2460         if (val == dev_priv->rps.cur_delay)
2461                 return;
2462
2463         I915_WRITE(GEN6_RPNSWREQ,
2464                    GEN6_FREQUENCY(val) |
2465                    GEN6_OFFSET(0) |
2466                    GEN6_AGGRESSIVE_TURBO);
2467
2468         /* Make sure we continue to get interrupts
2469          * until we hit the minimum or maximum frequencies.
2470          */
2471         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2472
2473         POSTING_READ(GEN6_RPNSWREQ);
2474
2475         dev_priv->rps.cur_delay = val;
2476
2477         trace_intel_gpu_freq_change(val * 50);
2478 }
2479
2480 static void gen6_disable_rps(struct drm_device *dev)
2481 {
2482         struct drm_i915_private *dev_priv = dev->dev_private;
2483
2484         I915_WRITE(GEN6_RC_CONTROL, 0);
2485         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2486         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2487         I915_WRITE(GEN6_PMIER, 0);
2488         /* Complete PM interrupt masking here doesn't race with the rps work
2489          * item again unmasking PM interrupts because that is using a different
2490          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2491          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2492
2493         spin_lock_irq(&dev_priv->rps.lock);
2494         dev_priv->rps.pm_iir = 0;
2495         spin_unlock_irq(&dev_priv->rps.lock);
2496
2497         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2498 }
2499
2500 int intel_enable_rc6(const struct drm_device *dev)
2501 {
2502         /* Respect the kernel parameter if it is set */
2503         if (i915_enable_rc6 >= 0)
2504                 return i915_enable_rc6;
2505
2506         /* Disable RC6 on Ironlake */
2507         if (INTEL_INFO(dev)->gen == 5)
2508                 return 0;
2509
2510         if (IS_HASWELL(dev)) {
2511                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2512                 return INTEL_RC6_ENABLE;
2513         }
2514
2515         /* snb/ivb have more than one rc6 state. */
2516         if (INTEL_INFO(dev)->gen == 6) {
2517                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2518                 return INTEL_RC6_ENABLE;
2519         }
2520
2521         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2522         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2523 }
2524
2525 static void gen6_enable_rps(struct drm_device *dev)
2526 {
2527         struct drm_i915_private *dev_priv = dev->dev_private;
2528         struct intel_ring_buffer *ring;
2529         u32 rp_state_cap;
2530         u32 gt_perf_status;
2531         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2532         u32 gtfifodbg;
2533         int rc6_mode;
2534         int i, ret;
2535
2536         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2537
2538         /* Here begins a magic sequence of register writes to enable
2539          * auto-downclocking.
2540          *
2541          * Perhaps there might be some value in exposing these to
2542          * userspace...
2543          */
2544         I915_WRITE(GEN6_RC_STATE, 0);
2545
2546         /* Clear the DBG now so we don't confuse earlier errors */
2547         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2548                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2549                 I915_WRITE(GTFIFODBG, gtfifodbg);
2550         }
2551
2552         gen6_gt_force_wake_get(dev_priv);
2553
2554         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2555         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2556
2557         /* In units of 100MHz */
2558         dev_priv->rps.max_delay = rp_state_cap & 0xff;
2559         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2560         dev_priv->rps.cur_delay = 0;
2561
2562         /* disable the counters and set deterministic thresholds */
2563         I915_WRITE(GEN6_RC_CONTROL, 0);
2564
2565         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2566         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2567         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2568         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2569         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2570
2571         for_each_ring(ring, dev_priv, i)
2572                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2573
2574         I915_WRITE(GEN6_RC_SLEEP, 0);
2575         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2576         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2577         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2578         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2579
2580         /* Check if we are enabling RC6 */
2581         rc6_mode = intel_enable_rc6(dev_priv->dev);
2582         if (rc6_mode & INTEL_RC6_ENABLE)
2583                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2584
2585         /* We don't use those on Haswell */
2586         if (!IS_HASWELL(dev)) {
2587                 if (rc6_mode & INTEL_RC6p_ENABLE)
2588                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2589
2590                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2591                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2592         }
2593
2594         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2595                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2596                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2597                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2598
2599         I915_WRITE(GEN6_RC_CONTROL,
2600                    rc6_mask |
2601                    GEN6_RC_CTL_EI_MODE(1) |
2602                    GEN6_RC_CTL_HW_ENABLE);
2603
2604         I915_WRITE(GEN6_RPNSWREQ,
2605                    GEN6_FREQUENCY(10) |
2606                    GEN6_OFFSET(0) |
2607                    GEN6_AGGRESSIVE_TURBO);
2608         I915_WRITE(GEN6_RC_VIDEO_FREQ,
2609                    GEN6_FREQUENCY(12));
2610
2611         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2612         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2613                    dev_priv->rps.max_delay << 24 |
2614                    dev_priv->rps.min_delay << 16);
2615
2616         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2617         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2618         I915_WRITE(GEN6_RP_UP_EI, 66000);
2619         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2620
2621         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2622         I915_WRITE(GEN6_RP_CONTROL,
2623                    GEN6_RP_MEDIA_TURBO |
2624                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2625                    GEN6_RP_MEDIA_IS_GFX |
2626                    GEN6_RP_ENABLE |
2627                    GEN6_RP_UP_BUSY_AVG |
2628                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2629
2630         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2631         if (!ret) {
2632                 pcu_mbox = 0;
2633                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2634                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
2635                         DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max from %dMHz to %dMHz\n",
2636                                          (dev_priv->rps.max_delay & 0xff) * 50,
2637                                          (pcu_mbox & 0xff) * 50);
2638                         dev_priv->rps.max_delay = pcu_mbox & 0xff;
2639                 }
2640         } else {
2641                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2642         }
2643
2644         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2645
2646         /* requires MSI enabled */
2647         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2648         spin_lock_irq(&dev_priv->rps.lock);
2649         WARN_ON(dev_priv->rps.pm_iir != 0);
2650         I915_WRITE(GEN6_PMIMR, 0);
2651         spin_unlock_irq(&dev_priv->rps.lock);
2652         /* enable all PM interrupts */
2653         I915_WRITE(GEN6_PMINTRMSK, 0);
2654
2655         rc6vids = 0;
2656         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2657         if (IS_GEN6(dev) && ret) {
2658                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2659         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2660                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2661                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2662                 rc6vids &= 0xffff00;
2663                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2664                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2665                 if (ret)
2666                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2667         }
2668
2669         gen6_gt_force_wake_put(dev_priv);
2670 }
2671
2672 static void gen6_update_ring_freq(struct drm_device *dev)
2673 {
2674         struct drm_i915_private *dev_priv = dev->dev_private;
2675         int min_freq = 15;
2676         int gpu_freq;
2677         unsigned int ia_freq, max_ia_freq;
2678         int scaling_factor = 180;
2679
2680         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2681
2682         max_ia_freq = cpufreq_quick_get_max(0);
2683         /*
2684          * Default to measured freq if none found, PCU will ensure we don't go
2685          * over
2686          */
2687         if (!max_ia_freq)
2688                 max_ia_freq = tsc_khz;
2689
2690         /* Convert from kHz to MHz */
2691         max_ia_freq /= 1000;
2692
2693         /*
2694          * For each potential GPU frequency, load a ring frequency we'd like
2695          * to use for memory access.  We do this by specifying the IA frequency
2696          * the PCU should use as a reference to determine the ring frequency.
2697          */
2698         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2699              gpu_freq--) {
2700                 int diff = dev_priv->rps.max_delay - gpu_freq;
2701
2702                 /*
2703                  * For GPU frequencies less than 750MHz, just use the lowest
2704                  * ring freq.
