drm/i915: Make encoder cloning more flexible
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94 static void edp_panel_vdd_on(struct intel_dp *intel_dp);
95 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
96
97 static int
98 intel_dp_max_link_bw(struct intel_dp *intel_dp)
99 {
100         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
101         struct drm_device *dev = intel_dp->attached_connector->base.dev;
102
103         switch (max_link_bw) {
104         case DP_LINK_BW_1_62:
105         case DP_LINK_BW_2_7:
106                 break;
107         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
108                 if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
109                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
110                         max_link_bw = DP_LINK_BW_5_4;
111                 else
112                         max_link_bw = DP_LINK_BW_2_7;
113                 break;
114         default:
115                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
116                      max_link_bw);
117                 max_link_bw = DP_LINK_BW_1_62;
118                 break;
119         }
120         return max_link_bw;
121 }
122
123 /*
124  * The units on the numbers in the next two are... bizarre.  Examples will
125  * make it clearer; this one parallels an example in the eDP spec.
126  *
127  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
128  *
129  *     270000 * 1 * 8 / 10 == 216000
130  *
131  * The actual data capacity of that configuration is 2.16Gbit/s, so the
132  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
133  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
134  * 119000.  At 18bpp that's 2142000 kilobits per second.
135  *
136  * Thus the strange-looking division by 10 in intel_dp_link_required, to
137  * get the result in decakilobits instead of kilobits.
138  */
139
140 static int
141 intel_dp_link_required(int pixel_clock, int bpp)
142 {
143         return (pixel_clock * bpp + 9) / 10;
144 }
145
146 static int
147 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
148 {
149         return (max_link_clock * max_lanes * 8) / 10;
150 }
151
152 static enum drm_mode_status
153 intel_dp_mode_valid(struct drm_connector *connector,
154                     struct drm_display_mode *mode)
155 {
156         struct intel_dp *intel_dp = intel_attached_dp(connector);
157         struct intel_connector *intel_connector = to_intel_connector(connector);
158         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
159         int target_clock = mode->clock;
160         int max_rate, mode_rate, max_lanes, max_link_clock;
161
162         if (is_edp(intel_dp) && fixed_mode) {
163                 if (mode->hdisplay > fixed_mode->hdisplay)
164                         return MODE_PANEL;
165
166                 if (mode->vdisplay > fixed_mode->vdisplay)
167                         return MODE_PANEL;
168
169                 target_clock = fixed_mode->clock;
170         }
171
172         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
173         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
174
175         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
176         mode_rate = intel_dp_link_required(target_clock, 18);
177
178         if (mode_rate > max_rate)
179                 return MODE_CLOCK_HIGH;
180
181         if (mode->clock < 10000)
182                 return MODE_CLOCK_LOW;
183
184         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
185                 return MODE_H_ILLEGAL;
186
187         return MODE_OK;
188 }
189
190 static uint32_t
191 pack_aux(uint8_t *src, int src_bytes)
192 {
193         int     i;
194         uint32_t v = 0;
195
196         if (src_bytes > 4)
197                 src_bytes = 4;
198         for (i = 0; i < src_bytes; i++)
199                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
200         return v;
201 }
202
203 static void
204 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
205 {
206         int i;
207         if (dst_bytes > 4)
208                 dst_bytes = 4;
209         for (i = 0; i < dst_bytes; i++)
210                 dst[i] = src >> ((3-i) * 8);
211 }
212
213 /* hrawclock is 1/4 the FSB frequency */
214 static int
215 intel_hrawclk(struct drm_device *dev)
216 {
217         struct drm_i915_private *dev_priv = dev->dev_private;
218         uint32_t clkcfg;
219
220         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
221         if (IS_VALLEYVIEW(dev))
222                 return 200;
223
224         clkcfg = I915_READ(CLKCFG);
225         switch (clkcfg & CLKCFG_FSB_MASK) {
226         case CLKCFG_FSB_400:
227                 return 100;
228         case CLKCFG_FSB_533:
229                 return 133;
230         case CLKCFG_FSB_667:
231                 return 166;
232         case CLKCFG_FSB_800:
233                 return 200;
234         case CLKCFG_FSB_1067:
235                 return 266;
236         case CLKCFG_FSB_1333:
237                 return 333;
238         /* these two are just a guess; one of them might be right */
239         case CLKCFG_FSB_1600:
240         case CLKCFG_FSB_1600_ALT:
241                 return 400;
242         default:
243                 return 133;
244         }
245 }
246
247 static void
248 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
249                                     struct intel_dp *intel_dp,
250                                     struct edp_power_seq *out);
251 static void
252 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
253                                               struct intel_dp *intel_dp,
254                                               struct edp_power_seq *out);
255
256 static enum pipe
257 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
258 {
259         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
260         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
261         struct drm_device *dev = intel_dig_port->base.base.dev;
262         struct drm_i915_private *dev_priv = dev->dev_private;
263         enum port port = intel_dig_port->port;
264         enum pipe pipe;
265
266         /* modeset should have pipe */
267         if (crtc)
268                 return to_intel_crtc(crtc)->pipe;
269
270         /* init time, try to find a pipe with this port selected */
271         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
272                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
273                         PANEL_PORT_SELECT_MASK;
274                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
275                         return pipe;
276                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
277                         return pipe;
278         }
279
280         /* shrug */
281         return PIPE_A;
282 }
283
284 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
285 {
286         struct drm_device *dev = intel_dp_to_dev(intel_dp);
287
288         if (HAS_PCH_SPLIT(dev))
289                 return PCH_PP_CONTROL;
290         else
291                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
292 }
293
294 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
295 {
296         struct drm_device *dev = intel_dp_to_dev(intel_dp);
297
298         if (HAS_PCH_SPLIT(dev))
299                 return PCH_PP_STATUS;
300         else
301                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
302 }
303
304 static bool edp_have_panel_power(struct intel_dp *intel_dp)
305 {
306         struct drm_device *dev = intel_dp_to_dev(intel_dp);
307         struct drm_i915_private *dev_priv = dev->dev_private;
308
309         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
310 }
311
312 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
313 {
314         struct drm_device *dev = intel_dp_to_dev(intel_dp);
315         struct drm_i915_private *dev_priv = dev->dev_private;
316
317         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
318 }
319
320 static void
321 intel_dp_check_edp(struct intel_dp *intel_dp)
322 {
323         struct drm_device *dev = intel_dp_to_dev(intel_dp);
324         struct drm_i915_private *dev_priv = dev->dev_private;
325
326         if (!is_edp(intel_dp))
327                 return;
328
329         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
330                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
331                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
332                               I915_READ(_pp_stat_reg(intel_dp)),
333                               I915_READ(_pp_ctrl_reg(intel_dp)));
334         }
335 }
336
337 static uint32_t
338 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
339 {
340         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
341         struct drm_device *dev = intel_dig_port->base.base.dev;
342         struct drm_i915_private *dev_priv = dev->dev_private;
343         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
344         uint32_t status;
345         bool done;
346
347 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
348         if (has_aux_irq)
349                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
350                                           msecs_to_jiffies_timeout(10));
351         else
352                 done = wait_for_atomic(C, 10) == 0;
353         if (!done)
354                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
355                           has_aux_irq);
356 #undef C
357
358         return status;
359 }
360
361 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
362 {
363         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
364         struct drm_device *dev = intel_dig_port->base.base.dev;
365
366         /*
367          * The clock divider is based off the hrawclk, and would like to run at
368          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
369          */
370         return index ? 0 : intel_hrawclk(dev) / 2;
371 }
372
373 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
374 {
375         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
376         struct drm_device *dev = intel_dig_port->base.base.dev;
377
378         if (index)
379                 return 0;
380
381         if (intel_dig_port->port == PORT_A) {
382                 if (IS_GEN6(dev) || IS_GEN7(dev))
383                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
384                 else
385                         return 225; /* eDP input clock at 450Mhz */
386         } else {
387                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388         }
389 }
390
391 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
392 {
393         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
394         struct drm_device *dev = intel_dig_port->base.base.dev;
395         struct drm_i915_private *dev_priv = dev->dev_private;
396
397         if (intel_dig_port->port == PORT_A) {
398                 if (index)
399                         return 0;
400                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
401         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
402                 /* Workaround for non-ULT HSW */
403                 switch (index) {
404                 case 0: return 63;
405                 case 1: return 72;
406                 default: return 0;
407                 }
408         } else  {
409                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
410         }
411 }
412
413 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
414 {
415         return index ? 0 : 100;
416 }
417
418 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
419                                       bool has_aux_irq,
420                                       int send_bytes,
421                                       uint32_t aux_clock_divider)
422 {
423         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
424         struct drm_device *dev = intel_dig_port->base.base.dev;
425         uint32_t precharge, timeout;
426
427         if (IS_GEN6(dev))
428                 precharge = 3;
429         else
430                 precharge = 5;
431
432         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
433                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
434         else
435                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
436
437         return DP_AUX_CH_CTL_SEND_BUSY |
438                DP_AUX_CH_CTL_DONE |
439                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
440                DP_AUX_CH_CTL_TIME_OUT_ERROR |
441                timeout |
442                DP_AUX_CH_CTL_RECEIVE_ERROR |
443                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
444                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
445                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
446 }
447
448 static int
449 intel_dp_aux_ch(struct intel_dp *intel_dp,
450                 uint8_t *send, int send_bytes,
451                 uint8_t *recv, int recv_size)
452 {
453         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
454         struct drm_device *dev = intel_dig_port->base.base.dev;
455         struct drm_i915_private *dev_priv = dev->dev_private;
456         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
457         uint32_t ch_data = ch_ctl + 4;
458         uint32_t aux_clock_divider;
459         int i, ret, recv_bytes;
460         uint32_t status;
461         int try, clock = 0;
462         bool has_aux_irq = true;
463
464         /* dp aux is extremely sensitive to irq latency, hence request the
465          * lowest possible wakeup latency and so prevent the cpu from going into
466          * deep sleep states.
467          */
468         pm_qos_update_request(&dev_priv->pm_qos, 0);
469
470         intel_dp_check_edp(intel_dp);
471
472         intel_aux_display_runtime_get(dev_priv);
473
474         /* Try to wait for any previous AUX channel activity */
475         for (try = 0; try < 3; try++) {
476                 status = I915_READ_NOTRACE(ch_ctl);
477                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
478                         break;
479                 msleep(1);
480         }
481
482         if (try == 3) {
483                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
484                      I915_READ(ch_ctl));
485                 ret = -EBUSY;
486                 goto out;
487         }
488
489         /* Only 5 data registers! */
490         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
491                 ret = -E2BIG;
492                 goto out;
493         }
494
495         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
496                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
497                                                           has_aux_irq,
498                                                           send_bytes,
499                                                           aux_clock_divider);
500
501                 /* Must try at least 3 times according to DP spec */
502                 for (try = 0; try < 5; try++) {
503                         /* Load the send data into the aux channel data registers */
504                         for (i = 0; i < send_bytes; i += 4)
505                                 I915_WRITE(ch_data + i,
506                                            pack_aux(send + i, send_bytes - i));
507
508                         /* Send the command and wait for it to complete */
509                         I915_WRITE(ch_ctl, send_ctl);
510
511                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
512
513                         /* Clear done status and any errors */
514                         I915_WRITE(ch_ctl,
515                                    status |
516                                    DP_AUX_CH_CTL_DONE |
517                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
518                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
519
520                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
521                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
522                                 continue;
523                         if (status & DP_AUX_CH_CTL_DONE)
524                                 break;
525                 }
526                 if (status & DP_AUX_CH_CTL_DONE)
527                         break;
528         }
529
530         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
531                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
532                 ret = -EBUSY;
533                 goto out;
534         }
535
536         /* Check for timeout or receive error.
537          * Timeouts occur when the sink is not connected
538          */
539         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
540                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
541                 ret = -EIO;
542                 goto out;
543         }
544
545         /* Timeouts occur when the device isn't connected, so they're
546          * "normal" -- don't fill the kernel log with these */
547         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
548                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
549                 ret = -ETIMEDOUT;
550                 goto out;
551         }
552
553         /* Unload any bytes sent back from the other side */
554         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
555                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
556         if (recv_bytes > recv_size)
557                 recv_bytes = recv_size;
558
559         for (i = 0; i < recv_bytes; i += 4)
560                 unpack_aux(I915_READ(ch_data + i),
561                            recv + i, recv_bytes - i);
562
563         ret = recv_bytes;
564 out:
565         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
566         intel_aux_display_runtime_put(dev_priv);
567
568         return ret;
569 }
570
571 /* Write data to the aux channel in native mode */
572 static int
573 intel_dp_aux_native_write(struct intel_dp *intel_dp,
574                           uint16_t address, uint8_t *send, int send_bytes)
575 {
576         int ret;
577         uint8_t msg[20];
578         int msg_bytes;
579         uint8_t ack;
580
581         if (WARN_ON(send_bytes > 16))
582                 return -E2BIG;
583
584         intel_dp_check_edp(intel_dp);
585         msg[0] = DP_AUX_NATIVE_WRITE << 4;
586         msg[1] = address >> 8;
587         msg[2] = address & 0xff;
588         msg[3] = send_bytes - 1;
589         memcpy(&msg[4], send, send_bytes);
590         msg_bytes = send_bytes + 4;
591         for (;;) {
592                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
593                 if (ret < 0)
594                         return ret;
595                 ack >>= 4;
596                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
597                         break;
598                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
599                         udelay(100);
600                 else
601                         return -EIO;
602         }
603         return send_bytes;
604 }
605
606 /* Write a single byte to the aux channel in native mode */
607 static int
608 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
609                             uint16_t address, uint8_t byte)
610 {
611         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
612 }
613
614 /* read bytes from a native aux channel */
615 static int
616 intel_dp_aux_native_read(struct intel_dp *intel_dp,
617                          uint16_t address, uint8_t *recv, int recv_bytes)
618 {
619         uint8_t msg[4];
620         int msg_bytes;
621         uint8_t reply[20];
622         int reply_bytes;
623         uint8_t ack;
624         int ret;
625
626         if (WARN_ON(recv_bytes > 19))
627                 return -E2BIG;
628
629         intel_dp_check_edp(intel_dp);
630         msg[0] = DP_AUX_NATIVE_READ << 4;
631         msg[1] = address >> 8;
632         msg[2] = address & 0xff;
633         msg[3] = recv_bytes - 1;
634
635         msg_bytes = 4;
636         reply_bytes = recv_bytes + 1;
637
638         for (;;) {
639                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
640                                       reply, reply_bytes);
641                 if (ret == 0)
642                         return -EPROTO;
643                 if (ret < 0)
644                         return ret;
645                 ack = reply[0] >> 4;
646                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
647                         memcpy(recv, reply + 1, ret - 1);
648                         return ret - 1;
649                 }
650                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
651                         udelay(100);
652                 else
653                         return -EIO;
654         }
655 }
656
657 static int
658 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
659                     uint8_t write_byte, uint8_t *read_byte)
660 {
661         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
662         struct intel_dp *intel_dp = container_of(adapter,
663                                                 struct intel_dp,
664                                                 adapter);
665         uint16_t address = algo_data->address;
666         uint8_t msg[5];
667         uint8_t reply[2];
668         unsigned retry;
669         int msg_bytes;
670         int reply_bytes;
671         int ret;
672
673         edp_panel_vdd_on(intel_dp);
674         intel_dp_check_edp(intel_dp);
675         /* Set up the command byte */
676         if (mode & MODE_I2C_READ)
677                 msg[0] = DP_AUX_I2C_READ << 4;
678         else
679                 msg[0] = DP_AUX_I2C_WRITE << 4;
680
681         if (!(mode & MODE_I2C_STOP))
682                 msg[0] |= DP_AUX_I2C_MOT << 4;
683
684         msg[1] = address >> 8;
685         msg[2] = address;
686
687         switch (mode) {
688         case MODE_I2C_WRITE:
689                 msg[3] = 0;
690                 msg[4] = write_byte;
691                 msg_bytes = 5;
692                 reply_bytes = 1;
693                 break;
694         case MODE_I2C_READ:
695                 msg[3] = 0;
696                 msg_bytes = 4;
697                 reply_bytes = 2;
698                 break;
699         default:
700                 msg_bytes = 3;
701                 reply_bytes = 1;
702                 break;
703         }
704
705         /*
706          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
707          * required to retry at least seven times upon receiving AUX_DEFER
708          * before giving up the AUX transaction.
