Merge branch 'drm-intel-fixes' into drm-intel-next
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         uint32_t color_range;
53         int dpms_mode;
54         uint8_t link_bw;
55         uint8_t lane_count;
56         uint8_t dpcd[8];
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59         bool is_pch_edp;
60         uint8_t train_set[4];
61         uint8_t link_status[DP_LINK_STATUS_SIZE];
62 };
63
64 /**
65  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
66  * @intel_dp: DP struct
67  *
68  * If a CPU or PCH DP output is attached to an eDP panel, this function
69  * will return true, and false otherwise.
70  */
71 static bool is_edp(struct intel_dp *intel_dp)
72 {
73         return intel_dp->base.type == INTEL_OUTPUT_EDP;
74 }
75
76 /**
77  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
78  * @intel_dp: DP struct
79  *
80  * Returns true if the given DP struct corresponds to a PCH DP port attached
81  * to an eDP panel, false otherwise.  Helpful for determining whether we
82  * may need FDI resources for a given DP output or not.
83  */
84 static bool is_pch_edp(struct intel_dp *intel_dp)
85 {
86         return intel_dp->is_pch_edp;
87 }
88
89 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
90 {
91         return container_of(encoder, struct intel_dp, base.base);
92 }
93
94 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
95 {
96         return container_of(intel_attached_encoder(connector),
97                             struct intel_dp, base);
98 }
99
100 /**
101  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
102  * @encoder: DRM encoder
103  *
104  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
105  * by intel_display.c.
106  */
107 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
108 {
109         struct intel_dp *intel_dp;
110
111         if (!encoder)
112                 return false;
113
114         intel_dp = enc_to_intel_dp(encoder);
115
116         return is_pch_edp(intel_dp);
117 }
118
119 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
120 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
121 static void intel_dp_link_down(struct intel_dp *intel_dp);
122
123 void
124 intel_edp_link_config(struct intel_encoder *intel_encoder,
125                        int *lane_num, int *link_bw)
126 {
127         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
128
129         *lane_num = intel_dp->lane_count;
130         if (intel_dp->link_bw == DP_LINK_BW_1_62)
131                 *link_bw = 162000;
132         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
133                 *link_bw = 270000;
134 }
135
136 static int
137 intel_dp_max_lane_count(struct intel_dp *intel_dp)
138 {
139         int max_lane_count = 4;
140
141         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
142                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
143                 switch (max_lane_count) {
144                 case 1: case 2: case 4:
145                         break;
146                 default:
147                         max_lane_count = 4;
148                 }
149         }
150         return max_lane_count;
151 }
152
153 static int
154 intel_dp_max_link_bw(struct intel_dp *intel_dp)
155 {
156         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
157
158         switch (max_link_bw) {
159         case DP_LINK_BW_1_62:
160         case DP_LINK_BW_2_7:
161                 break;
162         default:
163                 max_link_bw = DP_LINK_BW_1_62;
164                 break;
165         }
166         return max_link_bw;
167 }
168
169 static int
170 intel_dp_link_clock(uint8_t link_bw)
171 {
172         if (link_bw == DP_LINK_BW_2_7)
173                 return 270000;
174         else
175                 return 162000;
176 }
177
178 /* I think this is a fiction */
179 static int
180 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
181 {
182         struct drm_crtc *crtc = intel_dp->base.base.crtc;
183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
184         int bpp = 24;
185
186         if (intel_crtc)
187                 bpp = intel_crtc->bpp;
188
189         return (pixel_clock * bpp + 7) / 8;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195         return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static int
199 intel_dp_mode_valid(struct drm_connector *connector,
200                     struct drm_display_mode *mode)
201 {
202         struct intel_dp *intel_dp = intel_attached_dp(connector);
203         struct drm_device *dev = connector->dev;
204         struct drm_i915_private *dev_priv = dev->dev_private;
205         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
206         int max_lanes = intel_dp_max_lane_count(intel_dp);
207
208         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
209                 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
210                         return MODE_PANEL;
211
212                 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
213                         return MODE_PANEL;
214         }
215
216         /* only refuse the mode on non eDP since we have seen some weird eDP panels
217            which are outside spec tolerances but somehow work by magic */
218         if (!is_edp(intel_dp) &&
219             (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
220              > intel_dp_max_data_rate(max_link_clock, max_lanes)))
221                 return MODE_CLOCK_HIGH;
222
223         if (mode->clock < 10000)
224                 return MODE_CLOCK_LOW;
225
226         return MODE_OK;
227 }
228
229 static uint32_t
230 pack_aux(uint8_t *src, int src_bytes)
231 {
232         int     i;
233         uint32_t v = 0;
234
235         if (src_bytes > 4)
236                 src_bytes = 4;
237         for (i = 0; i < src_bytes; i++)
238                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
239         return v;
240 }
241
242 static void
243 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
244 {
245         int i;
246         if (dst_bytes > 4)
247                 dst_bytes = 4;
248         for (i = 0; i < dst_bytes; i++)
249                 dst[i] = src >> ((3-i) * 8);
250 }
251
252 /* hrawclock is 1/4 the FSB frequency */
253 static int
254 intel_hrawclk(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         uint32_t clkcfg;
258
259         clkcfg = I915_READ(CLKCFG);
260         switch (clkcfg & CLKCFG_FSB_MASK) {
261         case CLKCFG_FSB_400:
262                 return 100;
263         case CLKCFG_FSB_533:
264                 return 133;
265         case CLKCFG_FSB_667:
266                 return 166;
267         case CLKCFG_FSB_800:
268                 return 200;
269         case CLKCFG_FSB_1067:
270                 return 266;
271         case CLKCFG_FSB_1333:
272                 return 333;
273         /* these two are just a guess; one of them might be right */
274         case CLKCFG_FSB_1600:
275         case CLKCFG_FSB_1600_ALT:
276                 return 400;
277         default:
278                 return 133;
279         }
280 }
281
282 static int
283 intel_dp_aux_ch(struct intel_dp *intel_dp,
284                 uint8_t *send, int send_bytes,
285                 uint8_t *recv, int recv_size)
286 {
287         uint32_t output_reg = intel_dp->output_reg;
288         struct drm_device *dev = intel_dp->base.base.dev;
289         struct drm_i915_private *dev_priv = dev->dev_private;
290         uint32_t ch_ctl = output_reg + 0x10;
291         uint32_t ch_data = ch_ctl + 4;
292         int i;
293         int recv_bytes;
294         uint32_t status;
295         uint32_t aux_clock_divider;
296         int try, precharge;
297
298         /* The clock divider is based off the hrawclk,
299          * and would like to run at 2MHz. So, take the
300          * hrawclk value and divide by 2 and use that
301          *
302          * Note that PCH attached eDP panels should use a 125MHz input
303          * clock divider.