2705                  */
2706                 if (gpu_freq < min_freq)
2707                         ia_freq = 800;
2708                 else
2709                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2710                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2711                 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2712
2713                 sandybridge_pcode_write(dev_priv,
2714                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2715                                         ia_freq | gpu_freq);
2716         }
2717 }
2718
2719 void ironlake_teardown_rc6(struct drm_device *dev)
2720 {
2721         struct drm_i915_private *dev_priv = dev->dev_private;
2722
2723         if (dev_priv->ips.renderctx) {
2724                 i915_gem_object_unpin(dev_priv->ips.renderctx);
2725                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2726                 dev_priv->ips.renderctx = NULL;
2727         }
2728
2729         if (dev_priv->ips.pwrctx) {
2730                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2731                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2732                 dev_priv->ips.pwrctx = NULL;
2733         }
2734 }
2735
2736 static void ironlake_disable_rc6(struct drm_device *dev)
2737 {
2738         struct drm_i915_private *dev_priv = dev->dev_private;
2739
2740         if (I915_READ(PWRCTXA)) {
2741                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2742                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2743                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2744                          50);
2745
2746                 I915_WRITE(PWRCTXA, 0);
2747                 POSTING_READ(PWRCTXA);
2748
2749                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2750                 POSTING_READ(RSTDBYCTL);
2751         }
2752 }
2753
2754 static int ironlake_setup_rc6(struct drm_device *dev)
2755 {
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757
2758         if (dev_priv->ips.renderctx == NULL)
2759                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2760         if (!dev_priv->ips.renderctx)
2761                 return -ENOMEM;
2762
2763         if (dev_priv->ips.pwrctx == NULL)
2764                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2765         if (!dev_priv->ips.pwrctx) {
2766                 ironlake_teardown_rc6(dev);
2767                 return -ENOMEM;
2768         }
2769
2770         return 0;
2771 }
2772
2773 static void ironlake_enable_rc6(struct drm_device *dev)
2774 {
2775         struct drm_i915_private *dev_priv = dev->dev_private;
2776         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2777         bool was_interruptible;
2778         int ret;
2779
2780         /* rc6 disabled by default due to repeated reports of hanging during
2781          * boot and resume.
2782          */
2783         if (!intel_enable_rc6(dev))
2784                 return;
2785
2786         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2787
2788         ret = ironlake_setup_rc6(dev);
2789         if (ret)
2790                 return;
2791
2792         was_interruptible = dev_priv->mm.interruptible;
2793         dev_priv->mm.interruptible = false;
2794
2795         /*
2796          * GPU can automatically power down the render unit if given a page
2797          * to save state.
2798          */
2799         ret = intel_ring_begin(ring, 6);
2800         if (ret) {
2801                 ironlake_teardown_rc6(dev);
2802                 dev_priv->mm.interruptible = was_interruptible;
2803                 return;
2804         }
2805
2806         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2807         intel_ring_emit(ring, MI_SET_CONTEXT);
2808         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2809                         MI_MM_SPACE_GTT |
2810                         MI_SAVE_EXT_STATE_EN |
2811                         MI_RESTORE_EXT_STATE_EN |
2812                         MI_RESTORE_INHIBIT);
2813         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2814         intel_ring_emit(ring, MI_NOOP);
2815         intel_ring_emit(ring, MI_FLUSH);
2816         intel_ring_advance(ring);
2817
2818         /*
2819          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2820          * does an implicit flush, combined with MI_FLUSH above, it should be
2821          * safe to assume that renderctx is valid
2822          */
2823         ret = intel_ring_idle(ring);
2824         dev_priv->mm.interruptible = was_interruptible;
2825         if (ret) {
2826                 DRM_ERROR("failed to enable ironlake power savings\n");
2827                 ironlake_teardown_rc6(dev);
2828                 return;
2829         }
2830
2831         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2832         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2833 }
2834
2835 static unsigned long intel_pxfreq(u32 vidfreq)
2836 {
2837         unsigned long freq;
2838         int div = (vidfreq & 0x3f0000) >> 16;
2839         int post = (vidfreq & 0x3000) >> 12;
2840         int pre = (vidfreq & 0x7);
2841
2842         if (!pre)
2843                 return 0;
2844
2845         freq = ((div * 133333) / ((1<<post) * pre));
2846
2847         return freq;
2848 }
2849
2850 static const struct cparams {
2851         u16 i;
2852         u16 t;
2853         u16 m;
2854         u16 c;
2855 } cparams[] = {
2856         { 1, 1333, 301, 28664 },
2857         { 1, 1066, 294, 24460 },
2858         { 1, 800, 294, 25192 },
2859         { 0, 1333, 276, 27605 },
2860         { 0, 1066, 276, 27605 },
2861         { 0, 800, 231, 23784 },
2862 };
2863
2864 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2865 {
2866         u64 total_count, diff, ret;
2867         u32 count1, count2, count3, m = 0, c = 0;
2868         unsigned long now = jiffies_to_msecs(jiffies), diff1;
2869         int i;
2870
2871         assert_spin_locked(&mchdev_lock);
2872
2873         diff1 = now - dev_priv->ips.last_time1;
2874
2875         /* Prevent division-by-zero if we are asking too fast.
2876          * Also, we don't get interesting results if we are polling
2877          * faster than once in 10ms, so just return the saved value
2878          * in such cases.
2879          */
2880         if (diff1 <= 10)
2881                 return dev_priv->ips.chipset_power;
2882
2883         count1 = I915_READ(DMIEC);
2884         count2 = I915_READ(DDREC);
2885         count3 = I915_READ(CSIEC);
2886
2887         total_count = count1 + count2 + count3;
2888
2889         /* FIXME: handle per-counter overflow */
2890         if (total_count < dev_priv->ips.last_count1) {
2891                 diff = ~0UL - dev_priv->ips.last_count1;
2892                 diff += total_count;
2893         } else {
2894                 diff = total_count - dev_priv->ips.last_count1;
2895         }
2896
2897         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2898                 if (cparams[i].i == dev_priv->ips.c_m &&
2899                     cparams[i].t == dev_priv->ips.r_t) {
2900                         m = cparams[i].m;
2901                         c = cparams[i].c;
2902                         break;
2903                 }
2904         }
2905
2906         diff = div_u64(diff, diff1);
2907         ret = ((m * diff) + c);
2908         ret = div_u64(ret, 10);
2909
2910         dev_priv->ips.last_count1 = total_count;
2911         dev_priv->ips.last_time1 = now;
2912
2913         dev_priv->ips.chipset_power = ret;
2914
2915         return ret;
2916 }
2917
2918 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2919 {
2920         unsigned long val;
2921
2922         if (dev_priv->info->gen != 5)
2923                 return 0;
2924
2925         spin_lock_irq(&mchdev_lock);
2926
2927         val = __i915_chipset_val(dev_priv);
2928
2929         spin_unlock_irq(&mchdev_lock);
2930
2931         return val;
2932 }
2933
2934 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2935 {
2936         unsigned long m, x, b;
2937         u32 tsfs;
2938
2939         tsfs = I915_READ(TSFS);
2940
2941         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2942         x = I915_READ8(TR1);
2943
2944         b = tsfs & TSFS_INTR_MASK;
2945
2946         return ((m * x) / 127) - b;
2947 }
2948
2949 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2950 {
2951         static const struct v_table {
2952                 u16 vd; /* in .1 mil */
2953                 u16 vm; /* in .1 mil */
2954         } v_table[] = {
2955                 { 0, 0, },
2956                 { 375, 0, },
2957                 { 500, 0, },
2958                 { 625, 0, },
2959                 { 750, 0, },
2960                 { 875, 0, },
