drm/i915: Use hotplug callback to retrain DP link
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "drm_crtc.h"
32 #include "drm_crtc_helper.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "intel_dp.h"
37
38 #define DP_LINK_STATUS_SIZE     6
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 #define DP_LINK_CONFIGURATION_SIZE      9
42
43 struct intel_dp_priv {
44         uint32_t output_reg;
45         uint32_t DP;
46         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
47         uint32_t save_DP;
48         uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
49         bool has_audio;
50         int dpms_mode;
51         uint8_t link_bw;
52         uint8_t lane_count;
53         uint8_t dpcd[4];
54         struct intel_output *intel_output;
55         struct i2c_adapter adapter;
56         struct i2c_algo_dp_aux_data algo;
57 };
58
59 static void
60 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
61                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
62
63 static void
64 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
65
66 static int
67 intel_dp_max_lane_count(struct intel_output *intel_output)
68 {
69         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
70         int max_lane_count = 4;
71
72         if (dp_priv->dpcd[0] >= 0x11) {
73                 max_lane_count = dp_priv->dpcd[2] & 0x1f;
74                 switch (max_lane_count) {
75                 case 1: case 2: case 4:
76                         break;
77                 default:
78                         max_lane_count = 4;
79                 }
80         }
81         return max_lane_count;
82 }
83
84 static int
85 intel_dp_max_link_bw(struct intel_output *intel_output)
86 {
87         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
88         int max_link_bw = dp_priv->dpcd[1];
89
90         switch (max_link_bw) {
91         case DP_LINK_BW_1_62:
92         case DP_LINK_BW_2_7:
93                 break;
94         default:
95                 max_link_bw = DP_LINK_BW_1_62;
96                 break;
97         }
98         return max_link_bw;
99 }
100
101 static int
102 intel_dp_link_clock(uint8_t link_bw)
103 {
104         if (link_bw == DP_LINK_BW_2_7)
105                 return 270000;
106         else
107                 return 162000;
108 }
109
110 /* I think this is a fiction */
111 static int
112 intel_dp_link_required(int pixel_clock)
113 {
114         return pixel_clock * 3;
115 }
116
117 static int
118 intel_dp_mode_valid(struct drm_connector *connector,
119                     struct drm_display_mode *mode)
120 {
121         struct intel_output *intel_output = to_intel_output(connector);
122         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
123         int max_lanes = intel_dp_max_lane_count(intel_output);
124
125         if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
126                 return MODE_CLOCK_HIGH;
127
128         if (mode->clock < 10000)
129                 return MODE_CLOCK_LOW;
130
131         return MODE_OK;
132 }
133
134 static uint32_t
135 pack_aux(uint8_t *src, int src_bytes)
136 {
137         int     i;
138         uint32_t v = 0;
139
140         if (src_bytes > 4)
141                 src_bytes = 4;
142         for (i = 0; i < src_bytes; i++)
143                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
144         return v;
145 }
146
147 static void
148 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
149 {
150         int i;
151         if (dst_bytes > 4)
152                 dst_bytes = 4;
153         for (i = 0; i < dst_bytes; i++)
154                 dst[i] = src >> ((3-i) * 8);
155 }
156
157 static int
158 intel_dp_aux_ch(struct intel_output *intel_output,
159                 uint8_t *send, int send_bytes,
160                 uint8_t *recv, int recv_size)
161 {
162         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
163         uint32_t output_reg = dp_priv->output_reg;
164         struct drm_device *dev = intel_output->base.dev;
165         struct drm_i915_private *dev_priv = dev->dev_private;
166         uint32_t ch_ctl = output_reg + 0x10;
167         uint32_t ch_data = ch_ctl + 4;
168         int i;
169         int recv_bytes;
170         uint32_t ctl;
171         uint32_t status;
172
173         /* Load the send data into the aux channel data registers */
174         for (i = 0; i < send_bytes; i += 4) {
175                 uint32_t    d = pack_aux(send + i, send_bytes - i);;
176
177                 I915_WRITE(ch_data + i, d);
178         }
179
180         /* The clock divider is based off the hrawclk,
181          * and would like to run at 2MHz. The 133 below assumes
182          * a 266MHz hrawclk; need to figure out how we're supposed
183          * to know what hrawclk is...