304          */
305         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
306                 if (IS_GEN6(dev))
307                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
308                 else
309                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
310         } else if (HAS_PCH_SPLIT(dev))
311                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
312         else
313                 aux_clock_divider = intel_hrawclk(dev) / 2;
314
315         if (IS_GEN6(dev))
316                 precharge = 3;
317         else
318                 precharge = 5;
319
320         /* Try to wait for any previous AUX channel activity */
321         for (try = 0; try < 3; try++) {
322                 status = I915_READ(ch_ctl);
323                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
324                         break;
325                 msleep(1);
326         }
327
328         if (try == 3) {
329                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
330                      I915_READ(ch_ctl));
331                 return -EBUSY;
332         }
333
334         /* Must try at least 3 times according to DP spec */
335         for (try = 0; try < 5; try++) {
336                 /* Load the send data into the aux channel data registers */
337                 for (i = 0; i < send_bytes; i += 4)
338                         I915_WRITE(ch_data + i,
339                                    pack_aux(send + i, send_bytes - i));
340
341                 /* Send the command and wait for it to complete */
342                 I915_WRITE(ch_ctl,
343                            DP_AUX_CH_CTL_SEND_BUSY |
344                            DP_AUX_CH_CTL_TIME_OUT_400us |
345                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
346                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
347                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
348                            DP_AUX_CH_CTL_DONE |
349                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
350                            DP_AUX_CH_CTL_RECEIVE_ERROR);
351                 for (;;) {
352                         status = I915_READ(ch_ctl);
353                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
354                                 break;
355                         udelay(100);
356                 }
357
358                 /* Clear done status and any errors */
359                 I915_WRITE(ch_ctl,
360                            status |
361                            DP_AUX_CH_CTL_DONE |
362                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
363                            DP_AUX_CH_CTL_RECEIVE_ERROR);
364                 if (status & DP_AUX_CH_CTL_DONE)
365                         break;
366         }
367
368         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
369                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
370                 return -EBUSY;
371         }
372
373         /* Check for timeout or receive error.
374          * Timeouts occur when the sink is not connected
375          */
376         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
377                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
378                 return -EIO;
379         }
380
381         /* Timeouts occur when the device isn't connected, so they're
382          * "normal" -- don't fill the kernel log with these */
383         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
384                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
385                 return -ETIMEDOUT;
386         }
387
388         /* Unload any bytes sent back from the other side */
389         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
390                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
391         if (recv_bytes > recv_size)
392                 recv_bytes = recv_size;
393
394         for (i = 0; i < recv_bytes; i += 4)
395                 unpack_aux(I915_READ(ch_data + i),
396                            recv + i, recv_bytes - i);
397
398         return recv_bytes;
399 }
400
401 /* Write data to the aux channel in native mode */
402 static int
403 intel_dp_aux_native_write(struct intel_dp *intel_dp,
404                           uint16_t address, uint8_t *send, int send_bytes)
405 {
406         int ret;
407         uint8_t msg[20];
408         int msg_bytes;
409         uint8_t ack;
410
411         if (send_bytes > 16)
412                 return -1;
413         msg[0] = AUX_NATIVE_WRITE << 4;
414         msg[1] = address >> 8;
415         msg[2] = address & 0xff;
416         msg[3] = send_bytes - 1;
417         memcpy(&msg[4], send, send_bytes);
418         msg_bytes = send_bytes + 4;
419         for (;;) {
420                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
421                 if (ret < 0)
422                         return ret;
423                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
424                         break;
425                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
426                         udelay(100);
427                 else
428                         return -EIO;
429         }
430         return send_bytes;
431 }
432
433 /* Write a single byte to the aux channel in native mode */
434 static int
435 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
436                             uint16_t address, uint8_t byte)
437 {
438         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
439 }
440
441 /* read bytes from a native aux channel */
442 static int
443 intel_dp_aux_native_read(struct intel_dp *intel_dp,
444                          uint16_t address, uint8_t *recv, int recv_bytes)
445 {
446         uint8_t msg[4];
447         int msg_bytes;
448         uint8_t reply[20];
449         int reply_bytes;
450         uint8_t ack;
451         int ret;
452
453         msg[0] = AUX_NATIVE_READ << 4;
454         msg[1] = address >> 8;
455         msg[2] = address & 0xff;
456         msg[3] = recv_bytes - 1;
457
458         msg_bytes = 4;
459         reply_bytes = recv_bytes + 1;
460
461         for (;;) {
462                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
463                                       reply, reply_bytes);
464                 if (ret == 0)
465                         return -EPROTO;
466                 if (ret < 0)
467                         return ret;
468                 ack = reply[0];
469                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
470                         memcpy(recv, reply + 1, ret - 1);
471                         return ret - 1;
472                 }
473                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
474                         udelay(100);
475                 else
476                         return -EIO;
477         }
478 }
479
480 static int
481 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
482                     uint8_t write_byte, uint8_t *read_byte)
483 {
484         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
485         struct intel_dp *intel_dp = container_of(adapter,
486                                                 struct intel_dp,
487                                                 adapter);
488         uint16_t address = algo_data->address;
489         uint8_t msg[5];
490         uint8_t reply[2];
491         unsigned retry;
492         int msg_bytes;
493         int reply_bytes;
494         int ret;
495
496         /* Set up the command byte */
497         if (mode & MODE_I2C_READ)
498                 msg[0] = AUX_I2C_READ << 4;
499         else
500                 msg[0] = AUX_I2C_WRITE << 4;
501
502         if (!(mode & MODE_I2C_STOP))
503                 msg[0] |= AUX_I2C_MOT << 4;
504
505         msg[1] = address >> 8;
506         msg[2] = address;
507
508         switch (mode) {
509         case MODE_I2C_WRITE:
510                 msg[3] = 0;
511                 msg[4] = write_byte;
512                 msg_bytes = 5;
513                 reply_bytes = 1;
514                 break;
515         case MODE_I2C_READ:
516                 msg[3] = 0;
517                 msg_bytes = 4;
518                 reply_bytes = 2;
519                 break;
520         default:
521                 msg_bytes = 3;
522                 reply_bytes = 1;
523                 break;
524         }
525
526         for (retry = 0; retry < 5; retry++) {
527                 ret = intel_dp_aux_ch(intel_dp,
528                                       msg, msg_bytes,
529                                       reply, reply_bytes);
530                 if (ret < 0) {
531                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
532                         return ret;
533                 }
534
535                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
536                 case AUX_NATIVE_REPLY_ACK:
537                         /* I2C-over-AUX Reply field is only valid
538                          * when paired with AUX ACK.
539                          */
540                         break;
541                 case AUX_NATIVE_REPLY_NACK:
542                         DRM_DEBUG_KMS("aux_ch native nack\n");
543                         return -EREMOTEIO;
544                 case AUX_NATIVE_REPLY_DEFER:
545                         udelay(100);
546                         continue;
547                 default:
548                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
549                                   reply[0]);
550                         return -EREMOTEIO;
551                 }
552
553                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
554                 case AUX_I2C_REPLY_ACK:
555                         if (mode == MODE_I2C_READ) {
556                                 *read_byte = reply[1];
557                         }
558                         return reply_bytes - 1;
559                 case AUX_I2C_REPLY_NACK:
560                         DRM_DEBUG_KMS("aux_i2c nack\n");
561                         return -EREMOTEIO;
562                 case AUX_I2C_REPLY_DEFER:
563                         DRM_DEBUG_KMS("aux_i2c defer\n");
564                         udelay(100);
565                         break;
566                 default:
567                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
568                         return -EREMOTEIO;
569                 }
570         }
571
572         DRM_ERROR("too many retries, giving up\n");
573         return -EREMOTEIO;
574 }
575
576 static int
577 intel_dp_i2c_init(struct intel_dp *intel_dp,
578                   struct intel_connector *intel_connector, const char *name)
579 {
580         DRM_DEBUG_KMS("i2c_init %s\n", name);
581         intel_dp->algo.running = false;
582         intel_dp->algo.address = 0;
583         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
584
585         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
586         intel_dp->adapter.owner = THIS_MODULE;
587         intel_dp->adapter.class = I2C_CLASS_DDC;
588         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
589         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
590         intel_dp->adapter.algo_data = &intel_dp->algo;
591         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
592
593         return i2c_dp_aux_add_bus(&intel_dp->adapter);
594 }
595
596 static bool
597 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
598                     struct drm_display_mode *adjusted_mode)
599 {
600         struct drm_device *dev = encoder->dev;
601         struct drm_i915_private *dev_priv = dev->dev_private;
602         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
603         int lane_count, clock;
604         int max_lane_count = intel_dp_max_lane_count(intel_dp);
605         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
606         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
607
608         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
609                 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
610                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
611                                         mode, adjusted_mode);
612                 /*
613                  * the mode->clock is used to calculate the Data&Link M/N
614                  * of the pipe. For the eDP the fixed clock should be used.
