drm/i915: Use dev_priv as first argument of for_each_pipe()
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 struct dp_link_dpll {
44         int link_bw;
45         struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49         { DP_LINK_BW_1_62,
50                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51         { DP_LINK_BW_2_7,
52                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56         { DP_LINK_BW_1_62,
57                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58         { DP_LINK_BW_2_7,
59                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63         { DP_LINK_BW_1_62,
64                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65         { DP_LINK_BW_2_7,
66                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70  * CHV supports eDP 1.4 that have  more link rates.
71  * Below only provides the fixed rate but exclude variable rate.
72  */
73 static const struct dp_link_dpll chv_dpll[] = {
74         /*
75          * CHV requires to program fractional division for m2.
76          * m2 is stored in fixed point format using formula below
77          * (m2_int << 22) | m2_fraction
78          */
79         { DP_LINK_BW_1_62,      /* m2_int = 32, m2_fraction = 1677722 */
80                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81         { DP_LINK_BW_2_7,       /* m2_int = 27, m2_fraction = 0 */
82                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83         { DP_LINK_BW_5_4,       /* m2_int = 27, m2_fraction = 0 */
84                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89  * @intel_dp: DP struct
90  *
91  * If a CPU or PCH DP output is attached to an eDP panel, this function
92  * will return true, and false otherwise.
93  */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105         return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121         struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123         switch (max_link_bw) {
124         case DP_LINK_BW_1_62:
125         case DP_LINK_BW_2_7:
126                 break;
127         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128                 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129                      INTEL_INFO(dev)->gen >= 8) &&
130                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131                         max_link_bw = DP_LINK_BW_5_4;
132                 else
133                         max_link_bw = DP_LINK_BW_2_7;
134                 break;
135         default:
136                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137                      max_link_bw);
138                 max_link_bw = DP_LINK_BW_1_62;
139                 break;
140         }
141         return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147         struct drm_device *dev = intel_dig_port->base.base.dev;
148         u8 source_max, sink_max;
149
150         source_max = 4;
151         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153                 source_max = 2;
154
155         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157         return min(source_max, sink_max);
158 }
159
160 /*
161  * The units on the numbers in the next two are... bizarre.  Examples will
162  * make it clearer; this one parallels an example in the eDP spec.
163  *
164  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165  *
166  *     270000 * 1 * 8 / 10 == 216000
167  *
168  * The actual data capacity of that configuration is 2.16Gbit/s, so the
169  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
170  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171  * 119000.  At 18bpp that's 2142000 kilobits per second.
172  *
173  * Thus the strange-looking division by 10 in intel_dp_link_required, to
174  * get the result in decakilobits instead of kilobits.
175  */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180         return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186         return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191                     struct drm_display_mode *mode)
192 {
193         struct intel_dp *intel_dp = intel_attached_dp(connector);
194         struct intel_connector *intel_connector = to_intel_connector(connector);
195         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196         int target_clock = mode->clock;
197         int max_rate, mode_rate, max_lanes, max_link_clock;
198
199         if (is_edp(intel_dp) && fixed_mode) {
200                 if (mode->hdisplay > fixed_mode->hdisplay)
201                         return MODE_PANEL;
202
203                 if (mode->vdisplay > fixed_mode->vdisplay)
204                         return MODE_PANEL;
205
206                 target_clock = fixed_mode->clock;
207         }
208
209         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210         max_lanes = intel_dp_max_lane_count(intel_dp);
211
212         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213         mode_rate = intel_dp_link_required(target_clock, 18);
214
215         if (mode_rate > max_rate)
216                 return MODE_CLOCK_HIGH;
217
218         if (mode->clock < 10000)
219                 return MODE_CLOCK_LOW;
220
221         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222                 return MODE_H_ILLEGAL;
223
224         return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230         int     i;
231         uint32_t v = 0;
232
233         if (src_bytes > 4)
234                 src_bytes = 4;
235         for (i = 0; i < src_bytes; i++)
236                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237         return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243         int i;
244         if (dst_bytes > 4)
245                 dst_bytes = 4;
246         for (i = 0; i < dst_bytes; i++)
247                 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254         struct drm_i915_private *dev_priv = dev->dev_private;
255         uint32_t clkcfg;
256
257         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258         if (IS_VALLEYVIEW(dev))
259                 return 200;
260
261         clkcfg = I915_READ(CLKCFG);
262         switch (clkcfg & CLKCFG_FSB_MASK) {
263         case CLKCFG_FSB_400:
264                 return 100;
265         case CLKCFG_FSB_533:
266                 return 133;
267         case CLKCFG_FSB_667:
268                 return 166;
269         case CLKCFG_FSB_800:
270                 return 200;
271         case CLKCFG_FSB_1067:
272                 return 266;
273         case CLKCFG_FSB_1333:
274                 return 333;
275         /* these two are just a guess; one of them might be right */
276         case CLKCFG_FSB_1600:
277         case CLKCFG_FSB_1600_ALT:
278                 return 400;
279         default:
280                 return 133;
281         }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286                                     struct intel_dp *intel_dp,
287                                     struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290                                               struct intel_dp *intel_dp,
291                                               struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298         struct drm_device *dev = intel_dig_port->base.base.dev;
299         struct drm_i915_private *dev_priv = dev->dev_private;
300         enum port port = intel_dig_port->port;
301         enum pipe pipe;
302
303         /* modeset should have pipe */
304         if (crtc)
305                 return to_intel_crtc(crtc)->pipe;
306
307         /* init time, try to find a pipe with this port selected */
308         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310                         PANEL_PORT_SELECT_MASK;
311                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
312                         return pipe;
313                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
314                         return pipe;
315         }
316
317         /* shrug */
318         return PIPE_A;
319 }
320
321 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
322 {
323         struct drm_device *dev = intel_dp_to_dev(intel_dp);
324
325         if (HAS_PCH_SPLIT(dev))
326                 return PCH_PP_CONTROL;
327         else
328                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
329 }
330
331 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
332 {
333         struct drm_device *dev = intel_dp_to_dev(intel_dp);
334
335         if (HAS_PCH_SPLIT(dev))
336                 return PCH_PP_STATUS;
337         else
338                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
339 }
340
341 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
342    This function only applicable when panel PM state is not to be tracked */
343 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
344                               void *unused)
345 {
346         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
347                                                  edp_notifier);
348         struct drm_device *dev = intel_dp_to_dev(intel_dp);
349         struct drm_i915_private *dev_priv = dev->dev_private;
350         u32 pp_div;
351         u32 pp_ctrl_reg, pp_div_reg;
352         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
353
354         if (!is_edp(intel_dp) || code != SYS_RESTART)
355                 return 0;
356
357         if (IS_VALLEYVIEW(dev)) {
358                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
359                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
360                 pp_div = I915_READ(pp_div_reg);
361                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
362
363                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
364                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
365                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
366                 msleep(intel_dp->panel_power_cycle_delay);
367         }
368
369         return 0;
370 }
371
372 static bool edp_have_panel_power(struct intel_dp *intel_dp)
373 {
374         struct drm_device *dev = intel_dp_to_dev(intel_dp);
375         struct drm_i915_private *dev_priv = dev->dev_private;
376
377         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
378 }
379
380 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
381 {
382         struct drm_device *dev = intel_dp_to_dev(intel_dp);
383         struct drm_i915_private *dev_priv = dev->dev_private;
384         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
385         struct intel_encoder *intel_encoder = &intel_dig_port->base;
386         enum intel_display_power_domain power_domain;
387
388         power_domain = intel_display_port_power_domain(intel_encoder);
389         return intel_display_power_enabled(dev_priv, power_domain) &&
390                (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
391 }
392
393 static void
394 intel_dp_check_edp(struct intel_dp *intel_dp)
395 {
396         struct drm_device *dev = intel_dp_to_dev(intel_dp);
397         struct drm_i915_private *dev_priv = dev->dev_private;
398
399         if (!is_edp(intel_dp))
400                 return;
401
402         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
403                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
404                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
405                               I915_READ(_pp_stat_reg(intel_dp)),
406                               I915_READ(_pp_ctrl_reg(intel_dp)));
407         }
408 }
409
410 static uint32_t
411 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
412 {
413         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
414         struct drm_device *dev = intel_dig_port->base.base.dev;
415         struct drm_i915_private *dev_priv = dev->dev_private;
416         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
417         uint32_t status;
418         bool done;
419
420 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
421         if (has_aux_irq)
422                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
423                                           msecs_to_jiffies_timeout(10));
424         else
425                 done = wait_for_atomic(C, 10) == 0;
426         if (!done)
427                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
428                           has_aux_irq);
429 #undef C
430
431         return status;
432 }
433
434 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
435 {
436         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
437         struct drm_device *dev = intel_dig_port->base.base.dev;
438
439         /*
440          * The clock divider is based off the hrawclk, and would like to run at
441          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
442          */
443         return index ? 0 : intel_hrawclk(dev) / 2;
444 }
445
446 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
447 {
448         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
449         struct drm_device *dev = intel_dig_port->base.base.dev;
450
451         if (index)
452                 return 0;
453
454         if (intel_dig_port->port == PORT_A) {
455                 if (IS_GEN6(dev) || IS_GEN7(dev))
456                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
457                 else
458                         return 225; /* eDP input clock at 450Mhz */
459         } else {
460                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
461         }
462 }
463
464 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
465 {
466         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
467         struct drm_device *dev = intel_dig_port->base.base.dev;
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         if (intel_dig_port->port == PORT_A) {
471                 if (index)
472                         return 0;
473                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
474         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
475                 /* Workaround for non-ULT HSW */
476                 switch (index) {
477                 case 0: return 63;
478                 case 1: return 72;
479                 default: return 0;
480                 }
481         } else  {
482                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
483         }
484 }
485
486 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
487 {
488         return index ? 0 : 100;
489 }
490
491 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
492                                       bool has_aux_irq,
493                                       int send_bytes,
494                                       uint32_t aux_clock_divider)
495 {
496         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497         struct drm_device *dev = intel_dig_port->base.base.dev;
498         uint32_t precharge, timeout;
499
500         if (IS_GEN6(dev))
501                 precharge = 3;
502         else
503                 precharge = 5;
504
505         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
506                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
507         else
508                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
509
510         return DP_AUX_CH_CTL_SEND_BUSY |
511                DP_AUX_CH_CTL_DONE |
512                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
513                DP_AUX_CH_CTL_TIME_OUT_ERROR |
514                timeout |
515                DP_AUX_CH_CTL_RECEIVE_ERROR |
516                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
517                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
518                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
519 }
520
521 static int
522 intel_dp_aux_ch(struct intel_dp *intel_dp,
523                 uint8_t *send, int send_bytes,
524                 uint8_t *recv, int recv_size)
525 {
526         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
527         struct drm_device *dev = intel_dig_port->base.base.dev;
528         struct drm_i915_private *dev_priv = dev->dev_private;
529         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
530         uint32_t ch_data = ch_ctl + 4;
531         uint32_t aux_clock_divider;
532         int i, ret, recv_bytes;
533         uint32_t status;
534         int try, clock = 0;
535         bool has_aux_irq = HAS_AUX_IRQ(dev);
536         bool vdd;
537
538         vdd = _edp_panel_vdd_on(intel_dp);
539
540         /* dp aux is extremely sensitive to irq latency, hence request the
541          * lowest possible wakeup latency and so prevent the cpu from going into
542          * deep sleep states.
543          */
544         pm_qos_update_request(&dev_priv->pm_qos, 0);
545
546         intel_dp_check_edp(intel_dp);
547
548         intel_aux_display_runtime_get(dev_priv);
549
550         /* Try to wait for any previous AUX channel activity */
551         for (try = 0; try < 3; try++) {
552                 status = I915_READ_NOTRACE(ch_ctl);
553                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
554                         break;
555                 msleep(1);
556         }
557
558         if (try == 3) {
559                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
560                      I915_READ(ch_ctl));
561                 ret = -EBUSY;
562                 goto out;
563         }
564
565         /* Only 5 data registers! */
566         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
567                 ret = -E2BIG;
568                 goto out;
569         }
570
571         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
572                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
573                                                           has_aux_irq,
574                                                           send_bytes,
575                                                           aux_clock_divider);
576
577                 /* Must try at least 3 times according to DP spec */
578                 for (try = 0; try < 5; try++) {
579                         /* Load the send data into the aux channel data registers */
580                         for (i = 0; i < send_bytes; i += 4)
581                                 I915_WRITE(ch_data + i,
582                                            pack_aux(send + i, send_bytes - i));
583
584                         /* Send the command and wait for it to complete */
585                         I915_WRITE(ch_ctl, send_ctl);
586
587                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
588
589                         /* Clear done status and any errors */
590                         I915_WRITE(ch_ctl,
591                                    status |
592                                    DP_AUX_CH_CTL_DONE |
593                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
594                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
595
596                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
597                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
598                                 continue;
599                         if (status & DP_AUX_CH_CTL_DONE)
600                                 break;
601                 }
602                 if (status & DP_AUX_CH_CTL_DONE)
603                         break;
604         }
605
606         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
607                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
608                 ret = -EBUSY;
609                 goto out;
610         }
611
612         /* Check for timeout or receive error.
613          * Timeouts occur when the sink is not connected
614          */
615         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
616                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
617                 ret = -EIO;
618                 goto out;
619         }
620
621         /* Timeouts occur when the device isn't connected, so they're
622          * "normal" -- don't fill the kernel log with these */
623         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
624                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
625                 ret = -ETIMEDOUT;
626                 goto out;
627         }
628
629         /* Unload any bytes sent back from the other side */
630         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
631                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
632         if (recv_bytes > recv_size)
633                 recv_bytes = recv_size;
634
635         for (i = 0; i < recv_bytes; i += 4)
636                 unpack_aux(I915_READ(ch_data + i),
637                            recv + i, recv_bytes - i);
638
639         ret = recv_bytes;
640 out:
641         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
642         intel_aux_display_runtime_put(dev_priv);
643
644         if (vdd)
645                 edp_panel_vdd_off(intel_dp, false);
646
647         return ret;
648 }
649
650 #define BARE_ADDRESS_SIZE       3
651 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
652 static ssize_t
653 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
654 {
655         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
656         uint8_t txbuf[20], rxbuf[20];
657         size_t txsize, rxsize;
658         int ret;
659
660         txbuf[0] = msg->request << 4;
661         txbuf[1] = msg->address >> 8;
662         txbuf[2] = msg->address & 0xff;
663         txbuf[3] = msg->size - 1;
664
665         switch (msg->request & ~DP_AUX_I2C_MOT) {
666         case DP_AUX_NATIVE_WRITE:
667         case DP_AUX_I2C_WRITE:
668                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
669                 rxsize = 1;
670
671                 if (WARN_ON(txsize > 20))
672                         return -E2BIG;
673
674                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
675
676                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
677                 if (ret > 0) {
678                         msg->reply = rxbuf[0] >> 4;
679
680                         /* Return payload size. */
681                         ret = msg->size;
682                 }
683                 break;
684
685         case DP_AUX_NATIVE_READ:
686         case DP_AUX_I2C_READ:
687                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
688                 rxsize = msg->size + 1;
689
690                 if (WARN_ON(rxsize > 20))
691                         return -E2BIG;
692
693                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
694                 if (ret > 0) {
695                         msg->reply = rxbuf[0] >> 4;
696                         /*
697                          * Assume happy day, and copy the data. The caller is
698                          * expected to check msg->reply before touching it.
699                          *
700                          * Return payload size.
