Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #include "drm_crtc_helper.h"
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45
46 typedef struct {
47     /* given values */
48     int n;
49     int m1, m2;
50     int p1, p2;
51     /* derived values */
52     int dot;
53     int vco;
54     int m;
55     int p;
56 } intel_clock_t;
57
58 typedef struct {
59     int min, max;
60 } intel_range_t;
61
62 typedef struct {
63     int dot_limit;
64     int p2_slow, p2_fast;
65 } intel_p2_t;
66
67 #define INTEL_P2_NUM                  2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71     intel_p2_t      p2;
72     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73                       int, int, intel_clock_t *);
74 };
75
76 #define I8XX_DOT_MIN              25000
77 #define I8XX_DOT_MAX             350000
78 #define I8XX_VCO_MIN             930000
79 #define I8XX_VCO_MAX            1400000
80 #define I8XX_N_MIN                    3
81 #define I8XX_N_MAX                   16
82 #define I8XX_M_MIN                   96
83 #define I8XX_M_MAX                  140
84 #define I8XX_M1_MIN                  18
85 #define I8XX_M1_MAX                  26
86 #define I8XX_M2_MIN                   6
87 #define I8XX_M2_MAX                  16
88 #define I8XX_P_MIN                    4
89 #define I8XX_P_MAX                  128
90 #define I8XX_P1_MIN                   2
91 #define I8XX_P1_MAX                  33
92 #define I8XX_P1_LVDS_MIN              1
93 #define I8XX_P1_LVDS_MAX              6
94 #define I8XX_P2_SLOW                  4
95 #define I8XX_P2_FAST                  2
96 #define I8XX_P2_LVDS_SLOW             14
97 #define I8XX_P2_LVDS_FAST             7
98 #define I8XX_P2_SLOW_LIMIT       165000
99
100 #define I9XX_DOT_MIN              20000
101 #define I9XX_DOT_MAX             400000
102 #define I9XX_VCO_MIN            1400000
103 #define I9XX_VCO_MAX            2800000
104 #define PINEVIEW_VCO_MIN                1700000
105 #define PINEVIEW_VCO_MAX                3500000
106 #define I9XX_N_MIN                    1
107 #define I9XX_N_MAX                    6
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN                3
110 #define PINEVIEW_N_MAX                6
111 #define I9XX_M_MIN                   70
112 #define I9XX_M_MAX                  120
113 #define PINEVIEW_M_MIN                2
114 #define PINEVIEW_M_MAX              256
115 #define I9XX_M1_MIN                  10
116 #define I9XX_M1_MAX                  22
117 #define I9XX_M2_MIN                   5
118 #define I9XX_M2_MAX                   9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN               0
121 #define PINEVIEW_M1_MAX               0
122 #define PINEVIEW_M2_MIN               0
123 #define PINEVIEW_M2_MAX               254
124 #define I9XX_P_SDVO_DAC_MIN           5
125 #define I9XX_P_SDVO_DAC_MAX          80
126 #define I9XX_P_LVDS_MIN               7
127 #define I9XX_P_LVDS_MAX              98
128 #define PINEVIEW_P_LVDS_MIN                   7
129 #define PINEVIEW_P_LVDS_MAX                  112
130 #define I9XX_P1_MIN                   1
131 #define I9XX_P1_MAX                   8
132 #define I9XX_P2_SDVO_DAC_SLOW                10
133 #define I9XX_P2_SDVO_DAC_FAST                 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
135 #define I9XX_P2_LVDS_SLOW                    14
136 #define I9XX_P2_LVDS_FAST                     7
137 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
138
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN           25000
141 #define G4X_DOT_SDVO_MAX           270000
142 #define G4X_VCO_MIN                1750000
143 #define G4X_VCO_MAX                3500000
144 #define G4X_N_SDVO_MIN             1
145 #define G4X_N_SDVO_MAX             4
146 #define G4X_M_SDVO_MIN             104
147 #define G4X_M_SDVO_MAX             138
148 #define G4X_M1_SDVO_MIN            17
149 #define G4X_M1_SDVO_MAX            23
150 #define G4X_M2_SDVO_MIN            5
151 #define G4X_M2_SDVO_MAX            11
152 #define G4X_P_SDVO_MIN             10
153 #define G4X_P_SDVO_MAX             30
154 #define G4X_P1_SDVO_MIN            1
155 #define G4X_P1_SDVO_MAX            3
156 #define G4X_P2_SDVO_SLOW           10
157 #define G4X_P2_SDVO_FAST           10
158 #define G4X_P2_SDVO_LIMIT          270000
159
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN           22000
162 #define G4X_DOT_HDMI_DAC_MAX           400000
163 #define G4X_N_HDMI_DAC_MIN             1
164 #define G4X_N_HDMI_DAC_MAX             4
165 #define G4X_M_HDMI_DAC_MIN             104
166 #define G4X_M_HDMI_DAC_MAX             138
167 #define G4X_M1_HDMI_DAC_MIN            16
168 #define G4X_M1_HDMI_DAC_MAX            23
169 #define G4X_M2_HDMI_DAC_MIN            5
170 #define G4X_M2_HDMI_DAC_MAX            11
171 #define G4X_P_HDMI_DAC_MIN             5
172 #define G4X_P_HDMI_DAC_MAX             80
173 #define G4X_P1_HDMI_DAC_MIN            1
174 #define G4X_P1_HDMI_DAC_MAX            8
175 #define G4X_P2_HDMI_DAC_SLOW           10
176 #define G4X_P2_HDMI_DAC_FAST           5
177 #define G4X_P2_HDMI_DAC_LIMIT          165000
178
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
197
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
216
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN           161670
219 #define G4X_DOT_DISPLAY_PORT_MAX           227000
220 #define G4X_N_DISPLAY_PORT_MIN             1
221 #define G4X_N_DISPLAY_PORT_MAX             2
222 #define G4X_M_DISPLAY_PORT_MIN             97
223 #define G4X_M_DISPLAY_PORT_MAX             108
224 #define G4X_M1_DISPLAY_PORT_MIN            0x10
225 #define G4X_M1_DISPLAY_PORT_MAX            0x12
226 #define G4X_M2_DISPLAY_PORT_MIN            0x05
227 #define G4X_M2_DISPLAY_PORT_MAX            0x06
228 #define G4X_P_DISPLAY_PORT_MIN             10
229 #define G4X_P_DISPLAY_PORT_MAX             20
230 #define G4X_P1_DISPLAY_PORT_MIN            1
231 #define G4X_P1_DISPLAY_PORT_MAX            2
232 #define G4X_P2_DISPLAY_PORT_SLOW           10
233 #define G4X_P2_DISPLAY_PORT_FAST           10
234 #define G4X_P2_DISPLAY_PORT_LIMIT          0
235
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238    N/M1/M2, so here the range value for them is (actual_value-2).
239  */
240 #define IRONLAKE_DOT_MIN         25000
241 #define IRONLAKE_DOT_MAX         350000
242 #define IRONLAKE_VCO_MIN         1760000
243 #define IRONLAKE_VCO_MAX         3510000
244 #define IRONLAKE_M1_MIN          12
245 #define IRONLAKE_M1_MAX          22
246 #define IRONLAKE_M2_MIN          5
247 #define IRONLAKE_M2_MAX          9
248 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
249
250 /* We have parameter ranges for different type of outputs. */
251
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN      1
254 #define IRONLAKE_DAC_N_MAX      5
255 #define IRONLAKE_DAC_M_MIN      79
256 #define IRONLAKE_DAC_M_MAX      127
257 #define IRONLAKE_DAC_P_MIN      5
258 #define IRONLAKE_DAC_P_MAX      80
259 #define IRONLAKE_DAC_P1_MIN     1
260 #define IRONLAKE_DAC_P1_MAX     8
261 #define IRONLAKE_DAC_P2_SLOW    10
262 #define IRONLAKE_DAC_P2_FAST    5
263
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN   1
266 #define IRONLAKE_LVDS_S_N_MAX   3
267 #define IRONLAKE_LVDS_S_M_MIN   79
268 #define IRONLAKE_LVDS_S_M_MAX   118
269 #define IRONLAKE_LVDS_S_P_MIN   28
270 #define IRONLAKE_LVDS_S_P_MAX   112
271 #define IRONLAKE_LVDS_S_P1_MIN  2
272 #define IRONLAKE_LVDS_S_P1_MAX  8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
275
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN   1
278 #define IRONLAKE_LVDS_D_N_MAX   3
279 #define IRONLAKE_LVDS_D_M_MIN   79
280 #define IRONLAKE_LVDS_D_M_MAX   127
281 #define IRONLAKE_LVDS_D_P_MIN   14
282 #define IRONLAKE_LVDS_D_P_MAX   56
283 #define IRONLAKE_LVDS_D_P1_MIN  2
284 #define IRONLAKE_LVDS_D_P1_MAX  8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
287
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
299
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
311
312 /* DisplayPort */
313 #define IRONLAKE_DP_N_MIN               1
314 #define IRONLAKE_DP_N_MAX               2
315 #define IRONLAKE_DP_M_MIN               81
316 #define IRONLAKE_DP_M_MAX               90
317 #define IRONLAKE_DP_P_MIN               10
318 #define IRONLAKE_DP_P_MAX               20
319 #define IRONLAKE_DP_P2_FAST             10
320 #define IRONLAKE_DP_P2_SLOW             10
321 #define IRONLAKE_DP_P2_LIMIT            0
322 #define IRONLAKE_DP_P1_MIN              1
323 #define IRONLAKE_DP_P1_MAX              2
324
325 static bool
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327                     int target, int refclk, intel_clock_t *best_clock);
328 static bool
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330                         int target, int refclk, intel_clock_t *best_clock);
331
332 static bool
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334                       int target, int refclk, intel_clock_t *best_clock);
335 static bool
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337                            int target, int refclk, intel_clock_t *best_clock);
338
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
341         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
342         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
343         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
344         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
345         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
346         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
347         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
348         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
350         .find_pll = intel_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
355         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
356         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
357         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
358         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
359         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
360         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
361         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
362         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
364         .find_pll = intel_find_best_PLL,
365 };
366         
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
369         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
370         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
371         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
372         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
373         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
374         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
375         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
376         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378         .find_pll = intel_find_best_PLL,
379 };
380
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
383         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
384         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
385         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
386         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
387         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
388         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
389         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
390         /* The single-channel range is 25-112Mhz, and dual-channel
391          * is 80-224Mhz.  Prefer single channel as much as possible.
392          */
393         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
395         .find_pll = intel_find_best_PLL,
396 };
397
398     /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
401         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
402         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
403         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
404         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
405         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
406         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
407         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
408         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
409                  .p2_slow = G4X_P2_SDVO_SLOW,
410                  .p2_fast = G4X_P2_SDVO_FAST
411         },
412         .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
419         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
420         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
421         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
422         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
423         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
424         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426                  .p2_fast = G4X_P2_HDMI_DAC_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434         .vco = { .min = G4X_VCO_MIN,
435                  .max = G4X_VCO_MAX },
436         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451         },
452         .find_pll = intel_g4x_find_best_PLL,
453 };
454
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458         .vco = { .min = G4X_VCO_MIN,
459                  .max = G4X_VCO_MAX },
460         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475         },
476         .find_pll = intel_g4x_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_g4x_display_port = {
480         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481                  .max = G4X_DOT_DISPLAY_PORT_MAX },
482         .vco = { .min = G4X_VCO_MIN,
483                  .max = G4X_VCO_MAX},
484         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
485                  .max = G4X_N_DISPLAY_PORT_MAX },
486         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
487                  .max = G4X_M_DISPLAY_PORT_MAX },
488         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
489                  .max = G4X_M1_DISPLAY_PORT_MAX },
490         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
491                  .max = G4X_M2_DISPLAY_PORT_MAX },
492         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
493                  .max = G4X_P_DISPLAY_PORT_MAX },
494         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
495                  .max = G4X_P1_DISPLAY_PORT_MAX},
496         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499         .find_pll = intel_find_pll_g4x_dp,
500 };
501
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
504         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
505         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
506         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
507         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
508         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
509         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
510         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
511         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513         .find_pll = intel_find_best_PLL,
514 };
515
516 static const intel_limit_t intel_limits_pineview_lvds = {
517         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
518         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
519         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
520         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
521         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
522         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
523         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
524         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
525         /* Pineview only supports single-channel mode. */
526         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
528         .find_pll = intel_find_best_PLL,
529 };
530
531 static const intel_limit_t intel_limits_ironlake_dac = {
532         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
533         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
534         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
535         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
536         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
537         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
538         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
539         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
540         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
542                  .p2_fast = IRONLAKE_DAC_P2_FAST },
543         .find_pll = intel_g4x_find_best_PLL,
544 };
545
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
548         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
549         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
550         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
551         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
552         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
553         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
554         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
555         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558         .find_pll = intel_g4x_find_best_PLL,
559 };
560
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
563         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
564         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
565         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
566         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
567         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
568         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
569         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
570         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573         .find_pll = intel_g4x_find_best_PLL,
574 };
575
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
578         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
579         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
582         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
583         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588         .find_pll = intel_g4x_find_best_PLL,
589 };
590
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
593         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
594         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
597         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
598         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603         .find_pll = intel_g4x_find_best_PLL,
604 };
605
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607         .dot = { .min = IRONLAKE_DOT_MIN,
608                  .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,
610                  .max = IRONLAKE_VCO_MAX},
611         .n   = { .min = IRONLAKE_DP_N_MIN,
612                  .max = IRONLAKE_DP_N_MAX },
613         .m   = { .min = IRONLAKE_DP_M_MIN,
614                  .max = IRONLAKE_DP_M_MAX },
615         .m1  = { .min = IRONLAKE_M1_MIN,
616                  .max = IRONLAKE_M1_MAX },
617         .m2  = { .min = IRONLAKE_M2_MIN,
618                  .max = IRONLAKE_M2_MAX },
619         .p   = { .min = IRONLAKE_DP_P_MIN,
620                  .max = IRONLAKE_DP_P_MAX },
621         .p1  = { .min = IRONLAKE_DP_P1_MIN,
622                  .max = IRONLAKE_DP_P1_MAX},
623         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624                  .p2_slow = IRONLAKE_DP_P2_SLOW,
625                  .p2_fast = IRONLAKE_DP_P2_FAST },
626         .find_pll = intel_find_pll_ironlake_dp,
627 };
628
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 {
631         struct drm_device *dev = crtc->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         const intel_limit_t *limit;
634         int refclk = 120;
635
636         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
638                         refclk = 100;
639
640                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641                     LVDS_CLKB_POWER_UP) {
642                         /* LVDS dual channel */
643                         if (refclk == 100)
644                                 limit = &intel_limits_ironlake_dual_lvds_100m;
645                         else
646                                 limit = &intel_limits_ironlake_dual_lvds;
647                 } else {
648                         if (refclk == 100)
649                                 limit = &intel_limits_ironlake_single_lvds_100m;
650                         else
651                                 limit = &intel_limits_ironlake_single_lvds;
652                 }
653         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
654                         HAS_eDP)
655                 limit = &intel_limits_ironlake_display_port;
656         else
657                 limit = &intel_limits_ironlake_dac;
658
659         return limit;
660 }
661
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 {
664         struct drm_device *dev = crtc->dev;
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         const intel_limit_t *limit;
667
668         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
670                     LVDS_CLKB_POWER_UP)
671                         /* LVDS with dual channel */
672                         limit = &intel_limits_g4x_dual_channel_lvds;
673                 else
674                         /* LVDS with dual channel */
675                         limit = &intel_limits_g4x_single_channel_lvds;
676         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678                 limit = &intel_limits_g4x_hdmi;
679         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680                 limit = &intel_limits_g4x_sdvo;
681         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682                 limit = &intel_limits_g4x_display_port;
683         } else /* The option is for other outputs */
684                 limit = &intel_limits_i9xx_sdvo;
685
686         return limit;
687 }
688
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 {
691         struct drm_device *dev = crtc->dev;
692         const intel_limit_t *limit;
693
694         if (HAS_PCH_SPLIT(dev))
695                 limit = intel_ironlake_limit(crtc);
696         else if (IS_G4X(dev)) {
697                 limit = intel_g4x_limit(crtc);
698         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700                         limit = &intel_limits_i9xx_lvds;
701                 else
702                         limit = &intel_limits_i9xx_sdvo;
703         } else if (IS_PINEVIEW(dev)) {
704                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705                         limit = &intel_limits_pineview_lvds;
706                 else
707                         limit = &intel_limits_pineview_sdvo;
708         } else {
709                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710                         limit = &intel_limits_i8xx_lvds;
711                 else
712                         limit = &intel_limits_i8xx_dvo;
713         }
714         return limit;
715 }
716
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
719 {
720         clock->m = clock->m2 + 2;
721         clock->p = clock->p1 * clock->p2;
722         clock->vco = refclk * clock->m / clock->n;
723         clock->dot = clock->vco / clock->p;
724 }
725
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 {
728         if (IS_PINEVIEW(dev)) {
729                 pineview_clock(refclk, clock);
730                 return;
731         }
732         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733         clock->p = clock->p1 * clock->p2;
734         clock->vco = refclk * clock->m / (clock->n + 2);
735         clock->dot = clock->vco / clock->p;
736 }
737
738 /**
739  * Returns whether any output on the specified pipe is of the specified type
740  */
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 {
743     struct drm_device *dev = crtc->dev;
744     struct drm_mode_config *mode_config = &dev->mode_config;
745     struct drm_connector *l_entry;
746
747     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
748             if (l_entry->encoder &&
749                 l_entry->encoder->crtc == crtc) {
750                     struct intel_encoder *intel_encoder = to_intel_encoder(l_entry);
751                     if (intel_encoder->type == type)
752                             return true;
753             }
754     }
755     return false;
756 }
757
758 static struct drm_connector *
759 intel_pipe_get_connector (struct drm_crtc *crtc)
760 {
761     struct drm_device *dev = crtc->dev;
762     struct drm_mode_config *mode_config = &dev->mode_config;
763     struct drm_connector *l_entry, *ret = NULL;
764
765     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
766             if (l_entry->encoder &&
767                 l_entry->encoder->crtc == crtc) {
768                     ret = l_entry;
769                     break;
770             }
771     }
772     return ret;
773 }
774
775 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
776 /**
777  * Returns whether the given set of divisors are valid for a given refclk with
778  * the given connectors.
