drm/i915: Convert 'i915_seqno_passed' calls into 'i915_gem_request_completed'
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79                                 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81                                    struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84                           int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86                                   struct intel_framebuffer *ifb,
87                                   struct drm_mode_fb_cmd2 *mode_cmd,
88                                   struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92                                          struct intel_link_m_n *m_n,
93                                          struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98                             const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104         if (!connector->mst_port)
105                 return connector->encoder;
106         else
107                 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111         int     min, max;
112 } intel_range_t;
113
114 typedef struct {
115         int     dot_limit;
116         int     p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
122         intel_p2_t          p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128         struct drm_i915_private *dev_priv = dev->dev_private;
129
130         WARN_ON(!HAS_PCH_SPLIT(dev));
131
132         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138         if (IS_GEN5(dev)) {
139                 struct drm_i915_private *dev_priv = dev->dev_private;
140                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141         } else
142                 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146         .dot = { .min = 25000, .max = 350000 },
147         .vco = { .min = 908000, .max = 1512000 },
148         .n = { .min = 2, .max = 16 },
149         .m = { .min = 96, .max = 140 },
150         .m1 = { .min = 18, .max = 26 },
151         .m2 = { .min = 6, .max = 16 },
152         .p = { .min = 4, .max = 128 },
153         .p1 = { .min = 2, .max = 33 },
154         .p2 = { .dot_limit = 165000,
155                 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 1, .max = 6 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185         .dot = { .min = 20000, .max = 400000 },
186         .vco = { .min = 1400000, .max = 2800000 },
187         .n = { .min = 1, .max = 6 },
188         .m = { .min = 70, .max = 120 },
189         .m1 = { .min = 8, .max = 18 },
190         .m2 = { .min = 3, .max = 7 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8 },
193         .p2 = { .dot_limit = 200000,
194                 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 7, .max = 98 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 112000,
207                 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212         .dot = { .min = 25000, .max = 270000 },
213         .vco = { .min = 1750000, .max = 3500000},
214         .n = { .min = 1, .max = 4 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 10, .max = 30 },
219         .p1 = { .min = 1, .max = 3},
220         .p2 = { .dot_limit = 270000,
221                 .p2_slow = 10,
222                 .p2_fast = 10
223         },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227         .dot = { .min = 22000, .max = 400000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 16, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 5, .max = 80 },
234         .p1 = { .min = 1, .max = 8},
235         .p2 = { .dot_limit = 165000,
236                 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240         .dot = { .min = 20000, .max = 115000 },
241         .vco = { .min = 1750000, .max = 3500000 },
242         .n = { .min = 1, .max = 3 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 17, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 28, .max = 112 },
247         .p1 = { .min = 2, .max = 8 },
248         .p2 = { .dot_limit = 0,
249                 .p2_slow = 14, .p2_fast = 14
250         },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254         .dot = { .min = 80000, .max = 224000 },
255         .vco = { .min = 1750000, .max = 3500000 },
256         .n = { .min = 1, .max = 3 },
257         .m = { .min = 104, .max = 138 },
258         .m1 = { .min = 17, .max = 23 },
259         .m2 = { .min = 5, .max = 11 },
260         .p = { .min = 14, .max = 42 },
261         .p1 = { .min = 2, .max = 6 },
262         .p2 = { .dot_limit = 0,
263                 .p2_slow = 7, .p2_fast = 7
264         },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268         .dot = { .min = 20000, .max = 400000},
269         .vco = { .min = 1700000, .max = 3500000 },
270         /* Pineview's Ncounter is a ring counter */
271         .n = { .min = 3, .max = 6 },
272         .m = { .min = 2, .max = 256 },
273         /* Pineview only has one combined m divider, which we treat as m2. */
274         .m1 = { .min = 0, .max = 0 },
275         .m2 = { .min = 0, .max = 254 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8 },
278         .p2 = { .dot_limit = 200000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283         .dot = { .min = 20000, .max = 400000 },
284         .vco = { .min = 1700000, .max = 3500000 },
285         .n = { .min = 3, .max = 6 },
286         .m = { .min = 2, .max = 256 },
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 7, .max = 112 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 112000,
292                 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296  *
297  * We calculate clock using (register_value + 2) for N/M1/M2, so here
298  * the range value for them is (actual_value - 2).
299  */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 5 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 3 },
317         .m = { .min = 79, .max = 118 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 28, .max = 112 },
321         .p1 = { .min = 2, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 127 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 14, .max = 56 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341         .dot = { .min = 25000, .max = 350000 },
342         .vco = { .min = 1760000, .max = 3510000 },
343         .n = { .min = 1, .max = 2 },
344         .m = { .min = 79, .max = 126 },
345         .m1 = { .min = 12, .max = 22 },
346         .m2 = { .min = 5, .max = 9 },
347         .p = { .min = 28, .max = 112 },
348         .p1 = { .min = 2, .max = 8 },
349         .p2 = { .dot_limit = 225000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 14, .max = 42 },
361         .p1 = { .min = 2, .max = 6 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367          /*
368           * These are the data rate limits (measured in fast clocks)
369           * since those are the strictest limits we have. The fast
370           * clock and actual rate limits are more relaxed, so checking
371           * them would make no difference.
372           */
373         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374         .vco = { .min = 4000000, .max = 6000000 },
375         .n = { .min = 1, .max = 7 },
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p1 = { .min = 2, .max = 3 },
379         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383         /*
384          * These are the data rate limits (measured in fast clocks)
385          * since those are the strictest limits we have.  The fast
386          * clock and actual rate limits are more relaxed, so checking
387          * them would make no difference.
388          */
389         .dot = { .min = 25000 * 5, .max = 540000 * 5},
390         .vco = { .min = 4860000, .max = 6700000 },
391         .n = { .min = 1, .max = 1 },
392         .m1 = { .min = 2, .max = 2 },
393         .m2 = { .min = 24 << 22, .max = 175 << 22 },
394         .p1 = { .min = 2, .max = 4 },
395         .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400         clock->m = clock->m1 * clock->m2;
401         clock->p = clock->p1 * clock->p2;
402         if (WARN_ON(clock->n == 0 || clock->p == 0))
403                 return;
404         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409  * Returns whether any output on the specified pipe is of the specified type
410  */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
412 {
413         struct drm_device *dev = crtc->base.dev;
414         struct intel_encoder *encoder;
415
416         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417                 if (encoder->type == type)
418                         return true;
419
420         return false;
421 }
422
423 /**
424  * Returns whether any output on the specified pipe will have the specified
425  * type after a staged modeset is complete, i.e., the same as
426  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427  * encoder->crtc.
428  */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431         struct drm_device *dev = crtc->base.dev;
432         struct intel_encoder *encoder;
433
434         for_each_intel_encoder(dev, encoder)
435                 if (encoder->new_crtc == crtc && encoder->type == type)
436                         return true;
437
438         return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442                                                 int refclk)
443 {
444         struct drm_device *dev = crtc->base.dev;
445         const intel_limit_t *limit;
446
447         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448                 if (intel_is_dual_link_lvds(dev)) {
449                         if (refclk == 100000)
450                                 limit = &intel_limits_ironlake_dual_lvds_100m;
451                         else
452                                 limit = &intel_limits_ironlake_dual_lvds;
453                 } else {
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_single_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_single_lvds;
458                 }
459         } else
460                 limit = &intel_limits_ironlake_dac;
461
462         return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467         struct drm_device *dev = crtc->base.dev;
468         const intel_limit_t *limit;
469
470         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471                 if (intel_is_dual_link_lvds(dev))
472                         limit = &intel_limits_g4x_dual_channel_lvds;
473                 else
474                         limit = &intel_limits_g4x_single_channel_lvds;
475         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477                 limit = &intel_limits_g4x_hdmi;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479                 limit = &intel_limits_g4x_sdvo;
480         } else /* The option is for other outputs */
481                 limit = &intel_limits_i9xx_sdvo;
482
483         return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488         struct drm_device *dev = crtc->base.dev;
489         const intel_limit_t *limit;
490
491         if (HAS_PCH_SPLIT(dev))
492                 limit = intel_ironlake_limit(crtc, refclk);
493         else if (IS_G4X(dev)) {
494                 limit = intel_g4x_limit(crtc);
495         } else if (IS_PINEVIEW(dev)) {
496                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497                         limit = &intel_limits_pineview_lvds;
498                 else
499                         limit = &intel_limits_pineview_sdvo;
500         } else if (IS_CHERRYVIEW(dev)) {
501                 limit = &intel_limits_chv;
502         } else if (IS_VALLEYVIEW(dev)) {
503                 limit = &intel_limits_vlv;
504         } else if (!IS_GEN2(dev)) {
505                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506                         limit = &intel_limits_i9xx_lvds;
507                 else
508                         limit = &intel_limits_i9xx_sdvo;
509         } else {
510                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511                         limit = &intel_limits_i8xx_lvds;
512                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513                         limit = &intel_limits_i8xx_dvo;
514                 else
515                         limit = &intel_limits_i8xx_dac;
516         }
517         return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = clock->m2 + 2;
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538         clock->m = i9xx_dpll_compute_m(clock);
539         clock->p = clock->p1 * clock->p2;
540         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541                 return;
542         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548         clock->m = clock->m1 * clock->m2;
549         clock->p = clock->p1 * clock->p2;
550         if (WARN_ON(clock->n == 0 || clock->p == 0))
551                 return;
552         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553                         clock->n << 22);
554         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559  * Returns whether the given set of divisors are valid for a given refclk with
560  * the given connectors.
561  */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564                                const intel_limit_t *limit,
565                                const intel_clock_t *clock)
566 {
567         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
568                 INTELPllInvalid("n out of range\n");
569         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
570                 INTELPllInvalid("p1 out of range\n");
571         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
572                 INTELPllInvalid("m2 out of range\n");
573         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
574                 INTELPllInvalid("m1 out of range\n");
575
576         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577                 if (clock->m1 <= clock->m2)
578                         INTELPllInvalid("m1 <= m2\n");
579
580         if (!IS_VALLEYVIEW(dev)) {
581                 if (clock->p < limit->p.min || limit->p.max < clock->p)
582                         INTELPllInvalid("p out of range\n");
583                 if (clock->m < limit->m.min || limit->m.max < clock->m)
584                         INTELPllInvalid("m out of range\n");
585         }
586
587         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588                 INTELPllInvalid("vco out of range\n");
589         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590          * connector, etc., rather than just a single range.
591          */
592         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593                 INTELPllInvalid("dot out of range\n");
594
595         return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600                     int target, int refclk, intel_clock_t *match_clock,
601                     intel_clock_t *best_clock)
602 {
603         struct drm_device *dev = crtc->base.dev;
604         intel_clock_t clock;
605         int err = target;
606
607         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608                 /*
609                  * For LVDS just rely on its current settings for dual-channel.
610                  * We haven't figured out how to reliably set up different
611                  * single/dual channel state, if we even can.
612                  */
613                 if (intel_is_dual_link_lvds(dev))
614                         clock.p2 = limit->p2.p2_fast;
615                 else
616                         clock.p2 = limit->p2.p2_slow;
617         } else {
618                 if (target < limit->p2.dot_limit)
619                         clock.p2 = limit->p2.p2_slow;
620                 else
621                         clock.p2 = limit->p2.p2_fast;
622         }
623
624         memset(best_clock, 0, sizeof(*best_clock));
625
626         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627              clock.m1++) {
628                 for (clock.m2 = limit->m2.min;
629                      clock.m2 <= limit->m2.max; clock.m2++) {
630                         if (clock.m2 >= clock.m1)
631                                 break;
632                         for (clock.n = limit->n.min;
633                              clock.n <= limit->n.max; clock.n++) {
634                                 for (clock.p1 = limit->p1.min;
635                                         clock.p1 <= limit->p1.max; clock.p1++) {
636                                         int this_err;
637
638                                         i9xx_clock(refclk, &clock);
639                                         if (!intel_PLL_is_valid(dev, limit,
640                                                                 &clock))
641                                                 continue;
642                                         if (match_clock &&
643                                             clock.p != match_clock->p)
644                                                 continue;
645
646                                         this_err = abs(clock.dot - target);
647                                         if (this_err < err) {
648                                                 *best_clock = clock;
649                                                 err = this_err;
650                                         }
651                                 }
652                         }
653                 }
654         }
655
656         return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661                    int target, int refclk, intel_clock_t *match_clock,
662                    intel_clock_t *best_clock)
663 {
664         struct drm_device *dev = crtc->base.dev;
665         intel_clock_t clock;
666         int err = target;
667
668         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 /*
670                  * For LVDS just rely on its current settings for dual-channel.
671                  * We haven't figured out how to reliably set up different
672                  * single/dual channel state, if we even can.
673                  */
674                 if (intel_is_dual_link_lvds(dev))
675                         clock.p2 = limit->p2.p2_fast;
676                 else
677                         clock.p2 = limit->p2.p2_slow;
678         } else {
679                 if (target < limit->p2.dot_limit)
680                         clock.p2 = limit->p2.p2_slow;
681                 else
682                         clock.p2 = limit->p2.p2_fast;
683         }
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pineview_clock(refclk, &clock);
698                                         if (!intel_PLL_is_valid(dev, limit,
699                                                                 &clock))
700                                                 continue;
701                                         if (match_clock &&
702                                             clock.p != match_clock->p)
703                                                 continue;
704
705                                         this_err = abs(clock.dot - target);
706                                         if (this_err < err) {
707                                                 *best_clock = clock;
708                                                 err = this_err;
709                                         }
710                                 }
711                         }
712                 }
713         }
714
715         return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->base.dev;
724         intel_clock_t clock;
725         int max_n;
726         bool found;
727         /* approximately equals target * 0.00585 */
728         int err_most = (target >> 8) + (target >> 9);
729         found = false;
730
731         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732                 if (intel_is_dual_link_lvds(dev))
733                         clock.p2 = limit->p2.p2_fast;
734                 else
735                         clock.p2 = limit->p2.p2_slow;
736         } else {
737                 if (target < limit->p2.dot_limit)
738                         clock.p2 = limit->p2.p2_slow;
739                 else
740                         clock.p2 = limit->p2.p2_fast;
741         }
742
743         memset(best_clock, 0, sizeof(*best_clock));
744         max_n = limit->n.max;
745         /* based on hardware requirement, prefer smaller n to precision */
746         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747                 /* based on hardware requirement, prefere larger m1,m2 */
748                 for (clock.m1 = limit->m1.max;
749                      clock.m1 >= limit->m1.min; clock.m1--) {
750                         for (clock.m2 = limit->m2.max;
751                              clock.m2 >= limit->m2.min; clock.m2--) {
752                                 for (clock.p1 = limit->p1.max;
753                                      clock.p1 >= limit->p1.min; clock.p1--) {
754                                         int this_err;
755
756                                         i9xx_clock(refclk, &clock);
757                                         if (!intel_PLL_is_valid(dev, limit,
758                                                                 &clock))
759                                                 continue;
760
761                                         this_err = abs(clock.dot - target);
762                                         if (this_err < err_most) {
763                                                 *best_clock = clock;
764                                                 err_most = this_err;
765                                                 max_n = clock.n;
766                                                 found = true;
767                                         }
768                                 }
769                         }
770                 }
771         }
772         return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         intel_clock_t clock;
782         unsigned int bestppm = 1000000;
783         /* min update 19.2 MHz */
784         int max_n = min(limit->n.max, refclk / 19200);
785         bool found = false;
786
787         target *= 5; /* fast clock */
788
789         memset(best_clock, 0, sizeof(*best_clock));
790
791         /* based on hardware requirement, prefer smaller n to precision */
792         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796                                 clock.p = clock.p1 * clock.p2;
797                                 /* based on hardware requirement, prefer bigger m1,m2 values */
798                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799                                         unsigned int ppm, diff;
800
801                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802                                                                      refclk * clock.m1);
803
804                                         vlv_clock(refclk, &clock);
805
806                                         if (!intel_PLL_is_valid(dev, limit,
807                                                                 &clock))
808                                                 continue;
809
810                                         diff = abs(clock.dot - target);
811                                         ppm = div_u64(1000000ULL * diff, target);
812
813                                         if (ppm < 100 && clock.p > best_clock->p) {
814                                                 bestppm = 0;
815                                                 *best_clock = clock;
816                                                 found = true;
817                                         }
818
819                                         if (bestppm >= 10 && ppm < bestppm - 10) {
820                                                 bestppm = ppm;
821                                                 *best_clock = clock;
822                                                 found = true;
823                                         }
824                                 }
825                         }
826                 }
827         }
828
829         return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834                    int target, int refclk, intel_clock_t *match_clock,
835                    intel_clock_t *best_clock)
836 {
837         struct drm_device *dev = crtc->base.dev;
838         intel_clock_t clock;
839         uint64_t m2;
840         int found = false;
841
842         memset(best_clock, 0, sizeof(*best_clock));
843
844         /*
845          * Based on hardware doc, the n always set to 1, and m1 always
846          * set to 2.  If requires to support 200Mhz refclk, we need to
847          * revisit this because n may not 1 anymore.
848          */
849         clock.n = 1, clock.m1 = 2;
850         target *= 5;    /* fast clock */
851
852         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853                 for (clock.p2 = limit->p2.p2_fast;
854                                 clock.p2 >= limit->p2.p2_slow;
855                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857                         clock.p = clock.p1 * clock.p2;
858
859                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860                                         clock.n) << 22, refclk * clock.m1);
861
862                         if (m2 > INT_MAX/clock.m1)
863                                 continue;
864
865                         clock.m2 = m2;
866
867                         chv_clock(refclk, &clock);
868
869                         if (!intel_PLL_is_valid(dev, limit, &clock))
870                                 continue;
871
872                         /* based on hardware requirement, prefer bigger p
873                          */
874                         if (clock.p > best_clock->p) {
875                                 *best_clock = clock;
876                                 found = true;
877                         }
878                 }
879         }
880
881         return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888         /* Be paranoid as we can arrive here with only partial
889          * state retrieved from the hardware during setup.
890          *
891          * We can ditch the adjusted_mode.crtc_clock check as soon
892          * as Haswell has gained clock readout/fastboot support.
893          *
894          * We can ditch the crtc->primary->fb check as soon as we can
895          * properly reconstruct framebuffers.
896          */
897         return intel_crtc->active && crtc->primary->fb &&
898                 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902                                              enum pipe pipe)
903 {
904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907         return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         u32 reg = PIPEDSL(pipe);
914         u32 line1, line2;
915         u32 line_mask;
916
917         if (IS_GEN2(dev))
918                 line_mask = DSL_LINEMASK_GEN2;
919         else
920                 line_mask = DSL_LINEMASK_GEN3;
921
922         line1 = I915_READ(reg) & line_mask;
923         mdelay(5);
924         line2 = I915_READ(reg) & line_mask;
925
926         return line1 == line2;
927 }
928
929 /*
930  * intel_wait_for_pipe_off - wait for pipe to turn off
931  * @crtc: crtc whose pipe to wait for
932  *
933  * After disabling a pipe, we can't wait for vblank in the usual way,
934  * spinning on the vblank interrupt status bit, since we won't actually
935  * see an interrupt when the pipe is disabled.
936  *
937  * On Gen4 and above:
938  *   wait for the pipe register state bit to turn off
939  *
940  * Otherwise:
941  *   wait for the display line value to settle (it usually
942  *   ends up stopping at the start of the next frame).
943  *
944  */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947         struct drm_device *dev = crtc->base.dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950         enum pipe pipe = crtc->pipe;
951
952         if (INTEL_INFO(dev)->gen >= 4) {
953                 int reg = PIPECONF(cpu_transcoder);
954
955                 /* Wait for the Pipe State to go off */
956                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957                              100))
958                         WARN(1, "pipe_off wait timed out\n");
959         } else {
960                 /* Wait for the display line to settle */
961                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962                         WARN(1, "pipe_off wait timed out\n");
963         }
964 }
965
966 /*
967  * ibx_digital_port_connected - is the specified port connected?
968  * @dev_priv: i915 private structure
969  * @port: the port to test
970  *
971  * Returns true if @port is connected, false otherwise.
972  */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974                                 struct intel_digital_port *port)
975 {
976         u32 bit;
977
978         if (HAS_PCH_IBX(dev_priv->dev)) {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG;
988                         break;
989                 default:
990                         return true;
991                 }
992         } else {
993                 switch (port->port) {
994                 case PORT_B:
995                         bit = SDE_PORTB_HOTPLUG_CPT;
996                         break;
997                 case PORT_C:
998                         bit = SDE_PORTC_HOTPLUG_CPT;
999                         break;
1000                 case PORT_D:
1001                         bit = SDE_PORTD_HOTPLUG_CPT;
1002                         break;
1003                 default:
1004                         return true;
1005                 }
1006         }
1007
1008         return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013         return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018                 enum pipe pipe, bool state)
1019 {
1020         int reg;
1021         u32 val;
1022         bool cur_state;
1023
1024         reg = DPLL(pipe);
1025         val = I915_READ(reg);
1026         cur_state = !!(val & DPLL_VCO_ENABLE);
1027         WARN(cur_state != state,
1028              "PLL state assertion failure (expected %s, current %s)\n",
1029              state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035         u32 val;
1036         bool cur_state;
1037
1038         mutex_lock(&dev_priv->dpio_lock);
1039         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040         mutex_unlock(&dev_priv->dpio_lock);
1041
1042         cur_state = val & DSI_PLL_VCO_EN;
1043         WARN(cur_state != state,
1044              "DSI PLL state assertion failure (expected %s, current %s)\n",
1045              state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055         if (crtc->config.shared_dpll < 0)
1056                 return NULL;
1057
1058         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063                         struct intel_shared_dpll *pll,
1064                         bool state)
1065 {
1066         bool cur_state;
1067         struct intel_dpll_hw_state hw_state;
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                            enum pipe pipe)
1158 {
1159         struct drm_device *dev = dev_priv->dev;
1160         int pp_reg;
1161         u32 val;
1162         enum pipe panel_pipe = PIPE_A;
1163         bool locked = true;
1164
1165         if (WARN_ON(HAS_DDI(dev)))
1166                 return;
1167
1168         if (HAS_PCH_SPLIT(dev)) {
1169                 u32 port_sel;
1170
1171                 pp_reg = PCH_PP_CONTROL;
1172                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176                         panel_pipe = PIPE_B;
1177                 /* XXX: else fix for eDP */
1178         } else if (IS_VALLEYVIEW(dev)) {
1179                 /* presumably write lock depends on pipe, not port select */
1180                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181                 panel_pipe = pipe;
1182         } else {
1183                 pp_reg = PP_CONTROL;
1184                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185                         panel_pipe = PIPE_B;
1186         }
1187
1188         val = I915_READ(pp_reg);
1189         if (!(val & PANEL_POWER_ON) ||
1190             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191                 locked = false;
1192
1193         WARN(panel_pipe == pipe && locked,
1194              "panel assertion failure, pipe %c regs locked\n",
1195              pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         struct drm_device *dev = dev_priv->dev;
1202         bool cur_state;
1203
1204         if (IS_845G(dev) || IS_I865G(dev))
1205                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206         else
1207                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209         WARN(cur_state != state,
1210              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211              pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217                  enum pipe pipe, bool state)
1218 {
1219         int reg;
1220         u32 val;
1221         bool cur_state;
1222         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                       pipe);
1224
1225         /* if we need the pipe quirk it must be always on */
1226         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228                 state = true;
1229
1230         if (!intel_display_power_is_enabled(dev_priv,
1231                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int reg, i;
1267         u32 val;
1268         int cur_pipe;
1269
1270         /* Primary planes are fixed to pipes on gen4+ */
1271         if (INTEL_INFO(dev)->gen >= 4) {
1272                 reg = DSPCNTR(pipe);
1273                 val = I915_READ(reg);
1274                 WARN(val & DISPLAY_PLANE_ENABLE,
1275                      "plane %c assertion failure, should be disabled but not\n",
1276                      plane_name(pipe));
1277                 return;
1278         }
1279
1280         /* Need to check both planes against the pipe */
1281         for_each_pipe(dev_priv, i) {
1282                 reg = DSPCNTR(i);
1283                 val = I915_READ(reg);
1284                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285                         DISPPLANE_SEL_PIPE_SHIFT;
1286                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288                      plane_name(i), pipe_name(pipe));
1289         }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293                                     enum pipe pipe)
1294 {
1295         struct drm_device *dev = dev_priv->dev;
1296         int reg, sprite;
1297         u32 val;
1298
1299         if (INTEL_INFO(dev)->gen >= 9) {
1300                 for_each_sprite(pipe, sprite) {
1301                         val = I915_READ(PLANE_CTL(pipe, sprite));
1302                         WARN(val & PLANE_CTL_ENABLE,
1303                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304                              sprite, pipe_name(pipe));
1305                 }
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 for_each_sprite(pipe, sprite) {
1308                         reg = SPCNTR(pipe, sprite);
1309                         val = I915_READ(reg);
1310                         WARN(val & SP_ENABLE,
1311                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312                              sprite_name(pipe, sprite), pipe_name(pipe));
1313                 }
1314         } else if (INTEL_INFO(dev)->gen >= 7) {
1315                 reg = SPRCTL(pipe);
1316                 val = I915_READ(reg);
1317                 WARN(val & SPRITE_ENABLE,
1318                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                      plane_name(pipe), pipe_name(pipe));
1320         } else if (INTEL_INFO(dev)->gen >= 5) {
1321                 reg = DVSCNTR(pipe);
1322                 val = I915_READ(reg);
1323                 WARN(val & DVS_ENABLE,
1324                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325                      plane_name(pipe), pipe_name(pipe));
1326         }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332                 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337         u32 val;
1338         bool enabled;
1339
1340         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342         val = I915_READ(PCH_DREF_CONTROL);
1343         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344                             DREF_SUPERSPREAD_SOURCE_MASK));
1345         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349                                            enum pipe pipe)
1350 {
1351         int reg;
1352         u32 val;
1353         bool enabled;
1354
1355         reg = PCH_TRANSCONF(pipe);
1356         val = I915_READ(reg);
1357         enabled = !!(val & TRANS_ENABLE);
1358         WARN(enabled,
1359              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360              pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364                             enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366         if ((val & DP_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373                         return false;
1374         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376                         return false;
1377         } else {
1378                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385                               enum pipe pipe, u32 val)
1386 {
1387         if ((val & SDVO_ENABLE) == 0)
1388                 return false;
1389
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392                         return false;
1393         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395                         return false;
1396         } else {
1397                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398                         return false;
1399         }
1400         return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404                               enum pipe pipe, u32 val)
1405 {
1406         if ((val & LVDS_PORT_EN) == 0)
1407                 return false;
1408
1409         if (HAS_PCH_CPT(dev_priv->dev)) {
1410                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411                         return false;
1412         } else {
1413                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414                         return false;
1415         }
1416         return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420                               enum pipe pipe, u32 val)
1421 {
1422         if ((val & ADPA_DAC_ENABLE) == 0)
1423                 return false;
1424         if (HAS_PCH_CPT(dev_priv->dev)) {
1425                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426                         return false;
1427         } else {
1428                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429                         return false;
1430         }
1431         return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435                                    enum pipe pipe, int reg, u32 port_sel)
1436 {
1437         u32 val = I915_READ(reg);
1438         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440              reg, pipe_name(pipe));
1441
1442         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443              && (val & DP_PIPEB_SELECT),
1444              "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448                                      enum pipe pipe, int reg)
1449 {
1450         u32 val = I915_READ(reg);
1451         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453              reg, pipe_name(pipe));
1454
1455         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456              && (val & SDVO_PIPE_B_SELECT),
1457              "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461                                       enum pipe pipe)
1462 {
1463         int reg;
1464         u32 val;
1465
1466         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470         reg = PCH_ADPA;
1471         val = I915_READ(reg);
1472         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473              "PCH VGA enabled on transcoder %c, should be disabled\n",
1474              pipe_name(pipe));
1475
1476         reg = PCH_LVDS;
1477         val = I915_READ(reg);
1478         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480              pipe_name(pipe));
1481
1482         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491         if (!IS_VALLEYVIEW(dev))
1492                 return;
1493
1494         /*
1495          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496          * CHV x1 PHY (DP/HDMI D)
1497          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498          */
1499         if (IS_CHERRYVIEW(dev)) {
1500                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502         } else {
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504         }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508                            const struct intel_crtc_config *pipe_config)
1509 {
1510         struct drm_device *dev = crtc->base.dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         int reg = DPLL(crtc->pipe);
1513         u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515         assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517         /* No really, not for ILK+ */
1518         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520         /* PLL is protected by panel, make sure we can write it */
1521         if (IS_MOBILE(dev_priv->dev))
1522                 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524         I915_WRITE(reg, dpll);
1525         POSTING_READ(reg);
1526         udelay(150);
1527
1528         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532         POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534         /* We do this three times for luck */
1535         I915_WRITE(reg, dpll);
1536         POSTING_READ(reg);
1537         udelay(150); /* wait for warmup */
1538         I915_WRITE(reg, dpll);
1539         POSTING_READ(reg);
1540         udelay(150); /* wait for warmup */
1541         I915_WRITE(reg, dpll);
1542         POSTING_READ(reg);
1543         udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547                            const struct intel_crtc_config *pipe_config)
1548 {
1549         struct drm_device *dev = crtc->base.dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         int pipe = crtc->pipe;
1552         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553         u32 tmp;
1554
1555         assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559         mutex_lock(&dev_priv->dpio_lock);
1560
1561         /* Enable back the 10bit clock to display controller */
1562         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563         tmp |= DPIO_DCLKP_EN;
1564         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566         /*
1567          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568          */
1569         udelay(1);
1570
1571         /* Enable PLL */
1572         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574         /* Check PLL is locked */
1575         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578         /* not sure when this should be written */
1579         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580         POSTING_READ(DPLL_MD(pipe));
1581
1582         mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587         struct intel_crtc *crtc;
1588         int count = 0;
1589
1590         for_each_intel_crtc(dev, crtc)
1591                 count += crtc->active &&
1592                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594         return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int reg = DPLL(crtc->pipe);
1602         u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* No really, not for ILK+ */
1607         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609         /* PLL is protected by panel, make sure we can write it */
1610         if (IS_MOBILE(dev) && !IS_I830(dev))
1611                 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613         /* Enable DVO 2x clock on both PLLs if necessary */
1614         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615                 /*
1616                  * It appears to be important that we don't enable this
1617                  * for the current pipe before otherwise configuring the
1618                  * PLL. No idea how this should be handled if multiple
1619                  * DVO outputs are enabled simultaneosly.
1620                  */
1621                 dpll |= DPLL_DVO_2X_MODE;
1622                 I915_WRITE(DPLL(!crtc->pipe),
1623                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624         }
1625
1626         /* Wait for the clocks to stabilize. */
1627         POSTING_READ(reg);
1628         udelay(150);
1629
1630         if (INTEL_INFO(dev)->gen >= 4) {
1631                 I915_WRITE(DPLL_MD(crtc->pipe),
1632                            crtc->config.dpll_hw_state.dpll_md);
1633         } else {
1634                 /* The pixel multiplier can only be updated once the
1635                  * DPLL is enabled and the clocks are stable.
1636                  *
1637                  * So write it again.
1638                  */
1639                 I915_WRITE(reg, dpll);
1640         }
1641
1642         /* We do this three times for luck */
1643         I915_WRITE(reg, dpll);
1644         POSTING_READ(reg);
1645         udelay(150); /* wait for warmup */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649         I915_WRITE(reg, dpll);
1650         POSTING_READ(reg);
1651         udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655  * i9xx_disable_pll - disable a PLL
1656  * @dev_priv: i915 private structure
1657  * @pipe: pipe PLL to disable
1658  *
1659  * Disable the PLL for @pipe, making sure the pipe is off first.
1660  *
1661  * Note!  This is for pre-ILK only.
1662  */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665         struct drm_device *dev = crtc->base.dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         enum pipe pipe = crtc->pipe;
1668
1669         /* Disable DVO 2x clock on both PLLs if necessary */
1670         if (IS_I830(dev) &&
1671             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672             intel_num_dvo_pipes(dev) == 1) {
1673                 I915_WRITE(DPLL(PIPE_B),
1674                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675                 I915_WRITE(DPLL(PIPE_A),
1676                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677         }
1678
1679         /* Don't disable pipe or pipe PLLs if needed */
1680         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682                 return;
1683
1684         /* Make sure the pipe isn't still relying on us */
1685         assert_pipe_disabled(dev_priv, pipe);
1686
1687         I915_WRITE(DPLL(pipe), 0);
1688         POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693         u32 val = 0;
1694
1695         /* Make sure the pipe isn't still relying on us */
1696         assert_pipe_disabled(dev_priv, pipe);
1697
1698         /*
1699          * Leave integrated clock source and reference clock enabled for pipe B.
1700          * The latter is needed for VGA hotplug / manual detection.
1701          */
1702         if (pipe == PIPE_B)
1703                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704         I915_WRITE(DPLL(pipe), val);
1705         POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712         u32 val;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         /* Set PLL en = 0 */
1718         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719         if (pipe != PIPE_A)
1720                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721         I915_WRITE(DPLL(pipe), val);
1722         POSTING_READ(DPLL(pipe));
1723
1724         mutex_lock(&dev_priv->dpio_lock);
1725
1726         /* Disable 10bit clock to display controller */
1727         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728         val &= ~DPIO_DCLKP_EN;
1729         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731         /* disable left/right clock distribution */
1732         if (pipe != PIPE_B) {
1733                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736         } else {
1737                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740         }
1741
1742         mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746                 struct intel_digital_port *dport)
1747 {
1748         u32 port_mask;
1749         int dpll_reg;
1750
1751         switch (dport->port) {
1752         case PORT_B:
1753                 port_mask = DPLL_PORTB_READY_MASK;
1754                 dpll_reg = DPLL(0);
1755                 break;
1756         case PORT_C:
1757                 port_mask = DPLL_PORTC_READY_MASK;
1758                 dpll_reg = DPLL(0);
1759                 break;
1760         case PORT_D:
1761                 port_mask = DPLL_PORTD_READY_MASK;
1762                 dpll_reg = DPIO_PHY_STATUS;
1763                 break;
1764         default:
1765                 BUG();
1766         }
1767
1768         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770                      port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775         struct drm_device *dev = crtc->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779         if (WARN_ON(pll == NULL))
1780                 return;
1781
1782         WARN_ON(!pll->config.crtc_mask);
1783         if (pll->active == 0) {
1784                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785                 WARN_ON(pll->on);
1786                 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788                 pll->mode_set(dev_priv, pll);
1789         }
1790 }
1791
1792 /**
1793  * intel_enable_shared_dpll - enable PCH PLL
1794  * @dev_priv: i915 private structure
1795  * @pipe: pipe PLL to enable
1796  *
1797  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798  * drives the transcoder clock.
1799  */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         if (WARN_ON(pll == NULL))
1807                 return;
1808
1809         if (WARN_ON(pll->config.crtc_mask == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (pll->active++) {
1817                 WARN_ON(!pll->on);
1818                 assert_shared_dpll_enabled(dev_priv, pll);
1819                 return;
1820         }
1821         WARN_ON(pll->on);
1822
1823         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826         pll->enable(dev_priv, pll);
1827         pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         /* PCH only available on ILK+ */
1837         BUG_ON(INTEL_INFO(dev)->gen < 5);
1838         if (WARN_ON(pll == NULL))
1839                return;
1840
1841         if (WARN_ON(pll->config.crtc_mask == 0))
1842                 return;
1843
1844         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845                       pll->name, pll->active, pll->on,
1846                       crtc->base.base.id);
1847
1848         if (WARN_ON(pll->active == 0)) {
1849                 assert_shared_dpll_disabled(dev_priv, pll);
1850                 return;
1851         }
1852
1853         assert_shared_dpll_enabled(dev_priv, pll);
1854         WARN_ON(!pll->on);
1855         if (--pll->active)
1856                 return;
1857
1858         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859         pll->disable(dev_priv, pll);
1860         pll->on = false;
1861
1862         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866                                            enum pipe pipe)
1867 {
1868         struct drm_device *dev = dev_priv->dev;
1869         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871         uint32_t reg, val, pipeconf_val;
1872
1873         /* PCH only available on ILK+ */
1874         BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876         /* Make sure PCH DPLL is enabled */
1877         assert_shared_dpll_enabled(dev_priv,
1878                                    intel_crtc_to_shared_dpll(intel_crtc));
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, pipe);
1882         assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884         if (HAS_PCH_CPT(dev)) {
1885                 /* Workaround: Set the timing override bit before enabling the
1886                  * pch transcoder. */
1887                 reg = TRANS_CHICKEN2(pipe);
1888                 val = I915_READ(reg);
1889                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890                 I915_WRITE(reg, val);
1891         }
1892
1893         reg = PCH_TRANSCONF(pipe);
1894         val = I915_READ(reg);
1895         pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897         if (HAS_PCH_IBX(dev_priv->dev)) {
1898                 /*
1899                  * make the BPC in transcoder be consistent with
1900                  * that in pipeconf reg.
1901                  */
1902                 val &= ~PIPECONF_BPC_MASK;
1903                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904         }
1905
1906         val &= ~TRANS_INTERLACE_MASK;
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908                 if (HAS_PCH_IBX(dev_priv->dev) &&
1909                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910                         val |= TRANS_LEGACY_INTERLACED_ILK;
1911                 else
1912                         val |= TRANS_INTERLACED;
1913         else
1914                 val |= TRANS_PROGRESSIVE;
1915
1916         I915_WRITE(reg, val | TRANS_ENABLE);
1917         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                       enum transcoder cpu_transcoder)
1923 {
1924         u32 val, pipeconf_val;
1925
1926         /* PCH only available on ILK+ */
1927         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929         /* FDI must be feeding us bits for PCH ports */
1930         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933         /* Workaround: set timing override bit. */
1934         val = I915_READ(_TRANSA_CHICKEN2);
1935         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936         I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938         val = TRANS_ENABLE;
1939         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942             PIPECONF_INTERLACED_ILK)
1943                 val |= TRANS_INTERLACED;
1944         else
1945                 val |= TRANS_PROGRESSIVE;
1946
1947         I915_WRITE(LPT_TRANSCONF, val);
1948         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949                 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953                                             enum pipe pipe)
1954 {
1955         struct drm_device *dev = dev_priv->dev;
1956         uint32_t reg, val;
1957
1958         /* FDI relies on the transcoder */
1959         assert_fdi_tx_disabled(dev_priv, pipe);
1960         assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962         /* Ports must be off as well */
1963         assert_pch_ports_disabled(dev_priv, pipe);
1964
1965         reg = PCH_TRANSCONF(pipe);
1966         val = I915_READ(reg);
1967         val &= ~TRANS_ENABLE;
1968         I915_WRITE(reg, val);
1969         /* wait for PCH transcoder off, transcoder state */
1970         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973         if (!HAS_PCH_IBX(dev)) {
1974                 /* Workaround: Clear the timing override chicken bit again. */
1975                 reg = TRANS_CHICKEN2(pipe);
1976                 val = I915_READ(reg);
1977                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978                 I915_WRITE(reg, val);
1979         }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984         u32 val;
1985
1986         val = I915_READ(LPT_TRANSCONF);
1987         val &= ~TRANS_ENABLE;
1988         I915_WRITE(LPT_TRANSCONF, val);
1989         /* wait for PCH transcoder off, transcoder state */
1990         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991                 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993         /* Workaround: clear timing override bit. */
1994         val = I915_READ(_TRANSA_CHICKEN2);
1995         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996         I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000  * intel_enable_pipe - enable a pipe, asserting requirements
2001  * @crtc: crtc responsible for the pipe
2002  *
2003  * Enable @crtc's pipe, making sure that various hardware specific requirements
2004  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005  */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008         struct drm_device *dev = crtc->base.dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         enum pipe pipe = crtc->pipe;
2011         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012                                                                       pipe);
2013         enum pipe pch_transcoder;
2014         int reg;
2015         u32 val;
2016
2017         assert_planes_disabled(dev_priv, pipe);
2018         assert_cursor_disabled(dev_priv, pipe);
2019         assert_sprites_disabled(dev_priv, pipe);
2020
2021         if (HAS_PCH_LPT(dev_priv->dev))
2022                 pch_transcoder = TRANSCODER_A;
2023         else
2024                 pch_transcoder = pipe;
2025
2026         /*
2027          * A pipe without a PLL won't actually be able to drive bits from
2028          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2029          * need the check.
2030          */
2031         if (!HAS_PCH_SPLIT(dev_priv->dev))
2032                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033                         assert_dsi_pll_enabled(dev_priv);
2034                 else
2035                         assert_pll_enabled(dev_priv, pipe);
2036         else {
2037                 if (crtc->config.has_pch_encoder) {
2038                         /* if driving the PCH, we need FDI enabled */
2039                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040                         assert_fdi_tx_pll_enabled(dev_priv,
2041                                                   (enum pipe) cpu_transcoder);
2042                 }
2043                 /* FIXME: assert CPU port conditions for SNB+ */
2044         }
2045
2046         reg = PIPECONF(cpu_transcoder);
2047         val = I915_READ(reg);
2048         if (val & PIPECONF_ENABLE) {
2049                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051                 return;
2052         }
2053
2054         I915_WRITE(reg, val | PIPECONF_ENABLE);
2055         POSTING_READ(reg);
2056 }
2057
2058 /**
2059  * intel_disable_pipe - disable a pipe, asserting requirements
2060  * @crtc: crtc whose pipes is to be disabled
2061  *
2062  * Disable the pipe of @crtc, making sure that various hardware
2063  * specific requirements are met, if applicable, e.g. plane
2064  * disabled, panel fitter off, etc.
2065  *
2066  * Will wait until the pipe has shut down before returning.
2067  */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072         enum pipe pipe = crtc->pipe;
2073         int reg;
2074         u32 val;
2075
2076         /*
2077          * Make sure planes won't keep trying to pump pixels to us,
2078          * or we might hang the display.
2079          */
2080         assert_planes_disabled(dev_priv, pipe);
2081         assert_cursor_disabled(dev_priv, pipe);
2082         assert_sprites_disabled(dev_priv, pipe);
2083
2084         reg = PIPECONF(cpu_transcoder);
2085         val = I915_READ(reg);
2086         if ((val & PIPECONF_ENABLE) == 0)
2087                 return;
2088
2089         /*
2090          * Double wide has implications for planes
2091          * so best keep it disabled when not needed.
2092          */
2093         if (crtc->config.double_wide)
2094                 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096         /* Don't disable pipe or pipe PLLs if needed */
2097         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099                 val &= ~PIPECONF_ENABLE;
2100
2101         I915_WRITE(reg, val);
2102         if ((val & PIPECONF_ENABLE) == 0)
2103                 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107  * Plane regs are double buffered, going from enabled->disabled needs a
2108  * trigger in order to latch.  The display address reg provides this.
2109  */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111                                enum plane plane)
2112 {
2113         struct drm_device *dev = dev_priv->dev;
2114         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116         I915_WRITE(reg, I915_READ(reg));
2117         POSTING_READ(reg);
2118 }
2119
2120 /**
2121  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122  * @plane:  plane to be enabled
2123  * @crtc: crtc for the plane
2124  *
2125  * Enable @plane on @crtc, making sure that the pipe is running first.
2126  */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128                                           struct drm_crtc *crtc)
2129 {
2130         struct drm_device *dev = plane->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137         if (intel_crtc->primary_enabled)
2138                 return;
2139
2140         intel_crtc->primary_enabled = true;
2141
2142         dev_priv->display.update_primary_plane(crtc, plane->fb,
2143                                                crtc->x, crtc->y);
2144
2145         /*
2146          * BDW signals flip done immediately if the plane
2147          * is disabled, even if the plane enable is already
2148          * armed to occur at the next vblank :(
2149          */
2150         if (IS_BROADWELL(dev))
2151                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155  * intel_disable_primary_hw_plane - disable the primary hardware plane
2156  * @plane: plane to be disabled
2157  * @crtc: crtc for the plane
2158  *
2159  * Disable @plane on @crtc, making sure that the pipe is running first.
2160  */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162                                            struct drm_crtc *crtc)
2163 {
2164         struct drm_device *dev = plane->dev;
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170         if (!intel_crtc->primary_enabled)
2171                 return;
2172
2173         intel_crtc->primary_enabled = false;
2174
2175         dev_priv->display.update_primary_plane(crtc, plane->fb,
2176                                                crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183                 return true;
2184 #endif
2185         return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190         int tile_height;
2191
2192         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193         return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198                            struct drm_framebuffer *fb,
2199                            struct intel_engine_cs *pipelined)
2200 {
2201         struct drm_device *dev = fb->dev;
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204         u32 alignment;
2205         int ret;
2206
2207         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209         switch (obj->tiling_mode) {
2210         case I915_TILING_NONE:
2211                 if (INTEL_INFO(dev)->gen >= 9)
2212                         alignment = 256 * 1024;
2213                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214                         alignment = 128 * 1024;
2215                 else if (INTEL_INFO(dev)->gen >= 4)
2216                         alignment = 4 * 1024;
2217                 else
2218                         alignment = 64 * 1024;
2219                 break;
2220         case I915_TILING_X:
2221                 if (INTEL_INFO(dev)->gen >= 9)
2222                         alignment = 256 * 1024;
2223                 else {
2224                         /* pin() will align the object as required by fence */
2225                         alignment = 0;
2226                 }
2227                 break;
2228         case I915_TILING_Y:
2229                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230                 return -EINVAL;
2231         default:
2232                 BUG();
2233         }
2234
2235         /* Note that the w/a also requires 64 PTE of padding following the
2236          * bo. We currently fill all unused PTE with the shadow page and so
2237          * we should always have valid PTE following the scanout preventing
2238          * the VT-d warning.
2239          */
2240         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241                 alignment = 256 * 1024;
2242
2243         /*
2244          * Global gtt pte registers are special registers which actually forward
2245          * writes to a chunk of system memory. Which means that there is no risk
2246          * that the register values disappear as soon as we call
2247          * intel_runtime_pm_put(), so it is correct to wrap only the
2248          * pin/unpin/fence and not more.
2249          */
2250         intel_runtime_pm_get(dev_priv);
2251
2252         dev_priv->mm.interruptible = false;
2253         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254         if (ret)
2255                 goto err_interruptible;
2256
2257         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258          * fence, whereas 965+ only requires a fence if using
2259          * framebuffer compression.  For simplicity, we always install
2260          * a fence as the cost is not that onerous.
