Merge branch 'drm-intel-fixes' into drm-intel-next
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         uint32_t color_range;
53         uint8_t link_bw;
54         uint8_t lane_count;
55         uint8_t dpcd[8];
56         struct i2c_adapter adapter;
57         struct i2c_algo_dp_aux_data algo;
58         bool is_pch_edp;
59         uint8_t train_set[4];
60         uint8_t link_status[DP_LINK_STATUS_SIZE];
61 };
62
63 /**
64  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
65  * @intel_dp: DP struct
66  *
67  * If a CPU or PCH DP output is attached to an eDP panel, this function
68  * will return true, and false otherwise.
69  */
70 static bool is_edp(struct intel_dp *intel_dp)
71 {
72         return intel_dp->base.type == INTEL_OUTPUT_EDP;
73 }
74
75 /**
76  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
77  * @intel_dp: DP struct
78  *
79  * Returns true if the given DP struct corresponds to a PCH DP port attached
80  * to an eDP panel, false otherwise.  Helpful for determining whether we
81  * may need FDI resources for a given DP output or not.
82  */
83 static bool is_pch_edp(struct intel_dp *intel_dp)
84 {
85         return intel_dp->is_pch_edp;
86 }
87
88 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
89 {
90         return container_of(encoder, struct intel_dp, base.base);
91 }
92
93 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
94 {
95         return container_of(intel_attached_encoder(connector),
96                             struct intel_dp, base);
97 }
98
99 /**
100  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
101  * @encoder: DRM encoder
102  *
103  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
104  * by intel_display.c.
105  */
106 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
107 {
108         struct intel_dp *intel_dp;
109
110         if (!encoder)
111                 return false;
112
113         intel_dp = enc_to_intel_dp(encoder);
114
115         return is_pch_edp(intel_dp);
116 }
117
118 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
119 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
120 static void intel_dp_link_down(struct intel_dp *intel_dp);
121
122 void
123 intel_edp_link_config (struct intel_encoder *intel_encoder,
124                        int *lane_num, int *link_bw)
125 {
126         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
127
128         *lane_num = intel_dp->lane_count;
129         if (intel_dp->link_bw == DP_LINK_BW_1_62)
130                 *link_bw = 162000;
131         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
132                 *link_bw = 270000;
133 }
134
135 static int
136 intel_dp_max_lane_count(struct intel_dp *intel_dp)
137 {
138         int max_lane_count = 4;
139
140         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
141                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
142                 switch (max_lane_count) {
143                 case 1: case 2: case 4:
144                         break;
145                 default:
146                         max_lane_count = 4;
147                 }
148         }
149         return max_lane_count;
150 }
151
152 static int
153 intel_dp_max_link_bw(struct intel_dp *intel_dp)
154 {
155         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
156
157         switch (max_link_bw) {
158         case DP_LINK_BW_1_62:
159         case DP_LINK_BW_2_7:
160                 break;
161         default:
162                 max_link_bw = DP_LINK_BW_1_62;
163                 break;
164         }
165         return max_link_bw;
166 }
167
168 static int
169 intel_dp_link_clock(uint8_t link_bw)
170 {
171         if (link_bw == DP_LINK_BW_2_7)
172                 return 270000;
173         else
174                 return 162000;
175 }
176
177 /* I think this is a fiction */
178 static int
179 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
180 {
181         struct drm_crtc *crtc = intel_dp->base.base.crtc;
182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
183         int bpp = 24;
184
185         if (intel_crtc)
186                 bpp = intel_crtc->bpp;
187
188         return (pixel_clock * bpp + 7) / 8;
189 }
190
191 static int
192 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
193 {
194         return (max_link_clock * max_lanes * 8) / 10;
195 }
196
197 static int
198 intel_dp_mode_valid(struct drm_connector *connector,
199                     struct drm_display_mode *mode)
200 {
201         struct intel_dp *intel_dp = intel_attached_dp(connector);
202         struct drm_device *dev = connector->dev;
203         struct drm_i915_private *dev_priv = dev->dev_private;
204         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
205         int max_lanes = intel_dp_max_lane_count(intel_dp);
206
207         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
208                 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
209                         return MODE_PANEL;
210
211                 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
212                         return MODE_PANEL;
213         }
214
215         /* only refuse the mode on non eDP since we have seen some weird eDP panels
216            which are outside spec tolerances but somehow work by magic */
217         if (!is_edp(intel_dp) &&
218             (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
219              > intel_dp_max_data_rate(max_link_clock, max_lanes)))
220                 return MODE_CLOCK_HIGH;
221
222         if (mode->clock < 10000)
223                 return MODE_CLOCK_LOW;
224
225         return MODE_OK;
226 }
227
228 static uint32_t
229 pack_aux(uint8_t *src, int src_bytes)
230 {
231         int     i;
232         uint32_t v = 0;
233
234         if (src_bytes > 4)
235                 src_bytes = 4;
236         for (i = 0; i < src_bytes; i++)
237                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
238         return v;
239 }
240
241 static void
242 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
243 {
244         int i;
245         if (dst_bytes > 4)
246                 dst_bytes = 4;
247         for (i = 0; i < dst_bytes; i++)
248                 dst[i] = src >> ((3-i) * 8);
249 }
250
251 /* hrawclock is 1/4 the FSB frequency */
252 static int
253 intel_hrawclk(struct drm_device *dev)
254 {
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         uint32_t clkcfg;
257
258         clkcfg = I915_READ(CLKCFG);
259         switch (clkcfg & CLKCFG_FSB_MASK) {
260         case CLKCFG_FSB_400:
261                 return 100;
262         case CLKCFG_FSB_533:
263                 return 133;
264         case CLKCFG_FSB_667:
265                 return 166;
266         case CLKCFG_FSB_800:
267                 return 200;
268         case CLKCFG_FSB_1067:
269                 return 266;
270         case CLKCFG_FSB_1333:
271                 return 333;
272         /* these two are just a guess; one of them might be right */
273         case CLKCFG_FSB_1600:
274         case CLKCFG_FSB_1600_ALT:
275                 return 400;
276         default:
277                 return 133;
278         }
279 }
280
281 static int
282 intel_dp_aux_ch(struct intel_dp *intel_dp,
283                 uint8_t *send, int send_bytes,
284                 uint8_t *recv, int recv_size)
285 {
286         uint32_t output_reg = intel_dp->output_reg;
287         struct drm_device *dev = intel_dp->base.base.dev;
288         struct drm_i915_private *dev_priv = dev->dev_private;
289         uint32_t ch_ctl = output_reg + 0x10;
290         uint32_t ch_data = ch_ctl + 4;
291         int i;
292         int recv_bytes;
293         uint32_t status;
294         uint32_t aux_clock_divider;
295         int try, precharge;
296
297         /* The clock divider is based off the hrawclk,
298          * and would like to run at 2MHz. So, take the
299          * hrawclk value and divide by 2 and use that
300          *
301          * Note that PCH attached eDP panels should use a 125MHz input
302          * clock divider.