779  */
780
781 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
782 {
783         const intel_limit_t *limit = intel_limit (crtc);
784         struct drm_device *dev = crtc->dev;
785
786         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
787                 INTELPllInvalid ("p1 out of range\n");
788         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
789                 INTELPllInvalid ("p out of range\n");
790         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
791                 INTELPllInvalid ("m2 out of range\n");
792         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
793                 INTELPllInvalid ("m1 out of range\n");
794         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
795                 INTELPllInvalid ("m1 <= m2\n");
796         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
797                 INTELPllInvalid ("m out of range\n");
798         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
799                 INTELPllInvalid ("n out of range\n");
800         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
801                 INTELPllInvalid ("vco out of range\n");
802         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
803          * connector, etc., rather than just a single range.
804          */
805         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
806                 INTELPllInvalid ("dot out of range\n");
807
808         return true;
809 }
810
811 static bool
812 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
813                     int target, int refclk, intel_clock_t *best_clock)
814
815 {
816         struct drm_device *dev = crtc->dev;
817         struct drm_i915_private *dev_priv = dev->dev_private;
818         intel_clock_t clock;
819         int err = target;
820
821         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
822             (I915_READ(LVDS)) != 0) {
823                 /*
824                  * For LVDS, if the panel is on, just rely on its current
825                  * settings for dual-channel.  We haven't figured out how to
826                  * reliably set up different single/dual channel state, if we
827                  * even can.
828                  */
829                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
830                     LVDS_CLKB_POWER_UP)
831                         clock.p2 = limit->p2.p2_fast;
832                 else
833                         clock.p2 = limit->p2.p2_slow;
834         } else {
835                 if (target < limit->p2.dot_limit)
836                         clock.p2 = limit->p2.p2_slow;
837                 else
838                         clock.p2 = limit->p2.p2_fast;
839         }
840
841         memset (best_clock, 0, sizeof (*best_clock));
842
843         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
844              clock.m1++) {
845                 for (clock.m2 = limit->m2.min;
846                      clock.m2 <= limit->m2.max; clock.m2++) {
847                         /* m1 is always 0 in Pineview */
848                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
849                                 break;
850                         for (clock.n = limit->n.min;
851                              clock.n <= limit->n.max; clock.n++) {
852                                 for (clock.p1 = limit->p1.min;
853                                         clock.p1 <= limit->p1.max; clock.p1++) {
854                                         int this_err;
855
856                                         intel_clock(dev, refclk, &clock);
857
858                                         if (!intel_PLL_is_valid(crtc, &clock))
859                                                 continue;
860
861                                         this_err = abs(clock.dot - target);
862                                         if (this_err < err) {
863                                                 *best_clock = clock;
864                                                 err = this_err;
865                                         }
866                                 }
867                         }
868                 }
869         }
870
871         return (err != target);
872 }
873
874 static bool
875 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
876                         int target, int refclk, intel_clock_t *best_clock)
877 {
878         struct drm_device *dev = crtc->dev;
879         struct drm_i915_private *dev_priv = dev->dev_private;
880         intel_clock_t clock;
881         int max_n;
882         bool found;
883         /* approximately equals target * 0.00488 */
884         int err_most = (target >> 8) + (target >> 10);
885         found = false;
886
887         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
888                 int lvds_reg;
889
890                 if (HAS_PCH_SPLIT(dev))
891                         lvds_reg = PCH_LVDS;
892                 else
893                         lvds_reg = LVDS;
894                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
895                     LVDS_CLKB_POWER_UP)
896                         clock.p2 = limit->p2.p2_fast;
897                 else
898                         clock.p2 = limit->p2.p2_slow;
899         } else {
900                 if (target < limit->p2.dot_limit)
901                         clock.p2 = limit->p2.p2_slow;
902                 else
903                         clock.p2 = limit->p2.p2_fast;
904         }
905
906         memset(best_clock, 0, sizeof(*best_clock));
907         max_n = limit->n.max;
908         /* based on hardware requirement, prefer smaller n to precision */
909         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
910                 /* based on hardware requirement, prefere larger m1,m2 */
911                 for (clock.m1 = limit->m1.max;
912                      clock.m1 >= limit->m1.min; clock.m1--) {
913                         for (clock.m2 = limit->m2.max;
914                              clock.m2 >= limit->m2.min; clock.m2--) {
915                                 for (clock.p1 = limit->p1.max;
916                                      clock.p1 >= limit->p1.min; clock.p1--) {
917                                         int this_err;
918
919                                         intel_clock(dev, refclk, &clock);
920                                         if (!intel_PLL_is_valid(crtc, &clock))
921                                                 continue;
922                                         this_err = abs(clock.dot - target) ;
923                                         if (this_err < err_most) {
924                                                 *best_clock = clock;
925                                                 err_most = this_err;
926                                                 max_n = clock.n;
927                                                 found = true;
928                                         }
929                                 }
930                         }
931                 }
932         }
933         return found;
934 }
935
936 static bool
937 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
938                            int target, int refclk, intel_clock_t *best_clock)
939 {
940         struct drm_device *dev = crtc->dev;
941         intel_clock_t clock;
942
943         /* return directly when it is eDP */
944         if (HAS_eDP)
945                 return true;
946
947         if (target < 200000) {
948                 clock.n = 1;
949                 clock.p1 = 2;
950                 clock.p2 = 10;
951                 clock.m1 = 12;
952                 clock.m2 = 9;
953         } else {
954                 clock.n = 2;
955                 clock.p1 = 1;
956                 clock.p2 = 10;
957                 clock.m1 = 14;
958                 clock.m2 = 8;
959         }
960         intel_clock(dev, refclk, &clock);
961         memcpy(best_clock, &clock, sizeof(intel_clock_t));
962         return true;
963 }
964
965 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
966 static bool
967 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
968                       int target, int refclk, intel_clock_t *best_clock)
969 {
970     intel_clock_t clock;
971     if (target < 200000) {
972         clock.p1 = 2;
973         clock.p2 = 10;
974         clock.n = 2;
975         clock.m1 = 23;
976         clock.m2 = 8;
977     } else {
978         clock.p1 = 1;
979         clock.p2 = 10;
980         clock.n = 1;
981         clock.m1 = 14;
982         clock.m2 = 2;
983     }
984     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
985     clock.p = (clock.p1 * clock.p2);
986     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
987     clock.vco = 0;
988     memcpy(best_clock, &clock, sizeof(intel_clock_t));
989     return true;
990 }
991
992 void
993 intel_wait_for_vblank(struct drm_device *dev)
994 {
995         /* Wait for 20ms, i.e. one cycle at 50hz. */
996         msleep(20);
997 }
998
999 /* Parameters have changed, update FBC info */
1000 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1001 {
1002         struct drm_device *dev = crtc->dev;
1003         struct drm_i915_private *dev_priv = dev->dev_private;
1004         struct drm_framebuffer *fb = crtc->fb;
1005         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1006         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1008         int plane, i;
1009         u32 fbc_ctl, fbc_ctl2;
1010
1011         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1012
1013         if (fb->pitch < dev_priv->cfb_pitch)
1014                 dev_priv->cfb_pitch = fb->pitch;
1015
1016         /* FBC_CTL wants 64B units */
1017         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1018         dev_priv->cfb_fence = obj_priv->fence_reg;
1019         dev_priv->cfb_plane = intel_crtc->plane;
1020         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1021
1022         /* Clear old tags */
1023         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1024                 I915_WRITE(FBC_TAG + (i * 4), 0);
1025
1026         /* Set it up... */
1027         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1028         if (obj_priv->tiling_mode != I915_TILING_NONE)
1029                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1030         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1031         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1032
1033         /* enable it... */
1034         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1035         if (IS_I945GM(dev))
1036                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1037         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1038         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1039         if (obj_priv->tiling_mode != I915_TILING_NONE)
1040                 fbc_ctl |= dev_priv->cfb_fence;
1041         I915_WRITE(FBC_CONTROL, fbc_ctl);
1042
1043         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1044                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1045 }
1046
1047 void i8xx_disable_fbc(struct drm_device *dev)
1048 {
1049         struct drm_i915_private *dev_priv = dev->dev_private;
1050         u32 fbc_ctl;
1051
1052         if (!I915_HAS_FBC(dev))
1053                 return;
1054
1055         /* Disable compression */
1056         fbc_ctl = I915_READ(FBC_CONTROL);
1057         fbc_ctl &= ~FBC_CTL_EN;
1058         I915_WRITE(FBC_CONTROL, fbc_ctl);
1059
1060         /* Wait for compressing bit to clear */
1061         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1062                 ; /* nothing */
1063
1064         intel_wait_for_vblank(dev);
1065
1066         DRM_DEBUG_KMS("disabled FBC\n");
1067 }
1068
1069 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1070 {
1071         struct drm_device *dev = crtc->dev;
1072         struct drm_i915_private *dev_priv = dev->dev_private;
1073
1074         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1075 }
1076
1077 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1078 {
1079         struct drm_device *dev = crtc->dev;
1080         struct drm_i915_private *dev_priv = dev->dev_private;
1081         struct drm_framebuffer *fb = crtc->fb;
1082         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1083         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1085         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1086                      DPFC_CTL_PLANEB);
1087         unsigned long stall_watermark = 200;
1088         u32 dpfc_ctl;
1089
1090         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1091         dev_priv->cfb_fence = obj_priv->fence_reg;
1092         dev_priv->cfb_plane = intel_crtc->plane;
1093
1094         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1095         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1096                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1097                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1098         } else {
1099                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1100         }
1101
1102         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1103         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1104                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1105                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1106         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1107
1108         /* enable it... */
1109         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1110
1111         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1112 }
1113
1114 void g4x_disable_fbc(struct drm_device *dev)
1115 {
1116         struct drm_i915_private *dev_priv = dev->dev_private;
1117         u32 dpfc_ctl;
1118
1119         /* Disable compression */
1120         dpfc_ctl = I915_READ(DPFC_CONTROL);
1121         dpfc_ctl &= ~DPFC_CTL_EN;
1122         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1123         intel_wait_for_vblank(dev);
1124
1125         DRM_DEBUG_KMS("disabled FBC\n");
1126 }
1127
1128 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1129 {
1130         struct drm_device *dev = crtc->dev;
1131         struct drm_i915_private *dev_priv = dev->dev_private;
1132
1133         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1134 }
1135
1136 /**
1137  * intel_update_fbc - enable/disable FBC as needed
1138  * @crtc: CRTC to point the compressor at
1139  * @mode: mode in use
1140  *
1141  * Set up the framebuffer compression hardware at mode set time.  We
1142  * enable it if possible:
1143  *   - plane A only (on pre-965)
1144  *   - no pixel mulitply/line duplication
1145  *   - no alpha buffer discard
1146  *   - no dual wide
1147  *   - framebuffer <= 2048 in width, 1536 in height
1148  *
1149  * We can't assume that any compression will take place (worst case),
1150  * so the compressed buffer has to be the same size as the uncompressed
1151  * one.  It also must reside (along with the line length buffer) in
1152  * stolen memory.
1153  *
1154  * We need to enable/disable FBC on a global basis.
1155  */
1156 static void intel_update_fbc(struct drm_crtc *crtc,
1157                              struct drm_display_mode *mode)
1158 {
1159         struct drm_device *dev = crtc->dev;
1160         struct drm_i915_private *dev_priv = dev->dev_private;
1161         struct drm_framebuffer *fb = crtc->fb;
1162         struct intel_framebuffer *intel_fb;
1163         struct drm_i915_gem_object *obj_priv;
1164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1165         int plane = intel_crtc->plane;
1166
1167         if (!i915_powersave)
1168                 return;
1169
1170         if (!dev_priv->display.fbc_enabled ||
1171             !dev_priv->display.enable_fbc ||
1172             !dev_priv->display.disable_fbc)
1173                 return;
1174
1175         if (!crtc->fb)
1176                 return;
1177
1178         intel_fb = to_intel_framebuffer(fb);
1179         obj_priv = to_intel_bo(intel_fb->obj);
1180
1181         /*
1182          * If FBC is already on, we just have to verify that we can
1183          * keep it that way...
1184          * Need to disable if:
1185          *   - changing FBC params (stride, fence, mode)
1186          *   - new fb is too large to fit in compressed buffer
1187          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1188          */
1189         if (intel_fb->obj->size > dev_priv->cfb_size) {
1190                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1191                                 "compression\n");
1192                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1193                 goto out_disable;
1194         }
1195         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1196             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1197                 DRM_DEBUG_KMS("mode incompatible with compression, "
1198                                 "disabling\n");
1199                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1200                 goto out_disable;
1201         }
1202         if ((mode->hdisplay > 2048) ||
1203             (mode->vdisplay > 1536)) {
1204                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1205                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1206                 goto out_disable;
1207         }
1208         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1209                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1210                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1211                 goto out_disable;
1212         }
1213         if (obj_priv->tiling_mode != I915_TILING_X) {
1214                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1215                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1216                 goto out_disable;
1217         }
1218
1219         if (dev_priv->display.fbc_enabled(crtc)) {
1220                 /* We can re-enable it in this case, but need to update pitch */
1221                 if (fb->pitch > dev_priv->cfb_pitch)
1222                         dev_priv->display.disable_fbc(dev);
1223                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1224                         dev_priv->display.disable_fbc(dev);
1225                 if (plane != dev_priv->cfb_plane)
1226                         dev_priv->display.disable_fbc(dev);
1227         }
1228
1229         if (!dev_priv->display.fbc_enabled(crtc)) {
1230                 /* Now try to turn it back on if possible */
1231                 dev_priv->display.enable_fbc(crtc, 500);
1232         }
1233
1234         return;
1235
1236 out_disable:
1237         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1238         /* Multiple disables should be harmless */
1239         if (dev_priv->display.fbc_enabled(crtc))
1240                 dev_priv->display.disable_fbc(dev);
1241 }
1242
1243 static int
1244 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1245 {
1246         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1247         u32 alignment;
1248         int ret;
1249
1250         switch (obj_priv->tiling_mode) {
1251         case I915_TILING_NONE:
1252                 alignment = 64 * 1024;
1253                 break;
1254         case I915_TILING_X:
1255                 /* pin() will align the object as required by fence */
1256                 alignment = 0;
1257                 break;
1258         case I915_TILING_Y:
1259                 /* FIXME: Is this true? */
1260                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1261                 return -EINVAL;
1262         default:
1263                 BUG();
1264         }
1265
1266         ret = i915_gem_object_pin(obj, alignment);
1267         if (ret != 0)
1268                 return ret;
1269
1270         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1271          * fence, whereas 965+ only requires a fence if using
1272          * framebuffer compression.  For simplicity, we always install
1273          * a fence as the cost is not that onerous.