184          */
185         ctl = (DP_AUX_CH_CTL_SEND_BUSY |
186                DP_AUX_CH_CTL_TIME_OUT_1600us |
187                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
188                (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
189                (133 << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
190                DP_AUX_CH_CTL_TIME_OUT_ERROR |
191                DP_AUX_CH_CTL_RECEIVE_ERROR);
192
193         /* Send the command and wait for it to complete */
194         I915_WRITE(ch_ctl, ctl);
195         (void) I915_READ(ch_ctl);
196         for (;;) {
197                 udelay(100);
198                 status = I915_READ(ch_ctl);
199                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
200                         break;
201         }
202
203         /* Clear done status and any errors */
204         I915_WRITE(ch_ctl, (ctl |
205                         DP_AUX_CH_CTL_DONE |
206                         DP_AUX_CH_CTL_TIME_OUT_ERROR |
207                         DP_AUX_CH_CTL_RECEIVE_ERROR));
208         (void) I915_READ(ch_ctl);
209
210         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
211                 printk(KERN_ERR "dp_aux_ch not done status 0x%08x\n", status);
212                 return -1;
213         }
214
215         /* Check for timeout or receive error.
216          * Timeouts occur when the sink is not connected
217          */
218         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR)) {
219                 printk(KERN_ERR "dp_aux_ch error status 0x%08x\n", status);
220                 return -1;
221         }
222
223         /* Unload any bytes sent back from the other side */
224         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
225                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
226
227         if (recv_bytes > recv_size)
228                 recv_bytes = recv_size;
229         
230         for (i = 0; i < recv_bytes; i += 4) {
231                 uint32_t    d = I915_READ(ch_data + i);
232
233                 unpack_aux(d, recv + i, recv_bytes - i);
234         }
235
236         return recv_bytes;
237 }
238
239 /* Write data to the aux channel in native mode */
240 static int
241 intel_dp_aux_native_write(struct intel_output *intel_output,
242                           uint16_t address, uint8_t *send, int send_bytes)
243 {
244         int ret;
245         uint8_t msg[20];
246         int msg_bytes;
247         uint8_t ack;
248
249         if (send_bytes > 16)
250                 return -1;
251         msg[0] = AUX_NATIVE_WRITE << 4;
252         msg[1] = address >> 8;
253         msg[2] = address;
254         msg[3] = send_bytes - 1;
255         memcpy(&msg[4], send, send_bytes);
256         msg_bytes = send_bytes + 4;
257         for (;;) {
258                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
259                 if (ret < 0)
260                         return ret;
261                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
262                         break;
263                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
264                         udelay(100);
265                 else
266                         return -1;
267         }
268         return send_bytes;
269 }
270
271 /* Write a single byte to the aux channel in native mode */
272 static int
273 intel_dp_aux_native_write_1(struct intel_output *intel_output,
274                             uint16_t address, uint8_t byte)
275 {
276         return intel_dp_aux_native_write(intel_output, address, &byte, 1);
277 }
278
279 /* read bytes from a native aux channel */
280 static int
281 intel_dp_aux_native_read(struct intel_output *intel_output,
282                          uint16_t address, uint8_t *recv, int recv_bytes)
283 {
284         uint8_t msg[4];
285         int msg_bytes;
286         uint8_t reply[20];
287         int reply_bytes;
288         uint8_t ack;
289         int ret;
290
291         msg[0] = AUX_NATIVE_READ << 4;
292         msg[1] = address >> 8;
293         msg[2] = address & 0xff;
294         msg[3] = recv_bytes - 1;
295
296         msg_bytes = 4;
297         reply_bytes = recv_bytes + 1;
298
299         for (;;) {
300                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
301                                       reply, reply_bytes);
302                 if (ret <= 0)
303                         return ret;
304                 ack = reply[0];
305                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
306                         memcpy(recv, reply + 1, ret - 1);
307                         return ret - 1;
308                 }
309                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
310                         udelay(100);
311                 else
312                         return -1;
313         }
314 }
315
316 static int
317 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
318                     uint8_t *send, int send_bytes,
319                     uint8_t *recv, int recv_bytes)
320 {
321         struct intel_dp_priv *dp_priv = container_of(adapter,