615                  */
616                 mode->clock = dev_priv->panel_fixed_mode->clock;
617         }
618
619         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
620                 for (clock = 0; clock <= max_clock; clock++) {
621                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
622
623                         if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
624                                         <= link_avail) {
625                                 intel_dp->link_bw = bws[clock];
626                                 intel_dp->lane_count = lane_count;
627                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
628                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
629                                                 "count %d clock %d\n",
630                                        intel_dp->link_bw, intel_dp->lane_count,
631                                        adjusted_mode->clock);
632                                 return true;
633                         }
634                 }
635         }
636
637         if (is_edp(intel_dp)) {
638                 /* okay we failed just pick the highest */
639                 intel_dp->lane_count = max_lane_count;
640                 intel_dp->link_bw = bws[max_clock];
641                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
642                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
643                               "count %d clock %d\n",
644                               intel_dp->link_bw, intel_dp->lane_count,
645                               adjusted_mode->clock);
646
647                 return true;
648         }
649
650         return false;
651 }
652
653 struct intel_dp_m_n {
654         uint32_t        tu;
655         uint32_t        gmch_m;
656         uint32_t        gmch_n;
657         uint32_t        link_m;
658         uint32_t        link_n;
659 };
660
661 static void
662 intel_reduce_ratio(uint32_t *num, uint32_t *den)
663 {
664         while (*num > 0xffffff || *den > 0xffffff) {
665                 *num >>= 1;
666                 *den >>= 1;
667         }
668 }
669
670 static void
671 intel_dp_compute_m_n(int bpp,
672                      int nlanes,
673                      int pixel_clock,
674                      int link_clock,
675                      struct intel_dp_m_n *m_n)
676 {
677         m_n->tu = 64;
678         m_n->gmch_m = (pixel_clock * bpp) >> 3;
679         m_n->gmch_n = link_clock * nlanes;
680         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
681         m_n->link_m = pixel_clock;
682         m_n->link_n = link_clock;
683         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
684 }
685
686 void
687 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
688                  struct drm_display_mode *adjusted_mode)
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_mode_config *mode_config = &dev->mode_config;
692         struct drm_encoder *encoder;
693         struct drm_i915_private *dev_priv = dev->dev_private;
694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
695         int lane_count = 4;
696         struct intel_dp_m_n m_n;
697         int pipe = intel_crtc->pipe;
698
699         /*
700          * Find the lane count in the intel_encoder private
701          */
702         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
703                 struct intel_dp *intel_dp;
704
705                 if (encoder->crtc != crtc)
706                         continue;
707
708                 intel_dp = enc_to_intel_dp(encoder);
709                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
710                         lane_count = intel_dp->lane_count;
711                         break;
712                 } else if (is_edp(intel_dp)) {
713                         lane_count = dev_priv->edp.lanes;
714                         break;
715                 }
716         }
717
718         /*
719          * Compute the GMCH and Link ratios. The '3' here is
720          * the number of bytes_per_pixel post-LUT, which we always
721          * set up for 8-bits of R/G/B, or 3 bytes total.
722          */
723         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
724                              mode->clock, adjusted_mode->clock, &m_n);
725
726         if (HAS_PCH_SPLIT(dev)) {
727                 I915_WRITE(TRANSDATA_M1(pipe),
728                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
729                            m_n.gmch_m);
730                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
731                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
732                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
733         } else {
734                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
735                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
736                            m_n.gmch_m);
737                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
738                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
739                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
740         }
741 }
742
743 static void
744 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
745                   struct drm_display_mode *adjusted_mode)
746 {
747         struct drm_device *dev = encoder->dev;
748         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
749         struct drm_crtc *crtc = intel_dp->base.base.crtc;
750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
751
752         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
753         intel_dp->DP |= intel_dp->color_range;
754
755         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
756                 intel_dp->DP |= DP_SYNC_HS_HIGH;
757         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
758                 intel_dp->DP |= DP_SYNC_VS_HIGH;
759
760         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
761                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
762         else
763                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
764
765         switch (intel_dp->lane_count) {
766         case 1:
767                 intel_dp->DP |= DP_PORT_WIDTH_1;
768                 break;
769         case 2:
770                 intel_dp->DP |= DP_PORT_WIDTH_2;
771                 break;
772         case 4:
773                 intel_dp->DP |= DP_PORT_WIDTH_4;
774                 break;
775         }
776         if (intel_dp->has_audio) {
777                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
778                                  pipe_name(intel_crtc->pipe));
779                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
780                 intel_write_eld(encoder, adjusted_mode);
781         }
782
783         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
784         intel_dp->link_configuration[0] = intel_dp->link_bw;
785         intel_dp->link_configuration[1] = intel_dp->lane_count;
786         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
787
788         /*
789          * Check for DPCD version > 1.1 and enhanced framing support
790          */
791         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
792             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
793                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
794                 intel_dp->DP |= DP_ENHANCED_FRAMING;
795         }
796
797         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
798         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
799                 intel_dp->DP |= DP_PIPEB_SELECT;
800
801         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
802                 /* don't miss out required setting for eDP */
803                 intel_dp->DP |= DP_PLL_ENABLE;
804                 if (adjusted_mode->clock < 200000)
805                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
806                 else
807                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
808         }
809 }
810
811 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
812 {
813         struct drm_device *dev = intel_dp->base.base.dev;
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         u32 pp;
816
817         /*
818          * If the panel wasn't on, make sure there's not a currently
819          * active PP sequence before enabling AUX VDD.