1274          */
1275         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1276             obj_priv->tiling_mode != I915_TILING_NONE) {
1277                 ret = i915_gem_object_get_fence_reg(obj);
1278                 if (ret != 0) {
1279                         i915_gem_object_unpin(obj);
1280                         return ret;
1281                 }
1282         }
1283
1284         return 0;
1285 }
1286
1287 static int
1288 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1289                     struct drm_framebuffer *old_fb)
1290 {
1291         struct drm_device *dev = crtc->dev;
1292         struct drm_i915_private *dev_priv = dev->dev_private;
1293         struct drm_i915_master_private *master_priv;
1294         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1295         struct intel_framebuffer *intel_fb;
1296         struct drm_i915_gem_object *obj_priv;
1297         struct drm_gem_object *obj;
1298         int pipe = intel_crtc->pipe;
1299         int plane = intel_crtc->plane;
1300         unsigned long Start, Offset;
1301         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1302         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1303         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1304         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1305         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1306         u32 dspcntr;
1307         int ret;
1308
1309         /* no fb bound */
1310         if (!crtc->fb) {
1311                 DRM_DEBUG_KMS("No FB bound\n");
1312                 return 0;
1313         }
1314
1315         switch (plane) {
1316         case 0:
1317         case 1:
1318                 break;
1319         default:
1320                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1321                 return -EINVAL;
1322         }
1323
1324         intel_fb = to_intel_framebuffer(crtc->fb);
1325         obj = intel_fb->obj;
1326         obj_priv = to_intel_bo(obj);
1327
1328         mutex_lock(&dev->struct_mutex);
1329         ret = intel_pin_and_fence_fb_obj(dev, obj);
1330         if (ret != 0) {
1331                 mutex_unlock(&dev->struct_mutex);
1332                 return ret;
1333         }
1334
1335         ret = i915_gem_object_set_to_display_plane(obj);
1336         if (ret != 0) {
1337                 i915_gem_object_unpin(obj);
1338                 mutex_unlock(&dev->struct_mutex);
1339                 return ret;
1340         }
1341
1342         dspcntr = I915_READ(dspcntr_reg);
1343         /* Mask out pixel format bits in case we change it */
1344         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1345         switch (crtc->fb->bits_per_pixel) {
1346         case 8:
1347                 dspcntr |= DISPPLANE_8BPP;
1348                 break;
1349         case 16:
1350                 if (crtc->fb->depth == 15)
1351                         dspcntr |= DISPPLANE_15_16BPP;
1352                 else
1353                         dspcntr |= DISPPLANE_16BPP;
1354                 break;
1355         case 24:
1356         case 32:
1357                 if (crtc->fb->depth == 30)
1358                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1359                 else
1360                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1361                 break;
1362         default:
1363                 DRM_ERROR("Unknown color depth\n");
1364                 i915_gem_object_unpin(obj);
1365                 mutex_unlock(&dev->struct_mutex);
1366                 return -EINVAL;
1367         }
1368         if (IS_I965G(dev)) {
1369                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1370                         dspcntr |= DISPPLANE_TILED;
1371                 else
1372                         dspcntr &= ~DISPPLANE_TILED;
1373         }
1374
1375         if (HAS_PCH_SPLIT(dev))
1376                 /* must disable */
1377                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1378
1379         I915_WRITE(dspcntr_reg, dspcntr);
1380
1381         Start = obj_priv->gtt_offset;
1382         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1383
1384         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1385         I915_WRITE(dspstride, crtc->fb->pitch);
1386         if (IS_I965G(dev)) {
1387                 I915_WRITE(dspbase, Offset);
1388                 I915_READ(dspbase);
1389                 I915_WRITE(dspsurf, Start);
1390                 I915_READ(dspsurf);
1391                 I915_WRITE(dsptileoff, (y << 16) | x);
1392         } else {
1393                 I915_WRITE(dspbase, Start + Offset);
1394                 I915_READ(dspbase);
1395         }
1396
1397         if ((IS_I965G(dev) || plane == 0))
1398                 intel_update_fbc(crtc, &crtc->mode);
1399
1400         intel_wait_for_vblank(dev);
1401
1402         if (old_fb) {
1403                 intel_fb = to_intel_framebuffer(old_fb);
1404                 obj_priv = to_intel_bo(intel_fb->obj);
1405                 i915_gem_object_unpin(intel_fb->obj);
1406         }
1407         intel_increase_pllclock(crtc, true);
1408
1409         mutex_unlock(&dev->struct_mutex);
1410
1411         if (!dev->primary->master)
1412                 return 0;
1413
1414         master_priv = dev->primary->master->driver_priv;
1415         if (!master_priv->sarea_priv)
1416                 return 0;
1417
1418         if (pipe) {
1419                 master_priv->sarea_priv->pipeB_x = x;
1420                 master_priv->sarea_priv->pipeB_y = y;
1421         } else {
1422                 master_priv->sarea_priv->pipeA_x = x;
1423                 master_priv->sarea_priv->pipeA_y = y;
1424         }
1425
1426         return 0;
1427 }
1428
1429 /* Disable the VGA plane that we never use */
1430 static void i915_disable_vga (struct drm_device *dev)
1431 {
1432         struct drm_i915_private *dev_priv = dev->dev_private;
1433         u8 sr1;
1434         u32 vga_reg;
1435
1436         if (HAS_PCH_SPLIT(dev))
1437                 vga_reg = CPU_VGACNTRL;
1438         else
1439                 vga_reg = VGACNTRL;
1440
1441         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1442                 return;
1443
1444         I915_WRITE8(VGA_SR_INDEX, 1);
1445         sr1 = I915_READ8(VGA_SR_DATA);
1446         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1447         udelay(100);
1448
1449         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1450 }
1451
1452 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1453 {
1454         struct drm_device *dev = crtc->dev;
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456         u32 dpa_ctl;
1457
1458         DRM_DEBUG_KMS("\n");
1459         dpa_ctl = I915_READ(DP_A);
1460         dpa_ctl &= ~DP_PLL_ENABLE;
1461         I915_WRITE(DP_A, dpa_ctl);
1462 }
1463
1464 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1465 {
1466         struct drm_device *dev = crtc->dev;
1467         struct drm_i915_private *dev_priv = dev->dev_private;
1468         u32 dpa_ctl;
1469
1470         dpa_ctl = I915_READ(DP_A);
1471         dpa_ctl |= DP_PLL_ENABLE;
1472         I915_WRITE(DP_A, dpa_ctl);
1473         udelay(200);
1474 }
1475
1476
1477 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1478 {
1479         struct drm_device *dev = crtc->dev;
1480         struct drm_i915_private *dev_priv = dev->dev_private;
1481         u32 dpa_ctl;
1482
1483         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1484         dpa_ctl = I915_READ(DP_A);
1485         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1486
1487         if (clock < 200000) {
1488                 u32 temp;
1489                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1490                 /* workaround for 160Mhz:
1491                    1) program 0x4600c bits 15:0 = 0x8124
1492                    2) program 0x46010 bit 0 = 1
1493                    3) program 0x46034 bit 24 = 1
1494                    4) program 0x64000 bit 14 = 1
1495                    */
1496                 temp = I915_READ(0x4600c);
1497                 temp &= 0xffff0000;
1498                 I915_WRITE(0x4600c, temp | 0x8124);
1499
1500                 temp = I915_READ(0x46010);
1501                 I915_WRITE(0x46010, temp | 1);
1502
1503                 temp = I915_READ(0x46034);
1504                 I915_WRITE(0x46034, temp | (1 << 24));
1505         } else {
1506                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1507         }
1508         I915_WRITE(DP_A, dpa_ctl);
1509
1510         udelay(500);
1511 }
1512
1513 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1514 {
1515         struct drm_device *dev = crtc->dev;
1516         struct drm_i915_private *dev_priv = dev->dev_private;
1517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1518         int pipe = intel_crtc->pipe;
1519         int plane = intel_crtc->plane;
1520         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1521         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1522         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1523         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1524         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1525         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1526         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1527         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1528         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1529         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1530         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1531         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1532         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1533         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1534         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1535         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1536         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1537         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1538         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1539         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1540         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1541         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1542         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1543         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1544         u32 temp;
1545         int tries = 5, j, n;
1546         u32 pipe_bpc;
1547
1548         temp = I915_READ(pipeconf_reg);
1549         pipe_bpc = temp & PIPE_BPC_MASK;
1550
1551         /* XXX: When our outputs are all unaware of DPMS modes other than off
1552          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1553          */
1554         switch (mode) {
1555         case DRM_MODE_DPMS_ON:
1556         case DRM_MODE_DPMS_STANDBY:
1557         case DRM_MODE_DPMS_SUSPEND:
1558                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1559
1560                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1561                         temp = I915_READ(PCH_LVDS);
1562                         if ((temp & LVDS_PORT_EN) == 0) {
1563                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1564                                 POSTING_READ(PCH_LVDS);
1565                         }
1566                 }
1567
1568                 if (HAS_eDP) {
1569                         /* enable eDP PLL */
1570                         ironlake_enable_pll_edp(crtc);
1571                 } else {
1572                         /* enable PCH DPLL */
1573                         temp = I915_READ(pch_dpll_reg);
1574                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1575                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1576                                 I915_READ(pch_dpll_reg);
1577                         }
1578
1579                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1580                         temp = I915_READ(fdi_rx_reg);
1581                         /*
1582                          * make the BPC in FDI Rx be consistent with that in
1583                          * pipeconf reg.
1584                          */
1585                         temp &= ~(0x7 << 16);
1586                         temp |= (pipe_bpc << 11);
1587                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1588                                         FDI_SEL_PCDCLK |
1589                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1590                         I915_READ(fdi_rx_reg);
1591                         udelay(200);
1592
1593                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1594                         temp = I915_READ(fdi_tx_reg);
1595                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1596                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1597                                 I915_READ(fdi_tx_reg);
1598                                 udelay(100);
1599                         }
1600                 }
1601
1602                 /* Enable panel fitting for LVDS */
1603                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1604                         temp = I915_READ(pf_ctl_reg);
1605                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1606
1607                         /* currently full aspect */
1608                         I915_WRITE(pf_win_pos, 0);
1609
1610                         I915_WRITE(pf_win_size,
1611                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1612                                    (dev_priv->panel_fixed_mode->vdisplay));
1613                 }
1614
1615                 /* Enable CPU pipe */
1616                 temp = I915_READ(pipeconf_reg);
1617                 if ((temp & PIPEACONF_ENABLE) == 0) {
1618                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1619                         I915_READ(pipeconf_reg);
1620                         udelay(100);
1621                 }
1622
1623                 /* configure and enable CPU plane */
1624                 temp = I915_READ(dspcntr_reg);
1625                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1626                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1627                         /* Flush the plane changes */
1628                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1629                 }
1630
1631                 if (!HAS_eDP) {
1632                         /* enable CPU FDI TX and PCH FDI RX */
1633                         temp = I915_READ(fdi_tx_reg);
1634                         temp |= FDI_TX_ENABLE;
1635                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1636                         temp &= ~FDI_LINK_TRAIN_NONE;
1637                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1638                         I915_WRITE(fdi_tx_reg, temp);
1639                         I915_READ(fdi_tx_reg);
1640
1641                         temp = I915_READ(fdi_rx_reg);
1642                         temp &= ~FDI_LINK_TRAIN_NONE;
1643                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1644                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1645                         I915_READ(fdi_rx_reg);
1646
1647                         udelay(150);
1648
1649                         /* Train FDI. */
1650                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1651                            for train result */
1652                         temp = I915_READ(fdi_rx_imr_reg);
1653                         temp &= ~FDI_RX_SYMBOL_LOCK;
1654                         temp &= ~FDI_RX_BIT_LOCK;
1655                         I915_WRITE(fdi_rx_imr_reg, temp);
1656                         I915_READ(fdi_rx_imr_reg);
1657                         udelay(150);
1658
1659                         temp = I915_READ(fdi_rx_iir_reg);
1660                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1661
1662                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1663                                 for (j = 0; j < tries; j++) {
1664                                         temp = I915_READ(fdi_rx_iir_reg);
1665                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1666                                                                 temp);
1667                                         if (temp & FDI_RX_BIT_LOCK)
1668                                                 break;
1669                                         udelay(200);
1670                                 }
1671                                 if (j != tries)
1672                                         I915_WRITE(fdi_rx_iir_reg,
1673                                                         temp | FDI_RX_BIT_LOCK);
1674                                 else
1675                                         DRM_DEBUG_KMS("train 1 fail\n");
1676                         } else {
1677                                 I915_WRITE(fdi_rx_iir_reg,
1678                                                 temp | FDI_RX_BIT_LOCK);
1679                                 DRM_DEBUG_KMS("train 1 ok 2!\n");
1680                         }
1681                         temp = I915_READ(fdi_tx_reg);
1682                         temp &= ~FDI_LINK_TRAIN_NONE;
1683                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1684                         I915_WRITE(fdi_tx_reg, temp);
1685
1686                         temp = I915_READ(fdi_rx_reg);
1687                         temp &= ~FDI_LINK_TRAIN_NONE;
1688                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1689                         I915_WRITE(fdi_rx_reg, temp);
1690
1691                         udelay(150);
1692
1693                         temp = I915_READ(fdi_rx_iir_reg);
1694                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1695
1696                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1697                                 for (j = 0; j < tries; j++) {
1698                                         temp = I915_READ(fdi_rx_iir_reg);
1699                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1700                                                                 temp);
1701                                         if (temp & FDI_RX_SYMBOL_LOCK)
1702                                                 break;
1703                                         udelay(200);
1704                                 }
1705                                 if (j != tries) {
1706                                         I915_WRITE(fdi_rx_iir_reg,
1707                                                         temp | FDI_RX_SYMBOL_LOCK);
1708                                         DRM_DEBUG_KMS("train 2 ok 1!\n");
1709                                 } else
1710                                         DRM_DEBUG_KMS("train 2 fail\n");
1711                         } else {
1712                                 I915_WRITE(fdi_rx_iir_reg,
1713                                                 temp | FDI_RX_SYMBOL_LOCK);
1714                                 DRM_DEBUG_KMS("train 2 ok 2!\n");
1715                         }
1716                         DRM_DEBUG_KMS("train done\n");
1717
1718                         /* set transcoder timing */
1719                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1720                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1721                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1722
1723                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1724                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1725                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1726
1727                         /* enable PCH transcoder */
1728                         temp = I915_READ(transconf_reg);
1729                         /*
1730                          * make the BPC in transcoder be consistent with
1731                          * that in pipeconf reg.
1732                          */
1733                         temp &= ~PIPE_BPC_MASK;
1734                         temp |= pipe_bpc;
1735                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1736                         I915_READ(transconf_reg);
1737
1738                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1739                                 ;
1740
1741                         /* enable normal */
1742
1743                         temp = I915_READ(fdi_tx_reg);
1744                         temp &= ~FDI_LINK_TRAIN_NONE;
1745                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1746                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1747                         I915_READ(fdi_tx_reg);
1748
1749                         temp = I915_READ(fdi_rx_reg);
1750                         temp &= ~FDI_LINK_TRAIN_NONE;
1751                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1752                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1753                         I915_READ(fdi_rx_reg);
1754
1755                         /* wait one idle pattern time */
1756                         udelay(100);
1757
1758                 }
1759
1760                 intel_crtc_load_lut(crtc);
1761
1762         break;
1763         case DRM_MODE_DPMS_OFF:
1764                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1765
1766                 drm_vblank_off(dev, pipe);
1767                 /* Disable display plane */
1768                 temp = I915_READ(dspcntr_reg);
1769                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1770                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1771                         /* Flush the plane changes */
1772                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1773                         I915_READ(dspbase_reg);
1774                 }
1775
1776                 i915_disable_vga(dev);
1777
1778                 /* disable cpu pipe, disable after all planes disabled */
1779                 temp = I915_READ(pipeconf_reg);
1780                 if ((temp & PIPEACONF_ENABLE) != 0) {
1781                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1782                         I915_READ(pipeconf_reg);
1783                         n = 0;
1784                         /* wait for cpu pipe off, pipe state */
1785                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1786                                 n++;
1787                                 if (n < 60) {
1788                                         udelay(500);
1789                                         continue;
1790                                 } else {
1791                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1792                                                                 pipe);
1793                                         break;
1794                                 }
1795                         }
1796                 } else
1797                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1798
1799                 udelay(100);
1800
1801                 /* Disable PF */
1802                 temp = I915_READ(pf_ctl_reg);
1803                 if ((temp & PF_ENABLE) != 0) {
1804                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1805                         I915_READ(pf_ctl_reg);
1806                 }
1807                 I915_WRITE(pf_win_size, 0);
1808
1809                 /* disable CPU FDI tx and PCH FDI rx */
1810                 temp = I915_READ(fdi_tx_reg);
1811                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1812                 I915_READ(fdi_tx_reg);
1813
1814                 temp = I915_READ(fdi_rx_reg);
1815                 /* BPC in FDI rx is consistent with that in pipeconf */
1816                 temp &= ~(0x07 << 16);
1817                 temp |= (pipe_bpc << 11);
1818                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1819                 I915_READ(fdi_rx_reg);
1820
1821                 udelay(100);
1822
1823                 /* still set train pattern 1 */
1824                 temp = I915_READ(fdi_tx_reg);
1825                 temp &= ~FDI_LINK_TRAIN_NONE;
1826                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1827                 I915_WRITE(fdi_tx_reg, temp);
1828
1829                 temp = I915_READ(fdi_rx_reg);
1830                 temp &= ~FDI_LINK_TRAIN_NONE;
1831                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1832                 I915_WRITE(fdi_rx_reg, temp);
1833
1834                 udelay(100);
1835
1836                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1837                         temp = I915_READ(PCH_LVDS);
1838                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
1839                         I915_READ(PCH_LVDS);
1840                         udelay(100);
1841                 }
1842
1843                 /* disable PCH transcoder */
1844                 temp = I915_READ(transconf_reg);
1845                 if ((temp & TRANS_ENABLE) != 0) {
1846                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1847                         I915_READ(transconf_reg);
1848                         n = 0;
1849                         /* wait for PCH transcoder off, transcoder state */
1850                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1851                                 n++;
1852                                 if (n < 60) {
1853                                         udelay(500);
1854                                         continue;
1855                                 } else {
1856                                         DRM_DEBUG_KMS("transcoder %d off "
1857                                                         "delay\n", pipe);
1858                                         break;
1859                                 }
1860                         }
1861                 }
1862                 temp = I915_READ(transconf_reg);
1863                 /* BPC in transcoder is consistent with that in pipeconf */
1864                 temp &= ~PIPE_BPC_MASK;
1865                 temp |= pipe_bpc;
1866                 I915_WRITE(transconf_reg, temp);
1867                 I915_READ(transconf_reg);
1868                 udelay(100);
1869
1870                 /* disable PCH DPLL */
1871                 temp = I915_READ(pch_dpll_reg);
1872                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1873                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1874                         I915_READ(pch_dpll_reg);
1875                 }
1876
1877                 if (HAS_eDP) {
1878                         ironlake_disable_pll_edp(crtc);
1879                 }
1880
1881                 temp = I915_READ(fdi_rx_reg);
1882                 temp &= ~FDI_SEL_PCDCLK;
1883                 I915_WRITE(fdi_rx_reg, temp);
1884                 I915_READ(fdi_rx_reg);
1885
1886                 temp = I915_READ(fdi_rx_reg);
1887                 temp &= ~FDI_RX_PLL_ENABLE;
1888                 I915_WRITE(fdi_rx_reg, temp);
1889                 I915_READ(fdi_rx_reg);
1890
1891                 /* Disable CPU FDI TX PLL */
1892                 temp = I915_READ(fdi_tx_reg);
1893                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1894                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1895                         I915_READ(fdi_tx_reg);
1896                         udelay(100);
1897                 }
1898
1899                 /* Wait for the clocks to turn off. */
1900                 udelay(100);
1901                 break;
1902         }
1903 }
1904
1905 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1906 {
1907         struct intel_overlay *overlay;
1908         int ret;
1909
1910         if (!enable && intel_crtc->overlay) {
1911                 overlay = intel_crtc->overlay;
1912                 mutex_lock(&overlay->dev->struct_mutex);
1913                 for (;;) {
1914                         ret = intel_overlay_switch_off(overlay);
1915                         if (ret == 0)
1916                                 break;
1917
1918                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
1919                         if (ret != 0) {
1920                                 /* overlay doesn't react anymore. Usually
1921                                  * results in a black screen and an unkillable
1922                                  * X server. */
1923                                 BUG();
1924                                 overlay->hw_wedged = HW_WEDGED;
1925                                 break;
1926                         }
1927                 }
1928                 mutex_unlock(&overlay->dev->struct_mutex);
1929         }
1930         /* Let userspace switch the overlay on again. In most cases userspace
1931          * has to recompute where to put it anyway. */
1932
1933         return;
1934 }
1935
1936 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1937 {
1938         struct drm_device *dev = crtc->dev;
1939         struct drm_i915_private *dev_priv = dev->dev_private;
1940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1941         int pipe = intel_crtc->pipe;
1942         int plane = intel_crtc->plane;
1943         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1944         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1945         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1946         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1947         u32 temp;
1948
1949         /* XXX: When our outputs are all unaware of DPMS modes other than off
1950          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1951          */
1952         switch (mode) {
1953         case DRM_MODE_DPMS_ON:
1954         case DRM_MODE_DPMS_STANDBY:
1955         case DRM_MODE_DPMS_SUSPEND:
1956                 intel_update_watermarks(dev);
1957
1958                 /* Enable the DPLL */
1959                 temp = I915_READ(dpll_reg);
1960                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1961                         I915_WRITE(dpll_reg, temp);
1962                         I915_READ(dpll_reg);
1963                         /* Wait for the clocks to stabilize. */
1964                         udelay(150);
1965                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1966                         I915_READ(dpll_reg);
1967                         /* Wait for the clocks to stabilize. */
1968                         udelay(150);
1969                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1970                         I915_READ(dpll_reg);
1971                         /* Wait for the clocks to stabilize. */
1972                         udelay(150);
1973                 }
1974
1975                 /* Enable the pipe */
1976                 temp = I915_READ(pipeconf_reg);
1977                 if ((temp & PIPEACONF_ENABLE) == 0)
1978                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1979
1980                 /* Enable the plane */
1981                 temp = I915_READ(dspcntr_reg);
1982                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1983                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1984                         /* Flush the plane changes */
1985                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1986                 }
1987
1988                 intel_crtc_load_lut(crtc);
1989
1990                 if ((IS_I965G(dev) || plane == 0))
1991                         intel_update_fbc(crtc, &crtc->mode);
1992
1993                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1994                 intel_crtc_dpms_overlay(intel_crtc, true);
1995         break;
1996         case DRM_MODE_DPMS_OFF:
1997                 intel_update_watermarks(dev);
1998
1999                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2000                 intel_crtc_dpms_overlay(intel_crtc, false);
2001                 drm_vblank_off(dev, pipe);
2002
2003                 if (dev_priv->cfb_plane == plane &&
2004                     dev_priv->display.disable_fbc)
2005                         dev_priv->display.disable_fbc(dev);
2006
2007                 /* Disable the VGA plane that we never use */
2008                 i915_disable_vga(dev);
2009
2010                 /* Disable display plane */
2011                 temp = I915_READ(dspcntr_reg);
2012                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2013                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2014                         /* Flush the plane changes */
2015                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2016                         I915_READ(dspbase_reg);
2017                 }
2018
2019                 if (!IS_I9XX(dev)) {
2020                         /* Wait for vblank for the disable to take effect */
2021                         intel_wait_for_vblank(dev);
2022                 }
2023
2024                 /* Next, disable display pipes */
2025                 temp = I915_READ(pipeconf_reg);
2026                 if ((temp & PIPEACONF_ENABLE) != 0) {
2027                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2028                         I915_READ(pipeconf_reg);
2029                 }
2030
2031                 /* Wait for vblank for the disable to take effect. */
2032                 intel_wait_for_vblank(dev);
2033
2034                 temp = I915_READ(dpll_reg);
2035                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2036                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2037                         I915_READ(dpll_reg);
2038                 }
2039
2040                 /* Wait for the clocks to turn off. */
2041                 udelay(150);
2042                 break;
2043         }
2044 }
2045
2046 /**
2047  * Sets the power management mode of the pipe and plane.
