Merge commit 'keithp/drm-intel-next' into drm-intel-next
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "drm_crtc.h"
32 #include "drm_crtc_helper.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "intel_dp.h"
37
38 #define DP_LINK_STATUS_SIZE     6
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 #define DP_LINK_CONFIGURATION_SIZE      9
42
43 struct intel_dp_priv {
44         uint32_t output_reg;
45         uint32_t DP;
46         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
47         uint32_t save_DP;
48         uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
49         bool has_audio;
50         int dpms_mode;
51         uint8_t link_bw;
52         uint8_t lane_count;
53         uint8_t dpcd[4];
54         struct intel_output *intel_output;
55         struct i2c_adapter adapter;
56         struct i2c_algo_dp_aux_data algo;
57 };
58
59 static void
60 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
61                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
62
63 static void
64 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
65
66 static int
67 intel_dp_max_lane_count(struct intel_output *intel_output)
68 {
69         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
70         int max_lane_count = 4;
71
72         if (dp_priv->dpcd[0] >= 0x11) {
73                 max_lane_count = dp_priv->dpcd[2] & 0x1f;
74                 switch (max_lane_count) {
75                 case 1: case 2: case 4:
76                         break;
77                 default:
78                         max_lane_count = 4;
79                 }
80         }
81         return max_lane_count;
82 }
83
84 static int
85 intel_dp_max_link_bw(struct intel_output *intel_output)
86 {
87         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
88         int max_link_bw = dp_priv->dpcd[1];
89
90         switch (max_link_bw) {
91         case DP_LINK_BW_1_62:
92         case DP_LINK_BW_2_7:
93                 break;
94         default:
95                 max_link_bw = DP_LINK_BW_1_62;
96                 break;
97         }
98         return max_link_bw;
99 }
100
101 static int
102 intel_dp_link_clock(uint8_t link_bw)
103 {
104         if (link_bw == DP_LINK_BW_2_7)
105                 return 270000;
106         else
107                 return 162000;
108 }
109
110 /* I think this is a fiction */
111 static int
112 intel_dp_link_required(int pixel_clock)
113 {
114         return pixel_clock * 3;
115 }
116
117 static int
118 intel_dp_mode_valid(struct drm_connector *connector,
119                     struct drm_display_mode *mode)
120 {
121         struct intel_output *intel_output = to_intel_output(connector);
122         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
123         int max_lanes = intel_dp_max_lane_count(intel_output);
124
125         if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
126                 return MODE_CLOCK_HIGH;
127
128         if (mode->clock < 10000)
129                 return MODE_CLOCK_LOW;
130
131         return MODE_OK;
132 }
133
134 static uint32_t
135 pack_aux(uint8_t *src, int src_bytes)
136 {
137         int     i;
138         uint32_t v = 0;
139
140         if (src_bytes > 4)
141                 src_bytes = 4;
142         for (i = 0; i < src_bytes; i++)
143                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
144         return v;
145 }
146
147 static void
148 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
149 {
150         int i;
151         if (dst_bytes > 4)
152                 dst_bytes = 4;
153         for (i = 0; i < dst_bytes; i++)
154                 dst[i] = src >> ((3-i) * 8);
155 }
156
157 /* hrawclock is 1/4 the FSB frequency */
158 static int
159 intel_hrawclk(struct drm_device *dev)
160 {
161         struct drm_i915_private *dev_priv = dev->dev_private;
162         uint32_t clkcfg;
163
164         clkcfg = I915_READ(CLKCFG);
165         switch (clkcfg & CLKCFG_FSB_MASK) {
166         case CLKCFG_FSB_400:
167                 return 100;
168         case CLKCFG_FSB_533:
169                 return 133;
170         case CLKCFG_FSB_667:
171                 return 166;
172         case CLKCFG_FSB_800:
173                 return 200;
174         case CLKCFG_FSB_1067:
175                 return 266;
176         case CLKCFG_FSB_1333:
177                 return 333;
178         /* these two are just a guess; one of them might be right */
179         case CLKCFG_FSB_1600:
180         case CLKCFG_FSB_1600_ALT:
181                 return 400;
182         default:
183                 return 133;
184         }
185 }
186
187 static int
188 intel_dp_aux_ch(struct intel_output *intel_output,
189                 uint8_t *send, int send_bytes,
190                 uint8_t *recv, int recv_size)
191 {
192         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
193         uint32_t output_reg = dp_priv->output_reg;
194         struct drm_device *dev = intel_output->base.dev;
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         uint32_t ch_ctl = output_reg + 0x10;
197         uint32_t ch_data = ch_ctl + 4;
198         int i;
199         int recv_bytes;
200         uint32_t ctl;
201         uint32_t status;
202         uint32_t aux_clock_divider;
203         int try;
204
205         /* The clock divider is based off the hrawclk,
206          * and would like to run at 2MHz. So, take the
207          * hrawclk value and divide by 2 and use that
208          */
209         aux_clock_divider = intel_hrawclk(dev) / 2;
210         /* Must try at least 3 times according to DP spec */