322                                                      struct intel_dp_priv,
323                                                      adapter);
324         struct intel_output *intel_output = dp_priv->intel_output;
325
326         return intel_dp_aux_ch(intel_output,
327                                send, send_bytes, recv, recv_bytes);
328 }
329
330 static int
331 intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
332 {
333         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
334
335         DRM_ERROR("i2c_init %s\n", name);
336         dp_priv->algo.running = false;
337         dp_priv->algo.address = 0;
338         dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
339
340         memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
341         dp_priv->adapter.owner = THIS_MODULE;
342         dp_priv->adapter.class = I2C_CLASS_DDC;
343         strncpy (dp_priv->adapter.name, name, sizeof dp_priv->adapter.name - 1);
344         dp_priv->adapter.name[sizeof dp_priv->adapter.name - 1] = '\0';
345         dp_priv->adapter.algo_data = &dp_priv->algo;
346         dp_priv->adapter.dev.parent = &intel_output->base.kdev;
347         
348         return i2c_dp_aux_add_bus(&dp_priv->adapter);
349 }
350
351 static bool
352 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
353                     struct drm_display_mode *adjusted_mode)
354 {
355         struct intel_output *intel_output = enc_to_intel_output(encoder);
356         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
357         int lane_count, clock;
358         int max_lane_count = intel_dp_max_lane_count(intel_output);
359         int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
360         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
361
362         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
363                 for (clock = 0; clock <= max_clock; clock++) {
364                         int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
365
366                         if (intel_dp_link_required(mode->clock) <= link_avail) {
367                                 dp_priv->link_bw = bws[clock];
368                                 dp_priv->lane_count = lane_count;
369                                 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
370                                 printk(KERN_ERR "link bw %02x lane count %d clock %d\n",
371                                        dp_priv->link_bw, dp_priv->lane_count,
372                                        adjusted_mode->clock);
373                                 return true;
374                         }
375                 }
376         }
377         return false;
378 }
379
380 struct intel_dp_m_n {
381         uint32_t        tu;
382         uint32_t        gmch_m;
383         uint32_t        gmch_n;
384         uint32_t        link_m;
385         uint32_t        link_n;
386 };
387
388 static void
389 intel_reduce_ratio(uint32_t *num, uint32_t *den)
390 {
391         while (*num > 0xffffff || *den > 0xffffff) {
392                 *num >>= 1;
393                 *den >>= 1;
394         }
395 }
396
397 static void
398 intel_dp_compute_m_n(int bytes_per_pixel,
399                      int nlanes,
400                      int pixel_clock,
401                      int link_clock,
402                      struct intel_dp_m_n *m_n)
403 {
404         m_n->tu = 64;
405         m_n->gmch_m = pixel_clock * bytes_per_pixel;
406         m_n->gmch_n = link_clock * nlanes;
407         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
408         m_n->link_m = pixel_clock;
409         m_n->link_n = link_clock;
410         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
411 }
412
413 void
414 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
415                  struct drm_display_mode *adjusted_mode)
416 {
417         struct drm_device *dev = crtc->dev;
418         struct drm_mode_config *mode_config = &dev->mode_config;
419         struct drm_connector *connector;
420         struct drm_i915_private *dev_priv = dev->dev_private;
421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
422         int lane_count = 4;
423         struct intel_dp_m_n m_n;
424
425         /*
426          * Find the lane count in the intel_output private
427          */
428         list_for_each_entry(connector, &mode_config->connector_list, head) {
429                 struct intel_output *intel_output = to_intel_output(connector);
430                 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
431
432                 if (!connector->encoder || connector->encoder->crtc != crtc)
433                         continue;
434
435                 if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
436                         lane_count = dp_priv->lane_count;
437                         break;
438                 }
439         }
440
441         /*
442          * Compute the GMCH and Link ratios. The '3' here is
443          * the number of bytes_per_pixel post-LUT, which we always
444          * set up for 8-bits of R/G/B, or 3 bytes total.