2261          */
2262         ret = i915_gem_object_get_fence(obj);
2263         if (ret)
2264                 goto err_unpin;
2265
2266         i915_gem_object_pin_fence(obj);
2267
2268         dev_priv->mm.interruptible = true;
2269         intel_runtime_pm_put(dev_priv);
2270         return 0;
2271
2272 err_unpin:
2273         i915_gem_object_unpin_from_display_plane(obj);
2274 err_interruptible:
2275         dev_priv->mm.interruptible = true;
2276         intel_runtime_pm_put(dev_priv);
2277         return ret;
2278 }
2279
2280 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281 {
2282         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284         i915_gem_object_unpin_fence(obj);
2285         i915_gem_object_unpin_from_display_plane(obj);
2286 }
2287
2288 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289  * is assumed to be a power-of-two. */
2290 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291                                              unsigned int tiling_mode,
2292                                              unsigned int cpp,
2293                                              unsigned int pitch)
2294 {
2295         if (tiling_mode != I915_TILING_NONE) {
2296                 unsigned int tile_rows, tiles;
2297
2298                 tile_rows = *y / 8;
2299                 *y %= 8;
2300
2301                 tiles = *x / (512/cpp);
2302                 *x %= 512/cpp;
2303
2304                 return tile_rows * pitch * 8 + tiles * 4096;
2305         } else {
2306                 unsigned int offset;
2307
2308                 offset = *y * pitch + *x * cpp;
2309                 *y = 0;
2310                 *x = (offset & 4095) / cpp;
2311                 return offset & -4096;
2312         }
2313 }
2314
2315 int intel_format_to_fourcc(int format)
2316 {
2317         switch (format) {
2318         case DISPPLANE_8BPP:
2319                 return DRM_FORMAT_C8;
2320         case DISPPLANE_BGRX555:
2321                 return DRM_FORMAT_XRGB1555;
2322         case DISPPLANE_BGRX565:
2323                 return DRM_FORMAT_RGB565;
2324         default:
2325         case DISPPLANE_BGRX888:
2326                 return DRM_FORMAT_XRGB8888;
2327         case DISPPLANE_RGBX888:
2328                 return DRM_FORMAT_XBGR8888;
2329         case DISPPLANE_BGRX101010:
2330                 return DRM_FORMAT_XRGB2101010;
2331         case DISPPLANE_RGBX101010:
2332                 return DRM_FORMAT_XBGR2101010;
2333         }
2334 }
2335
2336 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337                                   struct intel_plane_config *plane_config)
2338 {
2339         struct drm_device *dev = crtc->base.dev;
2340         struct drm_i915_gem_object *obj = NULL;
2341         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342         u32 base = plane_config->base;
2343
2344         if (plane_config->size == 0)
2345                 return false;
2346
2347         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348                                                              plane_config->size);
2349         if (!obj)
2350                 return false;
2351
2352         if (plane_config->tiled) {
2353                 obj->tiling_mode = I915_TILING_X;
2354                 obj->stride = crtc->base.primary->fb->pitches[0];
2355         }
2356
2357         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358         mode_cmd.width = crtc->base.primary->fb->width;
2359         mode_cmd.height = crtc->base.primary->fb->height;
2360         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362         mutex_lock(&dev->struct_mutex);
2363
2364         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365                                    &mode_cmd, obj)) {
2366                 DRM_DEBUG_KMS("intel fb init failed\n");
2367                 goto out_unref_obj;
2368         }
2369
2370         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371         mutex_unlock(&dev->struct_mutex);
2372
2373         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374         return true;
2375
2376 out_unref_obj:
2377         drm_gem_object_unreference(&obj->base);
2378         mutex_unlock(&dev->struct_mutex);
2379         return false;
2380 }
2381
2382 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383                                  struct intel_plane_config *plane_config)
2384 {
2385         struct drm_device *dev = intel_crtc->base.dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct drm_crtc *c;
2388         struct intel_crtc *i;
2389         struct drm_i915_gem_object *obj;
2390
2391         if (!intel_crtc->base.primary->fb)
2392                 return;
2393
2394         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395                 return;
2396
2397         kfree(intel_crtc->base.primary->fb);
2398         intel_crtc->base.primary->fb = NULL;
2399
2400         /*
2401          * Failed to alloc the obj, check to see if we should share
2402          * an fb with another CRTC instead
2403          */
2404         for_each_crtc(dev, c) {
2405                 i = to_intel_crtc(c);
2406
2407                 if (c == &intel_crtc->base)
2408                         continue;
2409
2410                 if (!i->active)
2411                         continue;
2412
2413                 obj = intel_fb_obj(c->primary->fb);
2414                 if (obj == NULL)
2415                         continue;
2416
2417                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418                         if (obj->tiling_mode != I915_TILING_NONE)
2419                                 dev_priv->preserve_bios_swizzle = true;
2420
2421                         drm_framebuffer_reference(c->primary->fb);
2422                         intel_crtc->base.primary->fb = c->primary->fb;
2423                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424                         break;
2425                 }
2426         }
2427 }
2428
2429 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430                                       struct drm_framebuffer *fb,
2431                                       int x, int y)
2432 {
2433         struct drm_device *dev = crtc->dev;
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436         struct drm_i915_gem_object *obj;
2437         int plane = intel_crtc->plane;
2438         unsigned long linear_offset;
2439         u32 dspcntr;
2440         u32 reg = DSPCNTR(plane);
2441         int pixel_size;
2442
2443         if (!intel_crtc->primary_enabled) {
2444                 I915_WRITE(reg, 0);
2445                 if (INTEL_INFO(dev)->gen >= 4)
2446                         I915_WRITE(DSPSURF(plane), 0);
2447                 else
2448                         I915_WRITE(DSPADDR(plane), 0);
2449                 POSTING_READ(reg);
2450                 return;
2451         }
2452
2453         obj = intel_fb_obj(fb);
2454         if (WARN_ON(obj == NULL))
2455                 return;
2456
2457         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459         dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461         dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463         if (INTEL_INFO(dev)->gen < 4) {
2464                 if (intel_crtc->pipe == PIPE_B)
2465                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467                 /* pipesrc and dspsize control the size that is scaled from,
2468                  * which should always be the user's requested size.
2469                  */
2470                 I915_WRITE(DSPSIZE(plane),
2471                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472                            (intel_crtc->config.pipe_src_w - 1));
2473                 I915_WRITE(DSPPOS(plane), 0);
2474         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475                 I915_WRITE(PRIMSIZE(plane),
2476                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477                            (intel_crtc->config.pipe_src_w - 1));
2478                 I915_WRITE(PRIMPOS(plane), 0);
2479                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480         }
2481
2482         switch (fb->pixel_format) {
2483         case DRM_FORMAT_C8:
2484                 dspcntr |= DISPPLANE_8BPP;
2485                 break;
2486         case DRM_FORMAT_XRGB1555:
2487         case DRM_FORMAT_ARGB1555:
2488                 dspcntr |= DISPPLANE_BGRX555;
2489                 break;
2490         case DRM_FORMAT_RGB565:
2491                 dspcntr |= DISPPLANE_BGRX565;
2492                 break;
2493         case DRM_FORMAT_XRGB8888:
2494         case DRM_FORMAT_ARGB8888:
2495                 dspcntr |= DISPPLANE_BGRX888;
2496                 break;
2497         case DRM_FORMAT_XBGR8888:
2498         case DRM_FORMAT_ABGR8888:
2499                 dspcntr |= DISPPLANE_RGBX888;
2500                 break;
2501         case DRM_FORMAT_XRGB2101010:
2502         case DRM_FORMAT_ARGB2101010:
2503                 dspcntr |= DISPPLANE_BGRX101010;
2504                 break;
2505         case DRM_FORMAT_XBGR2101010:
2506         case DRM_FORMAT_ABGR2101010:
2507                 dspcntr |= DISPPLANE_RGBX101010;
2508                 break;
2509         default:
2510                 BUG();
2511         }
2512
2513         if (INTEL_INFO(dev)->gen >= 4 &&
2514             obj->tiling_mode != I915_TILING_NONE)
2515                 dspcntr |= DISPPLANE_TILED;
2516
2517         if (IS_G4X(dev))
2518                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520         linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522         if (INTEL_INFO(dev)->gen >= 4) {
2523                 intel_crtc->dspaddr_offset =
2524                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525                                                        pixel_size,
2526                                                        fb->pitches[0]);
2527                 linear_offset -= intel_crtc->dspaddr_offset;
2528         } else {
2529                 intel_crtc->dspaddr_offset = linear_offset;
2530         }
2531
2532         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533                 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535                 x += (intel_crtc->config.pipe_src_w - 1);
2536                 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538                 /* Finding the last pixel of the last line of the display
2539                 data and adding to linear_offset*/
2540                 linear_offset +=
2541                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543         }
2544
2545         I915_WRITE(reg, dspcntr);
2546
2547         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549                       fb->pitches[0]);
2550         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551         if (INTEL_INFO(dev)->gen >= 4) {
2552                 I915_WRITE(DSPSURF(plane),
2553                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556         } else
2557                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558         POSTING_READ(reg);
2559 }
2560
2561 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562                                           struct drm_framebuffer *fb,
2563                                           int x, int y)
2564 {
2565         struct drm_device *dev = crtc->dev;
2566         struct drm_i915_private *dev_priv = dev->dev_private;
2567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568         struct drm_i915_gem_object *obj;
2569         int plane = intel_crtc->plane;
2570         unsigned long linear_offset;
2571         u32 dspcntr;
2572         u32 reg = DSPCNTR(plane);
2573         int pixel_size;
2574
2575         if (!intel_crtc->primary_enabled) {
2576                 I915_WRITE(reg, 0);
2577                 I915_WRITE(DSPSURF(plane), 0);
2578                 POSTING_READ(reg);
2579                 return;
2580         }
2581
2582         obj = intel_fb_obj(fb);
2583         if (WARN_ON(obj == NULL))
2584                 return;
2585
2586         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588         dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590         dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595         switch (fb->pixel_format) {
2596         case DRM_FORMAT_C8:
2597                 dspcntr |= DISPPLANE_8BPP;
2598                 break;
2599         case DRM_FORMAT_RGB565:
2600                 dspcntr |= DISPPLANE_BGRX565;
2601                 break;
2602         case DRM_FORMAT_XRGB8888:
2603         case DRM_FORMAT_ARGB8888:
2604                 dspcntr |= DISPPLANE_BGRX888;
2605                 break;
2606         case DRM_FORMAT_XBGR8888:
2607         case DRM_FORMAT_ABGR8888:
2608                 dspcntr |= DISPPLANE_RGBX888;
2609                 break;
2610         case DRM_FORMAT_XRGB2101010:
2611         case DRM_FORMAT_ARGB2101010:
2612                 dspcntr |= DISPPLANE_BGRX101010;
2613                 break;
2614         case DRM_FORMAT_XBGR2101010:
2615         case DRM_FORMAT_ABGR2101010:
2616                 dspcntr |= DISPPLANE_RGBX101010;
2617                 break;
2618         default:
2619                 BUG();
2620         }
2621
2622         if (obj->tiling_mode != I915_TILING_NONE)
2623                 dspcntr |= DISPPLANE_TILED;
2624
2625         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628         linear_offset = y * fb->pitches[0] + x * pixel_size;
2629         intel_crtc->dspaddr_offset =
2630                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631                                                pixel_size,
2632                                                fb->pitches[0]);
2633         linear_offset -= intel_crtc->dspaddr_offset;
2634         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635                 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638                         x += (intel_crtc->config.pipe_src_w - 1);
2639                         y += (intel_crtc->config.pipe_src_h - 1);
2640
2641                         /* Finding the last pixel of the last line of the display
2642                         data and adding to linear_offset*/
2643                         linear_offset +=
2644                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646                 }
2647         }
2648
2649         I915_WRITE(reg, dspcntr);
2650
2651         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653                       fb->pitches[0]);
2654         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655         I915_WRITE(DSPSURF(plane),
2656                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659         } else {
2660                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662         }
2663         POSTING_READ(reg);
2664 }
2665
2666 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667                                          struct drm_framebuffer *fb,
2668                                          int x, int y)
2669 {
2670         struct drm_device *dev = crtc->dev;
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673         struct intel_framebuffer *intel_fb;
2674         struct drm_i915_gem_object *obj;
2675         int pipe = intel_crtc->pipe;
2676         u32 plane_ctl, stride;
2677
2678         if (!intel_crtc->primary_enabled) {
2679                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681                 POSTING_READ(PLANE_CTL(pipe, 0));
2682                 return;
2683         }
2684
2685         plane_ctl = PLANE_CTL_ENABLE |
2686                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2687                     PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689         switch (fb->pixel_format) {
2690         case DRM_FORMAT_RGB565:
2691                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692                 break;
2693         case DRM_FORMAT_XRGB8888:
2694                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695                 break;
2696         case DRM_FORMAT_XBGR8888:
2697                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699                 break;
2700         case DRM_FORMAT_XRGB2101010:
2701                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702                 break;
2703         case DRM_FORMAT_XBGR2101010:
2704                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706                 break;
2707         default:
2708                 BUG();
2709         }
2710
2711         intel_fb = to_intel_framebuffer(fb);
2712         obj = intel_fb->obj;
2713
2714         /*
2715          * The stride is either expressed as a multiple of 64 bytes chunks for
2716          * linear buffers or in number of tiles for tiled buffers.
2717          */
2718         switch (obj->tiling_mode) {
2719         case I915_TILING_NONE:
2720                 stride = fb->pitches[0] >> 6;
2721                 break;
2722         case I915_TILING_X:
2723                 plane_ctl |= PLANE_CTL_TILED_X;
2724                 stride = fb->pitches[0] >> 9;
2725                 break;
2726         default:
2727                 BUG();
2728         }
2729
2730         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732                 plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737                       i915_gem_obj_ggtt_offset(obj),
2738                       x, y, fb->width, fb->height,
2739                       fb->pitches[0]);
2740
2741         I915_WRITE(PLANE_POS(pipe, 0), 0);
2742         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743         I915_WRITE(PLANE_SIZE(pipe, 0),
2744                    (intel_crtc->config.pipe_src_h - 1) << 16 |
2745                    (intel_crtc->config.pipe_src_w - 1));
2746         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749         POSTING_READ(PLANE_SURF(pipe, 0));
2750 }
2751
2752 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2753 static int
2754 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755                            int x, int y, enum mode_set_atomic state)
2756 {
2757         struct drm_device *dev = crtc->dev;
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760         if (dev_priv->display.disable_fbc)
2761                 dev_priv->display.disable_fbc(dev);
2762
2763         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765         return 0;
2766 }
2767
2768 static void intel_complete_page_flips(struct drm_device *dev)
2769 {
2770         struct drm_crtc *crtc;
2771
2772         for_each_crtc(dev, crtc) {
2773                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774                 enum plane plane = intel_crtc->plane;
2775
2776                 intel_prepare_page_flip(dev, plane);
2777                 intel_finish_page_flip_plane(dev, plane);
2778         }
2779 }
2780
2781 static void intel_update_primary_planes(struct drm_device *dev)
2782 {
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         struct drm_crtc *crtc;
2785
2786         for_each_crtc(dev, crtc) {
2787                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788
2789                 drm_modeset_lock(&crtc->mutex, NULL);
2790                 /*
2791                  * FIXME: Once we have proper support for primary planes (and
2792                  * disabling them without disabling the entire crtc) allow again
2793                  * a NULL crtc->primary->fb.
2794                  */
2795                 if (intel_crtc->active && crtc->primary->fb)
2796                         dev_priv->display.update_primary_plane(crtc,
2797                                                                crtc->primary->fb,
2798                                                                crtc->x,
2799                                                                crtc->y);
2800                 drm_modeset_unlock(&crtc->mutex);
2801         }
2802 }
2803
2804 void intel_prepare_reset(struct drm_device *dev)
2805 {
2806         struct drm_i915_private *dev_priv = to_i915(dev);
2807         struct intel_crtc *crtc;
2808
2809         /* no reset support for gen2 */
2810         if (IS_GEN2(dev))
2811                 return;
2812
2813         /* reset doesn't touch the display */
2814         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2815                 return;
2816
2817         drm_modeset_lock_all(dev);
2818
2819         /*
2820          * Disabling the crtcs gracefully seems nicer. Also the
2821          * g33 docs say we should at least disable all the planes.
2822          */
2823         for_each_intel_crtc(dev, crtc) {
2824                 if (crtc->active)
2825                         dev_priv->display.crtc_disable(&crtc->base);
2826         }
2827 }
2828
2829 void intel_finish_reset(struct drm_device *dev)
2830 {
2831         struct drm_i915_private *dev_priv = to_i915(dev);
2832
2833         /*
2834          * Flips in the rings will be nuked by the reset,
2835          * so complete all pending flips so that user space
2836          * will get its events and not get stuck.
2837          */
2838         intel_complete_page_flips(dev);
2839
2840         /* no reset support for gen2 */
2841         if (IS_GEN2(dev))
2842                 return;
2843
2844         /* reset doesn't touch the display */
2845         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2846                 /*
2847                  * Flips in the rings have been nuked by the reset,
2848                  * so update the base address of all primary
2849                  * planes to the the last fb to make sure we're
2850                  * showing the correct fb after a reset.
2851                  */
2852                 intel_update_primary_planes(dev);
2853                 return;
2854         }
2855
2856         /*
2857          * The display has been reset as well,
2858          * so need a full re-initialization.
2859          */
2860         intel_runtime_pm_disable_interrupts(dev_priv);
2861         intel_runtime_pm_enable_interrupts(dev_priv);
2862
2863         intel_modeset_init_hw(dev);
2864
2865         spin_lock_irq(&dev_priv->irq_lock);
2866         if (dev_priv->display.hpd_irq_setup)
2867                 dev_priv->display.hpd_irq_setup(dev);
2868         spin_unlock_irq(&dev_priv->irq_lock);
2869
2870         intel_modeset_setup_hw_state(dev, true);
2871
2872         intel_hpd_init(dev_priv);
2873
2874         drm_modeset_unlock_all(dev);
2875 }
2876
2877 static int
2878 intel_finish_fb(struct drm_framebuffer *old_fb)
2879 {
2880         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2881         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2882         bool was_interruptible = dev_priv->mm.interruptible;
2883         int ret;
2884
2885         /* Big Hammer, we also need to ensure that any pending
2886          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2887          * current scanout is retired before unpinning the old
2888          * framebuffer.
2889          *
2890          * This should only fail upon a hung GPU, in which case we
2891          * can safely continue.
2892          */
2893         dev_priv->mm.interruptible = false;
2894         ret = i915_gem_object_finish_gpu(obj);
2895         dev_priv->mm.interruptible = was_interruptible;
2896
2897         return ret;
2898 }
2899
2900 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901 {
2902         struct drm_device *dev = crtc->dev;
2903         struct drm_i915_private *dev_priv = dev->dev_private;
2904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2905         bool pending;
2906
2907         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2908             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2909                 return false;
2910
2911         spin_lock_irq(&dev->event_lock);
2912         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2913         spin_unlock_irq(&dev->event_lock);
2914
2915         return pending;
2916 }
2917
2918 static void intel_update_pipe_size(struct intel_crtc *crtc)
2919 {
2920         struct drm_device *dev = crtc->base.dev;
2921         struct drm_i915_private *dev_priv = dev->dev_private;
2922         const struct drm_display_mode *adjusted_mode;
2923
2924         if (!i915.fastboot)
2925                 return;
2926
2927         /*
2928          * Update pipe size and adjust fitter if needed: the reason for this is
2929          * that in compute_mode_changes we check the native mode (not the pfit
2930          * mode) to see if we can flip rather than do a full mode set. In the
2931          * fastboot case, we'll flip, but if we don't update the pipesrc and
2932          * pfit state, we'll end up with a big fb scanned out into the wrong
2933          * sized surface.
2934          *
2935          * To fix this properly, we need to hoist the checks up into
2936          * compute_mode_changes (or above), check the actual pfit state and
2937          * whether the platform allows pfit disable with pipe active, and only
2938          * then update the pipesrc and pfit state, even on the flip path.
2939          */
2940
2941         adjusted_mode = &crtc->config.adjusted_mode;
2942
2943         I915_WRITE(PIPESRC(crtc->pipe),
2944                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2945                    (adjusted_mode->crtc_vdisplay - 1));
2946         if (!crtc->config.pch_pfit.enabled &&
2947             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2948              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2949                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2950                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2951                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2952         }
2953         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2954         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2955 }
2956
2957 static int
2958 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2959                     struct drm_framebuffer *fb)
2960 {
2961         struct drm_device *dev = crtc->dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964         enum pipe pipe = intel_crtc->pipe;
2965         struct drm_framebuffer *old_fb = crtc->primary->fb;
2966         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2967         int ret;
2968
2969         if (intel_crtc_has_pending_flip(crtc)) {
2970                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2971                 return -EBUSY;
2972         }
2973
2974         /* no fb bound */
2975         if (!fb) {
2976                 DRM_ERROR("No FB bound\n");
2977                 return 0;
2978         }
2979
2980         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2981                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2982                           plane_name(intel_crtc->plane),
2983                           INTEL_INFO(dev)->num_pipes);
2984                 return -EINVAL;
2985         }
2986
2987         mutex_lock(&dev->struct_mutex);
2988         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
2989         if (ret == 0)
2990                 i915_gem_track_fb(old_obj, intel_fb_obj(fb),
2991                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2992         mutex_unlock(&dev->struct_mutex);
2993         if (ret != 0) {
2994                 DRM_ERROR("pin & fence failed\n");
2995                 return ret;
2996         }
2997
2998         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2999
3000         if (intel_crtc->active)
3001                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
3002
3003         crtc->primary->fb = fb;
3004         crtc->x = x;
3005         crtc->y = y;
3006
3007         if (old_fb) {
3008                 if (intel_crtc->active && old_fb != fb)
3009                         intel_wait_for_vblank(dev, intel_crtc->pipe);
3010                 mutex_lock(&dev->struct_mutex);
3011                 intel_unpin_fb_obj(old_obj);
3012                 mutex_unlock(&dev->struct_mutex);
3013         }
3014
3015         mutex_lock(&dev->struct_mutex);
3016         intel_update_fbc(dev);
3017         mutex_unlock(&dev->struct_mutex);
3018
3019         return 0;
3020 }
3021
3022 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3023 {
3024         struct drm_device *dev = crtc->dev;
3025         struct drm_i915_private *dev_priv = dev->dev_private;
3026         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3027         int pipe = intel_crtc->pipe;
3028         u32 reg, temp;
3029
3030         /* enable normal train */
3031         reg = FDI_TX_CTL(pipe);
3032         temp = I915_READ(reg);
3033         if (IS_IVYBRIDGE(dev)) {
3034                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3035                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3036         } else {
3037                 temp &= ~FDI_LINK_TRAIN_NONE;
3038                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3039         }
3040         I915_WRITE(reg, temp);
3041
3042         reg = FDI_RX_CTL(pipe);
3043         temp = I915_READ(reg);
3044         if (HAS_PCH_CPT(dev)) {
3045                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3046                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3047         } else {
3048                 temp &= ~FDI_LINK_TRAIN_NONE;
3049                 temp |= FDI_LINK_TRAIN_NONE;
3050         }
3051         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3052
3053         /* wait one idle pattern time */
3054         POSTING_READ(reg);
3055         udelay(1000);
3056
3057         /* IVB wants error correction enabled */
3058         if (IS_IVYBRIDGE(dev))
3059                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3060                            FDI_FE_ERRC_ENABLE);
3061 }
3062
3063 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3064 {
3065         return crtc->base.enabled && crtc->active &&
3066                 crtc->config.has_pch_encoder;
3067 }
3068
3069 static void ivb_modeset_global_resources(struct drm_device *dev)
3070 {
3071         struct drm_i915_private *dev_priv = dev->dev_private;
3072         struct intel_crtc *pipe_B_crtc =
3073                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3074         struct intel_crtc *pipe_C_crtc =
3075                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3076         uint32_t temp;
3077
3078         /*
3079          * When everything is off disable fdi C so that we could enable fdi B
3080          * with all lanes. Note that we don't care about enabled pipes without
3081          * an enabled pch encoder.
3082          */
3083         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3084             !pipe_has_enabled_pch(pipe_C_crtc)) {
3085                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3086                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3087
3088                 temp = I915_READ(SOUTH_CHICKEN1);
3089                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3090                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3091                 I915_WRITE(SOUTH_CHICKEN1, temp);
3092         }
3093 }
3094
3095 /* The FDI link training functions for ILK/Ibexpeak. */
3096 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3097 {
3098         struct drm_device *dev = crtc->dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101         int pipe = intel_crtc->pipe;
3102         u32 reg, temp, tries;
3103
3104         /* FDI needs bits from pipe first */
3105         assert_pipe_enabled(dev_priv, pipe);
3106
3107         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3108            for train result */
3109         reg = FDI_RX_IMR(pipe);
3110         temp = I915_READ(reg);
3111         temp &= ~FDI_RX_SYMBOL_LOCK;
3112         temp &= ~FDI_RX_BIT_LOCK;
3113         I915_WRITE(reg, temp);
3114         I915_READ(reg);
3115         udelay(150);
3116
3117         /* enable CPU FDI TX and PCH FDI RX */
3118         reg = FDI_TX_CTL(pipe);
3119         temp = I915_READ(reg);
3120         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3121         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3122         temp &= ~FDI_LINK_TRAIN_NONE;
3123         temp |= FDI_LINK_TRAIN_PATTERN_1;
3124         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3125
3126         reg = FDI_RX_CTL(pipe);
3127         temp = I915_READ(reg);
3128         temp &= ~FDI_LINK_TRAIN_NONE;
3129         temp |= FDI_LINK_TRAIN_PATTERN_1;
3130         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3131
3132         POSTING_READ(reg);
3133         udelay(150);
3134
3135         /* Ironlake workaround, enable clock pointer after FDI enable*/
3136         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3137         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3138                    FDI_RX_PHASE_SYNC_POINTER_EN);
3139
3140         reg = FDI_RX_IIR(pipe);
3141         for (tries = 0; tries < 5; tries++) {
3142                 temp = I915_READ(reg);
3143                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3144
3145                 if ((temp & FDI_RX_BIT_LOCK)) {
3146                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3147                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3148                         break;
3149                 }
3150         }
3151         if (tries == 5)
3152                 DRM_ERROR("FDI train 1 fail!\n");
3153
3154         /* Train 2 */
3155         reg = FDI_TX_CTL(pipe);
3156         temp = I915_READ(reg);
3157         temp &= ~FDI_LINK_TRAIN_NONE;
3158         temp |= FDI_LINK_TRAIN_PATTERN_2;
3159         I915_WRITE(reg, temp);
3160
3161         reg = FDI_RX_CTL(pipe);
3162         temp = I915_READ(reg);
3163         temp &= ~FDI_LINK_TRAIN_NONE;
3164         temp |= FDI_LINK_TRAIN_PATTERN_2;
3165         I915_WRITE(reg, temp);
3166
3167         POSTING_READ(reg);
3168         udelay(150);
3169
3170         reg = FDI_RX_IIR(pipe);
3171         for (tries = 0; tries < 5; tries++) {
3172                 temp = I915_READ(reg);
3173                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3174
3175                 if (temp & FDI_RX_SYMBOL_LOCK) {
3176                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3177                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3178                         break;
3179                 }
3180         }
3181         if (tries == 5)
3182                 DRM_ERROR("FDI train 2 fail!\n");
3183
3184         DRM_DEBUG_KMS("FDI train done\n");
3185
3186 }
3187
3188 static const int snb_b_fdi_train_param[] = {
3189         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3190         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3191         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3192         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3193 };
3194
3195 /* The FDI link training functions for SNB/Cougarpoint. */
3196 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3197 {
3198         struct drm_device *dev = crtc->dev;
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201         int pipe = intel_crtc->pipe;
3202         u32 reg, temp, i, retry;
3203
3204         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3205            for train result */
3206         reg = FDI_RX_IMR(pipe);
3207         temp = I915_READ(reg);
3208         temp &= ~FDI_RX_SYMBOL_LOCK;
3209         temp &= ~FDI_RX_BIT_LOCK;
3210         I915_WRITE(reg, temp);
3211
3212         POSTING_READ(reg);
3213         udelay(150);
3214
3215         /* enable CPU FDI TX and PCH FDI RX */
3216         reg = FDI_TX_CTL(pipe);
3217         temp = I915_READ(reg);
3218         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3219         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3220         temp &= ~FDI_LINK_TRAIN_NONE;
3221         temp |= FDI_LINK_TRAIN_PATTERN_1;
3222         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3223         /* SNB-B */
3224         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3225         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3226
3227         I915_WRITE(FDI_RX_MISC(pipe),
3228                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3229
3230         reg = FDI_RX_CTL(pipe);
3231         temp = I915_READ(reg);
3232         if (HAS_PCH_CPT(dev)) {
3233                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3234                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3235         } else {
3236                 temp &= ~FDI_LINK_TRAIN_NONE;
3237                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3238         }
3239         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3240
3241         POSTING_READ(reg);
3242         udelay(150);
3243
3244         for (i = 0; i < 4; i++) {
3245                 reg = FDI_TX_CTL(pipe);
3246                 temp = I915_READ(reg);
3247                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3248                 temp |= snb_b_fdi_train_param[i];
3249                 I915_WRITE(reg, temp);
3250
3251                 POSTING_READ(reg);
3252                 udelay(500);
3253
3254                 for (retry = 0; retry < 5; retry++) {
3255                         reg = FDI_RX_IIR(pipe);
3256                         temp = I915_READ(reg);
3257                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3258                         if (temp & FDI_RX_BIT_LOCK) {
3259                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3260                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3261                                 break;
3262                         }
3263                         udelay(50);
3264                 }
3265                 if (retry < 5)
3266                         break;
3267         }
3268         if (i == 4)
3269                 DRM_ERROR("FDI train 1 fail!\n");
3270
3271         /* Train 2 */
3272         reg = FDI_TX_CTL(pipe);
3273         temp = I915_READ(reg);
3274         temp &= ~FDI_LINK_TRAIN_NONE;
3275         temp |= FDI_LINK_TRAIN_PATTERN_2;
3276         if (IS_GEN6(dev)) {
3277                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3278                 /* SNB-B */
3279                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3280         }
3281         I915_WRITE(reg, temp);
3282
3283         reg = FDI_RX_CTL(pipe);
3284         temp = I915_READ(reg);
3285         if (HAS_PCH_CPT(dev)) {
3286                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3287                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3288         } else {
3289                 temp &= ~FDI_LINK_TRAIN_NONE;
3290                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3291         }
3292         I915_WRITE(reg, temp);
3293
3294         POSTING_READ(reg);
3295         udelay(150);
3296
3297         for (i = 0; i < 4; i++) {
3298                 reg = FDI_TX_CTL(pipe);
3299                 temp = I915_READ(reg);
3300                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3301                 temp |= snb_b_fdi_train_param[i];
3302                 I915_WRITE(reg, temp);
3303
3304                 POSTING_READ(reg);
3305                 udelay(500);
3306
3307                 for (retry = 0; retry < 5; retry++) {
3308                         reg = FDI_RX_IIR(pipe);
3309                         temp = I915_READ(reg);
3310                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3311                         if (temp & FDI_RX_SYMBOL_LOCK) {
3312                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3313                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3314                                 break;
3315                         }
3316                         udelay(50);
3317                 }
3318                 if (retry < 5)
3319                         break;
3320         }
3321         if (i == 4)
3322                 DRM_ERROR("FDI train 2 fail!\n");
3323
3324         DRM_DEBUG_KMS("FDI train done.\n");
3325 }
3326
3327 /* Manual link training for Ivy Bridge A0 parts */
3328 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3329 {
3330         struct drm_device *dev = crtc->dev;
3331         struct drm_i915_private *dev_priv = dev->dev_private;
3332         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333         int pipe = intel_crtc->pipe;
3334         u32 reg, temp, i, j;
3335
3336         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3337            for train result */
3338         reg = FDI_RX_IMR(pipe);
3339         temp = I915_READ(reg);
3340         temp &= ~FDI_RX_SYMBOL_LOCK;
3341         temp &= ~FDI_RX_BIT_LOCK;
3342         I915_WRITE(reg, temp);
3343
3344         POSTING_READ(reg);
3345         udelay(150);
3346
3347         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3348                       I915_READ(FDI_RX_IIR(pipe)));
3349
3350         /* Try each vswing and preemphasis setting twice before moving on */
3351         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3352                 /* disable first in case we need to retry */
3353                 reg = FDI_TX_CTL(pipe);
3354                 temp = I915_READ(reg);
3355                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3356                 temp &= ~FDI_TX_ENABLE;
3357                 I915_WRITE(reg, temp);
3358
3359                 reg = FDI_RX_CTL(pipe);
3360                 temp = I915_READ(reg);
3361                 temp &= ~FDI_LINK_TRAIN_AUTO;
3362                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3363                 temp &= ~FDI_RX_ENABLE;
3364                 I915_WRITE(reg, temp);
3365
3366                 /* enable CPU FDI TX and PCH FDI RX */
3367                 reg = FDI_TX_CTL(pipe);
3368                 temp = I915_READ(reg);
3369                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3370                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3371                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3372                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3373                 temp |= snb_b_fdi_train_param[j/2];
3374                 temp |= FDI_COMPOSITE_SYNC;
3375                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3376
3377                 I915_WRITE(FDI_RX_MISC(pipe),
3378                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3379
3380                 reg = FDI_RX_CTL(pipe);
3381                 temp = I915_READ(reg);
3382                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3383                 temp |= FDI_COMPOSITE_SYNC;
3384                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3385
3386                 POSTING_READ(reg);
3387                 udelay(1); /* should be 0.5us */
3388
3389                 for (i = 0; i < 4; i++) {
3390                         reg = FDI_RX_IIR(pipe);
3391                         temp = I915_READ(reg);
3392                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3393
3394                         if (temp & FDI_RX_BIT_LOCK ||
3395                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3396                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3397                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3398                                               i);
3399                                 break;
3400                         }
3401                         udelay(1); /* should be 0.5us */
3402                 }
3403                 if (i == 4) {
3404                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3405                         continue;
3406                 }
3407
3408                 /* Train 2 */
3409                 reg = FDI_TX_CTL(pipe);
3410                 temp = I915_READ(reg);
3411                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3412                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3413                 I915_WRITE(reg, temp);
3414
3415                 reg = FDI_RX_CTL(pipe);
3416                 temp = I915_READ(reg);
3417                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3418                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3419                 I915_WRITE(reg, temp);
3420
3421                 POSTING_READ(reg);
3422                 udelay(2); /* should be 1.5us */
3423
3424                 for (i = 0; i < 4; i++) {
3425                         reg = FDI_RX_IIR(pipe);
3426                         temp = I915_READ(reg);
3427                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3428
3429                         if (temp & FDI_RX_SYMBOL_LOCK ||
3430                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3431                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3432                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3433                                               i);
3434                                 goto train_done;
3435                         }
3436                         udelay(2); /* should be 1.5us */
3437                 }
3438                 if (i == 4)
3439                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3440         }
3441
3442 train_done:
3443         DRM_DEBUG_KMS("FDI train done.\n");
3444 }
3445
3446 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3447 {
3448         struct drm_device *dev = intel_crtc->base.dev;
3449         struct drm_i915_private *dev_priv = dev->dev_private;
3450         int pipe = intel_crtc->pipe;
3451         u32 reg, temp;
3452
3453
3454         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3455         reg = FDI_RX_CTL(pipe);
3456         temp = I915_READ(reg);
3457         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3458         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3459         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3460         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3461
3462         POSTING_READ(reg);
3463         udelay(200);
3464
3465         /* Switch from Rawclk to PCDclk */
3466         temp = I915_READ(reg);
3467         I915_WRITE(reg, temp | FDI_PCDCLK);
3468
3469         POSTING_READ(reg);
3470         udelay(200);
3471
3472         /* Enable CPU FDI TX PLL, always on for Ironlake */
3473         reg = FDI_TX_CTL(pipe);
3474         temp = I915_READ(reg);
3475         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3476                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3477
3478                 POSTING_READ(reg);
3479                 udelay(100);
3480         }
3481 }
3482
3483 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3484 {
3485         struct drm_device *dev = intel_crtc->base.dev;
3486         struct drm_i915_private *dev_priv = dev->dev_private;
3487         int pipe = intel_crtc->pipe;
3488         u32 reg, temp;
3489
3490         /* Switch from PCDclk to Rawclk */
3491         reg = FDI_RX_CTL(pipe);
3492         temp = I915_READ(reg);
3493         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3494
3495         /* Disable CPU FDI TX PLL */
3496         reg = FDI_TX_CTL(pipe);
3497         temp = I915_READ(reg);
3498         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3499
3500         POSTING_READ(reg);
3501         udelay(100);
3502
3503         reg = FDI_RX_CTL(pipe);
3504         temp = I915_READ(reg);
3505         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3506
3507         /* Wait for the clocks to turn off. */
3508         POSTING_READ(reg);
3509         udelay(100);
3510 }
3511
3512 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3513 {
3514         struct drm_device *dev = crtc->dev;
3515         struct drm_i915_private *dev_priv = dev->dev_private;
3516         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517         int pipe = intel_crtc->pipe;
3518         u32 reg, temp;
3519
3520         /* disable CPU FDI tx and PCH FDI rx */
3521         reg = FDI_TX_CTL(pipe);
3522         temp = I915_READ(reg);
3523         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3524         POSTING_READ(reg);
3525
3526         reg = FDI_RX_CTL(pipe);
3527         temp = I915_READ(reg);
3528         temp &= ~(0x7 << 16);
3529         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3530         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3531
3532         POSTING_READ(reg);
3533         udelay(100);
3534
3535         /* Ironlake workaround, disable clock pointer after downing FDI */
3536         if (HAS_PCH_IBX(dev))
3537                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3538
3539         /* still set train pattern 1 */
3540         reg = FDI_TX_CTL(pipe);
3541         temp = I915_READ(reg);
3542         temp &= ~FDI_LINK_TRAIN_NONE;
3543         temp |= FDI_LINK_TRAIN_PATTERN_1;
3544         I915_WRITE(reg, temp);
3545
3546         reg = FDI_RX_CTL(pipe);
3547         temp = I915_READ(reg);
3548         if (HAS_PCH_CPT(dev)) {
3549                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3551         } else {
3552                 temp &= ~FDI_LINK_TRAIN_NONE;
3553                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3554         }
3555         /* BPC in FDI rx is consistent with that in PIPECONF */
3556         temp &= ~(0x07 << 16);
3557         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3558         I915_WRITE(reg, temp);
3559
3560         POSTING_READ(reg);
3561         udelay(100);
3562 }
3563
3564 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3565 {
3566         struct intel_crtc *crtc;
3567
3568         /* Note that we don't need to be called with mode_config.lock here
3569          * as our list of CRTC objects is static for the lifetime of the
3570          * device and so cannot disappear as we iterate. Similarly, we can
3571          * happily treat the predicates as racy, atomic checks as userspace
3572          * cannot claim and pin a new fb without at least acquring the
3573          * struct_mutex and so serialising with us.
3574          */
3575         for_each_intel_crtc(dev, crtc) {
3576                 if (atomic_read(&crtc->unpin_work_count) == 0)
3577                         continue;
3578
3579                 if (crtc->unpin_work)
3580                         intel_wait_for_vblank(dev, crtc->pipe);
3581
3582                 return true;
3583         }
3584
3585         return false;
3586 }
3587
3588 static void page_flip_completed(struct intel_crtc *intel_crtc)
3589 {
3590         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3591         struct intel_unpin_work *work = intel_crtc->unpin_work;
3592
3593         /* ensure that the unpin work is consistent wrt ->pending. */
3594         smp_rmb();
3595         intel_crtc->unpin_work = NULL;
3596
3597         if (work->event)
3598                 drm_send_vblank_event(intel_crtc->base.dev,
3599                                       intel_crtc->pipe,
3600                                       work->event);
3601
3602         drm_crtc_vblank_put(&intel_crtc->base);
3603
3604         wake_up_all(&dev_priv->pending_flip_queue);
3605         queue_work(dev_priv->wq, &work->work);
3606
3607         trace_i915_flip_complete(intel_crtc->plane,
3608                                  work->pending_flip_obj);
3609 }
3610
3611 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3612 {
3613         struct drm_device *dev = crtc->dev;
3614         struct drm_i915_private *dev_priv = dev->dev_private;
3615
3616         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3617         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3618                                        !intel_crtc_has_pending_flip(crtc),
3619                                        60*HZ) == 0)) {
3620                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3621
3622                 spin_lock_irq(&dev->event_lock);
3623                 if (intel_crtc->unpin_work) {
3624                         WARN_ONCE(1, "Removing stuck page flip\n");
3625                         page_flip_completed(intel_crtc);
3626                 }
3627                 spin_unlock_irq(&dev->event_lock);
3628         }
3629
3630         if (crtc->primary->fb) {
3631                 mutex_lock(&dev->struct_mutex);
3632                 intel_finish_fb(crtc->primary->fb);
3633                 mutex_unlock(&dev->struct_mutex);
3634         }
3635 }
3636
3637 /* Program iCLKIP clock to the desired frequency */
3638 static void lpt_program_iclkip(struct drm_crtc *crtc)
3639 {
3640         struct drm_device *dev = crtc->dev;
3641         struct drm_i915_private *dev_priv = dev->dev_private;
3642         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3643         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3644         u32 temp;
3645
3646         mutex_lock(&dev_priv->dpio_lock);
3647
3648         /* It is necessary to ungate the pixclk gate prior to programming
3649          * the divisors, and gate it back when it is done.
3650          */
3651         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3652
3653         /* Disable SSCCTL */
3654         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3655                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3656                                 SBI_SSCCTL_DISABLE,
3657                         SBI_ICLK);
3658
3659         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3660         if (clock == 20000) {
3661                 auxdiv = 1;
3662                 divsel = 0x41;
3663                 phaseinc = 0x20;
3664         } else {
3665                 /* The iCLK virtual clock root frequency is in MHz,
3666                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3667                  * divisors, it is necessary to divide one by another, so we
3668                  * convert the virtual clock precision to KHz here for higher
3669                  * precision.
3670                  */
3671                 u32 iclk_virtual_root_freq = 172800 * 1000;
3672                 u32 iclk_pi_range = 64;
3673                 u32 desired_divisor, msb_divisor_value, pi_value;
3674
3675                 desired_divisor = (iclk_virtual_root_freq / clock);
3676                 msb_divisor_value = desired_divisor / iclk_pi_range;
3677                 pi_value = desired_divisor % iclk_pi_range;
3678
3679                 auxdiv = 0;
3680                 divsel = msb_divisor_value - 2;
3681                 phaseinc = pi_value;
3682         }
3683
3684         /* This should not happen with any sane values */
3685         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3686                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3687         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3688                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3689
3690         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3691                         clock,
3692                         auxdiv,
3693                         divsel,
3694                         phasedir,
3695                         phaseinc);
3696
3697         /* Program SSCDIVINTPHASE6 */
3698         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3699         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3700         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3701         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3702         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3703         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3704         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3705         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3706
3707         /* Program SSCAUXDIV */
3708         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3709         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3710         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3711         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3712
3713         /* Enable modulator and associated divider */
3714         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3715         temp &= ~SBI_SSCCTL_DISABLE;
3716         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3717
3718         /* Wait for initialization time */
3719         udelay(24);
3720
3721         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3722
3723         mutex_unlock(&dev_priv->dpio_lock);
3724 }
3725
3726 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3727                                                 enum pipe pch_transcoder)
3728 {
3729         struct drm_device *dev = crtc->base.dev;
3730         struct drm_i915_private *dev_priv = dev->dev_private;
3731         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3732
3733         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3734                    I915_READ(HTOTAL(cpu_transcoder)));
3735         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3736                    I915_READ(HBLANK(cpu_transcoder)));
3737         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3738                    I915_READ(HSYNC(cpu_transcoder)));
3739
3740         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3741                    I915_READ(VTOTAL(cpu_transcoder)));
3742         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3743                    I915_READ(VBLANK(cpu_transcoder)));
3744         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3745                    I915_READ(VSYNC(cpu_transcoder)));
3746         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3747                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3748 }
3749
3750 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3751 {
3752         struct drm_i915_private *dev_priv = dev->dev_private;
3753         uint32_t temp;
3754
3755         temp = I915_READ(SOUTH_CHICKEN1);
3756         if (temp & FDI_BC_BIFURCATION_SELECT)
3757                 return;
3758
3759         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3760         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3761
3762         temp |= FDI_BC_BIFURCATION_SELECT;
3763         DRM_DEBUG_KMS("enabling fdi C rx\n");
3764         I915_WRITE(SOUTH_CHICKEN1, temp);
3765         POSTING_READ(SOUTH_CHICKEN1);
3766 }
3767
3768 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3769 {
3770         struct drm_device *dev = intel_crtc->base.dev;
3771         struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773         switch (intel_crtc->pipe) {
3774         case PIPE_A:
3775                 break;
3776         case PIPE_B:
3777                 if (intel_crtc->config.fdi_lanes > 2)
3778                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3779                 else
3780                         cpt_enable_fdi_bc_bifurcation(dev);
3781
3782                 break;
3783         case PIPE_C:
3784                 cpt_enable_fdi_bc_bifurcation(dev);
3785
3786                 break;
3787         default:
3788                 BUG();
3789         }
3790 }
3791
3792 /*
3793  * Enable PCH resources required for PCH ports:
3794  *   - PCH PLLs
3795  *   - FDI training & RX/TX
3796  *   - update transcoder timings
3797  *   - DP transcoding bits
3798  *   - transcoder
3799  */
3800 static void ironlake_pch_enable(struct drm_crtc *crtc)
3801 {
3802         struct drm_device *dev = crtc->dev;
3803         struct drm_i915_private *dev_priv = dev->dev_private;
3804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3805         int pipe = intel_crtc->pipe;
3806         u32 reg, temp;
3807
3808         assert_pch_transcoder_disabled(dev_priv, pipe);
3809
3810         if (IS_IVYBRIDGE(dev))
3811                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3812
3813         /* Write the TU size bits before fdi link training, so that error
3814          * detection works. */
3815         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3816                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3817
3818         /* For PCH output, training FDI link */
3819         dev_priv->display.fdi_link_train(crtc);
3820
3821         /* We need to program the right clock selection before writing the pixel
3822          * mutliplier into the DPLL. */
3823         if (HAS_PCH_CPT(dev)) {
3824                 u32 sel;
3825
3826                 temp = I915_READ(PCH_DPLL_SEL);
3827                 temp |= TRANS_DPLL_ENABLE(pipe);
3828                 sel = TRANS_DPLLB_SEL(pipe);
3829                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3830                         temp |= sel;
3831                 else
3832                         temp &= ~sel;
3833                 I915_WRITE(PCH_DPLL_SEL, temp);
3834         }
3835
3836         /* XXX: pch pll's can be enabled any time before we enable the PCH
3837          * transcoder, and we actually should do this to not upset any PCH
3838          * transcoder that already use the clock when we share it.
3839          *
3840          * Note that enable_shared_dpll tries to do the right thing, but
3841          * get_shared_dpll unconditionally resets the pll - we need that to have
3842          * the right LVDS enable sequence. */
3843         intel_enable_shared_dpll(intel_crtc);
3844
3845         /* set transcoder timing, panel must allow it */
3846         assert_panel_unlocked(dev_priv, pipe);
3847         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3848
3849         intel_fdi_normal_train(crtc);
3850
3851         /* For PCH DP, enable TRANS_DP_CTL */
3852         if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3853                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3854                 reg = TRANS_DP_CTL(pipe);
3855                 temp = I915_READ(reg);
3856                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3857                           TRANS_DP_SYNC_MASK |
3858                           TRANS_DP_BPC_MASK);
3859                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3860                          TRANS_DP_ENH_FRAMING);
3861                 temp |= bpc << 9; /* same format but at 11:9 */
3862
3863                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3864                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3865                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3866                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3867
3868                 switch (intel_trans_dp_port_sel(crtc)) {
3869                 case PCH_DP_B:
3870                         temp |= TRANS_DP_PORT_SEL_B;
3871                         break;
3872                 case PCH_DP_C:
3873                         temp |= TRANS_DP_PORT_SEL_C;
3874                         break;
3875                 case PCH_DP_D:
3876                         temp |= TRANS_DP_PORT_SEL_D;
3877                         break;
3878                 default:
3879                         BUG();
3880                 }
3881
3882                 I915_WRITE(reg, temp);
3883         }
3884
3885         ironlake_enable_pch_transcoder(dev_priv, pipe);
3886 }
3887
3888 static void lpt_pch_enable(struct drm_crtc *crtc)
3889 {
3890         struct drm_device *dev = crtc->dev;
3891         struct drm_i915_private *dev_priv = dev->dev_private;
3892         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3893         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3894
3895         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3896
3897         lpt_program_iclkip(crtc);
3898
3899         /* Set transcoder timing. */
3900         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3901
3902         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3903 }
3904
3905 void intel_put_shared_dpll(struct intel_crtc *crtc)
3906 {
3907         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3908
3909         if (pll == NULL)
3910                 return;
3911
3912         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3913                 WARN(1, "bad %s crtc mask\n", pll->name);
3914                 return;
3915         }
3916
3917         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3918         if (pll->config.crtc_mask == 0) {
3919                 WARN_ON(pll->on);
3920                 WARN_ON(pll->active);
3921         }
3922
3923         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3924 }
3925
3926 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3927 {
3928         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3929         struct intel_shared_dpll *pll;
3930         enum intel_dpll_id i;
3931
3932         if (HAS_PCH_IBX(dev_priv->dev)) {
3933                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3934                 i = (enum intel_dpll_id) crtc->pipe;
3935                 pll = &dev_priv->shared_dplls[i];
3936
3937                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3938                               crtc->base.base.id, pll->name);
3939
3940                 WARN_ON(pll->new_config->crtc_mask);
3941
3942                 goto found;
3943         }
3944
3945         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3946                 pll = &dev_priv->shared_dplls[i];
3947
3948                 /* Only want to check enabled timings first */
3949                 if (pll->new_config->crtc_mask == 0)
3950                         continue;
3951
3952                 if (memcmp(&crtc->new_config->dpll_hw_state,
3953                            &pll->new_config->hw_state,
3954                            sizeof(pll->new_config->hw_state)) == 0) {
3955                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3956                                       crtc->base.base.id, pll->name,
3957                                       pll->new_config->crtc_mask,
3958                                       pll->active);
3959                         goto found;
3960                 }
3961         }
3962
3963         /* Ok no matching timings, maybe there's a free one? */
3964         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3965                 pll = &dev_priv->shared_dplls[i];
3966                 if (pll->new_config->crtc_mask == 0) {
3967                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3968                                       crtc->base.base.id, pll->name);
3969                         goto found;
3970                 }
3971         }
3972
3973         return NULL;
3974
3975 found:
3976         if (pll->new_config->crtc_mask == 0)
3977                 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3978
3979         crtc->new_config->shared_dpll = i;
3980         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3981                          pipe_name(crtc->pipe));
3982
3983         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3984
3985         return pll;
3986 }
3987
3988 /**
3989  * intel_shared_dpll_start_config - start a new PLL staged config
3990  * @dev_priv: DRM device
3991  * @clear_pipes: mask of pipes that will have their PLLs freed
3992  *
3993  * Starts a new PLL staged config, copying the current config but
3994  * releasing the references of pipes specified in clear_pipes.