211         for (try = 0; try < 5; try++) {
212                 /* Load the send data into the aux channel data registers */
213                 for (i = 0; i < send_bytes; i += 4) {
214                         uint32_t    d = pack_aux(send + i, send_bytes - i);;
215         
216                         I915_WRITE(ch_data + i, d);
217                 }
218         
219                 ctl = (DP_AUX_CH_CTL_SEND_BUSY |
220                        DP_AUX_CH_CTL_TIME_OUT_400us |
221                        (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
222                        (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
223                        (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
224                        DP_AUX_CH_CTL_DONE |
225                        DP_AUX_CH_CTL_TIME_OUT_ERROR |
226                        DP_AUX_CH_CTL_RECEIVE_ERROR);
227         
228                 /* Send the command and wait for it to complete */
229                 I915_WRITE(ch_ctl, ctl);
230                 (void) I915_READ(ch_ctl);
231                 for (;;) {
232                         udelay(100);
233                         status = I915_READ(ch_ctl);
234                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
235                                 break;
236                 }
237         
238                 /* Clear done status and any errors */
239                 I915_WRITE(ch_ctl, (ctl |
240                                 DP_AUX_CH_CTL_DONE |
241                                 DP_AUX_CH_CTL_TIME_OUT_ERROR |
242                                 DP_AUX_CH_CTL_RECEIVE_ERROR));
243                 (void) I915_READ(ch_ctl);
244                 if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
245                         break;
246         }
247
248         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
249                 printk(KERN_ERR "dp_aux_ch not done status 0x%08x\n", status);
250                 return -EBUSY;
251         }
252
253         /* Check for timeout or receive error.
254          * Timeouts occur when the sink is not connected
255          */
256         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
257                 printk(KERN_ERR "dp_aux_ch receive error status 0x%08x\n", status);
258                 return -EIO;
259         }
260         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
261                 printk(KERN_ERR "dp_aux_ch timeout status 0x%08x\n", status);
262                 return -ETIMEDOUT;
263         }
264
265         /* Unload any bytes sent back from the other side */
266         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
267                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
268
269         if (recv_bytes > recv_size)
270                 recv_bytes = recv_size;
271         
272         for (i = 0; i < recv_bytes; i += 4) {
273                 uint32_t    d = I915_READ(ch_data + i);
274
275                 unpack_aux(d, recv + i, recv_bytes - i);
276         }
277
278         return recv_bytes;
279 }
280
281 /* Write data to the aux channel in native mode */
282 static int
283 intel_dp_aux_native_write(struct intel_output *intel_output,
284                           uint16_t address, uint8_t *send, int send_bytes)
285 {
286         int ret;
287         uint8_t msg[20];
288         int msg_bytes;
289         uint8_t ack;
290
291         if (send_bytes > 16)
292                 return -1;
293         msg[0] = AUX_NATIVE_WRITE << 4;
294         msg[1] = address >> 8;
295         msg[2] = address;
296         msg[3] = send_bytes - 1;
297         memcpy(&msg[4], send, send_bytes);
298         msg_bytes = send_bytes + 4;
299         for (;;) {
300                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
301                 if (ret < 0)
302                         return ret;
303                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
304                         break;
305                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
306                         udelay(100);
307                 else
308                         return -EIO;
309         }
310         return send_bytes;
311 }
312
313 /* Write a single byte to the aux channel in native mode */
314 static int
315 intel_dp_aux_native_write_1(struct intel_output *intel_output,
316                             uint16_t address, uint8_t byte)
317 {
318         return intel_dp_aux_native_write(intel_output, address, &byte, 1);
319 }
320
321 /* read bytes from a native aux channel */
322 static int
323 intel_dp_aux_native_read(struct intel_output *intel_output,
324                          uint16_t address, uint8_t *recv, int recv_bytes)
325 {
326         uint8_t msg[4];
327         int msg_bytes;
328         uint8_t reply[20];
329         int reply_bytes;
330         uint8_t ack;
331         int ret;
332
333         msg[0] = AUX_NATIVE_READ << 4;
334         msg[1] = address >> 8;
335         msg[2] = address & 0xff;
336         msg[3] = recv_bytes - 1;
337
338         msg_bytes = 4;
339         reply_bytes = recv_bytes + 1;
340
341         for (;;) {
342                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
343                                       reply, reply_bytes);
344                 if (ret == 0)
345                         return -EPROTO;
346                 if (ret < 0)
347                         return ret;
348                 ack = reply[0];
349                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
350                         memcpy(recv, reply + 1, ret - 1);