701                          */
702                         ret--;
703                         memcpy(msg->buffer, rxbuf + 1, ret);
704                 }
705                 break;
706
707         default:
708                 ret = -EINVAL;
709                 break;
710         }
711
712         return ret;
713 }
714
715 static void
716 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
717 {
718         struct drm_device *dev = intel_dp_to_dev(intel_dp);
719         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720         enum port port = intel_dig_port->port;
721         const char *name = NULL;
722         int ret;
723
724         switch (port) {
725         case PORT_A:
726                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
727                 name = "DPDDC-A";
728                 break;
729         case PORT_B:
730                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
731                 name = "DPDDC-B";
732                 break;
733         case PORT_C:
734                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
735                 name = "DPDDC-C";
736                 break;
737         case PORT_D:
738                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
739                 name = "DPDDC-D";
740                 break;
741         default:
742                 BUG();
743         }
744
745         if (!HAS_DDI(dev))
746                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
747
748         intel_dp->aux.name = name;
749         intel_dp->aux.dev = dev->dev;
750         intel_dp->aux.transfer = intel_dp_aux_transfer;
751
752         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
753                       connector->base.kdev->kobj.name);
754
755         ret = drm_dp_aux_register(&intel_dp->aux);
756         if (ret < 0) {
757                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
758                           name, ret);
759                 return;
760         }
761
762         ret = sysfs_create_link(&connector->base.kdev->kobj,
763                                 &intel_dp->aux.ddc.dev.kobj,
764                                 intel_dp->aux.ddc.dev.kobj.name);
765         if (ret < 0) {
766                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
767                 drm_dp_aux_unregister(&intel_dp->aux);
768         }
769 }
770
771 static void
772 intel_dp_connector_unregister(struct intel_connector *intel_connector)
773 {
774         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
775
776         if (!intel_connector->mst_port)
777                 sysfs_remove_link(&intel_connector->base.kdev->kobj,
778                                   intel_dp->aux.ddc.dev.kobj.name);
779         intel_connector_unregister(intel_connector);
780 }
781
782 static void
783 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
784 {
785         switch (link_bw) {
786         case DP_LINK_BW_1_62:
787                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
788                 break;
789         case DP_LINK_BW_2_7:
790                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
791                 break;
792         case DP_LINK_BW_5_4:
793                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
794                 break;
795         }
796 }
797
798 static void
799 intel_dp_set_clock(struct intel_encoder *encoder,
800                    struct intel_crtc_config *pipe_config, int link_bw)
801 {
802         struct drm_device *dev = encoder->base.dev;
803         const struct dp_link_dpll *divisor = NULL;
804         int i, count = 0;
805
806         if (IS_G4X(dev)) {
807                 divisor = gen4_dpll;
808                 count = ARRAY_SIZE(gen4_dpll);
809         } else if (HAS_PCH_SPLIT(dev)) {
810                 divisor = pch_dpll;
811                 count = ARRAY_SIZE(pch_dpll);
812         } else if (IS_CHERRYVIEW(dev)) {
813                 divisor = chv_dpll;
814                 count = ARRAY_SIZE(chv_dpll);
815         } else if (IS_VALLEYVIEW(dev)) {
816                 divisor = vlv_dpll;
817                 count = ARRAY_SIZE(vlv_dpll);
818         }
819
820         if (divisor && count) {
821                 for (i = 0; i < count; i++) {
822                         if (link_bw == divisor[i].link_bw) {
823                                 pipe_config->dpll = divisor[i].dpll;
824                                 pipe_config->clock_set = true;
825                                 break;
826                         }
827                 }
828         }
829 }
830
831 bool
832 intel_dp_compute_config(struct intel_encoder *encoder,
833                         struct intel_crtc_config *pipe_config)
834 {
835         struct drm_device *dev = encoder->base.dev;
836         struct drm_i915_private *dev_priv = dev->dev_private;
837         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
838         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
839         enum port port = dp_to_dig_port(intel_dp)->port;
840         struct intel_crtc *intel_crtc = encoder->new_crtc;
841         struct intel_connector *intel_connector = intel_dp->attached_connector;
842         int lane_count, clock;
843         int min_lane_count = 1;
844         int max_lane_count = intel_dp_max_lane_count(intel_dp);
845         /* Conveniently, the link BW constants become indices with a shift...*/
846         int min_clock = 0;
847         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
848         int bpp, mode_rate;
849         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
850         int link_avail, link_clock;
851
852         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
853                 pipe_config->has_pch_encoder = true;
854
855         pipe_config->has_dp_encoder = true;
856         pipe_config->has_drrs = false;
857         pipe_config->has_audio = intel_dp->has_audio;
858
859         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
860                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
861                                        adjusted_mode);
862                 if (!HAS_PCH_SPLIT(dev))
863                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
864                                                  intel_connector->panel.fitting_mode);
865                 else
866                         intel_pch_panel_fitting(intel_crtc, pipe_config,
867                                                 intel_connector->panel.fitting_mode);
868         }
869
870         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
871                 return false;
872
873         DRM_DEBUG_KMS("DP link computation with max lane count %i "
874                       "max bw %02x pixel clock %iKHz\n",
875                       max_lane_count, bws[max_clock],
876                       adjusted_mode->crtc_clock);
877
878         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
879          * bpc in between. */
880         bpp = pipe_config->pipe_bpp;
881         if (is_edp(intel_dp)) {
882                 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
883                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
884                                       dev_priv->vbt.edp_bpp);
885                         bpp = dev_priv->vbt.edp_bpp;
886                 }
887
888                 if (IS_BROADWELL(dev)) {
889                         /* Yes, it's an ugly hack. */
890                         min_lane_count = max_lane_count;
891                         DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
892                                       min_lane_count);
893                 } else if (dev_priv->vbt.edp_lanes) {
894                         min_lane_count = min(dev_priv->vbt.edp_lanes,
895                                              max_lane_count);
896                         DRM_DEBUG_KMS("using min %u lanes per VBT\n",
897                                       min_lane_count);
898                 }
899
900                 if (dev_priv->vbt.edp_rate) {
901                         min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
902                         DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
903                                       bws[min_clock]);
904                 }
905         }
906
907         for (; bpp >= 6*3; bpp -= 2*3) {
908                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
909                                                    bpp);
910
911                 for (clock = min_clock; clock <= max_clock; clock++) {
912                         for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
913                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
914                                 link_avail = intel_dp_max_data_rate(link_clock,
915                                                                     lane_count);
916
917                                 if (mode_rate <= link_avail) {
918                                         goto found;
919                                 }
920                         }
921                 }
922         }
923
924         return false;
925
926 found:
927         if (intel_dp->color_range_auto) {
928                 /*
929                  * See:
930                  * CEA-861-E - 5.1 Default Encoding Parameters
931                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
932                  */
933                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
934                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
935                 else
936                         intel_dp->color_range = 0;
937         }
938
939         if (intel_dp->color_range)
940                 pipe_config->limited_color_range = true;
941
942         intel_dp->link_bw = bws[clock];
943         intel_dp->lane_count = lane_count;
944         pipe_config->pipe_bpp = bpp;
945         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
946
947         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
948                       intel_dp->link_bw, intel_dp->lane_count,
949                       pipe_config->port_clock, bpp);
950         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
951                       mode_rate, link_avail);
952
953         intel_link_compute_m_n(bpp, lane_count,
954                                adjusted_mode->crtc_clock,
955                                pipe_config->port_clock,
956                                &pipe_config->dp_m_n);
957
958         if (intel_connector->panel.downclock_mode != NULL &&
959                 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
960                         pipe_config->has_drrs = true;
961                         intel_link_compute_m_n(bpp, lane_count,
962                                 intel_connector->panel.downclock_mode->clock,
963                                 pipe_config->port_clock,
964                                 &pipe_config->dp_m2_n2);
965         }
966
967         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
968                 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
969         else
970                 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
971
972         return true;
973 }
974
975 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
976 {
977         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
978         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
979         struct drm_device *dev = crtc->base.dev;
980         struct drm_i915_private *dev_priv = dev->dev_private;
981         u32 dpa_ctl;
982
983         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
984         dpa_ctl = I915_READ(DP_A);
985         dpa_ctl &= ~DP_PLL_FREQ_MASK;
986
987         if (crtc->config.port_clock == 162000) {
988                 /* For a long time we've carried around a ILK-DevA w/a for the
989                  * 160MHz clock. If we're really unlucky, it's still required.
990                  */
991                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
992                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
993                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
994         } else {
995                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
996                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
997         }
998
999         I915_WRITE(DP_A, dpa_ctl);
1000
1001         POSTING_READ(DP_A);
1002         udelay(500);
1003 }
1004
1005 static void intel_dp_prepare(struct intel_encoder *encoder)
1006 {
1007         struct drm_device *dev = encoder->base.dev;
1008         struct drm_i915_private *dev_priv = dev->dev_private;
1009         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1010         enum port port = dp_to_dig_port(intel_dp)->port;
1011         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1012         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1013
1014         /*
1015          * There are four kinds of DP registers:
1016          *
1017          *      IBX PCH
1018          *      SNB CPU
1019          *      IVB CPU
1020          *      CPT PCH
1021          *
1022          * IBX PCH and CPU are the same for almost everything,
1023          * except that the CPU DP PLL is configured in this
1024          * register
1025          *
1026          * CPT PCH is quite different, having many bits moved
1027          * to the TRANS_DP_CTL register instead. That
1028          * configuration happens (oddly) in ironlake_pch_enable
1029          */
1030
1031         /* Preserve the BIOS-computed detected bit. This is
1032          * supposed to be read-only.
1033          */
1034         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1035
1036         /* Handle DP bits in common between all three register formats */
1037         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1038         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1039
1040         if (crtc->config.has_audio) {
1041                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1042                                  pipe_name(crtc->pipe));
1043                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1044                 intel_write_eld(&encoder->base, adjusted_mode);
1045         }
1046
1047         /* Split out the IBX/CPU vs CPT settings */
1048
1049         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1050                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1051                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1052                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1053                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1054                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1055
1056                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1057                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1058
1059                 intel_dp->DP |= crtc->pipe << 29;
1060         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1061                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1062                         intel_dp->DP |= intel_dp->color_range;
1063
1064                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1065                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1066                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1067                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1068                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1069
1070                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1071                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1072
1073                 if (!IS_CHERRYVIEW(dev)) {
1074                         if (crtc->pipe == 1)
1075                                 intel_dp->DP |= DP_PIPEB_SELECT;
1076                 } else {
1077                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1078                 }
1079         } else {
1080                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1081         }
1082 }
1083
1084 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1085 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1086
1087 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1088 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1089
1090 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1091 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1092
1093 static void wait_panel_status(struct intel_dp *intel_dp,
1094                                        u32 mask,
1095                                        u32 value)
1096 {
1097         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1098         struct drm_i915_private *dev_priv = dev->dev_private;
1099         u32 pp_stat_reg, pp_ctrl_reg;
1100
1101         pp_stat_reg = _pp_stat_reg(intel_dp);
1102         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1103
1104         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1105                         mask, value,
1106                         I915_READ(pp_stat_reg),
1107                         I915_READ(pp_ctrl_reg));
1108
1109         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1110                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1111                                 I915_READ(pp_stat_reg),
1112                                 I915_READ(pp_ctrl_reg));
1113         }
1114
1115         DRM_DEBUG_KMS("Wait complete\n");
1116 }
1117
1118 static void wait_panel_on(struct intel_dp *intel_dp)
1119 {
1120         DRM_DEBUG_KMS("Wait for panel power on\n");
1121         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1122 }
1123
1124 static void wait_panel_off(struct intel_dp *intel_dp)
1125 {
1126         DRM_DEBUG_KMS("Wait for panel power off time\n");
1127         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1128 }
1129
1130 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1131 {
1132         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1133
1134         /* When we disable the VDD override bit last we have to do the manual
1135          * wait. */
1136         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1137                                        intel_dp->panel_power_cycle_delay);
1138
1139         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1140 }
1141
1142 static void wait_backlight_on(struct intel_dp *intel_dp)
1143 {
1144         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1145                                        intel_dp->backlight_on_delay);
1146 }
1147
1148 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1149 {
1150         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1151                                        intel_dp->backlight_off_delay);
1152 }
1153
1154 /* Read the current pp_control value, unlocking the register if it
1155  * is locked
1156  */
1157
1158 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1159 {
1160         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1161         struct drm_i915_private *dev_priv = dev->dev_private;
1162         u32 control;
1163
1164         control = I915_READ(_pp_ctrl_reg(intel_dp));
1165         control &= ~PANEL_UNLOCK_MASK;
1166         control |= PANEL_UNLOCK_REGS;
1167         return control;
1168 }
1169
1170 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1171 {
1172         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1173         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1174         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1175         struct drm_i915_private *dev_priv = dev->dev_private;
1176         enum intel_display_power_domain power_domain;
1177         u32 pp;
1178         u32 pp_stat_reg, pp_ctrl_reg;
1179         bool need_to_disable = !intel_dp->want_panel_vdd;
1180
1181         if (!is_edp(intel_dp))
1182                 return false;
1183
1184         intel_dp->want_panel_vdd = true;
1185
1186         if (edp_have_panel_vdd(intel_dp))
1187                 return need_to_disable;
1188
1189         power_domain = intel_display_port_power_domain(intel_encoder);
1190         intel_display_power_get(dev_priv, power_domain);
1191
1192         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1193
1194         if (!edp_have_panel_power(intel_dp))
1195                 wait_panel_power_cycle(intel_dp);
1196
1197         pp = ironlake_get_pp_control(intel_dp);
1198         pp |= EDP_FORCE_VDD;
1199
1200         pp_stat_reg = _pp_stat_reg(intel_dp);
1201         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1202
1203         I915_WRITE(pp_ctrl_reg, pp);
1204         POSTING_READ(pp_ctrl_reg);
1205         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1206                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1207         /*
1208          * If the panel wasn't on, delay before accessing aux channel
1209          */
1210         if (!edp_have_panel_power(intel_dp)) {
1211                 DRM_DEBUG_KMS("eDP was not running\n");
1212                 msleep(intel_dp->panel_power_up_delay);
1213         }
1214
1215         return need_to_disable;
1216 }
1217
1218 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1219 {
1220         if (is_edp(intel_dp)) {
1221                 bool vdd = _edp_panel_vdd_on(intel_dp);
1222
1223                 WARN(!vdd, "eDP VDD already requested on\n");
1224         }
1225 }
1226
1227 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1228 {
1229         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1230         struct drm_i915_private *dev_priv = dev->dev_private;
1231         u32 pp;
1232         u32 pp_stat_reg, pp_ctrl_reg;
1233
1234         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1235
1236         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1237                 struct intel_digital_port *intel_dig_port =
1238                                                 dp_to_dig_port(intel_dp);
1239                 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1240                 enum intel_display_power_domain power_domain;
1241
1242                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1243
1244                 pp = ironlake_get_pp_control(intel_dp);
1245                 pp &= ~EDP_FORCE_VDD;
1246
1247                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1248                 pp_stat_reg = _pp_stat_reg(intel_dp);
1249
1250                 I915_WRITE(pp_ctrl_reg, pp);
1251                 POSTING_READ(pp_ctrl_reg);
1252
1253                 /* Make sure sequencer is idle before allowing subsequent activity */
1254                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1255                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1256
1257                 if ((pp & POWER_TARGET_ON) == 0)
1258                         intel_dp->last_power_cycle = jiffies;
1259
1260                 power_domain = intel_display_port_power_domain(intel_encoder);
1261                 intel_display_power_put(dev_priv, power_domain);
1262         }
1263 }
1264
1265 static void edp_panel_vdd_work(struct work_struct *__work)
1266 {
1267         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1268                                                  struct intel_dp, panel_vdd_work);
1269         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1270
1271         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1272         edp_panel_vdd_off_sync(intel_dp);
1273         drm_modeset_unlock(&dev->mode_config.connection_mutex);
1274 }
1275
1276 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1277 {
1278         unsigned long delay;
1279
1280         /*
1281          * Queue the timer to fire a long time from now (relative to the power
1282          * down delay) to keep the panel power up across a sequence of
1283          * operations.
1284          */
1285         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1286         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1287 }
1288
1289 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1290 {
1291         if (!is_edp(intel_dp))
1292                 return;
1293
1294         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1295
1296         intel_dp->want_panel_vdd = false;
1297
1298         if (sync)
1299                 edp_panel_vdd_off_sync(intel_dp);
1300         else
1301                 edp_panel_vdd_schedule_off(intel_dp);
1302 }
1303
1304 void intel_edp_panel_on(struct intel_dp *intel_dp)
1305 {
1306         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1307         struct drm_i915_private *dev_priv = dev->dev_private;
1308         u32 pp;
1309         u32 pp_ctrl_reg;
1310
1311         if (!is_edp(intel_dp))
1312                 return;
1313
1314         DRM_DEBUG_KMS("Turn eDP power on\n");
1315
1316         if (edp_have_panel_power(intel_dp)) {
1317                 DRM_DEBUG_KMS("eDP power already on\n");
1318                 return;
1319         }
1320
1321         wait_panel_power_cycle(intel_dp);
1322
1323         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1324         pp = ironlake_get_pp_control(intel_dp);
1325         if (IS_GEN5(dev)) {
1326                 /* ILK workaround: disable reset around power sequence */
1327                 pp &= ~PANEL_POWER_RESET;
1328                 I915_WRITE(pp_ctrl_reg, pp);
1329                 POSTING_READ(pp_ctrl_reg);
1330         }
1331
1332         pp |= POWER_TARGET_ON;
1333         if (!IS_GEN5(dev))
1334                 pp |= PANEL_POWER_RESET;
1335
1336         I915_WRITE(pp_ctrl_reg, pp);
1337         POSTING_READ(pp_ctrl_reg);
1338
1339         wait_panel_on(intel_dp);
1340         intel_dp->last_power_on = jiffies;
1341
1342         if (IS_GEN5(dev)) {
1343                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1344                 I915_WRITE(pp_ctrl_reg, pp);
1345                 POSTING_READ(pp_ctrl_reg);
1346         }
1347 }
1348
1349 void intel_edp_panel_off(struct intel_dp *intel_dp)
1350 {
1351         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1352         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1353         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1354         struct drm_i915_private *dev_priv = dev->dev_private;
1355         enum intel_display_power_domain power_domain;
1356         u32 pp;
1357         u32 pp_ctrl_reg;
1358
1359         if (!is_edp(intel_dp))
1360                 return;
1361
1362         DRM_DEBUG_KMS("Turn eDP power off\n");
1363
1364         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1365
1366         pp = ironlake_get_pp_control(intel_dp);
1367         /* We need to switch off panel power _and_ force vdd, for otherwise some
1368          * panels get very unhappy and cease to work. */
1369         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1370                 EDP_BLC_ENABLE);
1371
1372         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1373
1374         intel_dp->want_panel_vdd = false;
1375
1376         I915_WRITE(pp_ctrl_reg, pp);
1377         POSTING_READ(pp_ctrl_reg);
1378
1379         intel_dp->last_power_cycle = jiffies;
1380         wait_panel_off(intel_dp);
1381
1382         /* We got a reference when we enabled the VDD. */
1383         power_domain = intel_display_port_power_domain(intel_encoder);
1384         intel_display_power_put(dev_priv, power_domain);
1385 }
1386
1387 /* Enable backlight in the panel power control. */
1388 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1389 {
1390         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1391         struct drm_device *dev = intel_dig_port->base.base.dev;
1392         struct drm_i915_private *dev_priv = dev->dev_private;
1393         u32 pp;
1394         u32 pp_ctrl_reg;
1395
1396         /*
1397          * If we enable the backlight right away following a panel power
1398          * on, we may see slight flicker as the panel syncs with the eDP
1399          * link.  So delay a bit to make sure the image is solid before
1400          * allowing it to appear.