709          */
710         for (retry = 0; retry < 7; retry++) {
711                 ret = intel_dp_aux_ch(intel_dp,
712                                       msg, msg_bytes,
713                                       reply, reply_bytes);
714                 if (ret < 0) {
715                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
716                         goto out;
717                 }
718
719                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
720                 case DP_AUX_NATIVE_REPLY_ACK:
721                         /* I2C-over-AUX Reply field is only valid
722                          * when paired with AUX ACK.
723                          */
724                         break;
725                 case DP_AUX_NATIVE_REPLY_NACK:
726                         DRM_DEBUG_KMS("aux_ch native nack\n");
727                         ret = -EREMOTEIO;
728                         goto out;
729                 case DP_AUX_NATIVE_REPLY_DEFER:
730                         /*
731                          * For now, just give more slack to branch devices. We
732                          * could check the DPCD for I2C bit rate capabilities,
733                          * and if available, adjust the interval. We could also
734                          * be more careful with DP-to-Legacy adapters where a
735                          * long legacy cable may force very low I2C bit rates.
736                          */
737                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
738                             DP_DWN_STRM_PORT_PRESENT)
739                                 usleep_range(500, 600);
740                         else
741                                 usleep_range(300, 400);
742                         continue;
743                 default:
744                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
745                                   reply[0]);
746                         ret = -EREMOTEIO;
747                         goto out;
748                 }
749
750                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
751                 case DP_AUX_I2C_REPLY_ACK:
752                         if (mode == MODE_I2C_READ) {
753                                 *read_byte = reply[1];
754                         }
755                         ret = reply_bytes - 1;
756                         goto out;
757                 case DP_AUX_I2C_REPLY_NACK:
758                         DRM_DEBUG_KMS("aux_i2c nack\n");
759                         ret = -EREMOTEIO;
760                         goto out;
761                 case DP_AUX_I2C_REPLY_DEFER:
762                         DRM_DEBUG_KMS("aux_i2c defer\n");
763                         udelay(100);
764                         break;
765                 default:
766                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
767                         ret = -EREMOTEIO;
768                         goto out;
769                 }
770         }
771
772         DRM_ERROR("too many retries, giving up\n");
773         ret = -EREMOTEIO;
774
775 out:
776         edp_panel_vdd_off(intel_dp, false);
777         return ret;
778 }
779
780 static void
781 intel_dp_connector_unregister(struct intel_connector *intel_connector)
782 {
783         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
784
785         sysfs_remove_link(&intel_connector->base.kdev->kobj,
786                           intel_dp->adapter.dev.kobj.name);
787         intel_connector_unregister(intel_connector);
788 }
789
790 static int
791 intel_dp_i2c_init(struct intel_dp *intel_dp,
792                   struct intel_connector *intel_connector, const char *name)
793 {
794         int     ret;
795
796         DRM_DEBUG_KMS("i2c_init %s\n", name);
797         intel_dp->algo.running = false;
798         intel_dp->algo.address = 0;
799         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
800
801         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
802         intel_dp->adapter.owner = THIS_MODULE;
803         intel_dp->adapter.class = I2C_CLASS_DDC;
804         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
805         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
806         intel_dp->adapter.algo_data = &intel_dp->algo;
807         intel_dp->adapter.dev.parent = intel_connector->base.dev->dev;
808
809         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
810         if (ret < 0)
811                 return ret;
812
813         ret = sysfs_create_link(&intel_connector->base.kdev->kobj,
814                                 &intel_dp->adapter.dev.kobj,
815                                 intel_dp->adapter.dev.kobj.name);
816
817         if (ret < 0)
818                 i2c_del_adapter(&intel_dp->adapter);
819
820         return ret;
821 }
822
823 static void
824 intel_dp_set_clock(struct intel_encoder *encoder,
825                    struct intel_crtc_config *pipe_config, int link_bw)
826 {
827         struct drm_device *dev = encoder->base.dev;
828         const struct dp_link_dpll *divisor = NULL;
829         int i, count = 0;
830
831         if (IS_G4X(dev)) {
832                 divisor = gen4_dpll;
833                 count = ARRAY_SIZE(gen4_dpll);
834         } else if (IS_HASWELL(dev)) {
835                 /* Haswell has special-purpose DP DDI clocks. */
836         } else if (HAS_PCH_SPLIT(dev)) {
837                 divisor = pch_dpll;
838                 count = ARRAY_SIZE(pch_dpll);
839         } else if (IS_VALLEYVIEW(dev)) {
840                 divisor = vlv_dpll;
841                 count = ARRAY_SIZE(vlv_dpll);
842         }
843
844         if (divisor && count) {
845                 for (i = 0; i < count; i++) {
846                         if (link_bw == divisor[i].link_bw) {
847                                 pipe_config->dpll = divisor[i].dpll;
848                                 pipe_config->clock_set = true;
849                                 break;
850                         }
851                 }
852         }
853 }
854
855 bool
856 intel_dp_compute_config(struct intel_encoder *encoder,
857                         struct intel_crtc_config *pipe_config)
858 {
859         struct drm_device *dev = encoder->base.dev;
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
862         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
863         enum port port = dp_to_dig_port(intel_dp)->port;
864         struct intel_crtc *intel_crtc = encoder->new_crtc;
865         struct intel_connector *intel_connector = intel_dp->attached_connector;
866         int lane_count, clock;
867         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
868         /* Conveniently, the link BW constants become indices with a shift...*/
869         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
870         int bpp, mode_rate;
871         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
872         int link_avail, link_clock;
873
874         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
875                 pipe_config->has_pch_encoder = true;
876
877         pipe_config->has_dp_encoder = true;
878
879         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
880                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
881                                        adjusted_mode);
882                 if (!HAS_PCH_SPLIT(dev))
883                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
884                                                  intel_connector->panel.fitting_mode);
885                 else
886                         intel_pch_panel_fitting(intel_crtc, pipe_config,
887                                                 intel_connector->panel.fitting_mode);
888         }
889
890         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
891                 return false;
892
893         DRM_DEBUG_KMS("DP link computation with max lane count %i "
894                       "max bw %02x pixel clock %iKHz\n",
895                       max_lane_count, bws[max_clock],
896                       adjusted_mode->crtc_clock);
897
898         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
899          * bpc in between. */
900         bpp = pipe_config->pipe_bpp;
901         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
902             dev_priv->vbt.edp_bpp < bpp) {
903                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
904                               dev_priv->vbt.edp_bpp);
905                 bpp = dev_priv->vbt.edp_bpp;
906         }
907
908         for (; bpp >= 6*3; bpp -= 2*3) {
909                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
910                                                    bpp);
911
912                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
913                         for (clock = 0; clock <= max_clock; clock++) {
914                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
915                                 link_avail = intel_dp_max_data_rate(link_clock,
916                                                                     lane_count);
917
918                                 if (mode_rate <= link_avail) {
919                                         goto found;
920                                 }
921                         }
922                 }
923         }
924
925         return false;
926
927 found:
928         if (intel_dp->color_range_auto) {
929                 /*
930                  * See:
931                  * CEA-861-E - 5.1 Default Encoding Parameters
932                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
933                  */
934                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
935                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
936                 else
937                         intel_dp->color_range = 0;
938         }
939
940         if (intel_dp->color_range)
941                 pipe_config->limited_color_range = true;
942
943         intel_dp->link_bw = bws[clock];
944         intel_dp->lane_count = lane_count;
945         pipe_config->pipe_bpp = bpp;
946         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
947
948         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
949                       intel_dp->link_bw, intel_dp->lane_count,
950                       pipe_config->port_clock, bpp);
951         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
952                       mode_rate, link_avail);
953
954         intel_link_compute_m_n(bpp, lane_count,
955                                adjusted_mode->crtc_clock,
956                                pipe_config->port_clock,
957                                &pipe_config->dp_m_n);
958
959         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
960
961         return true;
962 }
963
964 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
965 {
966         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
967         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
968         struct drm_device *dev = crtc->base.dev;
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         u32 dpa_ctl;
971
972         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
973         dpa_ctl = I915_READ(DP_A);
974         dpa_ctl &= ~DP_PLL_FREQ_MASK;
975
976         if (crtc->config.port_clock == 162000) {
977                 /* For a long time we've carried around a ILK-DevA w/a for the
978                  * 160MHz clock. If we're really unlucky, it's still required.
979                  */
980                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
981                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
982                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
983         } else {
984                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
985                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
986         }
987
988         I915_WRITE(DP_A, dpa_ctl);
989
990         POSTING_READ(DP_A);
991         udelay(500);
992 }
993
994 static void intel_dp_mode_set(struct intel_encoder *encoder)
995 {
996         struct drm_device *dev = encoder->base.dev;
997         struct drm_i915_private *dev_priv = dev->dev_private;
998         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
999         enum port port = dp_to_dig_port(intel_dp)->port;
1000         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1001         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1002
1003         /*
1004          * There are four kinds of DP registers:
1005          *
1006          *      IBX PCH
1007          *      SNB CPU
1008          *      IVB CPU
1009          *      CPT PCH
1010          *
1011          * IBX PCH and CPU are the same for almost everything,
1012          * except that the CPU DP PLL is configured in this
1013          * register
1014          *
1015          * CPT PCH is quite different, having many bits moved
1016          * to the TRANS_DP_CTL register instead. That
1017          * configuration happens (oddly) in ironlake_pch_enable
1018          */
1019
1020         /* Preserve the BIOS-computed detected bit. This is
1021          * supposed to be read-only.