3995  */
3996 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3997                                           unsigned clear_pipes)
3998 {
3999         struct intel_shared_dpll *pll;
4000         enum intel_dpll_id i;
4001
4002         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4003                 pll = &dev_priv->shared_dplls[i];
4004
4005                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4006                                           GFP_KERNEL);
4007                 if (!pll->new_config)
4008                         goto cleanup;
4009
4010                 pll->new_config->crtc_mask &= ~clear_pipes;
4011         }
4012
4013         return 0;
4014
4015 cleanup:
4016         while (--i >= 0) {
4017                 pll = &dev_priv->shared_dplls[i];
4018                 kfree(pll->new_config);
4019                 pll->new_config = NULL;
4020         }
4021
4022         return -ENOMEM;
4023 }
4024
4025 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4026 {
4027         struct intel_shared_dpll *pll;
4028         enum intel_dpll_id i;
4029
4030         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4031                 pll = &dev_priv->shared_dplls[i];
4032
4033                 WARN_ON(pll->new_config == &pll->config);
4034
4035                 pll->config = *pll->new_config;
4036                 kfree(pll->new_config);
4037                 pll->new_config = NULL;
4038         }
4039 }
4040
4041 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4042 {
4043         struct intel_shared_dpll *pll;
4044         enum intel_dpll_id i;
4045
4046         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4047                 pll = &dev_priv->shared_dplls[i];
4048
4049                 WARN_ON(pll->new_config == &pll->config);
4050
4051                 kfree(pll->new_config);
4052                 pll->new_config = NULL;
4053         }
4054 }
4055
4056 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4057 {
4058         struct drm_i915_private *dev_priv = dev->dev_private;
4059         int dslreg = PIPEDSL(pipe);
4060         u32 temp;
4061
4062         temp = I915_READ(dslreg);
4063         udelay(500);
4064         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4065                 if (wait_for(I915_READ(dslreg) != temp, 5))
4066                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4067         }
4068 }
4069
4070 static void skylake_pfit_enable(struct intel_crtc *crtc)
4071 {
4072         struct drm_device *dev = crtc->base.dev;
4073         struct drm_i915_private *dev_priv = dev->dev_private;
4074         int pipe = crtc->pipe;
4075
4076         if (crtc->config.pch_pfit.enabled) {
4077                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4078                 I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4079                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4080         }
4081 }
4082
4083 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4084 {
4085         struct drm_device *dev = crtc->base.dev;
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087         int pipe = crtc->pipe;
4088
4089         if (crtc->config.pch_pfit.enabled) {
4090                 /* Force use of hard-coded filter coefficients
4091                  * as some pre-programmed values are broken,
4092                  * e.g. x201.
4093                  */
4094                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4095                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4096                                                  PF_PIPE_SEL_IVB(pipe));
4097                 else
4098                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4099                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4100                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4101         }
4102 }
4103
4104 static void intel_enable_planes(struct drm_crtc *crtc)
4105 {
4106         struct drm_device *dev = crtc->dev;
4107         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4108         struct drm_plane *plane;
4109         struct intel_plane *intel_plane;
4110
4111         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4112                 intel_plane = to_intel_plane(plane);
4113                 if (intel_plane->pipe == pipe)
4114                         intel_plane_restore(&intel_plane->base);
4115         }
4116 }
4117
4118 static void intel_disable_planes(struct drm_crtc *crtc)
4119 {
4120         struct drm_device *dev = crtc->dev;
4121         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4122         struct drm_plane *plane;
4123         struct intel_plane *intel_plane;
4124
4125         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4126                 intel_plane = to_intel_plane(plane);
4127                 if (intel_plane->pipe == pipe)
4128                         intel_plane_disable(&intel_plane->base);
4129         }
4130 }
4131
4132 void hsw_enable_ips(struct intel_crtc *crtc)
4133 {
4134         struct drm_device *dev = crtc->base.dev;
4135         struct drm_i915_private *dev_priv = dev->dev_private;
4136
4137         if (!crtc->config.ips_enabled)
4138                 return;
4139
4140         /* We can only enable IPS after we enable a plane and wait for a vblank */
4141         intel_wait_for_vblank(dev, crtc->pipe);
4142
4143         assert_plane_enabled(dev_priv, crtc->plane);
4144         if (IS_BROADWELL(dev)) {
4145                 mutex_lock(&dev_priv->rps.hw_lock);
4146                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4147                 mutex_unlock(&dev_priv->rps.hw_lock);
4148                 /* Quoting Art Runyan: "its not safe to expect any particular
4149                  * value in IPS_CTL bit 31 after enabling IPS through the
4150                  * mailbox." Moreover, the mailbox may return a bogus state,
4151                  * so we need to just enable it and continue on.
4152                  */
4153         } else {
4154                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4155                 /* The bit only becomes 1 in the next vblank, so this wait here
4156                  * is essentially intel_wait_for_vblank. If we don't have this
4157                  * and don't wait for vblanks until the end of crtc_enable, then
4158                  * the HW state readout code will complain that the expected
4159                  * IPS_CTL value is not the one we read. */
4160                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4161                         DRM_ERROR("Timed out waiting for IPS enable\n");
4162         }
4163 }
4164
4165 void hsw_disable_ips(struct intel_crtc *crtc)
4166 {
4167         struct drm_device *dev = crtc->base.dev;
4168         struct drm_i915_private *dev_priv = dev->dev_private;
4169
4170         if (!crtc->config.ips_enabled)
4171                 return;
4172
4173         assert_plane_enabled(dev_priv, crtc->plane);
4174         if (IS_BROADWELL(dev)) {
4175                 mutex_lock(&dev_priv->rps.hw_lock);
4176                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4177                 mutex_unlock(&dev_priv->rps.hw_lock);
4178                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4179                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4180                         DRM_ERROR("Timed out waiting for IPS disable\n");
4181         } else {
4182                 I915_WRITE(IPS_CTL, 0);
4183                 POSTING_READ(IPS_CTL);
4184         }
4185
4186         /* We need to wait for a vblank before we can disable the plane. */
4187         intel_wait_for_vblank(dev, crtc->pipe);
4188 }
4189
4190 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4191 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4192 {
4193         struct drm_device *dev = crtc->dev;
4194         struct drm_i915_private *dev_priv = dev->dev_private;
4195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4196         enum pipe pipe = intel_crtc->pipe;
4197         int palreg = PALETTE(pipe);
4198         int i;
4199         bool reenable_ips = false;
4200
4201         /* The clocks have to be on to load the palette. */
4202         if (!crtc->enabled || !intel_crtc->active)
4203                 return;
4204
4205         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4206                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4207                         assert_dsi_pll_enabled(dev_priv);
4208                 else
4209                         assert_pll_enabled(dev_priv, pipe);
4210         }
4211
4212         /* use legacy palette for Ironlake */
4213         if (!HAS_GMCH_DISPLAY(dev))
4214                 palreg = LGC_PALETTE(pipe);
4215
4216         /* Workaround : Do not read or write the pipe palette/gamma data while
4217          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4218          */
4219         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4220             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4221              GAMMA_MODE_MODE_SPLIT)) {
4222                 hsw_disable_ips(intel_crtc);
4223                 reenable_ips = true;
4224         }
4225
4226         for (i = 0; i < 256; i++) {
4227                 I915_WRITE(palreg + 4 * i,
4228                            (intel_crtc->lut_r[i] << 16) |
4229                            (intel_crtc->lut_g[i] << 8) |
4230                            intel_crtc->lut_b[i]);
4231         }
4232
4233         if (reenable_ips)
4234                 hsw_enable_ips(intel_crtc);
4235 }
4236
4237 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4238 {
4239         if (!enable && intel_crtc->overlay) {
4240                 struct drm_device *dev = intel_crtc->base.dev;
4241                 struct drm_i915_private *dev_priv = dev->dev_private;
4242
4243                 mutex_lock(&dev->struct_mutex);
4244                 dev_priv->mm.interruptible = false;
4245                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4246                 dev_priv->mm.interruptible = true;
4247                 mutex_unlock(&dev->struct_mutex);
4248         }
4249
4250         /* Let userspace switch the overlay on again. In most cases userspace
4251          * has to recompute where to put it anyway.
4252          */
4253 }
4254
4255 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4256 {
4257         struct drm_device *dev = crtc->dev;
4258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4259         int pipe = intel_crtc->pipe;
4260
4261         intel_enable_primary_hw_plane(crtc->primary, crtc);
4262         intel_enable_planes(crtc);
4263         intel_crtc_update_cursor(crtc, true);
4264         intel_crtc_dpms_overlay(intel_crtc, true);
4265
4266         hsw_enable_ips(intel_crtc);
4267
4268         mutex_lock(&dev->struct_mutex);
4269         intel_update_fbc(dev);
4270         mutex_unlock(&dev->struct_mutex);
4271
4272         /*
4273          * FIXME: Once we grow proper nuclear flip support out of this we need
4274          * to compute the mask of flip planes precisely. For the time being
4275          * consider this a flip from a NULL plane.
4276          */
4277         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4278 }
4279
4280 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4281 {
4282         struct drm_device *dev = crtc->dev;
4283         struct drm_i915_private *dev_priv = dev->dev_private;
4284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4285         int pipe = intel_crtc->pipe;
4286         int plane = intel_crtc->plane;
4287
4288         intel_crtc_wait_for_pending_flips(crtc);
4289
4290         if (dev_priv->fbc.plane == plane)
4291                 intel_disable_fbc(dev);
4292
4293         hsw_disable_ips(intel_crtc);
4294
4295         intel_crtc_dpms_overlay(intel_crtc, false);
4296         intel_crtc_update_cursor(crtc, false);
4297         intel_disable_planes(crtc);
4298         intel_disable_primary_hw_plane(crtc->primary, crtc);
4299
4300         /*
4301          * FIXME: Once we grow proper nuclear flip support out of this we need
4302          * to compute the mask of flip planes precisely. For the time being
4303          * consider this a flip to a NULL plane.
4304          */
4305         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4306 }
4307
4308 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4309 {
4310         struct drm_device *dev = crtc->dev;
4311         struct drm_i915_private *dev_priv = dev->dev_private;
4312         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4313         struct intel_encoder *encoder;
4314         int pipe = intel_crtc->pipe;
4315
4316         WARN_ON(!crtc->enabled);
4317
4318         if (intel_crtc->active)
4319                 return;
4320
4321         if (intel_crtc->config.has_pch_encoder)
4322                 intel_prepare_shared_dpll(intel_crtc);
4323
4324         if (intel_crtc->config.has_dp_encoder)
4325                 intel_dp_set_m_n(intel_crtc);
4326
4327         intel_set_pipe_timings(intel_crtc);
4328
4329         if (intel_crtc->config.has_pch_encoder) {
4330                 intel_cpu_transcoder_set_m_n(intel_crtc,
4331                                      &intel_crtc->config.fdi_m_n, NULL);
4332         }
4333
4334         ironlake_set_pipeconf(crtc);
4335
4336         intel_crtc->active = true;
4337
4338         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4339         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4340
4341         for_each_encoder_on_crtc(dev, crtc, encoder)
4342                 if (encoder->pre_enable)
4343                         encoder->pre_enable(encoder);
4344
4345         if (intel_crtc->config.has_pch_encoder) {
4346                 /* Note: FDI PLL enabling _must_ be done before we enable the
4347                  * cpu pipes, hence this is separate from all the other fdi/pch
4348                  * enabling. */
4349                 ironlake_fdi_pll_enable(intel_crtc);
4350         } else {
4351                 assert_fdi_tx_disabled(dev_priv, pipe);
4352                 assert_fdi_rx_disabled(dev_priv, pipe);
4353         }
4354
4355         ironlake_pfit_enable(intel_crtc);
4356
4357         /*
4358          * On ILK+ LUT must be loaded before the pipe is running but with
4359          * clocks enabled
4360          */
4361         intel_crtc_load_lut(crtc);
4362
4363         intel_update_watermarks(crtc);
4364         intel_enable_pipe(intel_crtc);
4365
4366         if (intel_crtc->config.has_pch_encoder)
4367                 ironlake_pch_enable(crtc);
4368
4369         for_each_encoder_on_crtc(dev, crtc, encoder)
4370                 encoder->enable(encoder);
4371
4372         if (HAS_PCH_CPT(dev))
4373                 cpt_verify_modeset(dev, intel_crtc->pipe);
4374
4375         assert_vblank_disabled(crtc);
4376         drm_crtc_vblank_on(crtc);
4377
4378         intel_crtc_enable_planes(crtc);
4379 }
4380
4381 /* IPS only exists on ULT machines and is tied to pipe A. */
4382 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4383 {
4384         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4385 }
4386
4387 /*
4388  * This implements the workaround described in the "notes" section of the mode
4389  * set sequence documentation. When going from no pipes or single pipe to
4390  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4391  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4392  */
4393 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4394 {
4395         struct drm_device *dev = crtc->base.dev;
4396         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4397
4398         /* We want to get the other_active_crtc only if there's only 1 other
4399          * active crtc. */
4400         for_each_intel_crtc(dev, crtc_it) {
4401                 if (!crtc_it->active || crtc_it == crtc)
4402                         continue;
4403
4404                 if (other_active_crtc)
4405                         return;
4406
4407                 other_active_crtc = crtc_it;
4408         }
4409         if (!other_active_crtc)
4410                 return;
4411
4412         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4413         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4414 }
4415
4416 static void haswell_crtc_enable(struct drm_crtc *crtc)
4417 {
4418         struct drm_device *dev = crtc->dev;
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4421         struct intel_encoder *encoder;
4422         int pipe = intel_crtc->pipe;
4423
4424         WARN_ON(!crtc->enabled);
4425
4426         if (intel_crtc->active)
4427                 return;
4428
4429         if (intel_crtc_to_shared_dpll(intel_crtc))
4430                 intel_enable_shared_dpll(intel_crtc);
4431
4432         if (intel_crtc->config.has_dp_encoder)
4433                 intel_dp_set_m_n(intel_crtc);
4434
4435         intel_set_pipe_timings(intel_crtc);
4436
4437         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4438                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4439                            intel_crtc->config.pixel_multiplier - 1);
4440         }
4441
4442         if (intel_crtc->config.has_pch_encoder) {
4443                 intel_cpu_transcoder_set_m_n(intel_crtc,
4444                                      &intel_crtc->config.fdi_m_n, NULL);
4445         }
4446
4447         haswell_set_pipeconf(crtc);
4448
4449         intel_set_pipe_csc(crtc);
4450
4451         intel_crtc->active = true;
4452
4453         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4454         for_each_encoder_on_crtc(dev, crtc, encoder)
4455                 if (encoder->pre_enable)
4456                         encoder->pre_enable(encoder);
4457
4458         if (intel_crtc->config.has_pch_encoder) {
4459                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4460                                                       true);
4461                 dev_priv->display.fdi_link_train(crtc);
4462         }
4463
4464         intel_ddi_enable_pipe_clock(intel_crtc);
4465
4466         if (IS_SKYLAKE(dev))
4467                 skylake_pfit_enable(intel_crtc);
4468         else
4469                 ironlake_pfit_enable(intel_crtc);
4470
4471         /*
4472          * On ILK+ LUT must be loaded before the pipe is running but with
4473          * clocks enabled
4474          */
4475         intel_crtc_load_lut(crtc);
4476
4477         intel_ddi_set_pipe_settings(crtc);
4478         intel_ddi_enable_transcoder_func(crtc);
4479
4480         intel_update_watermarks(crtc);
4481         intel_enable_pipe(intel_crtc);
4482
4483         if (intel_crtc->config.has_pch_encoder)
4484                 lpt_pch_enable(crtc);
4485
4486         if (intel_crtc->config.dp_encoder_is_mst)
4487                 intel_ddi_set_vc_payload_alloc(crtc, true);
4488
4489         for_each_encoder_on_crtc(dev, crtc, encoder) {
4490                 encoder->enable(encoder);
4491                 intel_opregion_notify_encoder(encoder, true);
4492         }
4493
4494         assert_vblank_disabled(crtc);
4495         drm_crtc_vblank_on(crtc);
4496
4497         /* If we change the relative order between pipe/planes enabling, we need
4498          * to change the workaround. */
4499         haswell_mode_set_planes_workaround(intel_crtc);
4500         intel_crtc_enable_planes(crtc);
4501 }
4502
4503 static void skylake_pfit_disable(struct intel_crtc *crtc)
4504 {
4505         struct drm_device *dev = crtc->base.dev;
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507         int pipe = crtc->pipe;
4508
4509         /* To avoid upsetting the power well on haswell only disable the pfit if
4510          * it's in use. The hw state code will make sure we get this right. */
4511         if (crtc->config.pch_pfit.enabled) {
4512                 I915_WRITE(PS_CTL(pipe), 0);
4513                 I915_WRITE(PS_WIN_POS(pipe), 0);
4514                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4515         }
4516 }
4517
4518 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4519 {
4520         struct drm_device *dev = crtc->base.dev;
4521         struct drm_i915_private *dev_priv = dev->dev_private;
4522         int pipe = crtc->pipe;
4523
4524         /* To avoid upsetting the power well on haswell only disable the pfit if
4525          * it's in use. The hw state code will make sure we get this right. */
4526         if (crtc->config.pch_pfit.enabled) {
4527                 I915_WRITE(PF_CTL(pipe), 0);
4528                 I915_WRITE(PF_WIN_POS(pipe), 0);
4529                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4530         }
4531 }
4532
4533 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4534 {
4535         struct drm_device *dev = crtc->dev;
4536         struct drm_i915_private *dev_priv = dev->dev_private;
4537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538         struct intel_encoder *encoder;
4539         int pipe = intel_crtc->pipe;
4540         u32 reg, temp;
4541
4542         if (!intel_crtc->active)
4543                 return;
4544
4545         intel_crtc_disable_planes(crtc);
4546
4547         drm_crtc_vblank_off(crtc);
4548         assert_vblank_disabled(crtc);
4549
4550         for_each_encoder_on_crtc(dev, crtc, encoder)
4551                 encoder->disable(encoder);
4552
4553         if (intel_crtc->config.has_pch_encoder)
4554                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4555
4556         intel_disable_pipe(intel_crtc);
4557
4558         ironlake_pfit_disable(intel_crtc);
4559
4560         for_each_encoder_on_crtc(dev, crtc, encoder)
4561                 if (encoder->post_disable)
4562                         encoder->post_disable(encoder);
4563
4564         if (intel_crtc->config.has_pch_encoder) {
4565                 ironlake_fdi_disable(crtc);
4566
4567                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4568                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4569
4570                 if (HAS_PCH_CPT(dev)) {
4571                         /* disable TRANS_DP_CTL */
4572                         reg = TRANS_DP_CTL(pipe);
4573                         temp = I915_READ(reg);
4574                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4575                                   TRANS_DP_PORT_SEL_MASK);
4576                         temp |= TRANS_DP_PORT_SEL_NONE;
4577                         I915_WRITE(reg, temp);
4578
4579                         /* disable DPLL_SEL */
4580                         temp = I915_READ(PCH_DPLL_SEL);
4581                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4582                         I915_WRITE(PCH_DPLL_SEL, temp);
4583                 }
4584
4585                 /* disable PCH DPLL */
4586                 intel_disable_shared_dpll(intel_crtc);
4587
4588                 ironlake_fdi_pll_disable(intel_crtc);
4589         }
4590
4591         intel_crtc->active = false;
4592         intel_update_watermarks(crtc);
4593
4594         mutex_lock(&dev->struct_mutex);
4595         intel_update_fbc(dev);
4596         mutex_unlock(&dev->struct_mutex);
4597 }
4598
4599 static void haswell_crtc_disable(struct drm_crtc *crtc)
4600 {
4601         struct drm_device *dev = crtc->dev;
4602         struct drm_i915_private *dev_priv = dev->dev_private;
4603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4604         struct intel_encoder *encoder;
4605         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4606
4607         if (!intel_crtc->active)
4608                 return;
4609
4610         intel_crtc_disable_planes(crtc);
4611
4612         drm_crtc_vblank_off(crtc);
4613         assert_vblank_disabled(crtc);
4614
4615         for_each_encoder_on_crtc(dev, crtc, encoder) {
4616                 intel_opregion_notify_encoder(encoder, false);
4617                 encoder->disable(encoder);
4618         }
4619
4620         if (intel_crtc->config.has_pch_encoder)
4621                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4622                                                       false);
4623         intel_disable_pipe(intel_crtc);
4624
4625         if (intel_crtc->config.dp_encoder_is_mst)
4626                 intel_ddi_set_vc_payload_alloc(crtc, false);
4627
4628         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4629
4630         if (IS_SKYLAKE(dev))
4631                 skylake_pfit_disable(intel_crtc);
4632         else
4633                 ironlake_pfit_disable(intel_crtc);
4634
4635         intel_ddi_disable_pipe_clock(intel_crtc);
4636
4637         if (intel_crtc->config.has_pch_encoder) {
4638                 lpt_disable_pch_transcoder(dev_priv);
4639                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4640                                                       true);
4641                 intel_ddi_fdi_disable(crtc);
4642         }
4643
4644         for_each_encoder_on_crtc(dev, crtc, encoder)
4645                 if (encoder->post_disable)
4646                         encoder->post_disable(encoder);
4647
4648         intel_crtc->active = false;
4649         intel_update_watermarks(crtc);
4650
4651         mutex_lock(&dev->struct_mutex);
4652         intel_update_fbc(dev);
4653         mutex_unlock(&dev->struct_mutex);
4654
4655         if (intel_crtc_to_shared_dpll(intel_crtc))
4656                 intel_disable_shared_dpll(intel_crtc);
4657 }
4658
4659 static void ironlake_crtc_off(struct drm_crtc *crtc)
4660 {
4661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4662         intel_put_shared_dpll(intel_crtc);
4663 }
4664
4665
4666 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4667 {
4668         struct drm_device *dev = crtc->base.dev;
4669         struct drm_i915_private *dev_priv = dev->dev_private;
4670         struct intel_crtc_config *pipe_config = &crtc->config;
4671
4672         if (!crtc->config.gmch_pfit.control)
4673                 return;
4674
4675         /*
4676          * The panel fitter should only be adjusted whilst the pipe is disabled,
4677          * according to register description and PRM.
4678          */
4679         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4680         assert_pipe_disabled(dev_priv, crtc->pipe);
4681
4682         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4683         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4684
4685         /* Border color in case we don't scale up to the full screen. Black by
4686          * default, change to something else for debugging. */
4687         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4688 }
4689
4690 static enum intel_display_power_domain port_to_power_domain(enum port port)
4691 {
4692         switch (port) {
4693         case PORT_A:
4694                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4695         case PORT_B:
4696                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4697         case PORT_C:
4698                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4699         case PORT_D:
4700                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4701         default:
4702                 WARN_ON_ONCE(1);
4703                 return POWER_DOMAIN_PORT_OTHER;
4704         }
4705 }
4706
4707 #define for_each_power_domain(domain, mask)                             \
4708         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4709                 if ((1 << (domain)) & (mask))
4710
4711 enum intel_display_power_domain
4712 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4713 {
4714         struct drm_device *dev = intel_encoder->base.dev;
4715         struct intel_digital_port *intel_dig_port;
4716
4717         switch (intel_encoder->type) {
4718         case INTEL_OUTPUT_UNKNOWN:
4719                 /* Only DDI platforms should ever use this output type */
4720                 WARN_ON_ONCE(!HAS_DDI(dev));
4721         case INTEL_OUTPUT_DISPLAYPORT:
4722         case INTEL_OUTPUT_HDMI:
4723         case INTEL_OUTPUT_EDP:
4724                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4725                 return port_to_power_domain(intel_dig_port->port);
4726         case INTEL_OUTPUT_DP_MST:
4727                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4728                 return port_to_power_domain(intel_dig_port->port);
4729         case INTEL_OUTPUT_ANALOG:
4730                 return POWER_DOMAIN_PORT_CRT;
4731         case INTEL_OUTPUT_DSI:
4732                 return POWER_DOMAIN_PORT_DSI;
4733         default:
4734                 return POWER_DOMAIN_PORT_OTHER;
4735         }
4736 }
4737
4738 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4739 {
4740         struct drm_device *dev = crtc->dev;
4741         struct intel_encoder *intel_encoder;
4742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4743         enum pipe pipe = intel_crtc->pipe;
4744         unsigned long mask;
4745         enum transcoder transcoder;
4746
4747         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4748
4749         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4750         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4751         if (intel_crtc->config.pch_pfit.enabled ||
4752             intel_crtc->config.pch_pfit.force_thru)
4753                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4754
4755         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4756                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4757
4758         return mask;
4759 }
4760
4761 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4762 {
4763         struct drm_i915_private *dev_priv = dev->dev_private;
4764         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4765         struct intel_crtc *crtc;
4766
4767         /*
4768          * First get all needed power domains, then put all unneeded, to avoid
4769          * any unnecessary toggling of the power wells.
4770          */
4771         for_each_intel_crtc(dev, crtc) {
4772                 enum intel_display_power_domain domain;
4773
4774                 if (!crtc->base.enabled)
4775                         continue;
4776
4777                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4778
4779                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4780                         intel_display_power_get(dev_priv, domain);
4781         }
4782
4783         if (dev_priv->display.modeset_global_resources)
4784                 dev_priv->display.modeset_global_resources(dev);
4785
4786         for_each_intel_crtc(dev, crtc) {
4787                 enum intel_display_power_domain domain;
4788
4789                 for_each_power_domain(domain, crtc->enabled_power_domains)
4790                         intel_display_power_put(dev_priv, domain);
4791
4792                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4793         }
4794
4795         intel_display_set_init_power(dev_priv, false);
4796 }
4797
4798 /* returns HPLL frequency in kHz */
4799 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4800 {
4801         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4802
4803         /* Obtain SKU information */
4804         mutex_lock(&dev_priv->dpio_lock);
4805         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4806                 CCK_FUSE_HPLL_FREQ_MASK;
4807         mutex_unlock(&dev_priv->dpio_lock);
4808
4809         return vco_freq[hpll_freq] * 1000;
4810 }
4811
4812 static void vlv_update_cdclk(struct drm_device *dev)
4813 {
4814         struct drm_i915_private *dev_priv = dev->dev_private;
4815
4816         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4817         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4818                          dev_priv->vlv_cdclk_freq);
4819
4820         /*
4821          * Program the gmbus_freq based on the cdclk frequency.
4822          * BSpec erroneously claims we should aim for 4MHz, but
4823          * in fact 1MHz is the correct frequency.
4824          */
4825         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4826 }
4827
4828 /* Adjust CDclk dividers to allow high res or save power if possible */
4829 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4830 {
4831         struct drm_i915_private *dev_priv = dev->dev_private;
4832         u32 val, cmd;
4833
4834         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4835
4836         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4837                 cmd = 2;
4838         else if (cdclk == 266667)
4839                 cmd = 1;
4840         else
4841                 cmd = 0;
4842
4843         mutex_lock(&dev_priv->rps.hw_lock);
4844         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4845         val &= ~DSPFREQGUAR_MASK;
4846         val |= (cmd << DSPFREQGUAR_SHIFT);
4847         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4848         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4849                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4850                      50)) {
4851                 DRM_ERROR("timed out waiting for CDclk change\n");
4852         }
4853         mutex_unlock(&dev_priv->rps.hw_lock);
4854
4855         if (cdclk == 400000) {
4856                 u32 divider;
4857
4858                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4859
4860                 mutex_lock(&dev_priv->dpio_lock);
4861                 /* adjust cdclk divider */
4862                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4863                 val &= ~DISPLAY_FREQUENCY_VALUES;
4864                 val |= divider;
4865                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4866
4867                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4868                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4869                              50))
4870                         DRM_ERROR("timed out waiting for CDclk change\n");
4871                 mutex_unlock(&dev_priv->dpio_lock);
4872         }
4873
4874         mutex_lock(&dev_priv->dpio_lock);
4875         /* adjust self-refresh exit latency value */
4876         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4877         val &= ~0x7f;
4878
4879         /*
4880          * For high bandwidth configs, we set a higher latency in the bunit
4881          * so that the core display fetch happens in time to avoid underruns.
4882          */
4883         if (cdclk == 400000)
4884                 val |= 4500 / 250; /* 4.5 usec */
4885         else
4886                 val |= 3000 / 250; /* 3.0 usec */
4887         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4888         mutex_unlock(&dev_priv->dpio_lock);
4889
4890         vlv_update_cdclk(dev);
4891 }
4892
4893 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4894 {
4895         struct drm_i915_private *dev_priv = dev->dev_private;
4896         u32 val, cmd;
4897
4898         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4899
4900         switch (cdclk) {
4901         case 400000:
4902                 cmd = 3;
4903                 break;
4904         case 333333:
4905         case 320000:
4906                 cmd = 2;
4907                 break;
4908         case 266667:
4909                 cmd = 1;
4910                 break;
4911         case 200000:
4912                 cmd = 0;
4913                 break;
4914         default:
4915                 WARN_ON(1);
4916                 return;
4917         }
4918
4919         mutex_lock(&dev_priv->rps.hw_lock);
4920         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4921         val &= ~DSPFREQGUAR_MASK_CHV;
4922         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4923         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4924         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4925                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4926                      50)) {
4927                 DRM_ERROR("timed out waiting for CDclk change\n");
4928         }
4929         mutex_unlock(&dev_priv->rps.hw_lock);
4930
4931         vlv_update_cdclk(dev);
4932 }
4933
4934 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4935                                  int max_pixclk)
4936 {
4937         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
4938
4939         /* FIXME: Punit isn't quite ready yet */
4940         if (IS_CHERRYVIEW(dev_priv->dev))
4941                 return 400000;
4942
4943         /*
4944          * Really only a few cases to deal with, as only 4 CDclks are supported:
4945          *   200MHz
4946          *   267MHz
4947          *   320/333MHz (depends on HPLL freq)
4948          *   400MHz
4949          * So we check to see whether we're above 90% of the lower bin and
4950          * adjust if needed.
4951          *
4952          * We seem to get an unstable or solid color picture at 200MHz.
4953          * Not sure what's wrong. For now use 200MHz only when all pipes
4954          * are off.
4955          */
4956         if (max_pixclk > freq_320*9/10)
4957                 return 400000;
4958         else if (max_pixclk > 266667*9/10)
4959                 return freq_320;
4960         else if (max_pixclk > 0)
4961                 return 266667;
4962         else
4963                 return 200000;
4964 }
4965
4966 /* compute the max pixel clock for new configuration */
4967 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4968 {
4969         struct drm_device *dev = dev_priv->dev;
4970         struct intel_crtc *intel_crtc;
4971         int max_pixclk = 0;
4972
4973         for_each_intel_crtc(dev, intel_crtc) {
4974                 if (intel_crtc->new_enabled)
4975                         max_pixclk = max(max_pixclk,
4976                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4977         }
4978
4979         return max_pixclk;
4980 }
4981
4982 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4983                                             unsigned *prepare_pipes)
4984 {
4985         struct drm_i915_private *dev_priv = dev->dev_private;
4986         struct intel_crtc *intel_crtc;
4987         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4988
4989         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4990             dev_priv->vlv_cdclk_freq)
4991                 return;
4992
4993         /* disable/enable all currently active pipes while we change cdclk */
4994         for_each_intel_crtc(dev, intel_crtc)
4995                 if (intel_crtc->base.enabled)
4996                         *prepare_pipes |= (1 << intel_crtc->pipe);
4997 }
4998
4999 static void valleyview_modeset_global_resources(struct drm_device *dev)
5000 {
5001         struct drm_i915_private *dev_priv = dev->dev_private;
5002         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5003         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5004
5005         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5006                 /*
5007                  * FIXME: We can end up here with all power domains off, yet
5008                  * with a CDCLK frequency other than the minimum. To account
5009                  * for this take the PIPE-A power domain, which covers the HW
5010                  * blocks needed for the following programming. This can be
5011                  * removed once it's guaranteed that we get here either with
5012                  * the minimum CDCLK set, or the required power domains
5013                  * enabled.
5014                  */
5015                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5016
5017                 if (IS_CHERRYVIEW(dev))
5018                         cherryview_set_cdclk(dev, req_cdclk);
5019                 else
5020                         valleyview_set_cdclk(dev, req_cdclk);
5021
5022                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5023         }
5024 }
5025
5026 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5027 {
5028         struct drm_device *dev = crtc->dev;
5029         struct drm_i915_private *dev_priv = to_i915(dev);
5030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5031         struct intel_encoder *encoder;
5032         int pipe = intel_crtc->pipe;
5033         bool is_dsi;
5034
5035         WARN_ON(!crtc->enabled);
5036
5037         if (intel_crtc->active)
5038                 return;
5039
5040         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5041
5042         if (!is_dsi) {
5043                 if (IS_CHERRYVIEW(dev))
5044                         chv_prepare_pll(intel_crtc, &intel_crtc->config);
5045                 else
5046                         vlv_prepare_pll(intel_crtc, &intel_crtc->config);
5047         }
5048
5049         if (intel_crtc->config.has_dp_encoder)
5050                 intel_dp_set_m_n(intel_crtc);
5051
5052         intel_set_pipe_timings(intel_crtc);
5053
5054         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5055                 struct drm_i915_private *dev_priv = dev->dev_private;
5056
5057                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5058                 I915_WRITE(CHV_CANVAS(pipe), 0);
5059         }
5060
5061         i9xx_set_pipeconf(intel_crtc);
5062
5063         intel_crtc->active = true;
5064
5065         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5066
5067         for_each_encoder_on_crtc(dev, crtc, encoder)
5068                 if (encoder->pre_pll_enable)
5069                         encoder->pre_pll_enable(encoder);
5070
5071         if (!is_dsi) {
5072                 if (IS_CHERRYVIEW(dev))
5073                         chv_enable_pll(intel_crtc, &intel_crtc->config);
5074                 else
5075                         vlv_enable_pll(intel_crtc, &intel_crtc->config);
5076         }
5077
5078         for_each_encoder_on_crtc(dev, crtc, encoder)
5079                 if (encoder->pre_enable)
5080                         encoder->pre_enable(encoder);
5081
5082         i9xx_pfit_enable(intel_crtc);
5083
5084         intel_crtc_load_lut(crtc);
5085
5086         intel_update_watermarks(crtc);
5087         intel_enable_pipe(intel_crtc);
5088
5089         for_each_encoder_on_crtc(dev, crtc, encoder)
5090                 encoder->enable(encoder);
5091
5092         assert_vblank_disabled(crtc);
5093         drm_crtc_vblank_on(crtc);
5094
5095         intel_crtc_enable_planes(crtc);
5096
5097         /* Underruns don't raise interrupts, so check manually. */
5098         i9xx_check_fifo_underruns(dev_priv);
5099 }
5100
5101 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5102 {
5103         struct drm_device *dev = crtc->base.dev;
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105
5106         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5107         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5108 }
5109
5110 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5111 {
5112         struct drm_device *dev = crtc->dev;
5113         struct drm_i915_private *dev_priv = to_i915(dev);
5114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5115         struct intel_encoder *encoder;
5116         int pipe = intel_crtc->pipe;
5117
5118         WARN_ON(!crtc->enabled);
5119
5120         if (intel_crtc->active)
5121                 return;
5122
5123         i9xx_set_pll_dividers(intel_crtc);
5124
5125         if (intel_crtc->config.has_dp_encoder)
5126                 intel_dp_set_m_n(intel_crtc);
5127
5128         intel_set_pipe_timings(intel_crtc);
5129
5130         i9xx_set_pipeconf(intel_crtc);
5131
5132         intel_crtc->active = true;
5133
5134         if (!IS_GEN2(dev))
5135                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5136
5137         for_each_encoder_on_crtc(dev, crtc, encoder)
5138                 if (encoder->pre_enable)
5139                         encoder->pre_enable(encoder);
5140
5141         i9xx_enable_pll(intel_crtc);
5142
5143         i9xx_pfit_enable(intel_crtc);
5144
5145         intel_crtc_load_lut(crtc);
5146
5147         intel_update_watermarks(crtc);
5148         intel_enable_pipe(intel_crtc);
5149
5150         for_each_encoder_on_crtc(dev, crtc, encoder)
5151                 encoder->enable(encoder);
5152
5153         assert_vblank_disabled(crtc);
5154         drm_crtc_vblank_on(crtc);
5155
5156         intel_crtc_enable_planes(crtc);
5157
5158         /*
5159          * Gen2 reports pipe underruns whenever all planes are disabled.
5160          * So don't enable underrun reporting before at least some planes
5161          * are enabled.
5162          * FIXME: Need to fix the logic to work when we turn off all planes
5163          * but leave the pipe running.
5164          */
5165         if (IS_GEN2(dev))
5166                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5167
5168         /* Underruns don't raise interrupts, so check manually. */
5169         i9xx_check_fifo_underruns(dev_priv);
5170 }
5171
5172 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5173 {
5174         struct drm_device *dev = crtc->base.dev;
5175         struct drm_i915_private *dev_priv = dev->dev_private;
5176
5177         if (!crtc->config.gmch_pfit.control)
5178                 return;
5179
5180         assert_pipe_disabled(dev_priv, crtc->pipe);
5181
5182         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5183                          I915_READ(PFIT_CONTROL));
5184         I915_WRITE(PFIT_CONTROL, 0);
5185 }
5186
5187 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5188 {
5189         struct drm_device *dev = crtc->dev;
5190         struct drm_i915_private *dev_priv = dev->dev_private;
5191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5192         struct intel_encoder *encoder;
5193         int pipe = intel_crtc->pipe;
5194
5195         if (!intel_crtc->active)
5196                 return;
5197
5198         /*
5199          * Gen2 reports pipe underruns whenever all planes are disabled.
5200          * So diasble underrun reporting before all the planes get disabled.
5201          * FIXME: Need to fix the logic to work when we turn off all planes
5202          * but leave the pipe running.
5203          */
5204         if (IS_GEN2(dev))
5205                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5206
5207         /*
5208          * Vblank time updates from the shadow to live plane control register
5209          * are blocked if the memory self-refresh mode is active at that
5210          * moment. So to make sure the plane gets truly disabled, disable
5211          * first the self-refresh mode. The self-refresh enable bit in turn
5212          * will be checked/applied by the HW only at the next frame start
5213          * event which is after the vblank start event, so we need to have a
5214          * wait-for-vblank between disabling the plane and the pipe.
5215          */
5216         intel_set_memory_cxsr(dev_priv, false);
5217         intel_crtc_disable_planes(crtc);
5218
5219         /*
5220          * On gen2 planes are double buffered but the pipe isn't, so we must
5221          * wait for planes to fully turn off before disabling the pipe.
5222          * We also need to wait on all gmch platforms because of the
5223          * self-refresh mode constraint explained above.
5224          */
5225         intel_wait_for_vblank(dev, pipe);
5226
5227         drm_crtc_vblank_off(crtc);
5228         assert_vblank_disabled(crtc);
5229
5230         for_each_encoder_on_crtc(dev, crtc, encoder)
5231                 encoder->disable(encoder);
5232
5233         intel_disable_pipe(intel_crtc);
5234
5235         i9xx_pfit_disable(intel_crtc);
5236
5237         for_each_encoder_on_crtc(dev, crtc, encoder)
5238                 if (encoder->post_disable)
5239                         encoder->post_disable(encoder);
5240
5241         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5242                 if (IS_CHERRYVIEW(dev))
5243                         chv_disable_pll(dev_priv, pipe);
5244                 else if (IS_VALLEYVIEW(dev))
5245                         vlv_disable_pll(dev_priv, pipe);
5246                 else
5247                         i9xx_disable_pll(intel_crtc);
5248         }
5249
5250         if (!IS_GEN2(dev))
5251                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5252
5253         intel_crtc->active = false;
5254         intel_update_watermarks(crtc);
5255
5256         mutex_lock(&dev->struct_mutex);
5257         intel_update_fbc(dev);
5258         mutex_unlock(&dev->struct_mutex);
5259 }
5260
5261 static void i9xx_crtc_off(struct drm_crtc *crtc)
5262 {
5263 }
5264
5265 /* Master function to enable/disable CRTC and corresponding power wells */
5266 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5267 {
5268         struct drm_device *dev = crtc->dev;
5269         struct drm_i915_private *dev_priv = dev->dev_private;
5270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5271         enum intel_display_power_domain domain;
5272         unsigned long domains;
5273
5274         if (enable) {
5275                 if (!intel_crtc->active) {
5276                         domains = get_crtc_power_domains(crtc);
5277                         for_each_power_domain(domain, domains)
5278                                 intel_display_power_get(dev_priv, domain);
5279                         intel_crtc->enabled_power_domains = domains;
5280
5281                         dev_priv->display.crtc_enable(crtc);
5282                 }
5283         } else {
5284                 if (intel_crtc->active) {
5285                         dev_priv->display.crtc_disable(crtc);
5286
5287                         domains = intel_crtc->enabled_power_domains;
5288                         for_each_power_domain(domain, domains)
5289                                 intel_display_power_put(dev_priv, domain);
5290                         intel_crtc->enabled_power_domains = 0;
5291                 }
5292         }
5293 }
5294
5295 /**
5296  * Sets the power management mode of the pipe and plane.
5297  */
5298 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5299 {
5300         struct drm_device *dev = crtc->dev;
5301         struct intel_encoder *intel_encoder;
5302         bool enable = false;
5303
5304         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5305                 enable |= intel_encoder->connectors_active;
5306
5307         intel_crtc_control(crtc, enable);
5308 }
5309
5310 static void intel_crtc_disable(struct drm_crtc *crtc)
5311 {
5312         struct drm_device *dev = crtc->dev;
5313         struct drm_connector *connector;
5314         struct drm_i915_private *dev_priv = dev->dev_private;
5315         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5316         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5317
5318         /* crtc should still be enabled when we disable it. */
5319         WARN_ON(!crtc->enabled);
5320
5321         dev_priv->display.crtc_disable(crtc);
5322         dev_priv->display.off(crtc);
5323
5324         if (crtc->primary->fb) {
5325                 mutex_lock(&dev->struct_mutex);
5326                 intel_unpin_fb_obj(old_obj);
5327                 i915_gem_track_fb(old_obj, NULL,
5328                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5329                 mutex_unlock(&dev->struct_mutex);
5330                 crtc->primary->fb = NULL;
5331         }
5332
5333         /* Update computed state. */
5334         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5335                 if (!connector->encoder || !connector->encoder->crtc)
5336                         continue;
5337
5338                 if (connector->encoder->crtc != crtc)
5339                         continue;
5340
5341                 connector->dpms = DRM_MODE_DPMS_OFF;
5342                 to_intel_encoder(connector->encoder)->connectors_active = false;
5343         }
5344 }
5345
5346 void intel_encoder_destroy(struct drm_encoder *encoder)
5347 {
5348         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5349
5350         drm_encoder_cleanup(encoder);
5351         kfree(intel_encoder);
5352 }
5353
5354 /* Simple dpms helper for encoders with just one connector, no cloning and only
5355  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5356  * state of the entire output pipe. */
5357 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5358 {
5359         if (mode == DRM_MODE_DPMS_ON) {
5360                 encoder->connectors_active = true;
5361
5362                 intel_crtc_update_dpms(encoder->base.crtc);
5363         } else {
5364                 encoder->connectors_active = false;
5365
5366                 intel_crtc_update_dpms(encoder->base.crtc);
5367         }
5368 }
5369
5370 /* Cross check the actual hw state with our own modeset state tracking (and it's
5371  * internal consistency). */
5372 static void intel_connector_check_state(struct intel_connector *connector)
5373 {
5374         if (connector->get_hw_state(connector)) {
5375                 struct intel_encoder *encoder = connector->encoder;
5376                 struct drm_crtc *crtc;
5377                 bool encoder_enabled;
5378                 enum pipe pipe;
5379
5380                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5381                               connector->base.base.id,
5382                               connector->base.name);
5383
5384                 /* there is no real hw state for MST connectors */
5385                 if (connector->mst_port)
5386                         return;
5387
5388                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5389                      "wrong connector dpms state\n");
5390                 WARN(connector->base.encoder != &encoder->base,
5391                      "active connector not linked to encoder\n");
5392
5393                 if (encoder) {
5394                         WARN(!encoder->connectors_active,
5395                              "encoder->connectors_active not set\n");
5396
5397                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5398                         WARN(!encoder_enabled, "encoder not enabled\n");
5399                         if (WARN_ON(!encoder->base.crtc))
5400                                 return;
5401
5402                         crtc = encoder->base.crtc;
5403
5404                         WARN(!crtc->enabled, "crtc not enabled\n");
5405                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5406                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5407                              "encoder active on the wrong pipe\n");
5408                 }
5409         }
5410 }
5411
5412 /* Even simpler default implementation, if there's really no special case to
5413  * consider. */
5414 void intel_connector_dpms(struct drm_connector *connector, int mode)
5415 {
5416         /* All the simple cases only support two dpms states. */
5417         if (mode != DRM_MODE_DPMS_ON)
5418                 mode = DRM_MODE_DPMS_OFF;
5419
5420         if (mode == connector->dpms)
5421                 return;
5422
5423         connector->dpms = mode;
5424
5425         /* Only need to change hw state when actually enabled */
5426         if (connector->encoder)
5427                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5428
5429         intel_modeset_check_state(connector->dev);
5430 }
5431
5432 /* Simple connector->get_hw_state implementation for encoders that support only
5433  * one connector and no cloning and hence the encoder state determines the state
5434  * of the connector. */
5435 bool intel_connector_get_hw_state(struct intel_connector *connector)
5436 {
5437         enum pipe pipe = 0;
5438         struct intel_encoder *encoder = connector->encoder;
5439
5440         return encoder->get_hw_state(encoder, &pipe);
5441 }
5442
5443 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5444                                      struct intel_crtc_config *pipe_config)
5445 {
5446         struct drm_i915_private *dev_priv = dev->dev_private;
5447         struct intel_crtc *pipe_B_crtc =
5448                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5449
5450         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5451                       pipe_name(pipe), pipe_config->fdi_lanes);
5452         if (pipe_config->fdi_lanes > 4) {
5453                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5454                               pipe_name(pipe), pipe_config->fdi_lanes);
5455                 return false;
5456         }
5457
5458         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5459                 if (pipe_config->fdi_lanes > 2) {
5460                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5461                                       pipe_config->fdi_lanes);
5462                         return false;
5463                 } else {
5464                         return true;
5465                 }
5466         }
5467
5468         if (INTEL_INFO(dev)->num_pipes == 2)
5469                 return true;
5470
5471         /* Ivybridge 3 pipe is really complicated */
5472         switch (pipe) {
5473         case PIPE_A:
5474                 return true;
5475         case PIPE_B:
5476                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5477                     pipe_config->fdi_lanes > 2) {
5478                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5479                                       pipe_name(pipe), pipe_config->fdi_lanes);
5480                         return false;
5481                 }
5482                 return true;
5483         case PIPE_C:
5484                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5485                     pipe_B_crtc->config.fdi_lanes <= 2) {
5486                         if (pipe_config->fdi_lanes > 2) {
5487                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5488                                               pipe_name(pipe), pipe_config->fdi_lanes);
5489                                 return false;
5490                         }
5491                 } else {
5492                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5493                         return false;
5494                 }
5495                 return true;
5496         default:
5497                 BUG();
5498         }
5499 }
5500
5501 #define RETRY 1
5502 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5503                                        struct intel_crtc_config *pipe_config)
5504 {
5505         struct drm_device *dev = intel_crtc->base.dev;
5506         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5507         int lane, link_bw, fdi_dotclock;
5508         bool setup_ok, needs_recompute = false;
5509
5510 retry:
5511         /* FDI is a binary signal running at ~2.7GHz, encoding
5512          * each output octet as 10 bits. The actual frequency
5513          * is stored as a divider into a 100MHz clock, and the
5514          * mode pixel clock is stored in units of 1KHz.