1401          */
1402         wait_backlight_on(intel_dp);
1403         pp = ironlake_get_pp_control(intel_dp);
1404         pp |= EDP_BLC_ENABLE;
1405
1406         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1407
1408         I915_WRITE(pp_ctrl_reg, pp);
1409         POSTING_READ(pp_ctrl_reg);
1410 }
1411
1412 /* Enable backlight PWM and backlight PP control. */
1413 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1414 {
1415         if (!is_edp(intel_dp))
1416                 return;
1417
1418         DRM_DEBUG_KMS("\n");
1419
1420         intel_panel_enable_backlight(intel_dp->attached_connector);
1421         _intel_edp_backlight_on(intel_dp);
1422 }
1423
1424 /* Disable backlight in the panel power control. */
1425 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1426 {
1427         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1428         struct drm_i915_private *dev_priv = dev->dev_private;
1429         u32 pp;
1430         u32 pp_ctrl_reg;
1431
1432         pp = ironlake_get_pp_control(intel_dp);
1433         pp &= ~EDP_BLC_ENABLE;
1434
1435         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1436
1437         I915_WRITE(pp_ctrl_reg, pp);
1438         POSTING_READ(pp_ctrl_reg);
1439         intel_dp->last_backlight_off = jiffies;
1440
1441         edp_wait_backlight_off(intel_dp);
1442 }
1443
1444 /* Disable backlight PP control and backlight PWM. */
1445 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1446 {
1447         if (!is_edp(intel_dp))
1448                 return;
1449
1450         DRM_DEBUG_KMS("\n");
1451
1452         _intel_edp_backlight_off(intel_dp);
1453         intel_panel_disable_backlight(intel_dp->attached_connector);
1454 }
1455
1456 /*
1457  * Hook for controlling the panel power control backlight through the bl_power
1458  * sysfs attribute. Take care to handle multiple calls.
1459  */
1460 static void intel_edp_backlight_power(struct intel_connector *connector,
1461                                       bool enable)
1462 {
1463         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1464         bool is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1465
1466         if (is_enabled == enable)
1467                 return;
1468
1469         DRM_DEBUG_KMS("\n");
1470
1471         if (enable)
1472                 _intel_edp_backlight_on(intel_dp);
1473         else
1474                 _intel_edp_backlight_off(intel_dp);
1475 }
1476
1477 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1478 {
1479         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1480         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1481         struct drm_device *dev = crtc->dev;
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         u32 dpa_ctl;
1484
1485         assert_pipe_disabled(dev_priv,
1486                              to_intel_crtc(crtc)->pipe);
1487
1488         DRM_DEBUG_KMS("\n");
1489         dpa_ctl = I915_READ(DP_A);
1490         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1491         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1492
1493         /* We don't adjust intel_dp->DP while tearing down the link, to
1494          * facilitate link retraining (e.g. after hotplug). Hence clear all
1495          * enable bits here to ensure that we don't enable too much. */
1496         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1497         intel_dp->DP |= DP_PLL_ENABLE;
1498         I915_WRITE(DP_A, intel_dp->DP);
1499         POSTING_READ(DP_A);
1500         udelay(200);
1501 }
1502
1503 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1504 {
1505         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1506         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1507         struct drm_device *dev = crtc->dev;
1508         struct drm_i915_private *dev_priv = dev->dev_private;
1509         u32 dpa_ctl;
1510
1511         assert_pipe_disabled(dev_priv,
1512                              to_intel_crtc(crtc)->pipe);
1513
1514         dpa_ctl = I915_READ(DP_A);
1515         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1516              "dp pll off, should be on\n");
1517         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1518
1519         /* We can't rely on the value tracked for the DP register in
1520          * intel_dp->DP because link_down must not change that (otherwise link
1521          * re-training will fail. */
1522         dpa_ctl &= ~DP_PLL_ENABLE;
1523         I915_WRITE(DP_A, dpa_ctl);
1524         POSTING_READ(DP_A);
1525         udelay(200);
1526 }
1527
1528 /* If the sink supports it, try to set the power state appropriately */
1529 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1530 {
1531         int ret, i;
1532
1533         /* Should have a valid DPCD by this point */
1534         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1535                 return;
1536
1537         if (mode != DRM_MODE_DPMS_ON) {
1538                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1539                                          DP_SET_POWER_D3);
1540                 if (ret != 1)
1541                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1542         } else {
1543                 /*
1544                  * When turning on, we need to retry for 1ms to give the sink
1545                  * time to wake up.
1546                  */
1547                 for (i = 0; i < 3; i++) {
1548                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1549                                                  DP_SET_POWER_D0);
1550                         if (ret == 1)
1551                                 break;
1552                         msleep(1);
1553                 }
1554         }
1555 }
1556
1557 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1558                                   enum pipe *pipe)
1559 {
1560         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1561         enum port port = dp_to_dig_port(intel_dp)->port;
1562         struct drm_device *dev = encoder->base.dev;
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         enum intel_display_power_domain power_domain;
1565         u32 tmp;
1566
1567         power_domain = intel_display_port_power_domain(encoder);
1568         if (!intel_display_power_enabled(dev_priv, power_domain))
1569                 return false;
1570
1571         tmp = I915_READ(intel_dp->output_reg);
1572
1573         if (!(tmp & DP_PORT_EN))
1574                 return false;
1575
1576         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1577                 *pipe = PORT_TO_PIPE_CPT(tmp);
1578         } else if (IS_CHERRYVIEW(dev)) {
1579                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1580         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1581                 *pipe = PORT_TO_PIPE(tmp);
1582         } else {
1583                 u32 trans_sel;
1584                 u32 trans_dp;
1585                 int i;
1586
1587                 switch (intel_dp->output_reg) {
1588                 case PCH_DP_B:
1589                         trans_sel = TRANS_DP_PORT_SEL_B;
1590                         break;
1591                 case PCH_DP_C:
1592                         trans_sel = TRANS_DP_PORT_SEL_C;
1593                         break;
1594                 case PCH_DP_D:
1595                         trans_sel = TRANS_DP_PORT_SEL_D;
1596                         break;
1597                 default:
1598                         return true;
1599                 }
1600
1601                 for_each_pipe(dev_priv, i) {
1602                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1603                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1604                                 *pipe = i;
1605                                 return true;
1606                         }
1607                 }
1608
1609                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1610                               intel_dp->output_reg);
1611         }
1612
1613         return true;
1614 }
1615
1616 static void intel_dp_get_config(struct intel_encoder *encoder,
1617                                 struct intel_crtc_config *pipe_config)
1618 {
1619         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1620         u32 tmp, flags = 0;
1621         struct drm_device *dev = encoder->base.dev;
1622         struct drm_i915_private *dev_priv = dev->dev_private;
1623         enum port port = dp_to_dig_port(intel_dp)->port;
1624         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1625         int dotclock;
1626
1627         tmp = I915_READ(intel_dp->output_reg);
1628         if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1629                 pipe_config->has_audio = true;
1630
1631         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1632                 if (tmp & DP_SYNC_HS_HIGH)
1633                         flags |= DRM_MODE_FLAG_PHSYNC;
1634                 else
1635                         flags |= DRM_MODE_FLAG_NHSYNC;
1636
1637                 if (tmp & DP_SYNC_VS_HIGH)
1638                         flags |= DRM_MODE_FLAG_PVSYNC;
1639                 else
1640                         flags |= DRM_MODE_FLAG_NVSYNC;
1641         } else {
1642                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1643                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1644                         flags |= DRM_MODE_FLAG_PHSYNC;
1645                 else
1646                         flags |= DRM_MODE_FLAG_NHSYNC;
1647
1648                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1649                         flags |= DRM_MODE_FLAG_PVSYNC;
1650                 else
1651                         flags |= DRM_MODE_FLAG_NVSYNC;
1652         }
1653
1654         pipe_config->adjusted_mode.flags |= flags;
1655
1656         pipe_config->has_dp_encoder = true;
1657
1658         intel_dp_get_m_n(crtc, pipe_config);
1659
1660         if (port == PORT_A) {
1661                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1662                         pipe_config->port_clock = 162000;
1663                 else
1664                         pipe_config->port_clock = 270000;
1665         }
1666
1667         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1668                                             &pipe_config->dp_m_n);
1669
1670         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1671                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1672
1673         pipe_config->adjusted_mode.crtc_clock = dotclock;
1674
1675         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1676             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1677                 /*
1678                  * This is a big fat ugly hack.
1679                  *
1680                  * Some machines in UEFI boot mode provide us a VBT that has 18
1681                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1682                  * unknown we fail to light up. Yet the same BIOS boots up with
1683                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1684                  * max, not what it tells us to use.
1685                  *
1686                  * Note: This will still be broken if the eDP panel is not lit
1687                  * up by the BIOS, and thus we can't get the mode at module
1688                  * load.
1689                  */
1690                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1691                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1692                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1693         }
1694 }
1695
1696 static bool is_edp_psr(struct intel_dp *intel_dp)
1697 {
1698         return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1699 }
1700
1701 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1702 {
1703         struct drm_i915_private *dev_priv = dev->dev_private;
1704
1705         if (!HAS_PSR(dev))
1706                 return false;
1707
1708         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1709 }
1710
1711 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1712                                     struct edp_vsc_psr *vsc_psr)
1713 {
1714         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715         struct drm_device *dev = dig_port->base.base.dev;
1716         struct drm_i915_private *dev_priv = dev->dev_private;
1717         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1718         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1719         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1720         uint32_t *data = (uint32_t *) vsc_psr;
1721         unsigned int i;
1722
1723         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1724            the video DIP being updated before program video DIP data buffer
1725            registers for DIP being updated. */
1726         I915_WRITE(ctl_reg, 0);
1727         POSTING_READ(ctl_reg);
1728
1729         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1730                 if (i < sizeof(struct edp_vsc_psr))
1731                         I915_WRITE(data_reg + i, *data++);
1732                 else
1733                         I915_WRITE(data_reg + i, 0);
1734         }
1735
1736         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1737         POSTING_READ(ctl_reg);
1738 }
1739
1740 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1741 {
1742         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1743         struct drm_i915_private *dev_priv = dev->dev_private;
1744         struct edp_vsc_psr psr_vsc;
1745
1746         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1747         memset(&psr_vsc, 0, sizeof(psr_vsc));
1748         psr_vsc.sdp_header.HB0 = 0;
1749         psr_vsc.sdp_header.HB1 = 0x7;
1750         psr_vsc.sdp_header.HB2 = 0x2;
1751         psr_vsc.sdp_header.HB3 = 0x8;
1752         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1753
1754         /* Avoid continuous PSR exit by masking memup and hpd */
1755         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1756                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1757 }
1758
1759 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1760 {
1761         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1762         struct drm_device *dev = dig_port->base.base.dev;
1763         struct drm_i915_private *dev_priv = dev->dev_private;
1764         uint32_t aux_clock_divider;
1765         int precharge = 0x3;
1766         int msg_size = 5;       /* Header(4) + Message(1) */
1767         bool only_standby = false;
1768
1769         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1770
1771         if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1772                 only_standby = true;
1773
1774         /* Enable PSR in sink */
1775         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1776                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1777                                    DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1778         else
1779                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1780                                    DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1781
1782         /* Setup AUX registers */
1783         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1784         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1785         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1786                    DP_AUX_CH_CTL_TIME_OUT_400us |
1787                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1788                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1789                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1790 }
1791
1792 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1793 {
1794         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1795         struct drm_device *dev = dig_port->base.base.dev;
1796         struct drm_i915_private *dev_priv = dev->dev_private;
1797         uint32_t max_sleep_time = 0x1f;
1798         uint32_t idle_frames = 1;
1799         uint32_t val = 0x0;
1800         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1801         bool only_standby = false;
1802
1803         if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1804                 only_standby = true;
1805
1806         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1807                 val |= EDP_PSR_LINK_STANDBY;
1808                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1809                 val |= EDP_PSR_TP1_TIME_0us;
1810                 val |= EDP_PSR_SKIP_AUX_EXIT;
1811                 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1812         } else
1813                 val |= EDP_PSR_LINK_DISABLE;
1814
1815         I915_WRITE(EDP_PSR_CTL(dev), val |
1816                    (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1817                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1818                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1819                    EDP_PSR_ENABLE);
1820 }
1821
1822 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1823 {
1824         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1825         struct drm_device *dev = dig_port->base.base.dev;
1826         struct drm_i915_private *dev_priv = dev->dev_private;
1827         struct drm_crtc *crtc = dig_port->base.base.crtc;
1828         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1829
1830         lockdep_assert_held(&dev_priv->psr.lock);
1831         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1832         WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1833
1834         dev_priv->psr.source_ok = false;
1835
1836         if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1837                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1838                 return false;
1839         }
1840
1841         if (!i915.enable_psr) {
1842                 DRM_DEBUG_KMS("PSR disable by flag\n");
1843                 return false;
1844         }
1845
1846         /* Below limitations aren't valid for Broadwell */
1847         if (IS_BROADWELL(dev))
1848                 goto out;
1849
1850         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1851             S3D_ENABLE) {
1852                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1853                 return false;
1854         }
1855
1856         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1857                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1858                 return false;
1859         }
1860
1861  out:
1862         dev_priv->psr.source_ok = true;
1863         return true;
1864 }
1865
1866 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1867 {
1868         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1869         struct drm_device *dev = intel_dig_port->base.base.dev;
1870         struct drm_i915_private *dev_priv = dev->dev_private;
1871
1872         WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1873         WARN_ON(dev_priv->psr.active);
1874         lockdep_assert_held(&dev_priv->psr.lock);
1875
1876         /* Enable PSR on the panel */
1877         intel_edp_psr_enable_sink(intel_dp);
1878
1879         /* Enable PSR on the host */
1880         intel_edp_psr_enable_source(intel_dp);
1881
1882         dev_priv->psr.active = true;
1883 }
1884
1885 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1886 {
1887         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1888         struct drm_i915_private *dev_priv = dev->dev_private;
1889
1890         if (!HAS_PSR(dev)) {
1891                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1892                 return;
1893         }
1894
1895         if (!is_edp_psr(intel_dp)) {
1896                 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1897                 return;
1898         }
1899
1900         mutex_lock(&dev_priv->psr.lock);
1901         if (dev_priv->psr.enabled) {
1902                 DRM_DEBUG_KMS("PSR already in use\n");
1903                 mutex_unlock(&dev_priv->psr.lock);
1904                 return;
1905         }
1906
1907         dev_priv->psr.busy_frontbuffer_bits = 0;
1908
1909         /* Setup PSR once */
1910         intel_edp_psr_setup(intel_dp);
1911
1912         if (intel_edp_psr_match_conditions(intel_dp))
1913                 dev_priv->psr.enabled = intel_dp;
1914         mutex_unlock(&dev_priv->psr.lock);
1915 }
1916
1917 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1918 {
1919         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921
1922         mutex_lock(&dev_priv->psr.lock);
1923         if (!dev_priv->psr.enabled) {
1924                 mutex_unlock(&dev_priv->psr.lock);
1925                 return;
1926         }
1927
1928         if (dev_priv->psr.active) {
1929                 I915_WRITE(EDP_PSR_CTL(dev),
1930                            I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1931
1932                 /* Wait till PSR is idle */
1933                 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1934                                EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1935                         DRM_ERROR("Timed out waiting for PSR Idle State\n");
1936
1937                 dev_priv->psr.active = false;
1938         } else {
1939                 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1940         }
1941
1942         dev_priv->psr.enabled = NULL;
1943         mutex_unlock(&dev_priv->psr.lock);
1944
1945         cancel_delayed_work_sync(&dev_priv->psr.work);
1946 }
1947
1948 static void intel_edp_psr_work(struct work_struct *work)
1949 {
1950         struct drm_i915_private *dev_priv =
1951                 container_of(work, typeof(*dev_priv), psr.work.work);
1952         struct intel_dp *intel_dp = dev_priv->psr.enabled;
1953
1954         mutex_lock(&dev_priv->psr.lock);
1955         intel_dp = dev_priv->psr.enabled;
1956
1957         if (!intel_dp)
1958                 goto unlock;
1959
1960         /*
1961          * The delayed work can race with an invalidate hence we need to
1962          * recheck. Since psr_flush first clears this and then reschedules we
1963          * won't ever miss a flush when bailing out here.