2961                 { 1000, 0, },
2962                 { 1125, 0, },
2963                 { 4125, 3000, },
2964                 { 4125, 3000, },
2965                 { 4125, 3000, },
2966                 { 4125, 3000, },
2967                 { 4125, 3000, },
2968                 { 4125, 3000, },
2969                 { 4125, 3000, },
2970                 { 4125, 3000, },
2971                 { 4125, 3000, },
2972                 { 4125, 3000, },
2973                 { 4125, 3000, },
2974                 { 4125, 3000, },
2975                 { 4125, 3000, },
2976                 { 4125, 3000, },
2977                 { 4125, 3000, },
2978                 { 4125, 3000, },
2979                 { 4125, 3000, },
2980                 { 4125, 3000, },
2981                 { 4125, 3000, },
2982                 { 4125, 3000, },
2983                 { 4125, 3000, },
2984                 { 4125, 3000, },
2985                 { 4125, 3000, },
2986                 { 4125, 3000, },
2987                 { 4250, 3125, },
2988                 { 4375, 3250, },
2989                 { 4500, 3375, },
2990                 { 4625, 3500, },
2991                 { 4750, 3625, },
2992                 { 4875, 3750, },
2993                 { 5000, 3875, },
2994                 { 5125, 4000, },
2995                 { 5250, 4125, },
2996                 { 5375, 4250, },
2997                 { 5500, 4375, },
2998                 { 5625, 4500, },
2999                 { 5750, 4625, },
3000                 { 5875, 4750, },
3001                 { 6000, 4875, },
3002                 { 6125, 5000, },
3003                 { 6250, 5125, },
3004                 { 6375, 5250, },
3005                 { 6500, 5375, },
3006                 { 6625, 5500, },
3007                 { 6750, 5625, },
3008                 { 6875, 5750, },
3009                 { 7000, 5875, },
3010                 { 7125, 6000, },
3011                 { 7250, 6125, },
3012                 { 7375, 6250, },
3013                 { 7500, 6375, },
3014                 { 7625, 6500, },
3015                 { 7750, 6625, },
3016                 { 7875, 6750, },
3017                 { 8000, 6875, },
3018                 { 8125, 7000, },
3019                 { 8250, 7125, },
3020                 { 8375, 7250, },
3021                 { 8500, 7375, },
3022                 { 8625, 7500, },
3023                 { 8750, 7625, },
3024                 { 8875, 7750, },
3025                 { 9000, 7875, },
3026                 { 9125, 8000, },
3027                 { 9250, 8125, },
3028                 { 9375, 8250, },
3029                 { 9500, 8375, },
3030                 { 9625, 8500, },
3031                 { 9750, 8625, },
3032                 { 9875, 8750, },
3033                 { 10000, 8875, },
3034                 { 10125, 9000, },
3035                 { 10250, 9125, },
3036                 { 10375, 9250, },
3037                 { 10500, 9375, },
3038                 { 10625, 9500, },
3039                 { 10750, 9625, },
3040                 { 10875, 9750, },
3041                 { 11000, 9875, },
3042                 { 11125, 10000, },
3043                 { 11250, 10125, },
3044                 { 11375, 10250, },
3045                 { 11500, 10375, },
3046                 { 11625, 10500, },
3047                 { 11750, 10625, },
3048                 { 11875, 10750, },
3049                 { 12000, 10875, },
3050                 { 12125, 11000, },
3051                 { 12250, 11125, },
3052                 { 12375, 11250, },
3053                 { 12500, 11375, },
3054                 { 12625, 11500, },
3055                 { 12750, 11625, },
3056                 { 12875, 11750, },
3057                 { 13000, 11875, },
3058                 { 13125, 12000, },
3059                 { 13250, 12125, },
3060                 { 13375, 12250, },
3061                 { 13500, 12375, },
3062                 { 13625, 12500, },
3063                 { 13750, 12625, },
3064                 { 13875, 12750, },
3065                 { 14000, 12875, },
3066                 { 14125, 13000, },
3067                 { 14250, 13125, },
3068                 { 14375, 13250, },
3069                 { 14500, 13375, },
3070                 { 14625, 13500, },
3071                 { 14750, 13625, },
3072                 { 14875, 13750, },
3073                 { 15000, 13875, },
3074                 { 15125, 14000, },
3075                 { 15250, 14125, },
3076                 { 15375, 14250, },
3077                 { 15500, 14375, },
3078                 { 15625, 14500, },
3079                 { 15750, 14625, },
3080                 { 15875, 14750, },
3081                 { 16000, 14875, },
3082                 { 16125, 15000, },
3083         };
3084         if (dev_priv->info->is_mobile)
3085                 return v_table[pxvid].vm;
3086         else
3087                 return v_table[pxvid].vd;
3088 }
3089
3090 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3091 {
3092         struct timespec now, diff1;
3093         u64 diff;
3094         unsigned long diffms;
3095         u32 count;
3096
3097         assert_spin_locked(&mchdev_lock);
3098
3099         getrawmonotonic(&now);
3100         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3101
3102         /* Don't divide by 0 */
3103         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3104         if (!diffms)
3105                 return;
3106
3107         count = I915_READ(GFXEC);
3108
3109         if (count < dev_priv->ips.last_count2) {
3110                 diff = ~0UL - dev_priv->ips.last_count2;
3111                 diff += count;
3112         } else {
3113                 diff = count - dev_priv->ips.last_count2;
3114         }
3115
3116         dev_priv->ips.last_count2 = count;
3117         dev_priv->ips.last_time2 = now;
3118
3119         /* More magic constants... */
3120         diff = diff * 1181;
3121         diff = div_u64(diff, diffms * 10);
3122         dev_priv->ips.gfx_power = diff;
3123 }
3124
3125 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3126 {
3127         if (dev_priv->info->gen != 5)
3128                 return;
3129
3130         spin_lock_irq(&mchdev_lock);
3131
3132         __i915_update_gfx_val(dev_priv);
3133
3134         spin_unlock_irq(&mchdev_lock);
3135 }
3136
3137 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3138 {
3139         unsigned long t, corr, state1, corr2, state2;
3140         u32 pxvid, ext_v;
3141
3142         assert_spin_locked(&mchdev_lock);
3143
3144         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3145         pxvid = (pxvid >> 24) & 0x7f;
3146         ext_v = pvid_to_extvid(dev_priv, pxvid);
3147
3148         state1 = ext_v;
3149
3150         t = i915_mch_val(dev_priv);
3151
3152         /* Revel in the empirically derived constants */
3153
3154         /* Correction factor in 1/100000 units */
3155         if (t > 80)
3156                 corr = ((t * 2349) + 135940);
3157         else if (t >= 50)
3158                 corr = ((t * 964) + 29317);
3159         else /* < 50 */
3160                 corr = ((t * 301) + 1004);
3161
3162         corr = corr * ((150142 * state1) / 10000 - 78642);
3163         corr /= 100000;
3164         corr2 = (corr * dev_priv->ips.corr);
3165
3166         state2 = (corr2 * state1) / 10000;
3167         state2 /= 100; /* convert to mW */
3168
3169         __i915_update_gfx_val(dev_priv);
3170
3171         return dev_priv->ips.gfx_power + state2;
3172 }
3173
3174 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3175 {
3176         unsigned long val;
3177
3178         if (dev_priv->info->gen != 5)
3179                 return 0;
3180
3181         spin_lock_irq(&mchdev_lock);
3182
3183         val = __i915_gfx_val(dev_priv);
3184
3185         spin_unlock_irq(&mchdev_lock);
3186
3187         return val;
3188 }
3189
3190 /**
3191  * i915_read_mch_val - return value for IPS use
3192  *
3193  * Calculate and return a value for the IPS driver to use when deciding whether
3194  * we have thermal and power headroom to increase CPU or GPU power budget.
3195  */
3196 unsigned long i915_read_mch_val(void)
3197 {
3198         struct drm_i915_private *dev_priv;
3199         unsigned long chipset_val, graphics_val, ret = 0;
3200
3201         spin_lock_irq(&mchdev_lock);
3202         if (!i915_mch_dev)
3203                 goto out_unlock;
3204         dev_priv = i915_mch_dev;
3205
3206         chipset_val = __i915_chipset_val(dev_priv);
3207         graphics_val = __i915_gfx_val(dev_priv);
3208
3209         ret = chipset_val + graphics_val;
3210
3211 out_unlock:
3212         spin_unlock_irq(&mchdev_lock);
3213
3214         return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3217
3218 /**
3219  * i915_gpu_raise - raise GPU frequency limit
3220  *
3221  * Raise the limit; IPS indicates we have thermal headroom.