351                         return ret - 1;
352                 }
353                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
354                         udelay(100);
355                 else
356                         return -EIO;
357         }
358 }
359
360 static int
361 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
362                     uint8_t *send, int send_bytes,
363                     uint8_t *recv, int recv_bytes)
364 {
365         struct intel_dp_priv *dp_priv = container_of(adapter,
366                                                      struct intel_dp_priv,
367                                                      adapter);
368         struct intel_output *intel_output = dp_priv->intel_output;
369
370         return intel_dp_aux_ch(intel_output,
371                                send, send_bytes, recv, recv_bytes);
372 }
373
374 static int
375 intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
376 {
377         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
378
379         DRM_ERROR("i2c_init %s\n", name);
380         dp_priv->algo.running = false;
381         dp_priv->algo.address = 0;
382         dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
383
384         memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
385         dp_priv->adapter.owner = THIS_MODULE;
386         dp_priv->adapter.class = I2C_CLASS_DDC;
387         strncpy (dp_priv->adapter.name, name, sizeof dp_priv->adapter.name - 1);
388         dp_priv->adapter.name[sizeof dp_priv->adapter.name - 1] = '\0';
389         dp_priv->adapter.algo_data = &dp_priv->algo;
390         dp_priv->adapter.dev.parent = &intel_output->base.kdev;
391         
392         return i2c_dp_aux_add_bus(&dp_priv->adapter);
393 }
394
395 static bool
396 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
397                     struct drm_display_mode *adjusted_mode)
398 {
399         struct intel_output *intel_output = enc_to_intel_output(encoder);
400         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
401         int lane_count, clock;
402         int max_lane_count = intel_dp_max_lane_count(intel_output);
403         int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
404         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
405
406         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
407                 for (clock = 0; clock <= max_clock; clock++) {
408                         int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
409
410                         if (intel_dp_link_required(mode->clock) <= link_avail) {
411                                 dp_priv->link_bw = bws[clock];
412                                 dp_priv->lane_count = lane_count;
413                                 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
414                                 printk(KERN_ERR "link bw %02x lane count %d clock %d\n",
415                                        dp_priv->link_bw, dp_priv->lane_count,
416                                        adjusted_mode->clock);
417                                 return true;
418                         }
419                 }
420         }
421         return false;
422 }
423
424 struct intel_dp_m_n {
425         uint32_t        tu;
426         uint32_t        gmch_m;
427         uint32_t        gmch_n;
428         uint32_t        link_m;
429         uint32_t        link_n;
430 };
431
432 static void
433 intel_reduce_ratio(uint32_t *num, uint32_t *den)
434 {
435         while (*num > 0xffffff || *den > 0xffffff) {
436                 *num >>= 1;
437                 *den >>= 1;
438         }
439 }
440
441 static void
442 intel_dp_compute_m_n(int bytes_per_pixel,
443                      int nlanes,
444                      int pixel_clock,
445                      int link_clock,
446                      struct intel_dp_m_n *m_n)
447 {
448         m_n->tu = 64;
449         m_n->gmch_m = pixel_clock * bytes_per_pixel;
450         m_n->gmch_n = link_clock * nlanes;
451         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
452         m_n->link_m = pixel_clock;
453         m_n->link_n = link_clock;
454         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
455 }
456
457 void
458 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
459                  struct drm_display_mode *adjusted_mode)
460 {
461         struct drm_device *dev = crtc->dev;
462         struct drm_mode_config *mode_config = &dev->mode_config;
463         struct drm_connector *connector;
464         struct drm_i915_private *dev_priv = dev->dev_private;
465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
466         int lane_count = 4;
467         struct intel_dp_m_n m_n;
468
469         /*
470          * Find the lane count in the intel_output private
471          */
472         list_for_each_entry(connector, &mode_config->connector_list, head) {
473                 struct intel_output *intel_output = to_intel_output(connector);
474                 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
475
476                 if (!connector->encoder || connector->encoder->crtc != crtc)
477                         continue;
478
479                 if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
480                         lane_count = dp_priv->lane_count;
481                         break;
482                 }
483         }
484
485         /*
486          * Compute the GMCH and Link ratios. The '3' here is
487          * the number of bytes_per_pixel post-LUT, which we always
488          * set up for 8-bits of R/G/B, or 3 bytes total.