1964          */
1965         if (dev_priv->psr.busy_frontbuffer_bits)
1966                 goto unlock;
1967
1968         intel_edp_psr_do_enable(intel_dp);
1969 unlock:
1970         mutex_unlock(&dev_priv->psr.lock);
1971 }
1972
1973 static void intel_edp_psr_do_exit(struct drm_device *dev)
1974 {
1975         struct drm_i915_private *dev_priv = dev->dev_private;
1976
1977         if (dev_priv->psr.active) {
1978                 u32 val = I915_READ(EDP_PSR_CTL(dev));
1979
1980                 WARN_ON(!(val & EDP_PSR_ENABLE));
1981
1982                 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1983
1984                 dev_priv->psr.active = false;
1985         }
1986
1987 }
1988
1989 void intel_edp_psr_invalidate(struct drm_device *dev,
1990                               unsigned frontbuffer_bits)
1991 {
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         struct drm_crtc *crtc;
1994         enum pipe pipe;
1995
1996         mutex_lock(&dev_priv->psr.lock);
1997         if (!dev_priv->psr.enabled) {
1998                 mutex_unlock(&dev_priv->psr.lock);
1999                 return;
2000         }
2001
2002         crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2003         pipe = to_intel_crtc(crtc)->pipe;
2004
2005         intel_edp_psr_do_exit(dev);
2006
2007         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2008
2009         dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2010         mutex_unlock(&dev_priv->psr.lock);
2011 }
2012
2013 void intel_edp_psr_flush(struct drm_device *dev,
2014                          unsigned frontbuffer_bits)
2015 {
2016         struct drm_i915_private *dev_priv = dev->dev_private;
2017         struct drm_crtc *crtc;
2018         enum pipe pipe;
2019
2020         mutex_lock(&dev_priv->psr.lock);
2021         if (!dev_priv->psr.enabled) {
2022                 mutex_unlock(&dev_priv->psr.lock);
2023                 return;
2024         }
2025
2026         crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2027         pipe = to_intel_crtc(crtc)->pipe;
2028         dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2029
2030         /*
2031          * On Haswell sprite plane updates don't result in a psr invalidating
2032          * signal in the hardware. Which means we need to manually fake this in
2033          * software for all flushes, not just when we've seen a preceding
2034          * invalidation through frontbuffer rendering.
2035          */
2036         if (IS_HASWELL(dev) &&
2037             (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2038                 intel_edp_psr_do_exit(dev);
2039
2040         if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2041                 schedule_delayed_work(&dev_priv->psr.work,
2042                                       msecs_to_jiffies(100));
2043         mutex_unlock(&dev_priv->psr.lock);
2044 }
2045
2046 void intel_edp_psr_init(struct drm_device *dev)
2047 {
2048         struct drm_i915_private *dev_priv = dev->dev_private;
2049
2050         INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2051         mutex_init(&dev_priv->psr.lock);
2052 }
2053
2054 static void intel_disable_dp(struct intel_encoder *encoder)
2055 {
2056         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2057         enum port port = dp_to_dig_port(intel_dp)->port;
2058         struct drm_device *dev = encoder->base.dev;
2059
2060         /* Make sure the panel is off before trying to change the mode. But also
2061          * ensure that we have vdd while we switch off the panel. */
2062         intel_edp_panel_vdd_on(intel_dp);
2063         intel_edp_backlight_off(intel_dp);
2064         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2065         intel_edp_panel_off(intel_dp);
2066
2067         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2068         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2069                 intel_dp_link_down(intel_dp);
2070 }
2071
2072 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2073 {
2074         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2075         enum port port = dp_to_dig_port(intel_dp)->port;
2076
2077         if (port != PORT_A)
2078                 return;
2079
2080         intel_dp_link_down(intel_dp);
2081         ironlake_edp_pll_off(intel_dp);
2082 }
2083
2084 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2085 {
2086         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2087
2088         intel_dp_link_down(intel_dp);
2089 }
2090
2091 static void chv_post_disable_dp(struct intel_encoder *encoder)
2092 {
2093         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2094         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2095         struct drm_device *dev = encoder->base.dev;
2096         struct drm_i915_private *dev_priv = dev->dev_private;
2097         struct intel_crtc *intel_crtc =
2098                 to_intel_crtc(encoder->base.crtc);
2099         enum dpio_channel ch = vlv_dport_to_channel(dport);
2100         enum pipe pipe = intel_crtc->pipe;
2101         u32 val;
2102
2103         intel_dp_link_down(intel_dp);
2104
2105         mutex_lock(&dev_priv->dpio_lock);
2106
2107         /* Propagate soft reset to data lane reset */
2108         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2109         val |= CHV_PCS_REQ_SOFTRESET_EN;
2110         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2111
2112         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2113         val |= CHV_PCS_REQ_SOFTRESET_EN;
2114         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2115
2116         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2117         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2118         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2119
2120         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2121         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2122         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2123
2124         mutex_unlock(&dev_priv->dpio_lock);
2125 }
2126
2127 static void intel_enable_dp(struct intel_encoder *encoder)
2128 {
2129         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2130         struct drm_device *dev = encoder->base.dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2133
2134         if (WARN_ON(dp_reg & DP_PORT_EN))
2135                 return;
2136
2137         intel_edp_panel_vdd_on(intel_dp);
2138         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2139         intel_dp_start_link_train(intel_dp);
2140         intel_edp_panel_on(intel_dp);
2141         edp_panel_vdd_off(intel_dp, true);
2142         intel_dp_complete_link_train(intel_dp);
2143         intel_dp_stop_link_train(intel_dp);
2144 }
2145
2146 static void g4x_enable_dp(struct intel_encoder *encoder)
2147 {
2148         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2149
2150         intel_enable_dp(encoder);
2151         intel_edp_backlight_on(intel_dp);
2152 }
2153
2154 static void vlv_enable_dp(struct intel_encoder *encoder)
2155 {
2156         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2157
2158         intel_edp_backlight_on(intel_dp);
2159 }
2160
2161 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2162 {
2163         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2164         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2165
2166         intel_dp_prepare(encoder);
2167
2168         /* Only ilk+ has port A */
2169         if (dport->port == PORT_A) {
2170                 ironlake_set_pll_cpu_edp(intel_dp);
2171                 ironlake_edp_pll_on(intel_dp);
2172         }
2173 }
2174
2175 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2176 {
2177         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2178         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2179         struct drm_device *dev = encoder->base.dev;
2180         struct drm_i915_private *dev_priv = dev->dev_private;
2181         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2182         enum dpio_channel port = vlv_dport_to_channel(dport);
2183         int pipe = intel_crtc->pipe;
2184         struct edp_power_seq power_seq;
2185         u32 val;
2186
2187         mutex_lock(&dev_priv->dpio_lock);
2188
2189         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2190         val = 0;
2191         if (pipe)
2192                 val |= (1<<21);
2193         else
2194                 val &= ~(1<<21);
2195         val |= 0x001000c4;
2196         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2197         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2198         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2199
2200         mutex_unlock(&dev_priv->dpio_lock);
2201
2202         if (is_edp(intel_dp)) {
2203                 /* init power sequencer on this pipe and port */
2204                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2205                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2206                                                               &power_seq);
2207         }
2208
2209         intel_enable_dp(encoder);
2210
2211         vlv_wait_port_ready(dev_priv, dport);
2212 }
2213
2214 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2215 {
2216         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2217         struct drm_device *dev = encoder->base.dev;
2218         struct drm_i915_private *dev_priv = dev->dev_private;
2219         struct intel_crtc *intel_crtc =
2220                 to_intel_crtc(encoder->base.crtc);
2221         enum dpio_channel port = vlv_dport_to_channel(dport);
2222         int pipe = intel_crtc->pipe;
2223
2224         intel_dp_prepare(encoder);
2225
2226         /* Program Tx lane resets to default */
2227         mutex_lock(&dev_priv->dpio_lock);
2228         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2229                          DPIO_PCS_TX_LANE2_RESET |
2230                          DPIO_PCS_TX_LANE1_RESET);
2231         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2232                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2233                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2234                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2235                                  DPIO_PCS_CLK_SOFT_RESET);
2236
2237         /* Fix up inter-pair skew failure */
2238         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2239         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2240         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2241         mutex_unlock(&dev_priv->dpio_lock);
2242 }
2243
2244 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2245 {
2246         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2247         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2248         struct drm_device *dev = encoder->base.dev;
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250         struct edp_power_seq power_seq;
2251         struct intel_crtc *intel_crtc =
2252                 to_intel_crtc(encoder->base.crtc);
2253         enum dpio_channel ch = vlv_dport_to_channel(dport);
2254         int pipe = intel_crtc->pipe;
2255         int data, i;
2256         u32 val;
2257
2258         mutex_lock(&dev_priv->dpio_lock);
2259
2260         /* Deassert soft data lane reset*/
2261         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2262         val |= CHV_PCS_REQ_SOFTRESET_EN;
2263         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2264
2265         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2266         val |= CHV_PCS_REQ_SOFTRESET_EN;
2267         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2268
2269         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2270         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2271         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2272
2273         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2274         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2275         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2276
2277         /* Program Tx lane latency optimal setting*/
2278         for (i = 0; i < 4; i++) {
2279                 /* Set the latency optimal bit */
2280                 data = (i == 1) ? 0x0 : 0x6;
2281                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2282                                 data << DPIO_FRC_LATENCY_SHFIT);
2283
2284                 /* Set the upar bit */
2285                 data = (i == 1) ? 0x0 : 0x1;
2286                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2287                                 data << DPIO_UPAR_SHIFT);
2288         }
2289
2290         /* Data lane stagger programming */
2291         /* FIXME: Fix up value only after power analysis */
2292
2293         mutex_unlock(&dev_priv->dpio_lock);
2294
2295         if (is_edp(intel_dp)) {
2296                 /* init power sequencer on this pipe and port */
2297                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2298                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2299                                                               &power_seq);
2300         }
2301
2302         intel_enable_dp(encoder);
2303
2304         vlv_wait_port_ready(dev_priv, dport);
2305 }
2306
2307 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2308 {
2309         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2310         struct drm_device *dev = encoder->base.dev;
2311         struct drm_i915_private *dev_priv = dev->dev_private;
2312         struct intel_crtc *intel_crtc =
2313                 to_intel_crtc(encoder->base.crtc);
2314         enum dpio_channel ch = vlv_dport_to_channel(dport);
2315         enum pipe pipe = intel_crtc->pipe;
2316         u32 val;
2317
2318         intel_dp_prepare(encoder);
2319
2320         mutex_lock(&dev_priv->dpio_lock);
2321
2322         /* program left/right clock distribution */
2323         if (pipe != PIPE_B) {
2324                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2325                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2326                 if (ch == DPIO_CH0)
2327                         val |= CHV_BUFLEFTENA1_FORCE;
2328                 if (ch == DPIO_CH1)
2329                         val |= CHV_BUFRIGHTENA1_FORCE;
2330                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2331         } else {
2332                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2333                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2334                 if (ch == DPIO_CH0)
2335                         val |= CHV_BUFLEFTENA2_FORCE;
2336                 if (ch == DPIO_CH1)
2337                         val |= CHV_BUFRIGHTENA2_FORCE;
2338                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2339         }
2340
2341         /* program clock channel usage */
2342         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2343         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2344         if (pipe != PIPE_B)
2345                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2346         else
2347                 val |= CHV_PCS_USEDCLKCHANNEL;
2348         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2349
2350         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2351         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2352         if (pipe != PIPE_B)
2353                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2354         else
2355                 val |= CHV_PCS_USEDCLKCHANNEL;
2356         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2357
2358         /*
2359          * This a a bit weird since generally CL
2360          * matches the pipe, but here we need to
2361          * pick the CL based on the port.
2362          */
2363         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2364         if (pipe != PIPE_B)
2365                 val &= ~CHV_CMN_USEDCLKCHANNEL;
2366         else
2367                 val |= CHV_CMN_USEDCLKCHANNEL;
2368         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2369
2370         mutex_unlock(&dev_priv->dpio_lock);
2371 }
2372
2373 /*
2374  * Native read with retry for link status and receiver capability reads for
2375  * cases where the sink may still be asleep.
2376  *
2377  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2378  * supposed to retry 3 times per the spec.