5515          * Hence the bw of each lane in terms of the mode signal
5516          * is:
5517          */
5518         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5519
5520         fdi_dotclock = adjusted_mode->crtc_clock;
5521
5522         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5523                                            pipe_config->pipe_bpp);
5524
5525         pipe_config->fdi_lanes = lane;
5526
5527         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5528                                link_bw, &pipe_config->fdi_m_n);
5529
5530         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5531                                             intel_crtc->pipe, pipe_config);
5532         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5533                 pipe_config->pipe_bpp -= 2*3;
5534                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5535                               pipe_config->pipe_bpp);
5536                 needs_recompute = true;
5537                 pipe_config->bw_constrained = true;
5538
5539                 goto retry;
5540         }
5541
5542         if (needs_recompute)
5543                 return RETRY;
5544
5545         return setup_ok ? 0 : -EINVAL;
5546 }
5547
5548 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5549                                    struct intel_crtc_config *pipe_config)
5550 {
5551         pipe_config->ips_enabled = i915.enable_ips &&
5552                                    hsw_crtc_supports_ips(crtc) &&
5553                                    pipe_config->pipe_bpp <= 24;
5554 }
5555
5556 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5557                                      struct intel_crtc_config *pipe_config)
5558 {
5559         struct drm_device *dev = crtc->base.dev;
5560         struct drm_i915_private *dev_priv = dev->dev_private;
5561         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5562
5563         /* FIXME should check pixel clock limits on all platforms */
5564         if (INTEL_INFO(dev)->gen < 4) {
5565                 int clock_limit =
5566                         dev_priv->display.get_display_clock_speed(dev);
5567
5568                 /*
5569                  * Enable pixel doubling when the dot clock
5570                  * is > 90% of the (display) core speed.
5571                  *
5572                  * GDG double wide on either pipe,
5573                  * otherwise pipe A only.
5574                  */
5575                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5576                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5577                         clock_limit *= 2;
5578                         pipe_config->double_wide = true;
5579                 }
5580
5581                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5582                         return -EINVAL;
5583         }
5584
5585         /*
5586          * Pipe horizontal size must be even in:
5587          * - DVO ganged mode
5588          * - LVDS dual channel mode
5589          * - Double wide pipe
5590          */
5591         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5592              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5593                 pipe_config->pipe_src_w &= ~1;
5594
5595         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5596          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5597          */
5598         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5599                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5600                 return -EINVAL;
5601
5602         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5603                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5604         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5605                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5606                  * for lvds. */
5607                 pipe_config->pipe_bpp = 8*3;
5608         }
5609
5610         if (HAS_IPS(dev))
5611                 hsw_compute_ips_config(crtc, pipe_config);
5612
5613         if (pipe_config->has_pch_encoder)
5614                 return ironlake_fdi_compute_config(crtc, pipe_config);
5615
5616         return 0;
5617 }
5618
5619 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5620 {
5621         struct drm_i915_private *dev_priv = dev->dev_private;
5622         u32 val;
5623         int divider;
5624
5625         /* FIXME: Punit isn't quite ready yet */
5626         if (IS_CHERRYVIEW(dev))
5627                 return 400000;
5628
5629         if (dev_priv->hpll_freq == 0)
5630                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5631
5632         mutex_lock(&dev_priv->dpio_lock);
5633         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5634         mutex_unlock(&dev_priv->dpio_lock);
5635
5636         divider = val & DISPLAY_FREQUENCY_VALUES;
5637
5638         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5639              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5640              "cdclk change in progress\n");
5641
5642         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5643 }
5644
5645 static int i945_get_display_clock_speed(struct drm_device *dev)
5646 {
5647         return 400000;
5648 }
5649
5650 static int i915_get_display_clock_speed(struct drm_device *dev)
5651 {
5652         return 333000;
5653 }
5654
5655 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5656 {
5657         return 200000;
5658 }
5659
5660 static int pnv_get_display_clock_speed(struct drm_device *dev)
5661 {
5662         u16 gcfgc = 0;
5663
5664         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5665
5666         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5667         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5668                 return 267000;
5669         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5670                 return 333000;
5671         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5672                 return 444000;
5673         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5674                 return 200000;
5675         default:
5676                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5677         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5678                 return 133000;
5679         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5680                 return 167000;
5681         }
5682 }
5683
5684 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5685 {
5686         u16 gcfgc = 0;
5687
5688         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5689
5690         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5691                 return 133000;
5692         else {
5693                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5694                 case GC_DISPLAY_CLOCK_333_MHZ:
5695                         return 333000;
5696                 default:
5697                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5698                         return 190000;
5699                 }
5700         }
5701 }
5702
5703 static int i865_get_display_clock_speed(struct drm_device *dev)
5704 {
5705         return 266000;
5706 }
5707
5708 static int i855_get_display_clock_speed(struct drm_device *dev)
5709 {
5710         u16 hpllcc = 0;
5711         /* Assume that the hardware is in the high speed state.  This
5712          * should be the default.
5713          */
5714         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5715         case GC_CLOCK_133_200:
5716         case GC_CLOCK_100_200:
5717                 return 200000;
5718         case GC_CLOCK_166_250:
5719                 return 250000;
5720         case GC_CLOCK_100_133:
5721                 return 133000;
5722         }
5723
5724         /* Shouldn't happen */
5725         return 0;
5726 }
5727
5728 static int i830_get_display_clock_speed(struct drm_device *dev)
5729 {
5730         return 133000;
5731 }
5732
5733 static void
5734 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5735 {
5736         while (*num > DATA_LINK_M_N_MASK ||
5737                *den > DATA_LINK_M_N_MASK) {
5738                 *num >>= 1;
5739                 *den >>= 1;
5740         }
5741 }
5742
5743 static void compute_m_n(unsigned int m, unsigned int n,
5744                         uint32_t *ret_m, uint32_t *ret_n)
5745 {
5746         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5747         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5748         intel_reduce_m_n_ratio(ret_m, ret_n);
5749 }
5750
5751 void
5752 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5753                        int pixel_clock, int link_clock,
5754                        struct intel_link_m_n *m_n)
5755 {
5756         m_n->tu = 64;
5757
5758         compute_m_n(bits_per_pixel * pixel_clock,
5759                     link_clock * nlanes * 8,
5760                     &m_n->gmch_m, &m_n->gmch_n);
5761
5762         compute_m_n(pixel_clock, link_clock,
5763                     &m_n->link_m, &m_n->link_n);
5764 }
5765
5766 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5767 {
5768         if (i915.panel_use_ssc >= 0)
5769                 return i915.panel_use_ssc != 0;
5770         return dev_priv->vbt.lvds_use_ssc
5771                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5772 }
5773
5774 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5775 {
5776         struct drm_device *dev = crtc->base.dev;
5777         struct drm_i915_private *dev_priv = dev->dev_private;
5778         int refclk;
5779
5780         if (IS_VALLEYVIEW(dev)) {
5781                 refclk = 100000;
5782         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5783             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5784                 refclk = dev_priv->vbt.lvds_ssc_freq;
5785                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5786         } else if (!IS_GEN2(dev)) {
5787                 refclk = 96000;
5788         } else {
5789                 refclk = 48000;
5790         }
5791
5792         return refclk;
5793 }
5794
5795 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5796 {
5797         return (1 << dpll->n) << 16 | dpll->m2;
5798 }
5799
5800 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5801 {
5802         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5803 }
5804
5805 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5806                                      intel_clock_t *reduced_clock)
5807 {
5808         struct drm_device *dev = crtc->base.dev;
5809         u32 fp, fp2 = 0;
5810
5811         if (IS_PINEVIEW(dev)) {
5812                 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5813                 if (reduced_clock)
5814                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5815         } else {
5816                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5817                 if (reduced_clock)
5818                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5819         }
5820
5821         crtc->new_config->dpll_hw_state.fp0 = fp;
5822
5823         crtc->lowfreq_avail = false;
5824         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5825             reduced_clock && i915.powersave) {
5826                 crtc->new_config->dpll_hw_state.fp1 = fp2;
5827                 crtc->lowfreq_avail = true;
5828         } else {
5829                 crtc->new_config->dpll_hw_state.fp1 = fp;
5830         }
5831 }
5832
5833 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5834                 pipe)
5835 {
5836         u32 reg_val;
5837
5838         /*
5839          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5840          * and set it to a reasonable value instead.
5841          */
5842         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5843         reg_val &= 0xffffff00;
5844         reg_val |= 0x00000030;
5845         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5846
5847         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5848         reg_val &= 0x8cffffff;
5849         reg_val = 0x8c000000;
5850         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5851
5852         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5853         reg_val &= 0xffffff00;
5854         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5855
5856         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5857         reg_val &= 0x00ffffff;
5858         reg_val |= 0xb0000000;
5859         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5860 }
5861
5862 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5863                                          struct intel_link_m_n *m_n)
5864 {
5865         struct drm_device *dev = crtc->base.dev;
5866         struct drm_i915_private *dev_priv = dev->dev_private;
5867         int pipe = crtc->pipe;
5868
5869         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5870         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5871         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5872         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5873 }
5874
5875 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5876                                          struct intel_link_m_n *m_n,
5877                                          struct intel_link_m_n *m2_n2)
5878 {
5879         struct drm_device *dev = crtc->base.dev;
5880         struct drm_i915_private *dev_priv = dev->dev_private;
5881         int pipe = crtc->pipe;
5882         enum transcoder transcoder = crtc->config.cpu_transcoder;
5883
5884         if (INTEL_INFO(dev)->gen >= 5) {
5885                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5886                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5887                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5888                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5889                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5890                  * for gen < 8) and if DRRS is supported (to make sure the
5891                  * registers are not unnecessarily accessed).
5892                  */
5893                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5894                         crtc->config.has_drrs) {
5895                         I915_WRITE(PIPE_DATA_M2(transcoder),
5896                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5897                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5898                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5899                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5900                 }
5901         } else {
5902                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5903                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5904                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5905                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5906         }
5907 }
5908
5909 void intel_dp_set_m_n(struct intel_crtc *crtc)
5910 {
5911         if (crtc->config.has_pch_encoder)
5912                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5913         else
5914                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5915                                                    &crtc->config.dp_m2_n2);
5916 }
5917
5918 static void vlv_update_pll(struct intel_crtc *crtc,
5919                            struct intel_crtc_config *pipe_config)
5920 {
5921         u32 dpll, dpll_md;
5922
5923         /*
5924          * Enable DPIO clock input. We should never disable the reference
5925          * clock for pipe B, since VGA hotplug / manual detection depends
5926          * on it.
5927          */
5928         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5929                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5930         /* We should never disable this, set it here for state tracking */
5931         if (crtc->pipe == PIPE_B)
5932                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5933         dpll |= DPLL_VCO_ENABLE;
5934         pipe_config->dpll_hw_state.dpll = dpll;
5935
5936         dpll_md = (pipe_config->pixel_multiplier - 1)
5937                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5938         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5939 }
5940
5941 static void vlv_prepare_pll(struct intel_crtc *crtc,
5942                             const struct intel_crtc_config *pipe_config)
5943 {
5944         struct drm_device *dev = crtc->base.dev;
5945         struct drm_i915_private *dev_priv = dev->dev_private;
5946         int pipe = crtc->pipe;
5947         u32 mdiv;
5948         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5949         u32 coreclk, reg_val;
5950
5951         mutex_lock(&dev_priv->dpio_lock);
5952
5953         bestn = pipe_config->dpll.n;
5954         bestm1 = pipe_config->dpll.m1;
5955         bestm2 = pipe_config->dpll.m2;
5956         bestp1 = pipe_config->dpll.p1;
5957         bestp2 = pipe_config->dpll.p2;
5958
5959         /* See eDP HDMI DPIO driver vbios notes doc */
5960
5961         /* PLL B needs special handling */
5962         if (pipe == PIPE_B)
5963                 vlv_pllb_recal_opamp(dev_priv, pipe);
5964
5965         /* Set up Tx target for periodic Rcomp update */
5966         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5967
5968         /* Disable target IRef on PLL */
5969         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5970         reg_val &= 0x00ffffff;
5971         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5972
5973         /* Disable fast lock */
5974         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5975
5976         /* Set idtafcrecal before PLL is enabled */
5977         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5978         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5979         mdiv |= ((bestn << DPIO_N_SHIFT));
5980         mdiv |= (1 << DPIO_K_SHIFT);
5981
5982         /*
5983          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5984          * but we don't support that).
5985          * Note: don't use the DAC post divider as it seems unstable.
5986          */
5987         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5988         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5989
5990         mdiv |= DPIO_ENABLE_CALIBRATION;
5991         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5992
5993         /* Set HBR and RBR LPF coefficients */
5994         if (pipe_config->port_clock == 162000 ||
5995             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5996             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5997                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5998                                  0x009f0003);
5999         else
6000                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6001                                  0x00d0000f);
6002
6003         if (crtc->config.has_dp_encoder) {
6004                 /* Use SSC source */
6005                 if (pipe == PIPE_A)
6006                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6007                                          0x0df40000);
6008                 else
6009                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6010                                          0x0df70000);
6011         } else { /* HDMI or VGA */
6012                 /* Use bend source */
6013                 if (pipe == PIPE_A)
6014                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6015                                          0x0df70000);
6016                 else
6017                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6018                                          0x0df40000);
6019         }
6020
6021         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6022         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6023         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6024             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6025                 coreclk |= 0x01000000;
6026         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6027
6028         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6029         mutex_unlock(&dev_priv->dpio_lock);
6030 }
6031
6032 static void chv_update_pll(struct intel_crtc *crtc,
6033                            struct intel_crtc_config *pipe_config)
6034 {
6035         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6036                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6037                 DPLL_VCO_ENABLE;
6038         if (crtc->pipe != PIPE_A)
6039                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6040
6041         pipe_config->dpll_hw_state.dpll_md =
6042                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6043 }
6044
6045 static void chv_prepare_pll(struct intel_crtc *crtc,
6046                             const struct intel_crtc_config *pipe_config)
6047 {
6048         struct drm_device *dev = crtc->base.dev;
6049         struct drm_i915_private *dev_priv = dev->dev_private;
6050         int pipe = crtc->pipe;
6051         int dpll_reg = DPLL(crtc->pipe);
6052         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6053         u32 loopfilter, intcoeff;
6054         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6055         int refclk;
6056
6057         bestn = pipe_config->dpll.n;
6058         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6059         bestm1 = pipe_config->dpll.m1;
6060         bestm2 = pipe_config->dpll.m2 >> 22;
6061         bestp1 = pipe_config->dpll.p1;
6062         bestp2 = pipe_config->dpll.p2;
6063
6064         /*
6065          * Enable Refclk and SSC
6066          */
6067         I915_WRITE(dpll_reg,
6068                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6069
6070         mutex_lock(&dev_priv->dpio_lock);
6071
6072         /* p1 and p2 divider */
6073         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6074                         5 << DPIO_CHV_S1_DIV_SHIFT |
6075                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6076                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6077                         1 << DPIO_CHV_K_DIV_SHIFT);
6078
6079         /* Feedback post-divider - m2 */
6080         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6081
6082         /* Feedback refclk divider - n and m1 */
6083         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6084                         DPIO_CHV_M1_DIV_BY_2 |
6085                         1 << DPIO_CHV_N_DIV_SHIFT);
6086
6087         /* M2 fraction division */
6088         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6089
6090         /* M2 fraction division enable */
6091         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6092                        DPIO_CHV_FRAC_DIV_EN |
6093                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6094
6095         /* Loop filter */
6096         refclk = i9xx_get_refclk(crtc, 0);
6097         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6098                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6099         if (refclk == 100000)
6100                 intcoeff = 11;
6101         else if (refclk == 38400)
6102                 intcoeff = 10;
6103         else
6104                 intcoeff = 9;
6105         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6106         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6107
6108         /* AFC Recal */
6109         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6110                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6111                         DPIO_AFC_RECAL);
6112
6113         mutex_unlock(&dev_priv->dpio_lock);
6114 }
6115
6116 /**
6117  * vlv_force_pll_on - forcibly enable just the PLL
6118  * @dev_priv: i915 private structure
6119  * @pipe: pipe PLL to enable
6120  * @dpll: PLL configuration
6121  *
6122  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6123  * in cases where we need the PLL enabled even when @pipe is not going to
6124  * be enabled.
6125  */
6126 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6127                       const struct dpll *dpll)
6128 {
6129         struct intel_crtc *crtc =
6130                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6131         struct intel_crtc_config pipe_config = {
6132                 .pixel_multiplier = 1,
6133                 .dpll = *dpll,
6134         };
6135
6136         if (IS_CHERRYVIEW(dev)) {
6137                 chv_update_pll(crtc, &pipe_config);
6138                 chv_prepare_pll(crtc, &pipe_config);
6139                 chv_enable_pll(crtc, &pipe_config);
6140         } else {
6141                 vlv_update_pll(crtc, &pipe_config);
6142                 vlv_prepare_pll(crtc, &pipe_config);
6143                 vlv_enable_pll(crtc, &pipe_config);
6144         }
6145 }
6146
6147 /**
6148  * vlv_force_pll_off - forcibly disable just the PLL
6149  * @dev_priv: i915 private structure
6150  * @pipe: pipe PLL to disable
6151  *
6152  * Disable the PLL for @pipe. To be used in cases where we need
6153  * the PLL enabled even when @pipe is not going to be enabled.
6154  */
6155 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6156 {
6157         if (IS_CHERRYVIEW(dev))
6158                 chv_disable_pll(to_i915(dev), pipe);
6159         else
6160                 vlv_disable_pll(to_i915(dev), pipe);
6161 }
6162
6163 static void i9xx_update_pll(struct intel_crtc *crtc,
6164                             intel_clock_t *reduced_clock,
6165                             int num_connectors)
6166 {
6167         struct drm_device *dev = crtc->base.dev;
6168         struct drm_i915_private *dev_priv = dev->dev_private;
6169         u32 dpll;
6170         bool is_sdvo;
6171         struct dpll *clock = &crtc->new_config->dpll;
6172
6173         i9xx_update_pll_dividers(crtc, reduced_clock);
6174
6175         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6176                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6177
6178         dpll = DPLL_VGA_MODE_DIS;
6179
6180         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6181                 dpll |= DPLLB_MODE_LVDS;
6182         else
6183                 dpll |= DPLLB_MODE_DAC_SERIAL;
6184
6185         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6186                 dpll |= (crtc->new_config->pixel_multiplier - 1)
6187                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6188         }
6189
6190         if (is_sdvo)
6191                 dpll |= DPLL_SDVO_HIGH_SPEED;
6192
6193         if (crtc->new_config->has_dp_encoder)
6194                 dpll |= DPLL_SDVO_HIGH_SPEED;
6195
6196         /* compute bitmask from p1 value */
6197         if (IS_PINEVIEW(dev))
6198                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6199         else {
6200                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6201                 if (IS_G4X(dev) && reduced_clock)
6202                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6203         }
6204         switch (clock->p2) {
6205         case 5:
6206                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6207                 break;
6208         case 7:
6209                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6210                 break;
6211         case 10:
6212                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6213                 break;
6214         case 14:
6215                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6216                 break;
6217         }
6218         if (INTEL_INFO(dev)->gen >= 4)
6219                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6220
6221         if (crtc->new_config->sdvo_tv_clock)
6222                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6223         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6224                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6225                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6226         else
6227                 dpll |= PLL_REF_INPUT_DREFCLK;
6228
6229         dpll |= DPLL_VCO_ENABLE;
6230         crtc->new_config->dpll_hw_state.dpll = dpll;
6231
6232         if (INTEL_INFO(dev)->gen >= 4) {
6233                 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6234                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6235                 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6236         }
6237 }
6238
6239 static void i8xx_update_pll(struct intel_crtc *crtc,
6240                             intel_clock_t *reduced_clock,
6241                             int num_connectors)
6242 {
6243         struct drm_device *dev = crtc->base.dev;
6244         struct drm_i915_private *dev_priv = dev->dev_private;
6245         u32 dpll;
6246         struct dpll *clock = &crtc->new_config->dpll;
6247
6248         i9xx_update_pll_dividers(crtc, reduced_clock);
6249
6250         dpll = DPLL_VGA_MODE_DIS;
6251
6252         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6253                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6254         } else {
6255                 if (clock->p1 == 2)
6256                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6257                 else
6258                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6259                 if (clock->p2 == 4)
6260                         dpll |= PLL_P2_DIVIDE_BY_4;
6261         }
6262
6263         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6264                 dpll |= DPLL_DVO_2X_MODE;
6265
6266         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6267                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6268                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6269         else
6270                 dpll |= PLL_REF_INPUT_DREFCLK;
6271
6272         dpll |= DPLL_VCO_ENABLE;
6273         crtc->new_config->dpll_hw_state.dpll = dpll;
6274 }
6275
6276 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6277 {
6278         struct drm_device *dev = intel_crtc->base.dev;
6279         struct drm_i915_private *dev_priv = dev->dev_private;
6280         enum pipe pipe = intel_crtc->pipe;
6281         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6282         struct drm_display_mode *adjusted_mode =
6283                 &intel_crtc->config.adjusted_mode;
6284         uint32_t crtc_vtotal, crtc_vblank_end;
6285         int vsyncshift = 0;
6286
6287         /* We need to be careful not to changed the adjusted mode, for otherwise
6288          * the hw state checker will get angry at the mismatch. */
6289         crtc_vtotal = adjusted_mode->crtc_vtotal;
6290         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6291
6292         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6293                 /* the chip adds 2 halflines automatically */
6294                 crtc_vtotal -= 1;
6295                 crtc_vblank_end -= 1;
6296
6297                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6298                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6299                 else
6300                         vsyncshift = adjusted_mode->crtc_hsync_start -
6301                                 adjusted_mode->crtc_htotal / 2;
6302                 if (vsyncshift < 0)
6303                         vsyncshift += adjusted_mode->crtc_htotal;
6304         }
6305
6306         if (INTEL_INFO(dev)->gen > 3)
6307                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6308
6309         I915_WRITE(HTOTAL(cpu_transcoder),
6310                    (adjusted_mode->crtc_hdisplay - 1) |
6311                    ((adjusted_mode->crtc_htotal - 1) << 16));
6312         I915_WRITE(HBLANK(cpu_transcoder),
6313                    (adjusted_mode->crtc_hblank_start - 1) |
6314                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6315         I915_WRITE(HSYNC(cpu_transcoder),
6316                    (adjusted_mode->crtc_hsync_start - 1) |
6317                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6318
6319         I915_WRITE(VTOTAL(cpu_transcoder),
6320                    (adjusted_mode->crtc_vdisplay - 1) |
6321                    ((crtc_vtotal - 1) << 16));
6322         I915_WRITE(VBLANK(cpu_transcoder),
6323                    (adjusted_mode->crtc_vblank_start - 1) |
6324                    ((crtc_vblank_end - 1) << 16));
6325         I915_WRITE(VSYNC(cpu_transcoder),
6326                    (adjusted_mode->crtc_vsync_start - 1) |
6327                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6328
6329         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6330          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6331          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6332          * bits. */
6333         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6334             (pipe == PIPE_B || pipe == PIPE_C))
6335                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6336
6337         /* pipesrc controls the size that is scaled from, which should
6338          * always be the user's requested size.
6339          */
6340         I915_WRITE(PIPESRC(pipe),
6341                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6342                    (intel_crtc->config.pipe_src_h - 1));
6343 }
6344
6345 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6346                                    struct intel_crtc_config *pipe_config)
6347 {
6348         struct drm_device *dev = crtc->base.dev;
6349         struct drm_i915_private *dev_priv = dev->dev_private;
6350         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6351         uint32_t tmp;
6352
6353         tmp = I915_READ(HTOTAL(cpu_transcoder));
6354         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6355         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6356         tmp = I915_READ(HBLANK(cpu_transcoder));
6357         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6358         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6359         tmp = I915_READ(HSYNC(cpu_transcoder));
6360         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6361         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6362
6363         tmp = I915_READ(VTOTAL(cpu_transcoder));
6364         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6365         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6366         tmp = I915_READ(VBLANK(cpu_transcoder));
6367         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6368         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6369         tmp = I915_READ(VSYNC(cpu_transcoder));
6370         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6371         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6372
6373         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6374                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6375                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6376                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6377         }
6378
6379         tmp = I915_READ(PIPESRC(crtc->pipe));
6380         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6381         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6382
6383         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6384         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6385 }
6386
6387 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6388                                  struct intel_crtc_config *pipe_config)
6389 {
6390         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6391         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6392         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6393         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6394
6395         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6396         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6397         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6398         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6399
6400         mode->flags = pipe_config->adjusted_mode.flags;
6401
6402         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6403         mode->flags |= pipe_config->adjusted_mode.flags;
6404 }
6405
6406 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6407 {
6408         struct drm_device *dev = intel_crtc->base.dev;
6409         struct drm_i915_private *dev_priv = dev->dev_private;
6410         uint32_t pipeconf;
6411
6412         pipeconf = 0;
6413
6414         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6415             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6416                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6417
6418         if (intel_crtc->config.double_wide)
6419                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6420
6421         /* only g4x and later have fancy bpc/dither controls */
6422         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6423                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6424                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6425                         pipeconf |= PIPECONF_DITHER_EN |
6426                                     PIPECONF_DITHER_TYPE_SP;
6427
6428                 switch (intel_crtc->config.pipe_bpp) {
6429                 case 18:
6430                         pipeconf |= PIPECONF_6BPC;
6431                         break;
6432                 case 24:
6433                         pipeconf |= PIPECONF_8BPC;
6434                         break;
6435                 case 30:
6436                         pipeconf |= PIPECONF_10BPC;
6437                         break;
6438                 default:
6439                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6440                         BUG();
6441                 }
6442         }
6443
6444         if (HAS_PIPE_CXSR(dev)) {
6445                 if (intel_crtc->lowfreq_avail) {
6446                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6447                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6448                 } else {
6449                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6450                 }
6451         }
6452
6453         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6454                 if (INTEL_INFO(dev)->gen < 4 ||
6455                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6456                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6457                 else
6458                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6459         } else
6460                 pipeconf |= PIPECONF_PROGRESSIVE;
6461
6462         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6463                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6464
6465         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6466         POSTING_READ(PIPECONF(intel_crtc->pipe));
6467 }
6468
6469 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6470 {
6471         struct drm_device *dev = crtc->base.dev;
6472         struct drm_i915_private *dev_priv = dev->dev_private;
6473         int refclk, num_connectors = 0;
6474         intel_clock_t clock, reduced_clock;
6475         bool ok, has_reduced_clock = false;
6476         bool is_lvds = false, is_dsi = false;
6477         struct intel_encoder *encoder;
6478         const intel_limit_t *limit;
6479
6480         for_each_intel_encoder(dev, encoder) {
6481                 if (encoder->new_crtc != crtc)
6482                         continue;
6483
6484                 switch (encoder->type) {
6485                 case INTEL_OUTPUT_LVDS:
6486                         is_lvds = true;
6487                         break;
6488                 case INTEL_OUTPUT_DSI:
6489                         is_dsi = true;
6490                         break;
6491                 default:
6492                         break;
6493                 }
6494
6495                 num_connectors++;
6496         }
6497
6498         if (is_dsi)
6499                 return 0;
6500
6501         if (!crtc->new_config->clock_set) {
6502                 refclk = i9xx_get_refclk(crtc, num_connectors);
6503
6504                 /*
6505                  * Returns a set of divisors for the desired target clock with
6506                  * the given refclk, or FALSE.  The returned values represent
6507                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6508                  * 2) / p1 / p2.
6509                  */
6510                 limit = intel_limit(crtc, refclk);
6511                 ok = dev_priv->display.find_dpll(limit, crtc,
6512                                                  crtc->new_config->port_clock,
6513                                                  refclk, NULL, &clock);
6514                 if (!ok) {
6515                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6516                         return -EINVAL;
6517                 }
6518
6519                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6520                         /*
6521                          * Ensure we match the reduced clock's P to the target
6522                          * clock.  If the clocks don't match, we can't switch
6523                          * the display clock by using the FP0/FP1. In such case
6524                          * we will disable the LVDS downclock feature.
6525                          */
6526                         has_reduced_clock =
6527                                 dev_priv->display.find_dpll(limit, crtc,
6528                                                             dev_priv->lvds_downclock,
6529                                                             refclk, &clock,
6530                                                             &reduced_clock);
6531                 }
6532                 /* Compat-code for transition, will disappear. */
6533                 crtc->new_config->dpll.n = clock.n;
6534                 crtc->new_config->dpll.m1 = clock.m1;
6535                 crtc->new_config->dpll.m2 = clock.m2;
6536                 crtc->new_config->dpll.p1 = clock.p1;
6537                 crtc->new_config->dpll.p2 = clock.p2;
6538         }
6539
6540         if (IS_GEN2(dev)) {
6541                 i8xx_update_pll(crtc,
6542                                 has_reduced_clock ? &reduced_clock : NULL,
6543                                 num_connectors);
6544         } else if (IS_CHERRYVIEW(dev)) {
6545                 chv_update_pll(crtc, crtc->new_config);
6546         } else if (IS_VALLEYVIEW(dev)) {
6547                 vlv_update_pll(crtc, crtc->new_config);
6548         } else {
6549                 i9xx_update_pll(crtc,
6550                                 has_reduced_clock ? &reduced_clock : NULL,
6551                                 num_connectors);
6552         }
6553
6554         return 0;
6555 }
6556
6557 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6558                                  struct intel_crtc_config *pipe_config)
6559 {
6560         struct drm_device *dev = crtc->base.dev;
6561         struct drm_i915_private *dev_priv = dev->dev_private;
6562         uint32_t tmp;
6563
6564         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6565                 return;
6566
6567         tmp = I915_READ(PFIT_CONTROL);
6568         if (!(tmp & PFIT_ENABLE))
6569                 return;
6570
6571         /* Check whether the pfit is attached to our pipe. */
6572         if (INTEL_INFO(dev)->gen < 4) {
6573                 if (crtc->pipe != PIPE_B)
6574                         return;
6575         } else {
6576                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6577                         return;
6578         }
6579
6580         pipe_config->gmch_pfit.control = tmp;
6581         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6582         if (INTEL_INFO(dev)->gen < 5)
6583                 pipe_config->gmch_pfit.lvds_border_bits =
6584                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6585 }
6586
6587 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6588                                struct intel_crtc_config *pipe_config)
6589 {
6590         struct drm_device *dev = crtc->base.dev;
6591         struct drm_i915_private *dev_priv = dev->dev_private;
6592         int pipe = pipe_config->cpu_transcoder;
6593         intel_clock_t clock;
6594         u32 mdiv;
6595         int refclk = 100000;
6596
6597         /* In case of MIPI DPLL will not even be used */
6598         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6599                 return;
6600
6601         mutex_lock(&dev_priv->dpio_lock);
6602         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6603         mutex_unlock(&dev_priv->dpio_lock);
6604
6605         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6606         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6607         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6608         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6609         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6610
6611         vlv_clock(refclk, &clock);
6612
6613         /* clock.dot is the fast clock */
6614         pipe_config->port_clock = clock.dot / 5;
6615 }
6616
6617 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6618                                   struct intel_plane_config *plane_config)
6619 {
6620         struct drm_device *dev = crtc->base.dev;
6621         struct drm_i915_private *dev_priv = dev->dev_private;
6622         u32 val, base, offset;
6623         int pipe = crtc->pipe, plane = crtc->plane;
6624         int fourcc, pixel_format;
6625         int aligned_height;
6626
6627         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6628         if (!crtc->base.primary->fb) {
6629                 DRM_DEBUG_KMS("failed to alloc fb\n");
6630                 return;
6631         }
6632
6633         val = I915_READ(DSPCNTR(plane));
6634
6635         if (INTEL_INFO(dev)->gen >= 4)
6636                 if (val & DISPPLANE_TILED)
6637                         plane_config->tiled = true;
6638
6639         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6640         fourcc = intel_format_to_fourcc(pixel_format);
6641         crtc->base.primary->fb->pixel_format = fourcc;
6642         crtc->base.primary->fb->bits_per_pixel =
6643                 drm_format_plane_cpp(fourcc, 0) * 8;
6644
6645         if (INTEL_INFO(dev)->gen >= 4) {
6646                 if (plane_config->tiled)
6647                         offset = I915_READ(DSPTILEOFF(plane));
6648                 else
6649                         offset = I915_READ(DSPLINOFF(plane));
6650                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6651         } else {
6652                 base = I915_READ(DSPADDR(plane));
6653         }
6654         plane_config->base = base;
6655
6656         val = I915_READ(PIPESRC(pipe));
6657         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6658         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6659
6660         val = I915_READ(DSPSTRIDE(pipe));
6661         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6662
6663         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6664                                             plane_config->tiled);
6665
6666         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6667                                         aligned_height);
6668
6669         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6670                       pipe, plane, crtc->base.primary->fb->width,
6671                       crtc->base.primary->fb->height,
6672                       crtc->base.primary->fb->bits_per_pixel, base,
6673                       crtc->base.primary->fb->pitches[0],
6674                       plane_config->size);
6675
6676 }
6677
6678 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6679                                struct intel_crtc_config *pipe_config)
6680 {
6681         struct drm_device *dev = crtc->base.dev;
6682         struct drm_i915_private *dev_priv = dev->dev_private;
6683         int pipe = pipe_config->cpu_transcoder;
6684         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6685         intel_clock_t clock;
6686         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6687         int refclk = 100000;
6688
6689         mutex_lock(&dev_priv->dpio_lock);
6690         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6691         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6692         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6693         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6694         mutex_unlock(&dev_priv->dpio_lock);
6695
6696         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6697         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6698         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6699         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6700         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6701
6702         chv_clock(refclk, &clock);
6703
6704         /* clock.dot is the fast clock */
6705         pipe_config->port_clock = clock.dot / 5;
6706 }
6707
6708 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6709                                  struct intel_crtc_config *pipe_config)
6710 {
6711         struct drm_device *dev = crtc->base.dev;
6712         struct drm_i915_private *dev_priv = dev->dev_private;
6713         uint32_t tmp;
6714
6715         if (!intel_display_power_is_enabled(dev_priv,
6716                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6717                 return false;
6718
6719         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6720         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6721
6722         tmp = I915_READ(PIPECONF(crtc->pipe));
6723         if (!(tmp & PIPECONF_ENABLE))
6724                 return false;
6725
6726         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6727                 switch (tmp & PIPECONF_BPC_MASK) {
6728                 case PIPECONF_6BPC:
6729                         pipe_config->pipe_bpp = 18;
6730                         break;
6731                 case PIPECONF_8BPC:
6732                         pipe_config->pipe_bpp = 24;
6733                         break;
6734                 case PIPECONF_10BPC:
6735                         pipe_config->pipe_bpp = 30;
6736                         break;
6737                 default:
6738                         break;
6739                 }
6740         }
6741
6742         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6743                 pipe_config->limited_color_range = true;
6744
6745         if (INTEL_INFO(dev)->gen < 4)
6746                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6747
6748         intel_get_pipe_timings(crtc, pipe_config);
6749
6750         i9xx_get_pfit_config(crtc, pipe_config);
6751
6752         if (INTEL_INFO(dev)->gen >= 4) {
6753                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6754                 pipe_config->pixel_multiplier =
6755                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6756                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6757                 pipe_config->dpll_hw_state.dpll_md = tmp;
6758         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6759                 tmp = I915_READ(DPLL(crtc->pipe));
6760                 pipe_config->pixel_multiplier =
6761                         ((tmp & SDVO_MULTIPLIER_MASK)
6762                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6763         } else {
6764                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6765                  * port and will be fixed up in the encoder->get_config
6766                  * function. */
6767                 pipe_config->pixel_multiplier = 1;
6768         }
6769         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6770         if (!IS_VALLEYVIEW(dev)) {
6771                 /*
6772                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6773                  * on 830. Filter it out here so that we don't
6774                  * report errors due to that.
6775                  */
6776                 if (IS_I830(dev))
6777                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6778
6779                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6780                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6781         } else {
6782                 /* Mask out read-only status bits. */
6783                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6784                                                      DPLL_PORTC_READY_MASK |
6785                                                      DPLL_PORTB_READY_MASK);
6786         }
6787
6788         if (IS_CHERRYVIEW(dev))
6789                 chv_crtc_clock_get(crtc, pipe_config);
6790         else if (IS_VALLEYVIEW(dev))
6791                 vlv_crtc_clock_get(crtc, pipe_config);
6792         else
6793                 i9xx_crtc_clock_get(crtc, pipe_config);
6794
6795         return true;
6796 }
6797
6798 static void ironlake_init_pch_refclk(struct drm_device *dev)
6799 {
6800         struct drm_i915_private *dev_priv = dev->dev_private;
6801         struct intel_encoder *encoder;
6802         u32 val, final;
6803         bool has_lvds = false;
6804         bool has_cpu_edp = false;
6805         bool has_panel = false;
6806         bool has_ck505 = false;
6807         bool can_ssc = false;
6808
6809         /* We need to take the global config into account */
6810         for_each_intel_encoder(dev, encoder) {
6811                 switch (encoder->type) {
6812                 case INTEL_OUTPUT_LVDS:
6813                         has_panel = true;
6814                         has_lvds = true;
6815                         break;
6816                 case INTEL_OUTPUT_EDP:
6817                         has_panel = true;
6818                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6819                                 has_cpu_edp = true;
6820                         break;
6821                 default:
6822                         break;
6823                 }
6824         }
6825
6826         if (HAS_PCH_IBX(dev)) {
6827                 has_ck505 = dev_priv->vbt.display_clock_mode;
6828                 can_ssc = has_ck505;
6829         } else {
6830                 has_ck505 = false;
6831                 can_ssc = true;
6832         }
6833
6834         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6835                       has_panel, has_lvds, has_ck505);
6836
6837         /* Ironlake: try to setup display ref clock before DPLL
6838          * enabling. This is only under driver's control after
6839          * PCH B stepping, previous chipset stepping should be
6840          * ignoring this setting.
6841          */
6842         val = I915_READ(PCH_DREF_CONTROL);
6843
6844         /* As we must carefully and slowly disable/enable each source in turn,
6845          * compute the final state we want first and check if we need to
6846          * make any changes at all.
6847          */
6848         final = val;
6849         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6850         if (has_ck505)
6851                 final |= DREF_NONSPREAD_CK505_ENABLE;
6852         else
6853                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6854
6855         final &= ~DREF_SSC_SOURCE_MASK;
6856         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6857         final &= ~DREF_SSC1_ENABLE;
6858
6859         if (has_panel) {
6860                 final |= DREF_SSC_SOURCE_ENABLE;
6861
6862                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6863                         final |= DREF_SSC1_ENABLE;
6864
6865                 if (has_cpu_edp) {
6866                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6867                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6868                         else
6869                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6870                 } else
6871                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6872         } else {
6873                 final |= DREF_SSC_SOURCE_DISABLE;
6874                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6875         }
6876
6877         if (final == val)
6878                 return;
6879
6880         /* Always enable nonspread source */
6881         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6882
6883         if (has_ck505)
6884                 val |= DREF_NONSPREAD_CK505_ENABLE;
6885         else
6886                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6887
6888         if (has_panel) {
6889                 val &= ~DREF_SSC_SOURCE_MASK;
6890                 val |= DREF_SSC_SOURCE_ENABLE;
6891
6892                 /* SSC must be turned on before enabling the CPU output  */
6893                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6894                         DRM_DEBUG_KMS("Using SSC on panel\n");
6895                         val |= DREF_SSC1_ENABLE;
6896                 } else
6897                         val &= ~DREF_SSC1_ENABLE;
6898
6899                 /* Get SSC going before enabling the outputs */
6900                 I915_WRITE(PCH_DREF_CONTROL, val);
6901                 POSTING_READ(PCH_DREF_CONTROL);
6902                 udelay(200);
6903
6904                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6905
6906                 /* Enable CPU source on CPU attached eDP */
6907                 if (has_cpu_edp) {
6908                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6909                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6910                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6911                         } else
6912                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6913                 } else
6914                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6915
6916                 I915_WRITE(PCH_DREF_CONTROL, val);
6917                 POSTING_READ(PCH_DREF_CONTROL);
6918                 udelay(200);
6919         } else {
6920                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6921
6922                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6923
6924                 /* Turn off CPU output */
6925                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6926
6927                 I915_WRITE(PCH_DREF_CONTROL, val);
6928                 POSTING_READ(PCH_DREF_CONTROL);
6929                 udelay(200);
6930
6931                 /* Turn off the SSC source */
6932                 val &= ~DREF_SSC_SOURCE_MASK;
6933                 val |= DREF_SSC_SOURCE_DISABLE;
6934
6935                 /* Turn off SSC1 */
6936                 val &= ~DREF_SSC1_ENABLE;
6937
6938                 I915_WRITE(PCH_DREF_CONTROL, val);
6939                 POSTING_READ(PCH_DREF_CONTROL);
6940                 udelay(200);
6941         }
6942
6943         BUG_ON(val != final);
6944 }
6945
6946 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6947 {
6948         uint32_t tmp;
6949
6950         tmp = I915_READ(SOUTH_CHICKEN2);
6951         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6952         I915_WRITE(SOUTH_CHICKEN2, tmp);
6953
6954         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6955                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6956                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6957
6958         tmp = I915_READ(SOUTH_CHICKEN2);
6959         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6960         I915_WRITE(SOUTH_CHICKEN2, tmp);
6961
6962         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6963                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6964                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6965 }
6966
6967 /* WaMPhyProgramming:hsw */
6968 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6969 {
6970         uint32_t tmp;
6971
6972         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6973         tmp &= ~(0xFF << 24);
6974         tmp |= (0x12 << 24);
6975         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6976
6977         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6978         tmp |= (1 << 11);
6979         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6980
6981         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6982         tmp |= (1 << 11);
6983         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6984
6985         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6986         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6987         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6988
6989         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6990         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6991         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6992
6993         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6994         tmp &= ~(7 << 13);
6995         tmp |= (5 << 13);
6996         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6997
6998         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6999         tmp &= ~(7 << 13);
7000         tmp |= (5 << 13);
7001         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7002
7003         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7004         tmp &= ~0xFF;
7005         tmp |= 0x1C;
7006         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7007
7008         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7009         tmp &= ~0xFF;
7010         tmp |= 0x1C;
7011         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7012
7013         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7014         tmp &= ~(0xFF << 16);
7015         tmp |= (0x1C << 16);
7016         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7017
7018         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7019         tmp &= ~(0xFF << 16);
7020         tmp |= (0x1C << 16);
7021         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7022
7023         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7024         tmp |= (1 << 27);
7025         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7026
7027         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7028         tmp |= (1 << 27);
7029         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7030
7031         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7032         tmp &= ~(0xF << 28);
7033         tmp |= (4 << 28);
7034         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7035
7036         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7037         tmp &= ~(0xF << 28);
7038         tmp |= (4 << 28);
7039         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7040 }
7041
7042 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7043  * Programming" based on the parameters passed:
7044  * - Sequence to enable CLKOUT_DP
7045  * - Sequence to enable CLKOUT_DP without spread
7046  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7047  */
7048 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7049                                  bool with_fdi)
7050 {
7051         struct drm_i915_private *dev_priv = dev->dev_private;
7052         uint32_t reg, tmp;
7053
7054         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7055                 with_spread = true;
7056         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7057                  with_fdi, "LP PCH doesn't have FDI\n"))
7058                 with_fdi = false;
7059
7060         mutex_lock(&dev_priv->dpio_lock);
7061
7062         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7063         tmp &= ~SBI_SSCCTL_DISABLE;
7064         tmp |= SBI_SSCCTL_PATHALT;
7065         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7066
7067         udelay(24);
7068
7069         if (with_spread) {
7070                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7071                 tmp &= ~SBI_SSCCTL_PATHALT;
7072                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7073
7074                 if (with_fdi) {
7075                         lpt_reset_fdi_mphy(dev_priv);
7076                         lpt_program_fdi_mphy(dev_priv);
7077                 }
7078         }
7079
7080         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7081                SBI_GEN0 : SBI_DBUFF0;
7082         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7083         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7084         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7085
7086         mutex_unlock(&dev_priv->dpio_lock);
7087 }
7088
7089 /* Sequence to disable CLKOUT_DP */
7090 static void lpt_disable_clkout_dp(struct drm_device *dev)
7091 {
7092         struct drm_i915_private *dev_priv = dev->dev_private;
7093         uint32_t reg, tmp;
7094
7095         mutex_lock(&dev_priv->dpio_lock);
7096
7097         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7098                SBI_GEN0 : SBI_DBUFF0;
7099         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7100         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7101         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7102
7103         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7104         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7105                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7106                         tmp |= SBI_SSCCTL_PATHALT;
7107                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7108                         udelay(32);
7109                 }
7110                 tmp |= SBI_SSCCTL_DISABLE;
7111                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7112         }
7113
7114         mutex_unlock(&dev_priv->dpio_lock);
7115 }
7116
7117 static void lpt_init_pch_refclk(struct drm_device *dev)
7118 {
7119         struct intel_encoder *encoder;
7120         bool has_vga = false;
7121
7122         for_each_intel_encoder(dev, encoder) {
7123                 switch (encoder->type) {
7124                 case INTEL_OUTPUT_ANALOG:
7125                         has_vga = true;
7126                         break;
7127                 default:
7128                         break;
7129                 }
7130         }
7131
7132         if (has_vga)
7133                 lpt_enable_clkout_dp(dev, true, true);
7134         else
7135                 lpt_disable_clkout_dp(dev);
7136 }
7137
7138 /*
7139  * Initialize reference clocks when the driver loads
7140  */
7141 void intel_init_pch_refclk(struct drm_device *dev)
7142 {
7143         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7144                 ironlake_init_pch_refclk(dev);
7145         else if (HAS_PCH_LPT(dev))
7146                 lpt_init_pch_refclk(dev);
7147 }
7148
7149 static int ironlake_get_refclk(struct drm_crtc *crtc)
7150 {
7151         struct drm_device *dev = crtc->dev;
7152         struct drm_i915_private *dev_priv = dev->dev_private;
7153         struct intel_encoder *encoder;
7154         int num_connectors = 0;
7155         bool is_lvds = false;
7156
7157         for_each_intel_encoder(dev, encoder) {
7158                 if (encoder->new_crtc != to_intel_crtc(crtc))
7159                         continue;
7160
7161                 switch (encoder->type) {
7162                 case INTEL_OUTPUT_LVDS:
7163                         is_lvds = true;
7164                         break;
7165                 default:
7166                         break;
7167                 }
7168                 num_connectors++;
7169         }
7170
7171         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7172                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7173                               dev_priv->vbt.lvds_ssc_freq);
7174                 return dev_priv->vbt.lvds_ssc_freq;
7175         }
7176
7177         return 120000;
7178 }
7179
7180 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7181 {
7182         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7184         int pipe = intel_crtc->pipe;
7185         uint32_t val;
7186
7187         val = 0;
7188
7189         switch (intel_crtc->config.pipe_bpp) {
7190         case 18:
7191                 val |= PIPECONF_6BPC;
7192                 break;
7193         case 24:
7194                 val |= PIPECONF_8BPC;
7195                 break;
7196         case 30:
7197                 val |= PIPECONF_10BPC;
7198                 break;
7199         case 36:
7200                 val |= PIPECONF_12BPC;
7201                 break;
7202         default:
7203                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7204                 BUG();
7205         }
7206
7207         if (intel_crtc->config.dither)
7208                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7209
7210         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7211                 val |= PIPECONF_INTERLACED_ILK;
7212         else
7213                 val |= PIPECONF_PROGRESSIVE;
7214
7215         if (intel_crtc->config.limited_color_range)
7216                 val |= PIPECONF_COLOR_RANGE_SELECT;
7217
7218         I915_WRITE(PIPECONF(pipe), val);
7219         POSTING_READ(PIPECONF(pipe));
7220 }
7221
7222 /*
7223  * Set up the pipe CSC unit.