489          */
490         intel_dp_compute_m_n(3, lane_count,
491                              mode->clock, adjusted_mode->clock, &m_n);
492
493         if (intel_crtc->pipe == 0) {
494                 I915_WRITE(PIPEA_GMCH_DATA_M,
495                        ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
496                        m_n.gmch_m);
497                 I915_WRITE(PIPEA_GMCH_DATA_N,
498                        m_n.gmch_n);
499                 I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
500                 I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
501         } else {
502                 I915_WRITE(PIPEB_GMCH_DATA_M,
503                        ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
504                        m_n.gmch_m);
505                 I915_WRITE(PIPEB_GMCH_DATA_N,
506                        m_n.gmch_n);
507                 I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
508                 I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
509         }
510 }
511
512 static void
513 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
514                   struct drm_display_mode *adjusted_mode)
515 {
516         struct intel_output *intel_output = enc_to_intel_output(encoder);
517         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
518         struct drm_crtc *crtc = intel_output->enc.crtc;
519         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
520
521         dp_priv->DP = (DP_LINK_TRAIN_OFF |
522                         DP_VOLTAGE_0_4 |
523                         DP_PRE_EMPHASIS_0 |
524                         DP_SYNC_VS_HIGH |
525                         DP_SYNC_HS_HIGH);
526
527         switch (dp_priv->lane_count) {
528         case 1:
529                 dp_priv->DP |= DP_PORT_WIDTH_1;
530                 break;
531         case 2:
532                 dp_priv->DP |= DP_PORT_WIDTH_2;
533                 break;
534         case 4:
535                 dp_priv->DP |= DP_PORT_WIDTH_4;
536                 break;
537         }
538         if (dp_priv->has_audio)
539                 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
540
541         memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
542         dp_priv->link_configuration[0] = dp_priv->link_bw;
543         dp_priv->link_configuration[1] = dp_priv->lane_count;
544
545         /*
546          * Check for DPCD version > 1.1,
547          * enable enahanced frame stuff in that case
548          */
549         if (dp_priv->dpcd[0] >= 0x11) {
550                 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
551                 dp_priv->DP |= DP_ENHANCED_FRAMING;
552         }
553
554         if (intel_crtc->pipe == 1)
555                 dp_priv->DP |= DP_PIPEB_SELECT;
556 }
557
558
559 static void
560 intel_dp_dpms(struct drm_encoder *encoder, int mode)
561 {
562         struct intel_output *intel_output = enc_to_intel_output(encoder);
563         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
564         struct drm_device *dev = intel_output->base.dev;
565         struct drm_i915_private *dev_priv = dev->dev_private;
566         uint32_t dp_reg = I915_READ(dp_priv->output_reg);
567
568         if (mode != DRM_MODE_DPMS_ON) {
569                 if (dp_reg & DP_PORT_EN)
570                         intel_dp_link_down(intel_output, dp_priv->DP);
571         } else {
572                 if (!(dp_reg & DP_PORT_EN))
573                         intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
574         }
575         dp_priv->dpms_mode = mode;
576 }
577
578 /*
579  * Fetch AUX CH registers 0x202 - 0x207 which contain
580  * link status information
581  */
582 static bool
583 intel_dp_get_link_status(struct intel_output *intel_output,
584                          uint8_t link_status[DP_LINK_STATUS_SIZE])
585 {
586         int ret;
587
588         ret = intel_dp_aux_native_read(intel_output,
589                                        DP_LANE0_1_STATUS,
590                                        link_status, DP_LINK_STATUS_SIZE);
591         if (ret != DP_LINK_STATUS_SIZE)
592                 return false;
593         return true;
594 }
595
596 static uint8_t
597 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
598                      int r)
599 {
600         return link_status[r - DP_LANE0_1_STATUS];
601 }
602
603 static void
604 intel_dp_save(struct drm_connector *connector)
605 {
606         struct intel_output *intel_output = to_intel_output(connector);
607         struct drm_device *dev = intel_output->base.dev;
608         struct drm_i915_private *dev_priv = dev->dev_private;
609         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
610
611         dp_priv->save_DP = I915_READ(dp_priv->output_reg);
612         intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
613                                  dp_priv->save_link_configuration,
614                                  sizeof (dp_priv->save_link_configuration));
615 }
616
617 static uint8_t
618 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
619                                  int lane)
620 {
621         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
622         int         s = ((lane & 1) ?