820          */
821         if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
822                 msleep(dev_priv->panel_t3);
823
824         pp = I915_READ(PCH_PP_CONTROL);
825         pp |= EDP_FORCE_VDD;
826         I915_WRITE(PCH_PP_CONTROL, pp);
827         POSTING_READ(PCH_PP_CONTROL);
828 }
829
830 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
831 {
832         struct drm_device *dev = intel_dp->base.base.dev;
833         struct drm_i915_private *dev_priv = dev->dev_private;
834         u32 pp;
835
836         pp = I915_READ(PCH_PP_CONTROL);
837         pp &= ~EDP_FORCE_VDD;
838         I915_WRITE(PCH_PP_CONTROL, pp);
839         POSTING_READ(PCH_PP_CONTROL);
840
841         /* Make sure sequencer is idle before allowing subsequent activity */
842         msleep(dev_priv->panel_t12);
843 }
844
845 /* Returns true if the panel was already on when called */
846 static bool ironlake_edp_panel_on(struct intel_dp *intel_dp)
847 {
848         struct drm_device *dev = intel_dp->base.base.dev;
849         struct drm_i915_private *dev_priv = dev->dev_private;
850         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
851
852         if (I915_READ(PCH_PP_STATUS) & PP_ON)
853                 return true;
854
855         pp = I915_READ(PCH_PP_CONTROL);
856
857         /* ILK workaround: disable reset around power sequence */
858         pp &= ~PANEL_POWER_RESET;
859         I915_WRITE(PCH_PP_CONTROL, pp);
860         POSTING_READ(PCH_PP_CONTROL);
861
862         pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
863         I915_WRITE(PCH_PP_CONTROL, pp);
864         POSTING_READ(PCH_PP_CONTROL);
865
866         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
867                      5000))
868                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
869                           I915_READ(PCH_PP_STATUS));
870
871         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
872         I915_WRITE(PCH_PP_CONTROL, pp);
873         POSTING_READ(PCH_PP_CONTROL);
874
875         return false;
876 }
877
878 static void ironlake_edp_panel_off(struct drm_device *dev)
879 {
880         struct drm_i915_private *dev_priv = dev->dev_private;
881         u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
882                 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
883
884         pp = I915_READ(PCH_PP_CONTROL);
885
886         /* ILK workaround: disable reset around power sequence */
887         pp &= ~PANEL_POWER_RESET;
888         I915_WRITE(PCH_PP_CONTROL, pp);
889         POSTING_READ(PCH_PP_CONTROL);
890
891         pp &= ~POWER_TARGET_ON;
892         I915_WRITE(PCH_PP_CONTROL, pp);
893         POSTING_READ(PCH_PP_CONTROL);
894
895         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
896                 DRM_ERROR("panel off wait timed out: 0x%08x\n",
897                           I915_READ(PCH_PP_STATUS));
898
899         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
900         I915_WRITE(PCH_PP_CONTROL, pp);
901         POSTING_READ(PCH_PP_CONTROL);
902 }
903
904 static void ironlake_edp_backlight_on(struct drm_device *dev)
905 {
906         struct drm_i915_private *dev_priv = dev->dev_private;
907         u32 pp;
908
909         DRM_DEBUG_KMS("\n");
910         /*
911          * If we enable the backlight right away following a panel power
912          * on, we may see slight flicker as the panel syncs with the eDP
913          * link.  So delay a bit to make sure the image is solid before
914          * allowing it to appear.
915          */
916         msleep(300);
917         pp = I915_READ(PCH_PP_CONTROL);
918         pp |= EDP_BLC_ENABLE;
919         I915_WRITE(PCH_PP_CONTROL, pp);
920 }
921
922 static void ironlake_edp_backlight_off(struct drm_device *dev)
923 {
924         struct drm_i915_private *dev_priv = dev->dev_private;
925         u32 pp;
926
927         DRM_DEBUG_KMS("\n");
928         pp = I915_READ(PCH_PP_CONTROL);
929         pp &= ~EDP_BLC_ENABLE;
930         I915_WRITE(PCH_PP_CONTROL, pp);
931 }
932
933 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
934 {
935         struct drm_device *dev = encoder->dev;
936         struct drm_i915_private *dev_priv = dev->dev_private;
937         u32 dpa_ctl;
938
939         DRM_DEBUG_KMS("\n");
940         dpa_ctl = I915_READ(DP_A);
941         dpa_ctl |= DP_PLL_ENABLE;
942         I915_WRITE(DP_A, dpa_ctl);
943         POSTING_READ(DP_A);
944         udelay(200);
945 }
946
947 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
948 {
949         struct drm_device *dev = encoder->dev;
950         struct drm_i915_private *dev_priv = dev->dev_private;
951         u32 dpa_ctl;
952
953         dpa_ctl = I915_READ(DP_A);
954         dpa_ctl &= ~DP_PLL_ENABLE;
955         I915_WRITE(DP_A, dpa_ctl);
956         POSTING_READ(DP_A);
957         udelay(200);
958 }
959
960 /* If the sink supports it, try to set the power state appropriately */
961 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
962 {
963         int ret, i;
964
965         /* Should have a valid DPCD by this point */
966         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
967                 return;
968
969         if (mode != DRM_MODE_DPMS_ON) {
970                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
971                                                   DP_SET_POWER_D3);
972                 if (ret != 1)
973                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
974         } else {
975                 /*
976                  * When turning on, we need to retry for 1ms to give the sink
977                  * time to wake up.
978                  */
979                 for (i = 0; i < 3; i++) {
980                         ret = intel_dp_aux_native_write_1(intel_dp,
981                                                           DP_SET_POWER,
982                                                           DP_SET_POWER_D0);
983                         if (ret == 1)
984                                 break;
985                         msleep(1);
986                 }
987         }
988 }
989
990 static void intel_dp_prepare(struct drm_encoder *encoder)
991 {
992         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
993         struct drm_device *dev = encoder->dev;
994
995         /* Wake up the sink first */
996         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
997
998         if (is_edp(intel_dp)) {
999                 ironlake_edp_backlight_off(dev);
1000                 ironlake_edp_panel_off(dev);
1001                 if (!is_pch_edp(intel_dp))
1002                         ironlake_edp_pll_on(encoder);
1003                 else
1004                         ironlake_edp_pll_off(encoder);
1005         }
1006         intel_dp_link_down(intel_dp);
1007 }
1008
1009 static void intel_dp_commit(struct drm_encoder *encoder)
1010 {
1011         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1012         struct drm_device *dev = encoder->dev;
1013
1014         if (is_edp(intel_dp))
1015                 ironlake_edp_panel_vdd_on(intel_dp);
1016
1017         intel_dp_start_link_train(intel_dp);
1018
1019         if (is_edp(intel_dp)) {
1020                 ironlake_edp_panel_on(intel_dp);
1021                 ironlake_edp_panel_vdd_off(intel_dp);
1022         }
1023
1024         intel_dp_complete_link_train(intel_dp);
1025
1026         if (is_edp(intel_dp))
1027                 ironlake_edp_backlight_on(dev);
1028
1029         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1030 }
1031
1032 static void
1033 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1034 {
1035         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1036         struct drm_device *dev = encoder->dev;
1037         struct drm_i915_private *dev_priv = dev->dev_private;
1038         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1039
1040         if (mode != DRM_MODE_DPMS_ON) {
1041                 if (is_edp(intel_dp))
1042                         ironlake_edp_backlight_off(dev);
1043                 intel_dp_sink_dpms(intel_dp, mode);
1044                 intel_dp_link_down(intel_dp);
1045                 if (is_edp(intel_dp))
1046                         ironlake_edp_panel_off(dev);
1047                 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1048                         ironlake_edp_pll_off(encoder);
1049         } else {
1050                 if (is_edp(intel_dp))
1051                         ironlake_edp_panel_vdd_on(intel_dp);
1052                 intel_dp_sink_dpms(intel_dp, mode);
1053                 if (!(dp_reg & DP_PORT_EN)) {
1054                         intel_dp_start_link_train(intel_dp);
1055                         if (is_edp(intel_dp)) {
1056                                 ironlake_edp_panel_on(intel_dp);
1057                                 ironlake_edp_panel_vdd_off(intel_dp);
1058                         }
1059                         intel_dp_complete_link_train(intel_dp);
1060                 }
1061                 if (is_edp(intel_dp))
1062                         ironlake_edp_backlight_on(dev);
1063         }
1064         intel_dp->dpms_mode = mode;
1065 }
1066
1067 /*
1068  * Native read with retry for link status and receiver capability reads for
1069  * cases where the sink may still be asleep.
1070  */
1071 static bool
1072 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1073                                uint8_t *recv, int recv_bytes)
1074 {
1075         int ret, i;
1076
1077         /*
1078          * Sinks are *supposed* to come up within 1ms from an off state,
1079          * but we're also supposed to retry 3 times per the spec.