2048  *
2049  * This code should probably grow support for turning the cursor off and back
2050  * on appropriately at the same time as we're turning the pipe off/on.
2051  */
2052 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2053 {
2054         struct drm_device *dev = crtc->dev;
2055         struct drm_i915_private *dev_priv = dev->dev_private;
2056         struct drm_i915_master_private *master_priv;
2057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2058         int pipe = intel_crtc->pipe;
2059         bool enabled;
2060
2061         dev_priv->display.dpms(crtc, mode);
2062
2063         intel_crtc->dpms_mode = mode;
2064
2065         if (!dev->primary->master)
2066                 return;
2067
2068         master_priv = dev->primary->master->driver_priv;
2069         if (!master_priv->sarea_priv)
2070                 return;
2071
2072         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2073
2074         switch (pipe) {
2075         case 0:
2076                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2077                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2078                 break;
2079         case 1:
2080                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2081                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2082                 break;
2083         default:
2084                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2085                 break;
2086         }
2087 }
2088
2089 static void intel_crtc_prepare (struct drm_crtc *crtc)
2090 {
2091         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2092         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2093 }
2094
2095 static void intel_crtc_commit (struct drm_crtc *crtc)
2096 {
2097         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2098         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2099 }
2100
2101 void intel_encoder_prepare (struct drm_encoder *encoder)
2102 {
2103         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2104         /* lvds has its own version of prepare see intel_lvds_prepare */
2105         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2106 }
2107
2108 void intel_encoder_commit (struct drm_encoder *encoder)
2109 {
2110         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2111         /* lvds has its own version of commit see intel_lvds_commit */
2112         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2113 }
2114
2115 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2116                                   struct drm_display_mode *mode,
2117                                   struct drm_display_mode *adjusted_mode)
2118 {
2119         struct drm_device *dev = crtc->dev;
2120         if (HAS_PCH_SPLIT(dev)) {
2121                 /* FDI link clock is fixed at 2.7G */
2122                 if (mode->clock * 3 > 27000 * 4)
2123                         return MODE_CLOCK_HIGH;
2124         }
2125         return true;
2126 }
2127
2128 static int i945_get_display_clock_speed(struct drm_device *dev)
2129 {
2130         return 400000;
2131 }
2132
2133 static int i915_get_display_clock_speed(struct drm_device *dev)
2134 {
2135         return 333000;
2136 }
2137
2138 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2139 {
2140         return 200000;
2141 }
2142
2143 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2144 {
2145         u16 gcfgc = 0;
2146
2147         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2148
2149         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2150                 return 133000;
2151         else {
2152                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2153                 case GC_DISPLAY_CLOCK_333_MHZ:
2154                         return 333000;
2155                 default:
2156                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2157                         return 190000;
2158                 }
2159         }
2160 }
2161
2162 static int i865_get_display_clock_speed(struct drm_device *dev)
2163 {
2164         return 266000;
2165 }
2166
2167 static int i855_get_display_clock_speed(struct drm_device *dev)
2168 {
2169         u16 hpllcc = 0;
2170         /* Assume that the hardware is in the high speed state.  This
2171          * should be the default.
2172          */
2173         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2174         case GC_CLOCK_133_200:
2175         case GC_CLOCK_100_200:
2176                 return 200000;
2177         case GC_CLOCK_166_250:
2178                 return 250000;
2179         case GC_CLOCK_100_133:
2180                 return 133000;
2181         }
2182
2183         /* Shouldn't happen */
2184         return 0;
2185 }
2186
2187 static int i830_get_display_clock_speed(struct drm_device *dev)
2188 {
2189         return 133000;
2190 }
2191
2192 /**
2193  * Return the pipe currently connected to the panel fitter,
2194  * or -1 if the panel fitter is not present or not in use
2195  */
2196 int intel_panel_fitter_pipe (struct drm_device *dev)
2197 {
2198         struct drm_i915_private *dev_priv = dev->dev_private;
2199         u32  pfit_control;
2200
2201         /* i830 doesn't have a panel fitter */
2202         if (IS_I830(dev))
2203                 return -1;
2204
2205         pfit_control = I915_READ(PFIT_CONTROL);
2206
2207         /* See if the panel fitter is in use */
2208         if ((pfit_control & PFIT_ENABLE) == 0)
2209                 return -1;
2210
2211         /* 965 can place panel fitter on either pipe */
2212         if (IS_I965G(dev))
2213                 return (pfit_control >> 29) & 0x3;
2214
2215         /* older chips can only use pipe 1 */
2216         return 1;
2217 }
2218
2219 struct fdi_m_n {
2220         u32        tu;
2221         u32        gmch_m;
2222         u32        gmch_n;
2223         u32        link_m;
2224         u32        link_n;
2225 };
2226
2227 static void
2228 fdi_reduce_ratio(u32 *num, u32 *den)
2229 {
2230         while (*num > 0xffffff || *den > 0xffffff) {
2231                 *num >>= 1;
2232                 *den >>= 1;
2233         }
2234 }
2235
2236 #define DATA_N 0x800000
2237 #define LINK_N 0x80000
2238
2239 static void
2240 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2241                      int link_clock, struct fdi_m_n *m_n)
2242 {
2243         u64 temp;
2244
2245         m_n->tu = 64; /* default size */
2246
2247         temp = (u64) DATA_N * pixel_clock;
2248         temp = div_u64(temp, link_clock);
2249         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2250         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2251         m_n->gmch_n = DATA_N;
2252         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2253
2254         temp = (u64) LINK_N * pixel_clock;
2255         m_n->link_m = div_u64(temp, link_clock);
2256         m_n->link_n = LINK_N;
2257         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2258 }
2259
2260
2261 struct intel_watermark_params {
2262         unsigned long fifo_size;
2263         unsigned long max_wm;
2264         unsigned long default_wm;
2265         unsigned long guard_size;
2266         unsigned long cacheline_size;
2267 };
2268
2269 /* Pineview has different values for various configs */
2270 static struct intel_watermark_params pineview_display_wm = {
2271         PINEVIEW_DISPLAY_FIFO,
2272         PINEVIEW_MAX_WM,
2273         PINEVIEW_DFT_WM,
2274         PINEVIEW_GUARD_WM,
2275         PINEVIEW_FIFO_LINE_SIZE
2276 };
2277 static struct intel_watermark_params pineview_display_hplloff_wm = {
2278         PINEVIEW_DISPLAY_FIFO,
2279         PINEVIEW_MAX_WM,
2280         PINEVIEW_DFT_HPLLOFF_WM,
2281         PINEVIEW_GUARD_WM,
2282         PINEVIEW_FIFO_LINE_SIZE
2283 };
2284 static struct intel_watermark_params pineview_cursor_wm = {
2285         PINEVIEW_CURSOR_FIFO,
2286         PINEVIEW_CURSOR_MAX_WM,
2287         PINEVIEW_CURSOR_DFT_WM,
2288         PINEVIEW_CURSOR_GUARD_WM,
2289         PINEVIEW_FIFO_LINE_SIZE,
2290 };
2291 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2292         PINEVIEW_CURSOR_FIFO,
2293         PINEVIEW_CURSOR_MAX_WM,
2294         PINEVIEW_CURSOR_DFT_WM,
2295         PINEVIEW_CURSOR_GUARD_WM,
2296         PINEVIEW_FIFO_LINE_SIZE
2297 };
2298 static struct intel_watermark_params g4x_wm_info = {
2299         G4X_FIFO_SIZE,
2300         G4X_MAX_WM,
2301         G4X_MAX_WM,
2302         2,
2303         G4X_FIFO_LINE_SIZE,
2304 };
2305 static struct intel_watermark_params i945_wm_info = {
2306         I945_FIFO_SIZE,
2307         I915_MAX_WM,
2308         1,
2309         2,
2310         I915_FIFO_LINE_SIZE
2311 };
2312 static struct intel_watermark_params i915_wm_info = {
2313         I915_FIFO_SIZE,
2314         I915_MAX_WM,
2315         1,
2316         2,
2317         I915_FIFO_LINE_SIZE
2318 };
2319 static struct intel_watermark_params i855_wm_info = {
2320         I855GM_FIFO_SIZE,
2321         I915_MAX_WM,
2322         1,
2323         2,
2324         I830_FIFO_LINE_SIZE
2325 };
2326 static struct intel_watermark_params i830_wm_info = {
2327         I830_FIFO_SIZE,
2328         I915_MAX_WM,
2329         1,
2330         2,
2331         I830_FIFO_LINE_SIZE
2332 };
2333
2334 /**
2335  * intel_calculate_wm - calculate watermark level
2336  * @clock_in_khz: pixel clock
2337  * @wm: chip FIFO params
2338  * @pixel_size: display pixel size
2339  * @latency_ns: memory latency for the platform
2340  *
2341  * Calculate the watermark level (the level at which the display plane will
2342  * start fetching from memory again).  Each chip has a different display
2343  * FIFO size and allocation, so the caller needs to figure that out and pass
2344  * in the correct intel_watermark_params structure.
2345  *
2346  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2347  * on the pixel size.  When it reaches the watermark level, it'll start
2348  * fetching FIFO line sized based chunks from memory until the FIFO fills
2349  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2350  * will occur, and a display engine hang could result.
2351  */
2352 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2353                                         struct intel_watermark_params *wm,
2354                                         int pixel_size,
2355                                         unsigned long latency_ns)
2356 {
2357         long entries_required, wm_size;
2358
2359         /*
2360          * Note: we need to make sure we don't overflow for various clock &
2361          * latency values.
2362          * clocks go from a few thousand to several hundred thousand.
2363          * latency is usually a few thousand
2364          */
2365         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2366                 1000;
2367         entries_required /= wm->cacheline_size;
2368
2369         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2370
2371         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2372
2373         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2374
2375         /* Don't promote wm_size to unsigned... */
2376         if (wm_size > (long)wm->max_wm)
2377                 wm_size = wm->max_wm;
2378         if (wm_size <= 0)
2379                 wm_size = wm->default_wm;
2380         return wm_size;
2381 }
2382
2383 struct cxsr_latency {
2384         int is_desktop;
2385         unsigned long fsb_freq;
2386         unsigned long mem_freq;
2387         unsigned long display_sr;
2388         unsigned long display_hpll_disable;
2389         unsigned long cursor_sr;
2390         unsigned long cursor_hpll_disable;
2391 };
2392
2393 static struct cxsr_latency cxsr_latency_table[] = {
2394         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2395         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2396         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2397
2398         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2399         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2400         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2401
2402         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2403         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2404         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2405
2406         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2407         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2408         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2409
2410         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2411         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2412         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2413
2414         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2415         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2416         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2417 };
2418
2419 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2420                                                    int mem)
2421 {
2422         int i;
2423         struct cxsr_latency *latency;
2424
2425         if (fsb == 0 || mem == 0)
2426                 return NULL;
2427
2428         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2429                 latency = &cxsr_latency_table[i];
2430                 if (is_desktop == latency->is_desktop &&
2431                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2432                         return latency;
2433         }
2434
2435         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2436
2437         return NULL;
2438 }
2439
2440 static void pineview_disable_cxsr(struct drm_device *dev)
2441 {
2442         struct drm_i915_private *dev_priv = dev->dev_private;
2443         u32 reg;
2444
2445         /* deactivate cxsr */
2446         reg = I915_READ(DSPFW3);
2447         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2448         I915_WRITE(DSPFW3, reg);
2449         DRM_INFO("Big FIFO is disabled\n");
2450 }
2451
2452 static void pineview_enable_cxsr(struct drm_device *dev, unsigned long clock,
2453                                  int pixel_size)
2454 {
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456         u32 reg;
2457         unsigned long wm;
2458         struct cxsr_latency *latency;
2459
2460         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2461                 dev_priv->mem_freq);
2462         if (!latency) {
2463                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2464                 pineview_disable_cxsr(dev);
2465                 return;
2466         }
2467
2468         /* Display SR */
2469         wm = intel_calculate_wm(clock, &pineview_display_wm, pixel_size,
2470                                 latency->display_sr);
2471         reg = I915_READ(DSPFW1);
2472         reg &= 0x7fffff;
2473         reg |= wm << 23;
2474         I915_WRITE(DSPFW1, reg);
2475         DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2476
2477         /* cursor SR */
2478         wm = intel_calculate_wm(clock, &pineview_cursor_wm, pixel_size,
2479                                 latency->cursor_sr);
2480         reg = I915_READ(DSPFW3);
2481         reg &= ~(0x3f << 24);
2482         reg |= (wm & 0x3f) << 24;
2483         I915_WRITE(DSPFW3, reg);
2484
2485         /* Display HPLL off SR */
2486         wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
2487                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2488         reg = I915_READ(DSPFW3);
2489         reg &= 0xfffffe00;
2490         reg |= wm & 0x1ff;
2491         I915_WRITE(DSPFW3, reg);
2492
2493         /* cursor HPLL off SR */
2494         wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pixel_size,
2495                                 latency->cursor_hpll_disable);
2496         reg = I915_READ(DSPFW3);
2497         reg &= ~(0x3f << 16);
2498         reg |= (wm & 0x3f) << 16;
2499         I915_WRITE(DSPFW3, reg);
2500         DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2501
2502         /* activate cxsr */
2503         reg = I915_READ(DSPFW3);
2504         reg |= PINEVIEW_SELF_REFRESH_EN;
2505         I915_WRITE(DSPFW3, reg);
2506
2507         DRM_INFO("Big FIFO is enabled\n");
2508
2509         return;
2510 }
2511
2512 /*
2513  * Latency for FIFO fetches is dependent on several factors:
2514  *   - memory configuration (speed, channels)
2515  *   - chipset
2516  *   - current MCH state
2517  * It can be fairly high in some situations, so here we assume a fairly
2518  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2519  * set this value too high, the FIFO will fetch frequently to stay full)
2520  * and power consumption (set it too low to save power and we might see
2521  * FIFO underruns and display "flicker").
2522  *
2523  * A value of 5us seems to be a good balance; safe for very low end
2524  * platforms but not overly aggressive on lower latency configs.
2525  */
2526 static const int latency_ns = 5000;
2527
2528 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2529 {
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         uint32_t dsparb = I915_READ(DSPARB);
2532         int size;
2533
2534         if (plane == 0)
2535                 size = dsparb & 0x7f;
2536         else
2537                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2538                         (dsparb & 0x7f);
2539
2540         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2541                         plane ? "B" : "A", size);
2542
2543         return size;
2544 }
2545
2546 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2547 {
2548         struct drm_i915_private *dev_priv = dev->dev_private;
2549         uint32_t dsparb = I915_READ(DSPARB);
2550         int size;
2551
2552         if (plane == 0)
2553                 size = dsparb & 0x1ff;
2554         else
2555                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2556                         (dsparb & 0x1ff);
2557         size >>= 1; /* Convert to cachelines */
2558
2559         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2560                         plane ? "B" : "A", size);
2561
2562         return size;
2563 }
2564
2565 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2566 {
2567         struct drm_i915_private *dev_priv = dev->dev_private;
2568         uint32_t dsparb = I915_READ(DSPARB);
2569         int size;
2570
2571         size = dsparb & 0x7f;
2572         size >>= 2; /* Convert to cachelines */
2573
2574         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2575                         plane ? "B" : "A",
2576                   size);
2577
2578         return size;
2579 }
2580
2581 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2582 {
2583         struct drm_i915_private *dev_priv = dev->dev_private;
2584         uint32_t dsparb = I915_READ(DSPARB);
2585         int size;
2586
2587         size = dsparb & 0x7f;
2588         size >>= 1; /* Convert to cachelines */
2589
2590         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2591                         plane ? "B" : "A", size);
2592
2593         return size;
2594 }
2595
2596 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2597                           int planeb_clock, int sr_hdisplay, int pixel_size)
2598 {
2599         struct drm_i915_private *dev_priv = dev->dev_private;
2600         int total_size, cacheline_size;
2601         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2602         struct intel_watermark_params planea_params, planeb_params;
2603         unsigned long line_time_us;
2604         int sr_clock, sr_entries = 0, entries_required;
2605
2606         /* Create copies of the base settings for each pipe */
2607         planea_params = planeb_params = g4x_wm_info;
2608
2609         /* Grab a couple of global values before we overwrite them */
2610         total_size = planea_params.fifo_size;
2611         cacheline_size = planea_params.cacheline_size;
2612
2613         /*
2614          * Note: we need to make sure we don't overflow for various clock &
2615          * latency values.