1022          */
1023         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1024
1025         /* Handle DP bits in common between all three register formats */
1026         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1027         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1028
1029         if (intel_dp->has_audio) {
1030                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1031                                  pipe_name(crtc->pipe));
1032                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1033                 intel_write_eld(&encoder->base, adjusted_mode);
1034         }
1035
1036         /* Split out the IBX/CPU vs CPT settings */
1037
1038         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1039                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1040                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1041                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1042                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1043                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1044
1045                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1046                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1047
1048                 intel_dp->DP |= crtc->pipe << 29;
1049         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1050                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1051                         intel_dp->DP |= intel_dp->color_range;
1052
1053                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1054                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1055                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1056                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1057                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1058
1059                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1060                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1061
1062                 if (crtc->pipe == 1)
1063                         intel_dp->DP |= DP_PIPEB_SELECT;
1064         } else {
1065                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1066         }
1067
1068         if (port == PORT_A && !IS_VALLEYVIEW(dev))
1069                 ironlake_set_pll_cpu_edp(intel_dp);
1070 }
1071
1072 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1073 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1074
1075 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1076 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1077
1078 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1079 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1080
1081 static void wait_panel_status(struct intel_dp *intel_dp,
1082                                        u32 mask,
1083                                        u32 value)
1084 {
1085         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1086         struct drm_i915_private *dev_priv = dev->dev_private;
1087         u32 pp_stat_reg, pp_ctrl_reg;
1088
1089         pp_stat_reg = _pp_stat_reg(intel_dp);
1090         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1091
1092         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1093                         mask, value,
1094                         I915_READ(pp_stat_reg),
1095                         I915_READ(pp_ctrl_reg));
1096
1097         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1098                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1099                                 I915_READ(pp_stat_reg),
1100                                 I915_READ(pp_ctrl_reg));
1101         }
1102
1103         DRM_DEBUG_KMS("Wait complete\n");
1104 }
1105
1106 static void wait_panel_on(struct intel_dp *intel_dp)
1107 {
1108         DRM_DEBUG_KMS("Wait for panel power on\n");
1109         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1110 }
1111
1112 static void wait_panel_off(struct intel_dp *intel_dp)
1113 {
1114         DRM_DEBUG_KMS("Wait for panel power off time\n");
1115         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1116 }
1117
1118 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1119 {
1120         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1121
1122         /* When we disable the VDD override bit last we have to do the manual
1123          * wait. */
1124         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1125                                        intel_dp->panel_power_cycle_delay);
1126
1127         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1128 }
1129
1130 static void wait_backlight_on(struct intel_dp *intel_dp)
1131 {
1132         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1133                                        intel_dp->backlight_on_delay);
1134 }
1135
1136 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1137 {
1138         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1139                                        intel_dp->backlight_off_delay);
1140 }
1141
1142 /* Read the current pp_control value, unlocking the register if it
1143  * is locked
1144  */
1145
1146 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1147 {
1148         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1149         struct drm_i915_private *dev_priv = dev->dev_private;
1150         u32 control;
1151
1152         control = I915_READ(_pp_ctrl_reg(intel_dp));
1153         control &= ~PANEL_UNLOCK_MASK;
1154         control |= PANEL_UNLOCK_REGS;
1155         return control;
1156 }
1157
1158 static void edp_panel_vdd_on(struct intel_dp *intel_dp)
1159 {
1160         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1161         struct drm_i915_private *dev_priv = dev->dev_private;
1162         u32 pp;
1163         u32 pp_stat_reg, pp_ctrl_reg;
1164
1165         if (!is_edp(intel_dp))
1166                 return;
1167
1168         WARN(intel_dp->want_panel_vdd,
1169              "eDP VDD already requested on\n");
1170
1171         intel_dp->want_panel_vdd = true;
1172
1173         if (edp_have_panel_vdd(intel_dp))
1174                 return;
1175
1176         intel_runtime_pm_get(dev_priv);
1177
1178         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1179
1180         if (!edp_have_panel_power(intel_dp))
1181                 wait_panel_power_cycle(intel_dp);
1182
1183         pp = ironlake_get_pp_control(intel_dp);
1184         pp |= EDP_FORCE_VDD;
1185
1186         pp_stat_reg = _pp_stat_reg(intel_dp);
1187         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1188
1189         I915_WRITE(pp_ctrl_reg, pp);
1190         POSTING_READ(pp_ctrl_reg);
1191         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1192                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1193         /*
1194          * If the panel wasn't on, delay before accessing aux channel
1195          */
1196         if (!edp_have_panel_power(intel_dp)) {
1197                 DRM_DEBUG_KMS("eDP was not running\n");
1198                 msleep(intel_dp->panel_power_up_delay);
1199         }
1200 }
1201
1202 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1203 {
1204         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1205         struct drm_i915_private *dev_priv = dev->dev_private;
1206         u32 pp;
1207         u32 pp_stat_reg, pp_ctrl_reg;
1208
1209         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1210
1211         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1212                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1213
1214                 pp = ironlake_get_pp_control(intel_dp);
1215                 pp &= ~EDP_FORCE_VDD;
1216
1217                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1218                 pp_stat_reg = _pp_stat_reg(intel_dp);
1219
1220                 I915_WRITE(pp_ctrl_reg, pp);
1221                 POSTING_READ(pp_ctrl_reg);
1222
1223                 /* Make sure sequencer is idle before allowing subsequent activity */
1224                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1225                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1226
1227                 if ((pp & POWER_TARGET_ON) == 0)
1228                         intel_dp->last_power_cycle = jiffies;
1229
1230                 intel_runtime_pm_put(dev_priv);
1231         }
1232 }
1233
1234 static void edp_panel_vdd_work(struct work_struct *__work)
1235 {
1236         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1237                                                  struct intel_dp, panel_vdd_work);
1238         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1239
1240         mutex_lock(&dev->mode_config.mutex);
1241         edp_panel_vdd_off_sync(intel_dp);
1242         mutex_unlock(&dev->mode_config.mutex);
1243 }
1244
1245 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1246 {
1247         if (!is_edp(intel_dp))
1248                 return;
1249
1250         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1251
1252         intel_dp->want_panel_vdd = false;
1253
1254         if (sync) {
1255                 edp_panel_vdd_off_sync(intel_dp);
1256         } else {
1257                 /*
1258                  * Queue the timer to fire a long
1259                  * time from now (relative to the power down delay)
1260                  * to keep the panel power up across a sequence of operations
1261                  */
1262                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1263                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1264         }
1265 }
1266
1267 void intel_edp_panel_on(struct intel_dp *intel_dp)
1268 {
1269         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         u32 pp;
1272         u32 pp_ctrl_reg;
1273
1274         if (!is_edp(intel_dp))
1275                 return;
1276
1277         DRM_DEBUG_KMS("Turn eDP power on\n");
1278
1279         if (edp_have_panel_power(intel_dp)) {
1280                 DRM_DEBUG_KMS("eDP power already on\n");
1281                 return;
1282         }
1283
1284         wait_panel_power_cycle(intel_dp);
1285
1286         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1287         pp = ironlake_get_pp_control(intel_dp);
1288         if (IS_GEN5(dev)) {
1289                 /* ILK workaround: disable reset around power sequence */
1290                 pp &= ~PANEL_POWER_RESET;
1291                 I915_WRITE(pp_ctrl_reg, pp);
1292                 POSTING_READ(pp_ctrl_reg);
1293         }
1294
1295         pp |= POWER_TARGET_ON;
1296         if (!IS_GEN5(dev))
1297                 pp |= PANEL_POWER_RESET;
1298
1299         I915_WRITE(pp_ctrl_reg, pp);
1300         POSTING_READ(pp_ctrl_reg);
1301
1302         wait_panel_on(intel_dp);
1303         intel_dp->last_power_on = jiffies;
1304
1305         if (IS_GEN5(dev)) {
1306                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1307                 I915_WRITE(pp_ctrl_reg, pp);
1308                 POSTING_READ(pp_ctrl_reg);
1309         }
1310 }
1311
1312 void intel_edp_panel_off(struct intel_dp *intel_dp)
1313 {
1314         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316         u32 pp;
1317         u32 pp_ctrl_reg;
1318
1319         if (!is_edp(intel_dp))
1320                 return;
1321
1322         DRM_DEBUG_KMS("Turn eDP power off\n");
1323
1324         edp_wait_backlight_off(intel_dp);
1325
1326         pp = ironlake_get_pp_control(intel_dp);
1327         /* We need to switch off panel power _and_ force vdd, for otherwise some
1328          * panels get very unhappy and cease to work. */
1329         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1330                 EDP_BLC_ENABLE);
1331
1332         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1333
1334         I915_WRITE(pp_ctrl_reg, pp);
1335         POSTING_READ(pp_ctrl_reg);
1336
1337         intel_dp->last_power_cycle = jiffies;
1338         wait_panel_off(intel_dp);
1339 }
1340
1341 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1342 {
1343         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1344         struct drm_device *dev = intel_dig_port->base.base.dev;
1345         struct drm_i915_private *dev_priv = dev->dev_private;
1346         u32 pp;
1347         u32 pp_ctrl_reg;
1348
1349         if (!is_edp(intel_dp))
1350                 return;
1351
1352         DRM_DEBUG_KMS("\n");
1353         /*
1354          * If we enable the backlight right away following a panel power
1355          * on, we may see slight flicker as the panel syncs with the eDP
1356          * link.  So delay a bit to make sure the image is solid before
1357          * allowing it to appear.
1358          */
1359         wait_backlight_on(intel_dp);
1360         pp = ironlake_get_pp_control(intel_dp);
1361         pp |= EDP_BLC_ENABLE;
1362
1363         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1364
1365         I915_WRITE(pp_ctrl_reg, pp);
1366         POSTING_READ(pp_ctrl_reg);
1367
1368         intel_panel_enable_backlight(intel_dp->attached_connector);
1369 }
1370
1371 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1372 {
1373         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1374         struct drm_i915_private *dev_priv = dev->dev_private;
1375         u32 pp;
1376         u32 pp_ctrl_reg;
1377
1378         if (!is_edp(intel_dp))
1379                 return;
1380
1381         intel_panel_disable_backlight(intel_dp->attached_connector);
1382
1383         DRM_DEBUG_KMS("\n");
1384         pp = ironlake_get_pp_control(intel_dp);
1385         pp &= ~EDP_BLC_ENABLE;
1386
1387         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389         I915_WRITE(pp_ctrl_reg, pp);
1390         POSTING_READ(pp_ctrl_reg);
1391         intel_dp->last_backlight_off = jiffies;
1392 }
1393
1394 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1395 {
1396         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1397         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1398         struct drm_device *dev = crtc->dev;
1399         struct drm_i915_private *dev_priv = dev->dev_private;
1400         u32 dpa_ctl;
1401
1402         assert_pipe_disabled(dev_priv,
1403                              to_intel_crtc(crtc)->pipe);
1404
1405         DRM_DEBUG_KMS("\n");
1406         dpa_ctl = I915_READ(DP_A);
1407         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1408         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1409
1410         /* We don't adjust intel_dp->DP while tearing down the link, to
1411          * facilitate link retraining (e.g. after hotplug). Hence clear all
1412          * enable bits here to ensure that we don't enable too much. */
1413         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1414         intel_dp->DP |= DP_PLL_ENABLE;
1415         I915_WRITE(DP_A, intel_dp->DP);
1416         POSTING_READ(DP_A);
1417         udelay(200);
1418 }
1419
1420 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1421 {
1422         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1423         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1424         struct drm_device *dev = crtc->dev;
1425         struct drm_i915_private *dev_priv = dev->dev_private;
1426         u32 dpa_ctl;
1427
1428         assert_pipe_disabled(dev_priv,
1429                              to_intel_crtc(crtc)->pipe);
1430
1431         dpa_ctl = I915_READ(DP_A);
1432         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1433              "dp pll off, should be on\n");
1434         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1435
1436         /* We can't rely on the value tracked for the DP register in
1437          * intel_dp->DP because link_down must not change that (otherwise link
1438          * re-training will fail. */
1439         dpa_ctl &= ~DP_PLL_ENABLE;
1440         I915_WRITE(DP_A, dpa_ctl);
1441         POSTING_READ(DP_A);
1442         udelay(200);
1443 }
1444
1445 /* If the sink supports it, try to set the power state appropriately */
1446 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1447 {
1448         int ret, i;
1449
1450         /* Should have a valid DPCD by this point */
1451         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1452                 return;
1453
1454         if (mode != DRM_MODE_DPMS_ON) {
1455                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1456                                                   DP_SET_POWER_D3);
1457                 if (ret != 1)
1458                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1459         } else {
1460                 /*
1461                  * When turning on, we need to retry for 1ms to give the sink
1462                  * time to wake up.
1463                  */
1464                 for (i = 0; i < 3; i++) {
1465                         ret = intel_dp_aux_native_write_1(intel_dp,
1466                                                           DP_SET_POWER,
1467                                                           DP_SET_POWER_D0);
1468                         if (ret == 1)
1469                                 break;
1470                         msleep(1);
1471                 }
1472         }
1473 }
1474
1475 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1476                                   enum pipe *pipe)
1477 {
1478         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1479         enum port port = dp_to_dig_port(intel_dp)->port;
1480         struct drm_device *dev = encoder->base.dev;
1481         struct drm_i915_private *dev_priv = dev->dev_private;
1482         enum intel_display_power_domain power_domain;
1483         u32 tmp;
1484
1485         power_domain = intel_display_port_power_domain(encoder);
1486         if (!intel_display_power_enabled(dev_priv, power_domain))
1487                 return false;
1488
1489         tmp = I915_READ(intel_dp->output_reg);
1490
1491         if (!(tmp & DP_PORT_EN))
1492                 return false;
1493
1494         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1495                 *pipe = PORT_TO_PIPE_CPT(tmp);
1496         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1497                 *pipe = PORT_TO_PIPE(tmp);
1498         } else {
1499                 u32 trans_sel;
1500                 u32 trans_dp;
1501                 int i;
1502
1503                 switch (intel_dp->output_reg) {
1504                 case PCH_DP_B:
1505                         trans_sel = TRANS_DP_PORT_SEL_B;
1506                         break;
1507                 case PCH_DP_C:
1508                         trans_sel = TRANS_DP_PORT_SEL_C;
1509                         break;
1510                 case PCH_DP_D:
1511                         trans_sel = TRANS_DP_PORT_SEL_D;
1512                         break;
1513                 default:
1514                         return true;
1515                 }
1516
1517                 for_each_pipe(i) {
1518                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1519                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1520                                 *pipe = i;
1521                                 return true;
1522                         }
1523                 }
1524
1525                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1526                               intel_dp->output_reg);
1527         }
1528
1529         return true;
1530 }
1531
1532 static void intel_dp_get_config(struct intel_encoder *encoder,
1533                                 struct intel_crtc_config *pipe_config)
1534 {
1535         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1536         u32 tmp, flags = 0;
1537         struct drm_device *dev = encoder->base.dev;
1538         struct drm_i915_private *dev_priv = dev->dev_private;
1539         enum port port = dp_to_dig_port(intel_dp)->port;
1540         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1541         int dotclock;
1542
1543         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1544                 tmp = I915_READ(intel_dp->output_reg);
1545                 if (tmp & DP_SYNC_HS_HIGH)
1546                         flags |= DRM_MODE_FLAG_PHSYNC;
1547                 else
1548                         flags |= DRM_MODE_FLAG_NHSYNC;
1549
1550                 if (tmp & DP_SYNC_VS_HIGH)
1551                         flags |= DRM_MODE_FLAG_PVSYNC;
1552                 else
1553                         flags |= DRM_MODE_FLAG_NVSYNC;
1554         } else {
1555                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1556                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1557                         flags |= DRM_MODE_FLAG_PHSYNC;
1558                 else
1559                         flags |= DRM_MODE_FLAG_NHSYNC;
1560
1561                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1562                         flags |= DRM_MODE_FLAG_PVSYNC;
1563                 else
1564                         flags |= DRM_MODE_FLAG_NVSYNC;
1565         }
1566
1567         pipe_config->adjusted_mode.flags |= flags;
1568
1569         pipe_config->has_dp_encoder = true;
1570
1571         intel_dp_get_m_n(crtc, pipe_config);
1572
1573         if (port == PORT_A) {
1574                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1575                         pipe_config->port_clock = 162000;
1576                 else
1577                         pipe_config->port_clock = 270000;
1578         }
1579
1580         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1581                                             &pipe_config->dp_m_n);
1582
1583         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1584                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1585
1586         pipe_config->adjusted_mode.crtc_clock = dotclock;
1587
1588         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1589             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1590                 /*
1591                  * This is a big fat ugly hack.