1080          */
1081         for (i = 0; i < 3; i++) {
1082                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1083                                                recv_bytes);
1084                 if (ret == recv_bytes)
1085                         return true;
1086                 msleep(1);
1087         }
1088
1089         return false;
1090 }
1091
1092 /*
1093  * Fetch AUX CH registers 0x202 - 0x207 which contain
1094  * link status information
1095  */
1096 static bool
1097 intel_dp_get_link_status(struct intel_dp *intel_dp)
1098 {
1099         return intel_dp_aux_native_read_retry(intel_dp,
1100                                               DP_LANE0_1_STATUS,
1101                                               intel_dp->link_status,
1102                                               DP_LINK_STATUS_SIZE);
1103 }
1104
1105 static uint8_t
1106 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1107                      int r)
1108 {
1109         return link_status[r - DP_LANE0_1_STATUS];
1110 }
1111
1112 static uint8_t
1113 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1114                                  int lane)
1115 {
1116         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1117         int         s = ((lane & 1) ?
1118                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1119                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1120         uint8_t l = intel_dp_link_status(link_status, i);
1121
1122         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1123 }
1124
1125 static uint8_t
1126 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1127                                       int lane)
1128 {
1129         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1130         int         s = ((lane & 1) ?
1131                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1132                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1133         uint8_t l = intel_dp_link_status(link_status, i);
1134
1135         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1136 }
1137
1138
1139 #if 0
1140 static char     *voltage_names[] = {
1141         "0.4V", "0.6V", "0.8V", "1.2V"
1142 };
1143 static char     *pre_emph_names[] = {
1144         "0dB", "3.5dB", "6dB", "9.5dB"
1145 };
1146 static char     *link_train_names[] = {
1147         "pattern 1", "pattern 2", "idle", "off"
1148 };
1149 #endif
1150
1151 /*
1152  * These are source-specific values; current Intel hardware supports
1153  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1154  */
1155 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1156
1157 static uint8_t
1158 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1159 {
1160         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1161         case DP_TRAIN_VOLTAGE_SWING_400:
1162                 return DP_TRAIN_PRE_EMPHASIS_6;
1163         case DP_TRAIN_VOLTAGE_SWING_600:
1164                 return DP_TRAIN_PRE_EMPHASIS_6;
1165         case DP_TRAIN_VOLTAGE_SWING_800:
1166                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1167         case DP_TRAIN_VOLTAGE_SWING_1200:
1168         default:
1169                 return DP_TRAIN_PRE_EMPHASIS_0;
1170         }
1171 }
1172
1173 static void
1174 intel_get_adjust_train(struct intel_dp *intel_dp)
1175 {
1176         uint8_t v = 0;
1177         uint8_t p = 0;
1178         int lane;
1179
1180         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1181                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1182                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1183
1184                 if (this_v > v)
1185                         v = this_v;
1186                 if (this_p > p)
1187                         p = this_p;
1188         }
1189
1190         if (v >= I830_DP_VOLTAGE_MAX)
1191                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1192
1193         if (p >= intel_dp_pre_emphasis_max(v))
1194                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1195
1196         for (lane = 0; lane < 4; lane++)
1197                 intel_dp->train_set[lane] = v | p;
1198 }
1199
1200 static uint32_t
1201 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1202 {
1203         uint32_t        signal_levels = 0;
1204
1205         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1206         case DP_TRAIN_VOLTAGE_SWING_400:
1207         default:
1208                 signal_levels |= DP_VOLTAGE_0_4;
1209                 break;
1210         case DP_TRAIN_VOLTAGE_SWING_600:
1211                 signal_levels |= DP_VOLTAGE_0_6;
1212                 break;
1213         case DP_TRAIN_VOLTAGE_SWING_800:
1214                 signal_levels |= DP_VOLTAGE_0_8;
1215                 break;
1216         case DP_TRAIN_VOLTAGE_SWING_1200:
1217                 signal_levels |= DP_VOLTAGE_1_2;
1218                 break;
1219         }
1220         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1221         case DP_TRAIN_PRE_EMPHASIS_0:
1222         default:
1223                 signal_levels |= DP_PRE_EMPHASIS_0;
1224                 break;
1225         case DP_TRAIN_PRE_EMPHASIS_3_5:
1226                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1227                 break;
1228         case DP_TRAIN_PRE_EMPHASIS_6:
1229                 signal_levels |= DP_PRE_EMPHASIS_6;
1230                 break;
1231         case DP_TRAIN_PRE_EMPHASIS_9_5:
1232                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1233                 break;
1234         }
1235         return signal_levels;
1236 }
1237
1238 /* Gen6's DP voltage swing and pre-emphasis control */
1239 static uint32_t
1240 intel_gen6_edp_signal_levels(uint8_t train_set)
1241 {
1242         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1243                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1244         switch (signal_levels) {
1245         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1246         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1247                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1248         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1249                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1250         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1251         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1252                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1253         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1254         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1255                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1256         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1257         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1258                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1259         default:
1260                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1261                               "0x%x\n", signal_levels);
1262                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1263         }
1264 }
1265
1266 static uint8_t
1267 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1268                       int lane)
1269 {
1270         int i = DP_LANE0_1_STATUS + (lane >> 1);
1271         int s = (lane & 1) * 4;
1272         uint8_t l = intel_dp_link_status(link_status, i);
1273
1274         return (l >> s) & 0xf;
1275 }
1276
1277 /* Check for clock recovery is done on all channels */
1278 static bool
1279 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1280 {
1281         int lane;
1282         uint8_t lane_status;
1283
1284         for (lane = 0; lane < lane_count; lane++) {
1285                 lane_status = intel_get_lane_status(link_status, lane);
1286                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1287                         return false;
1288         }
1289         return true;
1290 }
1291
1292 /* Check to see if channel eq is done on all channels */
1293 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1294                          DP_LANE_CHANNEL_EQ_DONE|\
1295                          DP_LANE_SYMBOL_LOCKED)
1296 static bool
1297 intel_channel_eq_ok(struct intel_dp *intel_dp)
1298 {
1299         uint8_t lane_align;
1300         uint8_t lane_status;
1301         int lane;
1302
1303         lane_align = intel_dp_link_status(intel_dp->link_status,
1304                                           DP_LANE_ALIGN_STATUS_UPDATED);
1305         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1306                 return false;
1307         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1308                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1309                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1310                         return false;
1311         }
1312         return true;
1313 }
1314
1315 static bool
1316 intel_dp_set_link_train(struct intel_dp *intel_dp,
1317                         uint32_t dp_reg_value,
1318                         uint8_t dp_train_pat)
1319 {
1320         struct drm_device *dev = intel_dp->base.base.dev;
1321         struct drm_i915_private *dev_priv = dev->dev_private;
1322         int ret;
1323
1324         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1325         POSTING_READ(intel_dp->output_reg);
1326
1327         intel_dp_aux_native_write_1(intel_dp,
1328                                     DP_TRAINING_PATTERN_SET,
1329                                     dp_train_pat);
1330
1331         ret = intel_dp_aux_native_write(intel_dp,
1332                                         DP_TRAINING_LANE0_SET,
1333                                         intel_dp->train_set, 4);
1334         if (ret != 4)
1335                 return false;
1336
1337         return true;
1338 }
1339
1340 /* Enable corresponding port and start training pattern 1 */
1341 static void
1342 intel_dp_start_link_train(struct intel_dp *intel_dp)
1343 {
1344         struct drm_device *dev = intel_dp->base.base.dev;
1345         struct drm_i915_private *dev_priv = dev->dev_private;
1346         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1347         int i;
1348         uint8_t voltage;
1349         bool clock_recovery = false;
1350         int tries;
1351         u32 reg;
1352         uint32_t DP = intel_dp->DP;
1353
1354         /*
1355          * On CPT we have to enable the port in training pattern 1, which
1356          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1357          * the port and wait for it to become active.