3222  */
3223 bool i915_gpu_raise(void)
3224 {
3225         struct drm_i915_private *dev_priv;
3226         bool ret = true;
3227
3228         spin_lock_irq(&mchdev_lock);
3229         if (!i915_mch_dev) {
3230                 ret = false;
3231                 goto out_unlock;
3232         }
3233         dev_priv = i915_mch_dev;
3234
3235         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3236                 dev_priv->ips.max_delay--;
3237
3238 out_unlock:
3239         spin_unlock_irq(&mchdev_lock);
3240
3241         return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3244
3245 /**
3246  * i915_gpu_lower - lower GPU frequency limit
3247  *
3248  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3249  * frequency maximum.
3250  */
3251 bool i915_gpu_lower(void)
3252 {
3253         struct drm_i915_private *dev_priv;
3254         bool ret = true;
3255
3256         spin_lock_irq(&mchdev_lock);
3257         if (!i915_mch_dev) {
3258                 ret = false;
3259                 goto out_unlock;
3260         }
3261         dev_priv = i915_mch_dev;
3262
3263         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3264                 dev_priv->ips.max_delay++;
3265
3266 out_unlock:
3267         spin_unlock_irq(&mchdev_lock);
3268
3269         return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3272
3273 /**
3274  * i915_gpu_busy - indicate GPU business to IPS
3275  *
3276  * Tell the IPS driver whether or not the GPU is busy.
3277  */
3278 bool i915_gpu_busy(void)
3279 {
3280         struct drm_i915_private *dev_priv;
3281         struct intel_ring_buffer *ring;
3282         bool ret = false;
3283         int i;
3284
3285         spin_lock_irq(&mchdev_lock);
3286         if (!i915_mch_dev)
3287                 goto out_unlock;
3288         dev_priv = i915_mch_dev;
3289
3290         for_each_ring(ring, dev_priv, i)
3291                 ret |= !list_empty(&ring->request_list);
3292
3293 out_unlock:
3294         spin_unlock_irq(&mchdev_lock);
3295
3296         return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3299
3300 /**
3301  * i915_gpu_turbo_disable - disable graphics turbo
3302  *
3303  * Disable graphics turbo by resetting the max frequency and setting the
3304  * current frequency to the default.
3305  */
3306 bool i915_gpu_turbo_disable(void)
3307 {
3308         struct drm_i915_private *dev_priv;
3309         bool ret = true;
3310
3311         spin_lock_irq(&mchdev_lock);
3312         if (!i915_mch_dev) {
3313                 ret = false;
3314                 goto out_unlock;
3315         }
3316         dev_priv = i915_mch_dev;
3317
3318         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3319
3320         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3321                 ret = false;
3322
3323 out_unlock:
3324         spin_unlock_irq(&mchdev_lock);
3325
3326         return ret;
3327 }
3328 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3329
3330 /**
3331  * Tells the intel_ips driver that the i915 driver is now loaded, if
3332  * IPS got loaded first.
3333  *
3334  * This awkward dance is so that neither module has to depend on the
3335  * other in order for IPS to do the appropriate communication of
3336  * GPU turbo limits to i915.
3337  */
3338 static void
3339 ips_ping_for_i915_load(void)
3340 {
3341         void (*link)(void);
3342
3343         link = symbol_get(ips_link_to_i915_driver);
3344         if (link) {
3345                 link();
3346                 symbol_put(ips_link_to_i915_driver);
3347         }
3348 }
3349
3350 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3351 {
3352         /* We only register the i915 ips part with intel-ips once everything is
3353          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3354         spin_lock_irq(&mchdev_lock);
3355         i915_mch_dev = dev_priv;
3356         spin_unlock_irq(&mchdev_lock);
3357
3358         ips_ping_for_i915_load();
3359 }
3360
3361 void intel_gpu_ips_teardown(void)
3362 {
3363         spin_lock_irq(&mchdev_lock);
3364         i915_mch_dev = NULL;
3365         spin_unlock_irq(&mchdev_lock);
3366 }
3367 static void intel_init_emon(struct drm_device *dev)
3368 {
3369         struct drm_i915_private *dev_priv = dev->dev_private;
3370         u32 lcfuse;
3371         u8 pxw[16];
3372         int i;
3373
3374         /* Disable to program */
3375         I915_WRITE(ECR, 0);
3376         POSTING_READ(ECR);
3377
3378         /* Program energy weights for various events */
3379         I915_WRITE(SDEW, 0x15040d00);
3380         I915_WRITE(CSIEW0, 0x007f0000);
3381         I915_WRITE(CSIEW1, 0x1e220004);
3382         I915_WRITE(CSIEW2, 0x04000004);
3383
3384         for (i = 0; i < 5; i++)
3385                 I915_WRITE(PEW + (i * 4), 0);
3386         for (i = 0; i < 3; i++)
3387                 I915_WRITE(DEW + (i * 4), 0);
3388
3389         /* Program P-state weights to account for frequency power adjustment */
3390         for (i = 0; i < 16; i++) {
3391                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3392                 unsigned long freq = intel_pxfreq(pxvidfreq);
3393                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3394                         PXVFREQ_PX_SHIFT;
3395                 unsigned long val;
3396
3397                 val = vid * vid;
3398                 val *= (freq / 1000);
3399                 val *= 255;
3400                 val /= (127*127*900);
3401                 if (val > 0xff)
3402                         DRM_ERROR("bad pxval: %ld\n", val);
3403                 pxw[i] = val;
3404         }
3405         /* Render standby states get 0 weight */
3406         pxw[14] = 0;
3407         pxw[15] = 0;
3408
3409         for (i = 0; i < 4; i++) {
3410                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3411                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3412                 I915_WRITE(PXW + (i * 4), val);
3413         }
3414
3415         /* Adjust magic regs to magic values (more experimental results) */
3416         I915_WRITE(OGW0, 0);
3417         I915_WRITE(OGW1, 0);
3418         I915_WRITE(EG0, 0x00007f00);
3419         I915_WRITE(EG1, 0x0000000e);
3420         I915_WRITE(EG2, 0x000e0000);
3421         I915_WRITE(EG3, 0x68000300);
3422         I915_WRITE(EG4, 0x42000000);
3423         I915_WRITE(EG5, 0x00140031);
3424         I915_WRITE(EG6, 0);
3425         I915_WRITE(EG7, 0);
3426
3427         for (i = 0; i < 8; i++)
3428                 I915_WRITE(PXWL + (i * 4), 0);
3429
3430         /* Enable PMON + select events */
3431         I915_WRITE(ECR, 0x80000019);
3432
3433         lcfuse = I915_READ(LCFUSE02);
3434
3435         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3436 }
3437
3438 void intel_disable_gt_powersave(struct drm_device *dev)
3439 {
3440         struct drm_i915_private *dev_priv = dev->dev_private;
3441
3442         if (IS_IRONLAKE_M(dev)) {
3443                 ironlake_disable_drps(dev);
3444                 ironlake_disable_rc6(dev);
3445         } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3446                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3447                 mutex_lock(&dev_priv->rps.hw_lock);
3448                 gen6_disable_rps(dev);
3449                 mutex_unlock(&dev_priv->rps.hw_lock);
3450         }
3451 }
3452
3453 static void intel_gen6_powersave_work(struct work_struct *work)
3454 {
3455         struct drm_i915_private *dev_priv =
3456                 container_of(work, struct drm_i915_private,
3457                              rps.delayed_resume_work.work);
3458         struct drm_device *dev = dev_priv->dev;
3459
3460         mutex_lock(&dev_priv->rps.hw_lock);
3461         gen6_enable_rps(dev);
3462         gen6_update_ring_freq(dev);
3463         mutex_unlock(&dev_priv->rps.hw_lock);
3464 }
3465
3466 void intel_enable_gt_powersave(struct drm_device *dev)
3467 {
3468         struct drm_i915_private *dev_priv = dev->dev_private;
3469
3470         if (IS_IRONLAKE_M(dev)) {
3471                 ironlake_enable_drps(dev);
3472                 ironlake_enable_rc6(dev);
3473                 intel_init_emon(dev);
3474         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3475                 /*
3476                  * PCU communication is slow and this doesn't need to be
3477                  * done at any specific time, so do this out of our fast path
3478                  * to make resume and init faster.