445          */
446         intel_dp_compute_m_n(3, lane_count,
447                              mode->clock, adjusted_mode->clock, &m_n);
448
449         if (intel_crtc->pipe == 0) {
450                 I915_WRITE(PIPEA_GMCH_DATA_M,
451                        ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
452                        m_n.gmch_m);
453                 I915_WRITE(PIPEA_GMCH_DATA_N,
454                        m_n.gmch_n);
455                 I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
456                 I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
457         } else {
458                 I915_WRITE(PIPEB_GMCH_DATA_M,
459                        ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
460                        m_n.gmch_m);
461                 I915_WRITE(PIPEB_GMCH_DATA_N,
462                        m_n.gmch_n);
463                 I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
464                 I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
465         }
466 }
467
468 static void
469 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
470                   struct drm_display_mode *adjusted_mode)
471 {
472         struct intel_output *intel_output = enc_to_intel_output(encoder);
473         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
474         struct drm_crtc *crtc = intel_output->enc.crtc;
475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
476
477         dp_priv->DP = (DP_LINK_TRAIN_OFF |
478                         DP_VOLTAGE_0_4 |
479                         DP_PRE_EMPHASIS_0 |
480                         DP_SYNC_VS_HIGH |
481                         DP_SYNC_HS_HIGH);
482
483         switch (dp_priv->lane_count) {
484         case 1:
485                 dp_priv->DP |= DP_PORT_WIDTH_1;
486                 break;
487         case 2:
488                 dp_priv->DP |= DP_PORT_WIDTH_2;
489                 break;
490         case 4:
491                 dp_priv->DP |= DP_PORT_WIDTH_4;
492                 break;
493         }
494         if (dp_priv->has_audio)
495                 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
496
497         memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
498         dp_priv->link_configuration[0] = dp_priv->link_bw;
499         dp_priv->link_configuration[1] = dp_priv->lane_count;
500
501         /*
502          * Check for DPCD version > 1.1,
503          * enable enahanced frame stuff in that case
504          */
505         if (dp_priv->dpcd[0] >= 0x11) {
506                 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
507                 dp_priv->DP |= DP_ENHANCED_FRAMING;
508         }
509
510         if (intel_crtc->pipe == 1)
511                 dp_priv->DP |= DP_PIPEB_SELECT;
512 }
513
514
515 static void
516 intel_dp_dpms(struct drm_encoder *encoder, int mode)
517 {
518         struct intel_output *intel_output = enc_to_intel_output(encoder);
519         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
520         struct drm_device *dev = intel_output->base.dev;
521         struct drm_i915_private *dev_priv = dev->dev_private;
522         uint32_t dp_reg = I915_READ(dp_priv->output_reg);
523
524         if (mode != DRM_MODE_DPMS_ON) {
525                 if (dp_reg & DP_PORT_EN)
526                         intel_dp_link_down(intel_output, dp_priv->DP);
527         } else {
528                 if (!(dp_reg & DP_PORT_EN))
529                         intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
530         }
531         dp_priv->dpms_mode = mode;
532 }
533
534 /*
535  * Fetch AUX CH registers 0x202 - 0x207 which contain
536  * link status information
537  */
538 static bool
539 intel_dp_get_link_status(struct intel_output *intel_output,
540                          uint8_t link_status[DP_LINK_STATUS_SIZE])
541 {
542         int ret;
543
544         ret = intel_dp_aux_native_read(intel_output,
545                                        DP_LANE0_1_STATUS,
546                                        link_status, DP_LINK_STATUS_SIZE);
547         if (ret != DP_LINK_STATUS_SIZE)
548                 return false;
549         return true;
550 }
551
552 static uint8_t
553 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
554                      int r)
555 {
556         return link_status[r - DP_LANE0_1_STATUS];
557 }
558
559 static void
560 intel_dp_save(struct drm_connector *connector)
561 {
562         struct intel_output *intel_output = to_intel_output(connector);
563         struct drm_device *dev = intel_output->base.dev;
564         struct drm_i915_private *dev_priv = dev->dev_private;
565         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
566
567         dp_priv->save_DP = I915_READ(dp_priv->output_reg);
568         intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
569                                  dp_priv->save_link_configuration,
570                                  sizeof (dp_priv->save_link_configuration));
571 }
572
573 static uint8_t
574 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
575                                  int lane)
576 {
577         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
578         int         s = ((lane & 1) ?