2379  */
2380 static ssize_t
2381 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2382                         void *buffer, size_t size)
2383 {
2384         ssize_t ret;
2385         int i;
2386
2387         for (i = 0; i < 3; i++) {
2388                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2389                 if (ret == size)
2390                         return ret;
2391                 msleep(1);
2392         }
2393
2394         return ret;
2395 }
2396
2397 /*
2398  * Fetch AUX CH registers 0x202 - 0x207 which contain
2399  * link status information
2400  */
2401 static bool
2402 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2403 {
2404         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2405                                        DP_LANE0_1_STATUS,
2406                                        link_status,
2407                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2408 }
2409
2410 /* These are source-specific values. */
2411 static uint8_t
2412 intel_dp_voltage_max(struct intel_dp *intel_dp)
2413 {
2414         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2415         enum port port = dp_to_dig_port(intel_dp)->port;
2416
2417         if (IS_VALLEYVIEW(dev))
2418                 return DP_TRAIN_VOLTAGE_SWING_1200;
2419         else if (IS_GEN7(dev) && port == PORT_A)
2420                 return DP_TRAIN_VOLTAGE_SWING_800;
2421         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2422                 return DP_TRAIN_VOLTAGE_SWING_1200;
2423         else
2424                 return DP_TRAIN_VOLTAGE_SWING_800;
2425 }
2426
2427 static uint8_t
2428 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2429 {
2430         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2431         enum port port = dp_to_dig_port(intel_dp)->port;
2432
2433         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2434                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2435                 case DP_TRAIN_VOLTAGE_SWING_400:
2436                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2437                 case DP_TRAIN_VOLTAGE_SWING_600:
2438                         return DP_TRAIN_PRE_EMPHASIS_6;
2439                 case DP_TRAIN_VOLTAGE_SWING_800:
2440                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2441                 case DP_TRAIN_VOLTAGE_SWING_1200:
2442                 default:
2443                         return DP_TRAIN_PRE_EMPHASIS_0;
2444                 }
2445         } else if (IS_VALLEYVIEW(dev)) {
2446                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2447                 case DP_TRAIN_VOLTAGE_SWING_400:
2448                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2449                 case DP_TRAIN_VOLTAGE_SWING_600:
2450                         return DP_TRAIN_PRE_EMPHASIS_6;
2451                 case DP_TRAIN_VOLTAGE_SWING_800:
2452                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2453                 case DP_TRAIN_VOLTAGE_SWING_1200:
2454                 default:
2455                         return DP_TRAIN_PRE_EMPHASIS_0;
2456                 }
2457         } else if (IS_GEN7(dev) && port == PORT_A) {
2458                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2459                 case DP_TRAIN_VOLTAGE_SWING_400:
2460                         return DP_TRAIN_PRE_EMPHASIS_6;
2461                 case DP_TRAIN_VOLTAGE_SWING_600:
2462                 case DP_TRAIN_VOLTAGE_SWING_800:
2463                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2464                 default:
2465                         return DP_TRAIN_PRE_EMPHASIS_0;
2466                 }
2467         } else {
2468                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2469                 case DP_TRAIN_VOLTAGE_SWING_400:
2470                         return DP_TRAIN_PRE_EMPHASIS_6;
2471                 case DP_TRAIN_VOLTAGE_SWING_600:
2472                         return DP_TRAIN_PRE_EMPHASIS_6;
2473                 case DP_TRAIN_VOLTAGE_SWING_800:
2474                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2475                 case DP_TRAIN_VOLTAGE_SWING_1200:
2476                 default:
2477                         return DP_TRAIN_PRE_EMPHASIS_0;
2478                 }
2479         }
2480 }
2481
2482 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2483 {
2484         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2485         struct drm_i915_private *dev_priv = dev->dev_private;
2486         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2487         struct intel_crtc *intel_crtc =
2488                 to_intel_crtc(dport->base.base.crtc);
2489         unsigned long demph_reg_value, preemph_reg_value,
2490                 uniqtranscale_reg_value;
2491         uint8_t train_set = intel_dp->train_set[0];
2492         enum dpio_channel port = vlv_dport_to_channel(dport);
2493         int pipe = intel_crtc->pipe;
2494
2495         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2496         case DP_TRAIN_PRE_EMPHASIS_0:
2497                 preemph_reg_value = 0x0004000;
2498                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2499                 case DP_TRAIN_VOLTAGE_SWING_400:
2500                         demph_reg_value = 0x2B405555;
2501                         uniqtranscale_reg_value = 0x552AB83A;
2502                         break;
2503                 case DP_TRAIN_VOLTAGE_SWING_600:
2504                         demph_reg_value = 0x2B404040;
2505                         uniqtranscale_reg_value = 0x5548B83A;
2506                         break;
2507                 case DP_TRAIN_VOLTAGE_SWING_800:
2508                         demph_reg_value = 0x2B245555;
2509                         uniqtranscale_reg_value = 0x5560B83A;
2510                         break;
2511                 case DP_TRAIN_VOLTAGE_SWING_1200:
2512                         demph_reg_value = 0x2B405555;
2513                         uniqtranscale_reg_value = 0x5598DA3A;
2514                         break;
2515                 default:
2516                         return 0;
2517                 }
2518                 break;
2519         case DP_TRAIN_PRE_EMPHASIS_3_5:
2520                 preemph_reg_value = 0x0002000;
2521                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2522                 case DP_TRAIN_VOLTAGE_SWING_400:
2523                         demph_reg_value = 0x2B404040;
2524                         uniqtranscale_reg_value = 0x5552B83A;
2525                         break;
2526                 case DP_TRAIN_VOLTAGE_SWING_600:
2527                         demph_reg_value = 0x2B404848;
2528                         uniqtranscale_reg_value = 0x5580B83A;
2529                         break;
2530                 case DP_TRAIN_VOLTAGE_SWING_800:
2531                         demph_reg_value = 0x2B404040;
2532                         uniqtranscale_reg_value = 0x55ADDA3A;
2533                         break;
2534                 default:
2535                         return 0;
2536                 }
2537                 break;
2538         case DP_TRAIN_PRE_EMPHASIS_6:
2539                 preemph_reg_value = 0x0000000;
2540                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2541                 case DP_TRAIN_VOLTAGE_SWING_400:
2542                         demph_reg_value = 0x2B305555;
2543                         uniqtranscale_reg_value = 0x5570B83A;
2544                         break;
2545                 case DP_TRAIN_VOLTAGE_SWING_600:
2546                         demph_reg_value = 0x2B2B4040;
2547                         uniqtranscale_reg_value = 0x55ADDA3A;
2548                         break;
2549                 default:
2550                         return 0;
2551                 }
2552                 break;
2553         case DP_TRAIN_PRE_EMPHASIS_9_5:
2554                 preemph_reg_value = 0x0006000;
2555                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2556                 case DP_TRAIN_VOLTAGE_SWING_400:
2557                         demph_reg_value = 0x1B405555;
2558                         uniqtranscale_reg_value = 0x55ADDA3A;
2559                         break;
2560                 default:
2561                         return 0;
2562                 }
2563                 break;
2564         default:
2565                 return 0;
2566         }
2567
2568         mutex_lock(&dev_priv->dpio_lock);
2569         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2570         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2571         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2572                          uniqtranscale_reg_value);
2573         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2574         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2575         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2576         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2577         mutex_unlock(&dev_priv->dpio_lock);
2578
2579         return 0;
2580 }
2581
2582 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2583 {
2584         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2585         struct drm_i915_private *dev_priv = dev->dev_private;
2586         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2587         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2588         u32 deemph_reg_value, margin_reg_value, val;
2589         uint8_t train_set = intel_dp->train_set[0];
2590         enum dpio_channel ch = vlv_dport_to_channel(dport);
2591         enum pipe pipe = intel_crtc->pipe;
2592         int i;
2593
2594         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2595         case DP_TRAIN_PRE_EMPHASIS_0:
2596                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2597                 case DP_TRAIN_VOLTAGE_SWING_400:
2598                         deemph_reg_value = 128;
2599                         margin_reg_value = 52;
2600                         break;
2601                 case DP_TRAIN_VOLTAGE_SWING_600:
2602                         deemph_reg_value = 128;
2603                         margin_reg_value = 77;
2604                         break;
2605                 case DP_TRAIN_VOLTAGE_SWING_800:
2606                         deemph_reg_value = 128;
2607                         margin_reg_value = 102;
2608                         break;
2609                 case DP_TRAIN_VOLTAGE_SWING_1200:
2610                         deemph_reg_value = 128;
2611                         margin_reg_value = 154;
2612                         /* FIXME extra to set for 1200 */
2613                         break;
2614                 default:
2615                         return 0;
2616                 }
2617                 break;
2618         case DP_TRAIN_PRE_EMPHASIS_3_5:
2619                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2620                 case DP_TRAIN_VOLTAGE_SWING_400:
2621                         deemph_reg_value = 85;
2622                         margin_reg_value = 78;
2623                         break;
2624                 case DP_TRAIN_VOLTAGE_SWING_600:
2625                         deemph_reg_value = 85;
2626                         margin_reg_value = 116;
2627                         break;
2628                 case DP_TRAIN_VOLTAGE_SWING_800:
2629                         deemph_reg_value = 85;
2630                         margin_reg_value = 154;
2631                         break;
2632                 default:
2633                         return 0;
2634                 }
2635                 break;
2636         case DP_TRAIN_PRE_EMPHASIS_6:
2637                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2638                 case DP_TRAIN_VOLTAGE_SWING_400:
2639                         deemph_reg_value = 64;
2640                         margin_reg_value = 104;
2641                         break;
2642                 case DP_TRAIN_VOLTAGE_SWING_600:
2643                         deemph_reg_value = 64;
2644                         margin_reg_value = 154;
2645                         break;
2646                 default:
2647                         return 0;
2648                 }
2649                 break;
2650         case DP_TRAIN_PRE_EMPHASIS_9_5:
2651                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2652                 case DP_TRAIN_VOLTAGE_SWING_400:
2653                         deemph_reg_value = 43;
2654                         margin_reg_value = 154;
2655                         break;
2656                 default:
2657                         return 0;
2658                 }
2659                 break;
2660         default:
2661                 return 0;
2662         }
2663
2664         mutex_lock(&dev_priv->dpio_lock);
2665
2666         /* Clear calc init */
2667         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2668         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2669         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2670
2671         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2672         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2673         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2674
2675         /* Program swing deemph */
2676         for (i = 0; i < 4; i++) {
2677                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2678                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2679                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2680                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2681         }
2682
2683         /* Program swing margin */
2684         for (i = 0; i < 4; i++) {
2685                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2686                 val &= ~DPIO_SWING_MARGIN000_MASK;
2687                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2688                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2689         }
2690
2691         /* Disable unique transition scale */
2692         for (i = 0; i < 4; i++) {
2693                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2694                 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2695                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2696         }
2697
2698         if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2699                         == DP_TRAIN_PRE_EMPHASIS_0) &&
2700                 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2701                         == DP_TRAIN_VOLTAGE_SWING_1200)) {
2702
2703                 /*
2704                  * The document said it needs to set bit 27 for ch0 and bit 26
2705                  * for ch1. Might be a typo in the doc.
2706                  * For now, for this unique transition scale selection, set bit
2707                  * 27 for ch0 and ch1.
2708                  */
2709                 for (i = 0; i < 4; i++) {
2710                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2711                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2712                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2713                 }
2714
2715                 for (i = 0; i < 4; i++) {
2716                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2717                         val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2718                         val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2719                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2720                 }
2721         }
2722
2723         /* Start swing calculation */
2724         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2725         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2726         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2727
2728         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2729         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2730         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2731
2732         /* LRC Bypass */
2733         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2734         val |= DPIO_LRC_BYPASS;
2735         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2736
2737         mutex_unlock(&dev_priv->dpio_lock);
2738
2739         return 0;
2740 }
2741
2742 static void
2743 intel_get_adjust_train(struct intel_dp *intel_dp,
2744                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2745 {
2746         uint8_t v = 0;
2747         uint8_t p = 0;
2748         int lane;
2749         uint8_t voltage_max;
2750         uint8_t preemph_max;
2751
2752         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2753                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2754                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2755
2756                 if (this_v > v)
2757                         v = this_v;
2758                 if (this_p > p)
2759                         p = this_p;
2760         }
2761
2762         voltage_max = intel_dp_voltage_max(intel_dp);
2763         if (v >= voltage_max)
2764                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2765
2766         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2767         if (p >= preemph_max)
2768                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2769
2770         for (lane = 0; lane < 4; lane++)
2771                 intel_dp->train_set[lane] = v | p;
2772 }
2773
2774 static uint32_t
2775 intel_gen4_signal_levels(uint8_t train_set)
2776 {
2777         uint32_t        signal_levels = 0;
2778
2779         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2780         case DP_TRAIN_VOLTAGE_SWING_400:
2781         default:
2782                 signal_levels |= DP_VOLTAGE_0_4;
2783                 break;
2784         case DP_TRAIN_VOLTAGE_SWING_600:
2785                 signal_levels |= DP_VOLTAGE_0_6;
2786                 break;
2787         case DP_TRAIN_VOLTAGE_SWING_800:
2788                 signal_levels |= DP_VOLTAGE_0_8;
2789                 break;
2790         case DP_TRAIN_VOLTAGE_SWING_1200:
2791                 signal_levels |= DP_VOLTAGE_1_2;
2792                 break;
2793         }
2794         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2795         case DP_TRAIN_PRE_EMPHASIS_0:
2796         default:
2797                 signal_levels |= DP_PRE_EMPHASIS_0;
2798                 break;
2799         case DP_TRAIN_PRE_EMPHASIS_3_5:
2800                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2801                 break;
2802         case DP_TRAIN_PRE_EMPHASIS_6:
2803                 signal_levels |= DP_PRE_EMPHASIS_6;
2804                 break;
2805         case DP_TRAIN_PRE_EMPHASIS_9_5:
2806                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2807                 break;
2808         }
2809         return signal_levels;
2810 }
2811
2812 /* Gen6's DP voltage swing and pre-emphasis control */
2813 static uint32_t
2814 intel_gen6_edp_signal_levels(uint8_t train_set)
2815 {
2816         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2817                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2818         switch (signal_levels) {
2819         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2820         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2821                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2822         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2823                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2824         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2825         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2826                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2827         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2828         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2829                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2830         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2831         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2832                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2833         default:
2834                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2835                               "0x%x\n", signal_levels);
2836                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2837         }
2838 }
2839
2840 /* Gen7's DP voltage swing and pre-emphasis control */
2841 static uint32_t
2842 intel_gen7_edp_signal_levels(uint8_t train_set)
2843 {
2844         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2845                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2846         switch (signal_levels) {
2847         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2848                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2849         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2850                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2851         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2852                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2853
2854         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2855                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2856         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2857                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2858
2859         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2860                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2861         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2862                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2863
2864         default:
2865                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2866                               "0x%x\n", signal_levels);
2867                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2868         }
2869 }
2870
2871 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2872 static uint32_t
2873 intel_hsw_signal_levels(uint8_t train_set)
2874 {
2875         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2876                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2877         switch (signal_levels) {
2878         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2879                 return DDI_BUF_EMP_400MV_0DB_HSW;
2880         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2881                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2882         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2883                 return DDI_BUF_EMP_400MV_6DB_HSW;
2884         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2885                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2886
2887         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2888                 return DDI_BUF_EMP_600MV_0DB_HSW;
2889         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2890                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2891         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2892                 return DDI_BUF_EMP_600MV_6DB_HSW;
2893
2894         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2895                 return DDI_BUF_EMP_800MV_0DB_HSW;
2896         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2897                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2898         default:
2899                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2900                               "0x%x\n", signal_levels);
2901                 return DDI_BUF_EMP_400MV_0DB_HSW;
2902         }
2903 }
2904
2905 /* Properly updates "DP" with the correct signal levels. */
2906 static void
2907 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2908 {
2909         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2910         enum port port = intel_dig_port->port;
2911         struct drm_device *dev = intel_dig_port->base.base.dev;
2912         uint32_t signal_levels, mask;
2913         uint8_t train_set = intel_dp->train_set[0];
2914
2915         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2916                 signal_levels = intel_hsw_signal_levels(train_set);
2917                 mask = DDI_BUF_EMP_MASK;
2918         } else if (IS_CHERRYVIEW(dev)) {
2919                 signal_levels = intel_chv_signal_levels(intel_dp);
2920                 mask = 0;
2921         } else if (IS_VALLEYVIEW(dev)) {
2922                 signal_levels = intel_vlv_signal_levels(intel_dp);
2923                 mask = 0;
2924         } else if (IS_GEN7(dev) && port == PORT_A) {
2925                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2926                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2927         } else if (IS_GEN6(dev) && port == PORT_A) {
2928                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2929                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2930         } else {
2931                 signal_levels = intel_gen4_signal_levels(train_set);
2932                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2933         }
2934
2935         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2936
2937         *DP = (*DP & ~mask) | signal_levels;
2938 }
2939
2940 static bool
2941 intel_dp_set_link_train(struct intel_dp *intel_dp,
2942                         uint32_t *DP,
2943                         uint8_t dp_train_pat)
2944 {
2945         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2946         struct drm_device *dev = intel_dig_port->base.base.dev;
2947         struct drm_i915_private *dev_priv = dev->dev_private;
2948         enum port port = intel_dig_port->port;
2949         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2950         int ret, len;
2951
2952         if (HAS_DDI(dev)) {
2953                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2954
2955                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2956                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2957                 else
2958                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2959
2960                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2961                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2962                 case DP_TRAINING_PATTERN_DISABLE:
2963                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2964
2965                         break;
2966                 case DP_TRAINING_PATTERN_1:
2967                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2968                         break;
2969                 case DP_TRAINING_PATTERN_2:
2970                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2971                         break;
2972                 case DP_TRAINING_PATTERN_3:
2973                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2974                         break;
2975                 }
2976                 I915_WRITE(DP_TP_CTL(port), temp);
2977
2978         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2979                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2980
2981                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2982                 case DP_TRAINING_PATTERN_DISABLE:
2983                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2984                         break;
2985                 case DP_TRAINING_PATTERN_1:
2986                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2987                         break;
2988                 case DP_TRAINING_PATTERN_2:
2989                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2990                         break;
2991                 case DP_TRAINING_PATTERN_3:
2992                         DRM_ERROR("DP training pattern 3 not supported\n");
2993                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2994                         break;
2995                 }
2996
2997         } else {
2998                 if (IS_CHERRYVIEW(dev))
2999                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
3000                 else
3001                         *DP &= ~DP_LINK_TRAIN_MASK;
3002
3003                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3004                 case DP_TRAINING_PATTERN_DISABLE:
3005                         *DP |= DP_LINK_TRAIN_OFF;
3006                         break;
3007                 case DP_TRAINING_PATTERN_1:
3008                         *DP |= DP_LINK_TRAIN_PAT_1;
3009                         break;
3010                 case DP_TRAINING_PATTERN_2:
3011                         *DP |= DP_LINK_TRAIN_PAT_2;
3012                         break;
3013                 case DP_TRAINING_PATTERN_3:
3014                         if (IS_CHERRYVIEW(dev)) {
3015                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
3016                         } else {
3017                                 DRM_ERROR("DP training pattern 3 not supported\n");
3018                                 *DP |= DP_LINK_TRAIN_PAT_2;
3019                         }
3020                         break;
3021                 }
3022         }
3023
3024         I915_WRITE(intel_dp->output_reg, *DP);
3025         POSTING_READ(intel_dp->output_reg);
3026
3027         buf[0] = dp_train_pat;
3028         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3029             DP_TRAINING_PATTERN_DISABLE) {
3030                 /* don't write DP_TRAINING_LANEx_SET on disable */
3031                 len = 1;
3032         } else {
3033                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3034                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3035                 len = intel_dp->lane_count + 1;
3036         }
3037
3038         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3039                                 buf, len);
3040
3041         return ret == len;
3042 }
3043
3044 static bool
3045 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3046                         uint8_t dp_train_pat)
3047 {
3048         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3049         intel_dp_set_signal_levels(intel_dp, DP);
3050         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3051 }
3052
3053 static bool
3054 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3055                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
3056 {
3057         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3058         struct drm_device *dev = intel_dig_port->base.base.dev;
3059         struct drm_i915_private *dev_priv = dev->dev_private;
3060         int ret;
3061
3062         intel_get_adjust_train(intel_dp, link_status);
3063         intel_dp_set_signal_levels(intel_dp, DP);
3064
3065         I915_WRITE(intel_dp->output_reg, *DP);
3066         POSTING_READ(intel_dp->output_reg);
3067
3068         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3069                                 intel_dp->train_set, intel_dp->lane_count);
3070
3071         return ret == intel_dp->lane_count;
3072 }
3073
3074 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3075 {
3076         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3077         struct drm_device *dev = intel_dig_port->base.base.dev;
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079         enum port port = intel_dig_port->port;
3080         uint32_t val;
3081
3082         if (!HAS_DDI(dev))
3083                 return;
3084
3085         val = I915_READ(DP_TP_CTL(port));
3086         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3087         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3088         I915_WRITE(DP_TP_CTL(port), val);
3089
3090         /*
3091          * On PORT_A we can have only eDP in SST mode. There the only reason
3092          * we need to set idle transmission mode is to work around a HW issue
3093          * where we enable the pipe while not in idle link-training mode.