2616          * clocks go from a few thousand to several hundred thousand.
2617          * latency is usually a few thousand
2618          */
2619         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2620                 1000;
2621         entries_required /= G4X_FIFO_LINE_SIZE;
2622         planea_wm = entries_required + planea_params.guard_size;
2623
2624         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2625                 1000;
2626         entries_required /= G4X_FIFO_LINE_SIZE;
2627         planeb_wm = entries_required + planeb_params.guard_size;
2628
2629         cursora_wm = cursorb_wm = 16;
2630         cursor_sr = 32;
2631
2632         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2633
2634         /* Calc sr entries for one plane configs */
2635         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2636                 /* self-refresh has much higher latency */
2637                 static const int sr_latency_ns = 12000;
2638
2639                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2640                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2641
2642                 /* Use ns/us then divide to preserve precision */
2643                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2644                               pixel_size * sr_hdisplay) / 1000;
2645                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2646                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2647                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2648         } else {
2649                 /* Turn off self refresh if both pipes are enabled */
2650                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2651                                         & ~FW_BLC_SELF_EN);
2652         }
2653
2654         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2655                   planea_wm, planeb_wm, sr_entries);
2656
2657         planea_wm &= 0x3f;
2658         planeb_wm &= 0x3f;
2659
2660         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2661                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2662                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2663         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2664                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2665         /* HPLL off in SR has some issues on G4x... disable it */
2666         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2667                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2668 }
2669
2670 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2671                            int planeb_clock, int sr_hdisplay, int pixel_size)
2672 {
2673         struct drm_i915_private *dev_priv = dev->dev_private;
2674         unsigned long line_time_us;
2675         int sr_clock, sr_entries, srwm = 1;
2676
2677         /* Calc sr entries for one plane configs */
2678         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2679                 /* self-refresh has much higher latency */
2680                 static const int sr_latency_ns = 12000;
2681
2682                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2683                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2684
2685                 /* Use ns/us then divide to preserve precision */
2686                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2687                               pixel_size * sr_hdisplay) / 1000;
2688                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2689                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2690                 srwm = I945_FIFO_SIZE - sr_entries;
2691                 if (srwm < 0)
2692                         srwm = 1;
2693                 srwm &= 0x3f;
2694                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2695         } else {
2696                 /* Turn off self refresh if both pipes are enabled */
2697                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2698                                         & ~FW_BLC_SELF_EN);
2699         }
2700
2701         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2702                       srwm);
2703
2704         /* 965 has limitations... */
2705         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2706                    (8 << 0));
2707         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2708 }
2709
2710 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2711                            int planeb_clock, int sr_hdisplay, int pixel_size)
2712 {
2713         struct drm_i915_private *dev_priv = dev->dev_private;
2714         uint32_t fwater_lo;
2715         uint32_t fwater_hi;
2716         int total_size, cacheline_size, cwm, srwm = 1;
2717         int planea_wm, planeb_wm;
2718         struct intel_watermark_params planea_params, planeb_params;
2719         unsigned long line_time_us;
2720         int sr_clock, sr_entries = 0;
2721
2722         /* Create copies of the base settings for each pipe */
2723         if (IS_I965GM(dev) || IS_I945GM(dev))
2724                 planea_params = planeb_params = i945_wm_info;
2725         else if (IS_I9XX(dev))
2726                 planea_params = planeb_params = i915_wm_info;
2727         else
2728                 planea_params = planeb_params = i855_wm_info;
2729
2730         /* Grab a couple of global values before we overwrite them */
2731         total_size = planea_params.fifo_size;
2732         cacheline_size = planea_params.cacheline_size;
2733
2734         /* Update per-plane FIFO sizes */
2735         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2736         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2737
2738         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2739                                        pixel_size, latency_ns);
2740         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2741                                        pixel_size, latency_ns);
2742         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2743
2744         /*
2745          * Overlay gets an aggressive default since video jitter is bad.
2746          */
2747         cwm = 2;
2748
2749         /* Calc sr entries for one plane configs */
2750         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2751             (!planea_clock || !planeb_clock)) {
2752                 /* self-refresh has much higher latency */
2753                 static const int sr_latency_ns = 6000;
2754
2755                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2756                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2757
2758                 /* Use ns/us then divide to preserve precision */
2759                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2760                               pixel_size * sr_hdisplay) / 1000;
2761                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2762                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2763                 srwm = total_size - sr_entries;
2764                 if (srwm < 0)
2765                         srwm = 1;
2766
2767                 if (IS_I945G(dev) || IS_I945GM(dev))
2768                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2769                 else if (IS_I915GM(dev)) {
2770                         /* 915M has a smaller SRWM field */
2771                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2772                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
2773                 }
2774         } else {
2775                 /* Turn off self refresh if both pipes are enabled */
2776                 if (IS_I945G(dev) || IS_I945GM(dev)) {
2777                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2778                                    & ~FW_BLC_SELF_EN);
2779                 } else if (IS_I915GM(dev)) {
2780                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
2781                 }
2782         }
2783
2784         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2785                   planea_wm, planeb_wm, cwm, srwm);
2786
2787         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2788         fwater_hi = (cwm & 0x1f);
2789
2790         /* Set request length to 8 cachelines per fetch */
2791         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2792         fwater_hi = fwater_hi | (1 << 8);
2793
2794         I915_WRITE(FW_BLC, fwater_lo);
2795         I915_WRITE(FW_BLC2, fwater_hi);
2796 }
2797
2798 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2799                            int unused2, int pixel_size)
2800 {
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2803         int planea_wm;
2804
2805         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2806
2807         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2808                                        pixel_size, latency_ns);
2809         fwater_lo |= (3<<8) | planea_wm;
2810
2811         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2812
2813         I915_WRITE(FW_BLC, fwater_lo);
2814 }
2815
2816 /**
2817  * intel_update_watermarks - update FIFO watermark values based on current modes
2818  *
2819  * Calculate watermark values for the various WM regs based on current mode
2820  * and plane configuration.
2821  *
2822  * There are several cases to deal with here:
2823  *   - normal (i.e. non-self-refresh)
2824  *   - self-refresh (SR) mode
2825  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2826  *   - lines are small relative to FIFO size (buffer can hold more than 2
2827  *     lines), so need to account for TLB latency
2828  *
2829  *   The normal calculation is:
2830  *     watermark = dotclock * bytes per pixel * latency
2831  *   where latency is platform & configuration dependent (we assume pessimal
2832  *   values here).
2833  *
2834  *   The SR calculation is:
2835  *     watermark = (trunc(latency/line time)+1) * surface width *
2836  *       bytes per pixel
2837  *   where
2838  *     line time = htotal / dotclock
2839  *   and latency is assumed to be high, as above.
2840  *
2841  * The final value programmed to the register should always be rounded up,
2842  * and include an extra 2 entries to account for clock crossings.
2843  *
2844  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2845  * to set the non-SR watermarks to 8.
2846   */
2847 static void intel_update_watermarks(struct drm_device *dev)
2848 {
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         struct drm_crtc *crtc;
2851         struct intel_crtc *intel_crtc;
2852         int sr_hdisplay = 0;
2853         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2854         int enabled = 0, pixel_size = 0;
2855
2856         if (!dev_priv->display.update_wm)
2857                 return;
2858
2859         /* Get the clock config from both planes */
2860         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2861                 intel_crtc = to_intel_crtc(crtc);
2862                 if (crtc->enabled) {
2863                         enabled++;
2864                         if (intel_crtc->plane == 0) {
2865                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2866                                           intel_crtc->pipe, crtc->mode.clock);
2867                                 planea_clock = crtc->mode.clock;
2868                         } else {
2869                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2870                                           intel_crtc->pipe, crtc->mode.clock);
2871                                 planeb_clock = crtc->mode.clock;
2872                         }
2873                         sr_hdisplay = crtc->mode.hdisplay;
2874                         sr_clock = crtc->mode.clock;
2875                         if (crtc->fb)
2876                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2877                         else
2878                                 pixel_size = 4; /* by default */
2879                 }
2880         }
2881
2882         if (enabled <= 0)
2883                 return;
2884
2885         /* Single plane configs can enable self refresh */
2886         if (enabled == 1 && IS_PINEVIEW(dev))
2887                 pineview_enable_cxsr(dev, sr_clock, pixel_size);
2888         else if (IS_PINEVIEW(dev))
2889                 pineview_disable_cxsr(dev);
2890
2891         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2892                                     sr_hdisplay, pixel_size);
2893 }
2894
2895 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2896                                struct drm_display_mode *mode,
2897                                struct drm_display_mode *adjusted_mode,
2898                                int x, int y,
2899                                struct drm_framebuffer *old_fb)
2900 {
2901         struct drm_device *dev = crtc->dev;
2902         struct drm_i915_private *dev_priv = dev->dev_private;
2903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2904         int pipe = intel_crtc->pipe;
2905         int plane = intel_crtc->plane;
2906         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2907         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2908         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2909         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2910         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2911         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2912         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2913         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2914         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2915         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2916         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2917         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2918         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2919         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2920         int refclk, num_connectors = 0;
2921         intel_clock_t clock, reduced_clock;
2922         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2923         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2924         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2925         bool is_edp = false;
2926         struct drm_mode_config *mode_config = &dev->mode_config;
2927         struct drm_connector *connector;
2928         const intel_limit_t *limit;
2929         int ret;
2930         struct fdi_m_n m_n = {0};
2931         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2932         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2933         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2934         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2935         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2936         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2937         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2938         int lvds_reg = LVDS;
2939         u32 temp;
2940         int sdvo_pixel_multiply;
2941         int target_clock;
2942
2943         drm_vblank_pre_modeset(dev, pipe);
2944
2945         list_for_each_entry(connector, &mode_config->connector_list, head) {
2946                 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
2947
2948                 if (!connector->encoder || connector->encoder->crtc != crtc)
2949                         continue;
2950
2951                 switch (intel_encoder->type) {
2952                 case INTEL_OUTPUT_LVDS:
2953                         is_lvds = true;
2954                         break;
2955                 case INTEL_OUTPUT_SDVO:
2956                 case INTEL_OUTPUT_HDMI:
2957                         is_sdvo = true;
2958                         if (intel_encoder->needs_tv_clock)
2959                                 is_tv = true;
2960                         break;
2961                 case INTEL_OUTPUT_DVO:
2962                         is_dvo = true;
2963                         break;
2964                 case INTEL_OUTPUT_TVOUT:
2965                         is_tv = true;
2966                         break;
2967                 case INTEL_OUTPUT_ANALOG:
2968                         is_crt = true;
2969                         break;
2970                 case INTEL_OUTPUT_DISPLAYPORT:
2971                         is_dp = true;
2972                         break;
2973                 case INTEL_OUTPUT_EDP:
2974                         is_edp = true;
2975                         break;
2976                 }
2977
2978                 num_connectors++;
2979         }
2980
2981         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
2982                 refclk = dev_priv->lvds_ssc_freq * 1000;
2983                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2984                                         refclk / 1000);
2985         } else if (IS_I9XX(dev)) {
2986                 refclk = 96000;
2987                 if (HAS_PCH_SPLIT(dev))
2988                         refclk = 120000; /* 120Mhz refclk */
2989         } else {
2990                 refclk = 48000;
2991         }
2992         
2993
2994         /*
2995          * Returns a set of divisors for the desired target clock with the given
2996          * refclk, or FALSE.  The returned values represent the clock equation:
2997          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2998          */
2999         limit = intel_limit(crtc);
3000         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3001         if (!ok) {
3002                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3003                 drm_vblank_post_modeset(dev, pipe);
3004                 return -EINVAL;
3005         }
3006
3007         if (is_lvds && dev_priv->lvds_downclock_avail) {
3008                 has_reduced_clock = limit->find_pll(limit, crtc,
3009                                                             dev_priv->lvds_downclock,
3010                                                             refclk,
3011                                                             &reduced_clock);
3012                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3013                         /*
3014                          * If the different P is found, it means that we can't
3015                          * switch the display clock by using the FP0/FP1.
3016                          * In such case we will disable the LVDS downclock
3017                          * feature.
3018                          */
3019                         DRM_DEBUG_KMS("Different P is found for "
3020                                                 "LVDS clock/downclock\n");
3021                         has_reduced_clock = 0;
3022                 }
3023         }
3024         /* SDVO TV has fixed PLL values depend on its clock range,
3025            this mirrors vbios setting. */
3026         if (is_sdvo && is_tv) {
3027                 if (adjusted_mode->clock >= 100000
3028                                 && adjusted_mode->clock < 140500) {
3029                         clock.p1 = 2;
3030                         clock.p2 = 10;
3031                         clock.n = 3;
3032                         clock.m1 = 16;
3033                         clock.m2 = 8;
3034                 } else if (adjusted_mode->clock >= 140500
3035                                 && adjusted_mode->clock <= 200000) {
3036                         clock.p1 = 1;
3037                         clock.p2 = 10;
3038                         clock.n = 6;
3039                         clock.m1 = 12;
3040                         clock.m2 = 8;
3041                 }
3042         }
3043
3044         /* FDI link */
3045         if (HAS_PCH_SPLIT(dev)) {
3046                 int lane, link_bw, bpp;
3047                 /* eDP doesn't require FDI link, so just set DP M/N
3048                    according to current link config */
3049                 if (is_edp) {
3050                         struct drm_connector *edp;
3051                         target_clock = mode->clock;
3052                         edp = intel_pipe_get_connector(crtc);
3053                         intel_edp_link_config(to_intel_encoder(edp),
3054                                         &lane, &link_bw);
3055                 } else {
3056                         /* DP over FDI requires target mode clock
3057                            instead of link clock */
3058                         if (is_dp)
3059                                 target_clock = mode->clock;
3060                         else
3061                                 target_clock = adjusted_mode->clock;
3062                         lane = 4;
3063                         link_bw = 270000;
3064                 }
3065
3066                 /* determine panel color depth */
3067                 temp = I915_READ(pipeconf_reg);
3068                 temp &= ~PIPE_BPC_MASK;
3069                 if (is_lvds) {
3070                         int lvds_reg = I915_READ(PCH_LVDS);
3071                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3072                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3073                                 temp |= PIPE_8BPC;
3074                         else
3075                                 temp |= PIPE_6BPC;
3076                 } else if (is_edp) {
3077                         switch (dev_priv->edp_bpp/3) {
3078                         case 8:
3079                                 temp |= PIPE_8BPC;
3080                                 break;
3081                         case 10:
3082                                 temp |= PIPE_10BPC;
3083                                 break;
3084                         case 6:
3085                                 temp |= PIPE_6BPC;
3086                                 break;
3087                         case 12:
3088                                 temp |= PIPE_12BPC;
3089                                 break;
3090                         }
3091                 } else
3092                         temp |= PIPE_8BPC;
3093                 I915_WRITE(pipeconf_reg, temp);
3094                 I915_READ(pipeconf_reg);
3095
3096                 switch (temp & PIPE_BPC_MASK) {
3097                 case PIPE_8BPC:
3098                         bpp = 24;
3099                         break;
3100                 case PIPE_10BPC:
3101                         bpp = 30;
3102                         break;
3103                 case PIPE_6BPC:
3104                         bpp = 18;
3105                         break;
3106                 case PIPE_12BPC:
3107                         bpp = 36;
3108                         break;
3109                 default:
3110                         DRM_ERROR("unknown pipe bpc value\n");
3111                         bpp = 24;
3112                 }
3113
3114                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3115         }
3116
3117         /* Ironlake: try to setup display ref clock before DPLL
3118          * enabling. This is only under driver's control after
3119          * PCH B stepping, previous chipset stepping should be
3120          * ignoring this setting.
3121          */
3122         if (HAS_PCH_SPLIT(dev)) {
3123                 temp = I915_READ(PCH_DREF_CONTROL);
3124                 /* Always enable nonspread source */
3125                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3126                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3127                 I915_WRITE(PCH_DREF_CONTROL, temp);
3128                 POSTING_READ(PCH_DREF_CONTROL);
3129
3130                 temp &= ~DREF_SSC_SOURCE_MASK;
3131                 temp |= DREF_SSC_SOURCE_ENABLE;
3132                 I915_WRITE(PCH_DREF_CONTROL, temp);
3133                 POSTING_READ(PCH_DREF_CONTROL);
3134
3135                 udelay(200);
3136
3137                 if (is_edp) {
3138                         if (dev_priv->lvds_use_ssc) {
3139                                 temp |= DREF_SSC1_ENABLE;
3140                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3141                                 POSTING_READ(PCH_DREF_CONTROL);
3142
3143                                 udelay(200);
3144
3145                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3146                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3147                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3148                                 POSTING_READ(PCH_DREF_CONTROL);
3149                         } else {
3150                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3151                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3152                                 POSTING_READ(PCH_DREF_CONTROL);
3153                         }
3154                 }
3155         }
3156
3157         if (IS_PINEVIEW(dev)) {
3158                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3159                 if (has_reduced_clock)
3160                         fp2 = (1 << reduced_clock.n) << 16 |
3161                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3162         } else {
3163                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3164                 if (has_reduced_clock)
3165                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3166                                 reduced_clock.m2;
3167         }
3168
3169         if (!HAS_PCH_SPLIT(dev))
3170                 dpll = DPLL_VGA_MODE_DIS;
3171
3172         if (IS_I9XX(dev)) {
3173                 if (is_lvds)
3174                         dpll |= DPLLB_MODE_LVDS;
3175                 else
3176                         dpll |= DPLLB_MODE_DAC_SERIAL;
3177                 if (is_sdvo) {
3178                         dpll |= DPLL_DVO_HIGH_SPEED;
3179                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3180                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3181                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3182                         else if (HAS_PCH_SPLIT(dev))
3183                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3184                 }
3185                 if (is_dp)
3186                         dpll |= DPLL_DVO_HIGH_SPEED;
3187
3188                 /* compute bitmask from p1 value */
3189                 if (IS_PINEVIEW(dev))
3190                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3191                 else {
3192                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3193                         /* also FPA1 */
3194                         if (HAS_PCH_SPLIT(dev))
3195                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3196                         if (IS_G4X(dev) && has_reduced_clock)
3197                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3198                 }
3199                 switch (clock.p2) {
3200                 case 5:
3201                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3202                         break;
3203                 case 7:
3204                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3205                         break;
3206                 case 10:
3207                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3208                         break;
3209                 case 14:
3210                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3211                         break;
3212                 }
3213                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3214                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3215         } else {
3216                 if (is_lvds) {
3217                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3218                 } else {
3219                         if (clock.p1 == 2)
3220                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3221                         else
3222                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3223                         if (clock.p2 == 4)
3224                                 dpll |= PLL_P2_DIVIDE_BY_4;
3225                 }
3226         }
3227
3228         if (is_sdvo && is_tv)
3229                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3230         else if (is_tv)
3231                 /* XXX: just matching BIOS for now */
3232                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3233                 dpll |= 3;
3234         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3235                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3236         else
3237                 dpll |= PLL_REF_INPUT_DREFCLK;
3238
3239         /* setup pipeconf */
3240         pipeconf = I915_READ(pipeconf_reg);
3241
3242         /* Set up the display plane register */
3243         dspcntr = DISPPLANE_GAMMA_ENABLE;
3244
3245         /* Ironlake's plane is forced to pipe, bit 24 is to
3246            enable color space conversion */
3247         if (!HAS_PCH_SPLIT(dev)) {
3248                 if (pipe == 0)
3249                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3250                 else
3251                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3252         }
3253
3254         if (pipe == 0 && !IS_I965G(dev)) {
3255                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3256                  * core speed.