303          */
304         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
305                 if (IS_GEN6(dev))
306                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
307                 else
308                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
309         } else if (HAS_PCH_SPLIT(dev))
310                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
311         else
312                 aux_clock_divider = intel_hrawclk(dev) / 2;
313
314         if (IS_GEN6(dev))
315                 precharge = 3;
316         else
317                 precharge = 5;
318
319         if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
320                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
321                           I915_READ(ch_ctl));
322                 return -EBUSY;
323         }
324
325         /* Must try at least 3 times according to DP spec */
326         for (try = 0; try < 5; try++) {
327                 /* Load the send data into the aux channel data registers */
328                 for (i = 0; i < send_bytes; i += 4)
329                         I915_WRITE(ch_data + i,
330                                    pack_aux(send + i, send_bytes - i));
331         
332                 /* Send the command and wait for it to complete */
333                 I915_WRITE(ch_ctl,
334                            DP_AUX_CH_CTL_SEND_BUSY |
335                            DP_AUX_CH_CTL_TIME_OUT_400us |
336                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
337                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
338                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
339                            DP_AUX_CH_CTL_DONE |
340                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
341                            DP_AUX_CH_CTL_RECEIVE_ERROR);
342                 for (;;) {
343                         status = I915_READ(ch_ctl);
344                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
345                                 break;
346                         udelay(100);
347                 }
348         
349                 /* Clear done status and any errors */
350                 I915_WRITE(ch_ctl,
351                            status |
352                            DP_AUX_CH_CTL_DONE |
353                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
354                            DP_AUX_CH_CTL_RECEIVE_ERROR);
355                 if (status & DP_AUX_CH_CTL_DONE)
356                         break;
357         }
358
359         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
360                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
361                 return -EBUSY;
362         }
363
364         /* Check for timeout or receive error.
365          * Timeouts occur when the sink is not connected
366          */
367         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
368                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
369                 return -EIO;
370         }
371
372         /* Timeouts occur when the device isn't connected, so they're
373          * "normal" -- don't fill the kernel log with these */
374         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
375                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
376                 return -ETIMEDOUT;
377         }
378
379         /* Unload any bytes sent back from the other side */
380         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
381                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
382         if (recv_bytes > recv_size)
383                 recv_bytes = recv_size;
384         
385         for (i = 0; i < recv_bytes; i += 4)
386                 unpack_aux(I915_READ(ch_data + i),
387                            recv + i, recv_bytes - i);
388
389         return recv_bytes;
390 }
391
392 /* Write data to the aux channel in native mode */
393 static int
394 intel_dp_aux_native_write(struct intel_dp *intel_dp,
395                           uint16_t address, uint8_t *send, int send_bytes)
396 {
397         int ret;
398         uint8_t msg[20];
399         int msg_bytes;
400         uint8_t ack;
401
402         if (send_bytes > 16)
403                 return -1;
404         msg[0] = AUX_NATIVE_WRITE << 4;
405         msg[1] = address >> 8;
406         msg[2] = address & 0xff;
407         msg[3] = send_bytes - 1;
408         memcpy(&msg[4], send, send_bytes);
409         msg_bytes = send_bytes + 4;
410         for (;;) {
411                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
412                 if (ret < 0)
413                         return ret;
414                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
415                         break;
416                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
417                         udelay(100);
418                 else
419                         return -EIO;
420         }
421         return send_bytes;
422 }
423
424 /* Write a single byte to the aux channel in native mode */
425 static int
426 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
427                             uint16_t address, uint8_t byte)
428 {
429         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
430 }
431
432 /* read bytes from a native aux channel */
433 static int
434 intel_dp_aux_native_read(struct intel_dp *intel_dp,
435                          uint16_t address, uint8_t *recv, int recv_bytes)
436 {
437         uint8_t msg[4];
438         int msg_bytes;
439         uint8_t reply[20];
440         int reply_bytes;
441         uint8_t ack;
442         int ret;
443
444         msg[0] = AUX_NATIVE_READ << 4;
445         msg[1] = address >> 8;
446         msg[2] = address & 0xff;
447         msg[3] = recv_bytes - 1;
448
449         msg_bytes = 4;
450         reply_bytes = recv_bytes + 1;
451
452         for (;;) {
453                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
454                                       reply, reply_bytes);
455                 if (ret == 0)
456                         return -EPROTO;
457                 if (ret < 0)
458                         return ret;
459                 ack = reply[0];
460                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
461                         memcpy(recv, reply + 1, ret - 1);
462                         return ret - 1;
463                 }
464                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
465                         udelay(100);
466                 else
467                         return -EIO;
468         }
469 }
470
471 static int
472 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
473                     uint8_t write_byte, uint8_t *read_byte)
474 {
475         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
476         struct intel_dp *intel_dp = container_of(adapter,
477                                                 struct intel_dp,
478                                                 adapter);
479         uint16_t address = algo_data->address;
480         uint8_t msg[5];
481         uint8_t reply[2];
482         unsigned retry;
483         int msg_bytes;
484         int reply_bytes;
485         int ret;
486
487         /* Set up the command byte */
488         if (mode & MODE_I2C_READ)
489                 msg[0] = AUX_I2C_READ << 4;
490         else
491                 msg[0] = AUX_I2C_WRITE << 4;
492
493         if (!(mode & MODE_I2C_STOP))
494                 msg[0] |= AUX_I2C_MOT << 4;
495
496         msg[1] = address >> 8;
497         msg[2] = address;
498
499         switch (mode) {
500         case MODE_I2C_WRITE:
501                 msg[3] = 0;
502                 msg[4] = write_byte;
503                 msg_bytes = 5;
504                 reply_bytes = 1;
505                 break;
506         case MODE_I2C_READ:
507                 msg[3] = 0;
508                 msg_bytes = 4;
509                 reply_bytes = 2;
510                 break;
511         default:
512                 msg_bytes = 3;
513                 reply_bytes = 1;
514                 break;
515         }
516
517         for (retry = 0; retry < 5; retry++) {
518                 ret = intel_dp_aux_ch(intel_dp,
519                                       msg, msg_bytes,
520                                       reply, reply_bytes);
521                 if (ret < 0) {
522                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
523                         return ret;
524                 }
525
526                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
527                 case AUX_NATIVE_REPLY_ACK:
528                         /* I2C-over-AUX Reply field is only valid
529                          * when paired with AUX ACK.
530                          */
531                         break;
532                 case AUX_NATIVE_REPLY_NACK:
533                         DRM_DEBUG_KMS("aux_ch native nack\n");
534                         return -EREMOTEIO;
535                 case AUX_NATIVE_REPLY_DEFER:
536                         udelay(100);
537                         continue;
538                 default:
539                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
540                                   reply[0]);
541                         return -EREMOTEIO;
542                 }
543
544                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
545                 case AUX_I2C_REPLY_ACK:
546                         if (mode == MODE_I2C_READ) {
547                                 *read_byte = reply[1];
548                         }
549                         return reply_bytes - 1;
550                 case AUX_I2C_REPLY_NACK:
551                         DRM_DEBUG_KMS("aux_i2c nack\n");
552                         return -EREMOTEIO;
553                 case AUX_I2C_REPLY_DEFER:
554                         DRM_DEBUG_KMS("aux_i2c defer\n");
555                         udelay(100);
556                         break;
557                 default:
558                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
559                         return -EREMOTEIO;
560                 }
561         }
562
563         DRM_ERROR("too many retries, giving up\n");
564         return -EREMOTEIO;
565 }
566
567 static int
568 intel_dp_i2c_init(struct intel_dp *intel_dp,
569                   struct intel_connector *intel_connector, const char *name)
570 {
571         DRM_DEBUG_KMS("i2c_init %s\n", name);
572         intel_dp->algo.running = false;
573         intel_dp->algo.address = 0;
574         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
575
576         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
577         intel_dp->adapter.owner = THIS_MODULE;
578         intel_dp->adapter.class = I2C_CLASS_DDC;
579         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
580         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
581         intel_dp->adapter.algo_data = &intel_dp->algo;
582         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
583
584         return i2c_dp_aux_add_bus(&intel_dp->adapter);
585 }
586
587 static bool
588 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
589                     struct drm_display_mode *adjusted_mode)
590 {
591         struct drm_device *dev = encoder->dev;
592         struct drm_i915_private *dev_priv = dev->dev_private;
593         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
594         int lane_count, clock;
595         int max_lane_count = intel_dp_max_lane_count(intel_dp);
596         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
597         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
598
599         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
600                 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
601                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
602                                         mode, adjusted_mode);
603                 /*
604                  * the mode->clock is used to calculate the Data&Link M/N
605                  * of the pipe. For the eDP the fixed clock should be used.