623                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
624                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
625         uint8_t l = intel_dp_link_status(link_status, i);
626
627         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
628 }
629
630 static uint8_t
631 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
632                                       int lane)
633 {
634         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
635         int         s = ((lane & 1) ?
636                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
637                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
638         uint8_t l = intel_dp_link_status(link_status, i);
639
640         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
641 }
642
643
644 #if 0
645 static char     *voltage_names[] = {
646         "0.4V", "0.6V", "0.8V", "1.2V"
647 };
648 static char     *pre_emph_names[] = {
649         "0dB", "3.5dB", "6dB", "9.5dB"
650 };
651 static char     *link_train_names[] = {
652         "pattern 1", "pattern 2", "idle", "off"
653 };
654 #endif
655
656 /*
657  * These are source-specific values; current Intel hardware supports
658  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
659  */
660 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
661
662 static uint8_t
663 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
664 {
665         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
666         case DP_TRAIN_VOLTAGE_SWING_400:
667                 return DP_TRAIN_PRE_EMPHASIS_6;
668         case DP_TRAIN_VOLTAGE_SWING_600:
669                 return DP_TRAIN_PRE_EMPHASIS_6;
670         case DP_TRAIN_VOLTAGE_SWING_800:
671                 return DP_TRAIN_PRE_EMPHASIS_3_5;
672         case DP_TRAIN_VOLTAGE_SWING_1200:
673         default:
674                 return DP_TRAIN_PRE_EMPHASIS_0;
675         }
676 }
677
678 static void
679 intel_get_adjust_train(struct intel_output *intel_output,
680                        uint8_t link_status[DP_LINK_STATUS_SIZE],
681                        int lane_count,
682                        uint8_t train_set[4])
683 {
684         uint8_t v = 0;
685         uint8_t p = 0;
686         int lane;
687
688         for (lane = 0; lane < lane_count; lane++) {
689                 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
690                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
691
692                 if (this_v > v)
693                         v = this_v;
694                 if (this_p > p)
695                         p = this_p;
696         }
697
698         if (v >= I830_DP_VOLTAGE_MAX)
699                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
700
701         if (p >= intel_dp_pre_emphasis_max(v))
702                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
703
704         for (lane = 0; lane < 4; lane++)
705                 train_set[lane] = v | p;
706 }
707
708 static uint32_t
709 intel_dp_signal_levels(uint8_t train_set, int lane_count)
710 {
711         uint32_t        signal_levels = 0;
712
713         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
714         case DP_TRAIN_VOLTAGE_SWING_400:
715         default:
716                 signal_levels |= DP_VOLTAGE_0_4;
717                 break;
718         case DP_TRAIN_VOLTAGE_SWING_600:
719                 signal_levels |= DP_VOLTAGE_0_6;
720                 break;
721         case DP_TRAIN_VOLTAGE_SWING_800:
722                 signal_levels |= DP_VOLTAGE_0_8;
723                 break;
724         case DP_TRAIN_VOLTAGE_SWING_1200:
725                 signal_levels |= DP_VOLTAGE_1_2;
726                 break;
727         }
728         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
729         case DP_TRAIN_PRE_EMPHASIS_0:
730         default:
731                 signal_levels |= DP_PRE_EMPHASIS_0;
732                 break;
733         case DP_TRAIN_PRE_EMPHASIS_3_5:
734                 signal_levels |= DP_PRE_EMPHASIS_3_5;
735                 break;
736         case DP_TRAIN_PRE_EMPHASIS_6:
737                 signal_levels |= DP_PRE_EMPHASIS_6;
738                 break;
739         case DP_TRAIN_PRE_EMPHASIS_9_5:
740                 signal_levels |= DP_PRE_EMPHASIS_9_5;
741                 break;
742         }
743         return signal_levels;
744 }
745
746 static uint8_t
747 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
748                       int lane)
749 {
750         int i = DP_LANE0_1_STATUS + (lane >> 1);
751         int s = (lane & 1) * 4;
752         uint8_t l = intel_dp_link_status(link_status, i);
753
754         return (l >> s) & 0xf;
755 }
756
757 /* Check for clock recovery is done on all channels */
758 static bool
759 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
760 {
761         int lane;
762         uint8_t lane_status;
763
764         for (lane = 0; lane < lane_count; lane++) {