1592                  *
1593                  * Some machines in UEFI boot mode provide us a VBT that has 18
1594                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1595                  * unknown we fail to light up. Yet the same BIOS boots up with
1596                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1597                  * max, not what it tells us to use.
1598                  *
1599                  * Note: This will still be broken if the eDP panel is not lit
1600                  * up by the BIOS, and thus we can't get the mode at module
1601                  * load.
1602                  */
1603                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1604                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1605                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1606         }
1607 }
1608
1609 static bool is_edp_psr(struct drm_device *dev)
1610 {
1611         struct drm_i915_private *dev_priv = dev->dev_private;
1612
1613         return dev_priv->psr.sink_support;
1614 }
1615
1616 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1617 {
1618         struct drm_i915_private *dev_priv = dev->dev_private;
1619
1620         if (!HAS_PSR(dev))
1621                 return false;
1622
1623         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1624 }
1625
1626 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1627                                     struct edp_vsc_psr *vsc_psr)
1628 {
1629         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630         struct drm_device *dev = dig_port->base.base.dev;
1631         struct drm_i915_private *dev_priv = dev->dev_private;
1632         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1633         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1634         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1635         uint32_t *data = (uint32_t *) vsc_psr;
1636         unsigned int i;
1637
1638         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1639            the video DIP being updated before program video DIP data buffer
1640            registers for DIP being updated. */
1641         I915_WRITE(ctl_reg, 0);
1642         POSTING_READ(ctl_reg);
1643
1644         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1645                 if (i < sizeof(struct edp_vsc_psr))
1646                         I915_WRITE(data_reg + i, *data++);
1647                 else
1648                         I915_WRITE(data_reg + i, 0);
1649         }
1650
1651         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1652         POSTING_READ(ctl_reg);
1653 }
1654
1655 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1656 {
1657         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1658         struct drm_i915_private *dev_priv = dev->dev_private;
1659         struct edp_vsc_psr psr_vsc;
1660
1661         if (intel_dp->psr_setup_done)
1662                 return;
1663
1664         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1665         memset(&psr_vsc, 0, sizeof(psr_vsc));
1666         psr_vsc.sdp_header.HB0 = 0;
1667         psr_vsc.sdp_header.HB1 = 0x7;
1668         psr_vsc.sdp_header.HB2 = 0x2;
1669         psr_vsc.sdp_header.HB3 = 0x8;
1670         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1671
1672         /* Avoid continuous PSR exit by masking memup and hpd */
1673         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1674                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1675
1676         intel_dp->psr_setup_done = true;
1677 }
1678
1679 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1680 {
1681         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1682         struct drm_i915_private *dev_priv = dev->dev_private;
1683         uint32_t aux_clock_divider;
1684         int precharge = 0x3;
1685         int msg_size = 5;       /* Header(4) + Message(1) */
1686
1687         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1688
1689         /* Enable PSR in sink */
1690         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1691                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1692                                             DP_PSR_ENABLE &
1693                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1694         else
1695                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1696                                             DP_PSR_ENABLE |
1697                                             DP_PSR_MAIN_LINK_ACTIVE);
1698
1699         /* Setup AUX registers */
1700         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1701         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1702         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1703                    DP_AUX_CH_CTL_TIME_OUT_400us |
1704                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1705                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1706                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1707 }
1708
1709 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1710 {
1711         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1712         struct drm_i915_private *dev_priv = dev->dev_private;
1713         uint32_t max_sleep_time = 0x1f;
1714         uint32_t idle_frames = 1;
1715         uint32_t val = 0x0;
1716         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1717
1718         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1719                 val |= EDP_PSR_LINK_STANDBY;
1720                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1721                 val |= EDP_PSR_TP1_TIME_0us;
1722                 val |= EDP_PSR_SKIP_AUX_EXIT;
1723         } else
1724                 val |= EDP_PSR_LINK_DISABLE;
1725
1726         I915_WRITE(EDP_PSR_CTL(dev), val |
1727                    IS_BROADWELL(dev) ? 0 : link_entry_time |
1728                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1729                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1730                    EDP_PSR_ENABLE);
1731 }
1732
1733 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1734 {
1735         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1736         struct drm_device *dev = dig_port->base.base.dev;
1737         struct drm_i915_private *dev_priv = dev->dev_private;
1738         struct drm_crtc *crtc = dig_port->base.base.crtc;
1739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1740         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1741         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1742
1743         dev_priv->psr.source_ok = false;
1744
1745         if (!HAS_PSR(dev)) {
1746                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1747                 return false;
1748         }
1749
1750         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1751             (dig_port->port != PORT_A)) {
1752                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1753                 return false;
1754         }
1755
1756         if (!i915.enable_psr) {
1757                 DRM_DEBUG_KMS("PSR disable by flag\n");
1758                 return false;
1759         }
1760
1761         crtc = dig_port->base.base.crtc;
1762         if (crtc == NULL) {
1763                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1764                 return false;
1765         }
1766
1767         intel_crtc = to_intel_crtc(crtc);
1768         if (!intel_crtc_active(crtc)) {
1769                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1770                 return false;
1771         }
1772
1773         obj = to_intel_framebuffer(crtc->fb)->obj;
1774         if (obj->tiling_mode != I915_TILING_X ||
1775             obj->fence_reg == I915_FENCE_REG_NONE) {
1776                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1777                 return false;
1778         }
1779
1780         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1781                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1782                 return false;
1783         }
1784
1785         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1786             S3D_ENABLE) {
1787                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1788                 return false;
1789         }
1790
1791         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1792                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1793                 return false;
1794         }
1795
1796         dev_priv->psr.source_ok = true;
1797         return true;
1798 }
1799
1800 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1801 {
1802         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1803
1804         if (!intel_edp_psr_match_conditions(intel_dp) ||
1805             intel_edp_is_psr_enabled(dev))
1806                 return;
1807
1808         /* Setup PSR once */
1809         intel_edp_psr_setup(intel_dp);
1810
1811         /* Enable PSR on the panel */
1812         intel_edp_psr_enable_sink(intel_dp);
1813
1814         /* Enable PSR on the host */
1815         intel_edp_psr_enable_source(intel_dp);
1816 }
1817
1818 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1819 {
1820         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1821
1822         if (intel_edp_psr_match_conditions(intel_dp) &&
1823             !intel_edp_is_psr_enabled(dev))
1824                 intel_edp_psr_do_enable(intel_dp);
1825 }
1826
1827 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1828 {
1829         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1830         struct drm_i915_private *dev_priv = dev->dev_private;
1831
1832         if (!intel_edp_is_psr_enabled(dev))
1833                 return;
1834
1835         I915_WRITE(EDP_PSR_CTL(dev),
1836                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1837
1838         /* Wait till PSR is idle */
1839         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1840                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1841                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1842 }
1843
1844 void intel_edp_psr_update(struct drm_device *dev)
1845 {
1846         struct intel_encoder *encoder;
1847         struct intel_dp *intel_dp = NULL;
1848
1849         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1850                 if (encoder->type == INTEL_OUTPUT_EDP) {
1851                         intel_dp = enc_to_intel_dp(&encoder->base);
1852
1853                         if (!is_edp_psr(dev))
1854                                 return;
1855
1856                         if (!intel_edp_psr_match_conditions(intel_dp))
1857                                 intel_edp_psr_disable(intel_dp);
1858                         else
1859                                 if (!intel_edp_is_psr_enabled(dev))
1860                                         intel_edp_psr_do_enable(intel_dp);
1861                 }
1862 }
1863
1864 static void intel_disable_dp(struct intel_encoder *encoder)
1865 {
1866         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1867         enum port port = dp_to_dig_port(intel_dp)->port;
1868         struct drm_device *dev = encoder->base.dev;
1869
1870         /* Make sure the panel is off before trying to change the mode. But also
1871          * ensure that we have vdd while we switch off the panel. */
1872         edp_panel_vdd_on(intel_dp);
1873         intel_edp_backlight_off(intel_dp);
1874         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1875         intel_edp_panel_off(intel_dp);
1876         edp_panel_vdd_off(intel_dp, true);
1877
1878         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1879         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1880                 intel_dp_link_down(intel_dp);
1881 }
1882
1883 static void intel_post_disable_dp(struct intel_encoder *encoder)
1884 {
1885         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1886         enum port port = dp_to_dig_port(intel_dp)->port;
1887         struct drm_device *dev = encoder->base.dev;
1888
1889         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1890                 intel_dp_link_down(intel_dp);
1891                 if (!IS_VALLEYVIEW(dev))
1892                         ironlake_edp_pll_off(intel_dp);
1893         }
1894 }
1895
1896 static void intel_enable_dp(struct intel_encoder *encoder)
1897 {
1898         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1899         struct drm_device *dev = encoder->base.dev;
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1902
1903         if (WARN_ON(dp_reg & DP_PORT_EN))
1904                 return;
1905
1906         edp_panel_vdd_on(intel_dp);
1907         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1908         intel_dp_start_link_train(intel_dp);
1909         intel_edp_panel_on(intel_dp);
1910         edp_panel_vdd_off(intel_dp, true);
1911         intel_dp_complete_link_train(intel_dp);
1912         intel_dp_stop_link_train(intel_dp);
1913 }
1914
1915 static void g4x_enable_dp(struct intel_encoder *encoder)
1916 {
1917         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1918
1919         intel_enable_dp(encoder);
1920         intel_edp_backlight_on(intel_dp);
1921 }
1922
1923 static void vlv_enable_dp(struct intel_encoder *encoder)
1924 {
1925         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1926
1927         intel_edp_backlight_on(intel_dp);
1928 }
1929
1930 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1931 {
1932         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1933         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1934
1935         if (dport->port == PORT_A)
1936                 ironlake_edp_pll_on(intel_dp);
1937 }
1938
1939 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1940 {
1941         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1942         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1943         struct drm_device *dev = encoder->base.dev;
1944         struct drm_i915_private *dev_priv = dev->dev_private;
1945         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1946         enum dpio_channel port = vlv_dport_to_channel(dport);
1947         int pipe = intel_crtc->pipe;
1948         struct edp_power_seq power_seq;
1949         u32 val;
1950
1951         mutex_lock(&dev_priv->dpio_lock);
1952
1953         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1954         val = 0;
1955         if (pipe)
1956                 val |= (1<<21);
1957         else
1958                 val &= ~(1<<21);
1959         val |= 0x001000c4;
1960         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1961         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1962         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1963
1964         mutex_unlock(&dev_priv->dpio_lock);
1965
1966         /* init power sequencer on this pipe and port */
1967         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1968         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1969                                                       &power_seq);
1970
1971         intel_enable_dp(encoder);
1972
1973         vlv_wait_port_ready(dev_priv, dport);
1974 }
1975
1976 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1977 {
1978         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1979         struct drm_device *dev = encoder->base.dev;
1980         struct drm_i915_private *dev_priv = dev->dev_private;
1981         struct intel_crtc *intel_crtc =
1982                 to_intel_crtc(encoder->base.crtc);
1983         enum dpio_channel port = vlv_dport_to_channel(dport);
1984         int pipe = intel_crtc->pipe;
1985
1986         /* Program Tx lane resets to default */
1987         mutex_lock(&dev_priv->dpio_lock);
1988         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1989                          DPIO_PCS_TX_LANE2_RESET |
1990                          DPIO_PCS_TX_LANE1_RESET);
1991         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1992                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1993                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1994                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1995                                  DPIO_PCS_CLK_SOFT_RESET);
1996
1997         /* Fix up inter-pair skew failure */
1998         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1999         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2000         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2001         mutex_unlock(&dev_priv->dpio_lock);
2002 }
2003
2004 /*
2005  * Native read with retry for link status and receiver capability reads for
2006  * cases where the sink may still be asleep.
2007  */
2008 static bool
2009 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
2010                                uint8_t *recv, int recv_bytes)
2011 {
2012         int ret, i;
2013
2014         /*
2015          * Sinks are *supposed* to come up within 1ms from an off state,
2016          * but we're also supposed to retry 3 times per the spec.