606                  */
607                 mode->clock = dev_priv->panel_fixed_mode->clock;
608         }
609
610         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
611                 for (clock = 0; clock <= max_clock; clock++) {
612                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
613
614                         if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
615                                         <= link_avail) {
616                                 intel_dp->link_bw = bws[clock];
617                                 intel_dp->lane_count = lane_count;
618                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
619                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
620                                                 "count %d clock %d\n",
621                                        intel_dp->link_bw, intel_dp->lane_count,
622                                        adjusted_mode->clock);
623                                 return true;
624                         }
625                 }
626         }
627
628         if (is_edp(intel_dp)) {
629                 /* okay we failed just pick the highest */
630                 intel_dp->lane_count = max_lane_count;
631                 intel_dp->link_bw = bws[max_clock];
632                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
633                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
634                               "count %d clock %d\n",
635                               intel_dp->link_bw, intel_dp->lane_count,
636                               adjusted_mode->clock);
637
638                 return true;
639         }
640
641         return false;
642 }
643
644 struct intel_dp_m_n {
645         uint32_t        tu;
646         uint32_t        gmch_m;
647         uint32_t        gmch_n;
648         uint32_t        link_m;
649         uint32_t        link_n;
650 };
651
652 static void
653 intel_reduce_ratio(uint32_t *num, uint32_t *den)
654 {
655         while (*num > 0xffffff || *den > 0xffffff) {
656                 *num >>= 1;
657                 *den >>= 1;
658         }
659 }
660
661 static void
662 intel_dp_compute_m_n(int bpp,
663                      int nlanes,
664                      int pixel_clock,
665                      int link_clock,
666                      struct intel_dp_m_n *m_n)
667 {
668         m_n->tu = 64;
669         m_n->gmch_m = (pixel_clock * bpp) >> 3;
670         m_n->gmch_n = link_clock * nlanes;
671         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
672         m_n->link_m = pixel_clock;
673         m_n->link_n = link_clock;
674         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
675 }
676
677 void
678 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
679                  struct drm_display_mode *adjusted_mode)
680 {
681         struct drm_device *dev = crtc->dev;
682         struct drm_mode_config *mode_config = &dev->mode_config;
683         struct drm_encoder *encoder;
684         struct drm_i915_private *dev_priv = dev->dev_private;
685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
686         int lane_count = 4;
687         struct intel_dp_m_n m_n;
688         int pipe = intel_crtc->pipe;
689
690         /*
691          * Find the lane count in the intel_encoder private
692          */
693         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
694                 struct intel_dp *intel_dp;
695
696                 if (encoder->crtc != crtc)
697                         continue;
698
699                 intel_dp = enc_to_intel_dp(encoder);
700                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
701                         lane_count = intel_dp->lane_count;
702                         break;
703                 } else if (is_edp(intel_dp)) {
704                         lane_count = dev_priv->edp.lanes;
705                         break;
706                 }
707         }
708
709         /*
710          * Compute the GMCH and Link ratios. The '3' here is
711          * the number of bytes_per_pixel post-LUT, which we always
712          * set up for 8-bits of R/G/B, or 3 bytes total.
713          */
714         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
715                              mode->clock, adjusted_mode->clock, &m_n);
716
717         if (HAS_PCH_SPLIT(dev)) {
718                 I915_WRITE(TRANSDATA_M1(pipe),
719                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
720                            m_n.gmch_m);
721                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
722                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
723                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
724         } else {
725                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
726                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
727                            m_n.gmch_m);
728                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
729                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
730                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
731         }
732 }
733
734 static void
735 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
736                   struct drm_display_mode *adjusted_mode)
737 {
738         struct drm_device *dev = encoder->dev;
739         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
740         struct drm_crtc *crtc = intel_dp->base.base.crtc;
741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
742
743         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
744         intel_dp->DP |= intel_dp->color_range;
745
746         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
747                 intel_dp->DP |= DP_SYNC_HS_HIGH;
748         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
749                 intel_dp->DP |= DP_SYNC_VS_HIGH;
750
751         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
752                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
753         else
754                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
755
756         switch (intel_dp->lane_count) {
757         case 1:
758                 intel_dp->DP |= DP_PORT_WIDTH_1;
759                 break;
760         case 2:
761                 intel_dp->DP |= DP_PORT_WIDTH_2;
762                 break;
763         case 4:
764                 intel_dp->DP |= DP_PORT_WIDTH_4;
765                 break;
766         }
767         if (intel_dp->has_audio)
768                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
769
770         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
771         intel_dp->link_configuration[0] = intel_dp->link_bw;
772         intel_dp->link_configuration[1] = intel_dp->lane_count;
773         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
774
775         /*
776          * Check for DPCD version > 1.1 and enhanced framing support
777          */
778         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
779             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
780                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
781                 intel_dp->DP |= DP_ENHANCED_FRAMING;
782         }
783
784         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
785         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
786                 intel_dp->DP |= DP_PIPEB_SELECT;
787
788         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
789                 /* don't miss out required setting for eDP */
790                 intel_dp->DP |= DP_PLL_ENABLE;
791                 if (adjusted_mode->clock < 200000)
792                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
793                 else
794                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
795         }
796 }
797
798 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
799 {
800         struct drm_device *dev = intel_dp->base.base.dev;
801         struct drm_i915_private *dev_priv = dev->dev_private;
802         u32 pp;
803
804         /*
805          * If the panel wasn't on, make sure there's not a currently
806          * active PP sequence before enabling AUX VDD.