765                 lane_status = intel_get_lane_status(link_status, lane);
766                 if ((lane_status & DP_LANE_CR_DONE) == 0)
767                         return false;
768         }
769         return true;
770 }
771
772 /* Check to see if channel eq is done on all channels */
773 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
774                          DP_LANE_CHANNEL_EQ_DONE|\
775                          DP_LANE_SYMBOL_LOCKED)
776 static bool
777 intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
778 {
779         uint8_t lane_align;
780         uint8_t lane_status;
781         int lane;
782
783         lane_align = intel_dp_link_status(link_status,
784                                           DP_LANE_ALIGN_STATUS_UPDATED);
785         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
786                 return false;
787         for (lane = 0; lane < lane_count; lane++) {
788                 lane_status = intel_get_lane_status(link_status, lane);
789                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
790                         return false;
791         }
792         return true;
793 }
794
795 static bool
796 intel_dp_set_link_train(struct intel_output *intel_output,
797                         uint32_t dp_reg_value,
798                         uint8_t dp_train_pat,
799                         uint8_t train_set[4],
800                         bool first)
801 {
802         struct drm_device *dev = intel_output->base.dev;
803         struct drm_i915_private *dev_priv = dev->dev_private;
804         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
805         int ret;
806
807         I915_WRITE(dp_priv->output_reg, dp_reg_value);
808         POSTING_READ(dp_priv->output_reg);
809         if (first)
810                 intel_wait_for_vblank(dev);
811
812         intel_dp_aux_native_write_1(intel_output,
813                                     DP_TRAINING_PATTERN_SET,
814                                     dp_train_pat);
815
816         ret = intel_dp_aux_native_write(intel_output,
817                                         DP_TRAINING_LANE0_SET, train_set, 4);
818         if (ret != 4)
819                 return false;
820
821         return true;
822 }
823
824 static void
825 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
826                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
827 {
828         struct drm_device *dev = intel_output->base.dev;
829         struct drm_i915_private *dev_priv = dev->dev_private;
830         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
831         uint8_t train_set[4];
832         uint8_t link_status[DP_LINK_STATUS_SIZE];
833         int i;
834         uint8_t voltage;
835         bool clock_recovery = false;
836         bool channel_eq = false;
837         bool first = true;
838         int tries;
839
840         /* Write the link configuration data */
841         intel_dp_aux_native_write(intel_output, 0x100,
842                                   link_configuration, DP_LINK_CONFIGURATION_SIZE);
843
844         DP |= DP_PORT_EN;
845         DP &= ~DP_LINK_TRAIN_MASK;
846         memset(train_set, 0, 4);
847         voltage = 0xff;
848         tries = 0;
849         clock_recovery = false;
850         for (;;) {
851                 /* Use train_set[0] to set the voltage and pre emphasis values */
852                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
853                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
854
855                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
856                                              DP_TRAINING_PATTERN_1, train_set, first))
857                         break;
858                 first = false;
859                 /* Set training pattern 1 */
860
861                 udelay(100);
862                 if (!intel_dp_get_link_status(intel_output, link_status))
863                         break;
864
865                 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
866                         clock_recovery = true;
867                         break;
868                 }
869
870                 /* Check to see if we've tried the max voltage */
871                 for (i = 0; i < dp_priv->lane_count; i++)
872                         if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
873                                 break;
874                 if (i == dp_priv->lane_count)
875                         break;
876
877                 /* Check to see if we've tried the same voltage 5 times */
878                 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
879                         ++tries;
880                         if (tries == 5)
881                                 break;
882                 } else
883                         tries = 0;
884                 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
885
886                 /* Compute new train_set as requested by target */