7224  *
7225  * Currently only full range RGB to limited range RGB conversion
7226  * is supported, but eventually this should handle various
7227  * RGB<->YCbCr scenarios as well.
7228  */
7229 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7230 {
7231         struct drm_device *dev = crtc->dev;
7232         struct drm_i915_private *dev_priv = dev->dev_private;
7233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7234         int pipe = intel_crtc->pipe;
7235         uint16_t coeff = 0x7800; /* 1.0 */
7236
7237         /*
7238          * TODO: Check what kind of values actually come out of the pipe
7239          * with these coeff/postoff values and adjust to get the best
7240          * accuracy. Perhaps we even need to take the bpc value into
7241          * consideration.
7242          */
7243
7244         if (intel_crtc->config.limited_color_range)
7245                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7246
7247         /*
7248          * GY/GU and RY/RU should be the other way around according
7249          * to BSpec, but reality doesn't agree. Just set them up in
7250          * a way that results in the correct picture.
7251          */
7252         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7253         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7254
7255         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7256         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7257
7258         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7259         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7260
7261         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7262         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7263         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7264
7265         if (INTEL_INFO(dev)->gen > 6) {
7266                 uint16_t postoff = 0;
7267
7268                 if (intel_crtc->config.limited_color_range)
7269                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7270
7271                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7272                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7273                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7274
7275                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7276         } else {
7277                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7278
7279                 if (intel_crtc->config.limited_color_range)
7280                         mode |= CSC_BLACK_SCREEN_OFFSET;
7281
7282                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7283         }
7284 }
7285
7286 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7287 {
7288         struct drm_device *dev = crtc->dev;
7289         struct drm_i915_private *dev_priv = dev->dev_private;
7290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7291         enum pipe pipe = intel_crtc->pipe;
7292         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7293         uint32_t val;
7294
7295         val = 0;
7296
7297         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7298                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7299
7300         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7301                 val |= PIPECONF_INTERLACED_ILK;
7302         else
7303                 val |= PIPECONF_PROGRESSIVE;
7304
7305         I915_WRITE(PIPECONF(cpu_transcoder), val);
7306         POSTING_READ(PIPECONF(cpu_transcoder));
7307
7308         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7309         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7310
7311         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7312                 val = 0;
7313
7314                 switch (intel_crtc->config.pipe_bpp) {
7315                 case 18:
7316                         val |= PIPEMISC_DITHER_6_BPC;
7317                         break;
7318                 case 24:
7319                         val |= PIPEMISC_DITHER_8_BPC;
7320                         break;
7321                 case 30:
7322                         val |= PIPEMISC_DITHER_10_BPC;
7323                         break;
7324                 case 36:
7325                         val |= PIPEMISC_DITHER_12_BPC;
7326                         break;
7327                 default:
7328                         /* Case prevented by pipe_config_set_bpp. */
7329                         BUG();
7330                 }
7331
7332                 if (intel_crtc->config.dither)
7333                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7334
7335                 I915_WRITE(PIPEMISC(pipe), val);
7336         }
7337 }
7338
7339 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7340                                     intel_clock_t *clock,
7341                                     bool *has_reduced_clock,
7342                                     intel_clock_t *reduced_clock)
7343 {
7344         struct drm_device *dev = crtc->dev;
7345         struct drm_i915_private *dev_priv = dev->dev_private;
7346         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7347         int refclk;
7348         const intel_limit_t *limit;
7349         bool ret, is_lvds = false;
7350
7351         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7352
7353         refclk = ironlake_get_refclk(crtc);
7354
7355         /*
7356          * Returns a set of divisors for the desired target clock with the given
7357          * refclk, or FALSE.  The returned values represent the clock equation:
7358          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7359          */
7360         limit = intel_limit(intel_crtc, refclk);
7361         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7362                                           intel_crtc->new_config->port_clock,
7363                                           refclk, NULL, clock);
7364         if (!ret)
7365                 return false;
7366
7367         if (is_lvds && dev_priv->lvds_downclock_avail) {
7368                 /*
7369                  * Ensure we match the reduced clock's P to the target clock.
7370                  * If the clocks don't match, we can't switch the display clock
7371                  * by using the FP0/FP1. In such case we will disable the LVDS
7372                  * downclock feature.
7373                 */
7374                 *has_reduced_clock =
7375                         dev_priv->display.find_dpll(limit, intel_crtc,
7376                                                     dev_priv->lvds_downclock,
7377                                                     refclk, clock,
7378                                                     reduced_clock);
7379         }
7380
7381         return true;
7382 }
7383
7384 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7385 {
7386         /*
7387          * Account for spread spectrum to avoid
7388          * oversubscribing the link. Max center spread
7389          * is 2.5%; use 5% for safety's sake.
7390          */
7391         u32 bps = target_clock * bpp * 21 / 20;
7392         return DIV_ROUND_UP(bps, link_bw * 8);
7393 }
7394
7395 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7396 {
7397         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7398 }
7399
7400 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7401                                       u32 *fp,
7402                                       intel_clock_t *reduced_clock, u32 *fp2)
7403 {
7404         struct drm_crtc *crtc = &intel_crtc->base;
7405         struct drm_device *dev = crtc->dev;
7406         struct drm_i915_private *dev_priv = dev->dev_private;
7407         struct intel_encoder *intel_encoder;
7408         uint32_t dpll;
7409         int factor, num_connectors = 0;
7410         bool is_lvds = false, is_sdvo = false;
7411
7412         for_each_intel_encoder(dev, intel_encoder) {
7413                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7414                         continue;
7415
7416                 switch (intel_encoder->type) {
7417                 case INTEL_OUTPUT_LVDS:
7418                         is_lvds = true;
7419                         break;
7420                 case INTEL_OUTPUT_SDVO:
7421                 case INTEL_OUTPUT_HDMI:
7422                         is_sdvo = true;
7423                         break;
7424                 default:
7425                         break;
7426                 }
7427
7428                 num_connectors++;
7429         }
7430
7431         /* Enable autotuning of the PLL clock (if permissible) */
7432         factor = 21;
7433         if (is_lvds) {
7434                 if ((intel_panel_use_ssc(dev_priv) &&
7435                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7436                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7437                         factor = 25;
7438         } else if (intel_crtc->new_config->sdvo_tv_clock)
7439                 factor = 20;
7440
7441         if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7442                 *fp |= FP_CB_TUNE;
7443
7444         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7445                 *fp2 |= FP_CB_TUNE;
7446
7447         dpll = 0;
7448
7449         if (is_lvds)
7450                 dpll |= DPLLB_MODE_LVDS;
7451         else
7452                 dpll |= DPLLB_MODE_DAC_SERIAL;
7453
7454         dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7455                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7456
7457         if (is_sdvo)
7458                 dpll |= DPLL_SDVO_HIGH_SPEED;
7459         if (intel_crtc->new_config->has_dp_encoder)
7460                 dpll |= DPLL_SDVO_HIGH_SPEED;
7461
7462         /* compute bitmask from p1 value */
7463         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7464         /* also FPA1 */
7465         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7466
7467         switch (intel_crtc->new_config->dpll.p2) {
7468         case 5:
7469                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7470                 break;
7471         case 7:
7472                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7473                 break;
7474         case 10:
7475                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7476                 break;
7477         case 14:
7478                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7479                 break;
7480         }
7481
7482         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7483                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7484         else
7485                 dpll |= PLL_REF_INPUT_DREFCLK;
7486
7487         return dpll | DPLL_VCO_ENABLE;
7488 }
7489
7490 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7491 {
7492         struct drm_device *dev = crtc->base.dev;
7493         intel_clock_t clock, reduced_clock;
7494         u32 dpll = 0, fp = 0, fp2 = 0;
7495         bool ok, has_reduced_clock = false;
7496         bool is_lvds = false;
7497         struct intel_shared_dpll *pll;
7498
7499         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7500
7501         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7502              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7503
7504         ok = ironlake_compute_clocks(&crtc->base, &clock,
7505                                      &has_reduced_clock, &reduced_clock);
7506         if (!ok && !crtc->new_config->clock_set) {
7507                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7508                 return -EINVAL;
7509         }
7510         /* Compat-code for transition, will disappear. */
7511         if (!crtc->new_config->clock_set) {
7512                 crtc->new_config->dpll.n = clock.n;
7513                 crtc->new_config->dpll.m1 = clock.m1;
7514                 crtc->new_config->dpll.m2 = clock.m2;
7515                 crtc->new_config->dpll.p1 = clock.p1;
7516                 crtc->new_config->dpll.p2 = clock.p2;
7517         }
7518
7519         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7520         if (crtc->new_config->has_pch_encoder) {
7521                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7522                 if (has_reduced_clock)
7523                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7524
7525                 dpll = ironlake_compute_dpll(crtc,
7526                                              &fp, &reduced_clock,
7527                                              has_reduced_clock ? &fp2 : NULL);
7528
7529                 crtc->new_config->dpll_hw_state.dpll = dpll;
7530                 crtc->new_config->dpll_hw_state.fp0 = fp;
7531                 if (has_reduced_clock)
7532                         crtc->new_config->dpll_hw_state.fp1 = fp2;
7533                 else
7534                         crtc->new_config->dpll_hw_state.fp1 = fp;
7535
7536                 pll = intel_get_shared_dpll(crtc);
7537                 if (pll == NULL) {
7538                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7539                                          pipe_name(crtc->pipe));
7540                         return -EINVAL;
7541                 }
7542         }
7543
7544         if (is_lvds && has_reduced_clock && i915.powersave)
7545                 crtc->lowfreq_avail = true;
7546         else
7547                 crtc->lowfreq_avail = false;
7548
7549         return 0;
7550 }
7551
7552 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7553                                          struct intel_link_m_n *m_n)
7554 {
7555         struct drm_device *dev = crtc->base.dev;
7556         struct drm_i915_private *dev_priv = dev->dev_private;
7557         enum pipe pipe = crtc->pipe;
7558
7559         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7560         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7561         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7562                 & ~TU_SIZE_MASK;
7563         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7564         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7565                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7566 }
7567
7568 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7569                                          enum transcoder transcoder,
7570                                          struct intel_link_m_n *m_n,
7571                                          struct intel_link_m_n *m2_n2)
7572 {
7573         struct drm_device *dev = crtc->base.dev;
7574         struct drm_i915_private *dev_priv = dev->dev_private;
7575         enum pipe pipe = crtc->pipe;
7576
7577         if (INTEL_INFO(dev)->gen >= 5) {
7578                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7579                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7580                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7581                         & ~TU_SIZE_MASK;
7582                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7583                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7584                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7585                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7586                  * gen < 8) and if DRRS is supported (to make sure the
7587                  * registers are not unnecessarily read).
7588                  */
7589                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7590                         crtc->config.has_drrs) {
7591                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7592                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7593                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7594                                         & ~TU_SIZE_MASK;
7595                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7596                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7597                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7598                 }
7599         } else {
7600                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7601                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7602                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7603                         & ~TU_SIZE_MASK;
7604                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7605                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7606                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7607         }
7608 }
7609
7610 void intel_dp_get_m_n(struct intel_crtc *crtc,
7611                       struct intel_crtc_config *pipe_config)
7612 {
7613         if (crtc->config.has_pch_encoder)
7614                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7615         else
7616                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7617                                              &pipe_config->dp_m_n,
7618                                              &pipe_config->dp_m2_n2);
7619 }
7620
7621 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7622                                         struct intel_crtc_config *pipe_config)
7623 {
7624         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7625                                      &pipe_config->fdi_m_n, NULL);
7626 }
7627
7628 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7629                                     struct intel_crtc_config *pipe_config)
7630 {
7631         struct drm_device *dev = crtc->base.dev;
7632         struct drm_i915_private *dev_priv = dev->dev_private;
7633         uint32_t tmp;
7634
7635         tmp = I915_READ(PS_CTL(crtc->pipe));
7636
7637         if (tmp & PS_ENABLE) {
7638                 pipe_config->pch_pfit.enabled = true;
7639                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7640                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7641         }
7642 }
7643
7644 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7645                                      struct intel_crtc_config *pipe_config)
7646 {
7647         struct drm_device *dev = crtc->base.dev;
7648         struct drm_i915_private *dev_priv = dev->dev_private;
7649         uint32_t tmp;
7650
7651         tmp = I915_READ(PF_CTL(crtc->pipe));
7652
7653         if (tmp & PF_ENABLE) {
7654                 pipe_config->pch_pfit.enabled = true;
7655                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7656                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7657
7658                 /* We currently do not free assignements of panel fitters on
7659                  * ivb/hsw (since we don't use the higher upscaling modes which
7660                  * differentiates them) so just WARN about this case for now. */
7661                 if (IS_GEN7(dev)) {
7662                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7663                                 PF_PIPE_SEL_IVB(crtc->pipe));
7664                 }
7665         }
7666 }
7667
7668 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7669                                       struct intel_plane_config *plane_config)
7670 {
7671         struct drm_device *dev = crtc->base.dev;
7672         struct drm_i915_private *dev_priv = dev->dev_private;
7673         u32 val, base, offset;
7674         int pipe = crtc->pipe, plane = crtc->plane;
7675         int fourcc, pixel_format;
7676         int aligned_height;
7677
7678         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7679         if (!crtc->base.primary->fb) {
7680                 DRM_DEBUG_KMS("failed to alloc fb\n");
7681                 return;
7682         }
7683
7684         val = I915_READ(DSPCNTR(plane));
7685
7686         if (INTEL_INFO(dev)->gen >= 4)
7687                 if (val & DISPPLANE_TILED)
7688                         plane_config->tiled = true;
7689
7690         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7691         fourcc = intel_format_to_fourcc(pixel_format);
7692         crtc->base.primary->fb->pixel_format = fourcc;
7693         crtc->base.primary->fb->bits_per_pixel =
7694                 drm_format_plane_cpp(fourcc, 0) * 8;
7695
7696         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7697         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7698                 offset = I915_READ(DSPOFFSET(plane));
7699         } else {
7700                 if (plane_config->tiled)
7701                         offset = I915_READ(DSPTILEOFF(plane));
7702                 else
7703                         offset = I915_READ(DSPLINOFF(plane));
7704         }
7705         plane_config->base = base;
7706
7707         val = I915_READ(PIPESRC(pipe));
7708         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7709         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7710
7711         val = I915_READ(DSPSTRIDE(pipe));
7712         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7713
7714         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7715                                             plane_config->tiled);
7716
7717         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7718                                         aligned_height);
7719
7720         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7721                       pipe, plane, crtc->base.primary->fb->width,
7722                       crtc->base.primary->fb->height,
7723                       crtc->base.primary->fb->bits_per_pixel, base,
7724                       crtc->base.primary->fb->pitches[0],
7725                       plane_config->size);
7726 }
7727
7728 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7729                                      struct intel_crtc_config *pipe_config)
7730 {
7731         struct drm_device *dev = crtc->base.dev;
7732         struct drm_i915_private *dev_priv = dev->dev_private;
7733         uint32_t tmp;
7734
7735         if (!intel_display_power_is_enabled(dev_priv,
7736                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7737                 return false;
7738
7739         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7740         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7741
7742         tmp = I915_READ(PIPECONF(crtc->pipe));
7743         if (!(tmp & PIPECONF_ENABLE))
7744                 return false;
7745
7746         switch (tmp & PIPECONF_BPC_MASK) {
7747         case PIPECONF_6BPC:
7748                 pipe_config->pipe_bpp = 18;
7749                 break;
7750         case PIPECONF_8BPC:
7751                 pipe_config->pipe_bpp = 24;
7752                 break;
7753         case PIPECONF_10BPC:
7754                 pipe_config->pipe_bpp = 30;
7755                 break;
7756         case PIPECONF_12BPC:
7757                 pipe_config->pipe_bpp = 36;
7758                 break;
7759         default:
7760                 break;
7761         }
7762
7763         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7764                 pipe_config->limited_color_range = true;
7765
7766         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7767                 struct intel_shared_dpll *pll;
7768
7769                 pipe_config->has_pch_encoder = true;
7770
7771                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7772                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7773                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7774
7775                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7776
7777                 if (HAS_PCH_IBX(dev_priv->dev)) {
7778                         pipe_config->shared_dpll =
7779                                 (enum intel_dpll_id) crtc->pipe;
7780                 } else {
7781                         tmp = I915_READ(PCH_DPLL_SEL);
7782                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7783                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7784                         else
7785                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7786                 }
7787
7788                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7789
7790                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7791                                            &pipe_config->dpll_hw_state));
7792
7793                 tmp = pipe_config->dpll_hw_state.dpll;
7794                 pipe_config->pixel_multiplier =
7795                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7796                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7797
7798                 ironlake_pch_clock_get(crtc, pipe_config);
7799         } else {
7800                 pipe_config->pixel_multiplier = 1;
7801         }
7802
7803         intel_get_pipe_timings(crtc, pipe_config);
7804
7805         ironlake_get_pfit_config(crtc, pipe_config);
7806
7807         return true;
7808 }
7809
7810 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7811 {
7812         struct drm_device *dev = dev_priv->dev;
7813         struct intel_crtc *crtc;
7814
7815         for_each_intel_crtc(dev, crtc)
7816                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7817                      pipe_name(crtc->pipe));
7818
7819         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7820         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7821         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7822         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7823         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7824         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7825              "CPU PWM1 enabled\n");
7826         if (IS_HASWELL(dev))
7827                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7828                      "CPU PWM2 enabled\n");
7829         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7830              "PCH PWM1 enabled\n");
7831         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7832              "Utility pin enabled\n");
7833         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7834
7835         /*
7836          * In theory we can still leave IRQs enabled, as long as only the HPD
7837          * interrupts remain enabled. We used to check for that, but since it's
7838          * gen-specific and since we only disable LCPLL after we fully disable
7839          * the interrupts, the check below should be enough.
7840          */
7841         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7842 }
7843
7844 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7845 {
7846         struct drm_device *dev = dev_priv->dev;
7847
7848         if (IS_HASWELL(dev))
7849                 return I915_READ(D_COMP_HSW);
7850         else
7851                 return I915_READ(D_COMP_BDW);
7852 }
7853
7854 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7855 {
7856         struct drm_device *dev = dev_priv->dev;
7857
7858         if (IS_HASWELL(dev)) {
7859                 mutex_lock(&dev_priv->rps.hw_lock);
7860                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7861                                             val))
7862                         DRM_ERROR("Failed to write to D_COMP\n");
7863                 mutex_unlock(&dev_priv->rps.hw_lock);
7864         } else {
7865                 I915_WRITE(D_COMP_BDW, val);
7866                 POSTING_READ(D_COMP_BDW);
7867         }
7868 }
7869
7870 /*
7871  * This function implements pieces of two sequences from BSpec:
7872  * - Sequence for display software to disable LCPLL
7873  * - Sequence for display software to allow package C8+
7874  * The steps implemented here are just the steps that actually touch the LCPLL
7875  * register. Callers should take care of disabling all the display engine
7876  * functions, doing the mode unset, fixing interrupts, etc.
7877  */
7878 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7879                               bool switch_to_fclk, bool allow_power_down)
7880 {
7881         uint32_t val;
7882
7883         assert_can_disable_lcpll(dev_priv);
7884
7885         val = I915_READ(LCPLL_CTL);
7886
7887         if (switch_to_fclk) {
7888                 val |= LCPLL_CD_SOURCE_FCLK;
7889                 I915_WRITE(LCPLL_CTL, val);
7890
7891                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7892                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7893                         DRM_ERROR("Switching to FCLK failed\n");
7894
7895                 val = I915_READ(LCPLL_CTL);
7896         }
7897
7898         val |= LCPLL_PLL_DISABLE;
7899         I915_WRITE(LCPLL_CTL, val);
7900         POSTING_READ(LCPLL_CTL);
7901
7902         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7903                 DRM_ERROR("LCPLL still locked\n");
7904
7905         val = hsw_read_dcomp(dev_priv);
7906         val |= D_COMP_COMP_DISABLE;
7907         hsw_write_dcomp(dev_priv, val);
7908         ndelay(100);
7909
7910         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7911                      1))
7912                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7913
7914         if (allow_power_down) {
7915                 val = I915_READ(LCPLL_CTL);
7916                 val |= LCPLL_POWER_DOWN_ALLOW;
7917                 I915_WRITE(LCPLL_CTL, val);
7918                 POSTING_READ(LCPLL_CTL);
7919         }
7920 }
7921
7922 /*
7923  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7924  * source.
7925  */
7926 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7927 {
7928         uint32_t val;
7929
7930         val = I915_READ(LCPLL_CTL);
7931
7932         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7933                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7934                 return;
7935
7936         /*
7937          * Make sure we're not on PC8 state before disabling PC8, otherwise
7938          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7939          *
7940          * The other problem is that hsw_restore_lcpll() is called as part of
7941          * the runtime PM resume sequence, so we can't just call
7942          * gen6_gt_force_wake_get() because that function calls
7943          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7944          * while we are on the resume sequence. So to solve this problem we have
7945          * to call special forcewake code that doesn't touch runtime PM and
7946          * doesn't enable the forcewake delayed work.
7947          */
7948         spin_lock_irq(&dev_priv->uncore.lock);
7949         if (dev_priv->uncore.forcewake_count++ == 0)
7950                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7951         spin_unlock_irq(&dev_priv->uncore.lock);
7952
7953         if (val & LCPLL_POWER_DOWN_ALLOW) {
7954                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7955                 I915_WRITE(LCPLL_CTL, val);
7956                 POSTING_READ(LCPLL_CTL);
7957         }
7958
7959         val = hsw_read_dcomp(dev_priv);
7960         val |= D_COMP_COMP_FORCE;
7961         val &= ~D_COMP_COMP_DISABLE;
7962         hsw_write_dcomp(dev_priv, val);
7963
7964         val = I915_READ(LCPLL_CTL);
7965         val &= ~LCPLL_PLL_DISABLE;
7966         I915_WRITE(LCPLL_CTL, val);
7967
7968         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7969                 DRM_ERROR("LCPLL not locked yet\n");
7970
7971         if (val & LCPLL_CD_SOURCE_FCLK) {
7972                 val = I915_READ(LCPLL_CTL);
7973                 val &= ~LCPLL_CD_SOURCE_FCLK;
7974                 I915_WRITE(LCPLL_CTL, val);
7975
7976                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7977                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7978                         DRM_ERROR("Switching back to LCPLL failed\n");
7979         }
7980
7981         /* See the big comment above. */
7982         spin_lock_irq(&dev_priv->uncore.lock);
7983         if (--dev_priv->uncore.forcewake_count == 0)
7984                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7985         spin_unlock_irq(&dev_priv->uncore.lock);
7986 }
7987
7988 /*
7989  * Package states C8 and deeper are really deep PC states that can only be
7990  * reached when all the devices on the system allow it, so even if the graphics
7991  * device allows PC8+, it doesn't mean the system will actually get to these
7992  * states. Our driver only allows PC8+ when going into runtime PM.
7993  *
7994  * The requirements for PC8+ are that all the outputs are disabled, the power
7995  * well is disabled and most interrupts are disabled, and these are also
7996  * requirements for runtime PM. When these conditions are met, we manually do
7997  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7998  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7999  * hang the machine.
8000  *
8001  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8002  * the state of some registers, so when we come back from PC8+ we need to
8003  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8004  * need to take care of the registers kept by RC6. Notice that this happens even
8005  * if we don't put the device in PCI D3 state (which is what currently happens
8006  * because of the runtime PM support).
8007  *
8008  * For more, read "Display Sequences for Package C8" on the hardware
8009  * documentation.
8010  */
8011 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8012 {
8013         struct drm_device *dev = dev_priv->dev;
8014         uint32_t val;
8015
8016         DRM_DEBUG_KMS("Enabling package C8+\n");
8017
8018         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8019                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8020                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8021                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8022         }
8023
8024         lpt_disable_clkout_dp(dev);
8025         hsw_disable_lcpll(dev_priv, true, true);
8026 }
8027
8028 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8029 {
8030         struct drm_device *dev = dev_priv->dev;
8031         uint32_t val;
8032
8033         DRM_DEBUG_KMS("Disabling package C8+\n");
8034
8035         hsw_restore_lcpll(dev_priv);
8036         lpt_init_pch_refclk(dev);
8037
8038         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8039                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8040                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8041                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8042         }
8043
8044         intel_prepare_ddi(dev);
8045 }
8046
8047 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
8048 {
8049         if (!intel_ddi_pll_select(crtc))
8050                 return -EINVAL;
8051
8052         crtc->lowfreq_avail = false;
8053
8054         return 0;
8055 }
8056
8057 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8058                                 enum port port,
8059                                 struct intel_crtc_config *pipe_config)
8060 {
8061         u32 temp, dpll_ctl1;
8062
8063         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8064         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8065
8066         switch (pipe_config->ddi_pll_sel) {
8067         case SKL_DPLL0:
8068                 /*
8069                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8070                  * of the shared DPLL framework and thus needs to be read out
8071                  * separately
8072                  */
8073                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8074                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8075                 break;
8076         case SKL_DPLL1:
8077                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8078                 break;
8079         case SKL_DPLL2:
8080                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8081                 break;
8082         case SKL_DPLL3:
8083                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8084                 break;
8085         }
8086 }
8087
8088 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8089                                 enum port port,
8090                                 struct intel_crtc_config *pipe_config)
8091 {
8092         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8093
8094         switch (pipe_config->ddi_pll_sel) {
8095         case PORT_CLK_SEL_WRPLL1:
8096                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8097                 break;
8098         case PORT_CLK_SEL_WRPLL2:
8099                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8100                 break;
8101         }
8102 }
8103
8104 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8105                                        struct intel_crtc_config *pipe_config)
8106 {
8107         struct drm_device *dev = crtc->base.dev;
8108         struct drm_i915_private *dev_priv = dev->dev_private;
8109         struct intel_shared_dpll *pll;
8110         enum port port;
8111         uint32_t tmp;
8112
8113         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8114
8115         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8116
8117         if (IS_SKYLAKE(dev))
8118                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8119         else
8120                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8121
8122         if (pipe_config->shared_dpll >= 0) {
8123                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8124
8125                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8126                                            &pipe_config->dpll_hw_state));
8127         }
8128
8129         /*
8130          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8131          * DDI E. So just check whether this pipe is wired to DDI E and whether
8132          * the PCH transcoder is on.
8133          */
8134         if (INTEL_INFO(dev)->gen < 9 &&
8135             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8136                 pipe_config->has_pch_encoder = true;
8137
8138                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8139                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8140                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8141
8142                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8143         }
8144 }
8145
8146 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8147                                     struct intel_crtc_config *pipe_config)
8148 {
8149         struct drm_device *dev = crtc->base.dev;
8150         struct drm_i915_private *dev_priv = dev->dev_private;
8151         enum intel_display_power_domain pfit_domain;
8152         uint32_t tmp;
8153
8154         if (!intel_display_power_is_enabled(dev_priv,
8155                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8156                 return false;
8157
8158         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8159         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8160
8161         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8162         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8163                 enum pipe trans_edp_pipe;
8164                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8165                 default:
8166                         WARN(1, "unknown pipe linked to edp transcoder\n");
8167                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8168                 case TRANS_DDI_EDP_INPUT_A_ON:
8169                         trans_edp_pipe = PIPE_A;
8170                         break;
8171                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8172                         trans_edp_pipe = PIPE_B;
8173                         break;
8174                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8175                         trans_edp_pipe = PIPE_C;
8176                         break;
8177                 }
8178
8179                 if (trans_edp_pipe == crtc->pipe)
8180                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8181         }
8182
8183         if (!intel_display_power_is_enabled(dev_priv,
8184                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8185                 return false;
8186
8187         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8188         if (!(tmp & PIPECONF_ENABLE))
8189                 return false;
8190
8191         haswell_get_ddi_port_state(crtc, pipe_config);
8192
8193         intel_get_pipe_timings(crtc, pipe_config);
8194
8195         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8196         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8197                 if (IS_SKYLAKE(dev))
8198                         skylake_get_pfit_config(crtc, pipe_config);
8199                 else
8200                         ironlake_get_pfit_config(crtc, pipe_config);
8201         }
8202
8203         if (IS_HASWELL(dev))
8204                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8205                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8206
8207         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8208                 pipe_config->pixel_multiplier =
8209                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8210         } else {
8211                 pipe_config->pixel_multiplier = 1;
8212         }
8213
8214         return true;
8215 }
8216
8217 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8218 {
8219         struct drm_device *dev = crtc->dev;
8220         struct drm_i915_private *dev_priv = dev->dev_private;
8221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8222         uint32_t cntl = 0, size = 0;
8223
8224         if (base) {
8225                 unsigned int width = intel_crtc->cursor_width;
8226                 unsigned int height = intel_crtc->cursor_height;
8227                 unsigned int stride = roundup_pow_of_two(width) * 4;
8228
8229                 switch (stride) {
8230                 default:
8231                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8232                                   width, stride);
8233                         stride = 256;
8234                         /* fallthrough */
8235                 case 256:
8236                 case 512:
8237                 case 1024:
8238                 case 2048:
8239                         break;
8240                 }
8241
8242                 cntl |= CURSOR_ENABLE |
8243                         CURSOR_GAMMA_ENABLE |
8244                         CURSOR_FORMAT_ARGB |
8245                         CURSOR_STRIDE(stride);
8246
8247                 size = (height << 12) | width;
8248         }
8249
8250         if (intel_crtc->cursor_cntl != 0 &&
8251             (intel_crtc->cursor_base != base ||
8252              intel_crtc->cursor_size != size ||
8253              intel_crtc->cursor_cntl != cntl)) {
8254                 /* On these chipsets we can only modify the base/size/stride
8255                  * whilst the cursor is disabled.
8256                  */
8257                 I915_WRITE(_CURACNTR, 0);
8258                 POSTING_READ(_CURACNTR);
8259                 intel_crtc->cursor_cntl = 0;
8260         }
8261
8262         if (intel_crtc->cursor_base != base) {
8263                 I915_WRITE(_CURABASE, base);
8264                 intel_crtc->cursor_base = base;
8265         }
8266
8267         if (intel_crtc->cursor_size != size) {
8268                 I915_WRITE(CURSIZE, size);
8269                 intel_crtc->cursor_size = size;
8270         }
8271
8272         if (intel_crtc->cursor_cntl != cntl) {
8273                 I915_WRITE(_CURACNTR, cntl);
8274                 POSTING_READ(_CURACNTR);
8275                 intel_crtc->cursor_cntl = cntl;
8276         }
8277 }
8278
8279 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8280 {
8281         struct drm_device *dev = crtc->dev;
8282         struct drm_i915_private *dev_priv = dev->dev_private;
8283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8284         int pipe = intel_crtc->pipe;
8285         uint32_t cntl;
8286
8287         cntl = 0;
8288         if (base) {
8289                 cntl = MCURSOR_GAMMA_ENABLE;
8290                 switch (intel_crtc->cursor_width) {
8291                         case 64:
8292                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8293                                 break;
8294                         case 128:
8295                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8296                                 break;
8297                         case 256:
8298                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8299                                 break;
8300                         default:
8301                                 WARN_ON(1);
8302                                 return;
8303                 }
8304                 cntl |= pipe << 28; /* Connect to correct pipe */
8305
8306                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8307                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8308         }
8309
8310         if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8311                 cntl |= CURSOR_ROTATE_180;
8312
8313         if (intel_crtc->cursor_cntl != cntl) {
8314                 I915_WRITE(CURCNTR(pipe), cntl);
8315                 POSTING_READ(CURCNTR(pipe));
8316                 intel_crtc->cursor_cntl = cntl;
8317         }
8318
8319         /* and commit changes on next vblank */
8320         I915_WRITE(CURBASE(pipe), base);
8321         POSTING_READ(CURBASE(pipe));
8322
8323         intel_crtc->cursor_base = base;
8324 }
8325
8326 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8327 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8328                                      bool on)
8329 {
8330         struct drm_device *dev = crtc->dev;
8331         struct drm_i915_private *dev_priv = dev->dev_private;
8332         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8333         int pipe = intel_crtc->pipe;
8334         int x = crtc->cursor_x;
8335         int y = crtc->cursor_y;
8336         u32 base = 0, pos = 0;
8337
8338         if (on)
8339                 base = intel_crtc->cursor_addr;
8340
8341         if (x >= intel_crtc->config.pipe_src_w)
8342                 base = 0;
8343
8344         if (y >= intel_crtc->config.pipe_src_h)
8345                 base = 0;
8346
8347         if (x < 0) {
8348                 if (x + intel_crtc->cursor_width <= 0)
8349                         base = 0;
8350
8351                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8352                 x = -x;
8353         }
8354         pos |= x << CURSOR_X_SHIFT;
8355
8356         if (y < 0) {
8357                 if (y + intel_crtc->cursor_height <= 0)
8358                         base = 0;
8359
8360                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8361                 y = -y;
8362         }
8363         pos |= y << CURSOR_Y_SHIFT;
8364
8365         if (base == 0 && intel_crtc->cursor_base == 0)
8366                 return;
8367
8368         I915_WRITE(CURPOS(pipe), pos);
8369
8370         /* ILK+ do this automagically */
8371         if (HAS_GMCH_DISPLAY(dev) &&
8372                 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8373                 base += (intel_crtc->cursor_height *
8374                         intel_crtc->cursor_width - 1) * 4;
8375         }
8376
8377         if (IS_845G(dev) || IS_I865G(dev))
8378                 i845_update_cursor(crtc, base);
8379         else
8380                 i9xx_update_cursor(crtc, base);
8381 }
8382
8383 static bool cursor_size_ok(struct drm_device *dev,
8384                            uint32_t width, uint32_t height)
8385 {
8386         if (width == 0 || height == 0)
8387                 return false;
8388
8389         /*
8390          * 845g/865g are special in that they are only limited by
8391          * the width of their cursors, the height is arbitrary up to
8392          * the precision of the register. Everything else requires
8393          * square cursors, limited to a few power-of-two sizes.
8394          */
8395         if (IS_845G(dev) || IS_I865G(dev)) {
8396                 if ((width & 63) != 0)
8397                         return false;
8398
8399                 if (width > (IS_845G(dev) ? 64 : 512))
8400                         return false;
8401
8402                 if (height > 1023)
8403                         return false;
8404         } else {
8405                 switch (width | height) {
8406                 case 256:
8407                 case 128:
8408                         if (IS_GEN2(dev))
8409                                 return false;
8410                 case 64:
8411                         break;
8412                 default:
8413                         return false;
8414                 }
8415         }
8416
8417         return true;
8418 }
8419
8420 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8421                                      struct drm_i915_gem_object *obj,
8422                                      uint32_t width, uint32_t height)
8423 {
8424         struct drm_device *dev = crtc->dev;
8425         struct drm_i915_private *dev_priv = to_i915(dev);
8426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8427         enum pipe pipe = intel_crtc->pipe;
8428         unsigned old_width;
8429         uint32_t addr;
8430         int ret;
8431
8432         /* if we want to turn off the cursor ignore width and height */
8433         if (!obj) {
8434                 DRM_DEBUG_KMS("cursor off\n");
8435                 addr = 0;
8436                 mutex_lock(&dev->struct_mutex);
8437                 goto finish;
8438         }
8439
8440         /* we only need to pin inside GTT if cursor is non-phy */
8441         mutex_lock(&dev->struct_mutex);
8442         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8443                 unsigned alignment;
8444
8445                 /*
8446                  * Global gtt pte registers are special registers which actually
8447                  * forward writes to a chunk of system memory. Which means that
8448                  * there is no risk that the register values disappear as soon
8449                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8450                  * only the pin/unpin/fence and not more.
8451                  */
8452                 intel_runtime_pm_get(dev_priv);
8453
8454                 /* Note that the w/a also requires 2 PTE of padding following
8455                  * the bo. We currently fill all unused PTE with the shadow
8456                  * page and so we should always have valid PTE following the
8457                  * cursor preventing the VT-d warning.
8458                  */
8459                 alignment = 0;
8460                 if (need_vtd_wa(dev))
8461                         alignment = 64*1024;
8462
8463                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8464                 if (ret) {
8465                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8466                         intel_runtime_pm_put(dev_priv);
8467                         goto fail_locked;
8468                 }
8469
8470                 ret = i915_gem_object_put_fence(obj);
8471                 if (ret) {
8472                         DRM_DEBUG_KMS("failed to release fence for cursor");
8473                         intel_runtime_pm_put(dev_priv);
8474                         goto fail_unpin;
8475                 }
8476
8477                 addr = i915_gem_obj_ggtt_offset(obj);
8478
8479                 intel_runtime_pm_put(dev_priv);
8480         } else {
8481                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8482                 ret = i915_gem_object_attach_phys(obj, align);
8483                 if (ret) {
8484                         DRM_DEBUG_KMS("failed to attach phys object\n");
8485                         goto fail_locked;
8486                 }
8487                 addr = obj->phys_handle->busaddr;
8488         }
8489
8490  finish:
8491         if (intel_crtc->cursor_bo) {
8492                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8493                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8494         }
8495
8496         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8497                           INTEL_FRONTBUFFER_CURSOR(pipe));
8498         mutex_unlock(&dev->struct_mutex);
8499
8500         old_width = intel_crtc->cursor_width;
8501
8502         intel_crtc->cursor_addr = addr;
8503         intel_crtc->cursor_bo = obj;
8504         intel_crtc->cursor_width = width;
8505         intel_crtc->cursor_height = height;
8506
8507         if (intel_crtc->active) {
8508                 if (old_width != width)
8509                         intel_update_watermarks(crtc);
8510                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8511
8512                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8513         }
8514
8515         return 0;
8516 fail_unpin:
8517         i915_gem_object_unpin_from_display_plane(obj);
8518 fail_locked:
8519         mutex_unlock(&dev->struct_mutex);
8520         return ret;
8521 }
8522
8523 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8524                                  u16 *blue, uint32_t start, uint32_t size)
8525 {
8526         int end = (start + size > 256) ? 256 : start + size, i;
8527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8528
8529         for (i = start; i < end; i++) {
8530                 intel_crtc->lut_r[i] = red[i] >> 8;
8531                 intel_crtc->lut_g[i] = green[i] >> 8;
8532                 intel_crtc->lut_b[i] = blue[i] >> 8;
8533         }
8534
8535         intel_crtc_load_lut(crtc);
8536 }
8537
8538 /* VESA 640x480x72Hz mode to set on the pipe */
8539 static struct drm_display_mode load_detect_mode = {
8540         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8541                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8542 };
8543
8544 struct drm_framebuffer *
8545 __intel_framebuffer_create(struct drm_device *dev,
8546                            struct drm_mode_fb_cmd2 *mode_cmd,
8547                            struct drm_i915_gem_object *obj)
8548 {
8549         struct intel_framebuffer *intel_fb;
8550         int ret;
8551
8552         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8553         if (!intel_fb) {
8554                 drm_gem_object_unreference(&obj->base);
8555                 return ERR_PTR(-ENOMEM);
8556         }
8557
8558         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8559         if (ret)
8560                 goto err;
8561
8562         return &intel_fb->base;
8563 err:
8564         drm_gem_object_unreference(&obj->base);
8565         kfree(intel_fb);
8566
8567         return ERR_PTR(ret);
8568 }
8569
8570 static struct drm_framebuffer *
8571 intel_framebuffer_create(struct drm_device *dev,
8572                          struct drm_mode_fb_cmd2 *mode_cmd,
8573                          struct drm_i915_gem_object *obj)
8574 {
8575         struct drm_framebuffer *fb;
8576         int ret;
8577
8578         ret = i915_mutex_lock_interruptible(dev);
8579         if (ret)
8580                 return ERR_PTR(ret);
8581         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8582         mutex_unlock(&dev->struct_mutex);
8583
8584         return fb;
8585 }
8586
8587 static u32
8588 intel_framebuffer_pitch_for_width(int width, int bpp)
8589 {
8590         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8591         return ALIGN(pitch, 64);
8592 }
8593
8594 static u32
8595 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8596 {
8597         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8598         return PAGE_ALIGN(pitch * mode->vdisplay);
8599 }
8600
8601 static struct drm_framebuffer *
8602 intel_framebuffer_create_for_mode(struct drm_device *dev,
8603                                   struct drm_display_mode *mode,
8604                                   int depth, int bpp)
8605 {
8606         struct drm_i915_gem_object *obj;
8607         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8608
8609         obj = i915_gem_alloc_object(dev,
8610                                     intel_framebuffer_size_for_mode(mode, bpp));
8611         if (obj == NULL)
8612                 return ERR_PTR(-ENOMEM);
8613
8614         mode_cmd.width = mode->hdisplay;
8615         mode_cmd.height = mode->vdisplay;
8616         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8617                                                                 bpp);
8618         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8619
8620         return intel_framebuffer_create(dev, &mode_cmd, obj);
8621 }
8622
8623 static struct drm_framebuffer *
8624 mode_fits_in_fbdev(struct drm_device *dev,
8625                    struct drm_display_mode *mode)
8626 {
8627 #ifdef CONFIG_DRM_I915_FBDEV
8628         struct drm_i915_private *dev_priv = dev->dev_private;
8629         struct drm_i915_gem_object *obj;
8630         struct drm_framebuffer *fb;
8631
8632         if (!dev_priv->fbdev)
8633                 return NULL;
8634
8635         if (!dev_priv->fbdev->fb)
8636                 return NULL;
8637
8638         obj = dev_priv->fbdev->fb->obj;
8639         BUG_ON(!obj);
8640
8641         fb = &dev_priv->fbdev->fb->base;
8642         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8643                                                                fb->bits_per_pixel))
8644                 return NULL;
8645
8646         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8647                 return NULL;
8648
8649         return fb;
8650 #else
8651         return NULL;
8652 #endif
8653 }
8654
8655 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8656                                 struct drm_display_mode *mode,
8657                                 struct intel_load_detect_pipe *old,
8658                                 struct drm_modeset_acquire_ctx *ctx)
8659 {
8660         struct intel_crtc *intel_crtc;
8661         struct intel_encoder *intel_encoder =
8662                 intel_attached_encoder(connector);
8663         struct drm_crtc *possible_crtc;
8664         struct drm_encoder *encoder = &intel_encoder->base;
8665         struct drm_crtc *crtc = NULL;
8666         struct drm_device *dev = encoder->dev;
8667         struct drm_framebuffer *fb;
8668         struct drm_mode_config *config = &dev->mode_config;
8669         int ret, i = -1;
8670
8671         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8672                       connector->base.id, connector->name,
8673                       encoder->base.id, encoder->name);
8674
8675 retry:
8676         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8677         if (ret)
8678                 goto fail_unlock;
8679
8680         /*
8681          * Algorithm gets a little messy:
8682          *
8683          *   - if the connector already has an assigned crtc, use it (but make
8684          *     sure it's on first)
8685          *
8686          *   - try to find the first unused crtc that can drive this connector,
8687          *     and use that if we find one
8688          */
8689
8690         /* See if we already have a CRTC for this connector */
8691         if (encoder->crtc) {
8692                 crtc = encoder->crtc;
8693
8694                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8695                 if (ret)
8696                         goto fail_unlock;
8697                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8698                 if (ret)
8699                         goto fail_unlock;
8700
8701                 old->dpms_mode = connector->dpms;
8702                 old->load_detect_temp = false;
8703
8704                 /* Make sure the crtc and connector are running */
8705                 if (connector->dpms != DRM_MODE_DPMS_ON)
8706                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8707
8708                 return true;
8709         }
8710
8711         /* Find an unused one (if possible) */
8712         for_each_crtc(dev, possible_crtc) {
8713                 i++;
8714                 if (!(encoder->possible_crtcs & (1 << i)))
8715                         continue;
8716                 if (possible_crtc->enabled)
8717                         continue;
8718                 /* This can occur when applying the pipe A quirk on resume. */
8719                 if (to_intel_crtc(possible_crtc)->new_enabled)
8720                         continue;
8721
8722                 crtc = possible_crtc;
8723                 break;
8724         }
8725
8726         /*
8727          * If we didn't find an unused CRTC, don't use any.
8728          */
8729         if (!crtc) {
8730                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8731                 goto fail_unlock;
8732         }
8733
8734         ret = drm_modeset_lock(&crtc->mutex, ctx);
8735         if (ret)
8736                 goto fail_unlock;
8737         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8738         if (ret)
8739                 goto fail_unlock;
8740         intel_encoder->new_crtc = to_intel_crtc(crtc);
8741         to_intel_connector(connector)->new_encoder = intel_encoder;
8742
8743         intel_crtc = to_intel_crtc(crtc);
8744         intel_crtc->new_enabled = true;
8745         intel_crtc->new_config = &intel_crtc->config;
8746         old->dpms_mode = connector->dpms;
8747         old->load_detect_temp = true;
8748         old->release_fb = NULL;
8749
8750         if (!mode)
8751                 mode = &load_detect_mode;
8752
8753         /* We need a framebuffer large enough to accommodate all accesses
8754          * that the plane may generate whilst we perform load detection.
8755          * We can not rely on the fbcon either being present (we get called
8756          * during its initialisation to detect all boot displays, or it may
8757          * not even exist) or that it is large enough to satisfy the
8758          * requested mode.