2017          */
2018         for (i = 0; i < 3; i++) {
2019                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
2020                                                recv_bytes);
2021                 if (ret == recv_bytes)
2022                         return true;
2023                 msleep(1);
2024         }
2025
2026         return false;
2027 }
2028
2029 /*
2030  * Fetch AUX CH registers 0x202 - 0x207 which contain
2031  * link status information
2032  */
2033 static bool
2034 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2035 {
2036         return intel_dp_aux_native_read_retry(intel_dp,
2037                                               DP_LANE0_1_STATUS,
2038                                               link_status,
2039                                               DP_LINK_STATUS_SIZE);
2040 }
2041
2042 /*
2043  * These are source-specific values; current Intel hardware supports
2044  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2045  */
2046
2047 static uint8_t
2048 intel_dp_voltage_max(struct intel_dp *intel_dp)
2049 {
2050         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2051         enum port port = dp_to_dig_port(intel_dp)->port;
2052
2053         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2054                 return DP_TRAIN_VOLTAGE_SWING_1200;
2055         else if (IS_GEN7(dev) && port == PORT_A)
2056                 return DP_TRAIN_VOLTAGE_SWING_800;
2057         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2058                 return DP_TRAIN_VOLTAGE_SWING_1200;
2059         else
2060                 return DP_TRAIN_VOLTAGE_SWING_800;
2061 }
2062
2063 static uint8_t
2064 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2065 {
2066         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2067         enum port port = dp_to_dig_port(intel_dp)->port;
2068
2069         if (IS_BROADWELL(dev)) {
2070                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2071                 case DP_TRAIN_VOLTAGE_SWING_400:
2072                 case DP_TRAIN_VOLTAGE_SWING_600:
2073                         return DP_TRAIN_PRE_EMPHASIS_6;
2074                 case DP_TRAIN_VOLTAGE_SWING_800:
2075                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2076                 case DP_TRAIN_VOLTAGE_SWING_1200:
2077                 default:
2078                         return DP_TRAIN_PRE_EMPHASIS_0;
2079                 }
2080         } else if (IS_HASWELL(dev)) {
2081                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2082                 case DP_TRAIN_VOLTAGE_SWING_400:
2083                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2084                 case DP_TRAIN_VOLTAGE_SWING_600:
2085                         return DP_TRAIN_PRE_EMPHASIS_6;
2086                 case DP_TRAIN_VOLTAGE_SWING_800:
2087                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2088                 case DP_TRAIN_VOLTAGE_SWING_1200:
2089                 default:
2090                         return DP_TRAIN_PRE_EMPHASIS_0;
2091                 }
2092         } else if (IS_VALLEYVIEW(dev)) {
2093                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2094                 case DP_TRAIN_VOLTAGE_SWING_400:
2095                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2096                 case DP_TRAIN_VOLTAGE_SWING_600:
2097                         return DP_TRAIN_PRE_EMPHASIS_6;
2098                 case DP_TRAIN_VOLTAGE_SWING_800:
2099                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2100                 case DP_TRAIN_VOLTAGE_SWING_1200:
2101                 default:
2102                         return DP_TRAIN_PRE_EMPHASIS_0;
2103                 }
2104         } else if (IS_GEN7(dev) && port == PORT_A) {
2105                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2106                 case DP_TRAIN_VOLTAGE_SWING_400:
2107                         return DP_TRAIN_PRE_EMPHASIS_6;
2108                 case DP_TRAIN_VOLTAGE_SWING_600:
2109                 case DP_TRAIN_VOLTAGE_SWING_800:
2110                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2111                 default:
2112                         return DP_TRAIN_PRE_EMPHASIS_0;
2113                 }
2114         } else {
2115                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2116                 case DP_TRAIN_VOLTAGE_SWING_400:
2117                         return DP_TRAIN_PRE_EMPHASIS_6;
2118                 case DP_TRAIN_VOLTAGE_SWING_600:
2119                         return DP_TRAIN_PRE_EMPHASIS_6;
2120                 case DP_TRAIN_VOLTAGE_SWING_800:
2121                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2122                 case DP_TRAIN_VOLTAGE_SWING_1200:
2123                 default:
2124                         return DP_TRAIN_PRE_EMPHASIS_0;
2125                 }
2126         }
2127 }
2128
2129 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2130 {
2131         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2132         struct drm_i915_private *dev_priv = dev->dev_private;
2133         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2134         struct intel_crtc *intel_crtc =
2135                 to_intel_crtc(dport->base.base.crtc);
2136         unsigned long demph_reg_value, preemph_reg_value,
2137                 uniqtranscale_reg_value;
2138         uint8_t train_set = intel_dp->train_set[0];
2139         enum dpio_channel port = vlv_dport_to_channel(dport);
2140         int pipe = intel_crtc->pipe;
2141
2142         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2143         case DP_TRAIN_PRE_EMPHASIS_0:
2144                 preemph_reg_value = 0x0004000;
2145                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2146                 case DP_TRAIN_VOLTAGE_SWING_400:
2147                         demph_reg_value = 0x2B405555;
2148                         uniqtranscale_reg_value = 0x552AB83A;
2149                         break;
2150                 case DP_TRAIN_VOLTAGE_SWING_600:
2151                         demph_reg_value = 0x2B404040;
2152                         uniqtranscale_reg_value = 0x5548B83A;
2153                         break;
2154                 case DP_TRAIN_VOLTAGE_SWING_800:
2155                         demph_reg_value = 0x2B245555;
2156                         uniqtranscale_reg_value = 0x5560B83A;
2157                         break;
2158                 case DP_TRAIN_VOLTAGE_SWING_1200:
2159                         demph_reg_value = 0x2B405555;
2160                         uniqtranscale_reg_value = 0x5598DA3A;
2161                         break;
2162                 default:
2163                         return 0;
2164                 }
2165                 break;
2166         case DP_TRAIN_PRE_EMPHASIS_3_5:
2167                 preemph_reg_value = 0x0002000;
2168                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2169                 case DP_TRAIN_VOLTAGE_SWING_400:
2170                         demph_reg_value = 0x2B404040;
2171                         uniqtranscale_reg_value = 0x5552B83A;
2172                         break;
2173                 case DP_TRAIN_VOLTAGE_SWING_600:
2174                         demph_reg_value = 0x2B404848;
2175                         uniqtranscale_reg_value = 0x5580B83A;
2176                         break;
2177                 case DP_TRAIN_VOLTAGE_SWING_800:
2178                         demph_reg_value = 0x2B404040;
2179                         uniqtranscale_reg_value = 0x55ADDA3A;
2180                         break;
2181                 default:
2182                         return 0;
2183                 }
2184                 break;
2185         case DP_TRAIN_PRE_EMPHASIS_6:
2186                 preemph_reg_value = 0x0000000;
2187                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2188                 case DP_TRAIN_VOLTAGE_SWING_400:
2189                         demph_reg_value = 0x2B305555;
2190                         uniqtranscale_reg_value = 0x5570B83A;
2191                         break;
2192                 case DP_TRAIN_VOLTAGE_SWING_600:
2193                         demph_reg_value = 0x2B2B4040;
2194                         uniqtranscale_reg_value = 0x55ADDA3A;
2195                         break;
2196                 default:
2197                         return 0;
2198                 }
2199                 break;
2200         case DP_TRAIN_PRE_EMPHASIS_9_5:
2201                 preemph_reg_value = 0x0006000;
2202                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2203                 case DP_TRAIN_VOLTAGE_SWING_400:
2204                         demph_reg_value = 0x1B405555;
2205                         uniqtranscale_reg_value = 0x55ADDA3A;
2206                         break;
2207                 default:
2208                         return 0;
2209                 }
2210                 break;
2211         default:
2212                 return 0;
2213         }
2214
2215         mutex_lock(&dev_priv->dpio_lock);
2216         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2217         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2218         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2219                          uniqtranscale_reg_value);
2220         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2221         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2222         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2223         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2224         mutex_unlock(&dev_priv->dpio_lock);
2225
2226         return 0;
2227 }
2228
2229 static void
2230 intel_get_adjust_train(struct intel_dp *intel_dp,
2231                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2232 {
2233         uint8_t v = 0;
2234         uint8_t p = 0;
2235         int lane;
2236         uint8_t voltage_max;
2237         uint8_t preemph_max;
2238
2239         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2240                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2241                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2242
2243                 if (this_v > v)
2244                         v = this_v;
2245                 if (this_p > p)
2246                         p = this_p;
2247         }
2248
2249         voltage_max = intel_dp_voltage_max(intel_dp);
2250         if (v >= voltage_max)
2251                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2252
2253         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2254         if (p >= preemph_max)
2255                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2256
2257         for (lane = 0; lane < 4; lane++)
2258                 intel_dp->train_set[lane] = v | p;
2259 }
2260
2261 static uint32_t
2262 intel_gen4_signal_levels(uint8_t train_set)
2263 {
2264         uint32_t        signal_levels = 0;
2265
2266         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2267         case DP_TRAIN_VOLTAGE_SWING_400:
2268         default:
2269                 signal_levels |= DP_VOLTAGE_0_4;
2270                 break;
2271         case DP_TRAIN_VOLTAGE_SWING_600:
2272                 signal_levels |= DP_VOLTAGE_0_6;
2273                 break;
2274         case DP_TRAIN_VOLTAGE_SWING_800:
2275                 signal_levels |= DP_VOLTAGE_0_8;
2276                 break;
2277         case DP_TRAIN_VOLTAGE_SWING_1200:
2278                 signal_levels |= DP_VOLTAGE_1_2;
2279                 break;
2280         }
2281         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2282         case DP_TRAIN_PRE_EMPHASIS_0:
2283         default:
2284                 signal_levels |= DP_PRE_EMPHASIS_0;
2285                 break;
2286         case DP_TRAIN_PRE_EMPHASIS_3_5:
2287                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2288                 break;
2289         case DP_TRAIN_PRE_EMPHASIS_6:
2290                 signal_levels |= DP_PRE_EMPHASIS_6;
2291                 break;
2292         case DP_TRAIN_PRE_EMPHASIS_9_5:
2293                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2294                 break;
2295         }
2296         return signal_levels;
2297 }
2298
2299 /* Gen6's DP voltage swing and pre-emphasis control */
2300 static uint32_t
2301 intel_gen6_edp_signal_levels(uint8_t train_set)
2302 {
2303         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2304                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2305         switch (signal_levels) {
2306         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2307         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2308                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2309         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2310                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2311         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2312         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2313                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2314         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2315         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2316                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2317         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2318         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2319                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2320         default:
2321                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2322                               "0x%x\n", signal_levels);
2323                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2324         }
2325 }
2326
2327 /* Gen7's DP voltage swing and pre-emphasis control */
2328 static uint32_t
2329 intel_gen7_edp_signal_levels(uint8_t train_set)
2330 {
2331         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2332                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2333         switch (signal_levels) {
2334         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2335                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2336         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2337                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2338         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2339                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2340
2341         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2342                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2343         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2344                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2345
2346         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2347                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2348         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2349                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2350
2351         default:
2352                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2353                               "0x%x\n", signal_levels);
2354                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2355         }
2356 }
2357
2358 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2359 static uint32_t
2360 intel_hsw_signal_levels(uint8_t train_set)
2361 {
2362         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2363                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2364         switch (signal_levels) {
2365         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2366                 return DDI_BUF_EMP_400MV_0DB_HSW;
2367         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2368                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2369         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2370                 return DDI_BUF_EMP_400MV_6DB_HSW;
2371         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2372                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2373
2374         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2375                 return DDI_BUF_EMP_600MV_0DB_HSW;
2376         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2377                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2378         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2379                 return DDI_BUF_EMP_600MV_6DB_HSW;
2380
2381         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2382                 return DDI_BUF_EMP_800MV_0DB_HSW;
2383         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2384                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2385         default:
2386                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2387                               "0x%x\n", signal_levels);
2388                 return DDI_BUF_EMP_400MV_0DB_HSW;
2389         }
2390 }
2391
2392 static uint32_t
2393 intel_bdw_signal_levels(uint8_t train_set)
2394 {
2395         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2396                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2397         switch (signal_levels) {
2398         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2399                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2400         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2401                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2402         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2403                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2404
2405         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2406                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2407         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2408                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2409         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2410                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2411
2412         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2413                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2414         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2415                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2416
2417         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2418                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2419
2420         default:
2421                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2422                               "0x%x\n", signal_levels);
2423                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2424         }
2425 }
2426
2427 /* Properly updates "DP" with the correct signal levels. */
2428 static void
2429 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2430 {
2431         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2432         enum port port = intel_dig_port->port;
2433         struct drm_device *dev = intel_dig_port->base.base.dev;
2434         uint32_t signal_levels, mask;
2435         uint8_t train_set = intel_dp->train_set[0];
2436
2437         if (IS_BROADWELL(dev)) {
2438                 signal_levels = intel_bdw_signal_levels(train_set);
2439                 mask = DDI_BUF_EMP_MASK;
2440         } else if (IS_HASWELL(dev)) {
2441                 signal_levels = intel_hsw_signal_levels(train_set);
2442                 mask = DDI_BUF_EMP_MASK;
2443         } else if (IS_VALLEYVIEW(dev)) {
2444                 signal_levels = intel_vlv_signal_levels(intel_dp);
2445                 mask = 0;
2446         } else if (IS_GEN7(dev) && port == PORT_A) {
2447                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2448                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2449         } else if (IS_GEN6(dev) && port == PORT_A) {
2450                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2451                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2452         } else {
2453                 signal_levels = intel_gen4_signal_levels(train_set);
2454                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2455         }
2456
2457         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2458
2459         *DP = (*DP & ~mask) | signal_levels;
2460 }
2461
2462 static bool
2463 intel_dp_set_link_train(struct intel_dp *intel_dp,
2464                         uint32_t *DP,
2465                         uint8_t dp_train_pat)
2466 {
2467         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2468         struct drm_device *dev = intel_dig_port->base.base.dev;
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470         enum port port = intel_dig_port->port;
2471         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2472         int ret, len;
2473
2474         if (HAS_DDI(dev)) {
2475                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2476
2477                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2478                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2479                 else
2480                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2481
2482                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2483                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2484                 case DP_TRAINING_PATTERN_DISABLE:
2485                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2486
2487                         break;
2488                 case DP_TRAINING_PATTERN_1:
2489                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2490                         break;
2491                 case DP_TRAINING_PATTERN_2:
2492                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2493                         break;
2494                 case DP_TRAINING_PATTERN_3:
2495                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2496                         break;
2497                 }
2498                 I915_WRITE(DP_TP_CTL(port), temp);
2499
2500         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2501                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2502
2503                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2504                 case DP_TRAINING_PATTERN_DISABLE:
2505                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2506                         break;
2507                 case DP_TRAINING_PATTERN_1:
2508                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2509                         break;
2510                 case DP_TRAINING_PATTERN_2:
2511                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2512                         break;
2513                 case DP_TRAINING_PATTERN_3:
2514                         DRM_ERROR("DP training pattern 3 not supported\n");
2515                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2516                         break;
2517                 }
2518
2519         } else {
2520                 *DP &= ~DP_LINK_TRAIN_MASK;
2521
2522                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2523                 case DP_TRAINING_PATTERN_DISABLE:
2524                         *DP |= DP_LINK_TRAIN_OFF;
2525                         break;
2526                 case DP_TRAINING_PATTERN_1:
2527                         *DP |= DP_LINK_TRAIN_PAT_1;
2528                         break;
2529                 case DP_TRAINING_PATTERN_2:
2530                         *DP |= DP_LINK_TRAIN_PAT_2;
2531                         break;
2532                 case DP_TRAINING_PATTERN_3:
2533                         DRM_ERROR("DP training pattern 3 not supported\n");
2534                         *DP |= DP_LINK_TRAIN_PAT_2;
2535                         break;
2536                 }
2537         }
2538
2539         I915_WRITE(intel_dp->output_reg, *DP);
2540         POSTING_READ(intel_dp->output_reg);
2541
2542         buf[0] = dp_train_pat;
2543         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2544             DP_TRAINING_PATTERN_DISABLE) {
2545                 /* don't write DP_TRAINING_LANEx_SET on disable */
2546                 len = 1;
2547         } else {
2548                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2549                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2550                 len = intel_dp->lane_count + 1;
2551         }
2552
2553         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2554                                         buf, len);
2555
2556         return ret == len;
2557 }
2558
2559 static bool
2560 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2561                         uint8_t dp_train_pat)
2562 {
2563         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2564         intel_dp_set_signal_levels(intel_dp, DP);
2565         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2566 }
2567
2568 static bool
2569 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2570                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2571 {
2572         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2573         struct drm_device *dev = intel_dig_port->base.base.dev;
2574         struct drm_i915_private *dev_priv = dev->dev_private;
2575         int ret;
2576
2577         intel_get_adjust_train(intel_dp, link_status);
2578         intel_dp_set_signal_levels(intel_dp, DP);
2579
2580         I915_WRITE(intel_dp->output_reg, *DP);
2581         POSTING_READ(intel_dp->output_reg);
2582
2583         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2584                                         intel_dp->train_set,
2585                                         intel_dp->lane_count);
2586
2587         return ret == intel_dp->lane_count;
2588 }
2589
2590 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2591 {
2592         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2593         struct drm_device *dev = intel_dig_port->base.base.dev;
2594         struct drm_i915_private *dev_priv = dev->dev_private;
2595         enum port port = intel_dig_port->port;
2596         uint32_t val;
2597
2598         if (!HAS_DDI(dev))
2599                 return;
2600
2601         val = I915_READ(DP_TP_CTL(port));
2602         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2603         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2604         I915_WRITE(DP_TP_CTL(port), val);
2605
2606         /*
2607          * On PORT_A we can have only eDP in SST mode. There the only reason
2608          * we need to set idle transmission mode is to work around a HW issue
2609          * where we enable the pipe while not in idle link-training mode.