887                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
888         }
889
890         /* channel equalization */
891         tries = 0;
892         channel_eq = false;
893         for (;;) {
894                 /* Use train_set[0] to set the voltage and pre emphasis values */
895                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
896                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
897
898                 /* channel eq pattern */
899                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
900                                              DP_TRAINING_PATTERN_2, train_set,
901                                              false))
902                         break;
903
904                 udelay(400);
905                 if (!intel_dp_get_link_status(intel_output, link_status))
906                         break;
907
908                 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
909                         channel_eq = true;
910                         break;
911                 }
912
913                 /* Try 5 times */
914                 if (tries > 5)
915                         break;
916
917                 /* Compute new train_set as requested by target */
918                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
919                 ++tries;
920         }
921
922         I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
923         POSTING_READ(dp_priv->output_reg);
924         intel_dp_aux_native_write_1(intel_output,
925                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
926 }
927
928 static void
929 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
930 {
931         struct drm_device *dev = intel_output->base.dev;
932         struct drm_i915_private *dev_priv = dev->dev_private;
933         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
934
935         I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
936         POSTING_READ(dp_priv->output_reg);
937 }
938
939 static void
940 intel_dp_restore(struct drm_connector *connector)
941 {
942         struct intel_output *intel_output = to_intel_output(connector);
943         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
944
945         if (dp_priv->save_DP & DP_PORT_EN)
946                 intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
947         else
948                 intel_dp_link_down(intel_output,  dp_priv->save_DP);
949 }
950
951 /*
952  * According to DP spec
953  * 5.1.2:
954  *  1. Read DPCD
955  *  2. Configure link according to Receiver Capabilities
956  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
957  *  4. Check link status on receipt of hot-plug interrupt
958  */
959
960 static void
961 intel_dp_check_link_status(struct intel_output *intel_output)
962 {
963         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
964         uint8_t link_status[DP_LINK_STATUS_SIZE];
965
966         if (!intel_output->enc.crtc)
967                 return;
968
969         if (!intel_dp_get_link_status(intel_output, link_status)) {
970                 intel_dp_link_down(intel_output, dp_priv->DP);
971                 return;
972         }
973
974         if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
975                 intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
976 }
977
978 /**
979  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
980  *
981  * \return true if DP port is connected.
982  * \return false if DP port is disconnected.
983  */
984 static enum drm_connector_status
985 intel_dp_detect(struct drm_connector *connector)
986 {
987         struct intel_output *intel_output = to_intel_output(connector);
988         struct drm_device *dev = intel_output->base.dev;
989         struct drm_i915_private *dev_priv = dev->dev_private;
990         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
991         uint32_t temp, bit;
992         enum drm_connector_status status;
993
994         dp_priv->has_audio = false;
995
996         temp = I915_READ(PORT_HOTPLUG_EN);
997
998         I915_WRITE(PORT_HOTPLUG_EN,
999                temp |
1000                DPB_HOTPLUG_INT_EN |
1001                DPC_HOTPLUG_INT_EN |
1002                DPD_HOTPLUG_INT_EN);
1003
1004         POSTING_READ(PORT_HOTPLUG_EN);
1005
1006         switch (dp_priv->output_reg) {
1007         case DP_B:
1008                 bit = DPB_HOTPLUG_INT_STATUS;
1009                 break;
1010         case DP_C:
1011                 bit = DPC_HOTPLUG_INT_STATUS;
1012                 break;
1013         case DP_D:
1014                 bit = DPD_HOTPLUG_INT_STATUS;
1015                 break;
1016         default:
1017                 return connector_status_unknown;
1018         }
1019
1020         temp = I915_READ(PORT_HOTPLUG_STAT);
1021
1022         if ((temp & bit) == 0)
1023                 return connector_status_disconnected;
1024
1025         status = connector_status_disconnected;