1358          */
1359         if (!HAS_PCH_CPT(dev)) {
1360                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1361                 POSTING_READ(intel_dp->output_reg);
1362                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1363         }
1364
1365         /* Write the link configuration data */
1366         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1367                                   intel_dp->link_configuration,
1368                                   DP_LINK_CONFIGURATION_SIZE);
1369
1370         DP |= DP_PORT_EN;
1371         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1372                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1373         else
1374                 DP &= ~DP_LINK_TRAIN_MASK;
1375         memset(intel_dp->train_set, 0, 4);
1376         voltage = 0xff;
1377         tries = 0;
1378         clock_recovery = false;
1379         for (;;) {
1380                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1381                 uint32_t    signal_levels;
1382                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1383                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1384                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1385                 } else {
1386                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1387                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1388                 }
1389
1390                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1391                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1392                 else
1393                         reg = DP | DP_LINK_TRAIN_PAT_1;
1394
1395                 if (!intel_dp_set_link_train(intel_dp, reg,
1396                                              DP_TRAINING_PATTERN_1 |
1397                                              DP_LINK_SCRAMBLING_DISABLE))
1398                         break;
1399                 /* Set training pattern 1 */
1400
1401                 udelay(100);
1402                 if (!intel_dp_get_link_status(intel_dp))
1403                         break;
1404
1405                 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1406                         clock_recovery = true;
1407                         break;
1408                 }
1409
1410                 /* Check to see if we've tried the max voltage */
1411                 for (i = 0; i < intel_dp->lane_count; i++)
1412                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1413                                 break;
1414                 if (i == intel_dp->lane_count)
1415                         break;
1416
1417                 /* Check to see if we've tried the same voltage 5 times */
1418                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1419                         ++tries;
1420                         if (tries == 5)
1421                                 break;
1422                 } else
1423                         tries = 0;
1424                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1425
1426                 /* Compute new intel_dp->train_set as requested by target */
1427                 intel_get_adjust_train(intel_dp);
1428         }
1429
1430         intel_dp->DP = DP;
1431 }
1432
1433 static void
1434 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1435 {
1436         struct drm_device *dev = intel_dp->base.base.dev;
1437         struct drm_i915_private *dev_priv = dev->dev_private;
1438         bool channel_eq = false;
1439         int tries, cr_tries;
1440         u32 reg;
1441         uint32_t DP = intel_dp->DP;
1442
1443         /* channel equalization */
1444         tries = 0;
1445         cr_tries = 0;
1446         channel_eq = false;
1447         for (;;) {
1448                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1449                 uint32_t    signal_levels;
1450
1451                 if (cr_tries > 5) {
1452                         DRM_ERROR("failed to train DP, aborting\n");
1453                         intel_dp_link_down(intel_dp);
1454                         break;
1455                 }
1456
1457                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1458                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1459                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1460                 } else {
1461                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1462                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1463                 }
1464
1465                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1466                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1467                 else
1468                         reg = DP | DP_LINK_TRAIN_PAT_2;
1469
1470                 /* channel eq pattern */
1471                 if (!intel_dp_set_link_train(intel_dp, reg,
1472                                              DP_TRAINING_PATTERN_2 |
1473                                              DP_LINK_SCRAMBLING_DISABLE))
1474                         break;
1475
1476                 udelay(400);
1477                 if (!intel_dp_get_link_status(intel_dp))
1478                         break;
1479
1480                 /* Make sure clock is still ok */
1481                 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1482                         intel_dp_start_link_train(intel_dp);
1483                         cr_tries++;
1484                         continue;
1485                 }
1486
1487                 if (intel_channel_eq_ok(intel_dp)) {
1488                         channel_eq = true;
1489                         break;
1490                 }
1491
1492                 /* Try 5 times, then try clock recovery if that fails */
1493                 if (tries > 5) {
1494                         intel_dp_link_down(intel_dp);
1495                         intel_dp_start_link_train(intel_dp);
1496                         tries = 0;
1497                         cr_tries++;
1498                         continue;
1499                 }
1500
1501                 /* Compute new intel_dp->train_set as requested by target */
1502                 intel_get_adjust_train(intel_dp);
1503                 ++tries;
1504         }
1505
1506         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1507                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1508         else
1509                 reg = DP | DP_LINK_TRAIN_OFF;
1510
1511         I915_WRITE(intel_dp->output_reg, reg);
1512         POSTING_READ(intel_dp->output_reg);
1513         intel_dp_aux_native_write_1(intel_dp,
1514                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1515 }
1516
1517 static void
1518 intel_dp_link_down(struct intel_dp *intel_dp)
1519 {
1520         struct drm_device *dev = intel_dp->base.base.dev;
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         uint32_t DP = intel_dp->DP;
1523
1524         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1525                 return;
1526
1527         DRM_DEBUG_KMS("\n");
1528
1529         if (is_edp(intel_dp)) {
1530                 DP &= ~DP_PLL_ENABLE;
1531                 I915_WRITE(intel_dp->output_reg, DP);
1532                 POSTING_READ(intel_dp->output_reg);
1533                 udelay(100);
1534         }
1535
1536         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1537                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1538                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1539         } else {
1540                 DP &= ~DP_LINK_TRAIN_MASK;
1541                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1542         }
1543         POSTING_READ(intel_dp->output_reg);
1544
1545         msleep(17);
1546
1547         if (is_edp(intel_dp))
1548                 DP |= DP_LINK_TRAIN_OFF;
1549
1550         if (!HAS_PCH_CPT(dev) &&
1551             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1552                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1553
1554                 /* Hardware workaround: leaving our transcoder select
1555                  * set to transcoder B while it's off will prevent the
1556                  * corresponding HDMI output on transcoder A.
1557                  *
1558                  * Combine this with another hardware workaround:
1559                  * transcoder select bit can only be cleared while the
1560                  * port is enabled.
1561                  */
1562                 DP &= ~DP_PIPEB_SELECT;
1563                 I915_WRITE(intel_dp->output_reg, DP);
1564
1565                 /* Changes to enable or select take place the vblank
1566                  * after being written.
1567                  */
1568                 if (crtc == NULL) {
1569                         /* We can arrive here never having been attached
1570                          * to a CRTC, for instance, due to inheriting
1571                          * random state from the BIOS.
1572                          *
1573                          * If the pipe is not running, play safe and
1574                          * wait for the clocks to stabilise before
1575                          * continuing.