579                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
580                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
581         uint8_t l = intel_dp_link_status(link_status, i);
582
583         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
584 }
585
586 static uint8_t
587 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
588                                       int lane)
589 {
590         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
591         int         s = ((lane & 1) ?
592                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
593                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
594         uint8_t l = intel_dp_link_status(link_status, i);
595
596         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
597 }
598
599
600 #if 0
601 static char     *voltage_names[] = {
602         "0.4V", "0.6V", "0.8V", "1.2V"
603 };
604 static char     *pre_emph_names[] = {
605         "0dB", "3.5dB", "6dB", "9.5dB"
606 };
607 static char     *link_train_names[] = {
608         "pattern 1", "pattern 2", "idle", "off"
609 };
610 #endif
611
612 /*
613  * These are source-specific values; current Intel hardware supports
614  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
615  */
616 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
617
618 static uint8_t
619 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
620 {
621         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
622         case DP_TRAIN_VOLTAGE_SWING_400:
623                 return DP_TRAIN_PRE_EMPHASIS_6;
624         case DP_TRAIN_VOLTAGE_SWING_600:
625                 return DP_TRAIN_PRE_EMPHASIS_6;
626         case DP_TRAIN_VOLTAGE_SWING_800:
627                 return DP_TRAIN_PRE_EMPHASIS_3_5;
628         case DP_TRAIN_VOLTAGE_SWING_1200:
629         default:
630                 return DP_TRAIN_PRE_EMPHASIS_0;
631         }
632 }
633
634 static void
635 intel_get_adjust_train(struct intel_output *intel_output,
636                        uint8_t link_status[DP_LINK_STATUS_SIZE],
637                        int lane_count,
638                        uint8_t train_set[4])
639 {
640         uint8_t v = 0;
641         uint8_t p = 0;
642         int lane;
643
644         for (lane = 0; lane < lane_count; lane++) {
645                 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
646                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
647
648                 if (this_v > v)
649                         v = this_v;
650                 if (this_p > p)
651                         p = this_p;
652         }
653
654         if (v >= I830_DP_VOLTAGE_MAX)
655                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
656
657         if (p >= intel_dp_pre_emphasis_max(v))
658                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
659
660         for (lane = 0; lane < 4; lane++)
661                 train_set[lane] = v | p;
662 }
663
664 static uint32_t
665 intel_dp_signal_levels(uint8_t train_set, int lane_count)
666 {
667         uint32_t        signal_levels = 0;
668
669         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
670         case DP_TRAIN_VOLTAGE_SWING_400:
671         default:
672                 signal_levels |= DP_VOLTAGE_0_4;
673                 break;
674         case DP_TRAIN_VOLTAGE_SWING_600:
675                 signal_levels |= DP_VOLTAGE_0_6;
676                 break;
677         case DP_TRAIN_VOLTAGE_SWING_800:
678                 signal_levels |= DP_VOLTAGE_0_8;
679                 break;
680         case DP_TRAIN_VOLTAGE_SWING_1200:
681                 signal_levels |= DP_VOLTAGE_1_2;
682                 break;
683         }
684         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
685         case DP_TRAIN_PRE_EMPHASIS_0:
686         default:
687                 signal_levels |= DP_PRE_EMPHASIS_0;
688                 break;
689         case DP_TRAIN_PRE_EMPHASIS_3_5:
690                 signal_levels |= DP_PRE_EMPHASIS_3_5;
691                 break;
692         case DP_TRAIN_PRE_EMPHASIS_6:
693                 signal_levels |= DP_PRE_EMPHASIS_6;
694                 break;
695         case DP_TRAIN_PRE_EMPHASIS_9_5:
696                 signal_levels |= DP_PRE_EMPHASIS_9_5;
697                 break;
698         }
699         return signal_levels;
700 }
701
702 static uint8_t
703 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
704                       int lane)
705 {
706         int i = DP_LANE0_1_STATUS + (lane >> 1);
707         int s = (lane & 1) * 4;
708         uint8_t l = intel_dp_link_status(link_status, i);
709
710         return (l >> s) & 0xf;
711 }
712
713 /* Check for clock recovery is done on all channels */
714 static bool
715 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
716 {
717         int lane;
718         uint8_t lane_status;
719
720         for (lane = 0; lane < lane_count; lane++) {