3257                  *
3258                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3259                  * pipe == 0 check?
3260                  */
3261                 if (mode->clock >
3262                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3263                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3264                 else
3265                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3266         }
3267
3268         dspcntr |= DISPLAY_PLANE_ENABLE;
3269         pipeconf |= PIPEACONF_ENABLE;
3270         dpll |= DPLL_VCO_ENABLE;
3271
3272
3273         /* Disable the panel fitter if it was on our pipe */
3274         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3275                 I915_WRITE(PFIT_CONTROL, 0);
3276
3277         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3278         drm_mode_debug_printmodeline(mode);
3279
3280         /* assign to Ironlake registers */
3281         if (HAS_PCH_SPLIT(dev)) {
3282                 fp_reg = pch_fp_reg;
3283                 dpll_reg = pch_dpll_reg;
3284         }
3285
3286         if (is_edp) {
3287                 ironlake_disable_pll_edp(crtc);
3288         } else if ((dpll & DPLL_VCO_ENABLE)) {
3289                 I915_WRITE(fp_reg, fp);
3290                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3291                 I915_READ(dpll_reg);
3292                 udelay(150);
3293         }
3294
3295         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3296          * This is an exception to the general rule that mode_set doesn't turn
3297          * things on.
3298          */
3299         if (is_lvds) {
3300                 u32 lvds;
3301
3302                 if (HAS_PCH_SPLIT(dev))
3303                         lvds_reg = PCH_LVDS;
3304
3305                 lvds = I915_READ(lvds_reg);
3306                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3307                 /* set the corresponsding LVDS_BORDER bit */
3308                 lvds |= dev_priv->lvds_border_bits;
3309                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3310                  * set the DPLLs for dual-channel mode or not.
3311                  */
3312                 if (clock.p2 == 7)
3313                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3314                 else
3315                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3316
3317                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3318                  * appropriately here, but we need to look more thoroughly into how
3319                  * panels behave in the two modes.
3320                  */
3321                 /* set the dithering flag */
3322                 if (IS_I965G(dev)) {
3323                         if (dev_priv->lvds_dither) {
3324                                 if (HAS_PCH_SPLIT(dev))
3325                                         pipeconf |= PIPE_ENABLE_DITHER;
3326                                 else
3327                                         lvds |= LVDS_ENABLE_DITHER;
3328                         } else {
3329                                 if (HAS_PCH_SPLIT(dev))
3330                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3331                                 else
3332                                         lvds &= ~LVDS_ENABLE_DITHER;
3333                         }
3334                 }
3335                 I915_WRITE(lvds_reg, lvds);
3336                 I915_READ(lvds_reg);
3337         }
3338         if (is_dp)
3339                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3340
3341         if (!is_edp) {
3342                 I915_WRITE(fp_reg, fp);
3343                 I915_WRITE(dpll_reg, dpll);
3344                 I915_READ(dpll_reg);
3345                 /* Wait for the clocks to stabilize. */
3346                 udelay(150);
3347
3348                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3349                         if (is_sdvo) {
3350                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3351                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3352                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3353                         } else
3354                                 I915_WRITE(dpll_md_reg, 0);
3355                 } else {
3356                         /* write it again -- the BIOS does, after all */
3357                         I915_WRITE(dpll_reg, dpll);
3358                 }
3359                 I915_READ(dpll_reg);
3360                 /* Wait for the clocks to stabilize. */
3361                 udelay(150);
3362         }
3363
3364         if (is_lvds && has_reduced_clock && i915_powersave) {
3365                 I915_WRITE(fp_reg + 4, fp2);
3366                 intel_crtc->lowfreq_avail = true;
3367                 if (HAS_PIPE_CXSR(dev)) {
3368                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3369                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3370                 }
3371         } else {
3372                 I915_WRITE(fp_reg + 4, fp);
3373                 intel_crtc->lowfreq_avail = false;
3374                 if (HAS_PIPE_CXSR(dev)) {
3375                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3376                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3377                 }
3378         }
3379
3380         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3381                    ((adjusted_mode->crtc_htotal - 1) << 16));
3382         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3383                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3384         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3385                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3386         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3387                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3388         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3389                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3390         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3391                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3392         /* pipesrc and dspsize control the size that is scaled from, which should
3393          * always be the user's requested size.
3394          */
3395         if (!HAS_PCH_SPLIT(dev)) {
3396                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3397                                 (mode->hdisplay - 1));
3398                 I915_WRITE(dsppos_reg, 0);
3399         }
3400         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3401
3402         if (HAS_PCH_SPLIT(dev)) {
3403                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3404                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3405                 I915_WRITE(link_m1_reg, m_n.link_m);
3406                 I915_WRITE(link_n1_reg, m_n.link_n);
3407
3408                 if (is_edp) {
3409                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3410                 } else {
3411                         /* enable FDI RX PLL too */
3412                         temp = I915_READ(fdi_rx_reg);
3413                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3414                         udelay(200);
3415                 }
3416         }
3417
3418         I915_WRITE(pipeconf_reg, pipeconf);
3419         I915_READ(pipeconf_reg);
3420
3421         intel_wait_for_vblank(dev);
3422
3423         if (IS_IRONLAKE(dev)) {
3424                 /* enable address swizzle for tiling buffer */
3425                 temp = I915_READ(DISP_ARB_CTL);
3426                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3427         }
3428
3429         I915_WRITE(dspcntr_reg, dspcntr);
3430
3431         /* Flush the plane changes */
3432         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3433
3434         if ((IS_I965G(dev) || plane == 0))
3435                 intel_update_fbc(crtc, &crtc->mode);
3436
3437         intel_update_watermarks(dev);
3438
3439         drm_vblank_post_modeset(dev, pipe);
3440
3441         return ret;
3442 }
3443
3444 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3445 void intel_crtc_load_lut(struct drm_crtc *crtc)
3446 {
3447         struct drm_device *dev = crtc->dev;
3448         struct drm_i915_private *dev_priv = dev->dev_private;
3449         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3450         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3451         int i;
3452
3453         /* The clocks have to be on to load the palette. */
3454         if (!crtc->enabled)
3455                 return;
3456
3457         /* use legacy palette for Ironlake */
3458         if (HAS_PCH_SPLIT(dev))
3459                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3460                                                    LGC_PALETTE_B;
3461
3462         for (i = 0; i < 256; i++) {
3463                 I915_WRITE(palreg + 4 * i,
3464                            (intel_crtc->lut_r[i] << 16) |
3465                            (intel_crtc->lut_g[i] << 8) |
3466                            intel_crtc->lut_b[i]);
3467         }
3468 }
3469
3470 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3471                                  struct drm_file *file_priv,
3472                                  uint32_t handle,
3473                                  uint32_t width, uint32_t height)
3474 {
3475         struct drm_device *dev = crtc->dev;
3476         struct drm_i915_private *dev_priv = dev->dev_private;
3477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3478         struct drm_gem_object *bo;
3479         struct drm_i915_gem_object *obj_priv;
3480         int pipe = intel_crtc->pipe;
3481         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3482         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3483         uint32_t temp = I915_READ(control);
3484         size_t addr;
3485         int ret;
3486
3487         DRM_DEBUG_KMS("\n");
3488
3489         /* if we want to turn off the cursor ignore width and height */
3490         if (!handle) {
3491                 DRM_DEBUG_KMS("cursor off\n");
3492                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3493                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3494                         temp |= CURSOR_MODE_DISABLE;
3495                 } else {
3496                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3497                 }
3498                 addr = 0;
3499                 bo = NULL;
3500                 mutex_lock(&dev->struct_mutex);
3501                 goto finish;
3502         }
3503
3504         /* Currently we only support 64x64 cursors */
3505         if (width != 64 || height != 64) {
3506                 DRM_ERROR("we currently only support 64x64 cursors\n");
3507                 return -EINVAL;
3508         }
3509
3510         bo = drm_gem_object_lookup(dev, file_priv, handle);
3511         if (!bo)
3512                 return -ENOENT;
3513
3514         obj_priv = to_intel_bo(bo);
3515
3516         if (bo->size < width * height * 4) {
3517                 DRM_ERROR("buffer is to small\n");
3518                 ret = -ENOMEM;
3519                 goto fail;
3520         }
3521
3522         /* we only need to pin inside GTT if cursor is non-phy */
3523         mutex_lock(&dev->struct_mutex);
3524         if (!dev_priv->info->cursor_needs_physical) {
3525                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3526                 if (ret) {
3527                         DRM_ERROR("failed to pin cursor bo\n");
3528                         goto fail_locked;
3529                 }
3530                 addr = obj_priv->gtt_offset;
3531         } else {
3532                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3533                 if (ret) {
3534                         DRM_ERROR("failed to attach phys object\n");
3535                         goto fail_locked;
3536                 }
3537                 addr = obj_priv->phys_obj->handle->busaddr;
3538         }
3539
3540         if (!IS_I9XX(dev))
3541                 I915_WRITE(CURSIZE, (height << 12) | width);
3542
3543         /* Hooray for CUR*CNTR differences */
3544         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3545                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3546                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3547                 temp |= (pipe << 28); /* Connect to correct pipe */
3548         } else {
3549                 temp &= ~(CURSOR_FORMAT_MASK);
3550                 temp |= CURSOR_ENABLE;
3551                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3552         }
3553
3554  finish:
3555         I915_WRITE(control, temp);
3556         I915_WRITE(base, addr);
3557
3558         if (intel_crtc->cursor_bo) {
3559                 if (dev_priv->info->cursor_needs_physical) {
3560                         if (intel_crtc->cursor_bo != bo)
3561                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3562                 } else
3563                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3564                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3565         }
3566
3567         mutex_unlock(&dev->struct_mutex);
3568
3569         intel_crtc->cursor_addr = addr;
3570         intel_crtc->cursor_bo = bo;
3571
3572         return 0;
3573 fail_locked:
3574         mutex_unlock(&dev->struct_mutex);
3575 fail:
3576         drm_gem_object_unreference_unlocked(bo);
3577         return ret;
3578 }
3579
3580 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3581 {
3582         struct drm_device *dev = crtc->dev;
3583         struct drm_i915_private *dev_priv = dev->dev_private;
3584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3585         struct intel_framebuffer *intel_fb;
3586         int pipe = intel_crtc->pipe;
3587         uint32_t temp = 0;
3588         uint32_t adder;
3589
3590         if (crtc->fb) {
3591                 intel_fb = to_intel_framebuffer(crtc->fb);
3592                 intel_mark_busy(dev, intel_fb->obj);
3593         }
3594
3595         if (x < 0) {
3596                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3597                 x = -x;
3598         }
3599         if (y < 0) {
3600                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3601                 y = -y;
3602         }
3603
3604         temp |= x << CURSOR_X_SHIFT;
3605         temp |= y << CURSOR_Y_SHIFT;
3606
3607         adder = intel_crtc->cursor_addr;
3608         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3609         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3610
3611         return 0;
3612 }
3613
3614 /** Sets the color ramps on behalf of RandR */
3615 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3616                                  u16 blue, int regno)
3617 {
3618         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3619
3620         intel_crtc->lut_r[regno] = red >> 8;
3621         intel_crtc->lut_g[regno] = green >> 8;
3622         intel_crtc->lut_b[regno] = blue >> 8;
3623 }
3624
3625 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3626                              u16 *blue, int regno)
3627 {
3628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629
3630         *red = intel_crtc->lut_r[regno] << 8;
3631         *green = intel_crtc->lut_g[regno] << 8;
3632         *blue = intel_crtc->lut_b[regno] << 8;
3633 }
3634
3635 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3636                                  u16 *blue, uint32_t size)
3637 {
3638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3639         int i;
3640
3641         if (size != 256)
3642                 return;
3643
3644         for (i = 0; i < 256; i++) {
3645                 intel_crtc->lut_r[i] = red[i] >> 8;
3646                 intel_crtc->lut_g[i] = green[i] >> 8;
3647                 intel_crtc->lut_b[i] = blue[i] >> 8;
3648         }
3649
3650         intel_crtc_load_lut(crtc);
3651 }
3652
3653 /**
3654  * Get a pipe with a simple mode set on it for doing load-based monitor
3655  * detection.
3656  *
3657  * It will be up to the load-detect code to adjust the pipe as appropriate for
3658  * its requirements.  The pipe will be connected to no other encoders.
3659  *
3660  * Currently this code will only succeed if there is a pipe with no encoders
3661  * configured for it.  In the future, it could choose to temporarily disable
3662  * some outputs to free up a pipe for its use.
3663  *
3664  * \return crtc, or NULL if no pipes are available.
3665  */
3666
3667 /* VESA 640x480x72Hz mode to set on the pipe */
3668 static struct drm_display_mode load_detect_mode = {
3669         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3670                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3671 };
3672
3673 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
3674                                             struct drm_display_mode *mode,
3675                                             int *dpms_mode)
3676 {
3677         struct intel_crtc *intel_crtc;
3678         struct drm_crtc *possible_crtc;
3679         struct drm_crtc *supported_crtc =NULL;
3680         struct drm_encoder *encoder = &intel_encoder->enc;
3681         struct drm_crtc *crtc = NULL;
3682         struct drm_device *dev = encoder->dev;
3683         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3684         struct drm_crtc_helper_funcs *crtc_funcs;
3685         int i = -1;
3686
3687         /*
3688          * Algorithm gets a little messy:
3689          *   - if the connector already has an assigned crtc, use it (but make
3690          *     sure it's on first)
3691          *   - try to find the first unused crtc that can drive this connector,
3692          *     and use that if we find one
3693          *   - if there are no unused crtcs available, try to use the first
3694          *     one we found that supports the connector
3695          */
3696
3697         /* See if we already have a CRTC for this connector */
3698         if (encoder->crtc) {
3699                 crtc = encoder->crtc;
3700                 /* Make sure the crtc and connector are running */
3701                 intel_crtc = to_intel_crtc(crtc);
3702                 *dpms_mode = intel_crtc->dpms_mode;
3703                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3704                         crtc_funcs = crtc->helper_private;
3705                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3706                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3707                 }
3708                 return crtc;
3709         }
3710
3711         /* Find an unused one (if possible) */
3712         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3713                 i++;
3714                 if (!(encoder->possible_crtcs & (1 << i)))
3715                         continue;
3716                 if (!possible_crtc->enabled) {
3717                         crtc = possible_crtc;
3718                         break;
3719                 }
3720                 if (!supported_crtc)
3721                         supported_crtc = possible_crtc;
3722         }
3723
3724         /*
3725          * If we didn't find an unused CRTC, don't use any.
3726          */
3727         if (!crtc) {
3728                 return NULL;
3729         }
3730
3731         encoder->crtc = crtc;
3732         intel_encoder->base.encoder = encoder;
3733         intel_encoder->load_detect_temp = true;
3734
3735         intel_crtc = to_intel_crtc(crtc);
3736         *dpms_mode = intel_crtc->dpms_mode;
3737
3738         if (!crtc->enabled) {
3739                 if (!mode)
3740                         mode = &load_detect_mode;
3741                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3742         } else {
3743                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3744                         crtc_funcs = crtc->helper_private;
3745                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3746                 }
3747
3748                 /* Add this connector to the crtc */
3749                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3750                 encoder_funcs->commit(encoder);
3751         }
3752         /* let the connector get through one full cycle before testing */
3753         intel_wait_for_vblank(dev);
3754
3755         return crtc;
3756 }
3757
3758 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder, int dpms_mode)
3759 {
3760         struct drm_encoder *encoder = &intel_encoder->enc;
3761         struct drm_device *dev = encoder->dev;
3762         struct drm_crtc *crtc = encoder->crtc;
3763         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3764         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3765
3766         if (intel_encoder->load_detect_temp) {
3767                 encoder->crtc = NULL;
3768                 intel_encoder->base.encoder = NULL;
3769                 intel_encoder->load_detect_temp = false;
3770                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3771                 drm_helper_disable_unused_functions(dev);
3772         }
3773
3774         /* Switch crtc and encoder back off if necessary */
3775         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3776                 if (encoder->crtc == crtc)
3777                         encoder_funcs->dpms(encoder, dpms_mode);
3778                 crtc_funcs->dpms(crtc, dpms_mode);
3779         }
3780 }
3781
3782 /* Returns the clock of the currently programmed mode of the given pipe. */
3783 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3784 {
3785         struct drm_i915_private *dev_priv = dev->dev_private;
3786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3787         int pipe = intel_crtc->pipe;
3788         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3789         u32 fp;
3790         intel_clock_t clock;
3791
3792         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3793                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3794         else
3795                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3796
3797         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3798         if (IS_PINEVIEW(dev)) {
3799                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3800                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
3801         } else {
3802                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3803                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3804         }
3805
3806         if (IS_I9XX(dev)) {
3807                 if (IS_PINEVIEW(dev))
3808                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
3809                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
3810                 else
3811                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3812                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3813
3814                 switch (dpll & DPLL_MODE_MASK) {
3815                 case DPLLB_MODE_DAC_SERIAL:
3816                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3817                                 5 : 10;
3818                         break;
3819                 case DPLLB_MODE_LVDS:
3820                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3821                                 7 : 14;
3822                         break;
3823                 default:
3824                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3825                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3826                         return 0;
3827                 }
3828
3829                 /* XXX: Handle the 100Mhz refclk */
3830                 intel_clock(dev, 96000, &clock);
3831         } else {
3832                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3833
3834                 if (is_lvds) {
3835                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3836                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3837                         clock.p2 = 14;
3838
3839                         if ((dpll & PLL_REF_INPUT_MASK) ==
3840                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3841                                 /* XXX: might not be 66MHz */
3842                                 intel_clock(dev, 66000, &clock);
3843                         } else
3844                                 intel_clock(dev, 48000, &clock);
3845                 } else {
3846                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3847                                 clock.p1 = 2;
3848                         else {
3849                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3850                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3851                         }
3852                         if (dpll & PLL_P2_DIVIDE_BY_4)
3853                                 clock.p2 = 4;
3854                         else
3855                                 clock.p2 = 2;
3856
3857                         intel_clock(dev, 48000, &clock);
3858                 }
3859         }
3860
3861         /* XXX: It would be nice to validate the clocks, but we can't reuse
3862          * i830PllIsValid() because it relies on the xf86_config connector
3863          * configuration being accurate, which it isn't necessarily.