1576                          */
1577                         POSTING_READ(intel_dp->output_reg);
1578                         msleep(50);
1579                 } else
1580                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1581         }
1582
1583         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1584         POSTING_READ(intel_dp->output_reg);
1585 }
1586
1587 static bool
1588 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1589 {
1590         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1591                                            sizeof(intel_dp->dpcd)) &&
1592             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1593                 return true;
1594         }
1595
1596         return false;
1597 }
1598
1599 /*
1600  * According to DP spec
1601  * 5.1.2:
1602  *  1. Read DPCD
1603  *  2. Configure link according to Receiver Capabilities
1604  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1605  *  4. Check link status on receipt of hot-plug interrupt
1606  */
1607
1608 static void
1609 intel_dp_check_link_status(struct intel_dp *intel_dp)
1610 {
1611         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1612                 return;
1613
1614         if (!intel_dp->base.base.crtc)
1615                 return;
1616
1617         /* Try to read receiver status if the link appears to be up */
1618         if (!intel_dp_get_link_status(intel_dp)) {
1619                 intel_dp_link_down(intel_dp);
1620                 return;
1621         }
1622
1623         /* Now read the DPCD to see if it's actually running */
1624         if (!intel_dp_get_dpcd(intel_dp)) {
1625                 intel_dp_link_down(intel_dp);
1626                 return;
1627         }
1628
1629         if (!intel_channel_eq_ok(intel_dp)) {
1630                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1631                               drm_get_encoder_name(&intel_dp->base.base));
1632                 intel_dp_start_link_train(intel_dp);
1633                 intel_dp_complete_link_train(intel_dp);
1634         }
1635 }
1636
1637 static enum drm_connector_status
1638 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1639 {
1640         if (intel_dp_get_dpcd(intel_dp))
1641                 return connector_status_connected;
1642         return connector_status_disconnected;
1643 }
1644
1645 static enum drm_connector_status
1646 ironlake_dp_detect(struct intel_dp *intel_dp)
1647 {
1648         enum drm_connector_status status;
1649
1650         /* Can't disconnect eDP, but you can close the lid... */
1651         if (is_edp(intel_dp)) {
1652                 status = intel_panel_detect(intel_dp->base.base.dev);
1653                 if (status == connector_status_unknown)
1654                         status = connector_status_connected;
1655                 return status;
1656         }
1657
1658         return intel_dp_detect_dpcd(intel_dp);
1659 }
1660
1661 static enum drm_connector_status
1662 g4x_dp_detect(struct intel_dp *intel_dp)
1663 {
1664         struct drm_device *dev = intel_dp->base.base.dev;
1665         struct drm_i915_private *dev_priv = dev->dev_private;
1666         uint32_t temp, bit;
1667
1668         switch (intel_dp->output_reg) {
1669         case DP_B:
1670                 bit = DPB_HOTPLUG_INT_STATUS;
1671                 break;
1672         case DP_C:
1673                 bit = DPC_HOTPLUG_INT_STATUS;
1674                 break;
1675         case DP_D:
1676                 bit = DPD_HOTPLUG_INT_STATUS;
1677                 break;
1678         default:
1679                 return connector_status_unknown;
1680         }
1681
1682         temp = I915_READ(PORT_HOTPLUG_STAT);
1683
1684         if ((temp & bit) == 0)
1685                 return connector_status_disconnected;
1686
1687         return intel_dp_detect_dpcd(intel_dp);
1688 }
1689
1690 /**
1691  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1692  *
1693  * \return true if DP port is connected.
1694  * \return false if DP port is disconnected.
1695  */
1696 static enum drm_connector_status
1697 intel_dp_detect(struct drm_connector *connector, bool force)
1698 {
1699         struct intel_dp *intel_dp = intel_attached_dp(connector);
1700         struct drm_device *dev = intel_dp->base.base.dev;
1701         enum drm_connector_status status;
1702         struct edid *edid = NULL;
1703
1704         intel_dp->has_audio = false;
1705
1706         if (HAS_PCH_SPLIT(dev))
1707                 status = ironlake_dp_detect(intel_dp);
1708         else
1709                 status = g4x_dp_detect(intel_dp);
1710
1711         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1712                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1713                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1714                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
1715
1716         if (status != connector_status_connected)
1717                 return status;
1718
1719         if (intel_dp->force_audio) {
1720                 intel_dp->has_audio = intel_dp->force_audio > 0;
1721         } else {
1722                 edid = drm_get_edid(connector, &intel_dp->adapter);
1723                 if (edid) {
1724                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1725                         connector->display_info.raw_edid = NULL;
1726                         kfree(edid);
1727                 }
1728         }
1729
1730         return connector_status_connected;
1731 }
1732
1733 static int intel_dp_get_modes(struct drm_connector *connector)
1734 {
1735         struct intel_dp *intel_dp = intel_attached_dp(connector);
1736         struct drm_device *dev = intel_dp->base.base.dev;
1737         struct drm_i915_private *dev_priv = dev->dev_private;
1738         int ret;
1739
1740         /* We should parse the EDID data and find out if it has an audio sink
1741          */
1742
1743         ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1744         if (ret) {
1745                 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1746                         struct drm_display_mode *newmode;
1747                         list_for_each_entry(newmode, &connector->probed_modes,
1748                                             head) {
1749                                 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1750                                         dev_priv->panel_fixed_mode =
1751                                                 drm_mode_duplicate(dev, newmode);
1752                                         break;
1753                                 }
1754                         }
1755                 }
1756
1757                 return ret;
1758         }
1759
1760         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1761         if (is_edp(intel_dp)) {
1762                 if (dev_priv->panel_fixed_mode != NULL) {
1763                         struct drm_display_mode *mode;
1764                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1765                         drm_mode_probed_add(connector, mode);
1766                         return 1;
1767                 }
1768         }
1769         return 0;
1770 }
1771
1772 static bool
1773 intel_dp_detect_audio(struct drm_connector *connector)
1774 {
1775         struct intel_dp *intel_dp = intel_attached_dp(connector);
1776         struct edid *edid;
1777         bool has_audio = false;
1778
1779         edid = drm_get_edid(connector, &intel_dp->adapter);
1780         if (edid) {
1781                 has_audio = drm_detect_monitor_audio(edid);
1782
1783                 connector->display_info.raw_edid = NULL;
1784                 kfree(edid);
1785         }
1786
1787         return has_audio;
1788 }
1789
1790 static int
1791 intel_dp_set_property(struct drm_connector *connector,
1792                       struct drm_property *property,
1793                       uint64_t val)
1794 {
1795         struct drm_i915_private *dev_priv = connector->dev->dev_private;
1796         struct intel_dp *intel_dp = intel_attached_dp(connector);
1797         int ret;
1798
1799         ret = drm_connector_property_set_value(connector, property, val);
1800         if (ret)
1801                 return ret;
1802
1803         if (property == dev_priv->force_audio_property) {
1804                 int i = val;
1805                 bool has_audio;
1806
1807                 if (i == intel_dp->force_audio)
1808                         return 0;
1809
1810                 intel_dp->force_audio = i;
1811
1812                 if (i == 0)
1813                         has_audio = intel_dp_detect_audio(connector);
1814                 else
1815                         has_audio = i > 0;
1816
1817                 if (has_audio == intel_dp->has_audio)
1818                         return 0;
1819
1820                 intel_dp->has_audio = has_audio;
1821                 goto done;
1822         }
1823
1824         if (property == dev_priv->broadcast_rgb_property) {
1825                 if (val == !!intel_dp->color_range)
1826                         return 0;
1827
1828                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1829                 goto done;
1830         }
1831
1832         return -EINVAL;
1833
1834 done:
1835         if (intel_dp->base.base.crtc) {
1836                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1837                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1838                                          crtc->x, crtc->y,
1839                                          crtc->fb);
1840         }
1841
1842         return 0;
1843 }
1844
1845 static void
1846 intel_dp_destroy(struct drm_connector *connector)
1847 {
1848         struct drm_device *dev = connector->dev;
1849
1850         if (intel_dpd_is_edp(dev))
1851                 intel_panel_destroy_backlight(dev);