721                 lane_status = intel_get_lane_status(link_status, lane);
722                 if ((lane_status & DP_LANE_CR_DONE) == 0)
723                         return false;
724         }
725         return true;
726 }
727
728 /* Check to see if channel eq is done on all channels */
729 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
730                          DP_LANE_CHANNEL_EQ_DONE|\
731                          DP_LANE_SYMBOL_LOCKED)
732 static bool
733 intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
734 {
735         uint8_t lane_align;
736         uint8_t lane_status;
737         int lane;
738
739         lane_align = intel_dp_link_status(link_status,
740                                           DP_LANE_ALIGN_STATUS_UPDATED);
741         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
742                 return false;
743         for (lane = 0; lane < lane_count; lane++) {
744                 lane_status = intel_get_lane_status(link_status, lane);
745                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
746                         return false;
747         }
748         return true;
749 }
750
751 static bool
752 intel_dp_set_link_train(struct intel_output *intel_output,
753                         uint32_t dp_reg_value,
754                         uint8_t dp_train_pat,
755                         uint8_t train_set[4],
756                         bool first)
757 {
758         struct drm_device *dev = intel_output->base.dev;
759         struct drm_i915_private *dev_priv = dev->dev_private;
760         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
761         int ret;
762
763         I915_WRITE(dp_priv->output_reg, dp_reg_value);
764         POSTING_READ(dp_priv->output_reg);
765         if (first)
766                 intel_wait_for_vblank(dev);
767
768         intel_dp_aux_native_write_1(intel_output,
769                                     DP_TRAINING_PATTERN_SET,
770                                     dp_train_pat);
771
772         ret = intel_dp_aux_native_write(intel_output,
773                                         DP_TRAINING_LANE0_SET, train_set, 4);
774         if (ret != 4)
775                 return false;
776
777         return true;
778 }
779
780 static void
781 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
782                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
783 {
784         struct drm_device *dev = intel_output->base.dev;
785         struct drm_i915_private *dev_priv = dev->dev_private;
786         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
787         uint8_t train_set[4];
788         uint8_t link_status[DP_LINK_STATUS_SIZE];
789         int i;
790         uint8_t voltage;
791         bool clock_recovery = false;
792         bool channel_eq = false;
793         bool first = true;
794         int tries;
795
796         /* Write the link configuration data */
797         intel_dp_aux_native_write(intel_output, 0x100,
798                                   link_configuration, DP_LINK_CONFIGURATION_SIZE);
799
800         DP |= DP_PORT_EN;
801         DP &= ~DP_LINK_TRAIN_MASK;
802         memset(train_set, 0, 4);
803         voltage = 0xff;
804         tries = 0;
805         clock_recovery = false;
806         for (;;) {
807                 /* Use train_set[0] to set the voltage and pre emphasis values */
808                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
809                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
810
811                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
812                                              DP_TRAINING_PATTERN_1, train_set, first))
813                         break;
814                 first = false;
815                 /* Set training pattern 1 */
816
817                 udelay(100);
818                 if (!intel_dp_get_link_status(intel_output, link_status))
819                         break;
820
821                 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
822                         clock_recovery = true;
823                         break;
824                 }
825
826                 /* Check to see if we've tried the max voltage */
827                 for (i = 0; i < dp_priv->lane_count; i++)
828                         if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
829                                 break;
830                 if (i == dp_priv->lane_count)
831                         break;
832
833                 /* Check to see if we've tried the same voltage 5 times */
834                 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
835                         ++tries;
836                         if (tries == 5)
837                                 break;
838                 } else
839                         tries = 0;
840                 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
841
842                 /* Compute new train_set as requested by target */