3094          * In this case there is requirement to wait for a minimum number of
3095          * idle patterns to be sent.
3096          */
3097         if (port == PORT_A)
3098                 return;
3099
3100         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3101                      1))
3102                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3103 }
3104
3105 /* Enable corresponding port and start training pattern 1 */
3106 void
3107 intel_dp_start_link_train(struct intel_dp *intel_dp)
3108 {
3109         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3110         struct drm_device *dev = encoder->dev;
3111         int i;
3112         uint8_t voltage;
3113         int voltage_tries, loop_tries;
3114         uint32_t DP = intel_dp->DP;
3115         uint8_t link_config[2];
3116
3117         if (HAS_DDI(dev))
3118                 intel_ddi_prepare_link_retrain(encoder);
3119
3120         /* Write the link configuration data */
3121         link_config[0] = intel_dp->link_bw;
3122         link_config[1] = intel_dp->lane_count;
3123         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3124                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3125         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3126
3127         link_config[0] = 0;
3128         link_config[1] = DP_SET_ANSI_8B10B;
3129         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3130
3131         DP |= DP_PORT_EN;
3132
3133         /* clock recovery */
3134         if (!intel_dp_reset_link_train(intel_dp, &DP,
3135                                        DP_TRAINING_PATTERN_1 |
3136                                        DP_LINK_SCRAMBLING_DISABLE)) {
3137                 DRM_ERROR("failed to enable link training\n");
3138                 return;
3139         }
3140
3141         voltage = 0xff;
3142         voltage_tries = 0;
3143         loop_tries = 0;
3144         for (;;) {
3145                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3146
3147                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3148                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3149                         DRM_ERROR("failed to get link status\n");
3150                         break;
3151                 }
3152
3153                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3154                         DRM_DEBUG_KMS("clock recovery OK\n");
3155                         break;
3156                 }
3157
3158                 /* Check to see if we've tried the max voltage */
3159                 for (i = 0; i < intel_dp->lane_count; i++)
3160                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3161                                 break;
3162                 if (i == intel_dp->lane_count) {
3163                         ++loop_tries;
3164                         if (loop_tries == 5) {
3165                                 DRM_ERROR("too many full retries, give up\n");
3166                                 break;
3167                         }
3168                         intel_dp_reset_link_train(intel_dp, &DP,
3169                                                   DP_TRAINING_PATTERN_1 |
3170                                                   DP_LINK_SCRAMBLING_DISABLE);
3171                         voltage_tries = 0;
3172                         continue;
3173                 }
3174
3175                 /* Check to see if we've tried the same voltage 5 times */
3176                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3177                         ++voltage_tries;
3178                         if (voltage_tries == 5) {
3179                                 DRM_ERROR("too many voltage retries, give up\n");
3180                                 break;
3181                         }
3182                 } else
3183                         voltage_tries = 0;
3184                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3185
3186                 /* Update training set as requested by target */
3187                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3188                         DRM_ERROR("failed to update link training\n");
3189                         break;
3190                 }
3191         }
3192
3193         intel_dp->DP = DP;
3194 }
3195
3196 void
3197 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3198 {
3199         bool channel_eq = false;
3200         int tries, cr_tries;
3201         uint32_t DP = intel_dp->DP;
3202         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3203
3204         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3205         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3206                 training_pattern = DP_TRAINING_PATTERN_3;
3207
3208         /* channel equalization */
3209         if (!intel_dp_set_link_train(intel_dp, &DP,
3210                                      training_pattern |
3211                                      DP_LINK_SCRAMBLING_DISABLE)) {
3212                 DRM_ERROR("failed to start channel equalization\n");
3213                 return;
3214         }
3215
3216         tries = 0;
3217         cr_tries = 0;
3218         channel_eq = false;
3219         for (;;) {
3220                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3221
3222                 if (cr_tries > 5) {
3223                         DRM_ERROR("failed to train DP, aborting\n");
3224                         break;
3225                 }
3226
3227                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3228                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3229                         DRM_ERROR("failed to get link status\n");
3230                         break;
3231                 }
3232
3233                 /* Make sure clock is still ok */
3234                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3235                         intel_dp_start_link_train(intel_dp);
3236                         intel_dp_set_link_train(intel_dp, &DP,
3237                                                 training_pattern |
3238                                                 DP_LINK_SCRAMBLING_DISABLE);
3239                         cr_tries++;
3240                         continue;
3241                 }
3242
3243                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3244                         channel_eq = true;
3245                         break;
3246                 }
3247
3248                 /* Try 5 times, then try clock recovery if that fails */
3249                 if (tries > 5) {
3250                         intel_dp_link_down(intel_dp);
3251                         intel_dp_start_link_train(intel_dp);
3252                         intel_dp_set_link_train(intel_dp, &DP,
3253                                                 training_pattern |
3254                                                 DP_LINK_SCRAMBLING_DISABLE);
3255                         tries = 0;
3256                         cr_tries++;
3257                         continue;
3258                 }
3259
3260                 /* Update training set as requested by target */
3261                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3262                         DRM_ERROR("failed to update link training\n");
3263                         break;
3264                 }
3265                 ++tries;
3266         }
3267
3268         intel_dp_set_idle_link_train(intel_dp);
3269
3270         intel_dp->DP = DP;
3271
3272         if (channel_eq)
3273                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3274
3275 }
3276
3277 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3278 {
3279         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3280                                 DP_TRAINING_PATTERN_DISABLE);
3281 }
3282
3283 static void
3284 intel_dp_link_down(struct intel_dp *intel_dp)
3285 {
3286         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3287         enum port port = intel_dig_port->port;
3288         struct drm_device *dev = intel_dig_port->base.base.dev;
3289         struct drm_i915_private *dev_priv = dev->dev_private;
3290         struct intel_crtc *intel_crtc =
3291                 to_intel_crtc(intel_dig_port->base.base.crtc);
3292         uint32_t DP = intel_dp->DP;
3293
3294         if (WARN_ON(HAS_DDI(dev)))
3295                 return;
3296
3297         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3298                 return;
3299
3300         DRM_DEBUG_KMS("\n");
3301
3302         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3303                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3304                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3305         } else {
3306                 if (IS_CHERRYVIEW(dev))
3307                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3308                 else
3309                         DP &= ~DP_LINK_TRAIN_MASK;
3310                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3311         }
3312         POSTING_READ(intel_dp->output_reg);
3313
3314         if (HAS_PCH_IBX(dev) &&
3315             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3316                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3317
3318                 /* Hardware workaround: leaving our transcoder select
3319                  * set to transcoder B while it's off will prevent the
3320                  * corresponding HDMI output on transcoder A.
3321                  *
3322                  * Combine this with another hardware workaround:
3323                  * transcoder select bit can only be cleared while the
3324                  * port is enabled.
3325                  */
3326                 DP &= ~DP_PIPEB_SELECT;
3327                 I915_WRITE(intel_dp->output_reg, DP);
3328
3329                 /* Changes to enable or select take place the vblank
3330                  * after being written.
3331                  */
3332                 if (WARN_ON(crtc == NULL)) {
3333                         /* We should never try to disable a port without a crtc
3334                          * attached. For paranoia keep the code around for a
3335                          * bit. */
3336                         POSTING_READ(intel_dp->output_reg);
3337                         msleep(50);
3338                 } else
3339                         intel_wait_for_vblank(dev, intel_crtc->pipe);
3340         }
3341
3342         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3343         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3344         POSTING_READ(intel_dp->output_reg);
3345         msleep(intel_dp->panel_power_down_delay);
3346 }
3347
3348 static bool
3349 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3350 {
3351         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3352         struct drm_device *dev = dig_port->base.base.dev;
3353         struct drm_i915_private *dev_priv = dev->dev_private;
3354
3355         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3356
3357         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3358                                     sizeof(intel_dp->dpcd)) < 0)
3359                 return false; /* aux transfer failed */
3360
3361         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3362                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3363         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3364
3365         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3366                 return false; /* DPCD not present */
3367
3368         /* Check if the panel supports PSR */
3369         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3370         if (is_edp(intel_dp)) {
3371                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3372                                         intel_dp->psr_dpcd,
3373                                         sizeof(intel_dp->psr_dpcd));
3374                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3375                         dev_priv->psr.sink_support = true;
3376                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3377                 }
3378         }
3379
3380         /* Training Pattern 3 support */
3381         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3382             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3383                 intel_dp->use_tps3 = true;
3384                 DRM_DEBUG_KMS("Displayport TPS3 supported");
3385         } else
3386                 intel_dp->use_tps3 = false;
3387
3388         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3389               DP_DWN_STRM_PORT_PRESENT))
3390                 return true; /* native DP sink */
3391
3392         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3393                 return true; /* no per-port downstream info */
3394
3395         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3396                                     intel_dp->downstream_ports,
3397                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3398                 return false; /* downstream port status fetch failed */
3399
3400         return true;
3401 }
3402
3403 static void
3404 intel_dp_probe_oui(struct intel_dp *intel_dp)
3405 {
3406         u8 buf[3];
3407
3408         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3409                 return;
3410
3411         intel_edp_panel_vdd_on(intel_dp);
3412
3413         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3414                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3415                               buf[0], buf[1], buf[2]);
3416
3417         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3418                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3419                               buf[0], buf[1], buf[2]);
3420
3421         edp_panel_vdd_off(intel_dp, false);
3422 }
3423
3424 static bool
3425 intel_dp_probe_mst(struct intel_dp *intel_dp)
3426 {
3427         u8 buf[1];
3428
3429         if (!intel_dp->can_mst)
3430                 return false;
3431
3432         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3433                 return false;
3434
3435         _edp_panel_vdd_on(intel_dp);
3436         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3437                 if (buf[0] & DP_MST_CAP) {
3438                         DRM_DEBUG_KMS("Sink is MST capable\n");
3439                         intel_dp->is_mst = true;
3440                 } else {
3441                         DRM_DEBUG_KMS("Sink is not MST capable\n");
3442                         intel_dp->is_mst = false;
3443                 }
3444         }
3445         edp_panel_vdd_off(intel_dp, false);
3446
3447         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3448         return intel_dp->is_mst;
3449 }
3450
3451 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3452 {
3453         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3454         struct drm_device *dev = intel_dig_port->base.base.dev;
3455         struct intel_crtc *intel_crtc =
3456                 to_intel_crtc(intel_dig_port->base.base.crtc);
3457         u8 buf[1];
3458
3459         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3460                 return -EAGAIN;
3461
3462         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3463                 return -ENOTTY;
3464
3465         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3466                                DP_TEST_SINK_START) < 0)
3467                 return -EAGAIN;
3468
3469         /* Wait 2 vblanks to be sure we will have the correct CRC value */
3470         intel_wait_for_vblank(dev, intel_crtc->pipe);
3471         intel_wait_for_vblank(dev, intel_crtc->pipe);
3472
3473         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3474                 return -EAGAIN;
3475
3476         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3477         return 0;
3478 }
3479
3480 static bool
3481 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3482 {
3483         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3484                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3485                                        sink_irq_vector, 1) == 1;
3486 }
3487
3488 static bool
3489 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3490 {
3491         int ret;
3492
3493         ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3494                                              DP_SINK_COUNT_ESI,
3495                                              sink_irq_vector, 14);
3496         if (ret != 14)
3497                 return false;
3498
3499         return true;
3500 }
3501
3502 static void
3503 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3504 {
3505         /* NAK by default */
3506         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3507 }
3508
3509 static int
3510 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3511 {
3512         bool bret;
3513
3514         if (intel_dp->is_mst) {
3515                 u8 esi[16] = { 0 };
3516                 int ret = 0;
3517                 int retry;
3518                 bool handled;
3519                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3520 go_again:
3521                 if (bret == true) {
3522
3523                         /* check link status - esi[10] = 0x200c */
3524                         if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3525                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3526                                 intel_dp_start_link_train(intel_dp);
3527                                 intel_dp_complete_link_train(intel_dp);
3528                                 intel_dp_stop_link_train(intel_dp);
3529                         }
3530
3531                         DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3532                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3533
3534                         if (handled) {
3535                                 for (retry = 0; retry < 3; retry++) {
3536                                         int wret;
3537                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3538                                                                  DP_SINK_COUNT_ESI+1,
3539                                                                  &esi[1], 3);
3540                                         if (wret == 3) {
3541                                                 break;
3542                                         }
3543                                 }
3544
3545                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3546                                 if (bret == true) {
3547                                         DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3548                                         goto go_again;
3549                                 }
3550                         } else
3551                                 ret = 0;
3552
3553                         return ret;
3554                 } else {
3555                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3556                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3557                         intel_dp->is_mst = false;
3558                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3559                         /* send a hotplug event */
3560                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3561                 }
3562         }
3563         return -EINVAL;
3564 }
3565
3566 /*
3567  * According to DP spec
3568  * 5.1.2:
3569  *  1. Read DPCD
3570  *  2. Configure link according to Receiver Capabilities
3571  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3572  *  4. Check link status on receipt of hot-plug interrupt
3573  */
3574 void
3575 intel_dp_check_link_status(struct intel_dp *intel_dp)
3576 {
3577         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3578         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3579         u8 sink_irq_vector;
3580         u8 link_status[DP_LINK_STATUS_SIZE];
3581
3582         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3583
3584         if (!intel_encoder->connectors_active)
3585                 return;
3586
3587         if (WARN_ON(!intel_encoder->base.crtc))
3588                 return;
3589
3590         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3591                 return;
3592
3593         /* Try to read receiver status if the link appears to be up */
3594         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3595                 return;
3596         }
3597
3598         /* Now read the DPCD to see if it's actually running */
3599         if (!intel_dp_get_dpcd(intel_dp)) {
3600                 return;
3601         }
3602
3603         /* Try to read the source of the interrupt */
3604         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3605             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3606                 /* Clear interrupt source */
3607                 drm_dp_dpcd_writeb(&intel_dp->aux,
3608                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3609                                    sink_irq_vector);
3610
3611                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3612                         intel_dp_handle_test_request(intel_dp);
3613                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3614                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3615         }
3616
3617         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3618                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3619                               intel_encoder->base.name);
3620                 intel_dp_start_link_train(intel_dp);
3621                 intel_dp_complete_link_train(intel_dp);
3622                 intel_dp_stop_link_train(intel_dp);
3623         }
3624 }
3625
3626 /* XXX this is probably wrong for multiple downstream ports */
3627 static enum drm_connector_status
3628 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3629 {
3630         uint8_t *dpcd = intel_dp->dpcd;
3631         uint8_t type;
3632
3633         if (!intel_dp_get_dpcd(intel_dp))
3634                 return connector_status_disconnected;
3635
3636         /* if there's no downstream port, we're done */
3637         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3638                 return connector_status_connected;
3639
3640         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3641         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3642             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3643                 uint8_t reg;
3644
3645                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3646                                             &reg, 1) < 0)
3647                         return connector_status_unknown;
3648
3649                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3650                                               : connector_status_disconnected;
3651         }
3652
3653         /* If no HPD, poke DDC gently */
3654         if (drm_probe_ddc(&intel_dp->aux.ddc))
3655                 return connector_status_connected;
3656
3657         /* Well we tried, say unknown for unreliable port types */
3658         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3659                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3660                 if (type == DP_DS_PORT_TYPE_VGA ||
3661                     type == DP_DS_PORT_TYPE_NON_EDID)
3662                         return connector_status_unknown;
3663         } else {
3664                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3665                         DP_DWN_STRM_PORT_TYPE_MASK;
3666                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3667                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
3668                         return connector_status_unknown;
3669         }
3670
3671         /* Anything else is out of spec, warn and ignore */
3672         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3673         return connector_status_disconnected;
3674 }
3675
3676 static enum drm_connector_status
3677 ironlake_dp_detect(struct intel_dp *intel_dp)
3678 {
3679         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3680         struct drm_i915_private *dev_priv = dev->dev_private;
3681         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3682         enum drm_connector_status status;
3683
3684         /* Can't disconnect eDP, but you can close the lid... */
3685         if (is_edp(intel_dp)) {
3686                 status = intel_panel_detect(dev);
3687                 if (status == connector_status_unknown)
3688                         status = connector_status_connected;
3689                 return status;
3690         }
3691
3692         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3693                 return connector_status_disconnected;
3694
3695         return intel_dp_detect_dpcd(intel_dp);
3696 }
3697
3698 static enum drm_connector_status
3699 g4x_dp_detect(struct intel_dp *intel_dp)
3700 {
3701         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3702         struct drm_i915_private *dev_priv = dev->dev_private;
3703         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3704         uint32_t bit;
3705
3706         /* Can't disconnect eDP, but you can close the lid... */
3707         if (is_edp(intel_dp)) {
3708                 enum drm_connector_status status;
3709
3710                 status = intel_panel_detect(dev);