8759          */
8760         fb = mode_fits_in_fbdev(dev, mode);
8761         if (fb == NULL) {
8762                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8763                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8764                 old->release_fb = fb;
8765         } else
8766                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8767         if (IS_ERR(fb)) {
8768                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8769                 goto fail;
8770         }
8771
8772         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8773                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8774                 if (old->release_fb)
8775                         old->release_fb->funcs->destroy(old->release_fb);
8776                 goto fail;
8777         }
8778
8779         /* let the connector get through one full cycle before testing */
8780         intel_wait_for_vblank(dev, intel_crtc->pipe);
8781         return true;
8782
8783  fail:
8784         intel_crtc->new_enabled = crtc->enabled;
8785         if (intel_crtc->new_enabled)
8786                 intel_crtc->new_config = &intel_crtc->config;
8787         else
8788                 intel_crtc->new_config = NULL;
8789 fail_unlock:
8790         if (ret == -EDEADLK) {
8791                 drm_modeset_backoff(ctx);
8792                 goto retry;
8793         }
8794
8795         return false;
8796 }
8797
8798 void intel_release_load_detect_pipe(struct drm_connector *connector,
8799                                     struct intel_load_detect_pipe *old)
8800 {
8801         struct intel_encoder *intel_encoder =
8802                 intel_attached_encoder(connector);
8803         struct drm_encoder *encoder = &intel_encoder->base;
8804         struct drm_crtc *crtc = encoder->crtc;
8805         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8806
8807         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8808                       connector->base.id, connector->name,
8809                       encoder->base.id, encoder->name);
8810
8811         if (old->load_detect_temp) {
8812                 to_intel_connector(connector)->new_encoder = NULL;
8813                 intel_encoder->new_crtc = NULL;
8814                 intel_crtc->new_enabled = false;
8815                 intel_crtc->new_config = NULL;
8816                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8817
8818                 if (old->release_fb) {
8819                         drm_framebuffer_unregister_private(old->release_fb);
8820                         drm_framebuffer_unreference(old->release_fb);
8821                 }
8822
8823                 return;
8824         }
8825
8826         /* Switch crtc and encoder back off if necessary */
8827         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8828                 connector->funcs->dpms(connector, old->dpms_mode);
8829 }
8830
8831 static int i9xx_pll_refclk(struct drm_device *dev,
8832                            const struct intel_crtc_config *pipe_config)
8833 {
8834         struct drm_i915_private *dev_priv = dev->dev_private;
8835         u32 dpll = pipe_config->dpll_hw_state.dpll;
8836
8837         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8838                 return dev_priv->vbt.lvds_ssc_freq;
8839         else if (HAS_PCH_SPLIT(dev))
8840                 return 120000;
8841         else if (!IS_GEN2(dev))
8842                 return 96000;
8843         else
8844                 return 48000;
8845 }
8846
8847 /* Returns the clock of the currently programmed mode of the given pipe. */
8848 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8849                                 struct intel_crtc_config *pipe_config)
8850 {
8851         struct drm_device *dev = crtc->base.dev;
8852         struct drm_i915_private *dev_priv = dev->dev_private;
8853         int pipe = pipe_config->cpu_transcoder;
8854         u32 dpll = pipe_config->dpll_hw_state.dpll;
8855         u32 fp;
8856         intel_clock_t clock;
8857         int refclk = i9xx_pll_refclk(dev, pipe_config);
8858
8859         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8860                 fp = pipe_config->dpll_hw_state.fp0;
8861         else
8862                 fp = pipe_config->dpll_hw_state.fp1;
8863
8864         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8865         if (IS_PINEVIEW(dev)) {
8866                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8867                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8868         } else {
8869                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8870                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8871         }
8872
8873         if (!IS_GEN2(dev)) {
8874                 if (IS_PINEVIEW(dev))
8875                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8876                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8877                 else
8878                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8879                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8880
8881                 switch (dpll & DPLL_MODE_MASK) {
8882                 case DPLLB_MODE_DAC_SERIAL:
8883                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8884                                 5 : 10;
8885                         break;
8886                 case DPLLB_MODE_LVDS:
8887                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8888                                 7 : 14;
8889                         break;
8890                 default:
8891                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8892                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8893                         return;
8894                 }
8895
8896                 if (IS_PINEVIEW(dev))
8897                         pineview_clock(refclk, &clock);
8898                 else
8899                         i9xx_clock(refclk, &clock);
8900         } else {
8901                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8902                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8903
8904                 if (is_lvds) {
8905                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8906                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8907
8908                         if (lvds & LVDS_CLKB_POWER_UP)
8909                                 clock.p2 = 7;
8910                         else
8911                                 clock.p2 = 14;
8912                 } else {
8913                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8914                                 clock.p1 = 2;
8915                         else {
8916                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8917                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8918                         }
8919                         if (dpll & PLL_P2_DIVIDE_BY_4)
8920                                 clock.p2 = 4;
8921                         else
8922                                 clock.p2 = 2;
8923                 }
8924
8925                 i9xx_clock(refclk, &clock);
8926         }
8927
8928         /*
8929          * This value includes pixel_multiplier. We will use
8930          * port_clock to compute adjusted_mode.crtc_clock in the
8931          * encoder's get_config() function.
8932          */
8933         pipe_config->port_clock = clock.dot;
8934 }
8935
8936 int intel_dotclock_calculate(int link_freq,
8937                              const struct intel_link_m_n *m_n)
8938 {
8939         /*
8940          * The calculation for the data clock is:
8941          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8942          * But we want to avoid losing precison if possible, so:
8943          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8944          *
8945          * and the link clock is simpler:
8946          * link_clock = (m * link_clock) / n
8947          */
8948
8949         if (!m_n->link_n)
8950                 return 0;
8951
8952         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8953 }
8954
8955 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8956                                    struct intel_crtc_config *pipe_config)
8957 {
8958         struct drm_device *dev = crtc->base.dev;
8959
8960         /* read out port_clock from the DPLL */
8961         i9xx_crtc_clock_get(crtc, pipe_config);
8962
8963         /*
8964          * This value does not include pixel_multiplier.
8965          * We will check that port_clock and adjusted_mode.crtc_clock
8966          * agree once we know their relationship in the encoder's
8967          * get_config() function.
8968          */
8969         pipe_config->adjusted_mode.crtc_clock =
8970                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8971                                          &pipe_config->fdi_m_n);
8972 }
8973
8974 /** Returns the currently programmed mode of the given pipe. */
8975 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8976                                              struct drm_crtc *crtc)
8977 {
8978         struct drm_i915_private *dev_priv = dev->dev_private;
8979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8980         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8981         struct drm_display_mode *mode;
8982         struct intel_crtc_config pipe_config;
8983         int htot = I915_READ(HTOTAL(cpu_transcoder));
8984         int hsync = I915_READ(HSYNC(cpu_transcoder));
8985         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8986         int vsync = I915_READ(VSYNC(cpu_transcoder));
8987         enum pipe pipe = intel_crtc->pipe;
8988
8989         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8990         if (!mode)
8991                 return NULL;
8992
8993         /*
8994          * Construct a pipe_config sufficient for getting the clock info
8995          * back out of crtc_clock_get.
8996          *
8997          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8998          * to use a real value here instead.
8999          */
9000         pipe_config.cpu_transcoder = (enum transcoder) pipe;
9001         pipe_config.pixel_multiplier = 1;
9002         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9003         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9004         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9005         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9006
9007         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9008         mode->hdisplay = (htot & 0xffff) + 1;
9009         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9010         mode->hsync_start = (hsync & 0xffff) + 1;
9011         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9012         mode->vdisplay = (vtot & 0xffff) + 1;
9013         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9014         mode->vsync_start = (vsync & 0xffff) + 1;
9015         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9016
9017         drm_mode_set_name(mode);
9018
9019         return mode;
9020 }
9021
9022 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9023 {
9024         struct drm_device *dev = crtc->dev;
9025         struct drm_i915_private *dev_priv = dev->dev_private;
9026         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9027
9028         if (!HAS_GMCH_DISPLAY(dev))
9029                 return;
9030
9031         if (!dev_priv->lvds_downclock_avail)
9032                 return;
9033
9034         /*
9035          * Since this is called by a timer, we should never get here in
9036          * the manual case.
9037          */
9038         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9039                 int pipe = intel_crtc->pipe;
9040                 int dpll_reg = DPLL(pipe);
9041                 int dpll;
9042
9043                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9044
9045                 assert_panel_unlocked(dev_priv, pipe);
9046
9047                 dpll = I915_READ(dpll_reg);
9048                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9049                 I915_WRITE(dpll_reg, dpll);
9050                 intel_wait_for_vblank(dev, pipe);
9051                 dpll = I915_READ(dpll_reg);
9052                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9053                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9054         }
9055
9056 }
9057
9058 void intel_mark_busy(struct drm_device *dev)
9059 {
9060         struct drm_i915_private *dev_priv = dev->dev_private;
9061
9062         if (dev_priv->mm.busy)
9063                 return;
9064
9065         intel_runtime_pm_get(dev_priv);
9066         i915_update_gfx_val(dev_priv);
9067         dev_priv->mm.busy = true;
9068 }
9069
9070 void intel_mark_idle(struct drm_device *dev)
9071 {
9072         struct drm_i915_private *dev_priv = dev->dev_private;
9073         struct drm_crtc *crtc;
9074
9075         if (!dev_priv->mm.busy)
9076                 return;
9077
9078         dev_priv->mm.busy = false;
9079
9080         if (!i915.powersave)
9081                 goto out;
9082
9083         for_each_crtc(dev, crtc) {
9084                 if (!crtc->primary->fb)
9085                         continue;
9086
9087                 intel_decrease_pllclock(crtc);
9088         }
9089
9090         if (INTEL_INFO(dev)->gen >= 6)
9091                 gen6_rps_idle(dev->dev_private);
9092
9093 out:
9094         intel_runtime_pm_put(dev_priv);
9095 }
9096
9097 static void intel_crtc_destroy(struct drm_crtc *crtc)
9098 {
9099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9100         struct drm_device *dev = crtc->dev;
9101         struct intel_unpin_work *work;
9102
9103         spin_lock_irq(&dev->event_lock);
9104         work = intel_crtc->unpin_work;
9105         intel_crtc->unpin_work = NULL;
9106         spin_unlock_irq(&dev->event_lock);
9107
9108         if (work) {
9109                 cancel_work_sync(&work->work);
9110                 kfree(work);
9111         }
9112
9113         drm_crtc_cleanup(crtc);
9114
9115         kfree(intel_crtc);
9116 }
9117
9118 static void intel_unpin_work_fn(struct work_struct *__work)
9119 {
9120         struct intel_unpin_work *work =
9121                 container_of(__work, struct intel_unpin_work, work);
9122         struct drm_device *dev = work->crtc->dev;
9123         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9124
9125         mutex_lock(&dev->struct_mutex);
9126         intel_unpin_fb_obj(work->old_fb_obj);
9127         drm_gem_object_unreference(&work->pending_flip_obj->base);
9128         drm_gem_object_unreference(&work->old_fb_obj->base);
9129
9130         intel_update_fbc(dev);
9131
9132         if (work->flip_queued_req)
9133                 i915_gem_request_unreference(work->flip_queued_req);
9134         work->flip_queued_req  = NULL;
9135         work->flip_queued_ring = NULL;
9136         mutex_unlock(&dev->struct_mutex);
9137
9138         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9139
9140         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9141         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9142
9143         kfree(work);
9144 }
9145
9146 static void do_intel_finish_page_flip(struct drm_device *dev,
9147                                       struct drm_crtc *crtc)
9148 {
9149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9150         struct intel_unpin_work *work;
9151         unsigned long flags;
9152
9153         /* Ignore early vblank irqs */
9154         if (intel_crtc == NULL)
9155                 return;
9156
9157         /*
9158          * This is called both by irq handlers and the reset code (to complete
9159          * lost pageflips) so needs the full irqsave spinlocks.
9160          */
9161         spin_lock_irqsave(&dev->event_lock, flags);
9162         work = intel_crtc->unpin_work;
9163
9164         /* Ensure we don't miss a work->pending update ... */
9165         smp_rmb();
9166
9167         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9168                 spin_unlock_irqrestore(&dev->event_lock, flags);
9169                 return;
9170         }
9171
9172         page_flip_completed(intel_crtc);
9173
9174         spin_unlock_irqrestore(&dev->event_lock, flags);
9175 }
9176
9177 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9178 {
9179         struct drm_i915_private *dev_priv = dev->dev_private;
9180         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9181
9182         do_intel_finish_page_flip(dev, crtc);
9183 }
9184
9185 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9186 {
9187         struct drm_i915_private *dev_priv = dev->dev_private;
9188         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9189
9190         do_intel_finish_page_flip(dev, crtc);
9191 }
9192
9193 /* Is 'a' after or equal to 'b'? */
9194 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9195 {
9196         return !((a - b) & 0x80000000);
9197 }
9198
9199 static bool page_flip_finished(struct intel_crtc *crtc)
9200 {
9201         struct drm_device *dev = crtc->base.dev;
9202         struct drm_i915_private *dev_priv = dev->dev_private;
9203
9204         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9205             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9206                 return true;
9207
9208         /*
9209          * The relevant registers doen't exist on pre-ctg.
9210          * As the flip done interrupt doesn't trigger for mmio
9211          * flips on gmch platforms, a flip count check isn't
9212          * really needed there. But since ctg has the registers,
9213          * include it in the check anyway.
9214          */
9215         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9216                 return true;
9217
9218         /*
9219          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9220          * used the same base address. In that case the mmio flip might
9221          * have completed, but the CS hasn't even executed the flip yet.
9222          *
9223          * A flip count check isn't enough as the CS might have updated
9224          * the base address just after start of vblank, but before we
9225          * managed to process the interrupt. This means we'd complete the
9226          * CS flip too soon.
9227          *
9228          * Combining both checks should get us a good enough result. It may
9229          * still happen that the CS flip has been executed, but has not
9230          * yet actually completed. But in case the base address is the same
9231          * anyway, we don't really care.
9232          */
9233         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9234                 crtc->unpin_work->gtt_offset &&
9235                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9236                                     crtc->unpin_work->flip_count);
9237 }
9238
9239 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9240 {
9241         struct drm_i915_private *dev_priv = dev->dev_private;
9242         struct intel_crtc *intel_crtc =
9243                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9244         unsigned long flags;
9245
9246
9247         /*
9248          * This is called both by irq handlers and the reset code (to complete
9249          * lost pageflips) so needs the full irqsave spinlocks.
9250          *
9251          * NB: An MMIO update of the plane base pointer will also
9252          * generate a page-flip completion irq, i.e. every modeset
9253          * is also accompanied by a spurious intel_prepare_page_flip().
9254          */
9255         spin_lock_irqsave(&dev->event_lock, flags);
9256         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9257                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9258         spin_unlock_irqrestore(&dev->event_lock, flags);
9259 }
9260
9261 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9262 {
9263         /* Ensure that the work item is consistent when activating it ... */
9264         smp_wmb();
9265         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9266         /* and that it is marked active as soon as the irq could fire. */
9267         smp_wmb();
9268 }
9269
9270 static int intel_gen2_queue_flip(struct drm_device *dev,
9271                                  struct drm_crtc *crtc,
9272                                  struct drm_framebuffer *fb,
9273                                  struct drm_i915_gem_object *obj,
9274                                  struct intel_engine_cs *ring,
9275                                  uint32_t flags)
9276 {
9277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9278         u32 flip_mask;
9279         int ret;
9280
9281         ret = intel_ring_begin(ring, 6);
9282         if (ret)
9283                 return ret;
9284
9285         /* Can't queue multiple flips, so wait for the previous
9286          * one to finish before executing the next.
9287          */
9288         if (intel_crtc->plane)
9289                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9290         else
9291                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9292         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9293         intel_ring_emit(ring, MI_NOOP);
9294         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9295                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9296         intel_ring_emit(ring, fb->pitches[0]);
9297         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9298         intel_ring_emit(ring, 0); /* aux display base address, unused */
9299
9300         intel_mark_page_flip_active(intel_crtc);
9301         __intel_ring_advance(ring);
9302         return 0;
9303 }
9304
9305 static int intel_gen3_queue_flip(struct drm_device *dev,
9306                                  struct drm_crtc *crtc,
9307                                  struct drm_framebuffer *fb,
9308                                  struct drm_i915_gem_object *obj,
9309                                  struct intel_engine_cs *ring,
9310                                  uint32_t flags)
9311 {
9312         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9313         u32 flip_mask;
9314         int ret;
9315
9316         ret = intel_ring_begin(ring, 6);
9317         if (ret)
9318                 return ret;
9319
9320         if (intel_crtc->plane)
9321                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9322         else
9323                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9324         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9325         intel_ring_emit(ring, MI_NOOP);
9326         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9327                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9328         intel_ring_emit(ring, fb->pitches[0]);
9329         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9330         intel_ring_emit(ring, MI_NOOP);
9331
9332         intel_mark_page_flip_active(intel_crtc);
9333         __intel_ring_advance(ring);
9334         return 0;
9335 }
9336
9337 static int intel_gen4_queue_flip(struct drm_device *dev,
9338                                  struct drm_crtc *crtc,
9339                                  struct drm_framebuffer *fb,
9340                                  struct drm_i915_gem_object *obj,
9341                                  struct intel_engine_cs *ring,
9342                                  uint32_t flags)
9343 {
9344         struct drm_i915_private *dev_priv = dev->dev_private;
9345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9346         uint32_t pf, pipesrc;
9347         int ret;
9348
9349         ret = intel_ring_begin(ring, 4);
9350         if (ret)
9351                 return ret;
9352
9353         /* i965+ uses the linear or tiled offsets from the
9354          * Display Registers (which do not change across a page-flip)
9355          * so we need only reprogram the base address.
9356          */
9357         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9358                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9359         intel_ring_emit(ring, fb->pitches[0]);
9360         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9361                         obj->tiling_mode);
9362
9363         /* XXX Enabling the panel-fitter across page-flip is so far
9364          * untested on non-native modes, so ignore it for now.
9365          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9366          */
9367         pf = 0;
9368         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9369         intel_ring_emit(ring, pf | pipesrc);
9370
9371         intel_mark_page_flip_active(intel_crtc);
9372         __intel_ring_advance(ring);
9373         return 0;
9374 }
9375
9376 static int intel_gen6_queue_flip(struct drm_device *dev,
9377                                  struct drm_crtc *crtc,
9378                                  struct drm_framebuffer *fb,
9379                                  struct drm_i915_gem_object *obj,
9380                                  struct intel_engine_cs *ring,
9381                                  uint32_t flags)
9382 {
9383         struct drm_i915_private *dev_priv = dev->dev_private;
9384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9385         uint32_t pf, pipesrc;
9386         int ret;
9387
9388         ret = intel_ring_begin(ring, 4);
9389         if (ret)
9390                 return ret;
9391
9392         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9393                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9394         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9395         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9396
9397         /* Contrary to the suggestions in the documentation,
9398          * "Enable Panel Fitter" does not seem to be required when page
9399          * flipping with a non-native mode, and worse causes a normal
9400          * modeset to fail.
9401          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9402          */
9403         pf = 0;
9404         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9405         intel_ring_emit(ring, pf | pipesrc);
9406
9407         intel_mark_page_flip_active(intel_crtc);
9408         __intel_ring_advance(ring);
9409         return 0;
9410 }
9411
9412 static int intel_gen7_queue_flip(struct drm_device *dev,
9413                                  struct drm_crtc *crtc,
9414                                  struct drm_framebuffer *fb,
9415                                  struct drm_i915_gem_object *obj,
9416                                  struct intel_engine_cs *ring,
9417                                  uint32_t flags)
9418 {
9419         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9420         uint32_t plane_bit = 0;
9421         int len, ret;
9422
9423         switch (intel_crtc->plane) {
9424         case PLANE_A:
9425                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9426                 break;
9427         case PLANE_B:
9428                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9429                 break;
9430         case PLANE_C:
9431                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9432                 break;
9433         default:
9434                 WARN_ONCE(1, "unknown plane in flip command\n");
9435                 return -ENODEV;
9436         }
9437
9438         len = 4;
9439         if (ring->id == RCS) {
9440                 len += 6;
9441                 /*
9442                  * On Gen 8, SRM is now taking an extra dword to accommodate
9443                  * 48bits addresses, and we need a NOOP for the batch size to
9444                  * stay even.
9445                  */
9446                 if (IS_GEN8(dev))
9447                         len += 2;
9448         }
9449
9450         /*
9451          * BSpec MI_DISPLAY_FLIP for IVB:
9452          * "The full packet must be contained within the same cache line."
9453          *
9454          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9455          * cacheline, if we ever start emitting more commands before
9456          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9457          * then do the cacheline alignment, and finally emit the
9458          * MI_DISPLAY_FLIP.
9459          */
9460         ret = intel_ring_cacheline_align(ring);
9461         if (ret)
9462                 return ret;
9463
9464         ret = intel_ring_begin(ring, len);
9465         if (ret)
9466                 return ret;
9467
9468         /* Unmask the flip-done completion message. Note that the bspec says that
9469          * we should do this for both the BCS and RCS, and that we must not unmask
9470          * more than one flip event at any time (or ensure that one flip message
9471          * can be sent by waiting for flip-done prior to queueing new flips).
9472          * Experimentation says that BCS works despite DERRMR masking all
9473          * flip-done completion events and that unmasking all planes at once
9474          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9475          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9476          */
9477         if (ring->id == RCS) {
9478                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9479                 intel_ring_emit(ring, DERRMR);
9480                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9481                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9482                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9483                 if (IS_GEN8(dev))
9484                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9485                                               MI_SRM_LRM_GLOBAL_GTT);
9486                 else
9487                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9488                                               MI_SRM_LRM_GLOBAL_GTT);
9489                 intel_ring_emit(ring, DERRMR);
9490                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9491                 if (IS_GEN8(dev)) {
9492                         intel_ring_emit(ring, 0);
9493                         intel_ring_emit(ring, MI_NOOP);
9494                 }
9495         }
9496
9497         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9498         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9499         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9500         intel_ring_emit(ring, (MI_NOOP));
9501
9502         intel_mark_page_flip_active(intel_crtc);
9503         __intel_ring_advance(ring);
9504         return 0;
9505 }
9506
9507 static bool use_mmio_flip(struct intel_engine_cs *ring,
9508                           struct drm_i915_gem_object *obj)
9509 {
9510         /*
9511          * This is not being used for older platforms, because
9512          * non-availability of flip done interrupt forces us to use
9513          * CS flips. Older platforms derive flip done using some clever
9514          * tricks involving the flip_pending status bits and vblank irqs.
9515          * So using MMIO flips there would disrupt this mechanism.
9516          */
9517
9518         if (ring == NULL)
9519                 return true;
9520
9521         if (INTEL_INFO(ring->dev)->gen < 5)
9522                 return false;
9523
9524         if (i915.use_mmio_flip < 0)
9525                 return false;
9526         else if (i915.use_mmio_flip > 0)
9527                 return true;
9528         else if (i915.enable_execlists)
9529                 return true;
9530         else
9531                 return ring != obj->ring;
9532 }
9533
9534 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9535 {
9536         struct drm_device *dev = intel_crtc->base.dev;
9537         struct drm_i915_private *dev_priv = dev->dev_private;
9538         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9539         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9540         struct drm_i915_gem_object *obj = intel_fb->obj;
9541         const enum pipe pipe = intel_crtc->pipe;
9542         u32 ctl, stride;
9543
9544         ctl = I915_READ(PLANE_CTL(pipe, 0));
9545         ctl &= ~PLANE_CTL_TILED_MASK;
9546         if (obj->tiling_mode == I915_TILING_X)
9547                 ctl |= PLANE_CTL_TILED_X;
9548
9549         /*
9550          * The stride is either expressed as a multiple of 64 bytes chunks for
9551          * linear buffers or in number of tiles for tiled buffers.
9552          */
9553         stride = fb->pitches[0] >> 6;
9554         if (obj->tiling_mode == I915_TILING_X)
9555                 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9556
9557         /*
9558          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9559          * PLANE_SURF updates, the update is then guaranteed to be atomic.
9560          */
9561         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9562         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9563
9564         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9565         POSTING_READ(PLANE_SURF(pipe, 0));
9566 }
9567
9568 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9569 {
9570         struct drm_device *dev = intel_crtc->base.dev;
9571         struct drm_i915_private *dev_priv = dev->dev_private;
9572         struct intel_framebuffer *intel_fb =
9573                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9574         struct drm_i915_gem_object *obj = intel_fb->obj;
9575         u32 dspcntr;
9576         u32 reg;
9577
9578         reg = DSPCNTR(intel_crtc->plane);
9579         dspcntr = I915_READ(reg);
9580
9581         if (obj->tiling_mode != I915_TILING_NONE)
9582                 dspcntr |= DISPPLANE_TILED;
9583         else
9584                 dspcntr &= ~DISPPLANE_TILED;
9585
9586         I915_WRITE(reg, dspcntr);
9587
9588         I915_WRITE(DSPSURF(intel_crtc->plane),
9589                    intel_crtc->unpin_work->gtt_offset);
9590         POSTING_READ(DSPSURF(intel_crtc->plane));
9591
9592 }
9593
9594 /*
9595  * XXX: This is the temporary way to update the plane registers until we get
9596  * around to using the usual plane update functions for MMIO flips
9597  */
9598 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9599 {
9600         struct drm_device *dev = intel_crtc->base.dev;
9601         bool atomic_update;
9602         u32 start_vbl_count;
9603
9604         intel_mark_page_flip_active(intel_crtc);
9605
9606         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9607
9608         if (INTEL_INFO(dev)->gen >= 9)
9609                 skl_do_mmio_flip(intel_crtc);
9610         else
9611                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9612                 ilk_do_mmio_flip(intel_crtc);
9613
9614         if (atomic_update)
9615                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9616 }
9617
9618 static void intel_mmio_flip_work_func(struct work_struct *work)
9619 {
9620         struct intel_crtc *crtc =
9621                 container_of(work, struct intel_crtc, mmio_flip.work);
9622         struct intel_mmio_flip *mmio_flip;
9623
9624         mmio_flip = &crtc->mmio_flip;
9625         if (mmio_flip->req)
9626                 WARN_ON(__i915_wait_request(mmio_flip->req,
9627                                             crtc->reset_counter,
9628                                             false, NULL, NULL) != 0);
9629
9630         intel_do_mmio_flip(crtc);
9631         if (mmio_flip->req) {
9632                 mutex_lock(&crtc->base.dev->struct_mutex);
9633                 i915_gem_request_unreference(mmio_flip->req);
9634                 mutex_unlock(&crtc->base.dev->struct_mutex);
9635         }
9636         mmio_flip->req = NULL;
9637 }
9638
9639 static int intel_queue_mmio_flip(struct drm_device *dev,
9640                                  struct drm_crtc *crtc,
9641                                  struct drm_framebuffer *fb,
9642                                  struct drm_i915_gem_object *obj,
9643                                  struct intel_engine_cs *ring,
9644                                  uint32_t flags)
9645 {
9646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9647
9648         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9649                                 obj->last_write_req);
9650
9651         schedule_work(&intel_crtc->mmio_flip.work);
9652
9653         return 0;
9654 }
9655
9656 static int intel_gen9_queue_flip(struct drm_device *dev,
9657                                  struct drm_crtc *crtc,
9658                                  struct drm_framebuffer *fb,
9659                                  struct drm_i915_gem_object *obj,
9660                                  struct intel_engine_cs *ring,
9661                                  uint32_t flags)
9662 {
9663         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9664         uint32_t plane = 0, stride;
9665         int ret;
9666
9667         switch(intel_crtc->pipe) {
9668         case PIPE_A:
9669                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9670                 break;
9671         case PIPE_B:
9672                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9673                 break;
9674         case PIPE_C:
9675                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9676                 break;
9677         default:
9678                 WARN_ONCE(1, "unknown plane in flip command\n");
9679                 return -ENODEV;
9680         }
9681
9682         switch (obj->tiling_mode) {
9683         case I915_TILING_NONE:
9684                 stride = fb->pitches[0] >> 6;
9685                 break;
9686         case I915_TILING_X:
9687                 stride = fb->pitches[0] >> 9;
9688                 break;
9689         default:
9690                 WARN_ONCE(1, "unknown tiling in flip command\n");
9691                 return -ENODEV;
9692         }
9693
9694         ret = intel_ring_begin(ring, 10);
9695         if (ret)
9696                 return ret;
9697
9698         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9699         intel_ring_emit(ring, DERRMR);
9700         intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9701                                 DERRMR_PIPEB_PRI_FLIP_DONE |
9702                                 DERRMR_PIPEC_PRI_FLIP_DONE));
9703         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9704                               MI_SRM_LRM_GLOBAL_GTT);
9705         intel_ring_emit(ring, DERRMR);
9706         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9707         intel_ring_emit(ring, 0);
9708
9709         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9710         intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9711         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9712
9713         intel_mark_page_flip_active(intel_crtc);
9714         __intel_ring_advance(ring);
9715
9716         return 0;
9717 }
9718
9719 static int intel_default_queue_flip(struct drm_device *dev,
9720                                     struct drm_crtc *crtc,
9721                                     struct drm_framebuffer *fb,
9722                                     struct drm_i915_gem_object *obj,
9723                                     struct intel_engine_cs *ring,
9724                                     uint32_t flags)
9725 {
9726         return -ENODEV;
9727 }
9728
9729 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9730                                          struct drm_crtc *crtc)
9731 {
9732         struct drm_i915_private *dev_priv = dev->dev_private;
9733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9734         struct intel_unpin_work *work = intel_crtc->unpin_work;
9735         u32 addr;
9736
9737         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9738                 return true;
9739
9740         if (!work->enable_stall_check)
9741                 return false;
9742
9743         if (work->flip_ready_vblank == 0) {
9744                 if (work->flip_queued_ring) {
9745                         if (!i915_gem_request_completed(work->flip_queued_req, true))
9746                                 return false;
9747                 }
9748
9749                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9750         }
9751
9752         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9753                 return false;
9754
9755         /* Potential stall - if we see that the flip has happened,
9756          * assume a missed interrupt. */
9757         if (INTEL_INFO(dev)->gen >= 4)
9758                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9759         else
9760                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9761
9762         /* There is a potential issue here with a false positive after a flip
9763          * to the same address. We could address this by checking for a
9764          * non-incrementing frame counter.
9765          */
9766         return addr == work->gtt_offset;
9767 }
9768
9769 void intel_check_page_flip(struct drm_device *dev, int pipe)
9770 {
9771         struct drm_i915_private *dev_priv = dev->dev_private;
9772         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9774
9775         WARN_ON(!in_irq());
9776
9777         if (crtc == NULL)
9778                 return;
9779
9780         spin_lock(&dev->event_lock);
9781         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9782                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9783                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9784                 page_flip_completed(intel_crtc);
9785         }
9786         spin_unlock(&dev->event_lock);
9787 }
9788
9789 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9790                                 struct drm_framebuffer *fb,
9791                                 struct drm_pending_vblank_event *event,
9792                                 uint32_t page_flip_flags)
9793 {
9794         struct drm_device *dev = crtc->dev;
9795         struct drm_i915_private *dev_priv = dev->dev_private;
9796         struct drm_framebuffer *old_fb = crtc->primary->fb;
9797         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9799         enum pipe pipe = intel_crtc->pipe;
9800         struct intel_unpin_work *work;
9801         struct intel_engine_cs *ring;
9802         int ret;
9803
9804         /*
9805          * drm_mode_page_flip_ioctl() should already catch this, but double
9806          * check to be safe.  In the future we may enable pageflipping from
9807          * a disabled primary plane.
9808          */
9809         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9810                 return -EBUSY;
9811
9812         /* Can't change pixel format via MI display flips. */
9813         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9814                 return -EINVAL;
9815
9816         /*
9817          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9818          * Note that pitch changes could also affect these register.
9819          */
9820         if (INTEL_INFO(dev)->gen > 3 &&
9821             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9822              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9823                 return -EINVAL;
9824
9825         if (i915_terminally_wedged(&dev_priv->gpu_error))
9826                 goto out_hang;
9827
9828         work = kzalloc(sizeof(*work), GFP_KERNEL);
9829         if (work == NULL)
9830                 return -ENOMEM;
9831
9832         work->event = event;
9833         work->crtc = crtc;
9834         work->old_fb_obj = intel_fb_obj(old_fb);
9835         INIT_WORK(&work->work, intel_unpin_work_fn);
9836
9837         ret = drm_crtc_vblank_get(crtc);
9838         if (ret)
9839                 goto free_work;
9840
9841         /* We borrow the event spin lock for protecting unpin_work */
9842         spin_lock_irq(&dev->event_lock);
9843         if (intel_crtc->unpin_work) {
9844                 /* Before declaring the flip queue wedged, check if
9845                  * the hardware completed the operation behind our backs.
9846                  */
9847                 if (__intel_pageflip_stall_check(dev, crtc)) {
9848                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9849                         page_flip_completed(intel_crtc);
9850                 } else {
9851                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9852                         spin_unlock_irq(&dev->event_lock);
9853
9854                         drm_crtc_vblank_put(crtc);
9855                         kfree(work);
9856                         return -EBUSY;
9857                 }
9858         }
9859         intel_crtc->unpin_work = work;
9860         spin_unlock_irq(&dev->event_lock);
9861
9862         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9863                 flush_workqueue(dev_priv->wq);
9864
9865         ret = i915_mutex_lock_interruptible(dev);
9866         if (ret)
9867                 goto cleanup;
9868
9869         /* Reference the objects for the scheduled work. */
9870         drm_gem_object_reference(&work->old_fb_obj->base);
9871         drm_gem_object_reference(&obj->base);
9872
9873         crtc->primary->fb = fb;
9874
9875         work->pending_flip_obj = obj;
9876
9877         atomic_inc(&intel_crtc->unpin_work_count);
9878         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9879
9880         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9881                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9882
9883         if (IS_VALLEYVIEW(dev)) {
9884                 ring = &dev_priv->ring[BCS];
9885                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9886                         /* vlv: DISPLAY_FLIP fails to change tiling */
9887                         ring = NULL;
9888         } else if (IS_IVYBRIDGE(dev)) {
9889                 ring = &dev_priv->ring[BCS];
9890         } else if (INTEL_INFO(dev)->gen >= 7) {
9891                 ring = obj->ring;
9892                 if (ring == NULL || ring->id != RCS)
9893                         ring = &dev_priv->ring[BCS];
9894         } else {
9895                 ring = &dev_priv->ring[RCS];
9896         }
9897
9898         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9899         if (ret)
9900                 goto cleanup_pending;
9901
9902         work->gtt_offset =
9903                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9904
9905         if (use_mmio_flip(ring, obj)) {
9906                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9907                                             page_flip_flags);
9908                 if (ret)
9909                         goto cleanup_unpin;
9910
9911                 i915_gem_request_assign(&work->flip_queued_req,
9912                                         obj->last_write_req);
9913                 work->flip_queued_ring = obj->ring;
9914         } else {
9915                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9916                                                    page_flip_flags);
9917                 if (ret)
9918                         goto cleanup_unpin;
9919
9920                 i915_gem_request_assign(&work->flip_queued_req,
9921                                         intel_ring_get_request(ring));
9922                 work->flip_queued_ring = ring;
9923         }
9924
9925         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9926         work->enable_stall_check = true;
9927
9928         i915_gem_track_fb(work->old_fb_obj, obj,
9929                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9930
9931         intel_disable_fbc(dev);
9932         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9933         mutex_unlock(&dev->struct_mutex);
9934
9935         trace_i915_flip_request(intel_crtc->plane, obj);
9936
9937         return 0;
9938
9939 cleanup_unpin:
9940         intel_unpin_fb_obj(obj);
9941 cleanup_pending:
9942         atomic_dec(&intel_crtc->unpin_work_count);
9943         crtc->primary->fb = old_fb;
9944         drm_gem_object_unreference(&work->old_fb_obj->base);
9945         drm_gem_object_unreference(&obj->base);
9946         mutex_unlock(&dev->struct_mutex);
9947
9948 cleanup:
9949         spin_lock_irq(&dev->event_lock);
9950         intel_crtc->unpin_work = NULL;
9951         spin_unlock_irq(&dev->event_lock);
9952
9953         drm_crtc_vblank_put(crtc);
9954 free_work:
9955         kfree(work);
9956
9957         if (ret == -EIO) {
9958 out_hang:
9959                 intel_crtc_wait_for_pending_flips(crtc);
9960                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9961                 if (ret == 0 && event) {
9962                         spin_lock_irq(&dev->event_lock);
9963                         drm_send_vblank_event(dev, pipe, event);
9964                         spin_unlock_irq(&dev->event_lock);
9965                 }
9966         }
9967         return ret;
9968 }
9969
9970 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9971         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9972         .load_lut = intel_crtc_load_lut,
9973 };
9974
9975 /**
9976  * intel_modeset_update_staged_output_state
9977  *
9978  * Updates the staged output configuration state, e.g. after we've read out the
9979  * current hw state.
9980  */
9981 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9982 {
9983         struct intel_crtc *crtc;
9984         struct intel_encoder *encoder;
9985         struct intel_connector *connector;
9986
9987         list_for_each_entry(connector, &dev->mode_config.connector_list,
9988                             base.head) {
9989                 connector->new_encoder =
9990                         to_intel_encoder(connector->base.encoder);
9991         }
9992
9993         for_each_intel_encoder(dev, encoder) {
9994                 encoder->new_crtc =
9995                         to_intel_crtc(encoder->base.crtc);
9996         }
9997
9998         for_each_intel_crtc(dev, crtc) {
9999                 crtc->new_enabled = crtc->base.enabled;
10000
10001                 if (crtc->new_enabled)
10002                         crtc->new_config = &crtc->config;
10003                 else
10004                         crtc->new_config = NULL;
10005         }
10006 }
10007
10008 /**
10009  * intel_modeset_commit_output_state
10010  *
10011  * This function copies the stage display pipe configuration to the real one.
10012  */
10013 static void intel_modeset_commit_output_state(struct drm_device *dev)
10014 {
10015         struct intel_crtc *crtc;
10016         struct intel_encoder *encoder;
10017         struct intel_connector *connector;
10018
10019         list_for_each_entry(connector, &dev->mode_config.connector_list,
10020                             base.head) {
10021                 connector->base.encoder = &connector->new_encoder->base;
10022         }
10023
10024         for_each_intel_encoder(dev, encoder) {
10025                 encoder->base.crtc = &encoder->new_crtc->base;
10026         }
10027
10028         for_each_intel_crtc(dev, crtc) {
10029                 crtc->base.enabled = crtc->new_enabled;
10030         }
10031 }
10032
10033 static void
10034 connected_sink_compute_bpp(struct intel_connector *connector,
10035                            struct intel_crtc_config *pipe_config)
10036 {
10037         int bpp = pipe_config->pipe_bpp;
10038
10039         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10040                 connector->base.base.id,
10041                 connector->base.name);
10042
10043         /* Don't use an invalid EDID bpc value */
10044         if (connector->base.display_info.bpc &&
10045             connector->base.display_info.bpc * 3 < bpp) {
10046                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10047                               bpp, connector->base.display_info.bpc*3);
10048                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10049         }
10050
10051         /* Clamp bpp to 8 on screens without EDID 1.4 */
10052         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10053                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10054                               bpp);
10055                 pipe_config->pipe_bpp = 24;
10056         }
10057 }
10058
10059 static int
10060 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10061                           struct drm_framebuffer *fb,
10062                           struct intel_crtc_config *pipe_config)
10063 {
10064         struct drm_device *dev = crtc->base.dev;
10065         struct intel_connector *connector;
10066         int bpp;
10067
10068         switch (fb->pixel_format) {
10069         case DRM_FORMAT_C8:
10070                 bpp = 8*3; /* since we go through a colormap */
10071                 break;
10072         case DRM_FORMAT_XRGB1555:
10073         case DRM_FORMAT_ARGB1555:
10074                 /* checked in intel_framebuffer_init already */
10075                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10076                         return -EINVAL;
10077         case DRM_FORMAT_RGB565:
10078                 bpp = 6*3; /* min is 18bpp */
10079                 break;
10080         case DRM_FORMAT_XBGR8888:
10081         case DRM_FORMAT_ABGR8888:
10082                 /* checked in intel_framebuffer_init already */
10083                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10084                         return -EINVAL;
10085         case DRM_FORMAT_XRGB8888:
10086         case DRM_FORMAT_ARGB8888:
10087                 bpp = 8*3;
10088                 break;
10089         case DRM_FORMAT_XRGB2101010:
10090         case DRM_FORMAT_ARGB2101010:
10091         case DRM_FORMAT_XBGR2101010:
10092         case DRM_FORMAT_ABGR2101010:
10093                 /* checked in intel_framebuffer_init already */
10094                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10095                         return -EINVAL;
10096                 bpp = 10*3;
10097                 break;
10098         /* TODO: gen4+ supports 16 bpc floating point, too. */
10099         default:
10100                 DRM_DEBUG_KMS("unsupported depth\n");
10101                 return -EINVAL;
10102         }
10103
10104         pipe_config->pipe_bpp = bpp;
10105
10106         /* Clamp display bpp to EDID value */
10107         list_for_each_entry(connector, &dev->mode_config.connector_list,
10108                             base.head) {
10109                 if (!connector->new_encoder ||
10110                     connector->new_encoder->new_crtc != crtc)
10111                         continue;
10112
10113                 connected_sink_compute_bpp(connector, pipe_config);
10114         }
10115
10116         return bpp;
10117 }
10118
10119 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10120 {
10121         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10122                         "type: 0x%x flags: 0x%x\n",
10123                 mode->crtc_clock,
10124                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10125                 mode->crtc_hsync_end, mode->crtc_htotal,
10126                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10127                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10128 }
10129
10130 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10131                                    struct intel_crtc_config *pipe_config,
10132                                    const char *context)
10133 {
10134         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10135                       context, pipe_name(crtc->pipe));
10136
10137         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10138         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10139                       pipe_config->pipe_bpp, pipe_config->dither);
10140         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10141                       pipe_config->has_pch_encoder,
10142                       pipe_config->fdi_lanes,
10143                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10144                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10145                       pipe_config->fdi_m_n.tu);
10146         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10147                       pipe_config->has_dp_encoder,
10148                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10149                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10150                       pipe_config->dp_m_n.tu);
10151
10152         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10153                       pipe_config->has_dp_encoder,
10154                       pipe_config->dp_m2_n2.gmch_m,
10155                       pipe_config->dp_m2_n2.gmch_n,
10156                       pipe_config->dp_m2_n2.link_m,
10157                       pipe_config->dp_m2_n2.link_n,
10158                       pipe_config->dp_m2_n2.tu);
10159
10160         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10161                       pipe_config->has_audio,
10162                       pipe_config->has_infoframe);
10163
10164         DRM_DEBUG_KMS("requested mode:\n");
10165         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10166         DRM_DEBUG_KMS("adjusted mode:\n");
10167         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10168         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10169         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10170         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10171                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10172         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10173                       pipe_config->gmch_pfit.control,
10174                       pipe_config->gmch_pfit.pgm_ratios,
10175                       pipe_config->gmch_pfit.lvds_border_bits);
10176         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10177                       pipe_config->pch_pfit.pos,
10178                       pipe_config->pch_pfit.size,
10179                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10180         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10181         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10182 }
10183
10184 static bool encoders_cloneable(const struct intel_encoder *a,
10185                                const struct intel_encoder *b)
10186 {
10187         /* masks could be asymmetric, so check both ways */
10188         return a == b || (a->cloneable & (1 << b->type) &&
10189                           b->cloneable & (1 << a->type));
10190 }
10191
10192 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10193                                          struct intel_encoder *encoder)
10194 {
10195         struct drm_device *dev = crtc->base.dev;
10196         struct intel_encoder *source_encoder;
10197
10198         for_each_intel_encoder(dev, source_encoder) {
10199                 if (source_encoder->new_crtc != crtc)
10200                         continue;
10201
10202                 if (!encoders_cloneable(encoder, source_encoder))
10203                         return false;
10204         }
10205
10206         return true;
10207 }
10208
10209 static bool check_encoder_cloning(struct intel_crtc *crtc)
10210 {
10211         struct drm_device *dev = crtc->base.dev;
10212         struct intel_encoder *encoder;
10213
10214         for_each_intel_encoder(dev, encoder) {
10215                 if (encoder->new_crtc != crtc)
10216                         continue;
10217
10218                 if (!check_single_encoder_cloning(crtc, encoder))
10219                         return false;
10220         }
10221
10222         return true;
10223 }
10224
10225 static bool check_digital_port_conflicts(struct drm_device *dev)
10226 {
10227         struct intel_connector *connector;
10228         unsigned int used_ports = 0;
10229
10230         /*
10231          * Walk the connector list instead of the encoder
10232          * list to detect the problem on ddi platforms
10233          * where there's just one encoder per digital port.
10234          */
10235         list_for_each_entry(connector,
10236                             &dev->mode_config.connector_list, base.head) {
10237                 struct intel_encoder *encoder = connector->new_encoder;
10238
10239                 if (!encoder)
10240                         continue;
10241
10242                 WARN_ON(!encoder->new_crtc);
10243
10244                 switch (encoder->type) {
10245                         unsigned int port_mask;
10246                 case INTEL_OUTPUT_UNKNOWN:
10247                         if (WARN_ON(!HAS_DDI(dev)))
10248                                 break;
10249                 case INTEL_OUTPUT_DISPLAYPORT:
10250                 case INTEL_OUTPUT_HDMI:
10251                 case INTEL_OUTPUT_EDP:
10252                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10253
10254                         /* the same port mustn't appear more than once */
10255                         if (used_ports & port_mask)
10256                                 return false;
10257
10258                         used_ports |= port_mask;
10259                 default:
10260                         break;
10261                 }
10262         }
10263
10264         return true;
10265 }
10266
10267 static struct intel_crtc_config *
10268 intel_modeset_pipe_config(struct drm_crtc *crtc,
10269                           struct drm_framebuffer *fb,
10270                           struct drm_display_mode *mode)
10271 {
10272         struct drm_device *dev = crtc->dev;
10273         struct intel_encoder *encoder;
10274         struct intel_crtc_config *pipe_config;
10275         int plane_bpp, ret = -EINVAL;
10276         bool retry = true;
10277
10278         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10279                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10280                 return ERR_PTR(-EINVAL);
10281         }
10282
10283         if (!check_digital_port_conflicts(dev)) {
10284                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10285                 return ERR_PTR(-EINVAL);
10286         }
10287
10288         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10289         if (!pipe_config)
10290                 return ERR_PTR(-ENOMEM);
10291
10292         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10293         drm_mode_copy(&pipe_config->requested_mode, mode);
10294
10295         pipe_config->cpu_transcoder =
10296                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10297         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10298
10299         /*
10300          * Sanitize sync polarity flags based on requested ones. If neither
10301          * positive or negative polarity is requested, treat this as meaning
10302          * negative polarity.
10303          */
10304         if (!(pipe_config->adjusted_mode.flags &
10305               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10306                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10307
10308         if (!(pipe_config->adjusted_mode.flags &
10309               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10310                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10311
10312         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10313          * plane pixel format and any sink constraints into account. Returns the
10314          * source plane bpp so that dithering can be selected on mismatches
10315          * after encoders and crtc also have had their say. */
10316         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10317                                               fb, pipe_config);
10318         if (plane_bpp < 0)
10319                 goto fail;
10320
10321         /*
10322          * Determine the real pipe dimensions. Note that stereo modes can
10323          * increase the actual pipe size due to the frame doubling and
10324          * insertion of additional space for blanks between the frame. This
10325          * is stored in the crtc timings. We use the requested mode to do this
10326          * computation to clearly distinguish it from the adjusted mode, which
10327          * can be changed by the connectors in the below retry loop.
10328          */
10329         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10330         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10331         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10332
10333 encoder_retry:
10334         /* Ensure the port clock defaults are reset when retrying. */
10335         pipe_config->port_clock = 0;
10336         pipe_config->pixel_multiplier = 1;
10337
10338         /* Fill in default crtc timings, allow encoders to overwrite them. */
10339         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10340
10341         /* Pass our mode to the connectors and the CRTC to give them a chance to
10342          * adjust it according to limitations or connector properties, and also
10343          * a chance to reject the mode entirely.