843                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
844         }
845
846         /* channel equalization */
847         tries = 0;
848         channel_eq = false;
849         for (;;) {
850                 /* Use train_set[0] to set the voltage and pre emphasis values */
851                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
852                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
853
854                 /* channel eq pattern */
855                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
856                                              DP_TRAINING_PATTERN_2, train_set,
857                                              false))
858                         break;
859
860                 udelay(400);
861                 if (!intel_dp_get_link_status(intel_output, link_status))
862                         break;
863
864                 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
865                         channel_eq = true;
866                         break;
867                 }
868
869                 /* Try 5 times */
870                 if (tries > 5)
871                         break;
872
873                 /* Compute new train_set as requested by target */
874                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
875                 ++tries;
876         }
877
878         I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
879         POSTING_READ(dp_priv->output_reg);
880         intel_dp_aux_native_write_1(intel_output,
881                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
882 }
883
884 static void
885 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
886 {
887         struct drm_device *dev = intel_output->base.dev;
888         struct drm_i915_private *dev_priv = dev->dev_private;
889         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
890
891         I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
892         POSTING_READ(dp_priv->output_reg);
893 }
894
895 static void
896 intel_dp_restore(struct drm_connector *connector)
897 {
898         struct intel_output *intel_output = to_intel_output(connector);
899         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
900
901         if (dp_priv->save_DP & DP_PORT_EN)
902                 intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
903         else
904                 intel_dp_link_down(intel_output,  dp_priv->save_DP);
905 }
906
907 /*
908  * According to DP spec
909  * 5.1.2:
910  *  1. Read DPCD
911  *  2. Configure link according to Receiver Capabilities
912  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
913  *  4. Check link status on receipt of hot-plug interrupt
914  */
915
916 static void
917 intel_dp_check_link_status(struct intel_output *intel_output)
918 {
919         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
920         uint8_t link_status[DP_LINK_STATUS_SIZE];
921
922         if (!intel_output->enc.crtc)
923                 return;
924
925         if (!intel_dp_get_link_status(intel_output, link_status)) {
926                 intel_dp_link_down(intel_output, dp_priv->DP);
927                 return;
928         }
929
930         if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
931                 intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
932 }
933
934 /**
935  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
936  *
937  * \return true if DP port is connected.
938  * \return false if DP port is disconnected.
939  */
940 static enum drm_connector_status
941 intel_dp_detect(struct drm_connector *connector)
942 {
943         struct intel_output *intel_output = to_intel_output(connector);
944         struct drm_device *dev = intel_output->base.dev;
945         struct drm_i915_private *dev_priv = dev->dev_private;
946         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
947         uint32_t temp, bit;
948         enum drm_connector_status status;
949
950         dp_priv->has_audio = false;
951
952         temp = I915_READ(PORT_HOTPLUG_EN);
953
954         I915_WRITE(PORT_HOTPLUG_EN,
955                temp |
956                DPB_HOTPLUG_INT_EN |
957                DPC_HOTPLUG_INT_EN |
958                DPD_HOTPLUG_INT_EN);
959
960         POSTING_READ(PORT_HOTPLUG_EN);
961
962         switch (dp_priv->output_reg) {
963         case DP_B:
964                 bit = DPB_HOTPLUG_INT_STATUS;
965                 break;
966         case DP_C:
967                 bit = DPC_HOTPLUG_INT_STATUS;
968                 break;
969         case DP_D:
970                 bit = DPD_HOTPLUG_INT_STATUS;
971                 break;
972         default:
973                 return connector_status_unknown;
974         }
975
976         temp = I915_READ(PORT_HOTPLUG_STAT);
977
978         if ((temp & bit) == 0)
979                 return connector_status_disconnected;
980
981         status = connector_status_disconnected;