3479                  */
3480                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3481                                       round_jiffies_up_relative(HZ));
3482         }
3483 }
3484
3485 static void ibx_init_clock_gating(struct drm_device *dev)
3486 {
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488
3489         /*
3490          * On Ibex Peak and Cougar Point, we need to disable clock
3491          * gating for the panel power sequencer or it will fail to
3492          * start up when no ports are active.
3493          */
3494         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3495 }
3496
3497 static void ironlake_init_clock_gating(struct drm_device *dev)
3498 {
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3501
3502         /* Required for FBC */
3503         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3504                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3505                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3506
3507         I915_WRITE(PCH_3DCGDIS0,
3508                    MARIUNIT_CLOCK_GATE_DISABLE |
3509                    SVSMUNIT_CLOCK_GATE_DISABLE);
3510         I915_WRITE(PCH_3DCGDIS1,
3511                    VFMUNIT_CLOCK_GATE_DISABLE);
3512
3513         /*
3514          * According to the spec the following bits should be set in
3515          * order to enable memory self-refresh
3516          * The bit 22/21 of 0x42004
3517          * The bit 5 of 0x42020
3518          * The bit 15 of 0x45000
3519          */
3520         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3521                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3522                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3523         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3524         I915_WRITE(DISP_ARB_CTL,
3525                    (I915_READ(DISP_ARB_CTL) |
3526                     DISP_FBC_WM_DIS));
3527         I915_WRITE(WM3_LP_ILK, 0);
3528         I915_WRITE(WM2_LP_ILK, 0);
3529         I915_WRITE(WM1_LP_ILK, 0);
3530
3531         /*
3532          * Based on the document from hardware guys the following bits
3533          * should be set unconditionally in order to enable FBC.
3534          * The bit 22 of 0x42000
3535          * The bit 22 of 0x42004
3536          * The bit 7,8,9 of 0x42020.
3537          */
3538         if (IS_IRONLAKE_M(dev)) {
3539                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3540                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3541                            ILK_FBCQ_DIS);
3542                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3543                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3544                            ILK_DPARB_GATE);
3545         }
3546
3547         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3548
3549         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3550                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3551                    ILK_ELPIN_409_SELECT);
3552         I915_WRITE(_3D_CHICKEN2,
3553                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3554                    _3D_CHICKEN2_WM_READ_PIPELINED);
3555
3556         /* WaDisableRenderCachePipelinedFlush */
3557         I915_WRITE(CACHE_MODE_0,
3558                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3559
3560         ibx_init_clock_gating(dev);
3561 }
3562
3563 static void cpt_init_clock_gating(struct drm_device *dev)
3564 {
3565         struct drm_i915_private *dev_priv = dev->dev_private;
3566         int pipe;
3567
3568         /*
3569          * On Ibex Peak and Cougar Point, we need to disable clock
3570          * gating for the panel power sequencer or it will fail to
3571          * start up when no ports are active.
3572          */
3573         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3574         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3575                    DPLS_EDP_PPS_FIX_DIS);
3576         /* The below fixes the weird display corruption, a few pixels shifted
3577          * downward, on (only) LVDS of some HP laptops with IVY.
3578          */
3579         for_each_pipe(pipe)
3580                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
3581         /* WADP0ClockGatingDisable */
3582         for_each_pipe(pipe) {
3583                 I915_WRITE(TRANS_CHICKEN1(pipe),
3584                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3585         }
3586 }
3587
3588 static void gen6_check_mch_setup(struct drm_device *dev)
3589 {
3590         struct drm_i915_private *dev_priv = dev->dev_private;
3591         uint32_t tmp;
3592
3593         tmp = I915_READ(MCH_SSKPD);
3594         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3595                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3596                 DRM_INFO("This can cause pipe underruns and display issues.\n");
3597                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
3598         }
3599 }
3600
3601 static void gen6_init_clock_gating(struct drm_device *dev)
3602 {
3603         struct drm_i915_private *dev_priv = dev->dev_private;
3604         int pipe;
3605         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3606
3607         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3608
3609         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3610                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3611                    ILK_ELPIN_409_SELECT);
3612
3613         /* WaDisableHiZPlanesWhenMSAAEnabled */
3614         I915_WRITE(_3D_CHICKEN,
3615                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3616
3617         /* WaSetupGtModeTdRowDispatch */
3618         if (IS_SNB_GT1(dev))
3619                 I915_WRITE(GEN6_GT_MODE,
3620                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3621
3622         I915_WRITE(WM3_LP_ILK, 0);
3623         I915_WRITE(WM2_LP_ILK, 0);
3624         I915_WRITE(WM1_LP_ILK, 0);
3625
3626         I915_WRITE(CACHE_MODE_0,
3627                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3628
3629         I915_WRITE(GEN6_UCGCTL1,
3630                    I915_READ(GEN6_UCGCTL1) |
3631                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3632                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3633
3634         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3635          * gating disable must be set.  Failure to set it results in
3636          * flickering pixels due to Z write ordering failures after
3637          * some amount of runtime in the Mesa "fire" demo, and Unigine
3638          * Sanctuary and Tropics, and apparently anything else with
3639          * alpha test or pixel discard.
3640          *
3641          * According to the spec, bit 11 (RCCUNIT) must also be set,
3642          * but we didn't debug actual testcases to find it out.
3643          *
3644          * Also apply WaDisableVDSUnitClockGating and
3645          * WaDisableRCPBUnitClockGating.
3646          */
3647         I915_WRITE(GEN6_UCGCTL2,
3648                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3649                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3650                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3651
3652         /* Bspec says we need to always set all mask bits. */
3653         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3654                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3655
3656         /*
3657          * According to the spec the following bits should be
3658          * set in order to enable memory self-refresh and fbc:
3659          * The bit21 and bit22 of 0x42000
3660          * The bit21 and bit22 of 0x42004
3661          * The bit5 and bit7 of 0x42020
3662          * The bit14 of 0x70180
3663          * The bit14 of 0x71180
3664          */
3665         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3666                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3667                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3668         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3669                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3670                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3671         I915_WRITE(ILK_DSPCLK_GATE_D,
3672                    I915_READ(ILK_DSPCLK_GATE_D) |
3673                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3674                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3675
3676         /* WaMbcDriverBootEnable */
3677         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3678                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3679
3680         for_each_pipe(pipe) {
3681                 I915_WRITE(DSPCNTR(pipe),
3682                            I915_READ(DSPCNTR(pipe)) |
3683                            DISPPLANE_TRICKLE_FEED_DISABLE);
3684                 intel_flush_display_plane(dev_priv, pipe);
3685         }
3686
3687         /* The default value should be 0x200 according to docs, but the two
3688          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3689         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3690         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3691
3692         cpt_init_clock_gating(dev);
3693
3694         gen6_check_mch_setup(dev);
3695 }
3696
3697 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3698 {
3699         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3700
3701         reg &= ~GEN7_FF_SCHED_MASK;
3702         reg |= GEN7_FF_TS_SCHED_HW;
3703         reg |= GEN7_FF_VS_SCHED_HW;
3704         reg |= GEN7_FF_DS_SCHED_HW;
3705
3706         /* WaVSRefCountFullforceMissDisable */
3707         if (IS_HASWELL(dev_priv->dev))
3708                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
3709
3710         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3711 }
3712
3713 static void lpt_init_clock_gating(struct drm_device *dev)
3714 {
3715         struct drm_i915_private *dev_priv = dev->dev_private;
3716
3717         /*
3718          * TODO: this bit should only be enabled when really needed, then
3719          * disabled when not needed anymore in order to save power.