1852
1853         drm_sysfs_connector_remove(connector);
1854         drm_connector_cleanup(connector);
1855         kfree(connector);
1856 }
1857
1858 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1859 {
1860         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1861
1862         i2c_del_adapter(&intel_dp->adapter);
1863         drm_encoder_cleanup(encoder);
1864         kfree(intel_dp);
1865 }
1866
1867 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1868         .dpms = intel_dp_dpms,
1869         .mode_fixup = intel_dp_mode_fixup,
1870         .prepare = intel_dp_prepare,
1871         .mode_set = intel_dp_mode_set,
1872         .commit = intel_dp_commit,
1873 };
1874
1875 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1876         .dpms = drm_helper_connector_dpms,
1877         .detect = intel_dp_detect,
1878         .fill_modes = drm_helper_probe_single_connector_modes,
1879         .set_property = intel_dp_set_property,
1880         .destroy = intel_dp_destroy,
1881 };
1882
1883 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1884         .get_modes = intel_dp_get_modes,
1885         .mode_valid = intel_dp_mode_valid,
1886         .best_encoder = intel_best_encoder,
1887 };
1888
1889 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1890         .destroy = intel_dp_encoder_destroy,
1891 };
1892
1893 static void
1894 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1895 {
1896         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1897
1898         intel_dp_check_link_status(intel_dp);
1899 }
1900
1901 /* Return which DP Port should be selected for Transcoder DP control */
1902 int
1903 intel_trans_dp_port_sel(struct drm_crtc *crtc)
1904 {
1905         struct drm_device *dev = crtc->dev;
1906         struct drm_mode_config *mode_config = &dev->mode_config;
1907         struct drm_encoder *encoder;
1908
1909         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1910                 struct intel_dp *intel_dp;
1911
1912                 if (encoder->crtc != crtc)
1913                         continue;
1914
1915                 intel_dp = enc_to_intel_dp(encoder);
1916                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1917                         return intel_dp->output_reg;
1918         }
1919
1920         return -1;
1921 }
1922
1923 /* check the VBT to see whether the eDP is on DP-D port */
1924 bool intel_dpd_is_edp(struct drm_device *dev)
1925 {
1926         struct drm_i915_private *dev_priv = dev->dev_private;
1927         struct child_device_config *p_child;
1928         int i;
1929
1930         if (!dev_priv->child_dev_num)
1931                 return false;
1932
1933         for (i = 0; i < dev_priv->child_dev_num; i++) {
1934                 p_child = dev_priv->child_dev + i;
1935
1936                 if (p_child->dvo_port == PORT_IDPD &&
1937                     p_child->device_type == DEVICE_TYPE_eDP)
1938                         return true;
1939         }
1940         return false;
1941 }
1942
1943 static void
1944 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1945 {
1946         intel_attach_force_audio_property(connector);
1947         intel_attach_broadcast_rgb_property(connector);
1948 }
1949
1950 void
1951 intel_dp_init(struct drm_device *dev, int output_reg)
1952 {
1953         struct drm_i915_private *dev_priv = dev->dev_private;
1954         struct drm_connector *connector;
1955         struct intel_dp *intel_dp;
1956         struct intel_encoder *intel_encoder;
1957         struct intel_connector *intel_connector;
1958         const char *name = NULL;
1959         int type;
1960
1961         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1962         if (!intel_dp)
1963                 return;
1964
1965         intel_dp->output_reg = output_reg;
1966         intel_dp->dpms_mode = -1;
1967
1968         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1969         if (!intel_connector) {
1970                 kfree(intel_dp);
1971                 return;
1972         }
1973         intel_encoder = &intel_dp->base;
1974
1975         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1976                 if (intel_dpd_is_edp(dev))
1977                         intel_dp->is_pch_edp = true;
1978
1979         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1980                 type = DRM_MODE_CONNECTOR_eDP;
1981                 intel_encoder->type = INTEL_OUTPUT_EDP;
1982         } else {
1983                 type = DRM_MODE_CONNECTOR_DisplayPort;
1984                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1985         }
1986
1987         connector = &intel_connector->base;
1988         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1989         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1990
1991         connector->polled = DRM_CONNECTOR_POLL_HPD;
1992
1993         if (output_reg == DP_B || output_reg == PCH_DP_B)
1994                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1995         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1996                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1997         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1998                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1999
2000         if (is_edp(intel_dp))
2001                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2002
2003         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2004         connector->interlace_allowed = true;
2005         connector->doublescan_allowed = 0;
2006
2007         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2008                          DRM_MODE_ENCODER_TMDS);
2009         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2010
2011         intel_connector_attach_encoder(intel_connector, intel_encoder);
2012         drm_sysfs_connector_add(connector);
2013
2014         /* Set up the DDC bus. */
2015         switch (output_reg) {
2016                 case DP_A:
2017                         name = "DPDDC-A";
2018                         break;
2019                 case DP_B:
2020                 case PCH_DP_B:
2021                         dev_priv->hotplug_supported_mask |=
2022                                 HDMIB_HOTPLUG_INT_STATUS;
2023                         name = "DPDDC-B";
2024                         break;
2025                 case DP_C:
2026                 case PCH_DP_C:
2027                         dev_priv->hotplug_supported_mask |=
2028                                 HDMIC_HOTPLUG_INT_STATUS;
2029                         name = "DPDDC-C";
2030                         break;
2031                 case DP_D:
2032                 case PCH_DP_D:
2033                         dev_priv->hotplug_supported_mask |=
2034                                 HDMID_HOTPLUG_INT_STATUS;
2035                         name = "DPDDC-D";
2036                         break;
2037         }
2038
2039         intel_dp_i2c_init(intel_dp, intel_connector, name);
2040
2041         /* Cache some DPCD data in the eDP case */
2042         if (is_edp(intel_dp)) {
2043                 bool ret;
2044                 u32 pp_on, pp_div;
2045
2046                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2047                 pp_div = I915_READ(PCH_PP_DIVISOR);
2048
2049                 /* Get T3 & T12 values (note: VESA not bspec terminology) */
2050                 dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2051                 dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2052                 dev_priv->panel_t12 = pp_div & 0xf;
2053                 dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
2054
2055                 ironlake_edp_panel_vdd_on(intel_dp);
2056                 ret = intel_dp_get_dpcd(intel_dp);
2057                 ironlake_edp_panel_vdd_off(intel_dp);
2058                 if (ret) {
2059                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2060                                 dev_priv->no_aux_handshake =
2061                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2062                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2063                 } else {
2064                         /* if this fails, presume the device is a ghost */
2065                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2066                         intel_dp_encoder_destroy(&intel_dp->base.base);
2067                         intel_dp_destroy(&intel_connector->base);
2068                         return;
2069                 }
2070         }
2071
2072         intel_encoder->hot_plug = intel_dp_hot_plug;
2073
2074         if (is_edp(intel_dp)) {
2075                 /* initialize panel mode from VBT if available for eDP */
2076                 if (dev_priv->lfp_lvds_vbt_mode) {
2077                         dev_priv->panel_fixed_mode =
2078                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2079                         if (dev_priv->panel_fixed_mode) {
2080                                 dev_priv->panel_fixed_mode->type |=
2081                                         DRM_MODE_TYPE_PREFERRED;
2082                         }
2083                 }
2084                 dev_priv->int_edp_connector = connector;
2085                 intel_panel_setup_backlight(dev);
2086         }
2087
2088         intel_dp_add_properties(intel_dp, connector);
2089
2090         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2091          * 0xd.  Failure to do so will result in spurious interrupts being
2092          * generated on the port when a cable is not attached.
2093          */
2094         if (IS_G4X(dev) && !IS_GM45(dev)) {
2095                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2096                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2097         }
2098 }