2610          * In this case there is requirement to wait for a minimum number of
2611          * idle patterns to be sent.
2612          */
2613         if (port == PORT_A)
2614                 return;
2615
2616         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2617                      1))
2618                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2619 }
2620
2621 /* Enable corresponding port and start training pattern 1 */
2622 void
2623 intel_dp_start_link_train(struct intel_dp *intel_dp)
2624 {
2625         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2626         struct drm_device *dev = encoder->dev;
2627         int i;
2628         uint8_t voltage;
2629         int voltage_tries, loop_tries;
2630         uint32_t DP = intel_dp->DP;
2631         uint8_t link_config[2];
2632
2633         if (HAS_DDI(dev))
2634                 intel_ddi_prepare_link_retrain(encoder);
2635
2636         /* Write the link configuration data */
2637         link_config[0] = intel_dp->link_bw;
2638         link_config[1] = intel_dp->lane_count;
2639         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2640                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2641         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2642
2643         link_config[0] = 0;
2644         link_config[1] = DP_SET_ANSI_8B10B;
2645         intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2646
2647         DP |= DP_PORT_EN;
2648
2649         /* clock recovery */
2650         if (!intel_dp_reset_link_train(intel_dp, &DP,
2651                                        DP_TRAINING_PATTERN_1 |
2652                                        DP_LINK_SCRAMBLING_DISABLE)) {
2653                 DRM_ERROR("failed to enable link training\n");
2654                 return;
2655         }
2656
2657         voltage = 0xff;
2658         voltage_tries = 0;
2659         loop_tries = 0;
2660         for (;;) {
2661                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2662
2663                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2664                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2665                         DRM_ERROR("failed to get link status\n");
2666                         break;
2667                 }
2668
2669                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2670                         DRM_DEBUG_KMS("clock recovery OK\n");
2671                         break;
2672                 }
2673
2674                 /* Check to see if we've tried the max voltage */
2675                 for (i = 0; i < intel_dp->lane_count; i++)
2676                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2677                                 break;
2678                 if (i == intel_dp->lane_count) {
2679                         ++loop_tries;
2680                         if (loop_tries == 5) {
2681                                 DRM_ERROR("too many full retries, give up\n");
2682                                 break;
2683                         }
2684                         intel_dp_reset_link_train(intel_dp, &DP,
2685                                                   DP_TRAINING_PATTERN_1 |
2686                                                   DP_LINK_SCRAMBLING_DISABLE);
2687                         voltage_tries = 0;
2688                         continue;
2689                 }
2690
2691                 /* Check to see if we've tried the same voltage 5 times */
2692                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2693                         ++voltage_tries;
2694                         if (voltage_tries == 5) {
2695                                 DRM_ERROR("too many voltage retries, give up\n");
2696                                 break;
2697                         }
2698                 } else
2699                         voltage_tries = 0;
2700                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2701
2702                 /* Update training set as requested by target */
2703                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2704                         DRM_ERROR("failed to update link training\n");
2705                         break;
2706                 }
2707         }
2708
2709         intel_dp->DP = DP;
2710 }
2711
2712 void
2713 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2714 {
2715         bool channel_eq = false;
2716         int tries, cr_tries;
2717         uint32_t DP = intel_dp->DP;
2718         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2719
2720         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2721         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2722                 training_pattern = DP_TRAINING_PATTERN_3;
2723
2724         /* channel equalization */
2725         if (!intel_dp_set_link_train(intel_dp, &DP,
2726                                      training_pattern |
2727                                      DP_LINK_SCRAMBLING_DISABLE)) {
2728                 DRM_ERROR("failed to start channel equalization\n");
2729                 return;
2730         }
2731
2732         tries = 0;
2733         cr_tries = 0;
2734         channel_eq = false;
2735         for (;;) {
2736                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2737
2738                 if (cr_tries > 5) {
2739                         DRM_ERROR("failed to train DP, aborting\n");
2740                         break;
2741                 }
2742
2743                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2744                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2745                         DRM_ERROR("failed to get link status\n");
2746                         break;
2747                 }
2748
2749                 /* Make sure clock is still ok */
2750                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2751                         intel_dp_start_link_train(intel_dp);
2752                         intel_dp_set_link_train(intel_dp, &DP,
2753                                                 training_pattern |
2754                                                 DP_LINK_SCRAMBLING_DISABLE);
2755                         cr_tries++;
2756                         continue;
2757                 }
2758
2759                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2760                         channel_eq = true;
2761                         break;
2762                 }
2763
2764                 /* Try 5 times, then try clock recovery if that fails */
2765                 if (tries > 5) {
2766                         intel_dp_link_down(intel_dp);
2767                         intel_dp_start_link_train(intel_dp);
2768                         intel_dp_set_link_train(intel_dp, &DP,
2769                                                 training_pattern |
2770                                                 DP_LINK_SCRAMBLING_DISABLE);
2771                         tries = 0;
2772                         cr_tries++;
2773                         continue;
2774                 }
2775
2776                 /* Update training set as requested by target */
2777                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2778                         DRM_ERROR("failed to update link training\n");
2779                         break;
2780                 }
2781                 ++tries;
2782         }
2783
2784         intel_dp_set_idle_link_train(intel_dp);
2785
2786         intel_dp->DP = DP;
2787
2788         if (channel_eq)
2789                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2790
2791 }
2792
2793 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2794 {
2795         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2796                                 DP_TRAINING_PATTERN_DISABLE);
2797 }
2798
2799 static void
2800 intel_dp_link_down(struct intel_dp *intel_dp)
2801 {
2802         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2803         enum port port = intel_dig_port->port;
2804         struct drm_device *dev = intel_dig_port->base.base.dev;
2805         struct drm_i915_private *dev_priv = dev->dev_private;
2806         struct intel_crtc *intel_crtc =
2807                 to_intel_crtc(intel_dig_port->base.base.crtc);
2808         uint32_t DP = intel_dp->DP;
2809
2810         /*
2811          * DDI code has a strict mode set sequence and we should try to respect
2812          * it, otherwise we might hang the machine in many different ways. So we
2813          * really should be disabling the port only on a complete crtc_disable
2814          * sequence. This function is just called under two conditions on DDI
2815          * code:
2816          * - Link train failed while doing crtc_enable, and on this case we
2817          *   really should respect the mode set sequence and wait for a
2818          *   crtc_disable.
2819          * - Someone turned the monitor off and intel_dp_check_link_status
2820          *   called us. We don't need to disable the whole port on this case, so
2821          *   when someone turns the monitor on again,
2822          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2823          *   train.
2824          */
2825         if (HAS_DDI(dev))
2826                 return;
2827
2828         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2829                 return;
2830
2831         DRM_DEBUG_KMS("\n");
2832
2833         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2834                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2835                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2836         } else {
2837                 DP &= ~DP_LINK_TRAIN_MASK;
2838                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2839         }
2840         POSTING_READ(intel_dp->output_reg);
2841
2842         /* We don't really know why we're doing this */
2843         intel_wait_for_vblank(dev, intel_crtc->pipe);
2844
2845         if (HAS_PCH_IBX(dev) &&
2846             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2847                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2848
2849                 /* Hardware workaround: leaving our transcoder select
2850                  * set to transcoder B while it's off will prevent the
2851                  * corresponding HDMI output on transcoder A.
2852                  *
2853                  * Combine this with another hardware workaround:
2854                  * transcoder select bit can only be cleared while the
2855                  * port is enabled.
2856                  */
2857                 DP &= ~DP_PIPEB_SELECT;
2858                 I915_WRITE(intel_dp->output_reg, DP);
2859
2860                 /* Changes to enable or select take place the vblank
2861                  * after being written.
2862                  */
2863                 if (WARN_ON(crtc == NULL)) {
2864                         /* We should never try to disable a port without a crtc
2865                          * attached. For paranoia keep the code around for a
2866                          * bit. */
2867                         POSTING_READ(intel_dp->output_reg);
2868                         msleep(50);
2869                 } else
2870                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2871         }
2872
2873         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2874         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2875         POSTING_READ(intel_dp->output_reg);
2876         msleep(intel_dp->panel_power_down_delay);
2877 }
2878
2879 static bool
2880 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2881 {
2882         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2883         struct drm_device *dev = dig_port->base.base.dev;
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885
2886         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2887
2888         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2889                                            sizeof(intel_dp->dpcd)) == 0)
2890                 return false; /* aux transfer failed */
2891
2892         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2893                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2894         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2895
2896         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2897                 return false; /* DPCD not present */
2898
2899         /* Check if the panel supports PSR */
2900         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2901         if (is_edp(intel_dp)) {
2902                 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2903                                                intel_dp->psr_dpcd,
2904                                                sizeof(intel_dp->psr_dpcd));
2905                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2906                         dev_priv->psr.sink_support = true;
2907                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2908                 }
2909         }
2910
2911         /* Training Pattern 3 support */
2912         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2913             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2914                 intel_dp->use_tps3 = true;
2915                 DRM_DEBUG_KMS("Displayport TPS3 supported");
2916         } else
2917                 intel_dp->use_tps3 = false;
2918
2919         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2920               DP_DWN_STRM_PORT_PRESENT))
2921                 return true; /* native DP sink */
2922
2923         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2924                 return true; /* no per-port downstream info */
2925
2926         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2927                                            intel_dp->downstream_ports,
2928                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2929                 return false; /* downstream port status fetch failed */
2930
2931         return true;
2932 }
2933
2934 static void
2935 intel_dp_probe_oui(struct intel_dp *intel_dp)
2936 {
2937         u8 buf[3];
2938
2939         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2940                 return;
2941
2942         edp_panel_vdd_on(intel_dp);
2943
2944         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2945                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2946                               buf[0], buf[1], buf[2]);
2947
2948         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2949                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2950                               buf[0], buf[1], buf[2]);
2951
2952         edp_panel_vdd_off(intel_dp, false);
2953 }
2954
2955 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2956 {
2957         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2958         struct drm_device *dev = intel_dig_port->base.base.dev;
2959         struct intel_crtc *intel_crtc =
2960                 to_intel_crtc(intel_dig_port->base.base.crtc);
2961         u8 buf[1];
2962
2963         if (!intel_dp_aux_native_read(intel_dp, DP_TEST_SINK_MISC, buf, 1))
2964                 return -EAGAIN;
2965
2966         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2967                 return -ENOTTY;
2968
2969         if (!intel_dp_aux_native_write_1(intel_dp, DP_TEST_SINK,
2970                                          DP_TEST_SINK_START))
2971                 return -EAGAIN;
2972
2973         /* Wait 2 vblanks to be sure we will have the correct CRC value */
2974         intel_wait_for_vblank(dev, intel_crtc->pipe);
2975         intel_wait_for_vblank(dev, intel_crtc->pipe);
2976
2977         if (!intel_dp_aux_native_read(intel_dp, DP_TEST_CRC_R_CR, crc, 6))
2978                 return -EAGAIN;
2979
2980         intel_dp_aux_native_write_1(intel_dp, DP_TEST_SINK, 0);
2981         return 0;
2982 }
2983
2984 static bool
2985 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2986 {
2987         int ret;
2988
2989         ret = intel_dp_aux_native_read_retry(intel_dp,
2990                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2991                                              sink_irq_vector, 1);
2992         if (!ret)
2993                 return false;
2994
2995         return true;
2996 }
2997
2998 static void
2999 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3000 {
3001         /* NAK by default */
3002         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
3003 }
3004
3005 /*
3006  * According to DP spec
3007  * 5.1.2:
3008  *  1. Read DPCD
3009  *  2. Configure link according to Receiver Capabilities
3010  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3011  *  4. Check link status on receipt of hot-plug interrupt
3012  */
3013
3014 void
3015 intel_dp_check_link_status(struct intel_dp *intel_dp)
3016 {
3017         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3018         u8 sink_irq_vector;
3019         u8 link_status[DP_LINK_STATUS_SIZE];
3020
3021         if (!intel_encoder->connectors_active)
3022                 return;
3023
3024         if (WARN_ON(!intel_encoder->base.crtc))
3025                 return;
3026
3027         /* Try to read receiver status if the link appears to be up */
3028         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3029                 return;
3030         }
3031
3032         /* Now read the DPCD to see if it's actually running */
3033         if (!intel_dp_get_dpcd(intel_dp)) {
3034                 return;
3035         }
3036
3037         /* Try to read the source of the interrupt */
3038         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3039             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3040                 /* Clear interrupt source */
3041                 intel_dp_aux_native_write_1(intel_dp,
3042                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
3043                                             sink_irq_vector);
3044
3045                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3046                         intel_dp_handle_test_request(intel_dp);
3047                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3048                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3049         }
3050
3051         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3052                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3053                               drm_get_encoder_name(&intel_encoder->base));
3054                 intel_dp_start_link_train(intel_dp);
3055                 intel_dp_complete_link_train(intel_dp);
3056                 intel_dp_stop_link_train(intel_dp);
3057         }
3058 }
3059
3060 /* XXX this is probably wrong for multiple downstream ports */
3061 static enum drm_connector_status
3062 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3063 {
3064         uint8_t *dpcd = intel_dp->dpcd;
3065         uint8_t type;
3066
3067         if (!intel_dp_get_dpcd(intel_dp))