3720          */
3721         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3722                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3723                            I915_READ(SOUTH_DSPCLK_GATE_D) |
3724                            PCH_LP_PARTITION_LEVEL_DISABLE);
3725 }
3726
3727 static void haswell_init_clock_gating(struct drm_device *dev)
3728 {
3729         struct drm_i915_private *dev_priv = dev->dev_private;
3730         int pipe;
3731
3732         I915_WRITE(WM3_LP_ILK, 0);
3733         I915_WRITE(WM2_LP_ILK, 0);
3734         I915_WRITE(WM1_LP_ILK, 0);
3735
3736         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3737          * This implements the WaDisableRCZUnitClockGating workaround.
3738          */
3739         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3740
3741         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3742         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3743                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3744
3745         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3746         I915_WRITE(GEN7_L3CNTLREG1,
3747                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3748         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3749                         GEN7_WA_L3_CHICKEN_MODE);
3750
3751         /* This is required by WaCatErrorRejectionIssue */
3752         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3753                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3754                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3755
3756         for_each_pipe(pipe) {
3757                 I915_WRITE(DSPCNTR(pipe),
3758                            I915_READ(DSPCNTR(pipe)) |
3759                            DISPPLANE_TRICKLE_FEED_DISABLE);
3760                 intel_flush_display_plane(dev_priv, pipe);
3761         }
3762
3763         gen7_setup_fixed_func_scheduler(dev_priv);
3764
3765         /* WaDisable4x2SubspanOptimization */
3766         I915_WRITE(CACHE_MODE_1,
3767                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3768
3769         /* WaMbcDriverBootEnable */
3770         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3771                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3772
3773         /* WaSwitchSolVfFArbitrationPriority */
3774         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
3775
3776         /* XXX: This is a workaround for early silicon revisions and should be
3777          * removed later.
3778          */
3779         I915_WRITE(WM_DBG,
3780                         I915_READ(WM_DBG) |
3781                         WM_DBG_DISALLOW_MULTIPLE_LP |
3782                         WM_DBG_DISALLOW_SPRITE |
3783                         WM_DBG_DISALLOW_MAXFIFO);
3784
3785         lpt_init_clock_gating(dev);
3786 }
3787
3788 static void ivybridge_init_clock_gating(struct drm_device *dev)
3789 {
3790         struct drm_i915_private *dev_priv = dev->dev_private;
3791         int pipe;
3792         uint32_t snpcr;
3793
3794         I915_WRITE(WM3_LP_ILK, 0);
3795         I915_WRITE(WM2_LP_ILK, 0);
3796         I915_WRITE(WM1_LP_ILK, 0);
3797
3798         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3799
3800         /* WaDisableEarlyCull */
3801         I915_WRITE(_3D_CHICKEN3,
3802                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3803
3804         /* WaDisableBackToBackFlipFix */
3805         I915_WRITE(IVB_CHICKEN3,
3806                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3807                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3808
3809         /* WaDisablePSDDualDispatchEnable */
3810         if (IS_IVB_GT1(dev))
3811                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3812                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3813         else
3814                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3815                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3816
3817         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3818         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3819                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3820
3821         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3822         I915_WRITE(GEN7_L3CNTLREG1,
3823                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3824         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3825                    GEN7_WA_L3_CHICKEN_MODE);
3826         if (IS_IVB_GT1(dev))
3827                 I915_WRITE(GEN7_ROW_CHICKEN2,
3828                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3829         else
3830                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3831                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3832
3833
3834         /* WaForceL3Serialization */
3835         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3836                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3837
3838         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3839          * gating disable must be set.  Failure to set it results in
3840          * flickering pixels due to Z write ordering failures after
3841          * some amount of runtime in the Mesa "fire" demo, and Unigine
3842          * Sanctuary and Tropics, and apparently anything else with
3843          * alpha test or pixel discard.
3844          *
3845          * According to the spec, bit 11 (RCCUNIT) must also be set,
3846          * but we didn't debug actual testcases to find it out.
3847          *
3848          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3849          * This implements the WaDisableRCZUnitClockGating workaround.
3850          */
3851         I915_WRITE(GEN6_UCGCTL2,
3852                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3853                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3854
3855         /* This is required by WaCatErrorRejectionIssue */
3856         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3857                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3858                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3859
3860         for_each_pipe(pipe) {
3861                 I915_WRITE(DSPCNTR(pipe),
3862                            I915_READ(DSPCNTR(pipe)) |
3863                            DISPPLANE_TRICKLE_FEED_DISABLE);
3864                 intel_flush_display_plane(dev_priv, pipe);
3865         }
3866
3867         /* WaMbcDriverBootEnable */
3868         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3869                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3870
3871         gen7_setup_fixed_func_scheduler(dev_priv);
3872
3873         /* WaDisable4x2SubspanOptimization */
3874         I915_WRITE(CACHE_MODE_1,
3875                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3876
3877         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3878         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3879         snpcr |= GEN6_MBC_SNPCR_MED;
3880         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3881
3882         cpt_init_clock_gating(dev);
3883
3884         gen6_check_mch_setup(dev);
3885 }
3886
3887 static void valleyview_init_clock_gating(struct drm_device *dev)
3888 {
3889         struct drm_i915_private *dev_priv = dev->dev_private;
3890         int pipe;
3891
3892         I915_WRITE(WM3_LP_ILK, 0);
3893         I915_WRITE(WM2_LP_ILK, 0);
3894         I915_WRITE(WM1_LP_ILK, 0);
3895
3896         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3897
3898         /* WaDisableEarlyCull */
3899         I915_WRITE(_3D_CHICKEN3,
3900                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3901
3902         /* WaDisableBackToBackFlipFix */
3903         I915_WRITE(IVB_CHICKEN3,
3904                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3905                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3906
3907         /* WaDisablePSDDualDispatchEnable */
3908         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3909                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
3910                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3911
3912         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3913         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3914                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3915
3916         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3917         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3918         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3919
3920         /* WaForceL3Serialization */
3921         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3922                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3923
3924         /* WaDisableDopClockGating */
3925         I915_WRITE(GEN7_ROW_CHICKEN2,
3926                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3927
3928         /* WaForceL3Serialization */
3929         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3930                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3931
3932         /* This is required by WaCatErrorRejectionIssue */
3933         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3934                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3935                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3936
3937         /* WaMbcDriverBootEnable */
3938         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3939                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3940
3941
3942         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3943          * gating disable must be set.  Failure to set it results in
3944          * flickering pixels due to Z write ordering failures after
3945          * some amount of runtime in the Mesa "fire" demo, and Unigine
3946          * Sanctuary and Tropics, and apparently anything else with
3947          * alpha test or pixel discard.
3948          *
3949          * According to the spec, bit 11 (RCCUNIT) must also be set,
3950          * but we didn't debug actual testcases to find it out.
3951          *
3952          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3953          * This implements the WaDisableRCZUnitClockGating workaround.
3954          *
3955          * Also apply WaDisableVDSUnitClockGating and
3956          * WaDisableRCPBUnitClockGating.
3957          */
3958         I915_WRITE(GEN6_UCGCTL2,
3959                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3960                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3961                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3962                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3963                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3964
3965         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3966
3967         for_each_pipe(pipe) {
3968                 I915_WRITE(DSPCNTR(pipe),
3969                            I915_READ(DSPCNTR(pipe)) |
3970                            DISPPLANE_TRICKLE_FEED_DISABLE);
3971                 intel_flush_display_plane(dev_priv, pipe);
3972         }
3973
3974         I915_WRITE(CACHE_MODE_1,
3975                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3976
3977         /*
3978          * On ValleyView, the GUnit needs to signal the GT
3979          * when flip and other events complete.  So enable
3980          * all the GUnit->GT interrupts here
3981          */
3982         I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3983                    PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3984                    SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3985                    PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3986                    PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3987                    SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3988                    PLANEA_FLIPDONE_INT_EN);
3989
3990         /*
3991          * WaDisableVLVClockGating_VBIIssue
3992          * Disable clock gating on th GCFG unit to prevent a delay
3993          * in the reporting of vblank events.