3711                 if (status == connector_status_unknown)
3712                         status = connector_status_connected;
3713                 return status;
3714         }
3715
3716         if (IS_VALLEYVIEW(dev)) {
3717                 switch (intel_dig_port->port) {
3718                 case PORT_B:
3719                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3720                         break;
3721                 case PORT_C:
3722                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3723                         break;
3724                 case PORT_D:
3725                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3726                         break;
3727                 default:
3728                         return connector_status_unknown;
3729                 }
3730         } else {
3731                 switch (intel_dig_port->port) {
3732                 case PORT_B:
3733                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3734                         break;
3735                 case PORT_C:
3736                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3737                         break;
3738                 case PORT_D:
3739                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3740                         break;
3741                 default:
3742                         return connector_status_unknown;
3743                 }
3744         }
3745
3746         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3747                 return connector_status_disconnected;
3748
3749         return intel_dp_detect_dpcd(intel_dp);
3750 }
3751
3752 static struct edid *
3753 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3754 {
3755         struct intel_connector *intel_connector = to_intel_connector(connector);
3756
3757         /* use cached edid if we have one */
3758         if (intel_connector->edid) {
3759                 /* invalid edid */
3760                 if (IS_ERR(intel_connector->edid))
3761                         return NULL;
3762
3763                 return drm_edid_duplicate(intel_connector->edid);
3764         }
3765
3766         return drm_get_edid(connector, adapter);
3767 }
3768
3769 static int
3770 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3771 {
3772         struct intel_connector *intel_connector = to_intel_connector(connector);
3773
3774         /* use cached edid if we have one */
3775         if (intel_connector->edid) {
3776                 /* invalid edid */
3777                 if (IS_ERR(intel_connector->edid))
3778                         return 0;
3779
3780                 return intel_connector_update_modes(connector,
3781                                                     intel_connector->edid);
3782         }
3783
3784         return intel_ddc_get_modes(connector, adapter);
3785 }
3786
3787 static enum drm_connector_status
3788 intel_dp_detect(struct drm_connector *connector, bool force)
3789 {
3790         struct intel_dp *intel_dp = intel_attached_dp(connector);
3791         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3792         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3793         struct drm_device *dev = connector->dev;
3794         struct drm_i915_private *dev_priv = dev->dev_private;
3795         enum drm_connector_status status;
3796         enum intel_display_power_domain power_domain;
3797         struct edid *edid = NULL;
3798         bool ret;
3799
3800         power_domain = intel_display_port_power_domain(intel_encoder);
3801         intel_display_power_get(dev_priv, power_domain);
3802
3803         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3804                       connector->base.id, connector->name);
3805
3806         if (intel_dp->is_mst) {
3807                 /* MST devices are disconnected from a monitor POV */
3808                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3809                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3810                 status = connector_status_disconnected;
3811                 goto out;
3812         }
3813
3814         intel_dp->has_audio = false;
3815
3816         if (HAS_PCH_SPLIT(dev))
3817                 status = ironlake_dp_detect(intel_dp);
3818         else
3819                 status = g4x_dp_detect(intel_dp);
3820
3821         if (status != connector_status_connected)
3822                 goto out;
3823
3824         intel_dp_probe_oui(intel_dp);
3825
3826         ret = intel_dp_probe_mst(intel_dp);
3827         if (ret) {
3828                 /* if we are in MST mode then this connector
3829                    won't appear connected or have anything with EDID on it */
3830                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3831                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3832                 status = connector_status_disconnected;
3833                 goto out;
3834         }
3835
3836         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3837                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3838         } else {
3839                 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3840                 if (edid) {
3841                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3842                         kfree(edid);
3843                 }
3844         }
3845
3846         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3847                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3848         status = connector_status_connected;
3849
3850 out:
3851         intel_display_power_put(dev_priv, power_domain);
3852         return status;
3853 }
3854
3855 static int intel_dp_get_modes(struct drm_connector *connector)
3856 {
3857         struct intel_dp *intel_dp = intel_attached_dp(connector);
3858         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3859         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3860         struct intel_connector *intel_connector = to_intel_connector(connector);
3861         struct drm_device *dev = connector->dev;
3862         struct drm_i915_private *dev_priv = dev->dev_private;
3863         enum intel_display_power_domain power_domain;
3864         int ret;
3865
3866         /* We should parse the EDID data and find out if it has an audio sink
3867          */
3868
3869         power_domain = intel_display_port_power_domain(intel_encoder);
3870         intel_display_power_get(dev_priv, power_domain);
3871
3872         ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3873         intel_display_power_put(dev_priv, power_domain);
3874         if (ret)
3875                 return ret;
3876
3877         /* if eDP has no EDID, fall back to fixed mode */
3878         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3879                 struct drm_display_mode *mode;
3880                 mode = drm_mode_duplicate(dev,
3881                                           intel_connector->panel.fixed_mode);
3882                 if (mode) {
3883                         drm_mode_probed_add(connector, mode);
3884                         return 1;
3885                 }
3886         }
3887         return 0;
3888 }
3889
3890 static bool
3891 intel_dp_detect_audio(struct drm_connector *connector)
3892 {
3893         struct intel_dp *intel_dp = intel_attached_dp(connector);
3894         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3895         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3896         struct drm_device *dev = connector->dev;
3897         struct drm_i915_private *dev_priv = dev->dev_private;
3898         enum intel_display_power_domain power_domain;
3899         struct edid *edid;
3900         bool has_audio = false;
3901
3902         power_domain = intel_display_port_power_domain(intel_encoder);
3903         intel_display_power_get(dev_priv, power_domain);
3904
3905         edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3906         if (edid) {
3907                 has_audio = drm_detect_monitor_audio(edid);
3908                 kfree(edid);
3909         }
3910
3911         intel_display_power_put(dev_priv, power_domain);
3912
3913         return has_audio;
3914 }
3915
3916 static int
3917 intel_dp_set_property(struct drm_connector *connector,
3918                       struct drm_property *property,
3919                       uint64_t val)
3920 {
3921         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3922         struct intel_connector *intel_connector = to_intel_connector(connector);
3923         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3924         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3925         int ret;
3926
3927         ret = drm_object_property_set_value(&connector->base, property, val);
3928         if (ret)
3929                 return ret;
3930
3931         if (property == dev_priv->force_audio_property) {
3932                 int i = val;
3933                 bool has_audio;
3934
3935                 if (i == intel_dp->force_audio)
3936                         return 0;
3937
3938                 intel_dp->force_audio = i;
3939
3940                 if (i == HDMI_AUDIO_AUTO)
3941                         has_audio = intel_dp_detect_audio(connector);
3942                 else
3943                         has_audio = (i == HDMI_AUDIO_ON);
3944
3945                 if (has_audio == intel_dp->has_audio)
3946                         return 0;
3947
3948                 intel_dp->has_audio = has_audio;
3949                 goto done;
3950         }
3951
3952         if (property == dev_priv->broadcast_rgb_property) {
3953                 bool old_auto = intel_dp->color_range_auto;
3954                 uint32_t old_range = intel_dp->color_range;
3955
3956                 switch (val) {
3957                 case INTEL_BROADCAST_RGB_AUTO:
3958                         intel_dp->color_range_auto = true;
3959                         break;
3960                 case INTEL_BROADCAST_RGB_FULL:
3961                         intel_dp->color_range_auto = false;
3962                         intel_dp->color_range = 0;
3963                         break;
3964                 case INTEL_BROADCAST_RGB_LIMITED:
3965                         intel_dp->color_range_auto = false;
3966                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3967                         break;
3968                 default:
3969                         return -EINVAL;
3970                 }
3971
3972                 if (old_auto == intel_dp->color_range_auto &&
3973                     old_range == intel_dp->color_range)
3974                         return 0;
3975
3976                 goto done;
3977         }
3978
3979         if (is_edp(intel_dp) &&
3980             property == connector->dev->mode_config.scaling_mode_property) {
3981                 if (val == DRM_MODE_SCALE_NONE) {
3982                         DRM_DEBUG_KMS("no scaling not supported\n");
3983                         return -EINVAL;
3984                 }
3985
3986                 if (intel_connector->panel.fitting_mode == val) {
3987                         /* the eDP scaling property is not changed */
3988                         return 0;
3989                 }
3990                 intel_connector->panel.fitting_mode = val;
3991
3992                 goto done;
3993         }
3994
3995         return -EINVAL;
3996
3997 done:
3998         if (intel_encoder->base.crtc)
3999                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4000
4001         return 0;
4002 }
4003
4004 static void
4005 intel_dp_connector_destroy(struct drm_connector *connector)
4006 {
4007         struct intel_connector *intel_connector = to_intel_connector(connector);
4008
4009         if (!IS_ERR_OR_NULL(intel_connector->edid))
4010                 kfree(intel_connector->edid);
4011
4012         /* Can't call is_edp() since the encoder may have been destroyed
4013          * already. */
4014         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4015                 intel_panel_fini(&intel_connector->panel);
4016
4017         drm_connector_cleanup(connector);
4018         kfree(connector);
4019 }
4020
4021 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4022 {
4023         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4024         struct intel_dp *intel_dp = &intel_dig_port->dp;
4025         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4026
4027         drm_dp_aux_unregister(&intel_dp->aux);
4028         intel_dp_mst_encoder_cleanup(intel_dig_port);
4029         drm_encoder_cleanup(encoder);
4030         if (is_edp(intel_dp)) {
4031                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4032                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4033                 edp_panel_vdd_off_sync(intel_dp);
4034                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4035                 if (intel_dp->edp_notifier.notifier_call) {
4036                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4037                         intel_dp->edp_notifier.notifier_call = NULL;
4038                 }
4039         }
4040         kfree(intel_dig_port);
4041 }
4042
4043 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4044 {
4045         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4046
4047         if (!is_edp(intel_dp))
4048                 return;
4049
4050         edp_panel_vdd_off_sync(intel_dp);
4051 }
4052
4053 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4054 {
4055         intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4056 }
4057
4058 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4059         .dpms = intel_connector_dpms,
4060         .detect = intel_dp_detect,
4061         .fill_modes = drm_helper_probe_single_connector_modes,
4062         .set_property = intel_dp_set_property,
4063         .destroy = intel_dp_connector_destroy,
4064 };
4065
4066 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4067         .get_modes = intel_dp_get_modes,
4068         .mode_valid = intel_dp_mode_valid,
4069         .best_encoder = intel_best_encoder,
4070 };
4071
4072 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4073         .reset = intel_dp_encoder_reset,
4074         .destroy = intel_dp_encoder_destroy,
4075 };
4076
4077 void
4078 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4079 {
4080         return;
4081 }
4082
4083 bool
4084 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4085 {
4086         struct intel_dp *intel_dp = &intel_dig_port->dp;
4087         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4088         struct drm_device *dev = intel_dig_port->base.base.dev;
4089         struct drm_i915_private *dev_priv = dev->dev_private;
4090         enum intel_display_power_domain power_domain;
4091         bool ret = true;
4092
4093         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4094                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4095
4096         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4097                       port_name(intel_dig_port->port),
4098                       long_hpd ? "long" : "short");
4099
4100         power_domain = intel_display_port_power_domain(intel_encoder);
4101         intel_display_power_get(dev_priv, power_domain);
4102
4103         if (long_hpd) {
4104                 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4105                         goto mst_fail;
4106
4107                 if (!intel_dp_get_dpcd(intel_dp)) {
4108                         goto mst_fail;
4109                 }
4110
4111                 intel_dp_probe_oui(intel_dp);
4112
4113                 if (!intel_dp_probe_mst(intel_dp))
4114                         goto mst_fail;
4115
4116         } else {
4117                 if (intel_dp->is_mst) {
4118                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4119                                 goto mst_fail;
4120                 }
4121
4122                 if (!intel_dp->is_mst) {
4123                         /*
4124                          * we'll check the link status via the normal hot plug path later -
4125                          * but for short hpds we should check it now
4126                          */
4127                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4128                         intel_dp_check_link_status(intel_dp);
4129                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4130                 }
4131         }
4132         ret = false;
4133         goto put_power;
4134 mst_fail:
4135         /* if we were in MST mode, and device is not there get out of MST mode */
4136         if (intel_dp->is_mst) {
4137                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4138                 intel_dp->is_mst = false;
4139                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4140         }
4141 put_power:
4142         intel_display_power_put(dev_priv, power_domain);
4143
4144         return ret;
4145 }
4146
4147 /* Return which DP Port should be selected for Transcoder DP control */
4148 int
4149 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4150 {
4151         struct drm_device *dev = crtc->dev;
4152         struct intel_encoder *intel_encoder;
4153         struct intel_dp *intel_dp;
4154
4155         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4156                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4157
4158                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4159                     intel_encoder->type == INTEL_OUTPUT_EDP)
4160                         return intel_dp->output_reg;
4161         }
4162
4163         return -1;
4164 }
4165
4166 /* check the VBT to see whether the eDP is on DP-D port */
4167 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4168 {
4169         struct drm_i915_private *dev_priv = dev->dev_private;
4170         union child_device_config *p_child;
4171         int i;
4172         static const short port_mapping[] = {
4173                 [PORT_B] = PORT_IDPB,
4174                 [PORT_C] = PORT_IDPC,
4175                 [PORT_D] = PORT_IDPD,
4176         };
4177
4178         if (port == PORT_A)
4179                 return true;
4180
4181         if (!dev_priv->vbt.child_dev_num)
4182                 return false;
4183
4184         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4185                 p_child = dev_priv->vbt.child_dev + i;
4186
4187                 if (p_child->common.dvo_port == port_mapping[port] &&
4188                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4189                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4190                         return true;
4191         }
4192         return false;
4193 }
4194
4195 void
4196 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4197 {
4198         struct intel_connector *intel_connector = to_intel_connector(connector);
4199
4200         intel_attach_force_audio_property(connector);
4201         intel_attach_broadcast_rgb_property(connector);
4202         intel_dp->color_range_auto = true;
4203
4204         if (is_edp(intel_dp)) {
4205                 drm_mode_create_scaling_mode_property(connector->dev);
4206                 drm_object_attach_property(
4207                         &connector->base,
4208                         connector->dev->mode_config.scaling_mode_property,
4209                         DRM_MODE_SCALE_ASPECT);
4210                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4211         }
4212 }
4213
4214 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4215 {
4216         intel_dp->last_power_cycle = jiffies;
4217         intel_dp->last_power_on = jiffies;
4218         intel_dp->last_backlight_off = jiffies;
4219 }
4220
4221 static void
4222 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4223                                     struct intel_dp *intel_dp,
4224                                     struct edp_power_seq *out)
4225 {
4226         struct drm_i915_private *dev_priv = dev->dev_private;
4227         struct edp_power_seq cur, vbt, spec, final;
4228         u32 pp_on, pp_off, pp_div, pp;
4229         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4230
4231         if (HAS_PCH_SPLIT(dev)) {
4232                 pp_ctrl_reg = PCH_PP_CONTROL;
4233                 pp_on_reg = PCH_PP_ON_DELAYS;
4234                 pp_off_reg = PCH_PP_OFF_DELAYS;
4235                 pp_div_reg = PCH_PP_DIVISOR;
4236         } else {
4237                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4238
4239                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4240                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4241                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4242                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4243         }
4244
4245         /* Workaround: Need to write PP_CONTROL with the unlock key as
4246          * the very first thing. */
4247         pp = ironlake_get_pp_control(intel_dp);
4248         I915_WRITE(pp_ctrl_reg, pp);
4249
4250         pp_on = I915_READ(pp_on_reg);
4251         pp_off = I915_READ(pp_off_reg);
4252         pp_div = I915_READ(pp_div_reg);
4253
4254         /* Pull timing values out of registers */
4255         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4256                 PANEL_POWER_UP_DELAY_SHIFT;
4257
4258         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4259                 PANEL_LIGHT_ON_DELAY_SHIFT;
4260
4261         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4262                 PANEL_LIGHT_OFF_DELAY_SHIFT;
4263
4264         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4265                 PANEL_POWER_DOWN_DELAY_SHIFT;
4266
4267         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4268                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4269
4270         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4271                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4272
4273         vbt = dev_priv->vbt.edp_pps;
4274
4275         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4276          * our hw here, which are all in 100usec. */
4277         spec.t1_t3 = 210 * 10;
4278         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4279         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4280         spec.t10 = 500 * 10;
4281         /* This one is special and actually in units of 100ms, but zero
4282          * based in the hw (so we need to add 100 ms). But the sw vbt
4283          * table multiplies it with 1000 to make it in units of 100usec,
4284          * too. */
4285         spec.t11_t12 = (510 + 100) * 10;
4286
4287         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4288                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4289
4290         /* Use the max of the register settings and vbt. If both are
4291          * unset, fall back to the spec limits. */
4292 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
4293                                        spec.field : \
4294                                        max(cur.field, vbt.field))
4295         assign_final(t1_t3);
4296         assign_final(t8);
4297         assign_final(t9);
4298         assign_final(t10);
4299         assign_final(t11_t12);
4300 #undef assign_final
4301
4302 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
4303         intel_dp->panel_power_up_delay = get_delay(t1_t3);
4304         intel_dp->backlight_on_delay = get_delay(t8);
4305         intel_dp->backlight_off_delay = get_delay(t9);
4306         intel_dp->panel_power_down_delay = get_delay(t10);
4307         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4308 #undef get_delay
4309
4310         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4311                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4312                       intel_dp->panel_power_cycle_delay);
4313
4314         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4315                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4316
4317         if (out)
4318                 *out = final;
4319 }
4320
4321 static void
4322 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4323                                               struct intel_dp *intel_dp,
4324                                               struct edp_power_seq *seq)
4325 {
4326         struct drm_i915_private *dev_priv = dev->dev_private;
4327         u32 pp_on, pp_off, pp_div, port_sel = 0;
4328         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4329         int pp_on_reg, pp_off_reg, pp_div_reg;
4330
4331         if (HAS_PCH_SPLIT(dev)) {
4332                 pp_on_reg = PCH_PP_ON_DELAYS;
4333                 pp_off_reg = PCH_PP_OFF_DELAYS;
4334                 pp_div_reg = PCH_PP_DIVISOR;
4335         } else {
4336                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4337
4338                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4339                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4340                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4341         }
4342
4343         /*
4344          * And finally store the new values in the power sequencer. The
4345          * backlight delays are set to 1 because we do manual waits on them. For
4346          * T8, even BSpec recommends doing it. For T9, if we don't do this,
4347          * we'll end up waiting for the backlight off delay twice: once when we
4348          * do the manual sleep, and once when we disable the panel and wait for
4349          * the PP_STATUS bit to become zero.