807          */
808         if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
809                 msleep(dev_priv->panel_t3);
810
811         pp = I915_READ(PCH_PP_CONTROL);
812         pp |= EDP_FORCE_VDD;
813         I915_WRITE(PCH_PP_CONTROL, pp);
814         POSTING_READ(PCH_PP_CONTROL);
815 }
816
817 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
818 {
819         struct drm_device *dev = intel_dp->base.base.dev;
820         struct drm_i915_private *dev_priv = dev->dev_private;
821         u32 pp;
822
823         pp = I915_READ(PCH_PP_CONTROL);
824         pp &= ~EDP_FORCE_VDD;
825         I915_WRITE(PCH_PP_CONTROL, pp);
826         POSTING_READ(PCH_PP_CONTROL);
827
828         /* Make sure sequencer is idle before allowing subsequent activity */
829         msleep(dev_priv->panel_t12);
830 }
831
832 /* Returns true if the panel was already on when called */
833 static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
834 {
835         struct drm_device *dev = intel_dp->base.base.dev;
836         struct drm_i915_private *dev_priv = dev->dev_private;
837         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
838
839         if (I915_READ(PCH_PP_STATUS) & PP_ON)
840                 return true;
841
842         pp = I915_READ(PCH_PP_CONTROL);
843
844         /* ILK workaround: disable reset around power sequence */
845         pp &= ~PANEL_POWER_RESET;
846         I915_WRITE(PCH_PP_CONTROL, pp);
847         POSTING_READ(PCH_PP_CONTROL);
848
849         pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
850         I915_WRITE(PCH_PP_CONTROL, pp);
851         POSTING_READ(PCH_PP_CONTROL);
852
853         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
854                      5000))
855                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
856                           I915_READ(PCH_PP_STATUS));
857
858         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
859         I915_WRITE(PCH_PP_CONTROL, pp);
860         POSTING_READ(PCH_PP_CONTROL);
861
862         return false;
863 }
864
865 static void ironlake_edp_panel_off (struct drm_device *dev)
866 {
867         struct drm_i915_private *dev_priv = dev->dev_private;
868         u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
869                 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
870
871         pp = I915_READ(PCH_PP_CONTROL);
872
873         /* ILK workaround: disable reset around power sequence */
874         pp &= ~PANEL_POWER_RESET;
875         I915_WRITE(PCH_PP_CONTROL, pp);
876         POSTING_READ(PCH_PP_CONTROL);
877
878         pp &= ~POWER_TARGET_ON;
879         I915_WRITE(PCH_PP_CONTROL, pp);
880         POSTING_READ(PCH_PP_CONTROL);
881
882         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
883                 DRM_ERROR("panel off wait timed out: 0x%08x\n",
884                           I915_READ(PCH_PP_STATUS));
885
886         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
887         I915_WRITE(PCH_PP_CONTROL, pp);
888         POSTING_READ(PCH_PP_CONTROL);
889 }
890
891 static void ironlake_edp_backlight_on (struct drm_device *dev)
892 {
893         struct drm_i915_private *dev_priv = dev->dev_private;
894         u32 pp;
895
896         DRM_DEBUG_KMS("\n");
897         /*
898          * If we enable the backlight right away following a panel power
899          * on, we may see slight flicker as the panel syncs with the eDP
900          * link.  So delay a bit to make sure the image is solid before
901          * allowing it to appear.
902          */
903         msleep(300);
904         pp = I915_READ(PCH_PP_CONTROL);
905         pp |= EDP_BLC_ENABLE;
906         I915_WRITE(PCH_PP_CONTROL, pp);
907 }
908
909 static void ironlake_edp_backlight_off (struct drm_device *dev)
910 {
911         struct drm_i915_private *dev_priv = dev->dev_private;
912         u32 pp;
913
914         DRM_DEBUG_KMS("\n");
915         pp = I915_READ(PCH_PP_CONTROL);
916         pp &= ~EDP_BLC_ENABLE;
917         I915_WRITE(PCH_PP_CONTROL, pp);
918 }
919
920 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
921 {
922         struct drm_device *dev = encoder->dev;
923         struct drm_i915_private *dev_priv = dev->dev_private;
924         u32 dpa_ctl;
925
926         DRM_DEBUG_KMS("\n");
927         dpa_ctl = I915_READ(DP_A);
928         dpa_ctl |= DP_PLL_ENABLE;
929         I915_WRITE(DP_A, dpa_ctl);
930         POSTING_READ(DP_A);
931         udelay(200);
932 }
933
934 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
935 {
936         struct drm_device *dev = encoder->dev;
937         struct drm_i915_private *dev_priv = dev->dev_private;
938         u32 dpa_ctl;
939
940         dpa_ctl = I915_READ(DP_A);
941         dpa_ctl &= ~DP_PLL_ENABLE;
942         I915_WRITE(DP_A, dpa_ctl);
943         POSTING_READ(DP_A);
944         udelay(200);
945 }
946
947 /* If the sink supports it, try to set the power state appropriately */
948 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
949 {
950         int ret, i;
951
952         /* Should have a valid DPCD by this point */
953         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
954                 return;
955
956         if (mode != DRM_MODE_DPMS_ON) {
957                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
958                                                   DP_SET_POWER_D3);
959                 if (ret != 1)
960                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
961         } else {
962                 /*
963                  * When turning on, we need to retry for 1ms to give the sink
964                  * time to wake up.
965                  */
966                 for (i = 0; i < 3; i++) {
967                         ret = intel_dp_aux_native_write_1(intel_dp,
968                                                           DP_SET_POWER,
969                                                           DP_SET_POWER_D0);
970                         if (ret == 1)
971                                 break;
972                         msleep(1);
973                 }
974         }
975 }
976
977 static void intel_dp_prepare(struct drm_encoder *encoder)
978 {
979         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
980         struct drm_device *dev = encoder->dev;
981
982         /* Wake up the sink first */
983         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
984
985         if (is_edp(intel_dp)) {
986                 ironlake_edp_backlight_off(dev);
987                 ironlake_edp_panel_off(dev);
988                 if (!is_pch_edp(intel_dp))
989                         ironlake_edp_pll_on(encoder);
990                 else
991                         ironlake_edp_pll_off(encoder);
992         }
993         intel_dp_link_down(intel_dp);
994 }
995
996 static void intel_dp_commit(struct drm_encoder *encoder)
997 {
998         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
999         struct drm_device *dev = encoder->dev;
1000
1001         if (is_edp(intel_dp))
1002                 ironlake_edp_panel_vdd_on(intel_dp);
1003
1004         intel_dp_start_link_train(intel_dp);
1005
1006         if (is_edp(intel_dp)) {
1007                 ironlake_edp_panel_on(intel_dp);
1008                 ironlake_edp_panel_vdd_off(intel_dp);
1009         }
1010
1011         intel_dp_complete_link_train(intel_dp);
1012
1013         if (is_edp(intel_dp))
1014                 ironlake_edp_backlight_on(dev);
1015 }
1016
1017 static void
1018 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1019 {
1020         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1021         struct drm_device *dev = encoder->dev;
1022         struct drm_i915_private *dev_priv = dev->dev_private;
1023         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1024
1025         if (mode != DRM_MODE_DPMS_ON) {
1026                 if (is_edp(intel_dp))
1027                         ironlake_edp_backlight_off(dev);
1028                 intel_dp_sink_dpms(intel_dp, mode);
1029                 intel_dp_link_down(intel_dp);
1030                 if (is_edp(intel_dp))
1031                         ironlake_edp_panel_off(dev);
1032                 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1033                         ironlake_edp_pll_off(encoder);
1034         } else {
1035                 if (is_edp(intel_dp))
1036                         ironlake_edp_panel_vdd_on(intel_dp);
1037                 intel_dp_sink_dpms(intel_dp, mode);
1038                 if (!(dp_reg & DP_PORT_EN)) {
1039                         intel_dp_start_link_train(intel_dp);
1040                         if (is_edp(intel_dp)) {
1041                                 ironlake_edp_panel_on(intel_dp);
1042                                 ironlake_edp_panel_vdd_off(intel_dp);
1043                         }
1044                         intel_dp_complete_link_train(intel_dp);
1045                 }
1046                 if (is_edp(intel_dp))
1047                         ironlake_edp_backlight_on(dev);
1048         }
1049 }
1050
1051 /*
1052  * Native read with retry for link status and receiver capability reads for
1053  * cases where the sink may still be asleep.
1054  */
1055 static bool
1056 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1057                                uint8_t *recv, int recv_bytes)
1058 {
1059         int ret, i;
1060
1061         /*
1062          * Sinks are *supposed* to come up within 1ms from an off state,
1063          * but we're also supposed to retry 3 times per the spec.