3994          */
3995         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
3996
3997         /* Conservative clock gating settings for now */
3998         I915_WRITE(0x9400, 0xffffffff);
3999         I915_WRITE(0x9404, 0xffffffff);
4000         I915_WRITE(0x9408, 0xffffffff);
4001         I915_WRITE(0x940c, 0xffffffff);
4002         I915_WRITE(0x9410, 0xffffffff);
4003         I915_WRITE(0x9414, 0xffffffff);
4004         I915_WRITE(0x9418, 0xffffffff);
4005 }
4006
4007 static void g4x_init_clock_gating(struct drm_device *dev)
4008 {
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         uint32_t dspclk_gate;
4011
4012         I915_WRITE(RENCLK_GATE_D1, 0);
4013         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4014                    GS_UNIT_CLOCK_GATE_DISABLE |
4015                    CL_UNIT_CLOCK_GATE_DISABLE);
4016         I915_WRITE(RAMCLK_GATE_D, 0);
4017         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4018                 OVRUNIT_CLOCK_GATE_DISABLE |
4019                 OVCUNIT_CLOCK_GATE_DISABLE;
4020         if (IS_GM45(dev))
4021                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4022         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4023
4024         /* WaDisableRenderCachePipelinedFlush */
4025         I915_WRITE(CACHE_MODE_0,
4026                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4027 }
4028
4029 static void crestline_init_clock_gating(struct drm_device *dev)
4030 {
4031         struct drm_i915_private *dev_priv = dev->dev_private;
4032
4033         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4034         I915_WRITE(RENCLK_GATE_D2, 0);
4035         I915_WRITE(DSPCLK_GATE_D, 0);
4036         I915_WRITE(RAMCLK_GATE_D, 0);
4037         I915_WRITE16(DEUC, 0);
4038 }
4039
4040 static void broadwater_init_clock_gating(struct drm_device *dev)
4041 {
4042         struct drm_i915_private *dev_priv = dev->dev_private;
4043
4044         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4045                    I965_RCC_CLOCK_GATE_DISABLE |
4046                    I965_RCPB_CLOCK_GATE_DISABLE |
4047                    I965_ISC_CLOCK_GATE_DISABLE |
4048                    I965_FBC_CLOCK_GATE_DISABLE);
4049         I915_WRITE(RENCLK_GATE_D2, 0);
4050 }
4051
4052 static void gen3_init_clock_gating(struct drm_device *dev)
4053 {
4054         struct drm_i915_private *dev_priv = dev->dev_private;
4055         u32 dstate = I915_READ(D_STATE);
4056
4057         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4058                 DSTATE_DOT_CLOCK_GATING;
4059         I915_WRITE(D_STATE, dstate);
4060
4061         if (IS_PINEVIEW(dev))
4062                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4063
4064         /* IIR "flip pending" means done if this bit is set */
4065         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4066 }
4067
4068 static void i85x_init_clock_gating(struct drm_device *dev)
4069 {
4070         struct drm_i915_private *dev_priv = dev->dev_private;
4071
4072         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4073 }
4074
4075 static void i830_init_clock_gating(struct drm_device *dev)
4076 {
4077         struct drm_i915_private *dev_priv = dev->dev_private;
4078
4079         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4080 }
4081
4082 void intel_init_clock_gating(struct drm_device *dev)
4083 {
4084         struct drm_i915_private *dev_priv = dev->dev_private;
4085
4086         dev_priv->display.init_clock_gating(dev);
4087 }
4088
4089 void intel_set_power_well(struct drm_device *dev, bool enable)
4090 {
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092         bool is_enabled, enable_requested;
4093         uint32_t tmp;
4094
4095         if (!HAS_POWER_WELL(dev))
4096                 return;
4097
4098         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4099         is_enabled = tmp & HSW_PWR_WELL_STATE;
4100         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
4101
4102         if (enable) {
4103                 if (!enable_requested)
4104                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
4105
4106                 if (!is_enabled) {
4107                         DRM_DEBUG_KMS("Enabling power well\n");
4108                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4109                                       HSW_PWR_WELL_STATE), 20))
4110                                 DRM_ERROR("Timeout enabling power well\n");
4111                 }
4112         } else {
4113                 if (enable_requested) {
4114                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4115                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
4116                 }
4117         }
4118 }
4119
4120 /*
4121  * Starting with Haswell, we have a "Power Down Well" that can be turned off
4122  * when not needed anymore. We have 4 registers that can request the power well
4123  * to be enabled, and it will only be disabled if none of the registers is
4124  * requesting it to be enabled.
4125  */
4126 void intel_init_power_well(struct drm_device *dev)
4127 {
4128         struct drm_i915_private *dev_priv = dev->dev_private;
4129
4130         if (!HAS_POWER_WELL(dev))
4131                 return;
4132
4133         /* For now, we need the power well to be always enabled. */
4134         intel_set_power_well(dev, true);
4135
4136         /* We're taking over the BIOS, so clear any requests made by it since
4137          * the driver is in charge now. */
4138         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4139                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
4140 }
4141
4142 /* Set up chip specific power management-related functions */
4143 void intel_init_pm(struct drm_device *dev)
4144 {
4145         struct drm_i915_private *dev_priv = dev->dev_private;
4146
4147         if (I915_HAS_FBC(dev)) {
4148                 if (HAS_PCH_SPLIT(dev)) {
4149                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4150                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
4151                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
4152                 } else if (IS_GM45(dev)) {
4153                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4154                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4155                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4156                 } else if (IS_CRESTLINE(dev)) {
4157                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4158                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4159                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4160                 }
4161                 /* 855GM needs testing */
4162         }
4163
4164         /* For cxsr */
4165         if (IS_PINEVIEW(dev))
4166                 i915_pineview_get_mem_freq(dev);
4167         else if (IS_GEN5(dev))
4168                 i915_ironlake_get_mem_freq(dev);
4169
4170         /* For FIFO watermark updates */
4171         if (HAS_PCH_SPLIT(dev)) {
4172                 if (IS_GEN5(dev)) {
4173                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4174                                 dev_priv->display.update_wm = ironlake_update_wm;
4175                         else {
4176                                 DRM_DEBUG_KMS("Failed to get proper latency. "
4177                                               "Disable CxSR\n");
4178                                 dev_priv->display.update_wm = NULL;
4179                         }
4180                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4181                 } else if (IS_GEN6(dev)) {
4182                         if (SNB_READ_WM0_LATENCY()) {
4183                                 dev_priv->display.update_wm = sandybridge_update_wm;
4184                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4185                         } else {
4186                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4187                                               "Disable CxSR\n");
4188                                 dev_priv->display.update_wm = NULL;
4189                         }
4190                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4191                 } else if (IS_IVYBRIDGE(dev)) {
4192                         /* FIXME: detect B0+ stepping and use auto training */
4193                         if (SNB_READ_WM0_LATENCY()) {
4194                                 dev_priv->display.update_wm = ivybridge_update_wm;
4195                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4196                         } else {
4197                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4198                                               "Disable CxSR\n");
4199                                 dev_priv->display.update_wm = NULL;
4200                         }
4201                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4202                 } else if (IS_HASWELL(dev)) {
4203                         if (SNB_READ_WM0_LATENCY()) {
4204                                 dev_priv->display.update_wm = sandybridge_update_wm;
4205                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4206                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4207                         } else {
4208                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4209                                               "Disable CxSR\n");
4210                                 dev_priv->display.update_wm = NULL;
4211                         }
4212                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4213                 } else
4214                         dev_priv->display.update_wm = NULL;
4215         } else if (IS_VALLEYVIEW(dev)) {
4216                 dev_priv->display.update_wm = valleyview_update_wm;
4217                 dev_priv->display.init_clock_gating =
4218                         valleyview_init_clock_gating;
4219         } else if (IS_PINEVIEW(dev)) {
4220                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4221                                             dev_priv->is_ddr3,
4222                                             dev_priv->fsb_freq,
4223                                             dev_priv->mem_freq)) {
4224                         DRM_INFO("failed to find known CxSR latency "
4225                                  "(found ddr%s fsb freq %d, mem freq %d), "
4226                                  "disabling CxSR\n",
4227                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4228                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4229                         /* Disable CxSR and never update its watermark again */
4230                         pineview_disable_cxsr(dev);
4231                         dev_priv->display.update_wm = NULL;
4232                 } else
4233                         dev_priv->display.update_wm = pineview_update_wm;
4234                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4235         } else if (IS_G4X(dev)) {
4236                 dev_priv->display.update_wm = g4x_update_wm;
4237                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4238         } else if (IS_GEN4(dev)) {
4239                 dev_priv->display.update_wm = i965_update_wm;
4240                 if (IS_CRESTLINE(dev))
4241                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4242                 else if (IS_BROADWATER(dev))
4243                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4244         } else if (IS_GEN3(dev)) {
4245                 dev_priv->display.update_wm = i9xx_update_wm;
4246                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4247                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4248         } else if (IS_I865G(dev)) {
4249                 dev_priv->display.update_wm = i830_update_wm;
4250                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4251                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4252         } else if (IS_I85X(dev)) {
4253                 dev_priv->display.update_wm = i9xx_update_wm;
4254                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4255                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4256         } else {
4257                 dev_priv->display.update_wm = i830_update_wm;
4258                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4259                 if (IS_845G(dev))
4260                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4261                 else
4262                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4263         }
4264 }
4265
4266 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4267 {
4268         u32 gt_thread_status_mask;
4269
4270         if (IS_HASWELL(dev_priv->dev))
4271                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4272         else
4273                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4274
4275         /* w/a for a sporadic read returning 0 by waiting for the GT
4276          * thread to wake up.