4350          */
4351         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4352                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4353         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4354                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4355         /* Compute the divisor for the pp clock, simply match the Bspec
4356          * formula. */
4357         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4358         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4359                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
4360
4361         /* Haswell doesn't have any port selection bits for the panel
4362          * power sequencer any more. */
4363         if (IS_VALLEYVIEW(dev)) {
4364                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
4365                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
4366                 else
4367                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
4368         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4369                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
4370                         port_sel = PANEL_PORT_SELECT_DPA;
4371                 else
4372                         port_sel = PANEL_PORT_SELECT_DPD;
4373         }
4374
4375         pp_on |= port_sel;
4376
4377         I915_WRITE(pp_on_reg, pp_on);
4378         I915_WRITE(pp_off_reg, pp_off);
4379         I915_WRITE(pp_div_reg, pp_div);
4380
4381         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4382                       I915_READ(pp_on_reg),
4383                       I915_READ(pp_off_reg),
4384                       I915_READ(pp_div_reg));
4385 }
4386
4387 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4388 {
4389         struct drm_i915_private *dev_priv = dev->dev_private;
4390         struct intel_encoder *encoder;
4391         struct intel_dp *intel_dp = NULL;
4392         struct intel_crtc_config *config = NULL;
4393         struct intel_crtc *intel_crtc = NULL;
4394         struct intel_connector *intel_connector = dev_priv->drrs.connector;
4395         u32 reg, val;
4396         enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4397
4398         if (refresh_rate <= 0) {
4399                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4400                 return;
4401         }
4402
4403         if (intel_connector == NULL) {
4404                 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4405                 return;
4406         }
4407
4408         /*
4409          * FIXME: This needs proper synchronization with psr state. But really
4410          * hard to tell without seeing the user of this function of this code.
4411          * Check locking and ordering once that lands.
4412          */
4413         if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4414                 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4415                 return;
4416         }
4417
4418         encoder = intel_attached_encoder(&intel_connector->base);
4419         intel_dp = enc_to_intel_dp(&encoder->base);
4420         intel_crtc = encoder->new_crtc;
4421
4422         if (!intel_crtc) {
4423                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4424                 return;
4425         }
4426
4427         config = &intel_crtc->config;
4428
4429         if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4430                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4431                 return;
4432         }
4433
4434         if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4435                 index = DRRS_LOW_RR;
4436
4437         if (index == intel_dp->drrs_state.refresh_rate_type) {
4438                 DRM_DEBUG_KMS(
4439                         "DRRS requested for previously set RR...ignoring\n");
4440                 return;
4441         }
4442
4443         if (!intel_crtc->active) {
4444                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4445                 return;
4446         }
4447
4448         if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4449                 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4450                 val = I915_READ(reg);
4451                 if (index > DRRS_HIGH_RR) {
4452                         val |= PIPECONF_EDP_RR_MODE_SWITCH;
4453                         intel_dp_set_m_n(intel_crtc);
4454                 } else {
4455                         val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4456                 }
4457                 I915_WRITE(reg, val);
4458         }
4459
4460         /*
4461          * mutex taken to ensure that there is no race between differnt
4462          * drrs calls trying to update refresh rate. This scenario may occur
4463          * in future when idleness detection based DRRS in kernel and
4464          * possible calls from user space to set differnt RR are made.
4465          */
4466
4467         mutex_lock(&intel_dp->drrs_state.mutex);
4468
4469         intel_dp->drrs_state.refresh_rate_type = index;
4470
4471         mutex_unlock(&intel_dp->drrs_state.mutex);
4472
4473         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4474 }
4475
4476 static struct drm_display_mode *
4477 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4478                         struct intel_connector *intel_connector,
4479                         struct drm_display_mode *fixed_mode)
4480 {
4481         struct drm_connector *connector = &intel_connector->base;
4482         struct intel_dp *intel_dp = &intel_dig_port->dp;
4483         struct drm_device *dev = intel_dig_port->base.base.dev;
4484         struct drm_i915_private *dev_priv = dev->dev_private;
4485         struct drm_display_mode *downclock_mode = NULL;
4486
4487         if (INTEL_INFO(dev)->gen <= 6) {
4488                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4489                 return NULL;
4490         }
4491
4492         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4493                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4494                 return NULL;
4495         }
4496
4497         downclock_mode = intel_find_panel_downclock
4498                                         (dev, fixed_mode, connector);
4499
4500         if (!downclock_mode) {
4501                 DRM_DEBUG_KMS("DRRS not supported\n");
4502                 return NULL;
4503         }
4504
4505         dev_priv->drrs.connector = intel_connector;
4506
4507         mutex_init(&intel_dp->drrs_state.mutex);
4508
4509         intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4510
4511         intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4512         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4513         return downclock_mode;
4514 }
4515
4516 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4517 {
4518         struct drm_device *dev = intel_encoder->base.dev;
4519         struct drm_i915_private *dev_priv = dev->dev_private;
4520         struct intel_dp *intel_dp;
4521         enum intel_display_power_domain power_domain;
4522
4523         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4524                 return;
4525
4526         intel_dp = enc_to_intel_dp(&intel_encoder->base);
4527         if (!edp_have_panel_vdd(intel_dp))
4528                 return;
4529         /*
4530          * The VDD bit needs a power domain reference, so if the bit is
4531          * already enabled when we boot or resume, grab this reference and
4532          * schedule a vdd off, so we don't hold on to the reference
4533          * indefinitely.
4534          */
4535         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4536         power_domain = intel_display_port_power_domain(intel_encoder);
4537         intel_display_power_get(dev_priv, power_domain);
4538
4539         edp_panel_vdd_schedule_off(intel_dp);
4540 }
4541
4542 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4543                                      struct intel_connector *intel_connector,
4544                                      struct edp_power_seq *power_seq)
4545 {
4546         struct drm_connector *connector = &intel_connector->base;
4547         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4548         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4549         struct drm_device *dev = intel_encoder->base.dev;
4550         struct drm_i915_private *dev_priv = dev->dev_private;
4551         struct drm_display_mode *fixed_mode = NULL;
4552         struct drm_display_mode *downclock_mode = NULL;
4553         bool has_dpcd;
4554         struct drm_display_mode *scan;
4555         struct edid *edid;
4556
4557         intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4558
4559         if (!is_edp(intel_dp))
4560                 return true;
4561
4562         intel_edp_panel_vdd_sanitize(intel_encoder);
4563
4564         /* Cache DPCD and EDID for edp. */
4565         intel_edp_panel_vdd_on(intel_dp);
4566         has_dpcd = intel_dp_get_dpcd(intel_dp);
4567         edp_panel_vdd_off(intel_dp, false);
4568
4569         if (has_dpcd) {
4570                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4571                         dev_priv->no_aux_handshake =
4572                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4573                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4574         } else {
4575                 /* if this fails, presume the device is a ghost */
4576                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4577                 return false;
4578         }
4579
4580         /* We now know it's not a ghost, init power sequence regs. */
4581         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4582
4583         mutex_lock(&dev->mode_config.mutex);
4584         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4585         if (edid) {
4586                 if (drm_add_edid_modes(connector, edid)) {
4587                         drm_mode_connector_update_edid_property(connector,
4588                                                                 edid);
4589                         drm_edid_to_eld(connector, edid);
4590                 } else {
4591                         kfree(edid);
4592                         edid = ERR_PTR(-EINVAL);
4593                 }
4594         } else {
4595                 edid = ERR_PTR(-ENOENT);
4596         }
4597         intel_connector->edid = edid;
4598
4599         /* prefer fixed mode from EDID if available */
4600         list_for_each_entry(scan, &connector->probed_modes, head) {
4601                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4602                         fixed_mode = drm_mode_duplicate(dev, scan);
4603                         downclock_mode = intel_dp_drrs_init(
4604                                                 intel_dig_port,
4605                                                 intel_connector, fixed_mode);
4606                         break;
4607                 }
4608         }
4609
4610         /* fallback to VBT if available for eDP */
4611         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4612                 fixed_mode = drm_mode_duplicate(dev,
4613                                         dev_priv->vbt.lfp_lvds_vbt_mode);
4614                 if (fixed_mode)
4615                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4616         }
4617         mutex_unlock(&dev->mode_config.mutex);
4618
4619         if (IS_VALLEYVIEW(dev)) {
4620                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4621                 register_reboot_notifier(&intel_dp->edp_notifier);
4622         }
4623
4624         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4625         intel_connector->panel.backlight_power = intel_edp_backlight_power;
4626         intel_panel_setup_backlight(connector);
4627
4628         return true;
4629 }
4630
4631 bool
4632 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4633                         struct intel_connector *intel_connector)
4634 {
4635         struct drm_connector *connector = &intel_connector->base;
4636         struct intel_dp *intel_dp = &intel_dig_port->dp;
4637         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4638         struct drm_device *dev = intel_encoder->base.dev;
4639         struct drm_i915_private *dev_priv = dev->dev_private;
4640         enum port port = intel_dig_port->port;
4641         struct edp_power_seq power_seq = { 0 };
4642         int type;
4643
4644         /* intel_dp vfuncs */
4645         if (IS_VALLEYVIEW(dev))
4646                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4647         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4648                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4649         else if (HAS_PCH_SPLIT(dev))
4650                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4651         else
4652                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4653
4654         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4655
4656         /* Preserve the current hw state. */
4657         intel_dp->DP = I915_READ(intel_dp->output_reg);
4658         intel_dp->attached_connector = intel_connector;
4659
4660         if (intel_dp_is_edp(dev, port))
4661                 type = DRM_MODE_CONNECTOR_eDP;
4662         else
4663                 type = DRM_MODE_CONNECTOR_DisplayPort;
4664
4665         /*
4666          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4667          * for DP the encoder type can be set by the caller to
4668          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4669          */
4670         if (type == DRM_MODE_CONNECTOR_eDP)
4671                 intel_encoder->type = INTEL_OUTPUT_EDP;
4672
4673         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4674                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4675                         port_name(port));
4676
4677         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4678         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4679
4680         connector->interlace_allowed = true;
4681         connector->doublescan_allowed = 0;
4682
4683         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4684                           edp_panel_vdd_work);
4685
4686         intel_connector_attach_encoder(intel_connector, intel_encoder);
4687         drm_connector_register(connector);
4688
4689         if (HAS_DDI(dev))
4690                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4691         else
4692                 intel_connector->get_hw_state = intel_connector_get_hw_state;
4693         intel_connector->unregister = intel_dp_connector_unregister;
4694
4695         /* Set up the hotplug pin. */
4696         switch (port) {
4697         case PORT_A:
4698                 intel_encoder->hpd_pin = HPD_PORT_A;
4699                 break;
4700         case PORT_B:
4701                 intel_encoder->hpd_pin = HPD_PORT_B;
4702                 break;
4703         case PORT_C:
4704                 intel_encoder->hpd_pin = HPD_PORT_C;
4705                 break;
4706         case PORT_D:
4707                 intel_encoder->hpd_pin = HPD_PORT_D;
4708                 break;
4709         default:
4710                 BUG();
4711         }
4712
4713         if (is_edp(intel_dp)) {
4714                 intel_dp_init_panel_power_timestamps(intel_dp);
4715                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4716         }
4717
4718         intel_dp_aux_init(intel_dp, intel_connector);
4719
4720         /* init MST on ports that can support it */
4721         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4722                 if (port == PORT_B || port == PORT_C || port == PORT_D) {
4723                         intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4724                 }
4725         }
4726
4727         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4728                 drm_dp_aux_unregister(&intel_dp->aux);
4729                 if (is_edp(intel_dp)) {
4730                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4731                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4732                         edp_panel_vdd_off_sync(intel_dp);
4733                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4734                 }
4735                 drm_connector_unregister(connector);
4736                 drm_connector_cleanup(connector);
4737                 return false;
4738         }
4739
4740         intel_dp_add_properties(intel_dp, connector);
4741
4742         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4743          * 0xd.  Failure to do so will result in spurious interrupts being
4744          * generated on the port when a cable is not attached.
4745          */
4746         if (IS_G4X(dev) && !IS_GM45(dev)) {
4747                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4748                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4749         }
4750
4751         return true;
4752 }
4753
4754 void
4755 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4756 {
4757         struct drm_i915_private *dev_priv = dev->dev_private;
4758         struct intel_digital_port *intel_dig_port;
4759         struct intel_encoder *intel_encoder;
4760         struct drm_encoder *encoder;
4761         struct intel_connector *intel_connector;
4762
4763         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4764         if (!intel_dig_port)
4765                 return;
4766
4767         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4768         if (!intel_connector) {
4769                 kfree(intel_dig_port);
4770                 return;
4771         }
4772
4773         intel_encoder = &intel_dig_port->base;
4774         encoder = &intel_encoder->base;
4775
4776         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4777                          DRM_MODE_ENCODER_TMDS);
4778
4779         intel_encoder->compute_config = intel_dp_compute_config;
4780         intel_encoder->disable = intel_disable_dp;
4781         intel_encoder->get_hw_state = intel_dp_get_hw_state;
4782         intel_encoder->get_config = intel_dp_get_config;
4783         intel_encoder->suspend = intel_dp_encoder_suspend;
4784         if (IS_CHERRYVIEW(dev)) {
4785                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4786                 intel_encoder->pre_enable = chv_pre_enable_dp;
4787                 intel_encoder->enable = vlv_enable_dp;
4788                 intel_encoder->post_disable = chv_post_disable_dp;
4789         } else if (IS_VALLEYVIEW(dev)) {
4790                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4791                 intel_encoder->pre_enable = vlv_pre_enable_dp;
4792                 intel_encoder->enable = vlv_enable_dp;
4793                 intel_encoder->post_disable = vlv_post_disable_dp;
4794         } else {
4795                 intel_encoder->pre_enable = g4x_pre_enable_dp;
4796                 intel_encoder->enable = g4x_enable_dp;
4797                 intel_encoder->post_disable = g4x_post_disable_dp;
4798         }
4799
4800         intel_dig_port->port = port;
4801         intel_dig_port->dp.output_reg = output_reg;
4802
4803         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4804         if (IS_CHERRYVIEW(dev)) {
4805                 if (port == PORT_D)
4806                         intel_encoder->crtc_mask = 1 << 2;
4807                 else
4808                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4809         } else {
4810                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4811         }
4812         intel_encoder->cloneable = 0;
4813         intel_encoder->hot_plug = intel_dp_hot_plug;
4814
4815         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4816         dev_priv->hpd_irq_port[port] = intel_dig_port;
4817
4818         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4819                 drm_encoder_cleanup(encoder);
4820                 kfree(intel_dig_port);
4821                 kfree(intel_connector);
4822         }
4823 }
4824
4825 void intel_dp_mst_suspend(struct drm_device *dev)
4826 {
4827         struct drm_i915_private *dev_priv = dev->dev_private;
4828         int i;
4829
4830         /* disable MST */
4831         for (i = 0; i < I915_MAX_PORTS; i++) {
4832                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4833                 if (!intel_dig_port)
4834                         continue;
4835
4836                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4837                         if (!intel_dig_port->dp.can_mst)
4838                                 continue;
4839                         if (intel_dig_port->dp.is_mst)
4840                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4841                 }
4842         }
4843 }
4844
4845 void intel_dp_mst_resume(struct drm_device *dev)
4846 {
4847         struct drm_i915_private *dev_priv = dev->dev_private;
4848         int i;
4849
4850         for (i = 0; i < I915_MAX_PORTS; i++) {
4851                 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4852                 if (!intel_dig_port)
4853                         continue;
4854                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4855                         int ret;
4856
4857                         if (!intel_dig_port->dp.can_mst)
4858                                 continue;
4859
4860                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4861                         if (ret != 0) {
4862                                 intel_dp_check_mst_status(&intel_dig_port->dp);
4863                         }
4864                 }
4865         }
4866 }