982         if (intel_dp_aux_native_read(intel_output,
983                                      0x000, dp_priv->dpcd,
984                                      sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
985         {
986                 if (dp_priv->dpcd[0] != 0)
987                         status = connector_status_connected;
988         }
989         return status;
990 }
991
992 static int intel_dp_get_modes(struct drm_connector *connector)
993 {
994         struct intel_output *intel_output = to_intel_output(connector);
995
996         /* We should parse the EDID data and find out if it has an audio sink
997          */
998
999         return intel_ddc_get_modes(intel_output);
1000 }
1001
1002 static void
1003 intel_dp_destroy (struct drm_connector *connector)
1004 {
1005         struct intel_output *intel_output = to_intel_output(connector);
1006
1007         if (intel_output->i2c_bus)
1008                 intel_i2c_destroy(intel_output->i2c_bus);
1009         drm_sysfs_connector_remove(connector);
1010         drm_connector_cleanup(connector);
1011         kfree(intel_output);
1012 }
1013
1014 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1015         .dpms = intel_dp_dpms,
1016         .mode_fixup = intel_dp_mode_fixup,
1017         .prepare = intel_encoder_prepare,
1018         .mode_set = intel_dp_mode_set,
1019         .commit = intel_encoder_commit,
1020 };
1021
1022 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1023         .dpms = drm_helper_connector_dpms,
1024         .save = intel_dp_save,
1025         .restore = intel_dp_restore,
1026         .detect = intel_dp_detect,
1027         .fill_modes = drm_helper_probe_single_connector_modes,
1028         .destroy = intel_dp_destroy,
1029 };
1030
1031 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1032         .get_modes = intel_dp_get_modes,
1033         .mode_valid = intel_dp_mode_valid,
1034         .best_encoder = intel_best_encoder,
1035 };
1036
1037 static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1038 {
1039         drm_encoder_cleanup(encoder);
1040 }
1041
1042 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1043         .destroy = intel_dp_enc_destroy,
1044 };
1045
1046 void
1047 intel_dp_hot_plug(struct intel_output *intel_output)
1048 {
1049         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1050
1051         if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1052                 intel_dp_check_link_status(intel_output);
1053 }
1054
1055 void
1056 intel_dp_init(struct drm_device *dev, int output_reg)
1057 {
1058         struct drm_i915_private *dev_priv = dev->dev_private;
1059         struct drm_connector *connector;
1060         struct intel_output *intel_output;
1061         struct intel_dp_priv *dp_priv;
1062
1063         intel_output = kcalloc(sizeof(struct intel_output) + 
1064                                sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1065         if (!intel_output)
1066                 return;
1067
1068         dp_priv = (struct intel_dp_priv *)(intel_output + 1);
1069
1070         connector = &intel_output->base;
1071         drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1072                            DRM_MODE_CONNECTOR_DisplayPort);
1073         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1074
1075         intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
1076
1077         connector->interlace_allowed = true;
1078         connector->doublescan_allowed = 0;
1079
1080         dp_priv->intel_output = intel_output;
1081         dp_priv->output_reg = output_reg;
1082         dp_priv->has_audio = false;
1083         dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1084         intel_output->dev_priv = dp_priv;
1085
1086         drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
1087                          DRM_MODE_ENCODER_TMDS);
1088         drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
1089
1090         drm_mode_connector_attach_encoder(&intel_output->base,
1091                                           &intel_output->enc);
1092         drm_sysfs_connector_add(connector);
1093
1094         /* Set up the DDC bus. */
1095         intel_dp_i2c_init(intel_output,
1096                           (output_reg == DP_B) ? "DPDDC-B" :
1097                           (output_reg == DP_C) ? "DPDDC-C" : "DPDDC-D");
1098         intel_output->ddc_bus = &dp_priv->adapter;
1099         intel_output->hot_plug = intel_dp_hot_plug;
1100
1101         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1102          * 0xd.  Failure to do so will result in spurious interrupts being
1103          * generated on the port when a cable is not attached.
1104          */
1105         if (IS_G4X(dev) && !IS_GM45(dev)) {
1106                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1107                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1108         }
1109 }