4277          */
4278         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4279                 DRM_ERROR("GT thread status wait timed out\n");
4280 }
4281
4282 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4283 {
4284         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4285         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4286 }
4287
4288 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4289 {
4290         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
4291                             FORCEWAKE_ACK_TIMEOUT_MS))
4292                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4293
4294         I915_WRITE_NOTRACE(FORCEWAKE, 1);
4295         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4296
4297         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
4298                             FORCEWAKE_ACK_TIMEOUT_MS))
4299                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4300
4301         __gen6_gt_wait_for_thread_c0(dev_priv);
4302 }
4303
4304 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4305 {
4306         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4307         /* something from same cacheline, but !FORCEWAKE_MT */
4308         POSTING_READ(ECOBUS);
4309 }
4310
4311 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4312 {
4313         u32 forcewake_ack;
4314
4315         if (IS_HASWELL(dev_priv->dev))
4316                 forcewake_ack = FORCEWAKE_ACK_HSW;
4317         else
4318                 forcewake_ack = FORCEWAKE_MT_ACK;
4319
4320         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
4321                             FORCEWAKE_ACK_TIMEOUT_MS))
4322                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4323
4324         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4325         /* something from same cacheline, but !FORCEWAKE_MT */
4326         POSTING_READ(ECOBUS);
4327
4328         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
4329                             FORCEWAKE_ACK_TIMEOUT_MS))
4330                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4331
4332         __gen6_gt_wait_for_thread_c0(dev_priv);
4333 }
4334
4335 /*
4336  * Generally this is called implicitly by the register read function. However,
4337  * if some sequence requires the GT to not power down then this function should
4338  * be called at the beginning of the sequence followed by a call to
4339  * gen6_gt_force_wake_put() at the end of the sequence.
4340  */
4341 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4342 {
4343         unsigned long irqflags;
4344
4345         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4346         if (dev_priv->forcewake_count++ == 0)
4347                 dev_priv->gt.force_wake_get(dev_priv);
4348         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4349 }
4350
4351 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4352 {
4353         u32 gtfifodbg;
4354         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4355         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4356              "MMIO read or write has been dropped %x\n", gtfifodbg))
4357                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4358 }
4359
4360 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4361 {
4362         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4363         /* something from same cacheline, but !FORCEWAKE */
4364         POSTING_READ(ECOBUS);
4365         gen6_gt_check_fifodbg(dev_priv);
4366 }
4367
4368 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4369 {
4370         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4371         /* something from same cacheline, but !FORCEWAKE_MT */
4372         POSTING_READ(ECOBUS);
4373         gen6_gt_check_fifodbg(dev_priv);
4374 }
4375
4376 /*
4377  * see gen6_gt_force_wake_get()
4378  */
4379 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4380 {
4381         unsigned long irqflags;
4382
4383         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4384         if (--dev_priv->forcewake_count == 0)
4385                 dev_priv->gt.force_wake_put(dev_priv);
4386         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4387 }
4388
4389 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4390 {
4391         int ret = 0;
4392
4393         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4394                 int loop = 500;
4395                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4396                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4397                         udelay(10);
4398                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4399                 }
4400                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4401                         ++ret;
4402                 dev_priv->gt_fifo_count = fifo;
4403         }
4404         dev_priv->gt_fifo_count--;
4405
4406         return ret;
4407 }
4408
4409 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4410 {
4411         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4412         /* something from same cacheline, but !FORCEWAKE_VLV */
4413         POSTING_READ(FORCEWAKE_ACK_VLV);
4414 }
4415
4416 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4417 {
4418         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
4419                             FORCEWAKE_ACK_TIMEOUT_MS))
4420                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4421
4422         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4423         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4424                            _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4425
4426         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
4427                             FORCEWAKE_ACK_TIMEOUT_MS))
4428                 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
4429
4430         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
4431                              FORCEWAKE_KERNEL),
4432                             FORCEWAKE_ACK_TIMEOUT_MS))
4433                 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
4434
4435         __gen6_gt_wait_for_thread_c0(dev_priv);
4436 }
4437
4438 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4439 {
4440         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4441         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4442                            _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4443         /* The below doubles as a POSTING_READ */
4444         gen6_gt_check_fifodbg(dev_priv);
4445 }
4446
4447 void intel_gt_reset(struct drm_device *dev)
4448 {
4449         struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451         if (IS_VALLEYVIEW(dev)) {
4452                 vlv_force_wake_reset(dev_priv);
4453         } else if (INTEL_INFO(dev)->gen >= 6) {
4454                 __gen6_gt_force_wake_reset(dev_priv);
4455                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4456                         __gen6_gt_force_wake_mt_reset(dev_priv);
4457         }
4458 }
4459
4460 void intel_gt_init(struct drm_device *dev)
4461 {
4462         struct drm_i915_private *dev_priv = dev->dev_private;
4463
4464         spin_lock_init(&dev_priv->gt_lock);
4465
4466         intel_gt_reset(dev);
4467
4468         if (IS_VALLEYVIEW(dev)) {
4469                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4470                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4471         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4472                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4473                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4474         } else if (IS_GEN6(dev)) {
4475                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4476                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4477         }
4478         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4479                           intel_gen6_powersave_work);
4480 }
4481
4482 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4483 {
4484         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4485
4486         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4487                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4488                 return -EAGAIN;
4489         }
4490
4491         I915_WRITE(GEN6_PCODE_DATA, *val);
4492         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4493
4494         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4495                      500)) {
4496                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4497                 return -ETIMEDOUT;
4498         }
4499
4500         *val = I915_READ(GEN6_PCODE_DATA);
4501         I915_WRITE(GEN6_PCODE_DATA, 0);
4502
4503         return 0;
4504 }
4505
4506 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4507 {
4508         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4509
4510         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4511                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4512                 return -EAGAIN;
4513         }
4514
4515         I915_WRITE(GEN6_PCODE_DATA, val);
4516         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4517
4518         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4519                      500)) {
4520                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4521                 return -ETIMEDOUT;
4522         }
4523
4524         I915_WRITE(GEN6_PCODE_DATA, 0);
4525
4526         return 0;
4527 }