1064          */
1065         for (i = 0; i < 3; i++) {
1066                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1067                                                recv_bytes);
1068                 if (ret == recv_bytes)
1069                         return true;
1070                 msleep(1);
1071         }
1072
1073         return false;
1074 }
1075
1076 /*
1077  * Fetch AUX CH registers 0x202 - 0x207 which contain
1078  * link status information
1079  */
1080 static bool
1081 intel_dp_get_link_status(struct intel_dp *intel_dp)
1082 {
1083         return intel_dp_aux_native_read_retry(intel_dp,
1084                                               DP_LANE0_1_STATUS,
1085                                               intel_dp->link_status,
1086                                               DP_LINK_STATUS_SIZE);
1087 }
1088
1089 static uint8_t
1090 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1091                      int r)
1092 {
1093         return link_status[r - DP_LANE0_1_STATUS];
1094 }
1095
1096 static uint8_t
1097 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1098                                  int lane)
1099 {
1100         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1101         int         s = ((lane & 1) ?
1102                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1103                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1104         uint8_t l = intel_dp_link_status(link_status, i);
1105
1106         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1107 }
1108
1109 static uint8_t
1110 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1111                                       int lane)
1112 {
1113         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1114         int         s = ((lane & 1) ?
1115                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1116                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1117         uint8_t l = intel_dp_link_status(link_status, i);
1118
1119         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1120 }
1121
1122
1123 #if 0
1124 static char     *voltage_names[] = {
1125         "0.4V", "0.6V", "0.8V", "1.2V"
1126 };
1127 static char     *pre_emph_names[] = {
1128         "0dB", "3.5dB", "6dB", "9.5dB"
1129 };
1130 static char     *link_train_names[] = {
1131         "pattern 1", "pattern 2", "idle", "off"
1132 };
1133 #endif
1134
1135 /*
1136  * These are source-specific values; current Intel hardware supports
1137  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1138  */
1139 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1140
1141 static uint8_t
1142 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1143 {
1144         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1145         case DP_TRAIN_VOLTAGE_SWING_400:
1146                 return DP_TRAIN_PRE_EMPHASIS_6;
1147         case DP_TRAIN_VOLTAGE_SWING_600:
1148                 return DP_TRAIN_PRE_EMPHASIS_6;
1149         case DP_TRAIN_VOLTAGE_SWING_800:
1150                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1151         case DP_TRAIN_VOLTAGE_SWING_1200:
1152         default:
1153                 return DP_TRAIN_PRE_EMPHASIS_0;
1154         }
1155 }
1156
1157 static void
1158 intel_get_adjust_train(struct intel_dp *intel_dp)
1159 {
1160         uint8_t v = 0;
1161         uint8_t p = 0;
1162         int lane;
1163
1164         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1165                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1166                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1167
1168                 if (this_v > v)
1169                         v = this_v;
1170                 if (this_p > p)
1171                         p = this_p;
1172         }
1173
1174         if (v >= I830_DP_VOLTAGE_MAX)
1175                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1176
1177         if (p >= intel_dp_pre_emphasis_max(v))
1178                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1179
1180         for (lane = 0; lane < 4; lane++)
1181                 intel_dp->train_set[lane] = v | p;
1182 }
1183
1184 static uint32_t
1185 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1186 {
1187         uint32_t        signal_levels = 0;
1188
1189         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1190         case DP_TRAIN_VOLTAGE_SWING_400:
1191         default:
1192                 signal_levels |= DP_VOLTAGE_0_4;
1193                 break;
1194         case DP_TRAIN_VOLTAGE_SWING_600:
1195                 signal_levels |= DP_VOLTAGE_0_6;
1196                 break;
1197         case DP_TRAIN_VOLTAGE_SWING_800:
1198                 signal_levels |= DP_VOLTAGE_0_8;
1199                 break;
1200         case DP_TRAIN_VOLTAGE_SWING_1200:
1201                 signal_levels |= DP_VOLTAGE_1_2;
1202                 break;
1203         }
1204         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1205         case DP_TRAIN_PRE_EMPHASIS_0:
1206         default:
1207                 signal_levels |= DP_PRE_EMPHASIS_0;
1208                 break;
1209         case DP_TRAIN_PRE_EMPHASIS_3_5:
1210                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1211                 break;
1212         case DP_TRAIN_PRE_EMPHASIS_6:
1213                 signal_levels |= DP_PRE_EMPHASIS_6;
1214                 break;
1215         case DP_TRAIN_PRE_EMPHASIS_9_5:
1216                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1217                 break;
1218         }
1219         return signal_levels;
1220 }
1221
1222 /* Gen6's DP voltage swing and pre-emphasis control */
1223 static uint32_t
1224 intel_gen6_edp_signal_levels(uint8_t train_set)
1225 {
1226         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1227                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1228         switch (signal_levels) {
1229         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1230         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1231                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1232         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1233                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1234         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1235         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1236                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1237         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1238         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1239                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1240         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1241         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1242                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1243         default:
1244                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1245                               "0x%x\n", signal_levels);
1246                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1247         }
1248 }
1249
1250 static uint8_t
1251 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1252                       int lane)
1253 {
1254         int i = DP_LANE0_1_STATUS + (lane >> 1);
1255         int s = (lane & 1) * 4;
1256         uint8_t l = intel_dp_link_status(link_status, i);
1257
1258         return (l >> s) & 0xf;
1259 }
1260
1261 /* Check for clock recovery is done on all channels */
1262 static bool
1263 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1264 {
1265         int lane;
1266         uint8_t lane_status;
1267
1268         for (lane = 0; lane < lane_count; lane++) {
1269                 lane_status = intel_get_lane_status(link_status, lane);
1270                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1271                         return false;
1272         }
1273         return true;
1274 }
1275
1276 /* Check to see if channel eq is done on all channels */
1277 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1278                          DP_LANE_CHANNEL_EQ_DONE|\
1279                          DP_LANE_SYMBOL_LOCKED)
1280 static bool
1281 intel_channel_eq_ok(struct intel_dp *intel_dp)
1282 {
1283         uint8_t lane_align;
1284         uint8_t lane_status;
1285         int lane;
1286
1287         lane_align = intel_dp_link_status(intel_dp->link_status,
1288                                           DP_LANE_ALIGN_STATUS_UPDATED);
1289         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1290                 return false;
1291         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1292                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1293                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1294                         return false;
1295         }
1296         return true;
1297 }
1298
1299 static bool
1300 intel_dp_set_link_train(struct intel_dp *intel_dp,
1301                         uint32_t dp_reg_value,
1302                         uint8_t dp_train_pat)
1303 {
1304         struct drm_device *dev = intel_dp->base.base.dev;
1305         struct drm_i915_private *dev_priv = dev->dev_private;
1306         int ret;
1307
1308         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1309         POSTING_READ(intel_dp->output_reg);
1310
1311         intel_dp_aux_native_write_1(intel_dp,
1312                                     DP_TRAINING_PATTERN_SET,
1313                                     dp_train_pat);
1314
1315         ret = intel_dp_aux_native_write(intel_dp,
1316                                         DP_TRAINING_LANE0_SET,
1317                                         intel_dp->train_set, 4);
1318         if (ret != 4)
1319                 return false;
1320
1321         return true;
1322 }
1323
1324 /* Enable corresponding port and start training pattern 1 */
1325 static void
1326 intel_dp_start_link_train(struct intel_dp *intel_dp)
1327 {
1328         struct drm_device *dev = intel_dp->base.base.dev;
1329         struct drm_i915_private *dev_priv = dev->dev_private;
1330         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1331         int i;
1332         uint8_t voltage;
1333         bool clock_recovery = false;
1334         int tries;
1335         u32 reg;
1336         uint32_t DP = intel_dp->DP;
1337
1338         /*
1339          * On CPT we have to enable the port in training pattern 1, which
1340          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1341          * the port and wait for it to become active.