1026         if (intel_dp_aux_native_read(intel_output,
1027                                      0x000, dp_priv->dpcd,
1028                                      sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1029         {
1030                 if (dp_priv->dpcd[0] != 0)
1031                         status = connector_status_connected;
1032         }
1033         return status;
1034 }
1035
1036 static int intel_dp_get_modes(struct drm_connector *connector)
1037 {
1038         struct intel_output *intel_output = to_intel_output(connector);
1039
1040         /* We should parse the EDID data and find out if it has an audio sink
1041          */
1042
1043         return intel_ddc_get_modes(intel_output);
1044 }
1045
1046 static void
1047 intel_dp_destroy (struct drm_connector *connector)
1048 {
1049         struct intel_output *intel_output = to_intel_output(connector);
1050
1051         if (intel_output->i2c_bus)
1052                 intel_i2c_destroy(intel_output->i2c_bus);
1053         drm_sysfs_connector_remove(connector);
1054         drm_connector_cleanup(connector);
1055         kfree(intel_output);
1056 }
1057
1058 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1059         .dpms = intel_dp_dpms,
1060         .mode_fixup = intel_dp_mode_fixup,
1061         .prepare = intel_encoder_prepare,
1062         .mode_set = intel_dp_mode_set,
1063         .commit = intel_encoder_commit,
1064 };
1065
1066 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1067         .dpms = drm_helper_connector_dpms,
1068         .save = intel_dp_save,
1069         .restore = intel_dp_restore,
1070         .detect = intel_dp_detect,
1071         .fill_modes = drm_helper_probe_single_connector_modes,
1072         .destroy = intel_dp_destroy,
1073 };
1074
1075 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1076         .get_modes = intel_dp_get_modes,
1077         .mode_valid = intel_dp_mode_valid,
1078         .best_encoder = intel_best_encoder,
1079 };
1080
1081 static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1082 {
1083         drm_encoder_cleanup(encoder);
1084 }
1085
1086 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1087         .destroy = intel_dp_enc_destroy,
1088 };
1089
1090 void
1091 intel_dp_hot_plug(struct intel_output *intel_output)
1092 {
1093         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1094
1095         if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1096                 intel_dp_check_link_status(intel_output);
1097 }
1098
1099 void
1100 intel_dp_init(struct drm_device *dev, int output_reg)
1101 {
1102         struct drm_i915_private *dev_priv = dev->dev_private;
1103         struct drm_connector *connector;
1104         struct intel_output *intel_output;
1105         struct intel_dp_priv *dp_priv;
1106
1107         intel_output = kcalloc(sizeof(struct intel_output) + 
1108                                sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1109         if (!intel_output)
1110                 return;
1111
1112         dp_priv = (struct intel_dp_priv *)(intel_output + 1);
1113
1114         connector = &intel_output->base;
1115         drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1116                            DRM_MODE_CONNECTOR_DisplayPort);
1117         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1118
1119         intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
1120
1121         connector->interlace_allowed = true;
1122         connector->doublescan_allowed = 0;
1123
1124         dp_priv->intel_output = intel_output;
1125         dp_priv->output_reg = output_reg;
1126         dp_priv->has_audio = false;
1127         dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1128         intel_output->dev_priv = dp_priv;
1129
1130         drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
1131                          DRM_MODE_ENCODER_TMDS);
1132         drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
1133
1134         drm_mode_connector_attach_encoder(&intel_output->base,
1135                                           &intel_output->enc);
1136         drm_sysfs_connector_add(connector);
1137
1138         /* Set up the DDC bus. */
1139         intel_dp_i2c_init(intel_output,
1140                           (output_reg == DP_B) ? "DPDDC-B" :
1141                           (output_reg == DP_C) ? "DPDDC-C" : "DPDDC-D");
1142         intel_output->ddc_bus = &dp_priv->adapter;
1143         intel_output->hot_plug = intel_dp_hot_plug;
1144
1145         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1146          * 0xd.  Failure to do so will result in spurious interrupts being
1147          * generated on the port when a cable is not attached.
1148          */
1149         if (IS_G4X(dev) && !IS_GM45(dev)) {
1150                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1151                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1152         }
1153 }