10344          */
10345         for_each_intel_encoder(dev, encoder) {
10346
10347                 if (&encoder->new_crtc->base != crtc)
10348                         continue;
10349
10350                 if (!(encoder->compute_config(encoder, pipe_config))) {
10351                         DRM_DEBUG_KMS("Encoder config failure\n");
10352                         goto fail;
10353                 }
10354         }
10355
10356         /* Set default port clock if not overwritten by the encoder. Needs to be
10357          * done afterwards in case the encoder adjusts the mode. */
10358         if (!pipe_config->port_clock)
10359                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10360                         * pipe_config->pixel_multiplier;
10361
10362         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10363         if (ret < 0) {
10364                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10365                 goto fail;
10366         }
10367
10368         if (ret == RETRY) {
10369                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10370                         ret = -EINVAL;
10371                         goto fail;
10372                 }
10373
10374                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10375                 retry = false;
10376                 goto encoder_retry;
10377         }
10378
10379         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10380         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10381                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10382
10383         return pipe_config;
10384 fail:
10385         kfree(pipe_config);
10386         return ERR_PTR(ret);
10387 }
10388
10389 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10390  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10391 static void
10392 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10393                              unsigned *prepare_pipes, unsigned *disable_pipes)
10394 {
10395         struct intel_crtc *intel_crtc;
10396         struct drm_device *dev = crtc->dev;
10397         struct intel_encoder *encoder;
10398         struct intel_connector *connector;
10399         struct drm_crtc *tmp_crtc;
10400
10401         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10402
10403         /* Check which crtcs have changed outputs connected to them, these need
10404          * to be part of the prepare_pipes mask. We don't (yet) support global
10405          * modeset across multiple crtcs, so modeset_pipes will only have one
10406          * bit set at most. */
10407         list_for_each_entry(connector, &dev->mode_config.connector_list,
10408                             base.head) {
10409                 if (connector->base.encoder == &connector->new_encoder->base)
10410                         continue;
10411
10412                 if (connector->base.encoder) {
10413                         tmp_crtc = connector->base.encoder->crtc;
10414
10415                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10416                 }
10417
10418                 if (connector->new_encoder)
10419                         *prepare_pipes |=
10420                                 1 << connector->new_encoder->new_crtc->pipe;
10421         }
10422
10423         for_each_intel_encoder(dev, encoder) {
10424                 if (encoder->base.crtc == &encoder->new_crtc->base)
10425                         continue;
10426
10427                 if (encoder->base.crtc) {
10428                         tmp_crtc = encoder->base.crtc;
10429
10430                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10431                 }
10432
10433                 if (encoder->new_crtc)
10434                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10435         }
10436
10437         /* Check for pipes that will be enabled/disabled ... */
10438         for_each_intel_crtc(dev, intel_crtc) {
10439                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10440                         continue;
10441
10442                 if (!intel_crtc->new_enabled)
10443                         *disable_pipes |= 1 << intel_crtc->pipe;
10444                 else
10445                         *prepare_pipes |= 1 << intel_crtc->pipe;
10446         }
10447
10448
10449         /* set_mode is also used to update properties on life display pipes. */
10450         intel_crtc = to_intel_crtc(crtc);
10451         if (intel_crtc->new_enabled)
10452                 *prepare_pipes |= 1 << intel_crtc->pipe;
10453
10454         /*
10455          * For simplicity do a full modeset on any pipe where the output routing
10456          * changed. We could be more clever, but that would require us to be
10457          * more careful with calling the relevant encoder->mode_set functions.
10458          */
10459         if (*prepare_pipes)
10460                 *modeset_pipes = *prepare_pipes;
10461
10462         /* ... and mask these out. */
10463         *modeset_pipes &= ~(*disable_pipes);
10464         *prepare_pipes &= ~(*disable_pipes);
10465
10466         /*
10467          * HACK: We don't (yet) fully support global modesets. intel_set_config
10468          * obies this rule, but the modeset restore mode of
10469          * intel_modeset_setup_hw_state does not.
10470          */
10471         *modeset_pipes &= 1 << intel_crtc->pipe;
10472         *prepare_pipes &= 1 << intel_crtc->pipe;
10473
10474         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10475                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10476 }
10477
10478 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10479 {
10480         struct drm_encoder *encoder;
10481         struct drm_device *dev = crtc->dev;
10482
10483         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10484                 if (encoder->crtc == crtc)
10485                         return true;
10486
10487         return false;
10488 }
10489
10490 static void
10491 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10492 {
10493         struct drm_i915_private *dev_priv = dev->dev_private;
10494         struct intel_encoder *intel_encoder;
10495         struct intel_crtc *intel_crtc;
10496         struct drm_connector *connector;
10497
10498         intel_shared_dpll_commit(dev_priv);
10499
10500         for_each_intel_encoder(dev, intel_encoder) {
10501                 if (!intel_encoder->base.crtc)
10502                         continue;
10503
10504                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10505
10506                 if (prepare_pipes & (1 << intel_crtc->pipe))
10507                         intel_encoder->connectors_active = false;
10508         }
10509
10510         intel_modeset_commit_output_state(dev);
10511
10512         /* Double check state. */
10513         for_each_intel_crtc(dev, intel_crtc) {
10514                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10515                 WARN_ON(intel_crtc->new_config &&
10516                         intel_crtc->new_config != &intel_crtc->config);
10517                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10518         }
10519
10520         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10521                 if (!connector->encoder || !connector->encoder->crtc)
10522                         continue;
10523
10524                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10525
10526                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10527                         struct drm_property *dpms_property =
10528                                 dev->mode_config.dpms_property;
10529
10530                         connector->dpms = DRM_MODE_DPMS_ON;
10531                         drm_object_property_set_value(&connector->base,
10532                                                          dpms_property,
10533                                                          DRM_MODE_DPMS_ON);
10534
10535                         intel_encoder = to_intel_encoder(connector->encoder);
10536                         intel_encoder->connectors_active = true;
10537                 }
10538         }
10539
10540 }
10541
10542 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10543 {
10544         int diff;
10545
10546         if (clock1 == clock2)
10547                 return true;
10548
10549         if (!clock1 || !clock2)
10550                 return false;
10551
10552         diff = abs(clock1 - clock2);
10553
10554         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10555                 return true;
10556
10557         return false;
10558 }
10559
10560 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10561         list_for_each_entry((intel_crtc), \
10562                             &(dev)->mode_config.crtc_list, \
10563                             base.head) \
10564                 if (mask & (1 <<(intel_crtc)->pipe))
10565
10566 static bool
10567 intel_pipe_config_compare(struct drm_device *dev,
10568                           struct intel_crtc_config *current_config,
10569                           struct intel_crtc_config *pipe_config)
10570 {
10571 #define PIPE_CONF_CHECK_X(name) \
10572         if (current_config->name != pipe_config->name) { \
10573                 DRM_ERROR("mismatch in " #name " " \
10574                           "(expected 0x%08x, found 0x%08x)\n", \
10575                           current_config->name, \
10576                           pipe_config->name); \
10577                 return false; \
10578         }
10579
10580 #define PIPE_CONF_CHECK_I(name) \
10581         if (current_config->name != pipe_config->name) { \
10582                 DRM_ERROR("mismatch in " #name " " \
10583                           "(expected %i, found %i)\n", \
10584                           current_config->name, \
10585                           pipe_config->name); \
10586                 return false; \
10587         }
10588
10589 /* This is required for BDW+ where there is only one set of registers for
10590  * switching between high and low RR.
10591  * This macro can be used whenever a comparison has to be made between one
10592  * hw state and multiple sw state variables.
10593  */
10594 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10595         if ((current_config->name != pipe_config->name) && \
10596                 (current_config->alt_name != pipe_config->name)) { \
10597                         DRM_ERROR("mismatch in " #name " " \
10598                                   "(expected %i or %i, found %i)\n", \
10599                                   current_config->name, \
10600                                   current_config->alt_name, \
10601                                   pipe_config->name); \
10602                         return false; \
10603         }
10604
10605 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10606         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10607                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10608                           "(expected %i, found %i)\n", \
10609                           current_config->name & (mask), \
10610                           pipe_config->name & (mask)); \
10611                 return false; \
10612         }
10613
10614 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10615         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10616                 DRM_ERROR("mismatch in " #name " " \
10617                           "(expected %i, found %i)\n", \
10618                           current_config->name, \
10619                           pipe_config->name); \
10620                 return false; \
10621         }
10622
10623 #define PIPE_CONF_QUIRK(quirk)  \
10624         ((current_config->quirks | pipe_config->quirks) & (quirk))
10625
10626         PIPE_CONF_CHECK_I(cpu_transcoder);
10627
10628         PIPE_CONF_CHECK_I(has_pch_encoder);
10629         PIPE_CONF_CHECK_I(fdi_lanes);
10630         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10631         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10632         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10633         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10634         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10635
10636         PIPE_CONF_CHECK_I(has_dp_encoder);
10637
10638         if (INTEL_INFO(dev)->gen < 8) {
10639                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10640                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10641                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10642                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10643                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10644
10645                 if (current_config->has_drrs) {
10646                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10647                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10648                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10649                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10650                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10651                 }
10652         } else {
10653                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10654                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10655                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10656                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10657                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10658         }
10659
10660         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10661         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10662         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10663         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10664         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10665         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10666
10667         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10668         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10669         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10670         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10671         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10672         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10673
10674         PIPE_CONF_CHECK_I(pixel_multiplier);
10675         PIPE_CONF_CHECK_I(has_hdmi_sink);
10676         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10677             IS_VALLEYVIEW(dev))
10678                 PIPE_CONF_CHECK_I(limited_color_range);
10679         PIPE_CONF_CHECK_I(has_infoframe);
10680
10681         PIPE_CONF_CHECK_I(has_audio);
10682
10683         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10684                               DRM_MODE_FLAG_INTERLACE);
10685
10686         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10687                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10688                                       DRM_MODE_FLAG_PHSYNC);
10689                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10690                                       DRM_MODE_FLAG_NHSYNC);
10691                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10692                                       DRM_MODE_FLAG_PVSYNC);
10693                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10694                                       DRM_MODE_FLAG_NVSYNC);
10695         }
10696
10697         PIPE_CONF_CHECK_I(pipe_src_w);
10698         PIPE_CONF_CHECK_I(pipe_src_h);
10699
10700         /*
10701          * FIXME: BIOS likes to set up a cloned config with lvds+external
10702          * screen. Since we don't yet re-compute the pipe config when moving
10703          * just the lvds port away to another pipe the sw tracking won't match.
10704          *
10705          * Proper atomic modesets with recomputed global state will fix this.
10706          * Until then just don't check gmch state for inherited modes.
10707          */
10708         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10709                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10710                 /* pfit ratios are autocomputed by the hw on gen4+ */
10711                 if (INTEL_INFO(dev)->gen < 4)
10712                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10713                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10714         }
10715
10716         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10717         if (current_config->pch_pfit.enabled) {
10718                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10719                 PIPE_CONF_CHECK_I(pch_pfit.size);
10720         }
10721
10722         /* BDW+ don't expose a synchronous way to read the state */
10723         if (IS_HASWELL(dev))
10724                 PIPE_CONF_CHECK_I(ips_enabled);
10725
10726         PIPE_CONF_CHECK_I(double_wide);
10727
10728         PIPE_CONF_CHECK_X(ddi_pll_sel);
10729
10730         PIPE_CONF_CHECK_I(shared_dpll);
10731         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10732         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10733         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10734         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10735         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10736         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10737         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10738         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10739
10740         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10741                 PIPE_CONF_CHECK_I(pipe_bpp);
10742
10743         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10744         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10745
10746 #undef PIPE_CONF_CHECK_X
10747 #undef PIPE_CONF_CHECK_I
10748 #undef PIPE_CONF_CHECK_I_ALT
10749 #undef PIPE_CONF_CHECK_FLAGS
10750 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10751 #undef PIPE_CONF_QUIRK
10752
10753         return true;
10754 }
10755
10756 static void check_wm_state(struct drm_device *dev)
10757 {
10758         struct drm_i915_private *dev_priv = dev->dev_private;
10759         struct skl_ddb_allocation hw_ddb, *sw_ddb;
10760         struct intel_crtc *intel_crtc;
10761         int plane;
10762
10763         if (INTEL_INFO(dev)->gen < 9)
10764                 return;
10765
10766         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10767         sw_ddb = &dev_priv->wm.skl_hw.ddb;
10768
10769         for_each_intel_crtc(dev, intel_crtc) {
10770                 struct skl_ddb_entry *hw_entry, *sw_entry;
10771                 const enum pipe pipe = intel_crtc->pipe;
10772
10773                 if (!intel_crtc->active)
10774                         continue;
10775
10776                 /* planes */
10777                 for_each_plane(pipe, plane) {
10778                         hw_entry = &hw_ddb.plane[pipe][plane];
10779                         sw_entry = &sw_ddb->plane[pipe][plane];
10780
10781                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
10782                                 continue;
10783
10784                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10785                                   "(expected (%u,%u), found (%u,%u))\n",
10786                                   pipe_name(pipe), plane + 1,
10787                                   sw_entry->start, sw_entry->end,
10788                                   hw_entry->start, hw_entry->end);
10789                 }
10790
10791                 /* cursor */
10792                 hw_entry = &hw_ddb.cursor[pipe];
10793                 sw_entry = &sw_ddb->cursor[pipe];
10794
10795                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10796                         continue;
10797
10798                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10799                           "(expected (%u,%u), found (%u,%u))\n",
10800                           pipe_name(pipe),
10801                           sw_entry->start, sw_entry->end,
10802                           hw_entry->start, hw_entry->end);
10803         }
10804 }
10805
10806 static void
10807 check_connector_state(struct drm_device *dev)
10808 {
10809         struct intel_connector *connector;
10810
10811         list_for_each_entry(connector, &dev->mode_config.connector_list,
10812                             base.head) {
10813                 /* This also checks the encoder/connector hw state with the
10814                  * ->get_hw_state callbacks. */
10815                 intel_connector_check_state(connector);
10816
10817                 WARN(&connector->new_encoder->base != connector->base.encoder,
10818                      "connector's staged encoder doesn't match current encoder\n");
10819         }
10820 }
10821
10822 static void
10823 check_encoder_state(struct drm_device *dev)
10824 {
10825         struct intel_encoder *encoder;
10826         struct intel_connector *connector;
10827
10828         for_each_intel_encoder(dev, encoder) {
10829                 bool enabled = false;
10830                 bool active = false;
10831                 enum pipe pipe, tracked_pipe;
10832
10833                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10834                               encoder->base.base.id,
10835                               encoder->base.name);
10836
10837                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10838                      "encoder's stage crtc doesn't match current crtc\n");
10839                 WARN(encoder->connectors_active && !encoder->base.crtc,
10840                      "encoder's active_connectors set, but no crtc\n");
10841
10842                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10843                                     base.head) {
10844                         if (connector->base.encoder != &encoder->base)
10845                                 continue;
10846                         enabled = true;
10847                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10848                                 active = true;
10849                 }
10850                 /*
10851                  * for MST connectors if we unplug the connector is gone
10852                  * away but the encoder is still connected to a crtc
10853                  * until a modeset happens in response to the hotplug.
10854                  */
10855                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10856                         continue;
10857
10858                 WARN(!!encoder->base.crtc != enabled,
10859                      "encoder's enabled state mismatch "
10860                      "(expected %i, found %i)\n",
10861                      !!encoder->base.crtc, enabled);
10862                 WARN(active && !encoder->base.crtc,
10863                      "active encoder with no crtc\n");
10864
10865                 WARN(encoder->connectors_active != active,
10866                      "encoder's computed active state doesn't match tracked active state "
10867                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10868
10869                 active = encoder->get_hw_state(encoder, &pipe);
10870                 WARN(active != encoder->connectors_active,
10871                      "encoder's hw state doesn't match sw tracking "
10872                      "(expected %i, found %i)\n",
10873                      encoder->connectors_active, active);
10874
10875                 if (!encoder->base.crtc)
10876                         continue;
10877
10878                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10879                 WARN(active && pipe != tracked_pipe,
10880                      "active encoder's pipe doesn't match"
10881                      "(expected %i, found %i)\n",
10882                      tracked_pipe, pipe);
10883
10884         }
10885 }
10886
10887 static void
10888 check_crtc_state(struct drm_device *dev)
10889 {
10890         struct drm_i915_private *dev_priv = dev->dev_private;
10891         struct intel_crtc *crtc;
10892         struct intel_encoder *encoder;
10893         struct intel_crtc_config pipe_config;
10894
10895         for_each_intel_crtc(dev, crtc) {
10896                 bool enabled = false;
10897                 bool active = false;
10898
10899                 memset(&pipe_config, 0, sizeof(pipe_config));
10900
10901                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10902                               crtc->base.base.id);
10903
10904                 WARN(crtc->active && !crtc->base.enabled,
10905                      "active crtc, but not enabled in sw tracking\n");
10906
10907                 for_each_intel_encoder(dev, encoder) {
10908                         if (encoder->base.crtc != &crtc->base)
10909                                 continue;
10910                         enabled = true;
10911                         if (encoder->connectors_active)
10912                                 active = true;
10913                 }
10914
10915                 WARN(active != crtc->active,
10916                      "crtc's computed active state doesn't match tracked active state "
10917                      "(expected %i, found %i)\n", active, crtc->active);
10918                 WARN(enabled != crtc->base.enabled,
10919                      "crtc's computed enabled state doesn't match tracked enabled state "
10920                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10921
10922                 active = dev_priv->display.get_pipe_config(crtc,
10923                                                            &pipe_config);
10924
10925                 /* hw state is inconsistent with the pipe quirk */
10926                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10927                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10928                         active = crtc->active;
10929
10930                 for_each_intel_encoder(dev, encoder) {
10931                         enum pipe pipe;
10932                         if (encoder->base.crtc != &crtc->base)
10933                                 continue;
10934                         if (encoder->get_hw_state(encoder, &pipe))
10935                                 encoder->get_config(encoder, &pipe_config);
10936                 }
10937
10938                 WARN(crtc->active != active,
10939                      "crtc active state doesn't match with hw state "
10940                      "(expected %i, found %i)\n", crtc->active, active);
10941
10942                 if (active &&
10943                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10944                         WARN(1, "pipe state doesn't match!\n");
10945                         intel_dump_pipe_config(crtc, &pipe_config,
10946                                                "[hw state]");
10947                         intel_dump_pipe_config(crtc, &crtc->config,
10948                                                "[sw state]");
10949                 }
10950         }
10951 }
10952
10953 static void
10954 check_shared_dpll_state(struct drm_device *dev)
10955 {
10956         struct drm_i915_private *dev_priv = dev->dev_private;
10957         struct intel_crtc *crtc;
10958         struct intel_dpll_hw_state dpll_hw_state;
10959         int i;
10960
10961         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10962                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10963                 int enabled_crtcs = 0, active_crtcs = 0;
10964                 bool active;
10965
10966                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10967
10968                 DRM_DEBUG_KMS("%s\n", pll->name);
10969
10970                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10971
10972                 WARN(pll->active > hweight32(pll->config.crtc_mask),
10973                      "more active pll users than references: %i vs %i\n",
10974                      pll->active, hweight32(pll->config.crtc_mask));
10975                 WARN(pll->active && !pll->on,
10976                      "pll in active use but not on in sw tracking\n");
10977                 WARN(pll->on && !pll->active,
10978                      "pll in on but not on in use in sw tracking\n");
10979                 WARN(pll->on != active,
10980                      "pll on state mismatch (expected %i, found %i)\n",
10981                      pll->on, active);
10982
10983                 for_each_intel_crtc(dev, crtc) {
10984                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10985                                 enabled_crtcs++;
10986                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10987                                 active_crtcs++;
10988                 }
10989                 WARN(pll->active != active_crtcs,
10990                      "pll active crtcs mismatch (expected %i, found %i)\n",
10991                      pll->active, active_crtcs);
10992                 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10993                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10994                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10995
10996                 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10997                                        sizeof(dpll_hw_state)),
10998                      "pll hw state mismatch\n");
10999         }
11000 }
11001
11002 void
11003 intel_modeset_check_state(struct drm_device *dev)
11004 {
11005         check_wm_state(dev);
11006         check_connector_state(dev);
11007         check_encoder_state(dev);
11008         check_crtc_state(dev);
11009         check_shared_dpll_state(dev);
11010 }
11011
11012 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11013                                      int dotclock)
11014 {
11015         /*
11016          * FDI already provided one idea for the dotclock.
11017          * Yell if the encoder disagrees.
11018          */
11019         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
11020              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11021              pipe_config->adjusted_mode.crtc_clock, dotclock);
11022 }
11023
11024 static void update_scanline_offset(struct intel_crtc *crtc)
11025 {
11026         struct drm_device *dev = crtc->base.dev;
11027
11028         /*
11029          * The scanline counter increments at the leading edge of hsync.
11030          *
11031          * On most platforms it starts counting from vtotal-1 on the
11032          * first active line. That means the scanline counter value is
11033          * always one less than what we would expect. Ie. just after
11034          * start of vblank, which also occurs at start of hsync (on the
11035          * last active line), the scanline counter will read vblank_start-1.
11036          *
11037          * On gen2 the scanline counter starts counting from 1 instead
11038          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11039          * to keep the value positive), instead of adding one.
11040          *
11041          * On HSW+ the behaviour of the scanline counter depends on the output
11042          * type. For DP ports it behaves like most other platforms, but on HDMI
11043          * there's an extra 1 line difference. So we need to add two instead of
11044          * one to the value.
11045          */
11046         if (IS_GEN2(dev)) {
11047                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11048                 int vtotal;
11049
11050                 vtotal = mode->crtc_vtotal;
11051                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11052                         vtotal /= 2;
11053
11054                 crtc->scanline_offset = vtotal - 1;
11055         } else if (HAS_DDI(dev) &&
11056                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11057                 crtc->scanline_offset = 2;
11058         } else
11059                 crtc->scanline_offset = 1;
11060 }
11061
11062 static struct intel_crtc_config *
11063 intel_modeset_compute_config(struct drm_crtc *crtc,
11064                              struct drm_display_mode *mode,
11065                              struct drm_framebuffer *fb,
11066                              unsigned *modeset_pipes,
11067                              unsigned *prepare_pipes,
11068                              unsigned *disable_pipes)
11069 {
11070         struct intel_crtc_config *pipe_config = NULL;
11071
11072         intel_modeset_affected_pipes(crtc, modeset_pipes,
11073                                      prepare_pipes, disable_pipes);
11074
11075         if ((*modeset_pipes) == 0)
11076                 goto out;
11077
11078         /*
11079          * Note this needs changes when we start tracking multiple modes
11080          * and crtcs.  At that point we'll need to compute the whole config
11081          * (i.e. one pipe_config for each crtc) rather than just the one
11082          * for this crtc.
11083          */
11084         pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11085         if (IS_ERR(pipe_config)) {
11086                 goto out;
11087         }
11088         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11089                                "[modeset]");
11090
11091 out:
11092         return pipe_config;
11093 }
11094
11095 static int __intel_set_mode(struct drm_crtc *crtc,
11096                             struct drm_display_mode *mode,
11097                             int x, int y, struct drm_framebuffer *fb,
11098                             struct intel_crtc_config *pipe_config,
11099                             unsigned modeset_pipes,
11100                             unsigned prepare_pipes,
11101                             unsigned disable_pipes)
11102 {
11103         struct drm_device *dev = crtc->dev;
11104         struct drm_i915_private *dev_priv = dev->dev_private;
11105         struct drm_display_mode *saved_mode;
11106         struct intel_crtc *intel_crtc;
11107         int ret = 0;
11108
11109         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11110         if (!saved_mode)
11111                 return -ENOMEM;
11112
11113         *saved_mode = crtc->mode;
11114
11115         if (modeset_pipes)
11116                 to_intel_crtc(crtc)->new_config = pipe_config;
11117
11118         /*
11119          * See if the config requires any additional preparation, e.g.
11120          * to adjust global state with pipes off.  We need to do this
11121          * here so we can get the modeset_pipe updated config for the new
11122          * mode set on this crtc.  For other crtcs we need to use the
11123          * adjusted_mode bits in the crtc directly.
11124          */
11125         if (IS_VALLEYVIEW(dev)) {
11126                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11127
11128                 /* may have added more to prepare_pipes than we should */
11129                 prepare_pipes &= ~disable_pipes;
11130         }
11131
11132         if (dev_priv->display.crtc_compute_clock) {
11133                 unsigned clear_pipes = modeset_pipes | disable_pipes;
11134
11135                 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11136                 if (ret)
11137                         goto done;
11138
11139                 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11140                         ret = dev_priv->display.crtc_compute_clock(intel_crtc);
11141                         if (ret) {
11142                                 intel_shared_dpll_abort_config(dev_priv);
11143                                 goto done;
11144                         }
11145                 }
11146         }
11147
11148         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11149                 intel_crtc_disable(&intel_crtc->base);
11150
11151         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11152                 if (intel_crtc->base.enabled)
11153                         dev_priv->display.crtc_disable(&intel_crtc->base);
11154         }
11155
11156         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11157          * to set it here already despite that we pass it down the callchain.
11158          *
11159          * Note we'll need to fix this up when we start tracking multiple
11160          * pipes; here we assume a single modeset_pipe and only track the
11161          * single crtc and mode.
11162          */
11163         if (modeset_pipes) {
11164                 crtc->mode = *mode;
11165                 /* mode_set/enable/disable functions rely on a correct pipe
11166                  * config. */
11167                 to_intel_crtc(crtc)->config = *pipe_config;
11168                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11169
11170                 /*
11171                  * Calculate and store various constants which
11172                  * are later needed by vblank and swap-completion
11173                  * timestamping. They are derived from true hwmode.
11174                  */
11175                 drm_calc_timestamping_constants(crtc,
11176                                                 &pipe_config->adjusted_mode);
11177         }
11178
11179         /* Only after disabling all output pipelines that will be changed can we
11180          * update the the output configuration. */
11181         intel_modeset_update_state(dev, prepare_pipes);
11182
11183         modeset_update_crtc_power_domains(dev);
11184
11185         /* Set up the DPLL and any encoders state that needs to adjust or depend
11186          * on the DPLL.
11187          */
11188         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11189                 struct drm_framebuffer *old_fb = crtc->primary->fb;
11190                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11191                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11192
11193                 mutex_lock(&dev->struct_mutex);
11194                 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
11195                 if (ret != 0) {
11196                         DRM_ERROR("pin & fence failed\n");
11197                         mutex_unlock(&dev->struct_mutex);
11198                         goto done;
11199                 }
11200                 if (old_fb)
11201                         intel_unpin_fb_obj(old_obj);
11202                 i915_gem_track_fb(old_obj, obj,
11203                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11204                 mutex_unlock(&dev->struct_mutex);
11205
11206                 crtc->primary->fb = fb;
11207                 crtc->x = x;
11208                 crtc->y = y;
11209         }
11210
11211         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11212         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11213                 update_scanline_offset(intel_crtc);
11214
11215                 dev_priv->display.crtc_enable(&intel_crtc->base);
11216         }
11217
11218         /* FIXME: add subpixel order */
11219 done:
11220         if (ret && crtc->enabled)
11221                 crtc->mode = *saved_mode;
11222
11223         kfree(pipe_config);
11224         kfree(saved_mode);
11225         return ret;
11226 }
11227
11228 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11229                                 struct drm_display_mode *mode,
11230                                 int x, int y, struct drm_framebuffer *fb,
11231                                 struct intel_crtc_config *pipe_config,
11232                                 unsigned modeset_pipes,
11233                                 unsigned prepare_pipes,
11234                                 unsigned disable_pipes)
11235 {
11236         int ret;
11237
11238         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11239                                prepare_pipes, disable_pipes);
11240
11241         if (ret == 0)
11242                 intel_modeset_check_state(crtc->dev);
11243
11244         return ret;
11245 }
11246
11247 static int intel_set_mode(struct drm_crtc *crtc,
11248                           struct drm_display_mode *mode,
11249                           int x, int y, struct drm_framebuffer *fb)
11250 {
11251         struct intel_crtc_config *pipe_config;
11252         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11253
11254         pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11255                                                    &modeset_pipes,
11256                                                    &prepare_pipes,
11257                                                    &disable_pipes);
11258
11259         if (IS_ERR(pipe_config))
11260                 return PTR_ERR(pipe_config);
11261
11262         return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11263                                     modeset_pipes, prepare_pipes,
11264                                     disable_pipes);
11265 }
11266
11267 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11268 {
11269         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11270 }
11271
11272 #undef for_each_intel_crtc_masked
11273
11274 static void intel_set_config_free(struct intel_set_config *config)
11275 {
11276         if (!config)
11277                 return;
11278
11279         kfree(config->save_connector_encoders);
11280         kfree(config->save_encoder_crtcs);
11281         kfree(config->save_crtc_enabled);
11282         kfree(config);
11283 }
11284
11285 static int intel_set_config_save_state(struct drm_device *dev,
11286                                        struct intel_set_config *config)
11287 {
11288         struct drm_crtc *crtc;
11289         struct drm_encoder *encoder;
11290         struct drm_connector *connector;
11291         int count;
11292
11293         config->save_crtc_enabled =
11294                 kcalloc(dev->mode_config.num_crtc,
11295                         sizeof(bool), GFP_KERNEL);
11296         if (!config->save_crtc_enabled)
11297                 return -ENOMEM;
11298
11299         config->save_encoder_crtcs =
11300                 kcalloc(dev->mode_config.num_encoder,
11301                         sizeof(struct drm_crtc *), GFP_KERNEL);
11302         if (!config->save_encoder_crtcs)
11303                 return -ENOMEM;
11304
11305         config->save_connector_encoders =
11306                 kcalloc(dev->mode_config.num_connector,
11307                         sizeof(struct drm_encoder *), GFP_KERNEL);
11308         if (!config->save_connector_encoders)
11309                 return -ENOMEM;
11310
11311         /* Copy data. Note that driver private data is not affected.
11312          * Should anything bad happen only the expected state is
11313          * restored, not the drivers personal bookkeeping.
11314          */
11315         count = 0;
11316         for_each_crtc(dev, crtc) {
11317                 config->save_crtc_enabled[count++] = crtc->enabled;
11318         }
11319
11320         count = 0;
11321         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11322                 config->save_encoder_crtcs[count++] = encoder->crtc;
11323         }
11324
11325         count = 0;
11326         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11327                 config->save_connector_encoders[count++] = connector->encoder;
11328         }
11329
11330         return 0;
11331 }
11332
11333 static void intel_set_config_restore_state(struct drm_device *dev,
11334                                            struct intel_set_config *config)
11335 {
11336         struct intel_crtc *crtc;
11337         struct intel_encoder *encoder;
11338         struct intel_connector *connector;
11339         int count;
11340
11341         count = 0;
11342         for_each_intel_crtc(dev, crtc) {
11343                 crtc->new_enabled = config->save_crtc_enabled[count++];
11344
11345                 if (crtc->new_enabled)
11346                         crtc->new_config = &crtc->config;
11347                 else
11348                         crtc->new_config = NULL;
11349         }
11350
11351         count = 0;
11352         for_each_intel_encoder(dev, encoder) {
11353                 encoder->new_crtc =
11354                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11355         }
11356
11357         count = 0;
11358         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11359                 connector->new_encoder =
11360                         to_intel_encoder(config->save_connector_encoders[count++]);
11361         }
11362 }
11363
11364 static bool
11365 is_crtc_connector_off(struct drm_mode_set *set)
11366 {
11367         int i;
11368
11369         if (set->num_connectors == 0)
11370                 return false;
11371
11372         if (WARN_ON(set->connectors == NULL))
11373                 return false;
11374
11375         for (i = 0; i < set->num_connectors; i++)
11376                 if (set->connectors[i]->encoder &&
11377                     set->connectors[i]->encoder->crtc == set->crtc &&
11378                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11379                         return true;
11380
11381         return false;
11382 }
11383
11384 static void
11385 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11386                                       struct intel_set_config *config)
11387 {
11388
11389         /* We should be able to check here if the fb has the same properties
11390          * and then just flip_or_move it */
11391         if (is_crtc_connector_off(set)) {
11392                 config->mode_changed = true;
11393         } else if (set->crtc->primary->fb != set->fb) {
11394                 /*
11395                  * If we have no fb, we can only flip as long as the crtc is
11396                  * active, otherwise we need a full mode set.  The crtc may
11397                  * be active if we've only disabled the primary plane, or
11398                  * in fastboot situations.
11399                  */
11400                 if (set->crtc->primary->fb == NULL) {
11401                         struct intel_crtc *intel_crtc =
11402                                 to_intel_crtc(set->crtc);
11403
11404                         if (intel_crtc->active) {
11405                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11406                                 config->fb_changed = true;
11407                         } else {
11408                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11409                                 config->mode_changed = true;
11410                         }
11411                 } else if (set->fb == NULL) {
11412                         config->mode_changed = true;
11413                 } else if (set->fb->pixel_format !=
11414                            set->crtc->primary->fb->pixel_format) {
11415                         config->mode_changed = true;
11416                 } else {
11417                         config->fb_changed = true;
11418                 }
11419         }
11420
11421         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11422                 config->fb_changed = true;
11423
11424         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11425                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11426                 drm_mode_debug_printmodeline(&set->crtc->mode);
11427                 drm_mode_debug_printmodeline(set->mode);
11428                 config->mode_changed = true;
11429         }
11430
11431         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11432                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11433 }
11434
11435 static int
11436 intel_modeset_stage_output_state(struct drm_device *dev,
11437                                  struct drm_mode_set *set,
11438                                  struct intel_set_config *config)
11439 {
11440         struct intel_connector *connector;
11441         struct intel_encoder *encoder;
11442         struct intel_crtc *crtc;
11443         int ro;
11444
11445         /* The upper layers ensure that we either disable a crtc or have a list
11446          * of connectors. For paranoia, double-check this. */
11447         WARN_ON(!set->fb && (set->num_connectors != 0));
11448         WARN_ON(set->fb && (set->num_connectors == 0));
11449
11450         list_for_each_entry(connector, &dev->mode_config.connector_list,
11451                             base.head) {
11452                 /* Otherwise traverse passed in connector list and get encoders
11453                  * for them. */
11454                 for (ro = 0; ro < set->num_connectors; ro++) {
11455                         if (set->connectors[ro] == &connector->base) {
11456                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11457                                 break;
11458                         }
11459                 }
11460
11461                 /* If we disable the crtc, disable all its connectors. Also, if
11462                  * the connector is on the changing crtc but not on the new
11463                  * connector list, disable it. */
11464                 if ((!set->fb || ro == set->num_connectors) &&
11465                     connector->base.encoder &&
11466                     connector->base.encoder->crtc == set->crtc) {
11467                         connector->new_encoder = NULL;
11468
11469                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11470                                 connector->base.base.id,
11471                                 connector->base.name);
11472                 }
11473
11474
11475                 if (&connector->new_encoder->base != connector->base.encoder) {
11476                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11477                         config->mode_changed = true;
11478                 }
11479         }
11480         /* connector->new_encoder is now updated for all connectors. */
11481
11482         /* Update crtc of enabled connectors. */
11483         list_for_each_entry(connector, &dev->mode_config.connector_list,
11484                             base.head) {
11485                 struct drm_crtc *new_crtc;
11486
11487                 if (!connector->new_encoder)
11488                         continue;
11489
11490                 new_crtc = connector->new_encoder->base.crtc;
11491
11492                 for (ro = 0; ro < set->num_connectors; ro++) {
11493                         if (set->connectors[ro] == &connector->base)
11494                                 new_crtc = set->crtc;
11495                 }
11496
11497                 /* Make sure the new CRTC will work with the encoder */
11498                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11499                                          new_crtc)) {
11500                         return -EINVAL;
11501                 }
11502                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11503
11504                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11505                         connector->base.base.id,
11506                         connector->base.name,
11507                         new_crtc->base.id);
11508         }
11509
11510         /* Check for any encoders that needs to be disabled. */
11511         for_each_intel_encoder(dev, encoder) {
11512                 int num_connectors = 0;
11513                 list_for_each_entry(connector,
11514                                     &dev->mode_config.connector_list,
11515                                     base.head) {
11516                         if (connector->new_encoder == encoder) {
11517                                 WARN_ON(!connector->new_encoder->new_crtc);
11518                                 num_connectors++;
11519                         }
11520                 }
11521
11522                 if (num_connectors == 0)
11523                         encoder->new_crtc = NULL;
11524                 else if (num_connectors > 1)
11525                         return -EINVAL;
11526
11527                 /* Only now check for crtc changes so we don't miss encoders
11528                  * that will be disabled. */
11529                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11530                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11531                         config->mode_changed = true;
11532                 }
11533         }
11534         /* Now we've also updated encoder->new_crtc for all encoders. */
11535         list_for_each_entry(connector, &dev->mode_config.connector_list,
11536                             base.head) {
11537                 if (connector->new_encoder)
11538                         if (connector->new_encoder != connector->encoder)
11539                                 connector->encoder = connector->new_encoder;
11540         }
11541         for_each_intel_crtc(dev, crtc) {
11542                 crtc->new_enabled = false;
11543
11544                 for_each_intel_encoder(dev, encoder) {
11545                         if (encoder->new_crtc == crtc) {
11546                                 crtc->new_enabled = true;
11547                                 break;
11548                         }
11549                 }
11550
11551                 if (crtc->new_enabled != crtc->base.enabled) {
11552                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11553                                       crtc->new_enabled ? "en" : "dis");
11554                         config->mode_changed = true;
11555                 }
11556
11557                 if (crtc->new_enabled)
11558                         crtc->new_config = &crtc->config;
11559                 else
11560                         crtc->new_config = NULL;
11561         }
11562
11563         return 0;
11564 }
11565
11566 static void disable_crtc_nofb(struct intel_crtc *crtc)
11567 {
11568         struct drm_device *dev = crtc->base.dev;
11569         struct intel_encoder *encoder;
11570         struct intel_connector *connector;
11571
11572         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11573                       pipe_name(crtc->pipe));
11574
11575         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11576                 if (connector->new_encoder &&
11577                     connector->new_encoder->new_crtc == crtc)
11578                         connector->new_encoder = NULL;
11579         }
11580
11581         for_each_intel_encoder(dev, encoder) {
11582                 if (encoder->new_crtc == crtc)
11583                         encoder->new_crtc = NULL;
11584         }
11585
11586         crtc->new_enabled = false;
11587         crtc->new_config = NULL;
11588 }
11589
11590 static int intel_crtc_set_config(struct drm_mode_set *set)
11591 {
11592         struct drm_device *dev;
11593         struct drm_mode_set save_set;
11594         struct intel_set_config *config;
11595         struct intel_crtc_config *pipe_config;
11596         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11597         int ret;
11598
11599         BUG_ON(!set);
11600         BUG_ON(!set->crtc);
11601         BUG_ON(!set->crtc->helper_private);
11602
11603         /* Enforce sane interface api - has been abused by the fb helper. */
11604         BUG_ON(!set->mode && set->fb);
11605         BUG_ON(set->fb && set->num_connectors == 0);
11606
11607         if (set->fb) {
11608                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11609                                 set->crtc->base.id, set->fb->base.id,
11610                                 (int)set->num_connectors, set->x, set->y);
11611         } else {
11612                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11613         }
11614
11615         dev = set->crtc->dev;
11616
11617         ret = -ENOMEM;
11618         config = kzalloc(sizeof(*config), GFP_KERNEL);
11619         if (!config)
11620                 goto out_config;
11621
11622         ret = intel_set_config_save_state(dev, config);
11623         if (ret)
11624                 goto out_config;
11625
11626         save_set.crtc = set->crtc;
11627         save_set.mode = &set->crtc->mode;
11628         save_set.x = set->crtc->x;
11629         save_set.y = set->crtc->y;
11630         save_set.fb = set->crtc->primary->fb;
11631
11632         /* Compute whether we need a full modeset, only an fb base update or no
11633          * change at all. In the future we might also check whether only the
11634          * mode changed, e.g. for LVDS where we only change the panel fitter in
11635          * such cases. */
11636         intel_set_config_compute_mode_changes(set, config);
11637
11638         ret = intel_modeset_stage_output_state(dev, set, config);
11639         if (ret)
11640                 goto fail;
11641
11642         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11643                                                    set->fb,
11644                                                    &modeset_pipes,
11645                                                    &prepare_pipes,
11646                                                    &disable_pipes);
11647         if (IS_ERR(pipe_config)) {
11648                 ret = PTR_ERR(pipe_config);
11649                 goto fail;
11650         } else if (pipe_config) {
11651                 if (pipe_config->has_audio !=
11652                     to_intel_crtc(set->crtc)->config.has_audio)
11653                         config->mode_changed = true;
11654
11655                 /* Force mode sets for any infoframe stuff */
11656                 if (pipe_config->has_infoframe ||
11657                     to_intel_crtc(set->crtc)->config.has_infoframe)
11658                         config->mode_changed = true;
11659         }
11660
11661         /* set_mode will free it in the mode_changed case */
11662         if (!config->mode_changed)
11663                 kfree(pipe_config);
11664
11665         intel_update_pipe_size(to_intel_crtc(set->crtc));
11666
11667         if (config->mode_changed) {
11668                 ret = intel_set_mode_pipes(set->crtc, set->mode,
11669                                            set->x, set->y, set->fb, pipe_config,
11670                                            modeset_pipes, prepare_pipes,
11671                                            disable_pipes);
11672         } else if (config->fb_changed) {
11673                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11674
11675                 intel_crtc_wait_for_pending_flips(set->crtc);
11676
11677                 ret = intel_pipe_set_base(set->crtc,
11678                                           set->x, set->y, set->fb);
11679
11680                 /*
11681                  * We need to make sure the primary plane is re-enabled if it
11682                  * has previously been turned off.
11683                  */
11684                 if (!intel_crtc->primary_enabled && ret == 0) {
11685                         WARN_ON(!intel_crtc->active);
11686                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11687                 }
11688
11689                 /*
11690                  * In the fastboot case this may be our only check of the
11691                  * state after boot.  It would be better to only do it on
11692                  * the first update, but we don't have a nice way of doing that
11693                  * (and really, set_config isn't used much for high freq page
11694                  * flipping, so increasing its cost here shouldn't be a big
11695                  * deal).
11696                  */
11697                 if (i915.fastboot && ret == 0)
11698                         intel_modeset_check_state(set->crtc->dev);
11699         }
11700
11701         if (ret) {
11702                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11703                               set->crtc->base.id, ret);
11704 fail:
11705                 intel_set_config_restore_state(dev, config);
11706
11707                 /*
11708                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11709                  * force the pipe off to avoid oopsing in the modeset code
11710                  * due to fb==NULL. This should only happen during boot since
11711                  * we don't yet reconstruct the FB from the hardware state.
11712                  */
11713                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11714                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11715
11716                 /* Try to restore the config */
11717                 if (config->mode_changed &&
11718                     intel_set_mode(save_set.crtc, save_set.mode,
11719                                    save_set.x, save_set.y, save_set.fb))
11720                         DRM_ERROR("failed to restore config after modeset failure\n");
11721         }
11722
11723 out_config:
11724         intel_set_config_free(config);
11725         return ret;
11726 }
11727
11728 static const struct drm_crtc_funcs intel_crtc_funcs = {
11729         .gamma_set = intel_crtc_gamma_set,
11730         .set_config = intel_crtc_set_config,
11731         .destroy = intel_crtc_destroy,
11732         .page_flip = intel_crtc_page_flip,
11733 };
11734
11735 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11736                                       struct intel_shared_dpll *pll,
11737                                       struct intel_dpll_hw_state *hw_state)
11738 {
11739         uint32_t val;
11740
11741         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11742                 return false;
11743
11744         val = I915_READ(PCH_DPLL(pll->id));
11745         hw_state->dpll = val;
11746         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11747         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11748
11749         return val & DPLL_VCO_ENABLE;
11750 }
11751
11752 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11753                                   struct intel_shared_dpll *pll)
11754 {
11755         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11756         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11757 }
11758
11759 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11760                                 struct intel_shared_dpll *pll)
11761 {
11762         /* PCH refclock must be enabled first */
11763         ibx_assert_pch_refclk_enabled(dev_priv);
11764
11765         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11766
11767         /* Wait for the clocks to stabilize. */
11768         POSTING_READ(PCH_DPLL(pll->id));
11769         udelay(150);
11770
11771         /* The pixel multiplier can only be updated once the
11772          * DPLL is enabled and the clocks are stable.
11773          *
11774          * So write it again.
11775          */
11776         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11777         POSTING_READ(PCH_DPLL(pll->id));
11778         udelay(200);
11779 }
11780
11781 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11782                                  struct intel_shared_dpll *pll)
11783 {
11784         struct drm_device *dev = dev_priv->dev;
11785         struct intel_crtc *crtc;
11786
11787         /* Make sure no transcoder isn't still depending on us. */
11788         for_each_intel_crtc(dev, crtc) {
11789                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11790                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11791         }
11792
11793         I915_WRITE(PCH_DPLL(pll->id), 0);
11794         POSTING_READ(PCH_DPLL(pll->id));
11795         udelay(200);
11796 }
11797
11798 static char *ibx_pch_dpll_names[] = {
11799         "PCH DPLL A",
11800         "PCH DPLL B",
11801 };
11802
11803 static void ibx_pch_dpll_init(struct drm_device *dev)
11804 {
11805         struct drm_i915_private *dev_priv = dev->dev_private;
11806         int i;
11807
11808         dev_priv->num_shared_dpll = 2;
11809
11810         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11811                 dev_priv->shared_dplls[i].id = i;
11812                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11813                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11814                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11815                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11816                 dev_priv->shared_dplls[i].get_hw_state =
11817                         ibx_pch_dpll_get_hw_state;
11818         }
11819 }
11820
11821 static void intel_shared_dpll_init(struct drm_device *dev)
11822 {
11823         struct drm_i915_private *dev_priv = dev->dev_private;
11824
11825         if (HAS_DDI(dev))
11826                 intel_ddi_pll_init(dev);
11827         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11828                 ibx_pch_dpll_init(dev);
11829         else
11830                 dev_priv->num_shared_dpll = 0;
11831
11832         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11833 }
11834
11835 static int
11836 intel_primary_plane_disable(struct drm_plane *plane)
11837 {
11838         struct drm_device *dev = plane->dev;
11839         struct intel_crtc *intel_crtc;
11840
11841         if (!plane->fb)
11842                 return 0;
11843
11844         BUG_ON(!plane->crtc);
11845
11846         intel_crtc = to_intel_crtc(plane->crtc);
11847
11848         /*
11849          * Even though we checked plane->fb above, it's still possible that
11850          * the primary plane has been implicitly disabled because the crtc
11851          * coordinates given weren't visible, or because we detected
11852          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11853          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11854          * In either case, we need to unpin the FB and let the fb pointer get
11855          * updated, but otherwise we don't need to touch the hardware.