3068                 return connector_status_disconnected;
3069
3070         /* if there's no downstream port, we're done */
3071         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3072                 return connector_status_connected;
3073
3074         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3075         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3076             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3077                 uint8_t reg;
3078                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
3079                                                     &reg, 1))
3080                         return connector_status_unknown;
3081                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3082                                               : connector_status_disconnected;
3083         }
3084
3085         /* If no HPD, poke DDC gently */
3086         if (drm_probe_ddc(&intel_dp->adapter))
3087                 return connector_status_connected;
3088
3089         /* Well we tried, say unknown for unreliable port types */
3090         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3091                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3092                 if (type == DP_DS_PORT_TYPE_VGA ||
3093                     type == DP_DS_PORT_TYPE_NON_EDID)
3094                         return connector_status_unknown;
3095         } else {
3096                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3097                         DP_DWN_STRM_PORT_TYPE_MASK;
3098                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3099                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
3100                         return connector_status_unknown;
3101         }
3102
3103         /* Anything else is out of spec, warn and ignore */
3104         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3105         return connector_status_disconnected;
3106 }
3107
3108 static enum drm_connector_status
3109 ironlake_dp_detect(struct intel_dp *intel_dp)
3110 {
3111         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3112         struct drm_i915_private *dev_priv = dev->dev_private;
3113         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3114         enum drm_connector_status status;
3115
3116         /* Can't disconnect eDP, but you can close the lid... */
3117         if (is_edp(intel_dp)) {
3118                 status = intel_panel_detect(dev);
3119                 if (status == connector_status_unknown)
3120                         status = connector_status_connected;
3121                 return status;
3122         }
3123
3124         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3125                 return connector_status_disconnected;
3126
3127         return intel_dp_detect_dpcd(intel_dp);
3128 }
3129
3130 static enum drm_connector_status
3131 g4x_dp_detect(struct intel_dp *intel_dp)
3132 {
3133         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3134         struct drm_i915_private *dev_priv = dev->dev_private;
3135         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3136         uint32_t bit;
3137
3138         /* Can't disconnect eDP, but you can close the lid... */
3139         if (is_edp(intel_dp)) {
3140                 enum drm_connector_status status;
3141
3142                 status = intel_panel_detect(dev);
3143                 if (status == connector_status_unknown)
3144                         status = connector_status_connected;
3145                 return status;
3146         }
3147
3148         if (IS_VALLEYVIEW(dev)) {
3149                 switch (intel_dig_port->port) {
3150                 case PORT_B:
3151                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3152                         break;
3153                 case PORT_C:
3154                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3155                         break;
3156                 case PORT_D:
3157                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3158                         break;
3159                 default:
3160                         return connector_status_unknown;
3161                 }
3162         } else {
3163                 switch (intel_dig_port->port) {
3164                 case PORT_B:
3165                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3166                         break;
3167                 case PORT_C:
3168                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3169                         break;
3170                 case PORT_D:
3171                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3172                         break;
3173                 default:
3174                         return connector_status_unknown;
3175                 }
3176         }
3177
3178         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3179                 return connector_status_disconnected;
3180
3181         return intel_dp_detect_dpcd(intel_dp);
3182 }
3183
3184 static struct edid *
3185 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3186 {
3187         struct intel_connector *intel_connector = to_intel_connector(connector);
3188
3189         /* use cached edid if we have one */
3190         if (intel_connector->edid) {
3191                 /* invalid edid */
3192                 if (IS_ERR(intel_connector->edid))
3193                         return NULL;
3194
3195                 return drm_edid_duplicate(intel_connector->edid);
3196         }
3197
3198         return drm_get_edid(connector, adapter);
3199 }
3200
3201 static int
3202 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3203 {
3204         struct intel_connector *intel_connector = to_intel_connector(connector);
3205
3206         /* use cached edid if we have one */
3207         if (intel_connector->edid) {
3208                 /* invalid edid */
3209                 if (IS_ERR(intel_connector->edid))
3210                         return 0;
3211
3212                 return intel_connector_update_modes(connector,
3213                                                     intel_connector->edid);
3214         }
3215
3216         return intel_ddc_get_modes(connector, adapter);
3217 }
3218
3219 static enum drm_connector_status
3220 intel_dp_detect(struct drm_connector *connector, bool force)
3221 {
3222         struct intel_dp *intel_dp = intel_attached_dp(connector);
3223         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3224         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3225         struct drm_device *dev = connector->dev;
3226         struct drm_i915_private *dev_priv = dev->dev_private;
3227         enum drm_connector_status status;
3228         enum intel_display_power_domain power_domain;
3229         struct edid *edid = NULL;
3230
3231         intel_runtime_pm_get(dev_priv);
3232
3233         power_domain = intel_display_port_power_domain(intel_encoder);
3234         intel_display_power_get(dev_priv, power_domain);
3235
3236         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3237                       connector->base.id, drm_get_connector_name(connector));
3238
3239         intel_dp->has_audio = false;
3240
3241         if (HAS_PCH_SPLIT(dev))
3242                 status = ironlake_dp_detect(intel_dp);
3243         else
3244                 status = g4x_dp_detect(intel_dp);
3245
3246         if (status != connector_status_connected)
3247                 goto out;
3248
3249         intel_dp_probe_oui(intel_dp);
3250
3251         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3252                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3253         } else {
3254                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3255                 if (edid) {
3256                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3257                         kfree(edid);
3258                 }
3259         }
3260
3261         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3262                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3263         status = connector_status_connected;
3264
3265 out:
3266         intel_display_power_put(dev_priv, power_domain);
3267
3268         intel_runtime_pm_put(dev_priv);
3269
3270         return status;
3271 }
3272
3273 static int intel_dp_get_modes(struct drm_connector *connector)
3274 {
3275         struct intel_dp *intel_dp = intel_attached_dp(connector);
3276         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3277         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3278         struct intel_connector *intel_connector = to_intel_connector(connector);
3279         struct drm_device *dev = connector->dev;
3280         struct drm_i915_private *dev_priv = dev->dev_private;
3281         enum intel_display_power_domain power_domain;
3282         int ret;
3283
3284         /* We should parse the EDID data and find out if it has an audio sink
3285          */
3286
3287         power_domain = intel_display_port_power_domain(intel_encoder);
3288         intel_display_power_get(dev_priv, power_domain);
3289
3290         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3291         intel_display_power_put(dev_priv, power_domain);
3292         if (ret)
3293                 return ret;
3294
3295         /* if eDP has no EDID, fall back to fixed mode */
3296         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3297                 struct drm_display_mode *mode;
3298                 mode = drm_mode_duplicate(dev,
3299                                           intel_connector->panel.fixed_mode);
3300                 if (mode) {
3301                         drm_mode_probed_add(connector, mode);
3302                         return 1;
3303                 }
3304         }
3305         return 0;
3306 }
3307
3308 static bool
3309 intel_dp_detect_audio(struct drm_connector *connector)
3310 {
3311         struct intel_dp *intel_dp = intel_attached_dp(connector);
3312         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3313         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3314         struct drm_device *dev = connector->dev;
3315         struct drm_i915_private *dev_priv = dev->dev_private;
3316         enum intel_display_power_domain power_domain;
3317         struct edid *edid;
3318         bool has_audio = false;
3319
3320         power_domain = intel_display_port_power_domain(intel_encoder);
3321         intel_display_power_get(dev_priv, power_domain);
3322
3323         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3324         if (edid) {
3325                 has_audio = drm_detect_monitor_audio(edid);
3326                 kfree(edid);
3327         }
3328
3329         intel_display_power_put(dev_priv, power_domain);
3330
3331         return has_audio;
3332 }
3333
3334 static int
3335 intel_dp_set_property(struct drm_connector *connector,
3336                       struct drm_property *property,
3337                       uint64_t val)
3338 {
3339         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3340         struct intel_connector *intel_connector = to_intel_connector(connector);
3341         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3342         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3343         int ret;
3344
3345         ret = drm_object_property_set_value(&connector->base, property, val);
3346         if (ret)
3347                 return ret;
3348
3349         if (property == dev_priv->force_audio_property) {
3350                 int i = val;
3351                 bool has_audio;
3352
3353                 if (i == intel_dp->force_audio)
3354                         return 0;
3355
3356                 intel_dp->force_audio = i;
3357
3358                 if (i == HDMI_AUDIO_AUTO)
3359                         has_audio = intel_dp_detect_audio(connector);
3360                 else
3361                         has_audio = (i == HDMI_AUDIO_ON);
3362
3363                 if (has_audio == intel_dp->has_audio)
3364                         return 0;
3365
3366                 intel_dp->has_audio = has_audio;
3367                 goto done;
3368         }
3369
3370         if (property == dev_priv->broadcast_rgb_property) {
3371                 bool old_auto = intel_dp->color_range_auto;
3372                 uint32_t old_range = intel_dp->color_range;
3373
3374                 switch (val) {
3375                 case INTEL_BROADCAST_RGB_AUTO:
3376                         intel_dp->color_range_auto = true;
3377                         break;
3378                 case INTEL_BROADCAST_RGB_FULL:
3379                         intel_dp->color_range_auto = false;
3380                         intel_dp->color_range = 0;
3381                         break;
3382                 case INTEL_BROADCAST_RGB_LIMITED:
3383                         intel_dp->color_range_auto = false;
3384                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3385                         break;
3386                 default:
3387                         return -EINVAL;
3388                 }
3389
3390                 if (old_auto == intel_dp->color_range_auto &&
3391                     old_range == intel_dp->color_range)
3392                         return 0;
3393
3394                 goto done;
3395         }
3396
3397         if (is_edp(intel_dp) &&
3398             property == connector->dev->mode_config.scaling_mode_property) {
3399                 if (val == DRM_MODE_SCALE_NONE) {
3400                         DRM_DEBUG_KMS("no scaling not supported\n");
3401                         return -EINVAL;
3402                 }
3403
3404                 if (intel_connector->panel.fitting_mode == val) {
3405                         /* the eDP scaling property is not changed */
3406                         return 0;
3407                 }
3408                 intel_connector->panel.fitting_mode = val;
3409
3410                 goto done;
3411         }
3412
3413         return -EINVAL;
3414
3415 done:
3416         if (intel_encoder->base.crtc)
3417                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3418
3419         return 0;
3420 }
3421
3422 static void
3423 intel_dp_connector_destroy(struct drm_connector *connector)
3424 {
3425         struct intel_connector *intel_connector = to_intel_connector(connector);
3426
3427         if (!IS_ERR_OR_NULL(intel_connector->edid))
3428                 kfree(intel_connector->edid);
3429
3430         /* Can't call is_edp() since the encoder may have been destroyed
3431          * already. */
3432         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3433                 intel_panel_fini(&intel_connector->panel);
3434
3435         drm_connector_cleanup(connector);
3436         kfree(connector);
3437 }
3438
3439 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3440 {
3441         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3442         struct intel_dp *intel_dp = &intel_dig_port->dp;
3443         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3444
3445         i2c_del_adapter(&intel_dp->adapter);
3446         drm_encoder_cleanup(encoder);
3447         if (is_edp(intel_dp)) {
3448                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3449                 mutex_lock(&dev->mode_config.mutex);
3450                 edp_panel_vdd_off_sync(intel_dp);
3451                 mutex_unlock(&dev->mode_config.mutex);
3452         }
3453         kfree(intel_dig_port);
3454 }
3455
3456 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3457         .dpms = intel_connector_dpms,
3458         .detect = intel_dp_detect,
3459         .fill_modes = drm_helper_probe_single_connector_modes,
3460         .set_property = intel_dp_set_property,
3461         .destroy = intel_dp_connector_destroy,
3462 };
3463
3464 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3465         .get_modes = intel_dp_get_modes,
3466         .mode_valid = intel_dp_mode_valid,
3467         .best_encoder = intel_best_encoder,
3468 };
3469
3470 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3471         .destroy = intel_dp_encoder_destroy,
3472 };
3473
3474 static void
3475 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3476 {
3477         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3478
3479         intel_dp_check_link_status(intel_dp);
3480 }
3481
3482 /* Return which DP Port should be selected for Transcoder DP control */
3483 int
3484 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3485 {
3486         struct drm_device *dev = crtc->dev;
3487         struct intel_encoder *intel_encoder;
3488         struct intel_dp *intel_dp;
3489
3490         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3491                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3492
3493                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3494                     intel_encoder->type == INTEL_OUTPUT_EDP)
3495                         return intel_dp->output_reg;
3496         }
3497
3498         return -1;
3499 }
3500
3501 /* check the VBT to see whether the eDP is on DP-D port */
3502 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3503 {
3504         struct drm_i915_private *dev_priv = dev->dev_private;
3505         union child_device_config *p_child;
3506         int i;
3507         static const short port_mapping[] = {
3508                 [PORT_B] = PORT_IDPB,
3509                 [PORT_C] = PORT_IDPC,
3510                 [PORT_D] = PORT_IDPD,
3511         };
3512
3513         if (port == PORT_A)
3514                 return true;
3515
3516         if (!dev_priv->vbt.child_dev_num)
3517                 return false;
3518
3519         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3520                 p_child = dev_priv->vbt.child_dev + i;
3521
3522                 if (p_child->common.dvo_port == port_mapping[port] &&
3523                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3524                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3525                         return true;
3526         }
3527         return false;
3528 }
3529
3530 static void
3531 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3532 {
3533         struct intel_connector *intel_connector = to_intel_connector(connector);
3534
3535         intel_attach_force_audio_property(connector);
3536         intel_attach_broadcast_rgb_property(connector);
3537         intel_dp->color_range_auto = true;
3538
3539         if (is_edp(intel_dp)) {
3540                 drm_mode_create_scaling_mode_property(connector->dev);
3541                 drm_object_attach_property(
3542                         &connector->base,
3543                         connector->dev->mode_config.scaling_mode_property,
3544                         DRM_MODE_SCALE_ASPECT);
3545                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3546         }
3547 }
3548
3549 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3550 {
3551         intel_dp->last_power_cycle = jiffies;
3552         intel_dp->last_power_on = jiffies;