1342          */
1343         if (!HAS_PCH_CPT(dev)) {
1344                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1345                 POSTING_READ(intel_dp->output_reg);
1346                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1347         }
1348
1349         /* Write the link configuration data */
1350         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1351                                   intel_dp->link_configuration,
1352                                   DP_LINK_CONFIGURATION_SIZE);
1353
1354         DP |= DP_PORT_EN;
1355         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1356                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1357         else
1358                 DP &= ~DP_LINK_TRAIN_MASK;
1359         memset(intel_dp->train_set, 0, 4);
1360         voltage = 0xff;
1361         tries = 0;
1362         clock_recovery = false;
1363         for (;;) {
1364                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1365                 uint32_t    signal_levels;
1366                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1367                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1368                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1369                 } else {
1370                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1371                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1372                 }
1373
1374                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1375                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1376                 else
1377                         reg = DP | DP_LINK_TRAIN_PAT_1;
1378
1379                 if (!intel_dp_set_link_train(intel_dp, reg,
1380                                              DP_TRAINING_PATTERN_1 |
1381                                              DP_LINK_SCRAMBLING_DISABLE))
1382                         break;
1383                 /* Set training pattern 1 */
1384
1385                 udelay(100);
1386                 if (!intel_dp_get_link_status(intel_dp))
1387                         break;
1388
1389                 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1390                         clock_recovery = true;
1391                         break;
1392                 }
1393
1394                 /* Check to see if we've tried the max voltage */
1395                 for (i = 0; i < intel_dp->lane_count; i++)
1396                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1397                                 break;
1398                 if (i == intel_dp->lane_count)
1399                         break;
1400
1401                 /* Check to see if we've tried the same voltage 5 times */
1402                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1403                         ++tries;
1404                         if (tries == 5)
1405                                 break;
1406                 } else
1407                         tries = 0;
1408                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1409
1410                 /* Compute new intel_dp->train_set as requested by target */
1411                 intel_get_adjust_train(intel_dp);
1412         }
1413
1414         intel_dp->DP = DP;
1415 }
1416
1417 static void
1418 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1419 {
1420         struct drm_device *dev = intel_dp->base.base.dev;
1421         struct drm_i915_private *dev_priv = dev->dev_private;
1422         bool channel_eq = false;
1423         int tries, cr_tries;
1424         u32 reg;
1425         uint32_t DP = intel_dp->DP;
1426
1427         /* channel equalization */
1428         tries = 0;
1429         cr_tries = 0;
1430         channel_eq = false;
1431         for (;;) {
1432                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1433                 uint32_t    signal_levels;
1434
1435                 if (cr_tries > 5) {
1436                         DRM_ERROR("failed to train DP, aborting\n");
1437                         intel_dp_link_down(intel_dp);
1438                         break;
1439                 }
1440
1441                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1442                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1443                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1444                 } else {
1445                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1446                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1447                 }
1448
1449                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1450                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1451                 else
1452                         reg = DP | DP_LINK_TRAIN_PAT_2;
1453
1454                 /* channel eq pattern */
1455                 if (!intel_dp_set_link_train(intel_dp, reg,
1456                                              DP_TRAINING_PATTERN_2 |
1457                                              DP_LINK_SCRAMBLING_DISABLE))
1458                         break;
1459
1460                 udelay(400);
1461                 if (!intel_dp_get_link_status(intel_dp))
1462                         break;
1463
1464                 /* Make sure clock is still ok */
1465                 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1466                         intel_dp_start_link_train(intel_dp);
1467                         cr_tries++;
1468                         continue;
1469                 }
1470
1471                 if (intel_channel_eq_ok(intel_dp)) {
1472                         channel_eq = true;
1473                         break;
1474                 }
1475
1476                 /* Try 5 times, then try clock recovery if that fails */
1477                 if (tries > 5) {
1478                         intel_dp_link_down(intel_dp);
1479                         intel_dp_start_link_train(intel_dp);
1480                         tries = 0;
1481                         cr_tries++;
1482                         continue;
1483                 }
1484
1485                 /* Compute new intel_dp->train_set as requested by target */
1486                 intel_get_adjust_train(intel_dp);
1487                 ++tries;
1488         }
1489
1490         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1491                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1492         else
1493                 reg = DP | DP_LINK_TRAIN_OFF;
1494
1495         I915_WRITE(intel_dp->output_reg, reg);
1496         POSTING_READ(intel_dp->output_reg);
1497         intel_dp_aux_native_write_1(intel_dp,
1498                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1499 }
1500
1501 static void
1502 intel_dp_link_down(struct intel_dp *intel_dp)
1503 {
1504         struct drm_device *dev = intel_dp->base.base.dev;
1505         struct drm_i915_private *dev_priv = dev->dev_private;
1506         uint32_t DP = intel_dp->DP;
1507
1508         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1509                 return;
1510
1511         DRM_DEBUG_KMS("\n");
1512
1513         if (is_edp(intel_dp)) {
1514                 DP &= ~DP_PLL_ENABLE;
1515                 I915_WRITE(intel_dp->output_reg, DP);
1516                 POSTING_READ(intel_dp->output_reg);
1517                 udelay(100);
1518         }
1519
1520         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1521                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1522                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1523         } else {
1524                 DP &= ~DP_LINK_TRAIN_MASK;
1525                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1526         }
1527         POSTING_READ(intel_dp->output_reg);
1528
1529         msleep(17);
1530
1531         if (is_edp(intel_dp))
1532                 DP |= DP_LINK_TRAIN_OFF;
1533
1534         if (!HAS_PCH_CPT(dev) &&
1535             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1536                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1537
1538                 /* Hardware workaround: leaving our transcoder select
1539                  * set to transcoder B while it's off will prevent the
1540                  * corresponding HDMI output on transcoder A.
1541                  *
1542                  * Combine this with another hardware workaround:
1543                  * transcoder select bit can only be cleared while the
1544                  * port is enabled.
1545                  */
1546                 DP &= ~DP_PIPEB_SELECT;
1547                 I915_WRITE(intel_dp->output_reg, DP);
1548
1549                 /* Changes to enable or select take place the vblank
1550                  * after being written.
1551                  */
1552                 if (crtc == NULL) {
1553                         /* We can arrive here never having been attached
1554                          * to a CRTC, for instance, due to inheriting
1555                          * random state from the BIOS.
1556                          *
1557                          * If the pipe is not running, play safe and
1558                          * wait for the clocks to stabilise before
1559                          * continuing.