3864          */
3865
3866         return clock.dot;
3867 }
3868
3869 /** Returns the currently programmed mode of the given pipe. */
3870 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3871                                              struct drm_crtc *crtc)
3872 {
3873         struct drm_i915_private *dev_priv = dev->dev_private;
3874         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3875         int pipe = intel_crtc->pipe;
3876         struct drm_display_mode *mode;
3877         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3878         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3879         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3880         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3881
3882         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3883         if (!mode)
3884                 return NULL;
3885
3886         mode->clock = intel_crtc_clock_get(dev, crtc);
3887         mode->hdisplay = (htot & 0xffff) + 1;
3888         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3889         mode->hsync_start = (hsync & 0xffff) + 1;
3890         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3891         mode->vdisplay = (vtot & 0xffff) + 1;
3892         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3893         mode->vsync_start = (vsync & 0xffff) + 1;
3894         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3895
3896         drm_mode_set_name(mode);
3897         drm_mode_set_crtcinfo(mode, 0);
3898
3899         return mode;
3900 }
3901
3902 #define GPU_IDLE_TIMEOUT 500 /* ms */
3903
3904 /* When this timer fires, we've been idle for awhile */
3905 static void intel_gpu_idle_timer(unsigned long arg)
3906 {
3907         struct drm_device *dev = (struct drm_device *)arg;
3908         drm_i915_private_t *dev_priv = dev->dev_private;
3909
3910         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3911
3912         dev_priv->busy = false;
3913
3914         queue_work(dev_priv->wq, &dev_priv->idle_work);
3915 }
3916
3917 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3918
3919 static void intel_crtc_idle_timer(unsigned long arg)
3920 {
3921         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3922         struct drm_crtc *crtc = &intel_crtc->base;
3923         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3924
3925         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3926
3927         intel_crtc->busy = false;
3928
3929         queue_work(dev_priv->wq, &dev_priv->idle_work);
3930 }
3931
3932 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3933 {
3934         struct drm_device *dev = crtc->dev;
3935         drm_i915_private_t *dev_priv = dev->dev_private;
3936         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3937         int pipe = intel_crtc->pipe;
3938         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3939         int dpll = I915_READ(dpll_reg);
3940
3941         if (HAS_PCH_SPLIT(dev))
3942                 return;
3943
3944         if (!dev_priv->lvds_downclock_avail)
3945                 return;
3946
3947         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3948                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3949
3950                 /* Unlock panel regs */
3951                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3952
3953                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3954                 I915_WRITE(dpll_reg, dpll);
3955                 dpll = I915_READ(dpll_reg);
3956                 intel_wait_for_vblank(dev);
3957                 dpll = I915_READ(dpll_reg);
3958                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3959                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3960
3961                 /* ...and lock them again */
3962                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3963         }
3964
3965         /* Schedule downclock */
3966         if (schedule)
3967                 mod_timer(&intel_crtc->idle_timer, jiffies +
3968                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3969 }
3970
3971 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3972 {
3973         struct drm_device *dev = crtc->dev;
3974         drm_i915_private_t *dev_priv = dev->dev_private;
3975         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3976         int pipe = intel_crtc->pipe;
3977         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3978         int dpll = I915_READ(dpll_reg);
3979
3980         if (HAS_PCH_SPLIT(dev))
3981                 return;
3982
3983         if (!dev_priv->lvds_downclock_avail)
3984                 return;
3985
3986         /*
3987          * Since this is called by a timer, we should never get here in
3988          * the manual case.
3989          */
3990         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3991                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3992
3993                 /* Unlock panel regs */
3994                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3995
3996                 dpll |= DISPLAY_RATE_SELECT_FPA1;
3997                 I915_WRITE(dpll_reg, dpll);
3998                 dpll = I915_READ(dpll_reg);
3999                 intel_wait_for_vblank(dev);
4000                 dpll = I915_READ(dpll_reg);
4001                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4002                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4003
4004                 /* ...and lock them again */
4005                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4006         }
4007
4008 }
4009
4010 /**
4011  * intel_idle_update - adjust clocks for idleness
4012  * @work: work struct
4013  *
4014  * Either the GPU or display (or both) went idle.  Check the busy status
4015  * here and adjust the CRTC and GPU clocks as necessary.
4016  */
4017 static void intel_idle_update(struct work_struct *work)
4018 {
4019         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4020                                                     idle_work);
4021         struct drm_device *dev = dev_priv->dev;
4022         struct drm_crtc *crtc;
4023         struct intel_crtc *intel_crtc;
4024
4025         if (!i915_powersave)
4026                 return;
4027
4028         mutex_lock(&dev->struct_mutex);
4029
4030         if (IS_I945G(dev) || IS_I945GM(dev)) {
4031                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4032                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4033         }
4034
4035         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4036                 /* Skip inactive CRTCs */
4037                 if (!crtc->fb)
4038                         continue;
4039
4040                 intel_crtc = to_intel_crtc(crtc);
4041                 if (!intel_crtc->busy)
4042                         intel_decrease_pllclock(crtc);
4043         }
4044
4045         mutex_unlock(&dev->struct_mutex);
4046 }
4047
4048 /**
4049  * intel_mark_busy - mark the GPU and possibly the display busy
4050  * @dev: drm device
4051  * @obj: object we're operating on
4052  *
4053  * Callers can use this function to indicate that the GPU is busy processing
4054  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4055  * buffer), we'll also mark the display as busy, so we know to increase its
4056  * clock frequency.
4057  */
4058 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4059 {
4060         drm_i915_private_t *dev_priv = dev->dev_private;
4061         struct drm_crtc *crtc = NULL;
4062         struct intel_framebuffer *intel_fb;
4063         struct intel_crtc *intel_crtc;
4064
4065         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4066                 return;
4067
4068         if (!dev_priv->busy) {
4069                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4070                         u32 fw_blc_self;
4071
4072                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4073                         fw_blc_self = I915_READ(FW_BLC_SELF);
4074                         fw_blc_self &= ~FW_BLC_SELF_EN;
4075                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4076                 }
4077                 dev_priv->busy = true;
4078         } else
4079                 mod_timer(&dev_priv->idle_timer, jiffies +
4080                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4081
4082         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4083                 if (!crtc->fb)
4084                         continue;
4085
4086                 intel_crtc = to_intel_crtc(crtc);
4087                 intel_fb = to_intel_framebuffer(crtc->fb);
4088                 if (intel_fb->obj == obj) {
4089                         if (!intel_crtc->busy) {
4090                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4091                                         u32 fw_blc_self;
4092
4093                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4094                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4095                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4096                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4097                                 }
4098                                 /* Non-busy -> busy, upclock */
4099                                 intel_increase_pllclock(crtc, true);
4100                                 intel_crtc->busy = true;
4101                         } else {
4102                                 /* Busy -> busy, put off timer */
4103                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4104                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4105                         }
4106                 }
4107         }
4108 }
4109
4110 static void intel_crtc_destroy(struct drm_crtc *crtc)
4111 {
4112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4113
4114         drm_crtc_cleanup(crtc);
4115         kfree(intel_crtc);
4116 }
4117
4118 struct intel_unpin_work {
4119         struct work_struct work;
4120         struct drm_device *dev;
4121         struct drm_gem_object *old_fb_obj;
4122         struct drm_gem_object *pending_flip_obj;
4123         struct drm_pending_vblank_event *event;
4124         int pending;
4125 };
4126
4127 static void intel_unpin_work_fn(struct work_struct *__work)
4128 {
4129         struct intel_unpin_work *work =
4130                 container_of(__work, struct intel_unpin_work, work);
4131
4132         mutex_lock(&work->dev->struct_mutex);
4133         i915_gem_object_unpin(work->old_fb_obj);
4134         drm_gem_object_unreference(work->pending_flip_obj);
4135         drm_gem_object_unreference(work->old_fb_obj);
4136         mutex_unlock(&work->dev->struct_mutex);
4137         kfree(work);
4138 }
4139
4140 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4141 {
4142         drm_i915_private_t *dev_priv = dev->dev_private;
4143         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4144         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4145         struct intel_unpin_work *work;
4146         struct drm_i915_gem_object *obj_priv;
4147         struct drm_pending_vblank_event *e;
4148         struct timeval now;
4149         unsigned long flags;
4150
4151         /* Ignore early vblank irqs */
4152         if (intel_crtc == NULL)
4153                 return;
4154
4155         spin_lock_irqsave(&dev->event_lock, flags);
4156         work = intel_crtc->unpin_work;
4157         if (work == NULL || !work->pending) {
4158                 if (work && !work->pending) {
4159                         obj_priv = to_intel_bo(work->pending_flip_obj);
4160                         DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4161                                          obj_priv,
4162                                          atomic_read(&obj_priv->pending_flip));
4163                 }
4164                 spin_unlock_irqrestore(&dev->event_lock, flags);
4165                 return;
4166         }
4167
4168         intel_crtc->unpin_work = NULL;
4169         drm_vblank_put(dev, intel_crtc->pipe);
4170
4171         if (work->event) {
4172                 e = work->event;
4173                 do_gettimeofday(&now);
4174                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4175                 e->event.tv_sec = now.tv_sec;
4176                 e->event.tv_usec = now.tv_usec;
4177                 list_add_tail(&e->base.link,
4178                               &e->base.file_priv->event_list);
4179                 wake_up_interruptible(&e->base.file_priv->event_wait);
4180         }
4181
4182         spin_unlock_irqrestore(&dev->event_lock, flags);
4183
4184         obj_priv = to_intel_bo(work->pending_flip_obj);
4185
4186         /* Initial scanout buffer will have a 0 pending flip count */
4187         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4188             atomic_dec_and_test(&obj_priv->pending_flip))
4189                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4190         schedule_work(&work->work);
4191 }
4192
4193 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4194 {
4195         drm_i915_private_t *dev_priv = dev->dev_private;
4196         struct intel_crtc *intel_crtc =
4197                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4198         unsigned long flags;
4199
4200         spin_lock_irqsave(&dev->event_lock, flags);
4201         if (intel_crtc->unpin_work) {
4202                 intel_crtc->unpin_work->pending = 1;
4203         } else {
4204                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4205         }
4206         spin_unlock_irqrestore(&dev->event_lock, flags);
4207 }
4208
4209 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4210                                 struct drm_framebuffer *fb,
4211                                 struct drm_pending_vblank_event *event)
4212 {
4213         struct drm_device *dev = crtc->dev;
4214         struct drm_i915_private *dev_priv = dev->dev_private;
4215         struct intel_framebuffer *intel_fb;
4216         struct drm_i915_gem_object *obj_priv;
4217         struct drm_gem_object *obj;
4218         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4219         struct intel_unpin_work *work;
4220         unsigned long flags;
4221         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4222         int ret, pipesrc;
4223         RING_LOCALS;
4224
4225         work = kzalloc(sizeof *work, GFP_KERNEL);
4226         if (work == NULL)
4227                 return -ENOMEM;
4228
4229         mutex_lock(&dev->struct_mutex);
4230
4231         work->event = event;
4232         work->dev = crtc->dev;
4233         intel_fb = to_intel_framebuffer(crtc->fb);
4234         work->old_fb_obj = intel_fb->obj;
4235         INIT_WORK(&work->work, intel_unpin_work_fn);
4236
4237         /* We borrow the event spin lock for protecting unpin_work */
4238         spin_lock_irqsave(&dev->event_lock, flags);
4239         if (intel_crtc->unpin_work) {
4240                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4241                 spin_unlock_irqrestore(&dev->event_lock, flags);
4242                 kfree(work);
4243                 mutex_unlock(&dev->struct_mutex);
4244                 return -EBUSY;
4245         }
4246         intel_crtc->unpin_work = work;
4247         spin_unlock_irqrestore(&dev->event_lock, flags);
4248
4249         intel_fb = to_intel_framebuffer(fb);
4250         obj = intel_fb->obj;
4251
4252         ret = intel_pin_and_fence_fb_obj(dev, obj);
4253         if (ret != 0) {
4254                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4255                           to_intel_bo(obj));
4256                 kfree(work);
4257                 intel_crtc->unpin_work = NULL;
4258                 mutex_unlock(&dev->struct_mutex);
4259                 return ret;
4260         }
4261
4262         /* Reference the objects for the scheduled work. */
4263         drm_gem_object_reference(work->old_fb_obj);
4264         drm_gem_object_reference(obj);
4265
4266         crtc->fb = fb;
4267         i915_gem_object_flush_write_domain(obj);
4268         drm_vblank_get(dev, intel_crtc->pipe);
4269         obj_priv = to_intel_bo(obj);
4270         atomic_inc(&obj_priv->pending_flip);
4271         work->pending_flip_obj = obj;
4272
4273         BEGIN_LP_RING(4);
4274         OUT_RING(MI_DISPLAY_FLIP |
4275                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4276         OUT_RING(fb->pitch);
4277         if (IS_I965G(dev)) {
4278                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4279                 pipesrc = I915_READ(pipesrc_reg); 
4280                 OUT_RING(pipesrc & 0x0fff0fff);
4281         } else {
4282                 OUT_RING(obj_priv->gtt_offset);
4283                 OUT_RING(MI_NOOP);
4284         }
4285         ADVANCE_LP_RING();
4286
4287         mutex_unlock(&dev->struct_mutex);
4288
4289         return 0;
4290 }
4291
4292 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4293         .dpms = intel_crtc_dpms,
4294         .mode_fixup = intel_crtc_mode_fixup,
4295         .mode_set = intel_crtc_mode_set,
4296         .mode_set_base = intel_pipe_set_base,
4297         .prepare = intel_crtc_prepare,
4298         .commit = intel_crtc_commit,
4299         .load_lut = intel_crtc_load_lut,
4300 };
4301
4302 static const struct drm_crtc_funcs intel_crtc_funcs = {
4303         .cursor_set = intel_crtc_cursor_set,
4304         .cursor_move = intel_crtc_cursor_move,
4305         .gamma_set = intel_crtc_gamma_set,
4306         .set_config = drm_crtc_helper_set_config,
4307         .destroy = intel_crtc_destroy,
4308         .page_flip = intel_crtc_page_flip,
4309 };
4310
4311
4312 static void intel_crtc_init(struct drm_device *dev, int pipe)
4313 {
4314         drm_i915_private_t *dev_priv = dev->dev_private;
4315         struct intel_crtc *intel_crtc;
4316         int i;
4317
4318         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4319         if (intel_crtc == NULL)
4320                 return;
4321
4322         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4323
4324         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4325         intel_crtc->pipe = pipe;
4326         intel_crtc->plane = pipe;
4327         for (i = 0; i < 256; i++) {
4328                 intel_crtc->lut_r[i] = i;
4329                 intel_crtc->lut_g[i] = i;
4330                 intel_crtc->lut_b[i] = i;
4331         }
4332
4333         /* Swap pipes & planes for FBC on pre-965 */
4334         intel_crtc->pipe = pipe;
4335         intel_crtc->plane = pipe;
4336         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4337                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4338                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4339         }
4340
4341         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4342                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4343         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4344         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4345
4346         intel_crtc->cursor_addr = 0;
4347         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4348         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4349
4350         intel_crtc->busy = false;
4351
4352         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4353                     (unsigned long)intel_crtc);
4354 }
4355
4356 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4357                                 struct drm_file *file_priv)
4358 {
4359         drm_i915_private_t *dev_priv = dev->dev_private;
4360         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4361         struct drm_mode_object *drmmode_obj;
4362         struct intel_crtc *crtc;
4363
4364         if (!dev_priv) {
4365                 DRM_ERROR("called with no initialization\n");
4366                 return -EINVAL;
4367         }
4368
4369         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4370                         DRM_MODE_OBJECT_CRTC);
4371
4372         if (!drmmode_obj) {
4373                 DRM_ERROR("no such CRTC id\n");
4374                 return -EINVAL;
4375         }
4376
4377         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4378         pipe_from_crtc_id->pipe = crtc->pipe;
4379
4380         return 0;
4381 }
4382
4383 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4384 {
4385         struct drm_crtc *crtc = NULL;
4386
4387         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4388                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4389                 if (intel_crtc->pipe == pipe)
4390                         break;
4391         }
4392         return crtc;
4393 }
4394
4395 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4396 {
4397         int index_mask = 0;
4398         struct drm_connector *connector;
4399         int entry = 0;
4400
4401         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4402                 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
4403                 if (type_mask & intel_encoder->clone_mask)
4404                         index_mask |= (1 << entry);
4405                 entry++;
4406         }
4407         return index_mask;
4408 }
4409
4410
4411 static void intel_setup_outputs(struct drm_device *dev)
4412 {
4413         struct drm_i915_private *dev_priv = dev->dev_private;
4414         struct drm_connector *connector;
4415
4416         intel_crt_init(dev);
4417
4418         /* Set up integrated LVDS */
4419         if (IS_MOBILE(dev) && !IS_I830(dev))
4420                 intel_lvds_init(dev);
4421
4422         if (HAS_PCH_SPLIT(dev)) {
4423                 int found;
4424
4425                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4426                         intel_dp_init(dev, DP_A);
4427
4428                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4429                         /* check SDVOB */
4430                         /* found = intel_sdvo_init(dev, HDMIB); */
4431                         found = 0;
4432                         if (!found)
4433                                 intel_hdmi_init(dev, HDMIB);
4434                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4435                                 intel_dp_init(dev, PCH_DP_B);
4436                 }
4437
4438                 if (I915_READ(HDMIC) & PORT_DETECTED)