3553         intel_dp->last_backlight_off = jiffies;
3554 }
3555
3556 static void
3557 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3558                                     struct intel_dp *intel_dp,
3559                                     struct edp_power_seq *out)
3560 {
3561         struct drm_i915_private *dev_priv = dev->dev_private;
3562         struct edp_power_seq cur, vbt, spec, final;
3563         u32 pp_on, pp_off, pp_div, pp;
3564         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3565
3566         if (HAS_PCH_SPLIT(dev)) {
3567                 pp_ctrl_reg = PCH_PP_CONTROL;
3568                 pp_on_reg = PCH_PP_ON_DELAYS;
3569                 pp_off_reg = PCH_PP_OFF_DELAYS;
3570                 pp_div_reg = PCH_PP_DIVISOR;
3571         } else {
3572                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3573
3574                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3575                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3576                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3577                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3578         }
3579
3580         /* Workaround: Need to write PP_CONTROL with the unlock key as
3581          * the very first thing. */
3582         pp = ironlake_get_pp_control(intel_dp);
3583         I915_WRITE(pp_ctrl_reg, pp);
3584
3585         pp_on = I915_READ(pp_on_reg);
3586         pp_off = I915_READ(pp_off_reg);
3587         pp_div = I915_READ(pp_div_reg);
3588
3589         /* Pull timing values out of registers */
3590         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3591                 PANEL_POWER_UP_DELAY_SHIFT;
3592
3593         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3594                 PANEL_LIGHT_ON_DELAY_SHIFT;
3595
3596         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3597                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3598
3599         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3600                 PANEL_POWER_DOWN_DELAY_SHIFT;
3601
3602         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3603                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3604
3605         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3606                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3607
3608         vbt = dev_priv->vbt.edp_pps;
3609
3610         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3611          * our hw here, which are all in 100usec. */
3612         spec.t1_t3 = 210 * 10;
3613         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3614         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3615         spec.t10 = 500 * 10;
3616         /* This one is special and actually in units of 100ms, but zero
3617          * based in the hw (so we need to add 100 ms). But the sw vbt
3618          * table multiplies it with 1000 to make it in units of 100usec,
3619          * too. */
3620         spec.t11_t12 = (510 + 100) * 10;
3621
3622         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3623                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3624
3625         /* Use the max of the register settings and vbt. If both are
3626          * unset, fall back to the spec limits. */
3627 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3628                                        spec.field : \
3629                                        max(cur.field, vbt.field))
3630         assign_final(t1_t3);
3631         assign_final(t8);
3632         assign_final(t9);
3633         assign_final(t10);
3634         assign_final(t11_t12);
3635 #undef assign_final
3636
3637 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3638         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3639         intel_dp->backlight_on_delay = get_delay(t8);
3640         intel_dp->backlight_off_delay = get_delay(t9);
3641         intel_dp->panel_power_down_delay = get_delay(t10);
3642         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3643 #undef get_delay
3644
3645         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3646                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3647                       intel_dp->panel_power_cycle_delay);
3648
3649         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3650                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3651
3652         if (out)
3653                 *out = final;
3654 }
3655
3656 static void
3657 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3658                                               struct intel_dp *intel_dp,
3659                                               struct edp_power_seq *seq)
3660 {
3661         struct drm_i915_private *dev_priv = dev->dev_private;
3662         u32 pp_on, pp_off, pp_div, port_sel = 0;
3663         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3664         int pp_on_reg, pp_off_reg, pp_div_reg;
3665
3666         if (HAS_PCH_SPLIT(dev)) {
3667                 pp_on_reg = PCH_PP_ON_DELAYS;
3668                 pp_off_reg = PCH_PP_OFF_DELAYS;
3669                 pp_div_reg = PCH_PP_DIVISOR;
3670         } else {
3671                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3672
3673                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3674                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3675                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3676         }
3677
3678         /*
3679          * And finally store the new values in the power sequencer. The
3680          * backlight delays are set to 1 because we do manual waits on them. For
3681          * T8, even BSpec recommends doing it. For T9, if we don't do this,
3682          * we'll end up waiting for the backlight off delay twice: once when we
3683          * do the manual sleep, and once when we disable the panel and wait for
3684          * the PP_STATUS bit to become zero.
3685          */
3686         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3687                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3688         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3689                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3690         /* Compute the divisor for the pp clock, simply match the Bspec
3691          * formula. */
3692         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3693         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3694                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3695
3696         /* Haswell doesn't have any port selection bits for the panel
3697          * power sequencer any more. */
3698         if (IS_VALLEYVIEW(dev)) {
3699                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3700                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3701                 else
3702                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3703         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3704                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3705                         port_sel = PANEL_PORT_SELECT_DPA;
3706                 else
3707                         port_sel = PANEL_PORT_SELECT_DPD;
3708         }
3709
3710         pp_on |= port_sel;
3711
3712         I915_WRITE(pp_on_reg, pp_on);
3713         I915_WRITE(pp_off_reg, pp_off);
3714         I915_WRITE(pp_div_reg, pp_div);
3715
3716         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3717                       I915_READ(pp_on_reg),
3718                       I915_READ(pp_off_reg),
3719                       I915_READ(pp_div_reg));
3720 }
3721
3722 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3723                                      struct intel_connector *intel_connector,
3724                                      struct edp_power_seq *power_seq)
3725 {
3726         struct drm_connector *connector = &intel_connector->base;
3727         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3728         struct drm_device *dev = intel_dig_port->base.base.dev;
3729         struct drm_i915_private *dev_priv = dev->dev_private;
3730         struct drm_display_mode *fixed_mode = NULL;
3731         bool has_dpcd;
3732         struct drm_display_mode *scan;
3733         struct edid *edid;
3734
3735         if (!is_edp(intel_dp))
3736                 return true;
3737
3738         /* Cache DPCD and EDID for edp. */
3739         edp_panel_vdd_on(intel_dp);
3740         has_dpcd = intel_dp_get_dpcd(intel_dp);
3741         edp_panel_vdd_off(intel_dp, false);
3742
3743         if (has_dpcd) {
3744                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3745                         dev_priv->no_aux_handshake =
3746                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3747                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3748         } else {
3749                 /* if this fails, presume the device is a ghost */
3750                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3751                 return false;
3752         }
3753
3754         /* We now know it's not a ghost, init power sequence regs. */
3755         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3756
3757         edid = drm_get_edid(connector, &intel_dp->adapter);
3758         if (edid) {
3759                 if (drm_add_edid_modes(connector, edid)) {
3760                         drm_mode_connector_update_edid_property(connector,
3761                                                                 edid);
3762                         drm_edid_to_eld(connector, edid);
3763                 } else {
3764                         kfree(edid);
3765                         edid = ERR_PTR(-EINVAL);
3766                 }
3767         } else {
3768                 edid = ERR_PTR(-ENOENT);
3769         }
3770         intel_connector->edid = edid;
3771
3772         /* prefer fixed mode from EDID if available */
3773         list_for_each_entry(scan, &connector->probed_modes, head) {
3774                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3775                         fixed_mode = drm_mode_duplicate(dev, scan);
3776                         break;
3777                 }
3778         }
3779
3780         /* fallback to VBT if available for eDP */
3781         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3782                 fixed_mode = drm_mode_duplicate(dev,
3783                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3784                 if (fixed_mode)
3785                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3786         }
3787
3788         intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3789         intel_panel_setup_backlight(connector);
3790
3791         return true;
3792 }
3793
3794 bool
3795 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3796                         struct intel_connector *intel_connector)
3797 {
3798         struct drm_connector *connector = &intel_connector->base;
3799         struct intel_dp *intel_dp = &intel_dig_port->dp;
3800         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3801         struct drm_device *dev = intel_encoder->base.dev;
3802         struct drm_i915_private *dev_priv = dev->dev_private;
3803         enum port port = intel_dig_port->port;
3804         struct edp_power_seq power_seq = { 0 };
3805         const char *name = NULL;
3806         int type, error;
3807
3808         /* intel_dp vfuncs */
3809         if (IS_VALLEYVIEW(dev))
3810                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3811         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3812                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3813         else if (HAS_PCH_SPLIT(dev))
3814                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3815         else
3816                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3817
3818         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3819
3820         /* Preserve the current hw state. */
3821         intel_dp->DP = I915_READ(intel_dp->output_reg);
3822         intel_dp->attached_connector = intel_connector;
3823
3824         if (intel_dp_is_edp(dev, port))
3825                 type = DRM_MODE_CONNECTOR_eDP;
3826         else
3827                 type = DRM_MODE_CONNECTOR_DisplayPort;
3828
3829         /*
3830          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3831          * for DP the encoder type can be set by the caller to
3832          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3833          */
3834         if (type == DRM_MODE_CONNECTOR_eDP)
3835                 intel_encoder->type = INTEL_OUTPUT_EDP;
3836
3837         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3838                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3839                         port_name(port));
3840
3841         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3842         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3843
3844         connector->interlace_allowed = true;
3845         connector->doublescan_allowed = 0;
3846
3847         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3848                           edp_panel_vdd_work);
3849
3850         intel_connector_attach_encoder(intel_connector, intel_encoder);
3851         drm_sysfs_connector_add(connector);
3852
3853         if (HAS_DDI(dev))
3854                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3855         else
3856                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3857         intel_connector->unregister = intel_dp_connector_unregister;
3858
3859         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3860         if (HAS_DDI(dev)) {
3861                 switch (intel_dig_port->port) {
3862                 case PORT_A:
3863                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3864                         break;
3865                 case PORT_B:
3866                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3867                         break;
3868                 case PORT_C:
3869                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3870                         break;
3871                 case PORT_D:
3872                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3873                         break;
3874                 default:
3875                         BUG();
3876                 }
3877         }
3878
3879         /* Set up the DDC bus. */
3880         switch (port) {
3881         case PORT_A:
3882                 intel_encoder->hpd_pin = HPD_PORT_A;
3883                 name = "DPDDC-A";
3884                 break;
3885         case PORT_B:
3886                 intel_encoder->hpd_pin = HPD_PORT_B;
3887                 name = "DPDDC-B";
3888                 break;
3889         case PORT_C:
3890                 intel_encoder->hpd_pin = HPD_PORT_C;
3891                 name = "DPDDC-C";
3892                 break;
3893         case PORT_D:
3894                 intel_encoder->hpd_pin = HPD_PORT_D;
3895                 name = "DPDDC-D";
3896                 break;
3897         default:
3898                 BUG();
3899         }
3900
3901         if (is_edp(intel_dp)) {
3902                 intel_dp_init_panel_power_timestamps(intel_dp);
3903                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3904         }
3905
3906         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3907         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3908              error, port_name(port));
3909
3910         intel_dp->psr_setup_done = false;
3911
3912         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3913                 i2c_del_adapter(&intel_dp->adapter);
3914                 if (is_edp(intel_dp)) {
3915                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3916                         mutex_lock(&dev->mode_config.mutex);
3917                         edp_panel_vdd_off_sync(intel_dp);
3918                         mutex_unlock(&dev->mode_config.mutex);
3919                 }
3920                 drm_sysfs_connector_remove(connector);
3921                 drm_connector_cleanup(connector);
3922                 return false;
3923         }
3924
3925         intel_dp_add_properties(intel_dp, connector);
3926
3927         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3928          * 0xd.  Failure to do so will result in spurious interrupts being
3929          * generated on the port when a cable is not attached.
3930          */
3931         if (IS_G4X(dev) && !IS_GM45(dev)) {
3932                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3933                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3934         }
3935
3936         return true;
3937 }
3938
3939 void
3940 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3941 {
3942         struct intel_digital_port *intel_dig_port;
3943         struct intel_encoder *intel_encoder;
3944         struct drm_encoder *encoder;
3945         struct intel_connector *intel_connector;
3946
3947         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3948         if (!intel_dig_port)
3949                 return;
3950
3951         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3952         if (!intel_connector) {
3953                 kfree(intel_dig_port);
3954                 return;
3955         }
3956
3957         intel_encoder = &intel_dig_port->base;
3958         encoder = &intel_encoder->base;
3959
3960         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3961                          DRM_MODE_ENCODER_TMDS);
3962
3963         intel_encoder->compute_config = intel_dp_compute_config;
3964         intel_encoder->mode_set = intel_dp_mode_set;
3965         intel_encoder->disable = intel_disable_dp;
3966         intel_encoder->post_disable = intel_post_disable_dp;
3967         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3968         intel_encoder->get_config = intel_dp_get_config;
3969         if (IS_VALLEYVIEW(dev)) {
3970                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3971                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3972                 intel_encoder->enable = vlv_enable_dp;
3973         } else {
3974                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3975                 intel_encoder->enable = g4x_enable_dp;
3976         }
3977
3978         intel_dig_port->port = port;
3979         intel_dig_port->dp.output_reg = output_reg;
3980
3981         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3982         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3983         intel_encoder->cloneable = 0;
3984         intel_encoder->hot_plug = intel_dp_hot_plug;
3985
3986         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3987                 drm_encoder_cleanup(encoder);
3988                 kfree(intel_dig_port);
3989                 kfree(intel_connector);
3990         }
3991 }