1560                          */
1561                         POSTING_READ(intel_dp->output_reg);
1562                         msleep(50);
1563                 } else
1564                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1565         }
1566
1567         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1568         POSTING_READ(intel_dp->output_reg);
1569 }
1570
1571 /*
1572  * According to DP spec
1573  * 5.1.2:
1574  *  1. Read DPCD
1575  *  2. Configure link according to Receiver Capabilities
1576  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1577  *  4. Check link status on receipt of hot-plug interrupt
1578  */
1579
1580 static void
1581 intel_dp_check_link_status(struct intel_dp *intel_dp)
1582 {
1583         int ret;
1584
1585         if (!intel_dp->base.base.crtc)
1586                 return;
1587
1588         if (!intel_dp_get_link_status(intel_dp)) {
1589                 intel_dp_link_down(intel_dp);
1590                 return;
1591         }
1592
1593         /* Try to read receiver status if the link appears to be up */
1594         ret = intel_dp_aux_native_read(intel_dp,
1595                                        0x000, intel_dp->dpcd,
1596                                        sizeof (intel_dp->dpcd));
1597         if (ret != sizeof(intel_dp->dpcd)) {
1598                 intel_dp_link_down(intel_dp);
1599                 return;
1600         }
1601
1602         if (!intel_channel_eq_ok(intel_dp)) {
1603                 intel_dp_start_link_train(intel_dp);
1604                 intel_dp_complete_link_train(intel_dp);
1605         }
1606 }
1607
1608 static enum drm_connector_status
1609 i915_dp_detect_common(struct intel_dp *intel_dp)
1610 {
1611         enum drm_connector_status status = connector_status_disconnected;
1612
1613         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1614                                            sizeof (intel_dp->dpcd)) &&
1615             (intel_dp->dpcd[DP_DPCD_REV] != 0))
1616                 status = connector_status_connected;
1617
1618         return status;
1619 }
1620
1621 static enum drm_connector_status
1622 ironlake_dp_detect(struct intel_dp *intel_dp)
1623 {
1624         enum drm_connector_status status;
1625
1626         /* Can't disconnect eDP, but you can close the lid... */
1627         if (is_edp(intel_dp)) {
1628                 status = intel_panel_detect(intel_dp->base.base.dev);
1629                 if (status == connector_status_unknown)
1630                         status = connector_status_connected;
1631                 return status;
1632         }
1633
1634         return i915_dp_detect_common(intel_dp);
1635 }
1636
1637 static enum drm_connector_status
1638 g4x_dp_detect(struct intel_dp *intel_dp)
1639 {
1640         struct drm_device *dev = intel_dp->base.base.dev;
1641         struct drm_i915_private *dev_priv = dev->dev_private;
1642         uint32_t temp, bit;
1643
1644         switch (intel_dp->output_reg) {
1645         case DP_B:
1646                 bit = DPB_HOTPLUG_INT_STATUS;
1647                 break;
1648         case DP_C:
1649                 bit = DPC_HOTPLUG_INT_STATUS;
1650                 break;
1651         case DP_D:
1652                 bit = DPD_HOTPLUG_INT_STATUS;
1653                 break;
1654         default:
1655                 return connector_status_unknown;
1656         }
1657
1658         temp = I915_READ(PORT_HOTPLUG_STAT);
1659
1660         if ((temp & bit) == 0)
1661                 return connector_status_disconnected;
1662
1663         return i915_dp_detect_common(intel_dp);
1664 }
1665
1666 /**
1667  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1668  *
1669  * \return true if DP port is connected.
1670  * \return false if DP port is disconnected.
1671  */
1672 static enum drm_connector_status
1673 intel_dp_detect(struct drm_connector *connector, bool force)
1674 {
1675         struct intel_dp *intel_dp = intel_attached_dp(connector);
1676         struct drm_device *dev = intel_dp->base.base.dev;
1677         enum drm_connector_status status;
1678         struct edid *edid = NULL;
1679
1680         intel_dp->has_audio = false;
1681         memset(intel_dp->dpcd, 0, sizeof(intel_dp->dpcd));
1682
1683         if (HAS_PCH_SPLIT(dev))
1684                 status = ironlake_dp_detect(intel_dp);
1685         else
1686                 status = g4x_dp_detect(intel_dp);
1687
1688         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1689                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1690                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1691                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
1692
1693         if (status != connector_status_connected)
1694                 return status;
1695
1696         if (intel_dp->force_audio) {
1697                 intel_dp->has_audio = intel_dp->force_audio > 0;
1698         } else {
1699                 edid = drm_get_edid(connector, &intel_dp->adapter);
1700                 if (edid) {
1701                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1702                         connector->display_info.raw_edid = NULL;
1703                         kfree(edid);
1704                 }
1705         }
1706
1707         return connector_status_connected;
1708 }
1709
1710 static int intel_dp_get_modes(struct drm_connector *connector)
1711 {
1712         struct intel_dp *intel_dp = intel_attached_dp(connector);
1713         struct drm_device *dev = intel_dp->base.base.dev;
1714         struct drm_i915_private *dev_priv = dev->dev_private;
1715         int ret;
1716
1717         /* We should parse the EDID data and find out if it has an audio sink
1718          */
1719
1720         ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1721         if (ret) {
1722                 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1723                         struct drm_display_mode *newmode;
1724                         list_for_each_entry(newmode, &connector->probed_modes,
1725                                             head) {
1726                                 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1727                                         dev_priv->panel_fixed_mode =
1728                                                 drm_mode_duplicate(dev, newmode);
1729                                         break;
1730                                 }
1731                         }
1732                 }
1733
1734                 return ret;
1735         }
1736
1737         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1738         if (is_edp(intel_dp)) {
1739                 if (dev_priv->panel_fixed_mode != NULL) {
1740                         struct drm_display_mode *mode;
1741                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1742                         drm_mode_probed_add(connector, mode);
1743                         return 1;
1744                 }
1745         }
1746         return 0;
1747 }
1748
1749 static bool
1750 intel_dp_detect_audio(struct drm_connector *connector)
1751 {
1752         struct intel_dp *intel_dp = intel_attached_dp(connector);
1753         struct edid *edid;
1754         bool has_audio = false;
1755
1756         edid = drm_get_edid(connector, &intel_dp->adapter);
1757         if (edid) {
1758                 has_audio = drm_detect_monitor_audio(edid);
1759
1760                 connector->display_info.raw_edid = NULL;
1761                 kfree(edid);
1762         }
1763
1764         return has_audio;
1765 }
1766
1767 static int
1768 intel_dp_set_property(struct drm_connector *connector,
1769                       struct drm_property *property,
1770                       uint64_t val)
1771 {
1772         struct drm_i915_private *dev_priv = connector->dev->dev_private;
1773         struct intel_dp *intel_dp = intel_attached_dp(connector);
1774         int ret;
1775
1776         ret = drm_connector_property_set_value(connector, property, val);
1777         if (ret)
1778                 return ret;
1779
1780         if (property == dev_priv->force_audio_property) {
1781                 int i = val;
1782                 bool has_audio;
1783
1784                 if (i == intel_dp->force_audio)
1785                         return 0;
1786
1787                 intel_dp->force_audio = i;
1788
1789                 if (i == 0)
1790                         has_audio = intel_dp_detect_audio(connector);
1791                 else
1792                         has_audio = i > 0;
1793
1794                 if (has_audio == intel_dp->has_audio)
1795                         return 0;
1796
1797                 intel_dp->has_audio = has_audio;
1798                 goto done;
1799         }
1800
1801         if (property == dev_priv->broadcast_rgb_property) {
1802                 if (val == !!intel_dp->color_range)
1803                         return 0;
1804
1805                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1806                 goto done;
1807         }
1808
1809         return -EINVAL;
1810
1811 done:
1812         if (intel_dp->base.base.crtc) {
1813                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1814                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1815                                          crtc->x, crtc->y,
1816                                          crtc->fb);
1817         }
1818
1819         return 0;
1820 }
1821
1822 static void
1823 intel_dp_destroy (struct drm_connector *connector)
1824 {
1825         drm_sysfs_connector_remove(connector);
1826         drm_connector_cleanup(connector);
1827         kfree(connector);
1828 }
1829
1830 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1831 {