4439                         intel_hdmi_init(dev, HDMIC);
4440
4441                 if (I915_READ(HDMID) & PORT_DETECTED)
4442                         intel_hdmi_init(dev, HDMID);
4443
4444                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4445                         intel_dp_init(dev, PCH_DP_C);
4446
4447                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4448                         intel_dp_init(dev, PCH_DP_D);
4449
4450         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4451                 bool found = false;
4452
4453                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4454                         DRM_DEBUG_KMS("probing SDVOB\n");
4455                         found = intel_sdvo_init(dev, SDVOB);
4456                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4457                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4458                                 intel_hdmi_init(dev, SDVOB);
4459                         }
4460
4461                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4462                                 DRM_DEBUG_KMS("probing DP_B\n");
4463                                 intel_dp_init(dev, DP_B);
4464                         }
4465                 }
4466
4467                 /* Before G4X SDVOC doesn't have its own detect register */
4468
4469                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4470                         DRM_DEBUG_KMS("probing SDVOC\n");
4471                         found = intel_sdvo_init(dev, SDVOC);
4472                 }
4473
4474                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4475
4476                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4477                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4478                                 intel_hdmi_init(dev, SDVOC);
4479                         }
4480                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4481                                 DRM_DEBUG_KMS("probing DP_C\n");
4482                                 intel_dp_init(dev, DP_C);
4483                         }
4484                 }
4485
4486                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4487                     (I915_READ(DP_D) & DP_DETECTED)) {
4488                         DRM_DEBUG_KMS("probing DP_D\n");
4489                         intel_dp_init(dev, DP_D);
4490                 }
4491         } else if (IS_GEN2(dev))
4492                 intel_dvo_init(dev);
4493
4494         if (SUPPORTS_TV(dev))
4495                 intel_tv_init(dev);
4496
4497         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4498                 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
4499                 struct drm_encoder *encoder = &intel_encoder->enc;
4500
4501                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4502                 encoder->possible_clones = intel_connector_clones(dev,
4503                                                 intel_encoder->clone_mask);
4504         }
4505 }
4506
4507 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4508 {
4509         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4510         struct drm_device *dev = fb->dev;
4511
4512         if (fb->fbdev)
4513                 intelfb_remove(dev, fb);
4514
4515         drm_framebuffer_cleanup(fb);
4516         drm_gem_object_unreference_unlocked(intel_fb->obj);
4517
4518         kfree(intel_fb);
4519 }
4520
4521 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4522                                                 struct drm_file *file_priv,
4523                                                 unsigned int *handle)
4524 {
4525         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4526         struct drm_gem_object *object = intel_fb->obj;
4527
4528         return drm_gem_handle_create(file_priv, object, handle);
4529 }
4530
4531 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4532         .destroy = intel_user_framebuffer_destroy,
4533         .create_handle = intel_user_framebuffer_create_handle,
4534 };
4535
4536 int intel_framebuffer_create(struct drm_device *dev,
4537                              struct drm_mode_fb_cmd *mode_cmd,
4538                              struct drm_framebuffer **fb,
4539                              struct drm_gem_object *obj)
4540 {
4541         struct intel_framebuffer *intel_fb;
4542         int ret;
4543
4544         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4545         if (!intel_fb)
4546                 return -ENOMEM;
4547
4548         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4549         if (ret) {
4550                 DRM_ERROR("framebuffer init failed %d\n", ret);
4551                 return ret;
4552         }
4553
4554         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4555
4556         intel_fb->obj = obj;
4557
4558         *fb = &intel_fb->base;
4559
4560         return 0;
4561 }
4562
4563
4564 static struct drm_framebuffer *
4565 intel_user_framebuffer_create(struct drm_device *dev,
4566                               struct drm_file *filp,
4567                               struct drm_mode_fb_cmd *mode_cmd)
4568 {
4569         struct drm_gem_object *obj;
4570         struct drm_framebuffer *fb;
4571         int ret;
4572
4573         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4574         if (!obj)
4575                 return NULL;
4576
4577         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4578         if (ret) {
4579                 drm_gem_object_unreference_unlocked(obj);
4580                 return NULL;
4581         }
4582
4583         return fb;
4584 }
4585
4586 static const struct drm_mode_config_funcs intel_mode_funcs = {
4587         .fb_create = intel_user_framebuffer_create,
4588         .fb_changed = intelfb_probe,
4589 };
4590
4591 static struct drm_gem_object *
4592 intel_alloc_power_context(struct drm_device *dev)
4593 {
4594         struct drm_gem_object *pwrctx;
4595         int ret;
4596
4597         pwrctx = drm_gem_object_alloc(dev, 4096);
4598         if (!pwrctx) {
4599                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4600                 return NULL;
4601         }
4602
4603         mutex_lock(&dev->struct_mutex);
4604         ret = i915_gem_object_pin(pwrctx, 4096);
4605         if (ret) {
4606                 DRM_ERROR("failed to pin power context: %d\n", ret);
4607                 goto err_unref;
4608         }
4609
4610         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4611         if (ret) {
4612                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4613                 goto err_unpin;
4614         }
4615         mutex_unlock(&dev->struct_mutex);
4616
4617         return pwrctx;
4618
4619 err_unpin:
4620         i915_gem_object_unpin(pwrctx);
4621 err_unref:
4622         drm_gem_object_unreference(pwrctx);
4623         mutex_unlock(&dev->struct_mutex);
4624         return NULL;
4625 }
4626
4627 void ironlake_enable_drps(struct drm_device *dev)
4628 {
4629         struct drm_i915_private *dev_priv = dev->dev_private;
4630         u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl;
4631         u8 fmax, fmin, fstart, vstart;
4632         int i = 0;
4633
4634         /* 100ms RC evaluation intervals */
4635         I915_WRITE(RCUPEI, 100000);
4636         I915_WRITE(RCDNEI, 100000);
4637
4638         /* Set max/min thresholds to 90ms and 80ms respectively */
4639         I915_WRITE(RCBMAXAVG, 90000);
4640         I915_WRITE(RCBMINAVG, 80000);
4641
4642         I915_WRITE(MEMIHYST, 1);
4643
4644         /* Set up min, max, and cur for interrupt handling */
4645         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4646         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4647         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4648                 MEMMODE_FSTART_SHIFT;
4649         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4650                 PXVFREQ_PX_SHIFT;
4651
4652         dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */
4653         dev_priv->min_delay = fmin;
4654         dev_priv->cur_delay = fstart;
4655
4656         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4657
4658         /*
4659          * Interrupts will be enabled in ironlake_irq_postinstall
4660          */
4661
4662         I915_WRITE(VIDSTART, vstart);
4663         POSTING_READ(VIDSTART);
4664
4665         rgvmodectl |= MEMMODE_SWMODE_EN;
4666         I915_WRITE(MEMMODECTL, rgvmodectl);
4667
4668         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
4669                 if (i++ > 100) {
4670                         DRM_ERROR("stuck trying to change perf mode\n");
4671                         break;
4672                 }
4673                 msleep(1);
4674         }
4675         msleep(1);
4676
4677         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4678                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4679         I915_WRITE(MEMSWCTL, rgvswctl);
4680         POSTING_READ(MEMSWCTL);
4681
4682         rgvswctl |= MEMCTL_CMD_STS;
4683         I915_WRITE(MEMSWCTL, rgvswctl);
4684 }
4685
4686 void ironlake_disable_drps(struct drm_device *dev)
4687 {
4688         struct drm_i915_private *dev_priv = dev->dev_private;
4689         u32 rgvswctl;
4690         u8 fstart;
4691
4692         /* Ack interrupts, disable EFC interrupt */
4693         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4694         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4695         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4696         I915_WRITE(DEIIR, DE_PCU_EVENT);
4697         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4698
4699         /* Go back to the starting frequency */
4700         fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >>
4701                 MEMMODE_FSTART_SHIFT;
4702         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4703                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4704         I915_WRITE(MEMSWCTL, rgvswctl);
4705         msleep(1);
4706         rgvswctl |= MEMCTL_CMD_STS;
4707         I915_WRITE(MEMSWCTL, rgvswctl);
4708         msleep(1);
4709
4710 }
4711
4712 void intel_init_clock_gating(struct drm_device *dev)
4713 {
4714         struct drm_i915_private *dev_priv = dev->dev_private;
4715
4716         /*
4717          * Disable clock gating reported to work incorrectly according to the
4718          * specs, but enable as much else as we can.
4719          */
4720         if (HAS_PCH_SPLIT(dev)) {
4721                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
4722
4723                 if (IS_IRONLAKE(dev)) {
4724                         /* Required for FBC */
4725                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
4726                         /* Required for CxSR */
4727                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
4728
4729                         I915_WRITE(PCH_3DCGDIS0,
4730                                    MARIUNIT_CLOCK_GATE_DISABLE |
4731                                    SVSMUNIT_CLOCK_GATE_DISABLE);
4732                 }
4733
4734                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
4735                 return;
4736         } else if (IS_G4X(dev)) {
4737                 uint32_t dspclk_gate;
4738                 I915_WRITE(RENCLK_GATE_D1, 0);
4739                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4740                        GS_UNIT_CLOCK_GATE_DISABLE |
4741                        CL_UNIT_CLOCK_GATE_DISABLE);
4742                 I915_WRITE(RAMCLK_GATE_D, 0);
4743                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4744                         OVRUNIT_CLOCK_GATE_DISABLE |
4745                         OVCUNIT_CLOCK_GATE_DISABLE;
4746                 if (IS_GM45(dev))
4747                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4748                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4749         } else if (IS_I965GM(dev)) {
4750                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4751                 I915_WRITE(RENCLK_GATE_D2, 0);
4752                 I915_WRITE(DSPCLK_GATE_D, 0);
4753                 I915_WRITE(RAMCLK_GATE_D, 0);
4754                 I915_WRITE16(DEUC, 0);
4755         } else if (IS_I965G(dev)) {
4756                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4757                        I965_RCC_CLOCK_GATE_DISABLE |
4758                        I965_RCPB_CLOCK_GATE_DISABLE |
4759                        I965_ISC_CLOCK_GATE_DISABLE |
4760                        I965_FBC_CLOCK_GATE_DISABLE);
4761                 I915_WRITE(RENCLK_GATE_D2, 0);
4762         } else if (IS_I9XX(dev)) {
4763                 u32 dstate = I915_READ(D_STATE);
4764
4765                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4766                         DSTATE_DOT_CLOCK_GATING;
4767                 I915_WRITE(D_STATE, dstate);
4768         } else if (IS_I85X(dev) || IS_I865G(dev)) {
4769                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4770         } else if (IS_I830(dev)) {
4771                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4772         }
4773
4774         /*
4775          * GPU can automatically power down the render unit if given a page
4776          * to save state.
4777          */
4778         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
4779                 struct drm_i915_gem_object *obj_priv = NULL;
4780
4781                 if (dev_priv->pwrctx) {
4782                         obj_priv = to_intel_bo(dev_priv->pwrctx);
4783                 } else {
4784                         struct drm_gem_object *pwrctx;
4785
4786                         pwrctx = intel_alloc_power_context(dev);
4787                         if (pwrctx) {
4788                                 dev_priv->pwrctx = pwrctx;
4789                                 obj_priv = to_intel_bo(pwrctx);
4790                         }
4791                 }
4792
4793                 if (obj_priv) {
4794                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4795                         I915_WRITE(MCHBAR_RENDER_STANDBY,
4796                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4797                 }
4798         }
4799 }
4800
4801 /* Set up chip specific display functions */
4802 static void intel_init_display(struct drm_device *dev)
4803 {
4804         struct drm_i915_private *dev_priv = dev->dev_private;
4805
4806         /* We always want a DPMS function */
4807         if (HAS_PCH_SPLIT(dev))
4808                 dev_priv->display.dpms = ironlake_crtc_dpms;
4809         else
4810                 dev_priv->display.dpms = i9xx_crtc_dpms;
4811
4812         /* Only mobile has FBC, leave pointers NULL for other chips */
4813         if (IS_MOBILE(dev)) {
4814                 if (IS_GM45(dev)) {
4815                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4816                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4817                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4818                 } else if (IS_I965GM(dev)) {
4819                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4820                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4821                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4822                 }
4823                 /* 855GM needs testing */
4824         }
4825
4826         /* Returns the core display clock speed */
4827         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
4828                 dev_priv->display.get_display_clock_speed =
4829                         i945_get_display_clock_speed;
4830         else if (IS_I915G(dev))
4831                 dev_priv->display.get_display_clock_speed =
4832                         i915_get_display_clock_speed;
4833         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
4834                 dev_priv->display.get_display_clock_speed =
4835                         i9xx_misc_get_display_clock_speed;
4836         else if (IS_I915GM(dev))
4837                 dev_priv->display.get_display_clock_speed =
4838                         i915gm_get_display_clock_speed;
4839         else if (IS_I865G(dev))
4840                 dev_priv->display.get_display_clock_speed =
4841                         i865_get_display_clock_speed;
4842         else if (IS_I85X(dev))
4843                 dev_priv->display.get_display_clock_speed =
4844                         i855_get_display_clock_speed;
4845         else /* 852, 830 */
4846                 dev_priv->display.get_display_clock_speed =
4847                         i830_get_display_clock_speed;
4848
4849         /* For FIFO watermark updates */
4850         if (HAS_PCH_SPLIT(dev))
4851                 dev_priv->display.update_wm = NULL;
4852         else if (IS_G4X(dev))
4853                 dev_priv->display.update_wm = g4x_update_wm;
4854         else if (IS_I965G(dev))
4855                 dev_priv->display.update_wm = i965_update_wm;
4856         else if (IS_I9XX(dev)) {
4857                 dev_priv->display.update_wm = i9xx_update_wm;
4858                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4859         } else if (IS_I85X(dev)) {
4860                 dev_priv->display.update_wm = i9xx_update_wm;
4861                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4862         } else {
4863                 dev_priv->display.update_wm = i830_update_wm;
4864                 if (IS_845G(dev))
4865                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4866                 else
4867                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4868         }
4869 }
4870
4871 void intel_modeset_init(struct drm_device *dev)
4872 {
4873         struct drm_i915_private *dev_priv = dev->dev_private;
4874         int num_pipe;
4875         int i;
4876
4877         drm_mode_config_init(dev);
4878
4879         dev->mode_config.min_width = 0;
4880         dev->mode_config.min_height = 0;
4881
4882         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4883
4884         intel_init_display(dev);
4885
4886         if (IS_I965G(dev)) {
4887                 dev->mode_config.max_width = 8192;
4888                 dev->mode_config.max_height = 8192;
4889         } else if (IS_I9XX(dev)) {
4890                 dev->mode_config.max_width = 4096;
4891                 dev->mode_config.max_height = 4096;
4892         } else {
4893                 dev->mode_config.max_width = 2048;
4894                 dev->mode_config.max_height = 2048;
4895         }
4896
4897         /* set memory base */
4898         if (IS_I9XX(dev))
4899                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4900         else
4901                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4902
4903         if (IS_MOBILE(dev) || IS_I9XX(dev))
4904                 num_pipe = 2;
4905         else
4906                 num_pipe = 1;
4907         DRM_DEBUG_KMS("%d display pipe%s available.\n",
4908                   num_pipe, num_pipe > 1 ? "s" : "");
4909
4910         for (i = 0; i < num_pipe; i++) {
4911                 intel_crtc_init(dev, i);
4912         }
4913
4914         intel_setup_outputs(dev);
4915
4916         intel_init_clock_gating(dev);
4917
4918         if (IS_IRONLAKE_M(dev))
4919                 ironlake_enable_drps(dev);
4920
4921         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4922         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4923                     (unsigned long)dev);
4924
4925         intel_setup_overlay(dev);
4926
4927         if (IS_PINEVIEW(dev) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4928                                                         dev_priv->fsb_freq,
4929                                                         dev_priv->mem_freq))
4930                 DRM_INFO("failed to find known CxSR latency "
4931                          "(found fsb freq %d, mem freq %d), disabling CxSR\n",
4932                          dev_priv->fsb_freq, dev_priv->mem_freq);
4933 }
4934
4935 void intel_modeset_cleanup(struct drm_device *dev)
4936 {
4937         struct drm_i915_private *dev_priv = dev->dev_private;
4938         struct drm_crtc *crtc;
4939         struct intel_crtc *intel_crtc;
4940
4941         mutex_lock(&dev->struct_mutex);
4942
4943         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4944                 /* Skip inactive CRTCs */
4945                 if (!crtc->fb)
4946                         continue;
4947
4948                 intel_crtc = to_intel_crtc(crtc);
4949                 intel_increase_pllclock(crtc, false);
4950                 del_timer_sync(&intel_crtc->idle_timer);
4951         }
4952
4953         del_timer_sync(&dev_priv->idle_timer);
4954
4955         if (dev_priv->display.disable_fbc)
4956                 dev_priv->display.disable_fbc(dev);
4957
4958         if (dev_priv->pwrctx) {
4959                 struct drm_i915_gem_object *obj_priv;
4960
4961                 obj_priv = to_intel_bo(dev_priv->pwrctx);
4962                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
4963                 I915_READ(PWRCTXA);
4964                 i915_gem_object_unpin(dev_priv->pwrctx);
4965                 drm_gem_object_unreference(dev_priv->pwrctx);
4966         }
4967
4968         if (IS_IRONLAKE_M(dev))
4969                 ironlake_disable_drps(dev);
4970
4971         mutex_unlock(&dev->struct_mutex);
4972
4973         drm_mode_config_cleanup(dev);
4974 }
4975
4976
4977 /* current intel driver doesn't take advantage of encoders
4978    always give back the encoder for the connector
4979 */
4980 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4981 {
4982         struct intel_encoder *intel_encoder = to_intel_encoder(connector);
4983
4984         return &intel_encoder->enc;
4985 }
4986
4987 /*
4988  * set vga decode state - true == enable VGA decode
4989  */
4990 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4991 {
4992         struct drm_i915_private *dev_priv = dev->dev_private;
4993         u16 gmch_ctrl;
4994
4995         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4996         if (state)
4997                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4998         else
4999                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5000         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5001         return 0;
5002 }