1832         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1833
1834         i2c_del_adapter(&intel_dp->adapter);
1835         drm_encoder_cleanup(encoder);
1836         kfree(intel_dp);
1837 }
1838
1839 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1840         .dpms = intel_dp_dpms,
1841         .mode_fixup = intel_dp_mode_fixup,
1842         .prepare = intel_dp_prepare,
1843         .mode_set = intel_dp_mode_set,
1844         .commit = intel_dp_commit,
1845 };
1846
1847 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1848         .dpms = drm_helper_connector_dpms,
1849         .detect = intel_dp_detect,
1850         .fill_modes = drm_helper_probe_single_connector_modes,
1851         .set_property = intel_dp_set_property,
1852         .destroy = intel_dp_destroy,
1853 };
1854
1855 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1856         .get_modes = intel_dp_get_modes,
1857         .mode_valid = intel_dp_mode_valid,
1858         .best_encoder = intel_best_encoder,
1859 };
1860
1861 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1862         .destroy = intel_dp_encoder_destroy,
1863 };
1864
1865 static void
1866 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1867 {
1868         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1869
1870         intel_dp_check_link_status(intel_dp);
1871 }
1872
1873 /* Return which DP Port should be selected for Transcoder DP control */
1874 int
1875 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1876 {
1877         struct drm_device *dev = crtc->dev;
1878         struct drm_mode_config *mode_config = &dev->mode_config;
1879         struct drm_encoder *encoder;
1880
1881         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1882                 struct intel_dp *intel_dp;
1883
1884                 if (encoder->crtc != crtc)
1885                         continue;
1886
1887                 intel_dp = enc_to_intel_dp(encoder);
1888                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1889                         return intel_dp->output_reg;
1890         }
1891
1892         return -1;
1893 }
1894
1895 /* check the VBT to see whether the eDP is on DP-D port */
1896 bool intel_dpd_is_edp(struct drm_device *dev)
1897 {
1898         struct drm_i915_private *dev_priv = dev->dev_private;
1899         struct child_device_config *p_child;
1900         int i;
1901
1902         if (!dev_priv->child_dev_num)
1903                 return false;
1904
1905         for (i = 0; i < dev_priv->child_dev_num; i++) {
1906                 p_child = dev_priv->child_dev + i;
1907
1908                 if (p_child->dvo_port == PORT_IDPD &&
1909                     p_child->device_type == DEVICE_TYPE_eDP)
1910                         return true;
1911         }
1912         return false;
1913 }
1914
1915 static void
1916 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1917 {
1918         intel_attach_force_audio_property(connector);
1919         intel_attach_broadcast_rgb_property(connector);
1920 }
1921
1922 void
1923 intel_dp_init(struct drm_device *dev, int output_reg)
1924 {
1925         struct drm_i915_private *dev_priv = dev->dev_private;
1926         struct drm_connector *connector;
1927         struct intel_dp *intel_dp;
1928         struct intel_encoder *intel_encoder;
1929         struct intel_connector *intel_connector;
1930         const char *name = NULL;
1931         int type;
1932
1933         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1934         if (!intel_dp)
1935                 return;
1936
1937         intel_dp->output_reg = output_reg;
1938
1939         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1940         if (!intel_connector) {
1941                 kfree(intel_dp);
1942                 return;
1943         }
1944         intel_encoder = &intel_dp->base;
1945
1946         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1947                 if (intel_dpd_is_edp(dev))
1948                         intel_dp->is_pch_edp = true;
1949
1950         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1951                 type = DRM_MODE_CONNECTOR_eDP;
1952                 intel_encoder->type = INTEL_OUTPUT_EDP;
1953         } else {
1954                 type = DRM_MODE_CONNECTOR_DisplayPort;
1955                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1956         }
1957
1958         connector = &intel_connector->base;
1959         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1960         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1961
1962         connector->polled = DRM_CONNECTOR_POLL_HPD;
1963
1964         if (output_reg == DP_B || output_reg == PCH_DP_B)
1965                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1966         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1967                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1968         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1969                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1970
1971         if (is_edp(intel_dp))
1972                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1973
1974         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1975         connector->interlace_allowed = true;
1976         connector->doublescan_allowed = 0;
1977
1978         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1979                          DRM_MODE_ENCODER_TMDS);
1980         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1981
1982         intel_connector_attach_encoder(intel_connector, intel_encoder);
1983         drm_sysfs_connector_add(connector);
1984
1985         /* Set up the DDC bus. */
1986         switch (output_reg) {
1987                 case DP_A:
1988                         name = "DPDDC-A";
1989                         break;
1990                 case DP_B:
1991                 case PCH_DP_B:
1992                         dev_priv->hotplug_supported_mask |=
1993                                 HDMIB_HOTPLUG_INT_STATUS;
1994                         name = "DPDDC-B";
1995                         break;
1996                 case DP_C:
1997                 case PCH_DP_C:
1998                         dev_priv->hotplug_supported_mask |=
1999                                 HDMIC_HOTPLUG_INT_STATUS;
2000                         name = "DPDDC-C";
2001                         break;
2002                 case DP_D:
2003                 case PCH_DP_D:
2004                         dev_priv->hotplug_supported_mask |=
2005                                 HDMID_HOTPLUG_INT_STATUS;
2006                         name = "DPDDC-D";
2007                         break;
2008         }
2009
2010         intel_dp_i2c_init(intel_dp, intel_connector, name);
2011
2012         /* Cache some DPCD data in the eDP case */
2013         if (is_edp(intel_dp)) {
2014                 int ret;
2015                 u32 pp_on, pp_div;
2016
2017                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2018                 pp_div = I915_READ(PCH_PP_DIVISOR);
2019
2020                 /* Get T3 & T12 values (note: VESA not bspec terminology) */
2021                 dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2022                 dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2023                 dev_priv->panel_t12 = pp_div & 0xf;
2024                 dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
2025
2026                 ironlake_edp_panel_vdd_on(intel_dp);
2027                 ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
2028                                                intel_dp->dpcd,
2029                                                sizeof(intel_dp->dpcd));
2030                 ironlake_edp_panel_vdd_off(intel_dp);
2031                 if (ret == sizeof(intel_dp->dpcd)) {
2032                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2033                                 dev_priv->no_aux_handshake =
2034                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2035                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2036                 } else {
2037                         /* if this fails, presume the device is a ghost */
2038                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2039                         intel_dp_encoder_destroy(&intel_dp->base.base);
2040                         intel_dp_destroy(&intel_connector->base);
2041                         return;
2042                 }
2043         }
2044
2045         intel_encoder->hot_plug = intel_dp_hot_plug;
2046
2047         if (is_edp(intel_dp)) {
2048                 /* initialize panel mode from VBT if available for eDP */
2049                 if (dev_priv->lfp_lvds_vbt_mode) {
2050                         dev_priv->panel_fixed_mode =
2051                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2052                         if (dev_priv->panel_fixed_mode) {
2053                                 dev_priv->panel_fixed_mode->type |=
2054                                         DRM_MODE_TYPE_PREFERRED;
2055                         }
2056                 }
2057         }
2058
2059         intel_dp_add_properties(intel_dp, connector);
2060
2061         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2062          * 0xd.  Failure to do so will result in spurious interrupts being
2063          * generated on the port when a cable is not attached.
2064          */
2065         if (IS_G4X(dev) && !IS_GM45(dev)) {
2066                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2067                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2068         }
2069 }