11856          */
11857         if (!intel_crtc->primary_enabled)
11858                 goto disable_unpin;
11859
11860         intel_crtc_wait_for_pending_flips(plane->crtc);
11861         intel_disable_primary_hw_plane(plane, plane->crtc);
11862
11863 disable_unpin:
11864         mutex_lock(&dev->struct_mutex);
11865         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11866                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11867         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11868         mutex_unlock(&dev->struct_mutex);
11869         plane->fb = NULL;
11870
11871         return 0;
11872 }
11873
11874 static int
11875 intel_check_primary_plane(struct drm_plane *plane,
11876                           struct intel_plane_state *state)
11877 {
11878         struct drm_crtc *crtc = state->crtc;
11879         struct drm_framebuffer *fb = state->fb;
11880         struct drm_rect *dest = &state->dst;
11881         struct drm_rect *src = &state->src;
11882         const struct drm_rect *clip = &state->clip;
11883
11884         return drm_plane_helper_check_update(plane, crtc, fb,
11885                                              src, dest, clip,
11886                                              DRM_PLANE_HELPER_NO_SCALING,
11887                                              DRM_PLANE_HELPER_NO_SCALING,
11888                                              false, true, &state->visible);
11889 }
11890
11891 static int
11892 intel_prepare_primary_plane(struct drm_plane *plane,
11893                             struct intel_plane_state *state)
11894 {
11895         struct drm_crtc *crtc = state->crtc;
11896         struct drm_framebuffer *fb = state->fb;
11897         struct drm_device *dev = crtc->dev;
11898         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11899         enum pipe pipe = intel_crtc->pipe;
11900         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11901         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11902         int ret;
11903
11904         intel_crtc_wait_for_pending_flips(crtc);
11905
11906         if (intel_crtc_has_pending_flip(crtc)) {
11907                 DRM_ERROR("pipe is still busy with an old pageflip\n");
11908                 return -EBUSY;
11909         }
11910
11911         if (old_obj != obj) {
11912                 mutex_lock(&dev->struct_mutex);
11913                 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11914                 if (ret == 0)
11915                         i915_gem_track_fb(old_obj, obj,
11916                                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11917                 mutex_unlock(&dev->struct_mutex);
11918                 if (ret != 0) {
11919                         DRM_DEBUG_KMS("pin & fence failed\n");
11920                         return ret;
11921                 }
11922         }
11923
11924         return 0;
11925 }
11926
11927 static void
11928 intel_commit_primary_plane(struct drm_plane *plane,
11929                            struct intel_plane_state *state)
11930 {
11931         struct drm_crtc *crtc = state->crtc;
11932         struct drm_framebuffer *fb = state->fb;
11933         struct drm_device *dev = crtc->dev;
11934         struct drm_i915_private *dev_priv = dev->dev_private;
11935         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11936         enum pipe pipe = intel_crtc->pipe;
11937         struct drm_framebuffer *old_fb = plane->fb;
11938         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11939         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11940         struct intel_plane *intel_plane = to_intel_plane(plane);
11941         struct drm_rect *src = &state->src;
11942
11943         crtc->primary->fb = fb;
11944         crtc->x = src->x1 >> 16;
11945         crtc->y = src->y1 >> 16;
11946
11947         intel_plane->crtc_x = state->orig_dst.x1;
11948         intel_plane->crtc_y = state->orig_dst.y1;
11949         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11950         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11951         intel_plane->src_x = state->orig_src.x1;
11952         intel_plane->src_y = state->orig_src.y1;
11953         intel_plane->src_w = drm_rect_width(&state->orig_src);
11954         intel_plane->src_h = drm_rect_height(&state->orig_src);
11955         intel_plane->obj = obj;
11956
11957         if (intel_crtc->active) {
11958                 /*
11959                  * FBC does not work on some platforms for rotated
11960                  * planes, so disable it when rotation is not 0 and
11961                  * update it when rotation is set back to 0.
11962                  *
11963                  * FIXME: This is redundant with the fbc update done in
11964                  * the primary plane enable function except that that
11965                  * one is done too late. We eventually need to unify
11966                  * this.
11967                  */
11968                 if (intel_crtc->primary_enabled &&
11969                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11970                     dev_priv->fbc.plane == intel_crtc->plane &&
11971                     intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11972                         intel_disable_fbc(dev);
11973                 }
11974
11975                 if (state->visible) {
11976                         bool was_enabled = intel_crtc->primary_enabled;
11977
11978                         /* FIXME: kill this fastboot hack */
11979                         intel_update_pipe_size(intel_crtc);
11980
11981                         intel_crtc->primary_enabled = true;
11982
11983                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11984                                         crtc->x, crtc->y);
11985
11986                         /*
11987                          * BDW signals flip done immediately if the plane
11988                          * is disabled, even if the plane enable is already
11989                          * armed to occur at the next vblank :(
11990                          */
11991                         if (IS_BROADWELL(dev) && !was_enabled)
11992                                 intel_wait_for_vblank(dev, intel_crtc->pipe);
11993                 } else {
11994                         /*
11995                          * If clipping results in a non-visible primary plane,
11996                          * we'll disable the primary plane.  Note that this is
11997                          * a bit different than what happens if userspace
11998                          * explicitly disables the plane by passing fb=0
11999                          * because plane->fb still gets set and pinned.
12000                          */
12001                         intel_disable_primary_hw_plane(plane, crtc);
12002                 }
12003
12004                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
12005
12006                 mutex_lock(&dev->struct_mutex);
12007                 intel_update_fbc(dev);
12008                 mutex_unlock(&dev->struct_mutex);
12009         }
12010
12011         if (old_fb && old_fb != fb) {
12012                 if (intel_crtc->active)
12013                         intel_wait_for_vblank(dev, intel_crtc->pipe);
12014
12015                 mutex_lock(&dev->struct_mutex);
12016                 intel_unpin_fb_obj(old_obj);
12017                 mutex_unlock(&dev->struct_mutex);
12018         }
12019 }
12020
12021 static int
12022 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
12023                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12024                              unsigned int crtc_w, unsigned int crtc_h,
12025                              uint32_t src_x, uint32_t src_y,
12026                              uint32_t src_w, uint32_t src_h)
12027 {
12028         struct intel_plane_state state;
12029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12030         int ret;
12031
12032         state.crtc = crtc;
12033         state.fb = fb;
12034
12035         /* sample coordinates in 16.16 fixed point */
12036         state.src.x1 = src_x;
12037         state.src.x2 = src_x + src_w;
12038         state.src.y1 = src_y;
12039         state.src.y2 = src_y + src_h;
12040
12041         /* integer pixels */
12042         state.dst.x1 = crtc_x;
12043         state.dst.x2 = crtc_x + crtc_w;
12044         state.dst.y1 = crtc_y;
12045         state.dst.y2 = crtc_y + crtc_h;
12046
12047         state.clip.x1 = 0;
12048         state.clip.y1 = 0;
12049         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12050         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12051
12052         state.orig_src = state.src;
12053         state.orig_dst = state.dst;
12054
12055         ret = intel_check_primary_plane(plane, &state);
12056         if (ret)
12057                 return ret;
12058
12059         ret = intel_prepare_primary_plane(plane, &state);
12060         if (ret)
12061                 return ret;
12062
12063         intel_commit_primary_plane(plane, &state);
12064
12065         return 0;
12066 }
12067
12068 /* Common destruction function for both primary and cursor planes */
12069 static void intel_plane_destroy(struct drm_plane *plane)
12070 {
12071         struct intel_plane *intel_plane = to_intel_plane(plane);
12072         drm_plane_cleanup(plane);
12073         kfree(intel_plane);
12074 }
12075
12076 static const struct drm_plane_funcs intel_primary_plane_funcs = {
12077         .update_plane = intel_primary_plane_setplane,
12078         .disable_plane = intel_primary_plane_disable,
12079         .destroy = intel_plane_destroy,
12080         .set_property = intel_plane_set_property
12081 };
12082
12083 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12084                                                     int pipe)
12085 {
12086         struct intel_plane *primary;
12087         const uint32_t *intel_primary_formats;
12088         int num_formats;
12089
12090         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12091         if (primary == NULL)
12092                 return NULL;
12093
12094         primary->can_scale = false;
12095         primary->max_downscale = 1;
12096         primary->pipe = pipe;
12097         primary->plane = pipe;
12098         primary->rotation = BIT(DRM_ROTATE_0);
12099         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12100                 primary->plane = !pipe;
12101
12102         if (INTEL_INFO(dev)->gen <= 3) {
12103                 intel_primary_formats = intel_primary_formats_gen2;
12104                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12105         } else {
12106                 intel_primary_formats = intel_primary_formats_gen4;
12107                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12108         }
12109
12110         drm_universal_plane_init(dev, &primary->base, 0,
12111                                  &intel_primary_plane_funcs,
12112                                  intel_primary_formats, num_formats,
12113                                  DRM_PLANE_TYPE_PRIMARY);
12114
12115         if (INTEL_INFO(dev)->gen >= 4) {
12116                 if (!dev->mode_config.rotation_property)
12117                         dev->mode_config.rotation_property =
12118                                 drm_mode_create_rotation_property(dev,
12119                                                         BIT(DRM_ROTATE_0) |
12120                                                         BIT(DRM_ROTATE_180));
12121                 if (dev->mode_config.rotation_property)
12122                         drm_object_attach_property(&primary->base.base,
12123                                 dev->mode_config.rotation_property,
12124                                 primary->rotation);
12125         }
12126
12127         return &primary->base;
12128 }
12129
12130 static int
12131 intel_cursor_plane_disable(struct drm_plane *plane)
12132 {
12133         if (!plane->fb)
12134                 return 0;
12135
12136         BUG_ON(!plane->crtc);
12137
12138         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12139 }
12140
12141 static int
12142 intel_check_cursor_plane(struct drm_plane *plane,
12143                          struct intel_plane_state *state)
12144 {
12145         struct drm_crtc *crtc = state->crtc;
12146         struct drm_device *dev = crtc->dev;
12147         struct drm_framebuffer *fb = state->fb;
12148         struct drm_rect *dest = &state->dst;
12149         struct drm_rect *src = &state->src;
12150         const struct drm_rect *clip = &state->clip;
12151         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12152         int crtc_w, crtc_h;
12153         unsigned stride;
12154         int ret;
12155
12156         ret = drm_plane_helper_check_update(plane, crtc, fb,
12157                                             src, dest, clip,
12158                                             DRM_PLANE_HELPER_NO_SCALING,
12159                                             DRM_PLANE_HELPER_NO_SCALING,
12160                                             true, true, &state->visible);
12161         if (ret)
12162                 return ret;
12163
12164
12165         /* if we want to turn off the cursor ignore width and height */
12166         if (!obj)
12167                 return 0;
12168
12169         /* Check for which cursor types we support */
12170         crtc_w = drm_rect_width(&state->orig_dst);
12171         crtc_h = drm_rect_height(&state->orig_dst);
12172         if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
12173                 DRM_DEBUG("Cursor dimension not supported\n");
12174                 return -EINVAL;
12175         }
12176
12177         stride = roundup_pow_of_two(crtc_w) * 4;
12178         if (obj->base.size < stride * crtc_h) {
12179                 DRM_DEBUG_KMS("buffer is too small\n");
12180                 return -ENOMEM;
12181         }
12182
12183         if (fb == crtc->cursor->fb)
12184                 return 0;
12185
12186         /* we only need to pin inside GTT if cursor is non-phy */
12187         mutex_lock(&dev->struct_mutex);
12188         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12189                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12190                 ret = -EINVAL;
12191         }
12192         mutex_unlock(&dev->struct_mutex);
12193
12194         return ret;
12195 }
12196
12197 static int
12198 intel_commit_cursor_plane(struct drm_plane *plane,
12199                           struct intel_plane_state *state)
12200 {
12201         struct drm_crtc *crtc = state->crtc;
12202         struct drm_framebuffer *fb = state->fb;
12203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12204         struct intel_plane *intel_plane = to_intel_plane(plane);
12205         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12206         struct drm_i915_gem_object *obj = intel_fb->obj;
12207         int crtc_w, crtc_h;
12208
12209         crtc->cursor_x = state->orig_dst.x1;
12210         crtc->cursor_y = state->orig_dst.y1;
12211
12212         intel_plane->crtc_x = state->orig_dst.x1;
12213         intel_plane->crtc_y = state->orig_dst.y1;
12214         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
12215         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
12216         intel_plane->src_x = state->orig_src.x1;
12217         intel_plane->src_y = state->orig_src.y1;
12218         intel_plane->src_w = drm_rect_width(&state->orig_src);
12219         intel_plane->src_h = drm_rect_height(&state->orig_src);
12220         intel_plane->obj = obj;
12221
12222         if (fb != crtc->cursor->fb) {
12223                 crtc_w = drm_rect_width(&state->orig_dst);
12224                 crtc_h = drm_rect_height(&state->orig_dst);
12225                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12226         } else {
12227                 intel_crtc_update_cursor(crtc, state->visible);
12228
12229                 intel_frontbuffer_flip(crtc->dev,
12230                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12231
12232                 return 0;
12233         }
12234 }
12235
12236 static int
12237 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12238                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12239                           unsigned int crtc_w, unsigned int crtc_h,
12240                           uint32_t src_x, uint32_t src_y,
12241                           uint32_t src_w, uint32_t src_h)
12242 {
12243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12244         struct intel_plane_state state;
12245         int ret;
12246
12247         state.crtc = crtc;
12248         state.fb = fb;
12249
12250         /* sample coordinates in 16.16 fixed point */
12251         state.src.x1 = src_x;
12252         state.src.x2 = src_x + src_w;
12253         state.src.y1 = src_y;
12254         state.src.y2 = src_y + src_h;
12255
12256         /* integer pixels */
12257         state.dst.x1 = crtc_x;
12258         state.dst.x2 = crtc_x + crtc_w;
12259         state.dst.y1 = crtc_y;
12260         state.dst.y2 = crtc_y + crtc_h;
12261
12262         state.clip.x1 = 0;
12263         state.clip.y1 = 0;
12264         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12265         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12266
12267         state.orig_src = state.src;
12268         state.orig_dst = state.dst;
12269
12270         ret = intel_check_cursor_plane(plane, &state);
12271         if (ret)
12272                 return ret;
12273
12274         return intel_commit_cursor_plane(plane, &state);
12275 }
12276
12277 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12278         .update_plane = intel_cursor_plane_update,
12279         .disable_plane = intel_cursor_plane_disable,
12280         .destroy = intel_plane_destroy,
12281         .set_property = intel_plane_set_property,
12282 };
12283
12284 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12285                                                    int pipe)
12286 {
12287         struct intel_plane *cursor;
12288
12289         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12290         if (cursor == NULL)
12291                 return NULL;
12292
12293         cursor->can_scale = false;
12294         cursor->max_downscale = 1;
12295         cursor->pipe = pipe;
12296         cursor->plane = pipe;
12297         cursor->rotation = BIT(DRM_ROTATE_0);
12298
12299         drm_universal_plane_init(dev, &cursor->base, 0,
12300                                  &intel_cursor_plane_funcs,
12301                                  intel_cursor_formats,
12302                                  ARRAY_SIZE(intel_cursor_formats),
12303                                  DRM_PLANE_TYPE_CURSOR);
12304
12305         if (INTEL_INFO(dev)->gen >= 4) {
12306                 if (!dev->mode_config.rotation_property)
12307                         dev->mode_config.rotation_property =
12308                                 drm_mode_create_rotation_property(dev,
12309                                                         BIT(DRM_ROTATE_0) |
12310                                                         BIT(DRM_ROTATE_180));
12311                 if (dev->mode_config.rotation_property)
12312                         drm_object_attach_property(&cursor->base.base,
12313                                 dev->mode_config.rotation_property,
12314                                 cursor->rotation);
12315         }
12316
12317         return &cursor->base;
12318 }
12319
12320 static void intel_crtc_init(struct drm_device *dev, int pipe)
12321 {
12322         struct drm_i915_private *dev_priv = dev->dev_private;
12323         struct intel_crtc *intel_crtc;
12324         struct drm_plane *primary = NULL;
12325         struct drm_plane *cursor = NULL;
12326         int i, ret;
12327
12328         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12329         if (intel_crtc == NULL)
12330                 return;
12331
12332         primary = intel_primary_plane_create(dev, pipe);
12333         if (!primary)
12334                 goto fail;
12335
12336         cursor = intel_cursor_plane_create(dev, pipe);
12337         if (!cursor)
12338                 goto fail;
12339
12340         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12341                                         cursor, &intel_crtc_funcs);
12342         if (ret)
12343                 goto fail;
12344
12345         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12346         for (i = 0; i < 256; i++) {
12347                 intel_crtc->lut_r[i] = i;
12348                 intel_crtc->lut_g[i] = i;
12349                 intel_crtc->lut_b[i] = i;
12350         }
12351
12352         /*
12353          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12354          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12355          */
12356         intel_crtc->pipe = pipe;
12357         intel_crtc->plane = pipe;
12358         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12359                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12360                 intel_crtc->plane = !pipe;
12361         }
12362
12363         intel_crtc->cursor_base = ~0;
12364         intel_crtc->cursor_cntl = ~0;
12365         intel_crtc->cursor_size = ~0;
12366
12367         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12368                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12369         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12370         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12371
12372         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12373
12374         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12375
12376         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12377         return;
12378
12379 fail:
12380         if (primary)
12381                 drm_plane_cleanup(primary);
12382         if (cursor)
12383                 drm_plane_cleanup(cursor);
12384         kfree(intel_crtc);
12385 }
12386
12387 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12388 {
12389         struct drm_encoder *encoder = connector->base.encoder;
12390         struct drm_device *dev = connector->base.dev;
12391
12392         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12393
12394         if (!encoder || WARN_ON(!encoder->crtc))
12395                 return INVALID_PIPE;
12396
12397         return to_intel_crtc(encoder->crtc)->pipe;
12398 }
12399
12400 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12401                                 struct drm_file *file)
12402 {
12403         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12404         struct drm_crtc *drmmode_crtc;
12405         struct intel_crtc *crtc;
12406
12407         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12408                 return -ENODEV;
12409
12410         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12411
12412         if (!drmmode_crtc) {
12413                 DRM_ERROR("no such CRTC id\n");
12414                 return -ENOENT;
12415         }
12416
12417         crtc = to_intel_crtc(drmmode_crtc);
12418         pipe_from_crtc_id->pipe = crtc->pipe;
12419
12420         return 0;
12421 }
12422
12423 static int intel_encoder_clones(struct intel_encoder *encoder)
12424 {
12425         struct drm_device *dev = encoder->base.dev;
12426         struct intel_encoder *source_encoder;
12427         int index_mask = 0;
12428         int entry = 0;
12429
12430         for_each_intel_encoder(dev, source_encoder) {
12431                 if (encoders_cloneable(encoder, source_encoder))
12432                         index_mask |= (1 << entry);
12433
12434                 entry++;
12435         }
12436
12437         return index_mask;
12438 }
12439
12440 static bool has_edp_a(struct drm_device *dev)
12441 {
12442         struct drm_i915_private *dev_priv = dev->dev_private;
12443
12444         if (!IS_MOBILE(dev))
12445                 return false;
12446
12447         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12448                 return false;
12449
12450         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12451                 return false;
12452
12453         return true;
12454 }
12455
12456 const char *intel_output_name(int output)
12457 {
12458         static const char *names[] = {
12459                 [INTEL_OUTPUT_UNUSED] = "Unused",
12460                 [INTEL_OUTPUT_ANALOG] = "Analog",
12461                 [INTEL_OUTPUT_DVO] = "DVO",
12462                 [INTEL_OUTPUT_SDVO] = "SDVO",
12463                 [INTEL_OUTPUT_LVDS] = "LVDS",
12464                 [INTEL_OUTPUT_TVOUT] = "TV",
12465                 [INTEL_OUTPUT_HDMI] = "HDMI",
12466                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12467                 [INTEL_OUTPUT_EDP] = "eDP",
12468                 [INTEL_OUTPUT_DSI] = "DSI",
12469                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12470         };
12471
12472         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12473                 return "Invalid";
12474
12475         return names[output];
12476 }
12477
12478 static bool intel_crt_present(struct drm_device *dev)
12479 {
12480         struct drm_i915_private *dev_priv = dev->dev_private;
12481
12482         if (INTEL_INFO(dev)->gen >= 9)
12483                 return false;
12484
12485         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12486                 return false;
12487
12488         if (IS_CHERRYVIEW(dev))
12489                 return false;
12490
12491         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12492                 return false;
12493
12494         return true;
12495 }
12496
12497 static void intel_setup_outputs(struct drm_device *dev)
12498 {
12499         struct drm_i915_private *dev_priv = dev->dev_private;
12500         struct intel_encoder *encoder;
12501         bool dpd_is_edp = false;
12502
12503         intel_lvds_init(dev);
12504
12505         if (intel_crt_present(dev))
12506                 intel_crt_init(dev);
12507
12508         if (HAS_DDI(dev)) {
12509                 int found;
12510
12511                 /* Haswell uses DDI functions to detect digital outputs */
12512                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12513                 /* DDI A only supports eDP */
12514                 if (found)
12515                         intel_ddi_init(dev, PORT_A);
12516
12517                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12518                  * register */
12519                 found = I915_READ(SFUSE_STRAP);
12520
12521                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12522                         intel_ddi_init(dev, PORT_B);
12523                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12524                         intel_ddi_init(dev, PORT_C);
12525                 if (found & SFUSE_STRAP_DDID_DETECTED)
12526                         intel_ddi_init(dev, PORT_D);
12527         } else if (HAS_PCH_SPLIT(dev)) {
12528                 int found;
12529                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12530
12531                 if (has_edp_a(dev))
12532                         intel_dp_init(dev, DP_A, PORT_A);
12533
12534                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12535                         /* PCH SDVOB multiplex with HDMIB */
12536                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12537                         if (!found)
12538                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12539                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12540                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12541                 }
12542
12543                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12544                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12545
12546                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12547                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12548
12549                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12550                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12551
12552                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12553                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12554         } else if (IS_VALLEYVIEW(dev)) {
12555                 /*
12556                  * The DP_DETECTED bit is the latched state of the DDC
12557                  * SDA pin at boot. However since eDP doesn't require DDC
12558                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12559                  * eDP ports may have been muxed to an alternate function.
12560                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12561                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12562                  * detect eDP ports.
12563                  */
12564                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12565                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12566                                         PORT_B);
12567                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12568                     intel_dp_is_edp(dev, PORT_B))
12569                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12570
12571                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12572                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12573                                         PORT_C);
12574                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12575                     intel_dp_is_edp(dev, PORT_C))
12576                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12577
12578                 if (IS_CHERRYVIEW(dev)) {
12579                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12580                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12581                                                 PORT_D);
12582                         /* eDP not supported on port D, so don't check VBT */
12583                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12584                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12585                 }
12586
12587                 intel_dsi_init(dev);
12588         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12589                 bool found = false;
12590
12591                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12592                         DRM_DEBUG_KMS("probing SDVOB\n");
12593                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12594                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12595                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12596                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12597                         }
12598
12599                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12600                                 intel_dp_init(dev, DP_B, PORT_B);
12601                 }
12602
12603                 /* Before G4X SDVOC doesn't have its own detect register */
12604
12605                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12606                         DRM_DEBUG_KMS("probing SDVOC\n");
12607                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12608                 }
12609
12610                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12611
12612                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12613                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12614                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12615                         }
12616                         if (SUPPORTS_INTEGRATED_DP(dev))
12617                                 intel_dp_init(dev, DP_C, PORT_C);
12618                 }
12619
12620                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12621                     (I915_READ(DP_D) & DP_DETECTED))
12622                         intel_dp_init(dev, DP_D, PORT_D);
12623         } else if (IS_GEN2(dev))
12624                 intel_dvo_init(dev);
12625
12626         if (SUPPORTS_TV(dev))
12627                 intel_tv_init(dev);
12628
12629         intel_psr_init(dev);
12630
12631         for_each_intel_encoder(dev, encoder) {
12632                 encoder->base.possible_crtcs = encoder->crtc_mask;
12633                 encoder->base.possible_clones =
12634                         intel_encoder_clones(encoder);
12635         }
12636
12637         intel_init_pch_refclk(dev);
12638
12639         drm_helper_move_panel_connectors_to_head(dev);
12640 }
12641
12642 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12643 {
12644         struct drm_device *dev = fb->dev;
12645         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12646
12647         drm_framebuffer_cleanup(fb);
12648         mutex_lock(&dev->struct_mutex);
12649         WARN_ON(!intel_fb->obj->framebuffer_references--);
12650         drm_gem_object_unreference(&intel_fb->obj->base);
12651         mutex_unlock(&dev->struct_mutex);
12652         kfree(intel_fb);
12653 }
12654
12655 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12656                                                 struct drm_file *file,
12657                                                 unsigned int *handle)
12658 {
12659         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12660         struct drm_i915_gem_object *obj = intel_fb->obj;
12661
12662         return drm_gem_handle_create(file, &obj->base, handle);
12663 }
12664
12665 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12666         .destroy = intel_user_framebuffer_destroy,
12667         .create_handle = intel_user_framebuffer_create_handle,
12668 };
12669
12670 static int intel_framebuffer_init(struct drm_device *dev,
12671                                   struct intel_framebuffer *intel_fb,
12672                                   struct drm_mode_fb_cmd2 *mode_cmd,
12673                                   struct drm_i915_gem_object *obj)
12674 {
12675         int aligned_height;
12676         int pitch_limit;
12677         int ret;
12678
12679         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12680
12681         if (obj->tiling_mode == I915_TILING_Y) {
12682                 DRM_DEBUG("hardware does not support tiling Y\n");
12683                 return -EINVAL;
12684         }
12685
12686         if (mode_cmd->pitches[0] & 63) {
12687                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12688                           mode_cmd->pitches[0]);
12689                 return -EINVAL;
12690         }
12691
12692         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12693                 pitch_limit = 32*1024;
12694         } else if (INTEL_INFO(dev)->gen >= 4) {
12695                 if (obj->tiling_mode)
12696                         pitch_limit = 16*1024;
12697                 else
12698                         pitch_limit = 32*1024;
12699         } else if (INTEL_INFO(dev)->gen >= 3) {
12700                 if (obj->tiling_mode)
12701                         pitch_limit = 8*1024;
12702                 else
12703                         pitch_limit = 16*1024;
12704         } else
12705                 /* XXX DSPC is limited to 4k tiled */
12706                 pitch_limit = 8*1024;
12707
12708         if (mode_cmd->pitches[0] > pitch_limit) {
12709                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12710                           obj->tiling_mode ? "tiled" : "linear",
12711                           mode_cmd->pitches[0], pitch_limit);
12712                 return -EINVAL;
12713         }
12714
12715         if (obj->tiling_mode != I915_TILING_NONE &&
12716             mode_cmd->pitches[0] != obj->stride) {
12717                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12718                           mode_cmd->pitches[0], obj->stride);
12719                 return -EINVAL;
12720         }
12721
12722         /* Reject formats not supported by any plane early. */
12723         switch (mode_cmd->pixel_format) {
12724         case DRM_FORMAT_C8:
12725         case DRM_FORMAT_RGB565:
12726         case DRM_FORMAT_XRGB8888:
12727         case DRM_FORMAT_ARGB8888:
12728                 break;
12729         case DRM_FORMAT_XRGB1555:
12730         case DRM_FORMAT_ARGB1555:
12731                 if (INTEL_INFO(dev)->gen > 3) {
12732                         DRM_DEBUG("unsupported pixel format: %s\n",
12733                                   drm_get_format_name(mode_cmd->pixel_format));
12734                         return -EINVAL;
12735                 }
12736                 break;
12737         case DRM_FORMAT_XBGR8888:
12738         case DRM_FORMAT_ABGR8888:
12739         case DRM_FORMAT_XRGB2101010:
12740         case DRM_FORMAT_ARGB2101010:
12741         case DRM_FORMAT_XBGR2101010:
12742         case DRM_FORMAT_ABGR2101010:
12743                 if (INTEL_INFO(dev)->gen < 4) {
12744                         DRM_DEBUG("unsupported pixel format: %s\n",
12745                                   drm_get_format_name(mode_cmd->pixel_format));
12746                         return -EINVAL;
12747                 }
12748                 break;
12749         case DRM_FORMAT_YUYV:
12750         case DRM_FORMAT_UYVY:
12751         case DRM_FORMAT_YVYU:
12752         case DRM_FORMAT_VYUY:
12753                 if (INTEL_INFO(dev)->gen < 5) {
12754                         DRM_DEBUG("unsupported pixel format: %s\n",
12755                                   drm_get_format_name(mode_cmd->pixel_format));
12756                         return -EINVAL;
12757                 }
12758                 break;
12759         default:
12760                 DRM_DEBUG("unsupported pixel format: %s\n",
12761                           drm_get_format_name(mode_cmd->pixel_format));
12762                 return -EINVAL;
12763         }
12764
12765         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12766         if (mode_cmd->offsets[0] != 0)
12767                 return -EINVAL;
12768
12769         aligned_height = intel_align_height(dev, mode_cmd->height,
12770                                             obj->tiling_mode);
12771         /* FIXME drm helper for size checks (especially planar formats)? */
12772         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12773                 return -EINVAL;
12774
12775         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12776         intel_fb->obj = obj;
12777         intel_fb->obj->framebuffer_references++;
12778
12779         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12780         if (ret) {
12781                 DRM_ERROR("framebuffer init failed %d\n", ret);
12782                 return ret;
12783         }
12784
12785         return 0;
12786 }
12787
12788 static struct drm_framebuffer *
12789 intel_user_framebuffer_create(struct drm_device *dev,
12790                               struct drm_file *filp,
12791                               struct drm_mode_fb_cmd2 *mode_cmd)
12792 {
12793         struct drm_i915_gem_object *obj;
12794
12795         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12796                                                 mode_cmd->handles[0]));
12797         if (&obj->base == NULL)
12798                 return ERR_PTR(-ENOENT);
12799
12800         return intel_framebuffer_create(dev, mode_cmd, obj);
12801 }
12802
12803 #ifndef CONFIG_DRM_I915_FBDEV
12804 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12805 {
12806 }
12807 #endif
12808
12809 static const struct drm_mode_config_funcs intel_mode_funcs = {
12810         .fb_create = intel_user_framebuffer_create,
12811         .output_poll_changed = intel_fbdev_output_poll_changed,
12812 };
12813
12814 /* Set up chip specific display functions */
12815 static void intel_init_display(struct drm_device *dev)
12816 {
12817         struct drm_i915_private *dev_priv = dev->dev_private;
12818
12819         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12820                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12821         else if (IS_CHERRYVIEW(dev))
12822                 dev_priv->display.find_dpll = chv_find_best_dpll;
12823         else if (IS_VALLEYVIEW(dev))
12824                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12825         else if (IS_PINEVIEW(dev))
12826                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12827         else
12828                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12829
12830         if (HAS_DDI(dev)) {
12831                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12832                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12833                 dev_priv->display.crtc_compute_clock =
12834                         haswell_crtc_compute_clock;
12835                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12836                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12837                 dev_priv->display.off = ironlake_crtc_off;
12838                 if (INTEL_INFO(dev)->gen >= 9)
12839                         dev_priv->display.update_primary_plane =
12840                                 skylake_update_primary_plane;
12841                 else
12842                         dev_priv->display.update_primary_plane =
12843                                 ironlake_update_primary_plane;
12844         } else if (HAS_PCH_SPLIT(dev)) {
12845                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12846                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12847                 dev_priv->display.crtc_compute_clock =
12848                         ironlake_crtc_compute_clock;
12849                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12850                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12851                 dev_priv->display.off = ironlake_crtc_off;
12852                 dev_priv->display.update_primary_plane =
12853                         ironlake_update_primary_plane;
12854         } else if (IS_VALLEYVIEW(dev)) {
12855                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12856                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12857                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12858                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12859                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12860                 dev_priv->display.off = i9xx_crtc_off;
12861                 dev_priv->display.update_primary_plane =
12862                         i9xx_update_primary_plane;
12863         } else {
12864                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12865                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12866                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12867                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12868                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12869                 dev_priv->display.off = i9xx_crtc_off;
12870                 dev_priv->display.update_primary_plane =
12871                         i9xx_update_primary_plane;
12872         }
12873
12874         /* Returns the core display clock speed */
12875         if (IS_VALLEYVIEW(dev))
12876                 dev_priv->display.get_display_clock_speed =
12877                         valleyview_get_display_clock_speed;
12878         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12879                 dev_priv->display.get_display_clock_speed =
12880                         i945_get_display_clock_speed;
12881         else if (IS_I915G(dev))
12882                 dev_priv->display.get_display_clock_speed =
12883                         i915_get_display_clock_speed;
12884         else if (IS_I945GM(dev) || IS_845G(dev))
12885                 dev_priv->display.get_display_clock_speed =
12886                         i9xx_misc_get_display_clock_speed;
12887         else if (IS_PINEVIEW(dev))
12888                 dev_priv->display.get_display_clock_speed =
12889                         pnv_get_display_clock_speed;
12890         else if (IS_I915GM(dev))
12891                 dev_priv->display.get_display_clock_speed =
12892                         i915gm_get_display_clock_speed;
12893         else if (IS_I865G(dev))
12894                 dev_priv->display.get_display_clock_speed =
12895                         i865_get_display_clock_speed;
12896         else if (IS_I85X(dev))
12897                 dev_priv->display.get_display_clock_speed =
12898                         i855_get_display_clock_speed;
12899         else /* 852, 830 */
12900                 dev_priv->display.get_display_clock_speed =
12901                         i830_get_display_clock_speed;
12902
12903         if (IS_GEN5(dev)) {
12904                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12905         } else if (IS_GEN6(dev)) {
12906                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12907         } else if (IS_IVYBRIDGE(dev)) {
12908                 /* FIXME: detect B0+ stepping and use auto training */
12909                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12910                 dev_priv->display.modeset_global_resources =
12911                         ivb_modeset_global_resources;
12912         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12913                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12914         } else if (IS_VALLEYVIEW(dev)) {
12915                 dev_priv->display.modeset_global_resources =
12916                         valleyview_modeset_global_resources;
12917         }
12918
12919         /* Default just returns -ENODEV to indicate unsupported */
12920         dev_priv->display.queue_flip = intel_default_queue_flip;
12921
12922         switch (INTEL_INFO(dev)->gen) {
12923         case 2:
12924                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12925                 break;
12926
12927         case 3:
12928                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12929                 break;
12930
12931         case 4:
12932         case 5:
12933                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12934                 break;
12935
12936         case 6:
12937                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12938                 break;
12939         case 7:
12940         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12941                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12942                 break;
12943         case 9:
12944                 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12945                 break;
12946         }
12947
12948         intel_panel_init_backlight_funcs(dev);
12949
12950         mutex_init(&dev_priv->pps_mutex);
12951 }
12952
12953 /*
12954  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12955  * resume, or other times.  This quirk makes sure that's the case for
12956  * affected systems.
12957  */
12958 static void quirk_pipea_force(struct drm_device *dev)
12959 {
12960         struct drm_i915_private *dev_priv = dev->dev_private;
12961
12962         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12963         DRM_INFO("applying pipe a force quirk\n");
12964 }
12965
12966 static void quirk_pipeb_force(struct drm_device *dev)
12967 {
12968         struct drm_i915_private *dev_priv = dev->dev_private;
12969
12970         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12971         DRM_INFO("applying pipe b force quirk\n");
12972 }
12973
12974 /*
12975  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12976  */
12977 static void quirk_ssc_force_disable(struct drm_device *dev)
12978 {
12979         struct drm_i915_private *dev_priv = dev->dev_private;
12980         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12981         DRM_INFO("applying lvds SSC disable quirk\n");
12982 }
12983
12984 /*
12985  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12986  * brightness value
12987  */
12988 static void quirk_invert_brightness(struct drm_device *dev)
12989 {
12990         struct drm_i915_private *dev_priv = dev->dev_private;
12991         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12992         DRM_INFO("applying inverted panel brightness quirk\n");
12993 }
12994
12995 /* Some VBT's incorrectly indicate no backlight is present */
12996 static void quirk_backlight_present(struct drm_device *dev)
12997 {
12998         struct drm_i915_private *dev_priv = dev->dev_private;
12999         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13000         DRM_INFO("applying backlight present quirk\n");
13001 }
13002
13003 struct intel_quirk {
13004         int device;
13005         int subsystem_vendor;
13006         int subsystem_device;
13007         void (*hook)(struct drm_device *dev);
13008 };
13009
13010 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13011 struct intel_dmi_quirk {
13012         void (*hook)(struct drm_device *dev);
13013         const struct dmi_system_id (*dmi_id_list)[];
13014 };
13015
13016 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13017 {
13018         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13019         return 1;
13020 }
13021
13022 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13023         {
13024                 .dmi_id_list = &(const struct dmi_system_id[]) {
13025                         {
13026                                 .callback = intel_dmi_reverse_brightness,
13027                                 .ident = "NCR Corporation",
13028                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13029                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
13030                                 },
13031                         },
13032                         { }  /* terminating entry */
13033                 },
13034                 .hook = quirk_invert_brightness,
13035         },
13036 };
13037
13038 static struct intel_quirk intel_quirks[] = {
13039         /* HP Mini needs pipe A force quirk (LP: #322104) */
13040         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13041
13042         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13043         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13044
13045         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13046         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13047
13048         /* 830 needs to leave pipe A & dpll A up */
13049         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13050
13051         /* 830 needs to leave pipe B & dpll B up */
13052         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13053
13054         /* Lenovo U160 cannot use SSC on LVDS */
13055         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13056
13057         /* Sony Vaio Y cannot use SSC on LVDS */
13058         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13059
13060         /* Acer Aspire 5734Z must invert backlight brightness */
13061         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13062
13063         /* Acer/eMachines G725 */
13064         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13065
13066         /* Acer/eMachines e725 */
13067         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13068
13069         /* Acer/Packard Bell NCL20 */
13070         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13071
13072         /* Acer Aspire 4736Z */
13073         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13074
13075         /* Acer Aspire 5336 */
13076         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13077
13078         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13079         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13080
13081         /* Acer C720 Chromebook (Core i3 4005U) */
13082         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13083
13084         /* Apple Macbook 2,1 (Core 2 T7400) */
13085         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13086
13087         /* Toshiba CB35 Chromebook (Celeron 2955U) */
13088         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13089
13090         /* HP Chromebook 14 (Celeron 2955U) */
13091         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13092 };
13093
13094 static void intel_init_quirks(struct drm_device *dev)
13095 {
13096         struct pci_dev *d = dev->pdev;
13097         int i;
13098
13099         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13100                 struct intel_quirk *q = &intel_quirks[i];
13101
13102                 if (d->device == q->device &&
13103                     (d->subsystem_vendor == q->subsystem_vendor ||
13104                      q->subsystem_vendor == PCI_ANY_ID) &&
13105                     (d->subsystem_device == q->subsystem_device ||
13106                      q->subsystem_device == PCI_ANY_ID))
13107                         q->hook(dev);
13108         }
13109         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13110                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13111                         intel_dmi_quirks[i].hook(dev);
13112         }
13113 }
13114
13115 /* Disable the VGA plane that we never use */
13116 static void i915_disable_vga(struct drm_device *dev)
13117 {
13118         struct drm_i915_private *dev_priv = dev->dev_private;
13119         u8 sr1;
13120         u32 vga_reg = i915_vgacntrl_reg(dev);
13121
13122         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13123         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13124         outb(SR01, VGA_SR_INDEX);
13125         sr1 = inb(VGA_SR_DATA);
13126         outb(sr1 | 1<<5, VGA_SR_DATA);
13127         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13128         udelay(300);
13129
13130         /*
13131          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
13132          * from S3 without preserving (some of?) the other bits.
13133          */
13134         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
13135         POSTING_READ(vga_reg);
13136 }
13137
13138 void intel_modeset_init_hw(struct drm_device *dev)
13139 {
13140         intel_prepare_ddi(dev);
13141
13142         if (IS_VALLEYVIEW(dev))
13143                 vlv_update_cdclk(dev);
13144
13145         intel_init_clock_gating(dev);
13146
13147         intel_enable_gt_powersave(dev);
13148 }
13149
13150 void intel_modeset_init(struct drm_device *dev)
13151 {
13152         struct drm_i915_private *dev_priv = dev->dev_private;
13153         int sprite, ret;
13154         enum pipe pipe;
13155         struct intel_crtc *crtc;
13156
13157         drm_mode_config_init(dev);
13158
13159         dev->mode_config.min_width = 0;
13160         dev->mode_config.min_height = 0;
13161
13162         dev->mode_config.preferred_depth = 24;
13163         dev->mode_config.prefer_shadow = 1;
13164
13165         dev->mode_config.funcs = &intel_mode_funcs;
13166
13167         intel_init_quirks(dev);
13168
13169         intel_init_pm(dev);
13170
13171         if (INTEL_INFO(dev)->num_pipes == 0)
13172                 return;
13173
13174         intel_init_display(dev);
13175         intel_init_audio(dev);
13176
13177         if (IS_GEN2(dev)) {
13178                 dev->mode_config.max_width = 2048;
13179                 dev->mode_config.max_height = 2048;
13180         } else if (IS_GEN3(dev)) {
13181                 dev->mode_config.max_width = 4096;
13182                 dev->mode_config.max_height = 4096;
13183         } else {
13184                 dev->mode_config.max_width = 8192;
13185                 dev->mode_config.max_height = 8192;
13186         }
13187
13188         if (IS_845G(dev) || IS_I865G(dev)) {
13189                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13190                 dev->mode_config.cursor_height = 1023;
13191         } else if (IS_GEN2(dev)) {
13192                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13193                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13194         } else {
13195                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13196                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13197         }
13198
13199         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13200
13201         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13202                       INTEL_INFO(dev)->num_pipes,
13203                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13204
13205         for_each_pipe(dev_priv, pipe) {
13206                 intel_crtc_init(dev, pipe);
13207                 for_each_sprite(pipe, sprite) {
13208                         ret = intel_plane_init(dev, pipe, sprite);
13209                         if (ret)
13210                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13211                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13212                 }
13213         }
13214
13215         intel_init_dpio(dev);
13216
13217         intel_shared_dpll_init(dev);
13218
13219         /* save the BIOS value before clobbering it */
13220         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13221         /* Just disable it once at startup */
13222         i915_disable_vga(dev);
13223         intel_setup_outputs(dev);
13224
13225         /* Just in case the BIOS is doing something questionable. */
13226         intel_disable_fbc(dev);
13227
13228         drm_modeset_lock_all(dev);
13229         intel_modeset_setup_hw_state(dev, false);
13230         drm_modeset_unlock_all(dev);
13231
13232         for_each_intel_crtc(dev, crtc) {
13233                 if (!crtc->active)
13234                         continue;
13235
13236                 /*
13237                  * Note that reserving the BIOS fb up front prevents us
13238                  * from stuffing other stolen allocations like the ring
13239                  * on top.  This prevents some ugliness at boot time, and
13240                  * can even allow for smooth boot transitions if the BIOS
13241                  * fb is large enough for the active pipe configuration.
13242                  */
13243                 if (dev_priv->display.get_plane_config) {
13244                         dev_priv->display.get_plane_config(crtc,
13245                                                            &crtc->plane_config);
13246                         /*
13247                          * If the fb is shared between multiple heads, we'll
13248                          * just get the first one.
13249                          */
13250                         intel_find_plane_obj(crtc, &crtc->plane_config);
13251                 }
13252         }
13253 }
13254
13255 static void intel_enable_pipe_a(struct drm_device *dev)
13256 {
13257         struct intel_connector *connector;
13258         struct drm_connector *crt = NULL;
13259         struct intel_load_detect_pipe load_detect_temp;
13260         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13261
13262         /* We can't just switch on the pipe A, we need to set things up with a
13263          * proper mode and output configuration. As a gross hack, enable pipe A
13264          * by enabling the load detect pipe once. */
13265         list_for_each_entry(connector,
13266                             &dev->mode_config.connector_list,
13267                             base.head) {
13268                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13269                         crt = &connector->base;
13270                         break;
13271                 }
13272         }
13273
13274         if (!crt)
13275                 return;
13276
13277         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13278                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13279 }
13280
13281 static bool
13282 intel_check_plane_mapping(struct intel_crtc *crtc)
13283 {
13284         struct drm_device *dev = crtc->base.dev;
13285         struct drm_i915_private *dev_priv = dev->dev_private;
13286         u32 reg, val;
13287
13288         if (INTEL_INFO(dev)->num_pipes == 1)
13289                 return true;
13290
13291         reg = DSPCNTR(!crtc->plane);
13292         val = I915_READ(reg);
13293
13294         if ((val & DISPLAY_PLANE_ENABLE) &&
13295             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13296                 return false;
13297
13298         return true;
13299 }
13300
13301 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13302 {
13303         struct drm_device *dev = crtc->base.dev;
13304         struct drm_i915_private *dev_priv = dev->dev_private;
13305         u32 reg;
13306
13307         /* Clear any frame start delays used for debugging left by the BIOS */
13308         reg = PIPECONF(crtc->config.cpu_transcoder);
13309         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13310
13311         /* restore vblank interrupts to correct state */
13312         if (crtc->active) {
13313                 update_scanline_offset(crtc);
13314                 drm_vblank_on(dev, crtc->pipe);
13315         } else
13316                 drm_vblank_off(dev, crtc->pipe);
13317
13318         /* We need to sanitize the plane -> pipe mapping first because this will
13319          * disable the crtc (and hence change the state) if it is wrong. Note
13320          * that gen4+ has a fixed plane -> pipe mapping.  */
13321         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13322                 struct intel_connector *connector;
13323                 bool plane;
13324
13325                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13326                               crtc->base.base.id);
13327
13328                 /* Pipe has the wrong plane attached and the plane is active.
13329                  * Temporarily change the plane mapping and disable everything
13330                  * ...  */
13331                 plane = crtc->plane;
13332                 crtc->plane = !plane;
13333                 crtc->primary_enabled = true;
13334                 dev_priv->display.crtc_disable(&crtc->base);
13335                 crtc->plane = plane;
13336
13337                 /* ... and break all links. */
13338                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13339                                     base.head) {
13340                         if (connector->encoder->base.crtc != &crtc->base)
13341                                 continue;
13342
13343                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13344                         connector->base.encoder = NULL;
13345                 }
13346                 /* multiple connectors may have the same encoder:
13347                  *  handle them and break crtc link separately */
13348                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13349                                     base.head)
13350                         if (connector->encoder->base.crtc == &crtc->base) {
13351                                 connector->encoder->base.crtc = NULL;
13352                                 connector->encoder->connectors_active = false;
13353                         }
13354
13355                 WARN_ON(crtc->active);
13356                 crtc->base.enabled = false;
13357         }
13358
13359         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13360             crtc->pipe == PIPE_A && !crtc->active) {
13361                 /* BIOS forgot to enable pipe A, this mostly happens after
13362                  * resume. Force-enable the pipe to fix this, the update_dpms
13363                  * call below we restore the pipe to the right state, but leave
13364                  * the required bits on. */
13365                 intel_enable_pipe_a(dev);
13366         }
13367
13368         /* Adjust the state of the output pipe according to whether we
13369          * have active connectors/encoders. */
13370         intel_crtc_update_dpms(&crtc->base);
13371
13372         if (crtc->active != crtc->base.enabled) {
13373                 struct intel_encoder *encoder;
13374
13375                 /* This can happen either due to bugs in the get_hw_state
13376                  * functions or because the pipe is force-enabled due to the
13377                  * pipe A quirk. */
13378                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13379                               crtc->base.base.id,
13380                               crtc->base.enabled ? "enabled" : "disabled",
13381                               crtc->active ? "enabled" : "disabled");
13382
13383                 crtc->base.enabled = crtc->active;
13384
13385                 /* Because we only establish the connector -> encoder ->
13386                  * crtc links if something is active, this means the
13387                  * crtc is now deactivated. Break the links. connector
13388                  * -> encoder links are only establish when things are
13389                  *  actually up, hence no need to break them. */
13390                 WARN_ON(crtc->active);
13391
13392                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13393                         WARN_ON(encoder->connectors_active);
13394                         encoder->base.crtc = NULL;
13395                 }
13396         }
13397
13398         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13399                 /*
13400                  * We start out with underrun reporting disabled to avoid races.
13401                  * For correct bookkeeping mark this on active crtcs.
13402                  *
13403                  * Also on gmch platforms we dont have any hardware bits to
13404                  * disable the underrun reporting. Which means we need to start
13405                  * out with underrun reporting disabled also on inactive pipes,
13406                  * since otherwise we'll complain about the garbage we read when
13407                  * e.g. coming up after runtime pm.
13408                  *
13409                  * No protection against concurrent access is required - at
13410                  * worst a fifo underrun happens which also sets this to false.
13411                  */
13412                 crtc->cpu_fifo_underrun_disabled = true;
13413                 crtc->pch_fifo_underrun_disabled = true;
13414         }
13415 }
13416
13417 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13418 {
13419         struct intel_connector *connector;
13420         struct drm_device *dev = encoder->base.dev;
13421
13422         /* We need to check both for a crtc link (meaning that the
13423          * encoder is active and trying to read from a pipe) and the
13424          * pipe itself being active. */
13425         bool has_active_crtc = encoder->base.crtc &&
13426                 to_intel_crtc(encoder->base.crtc)->active;
13427
13428         if (encoder->connectors_active && !has_active_crtc) {
13429                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13430                               encoder->base.base.id,
13431                               encoder->base.name);
13432
13433                 /* Connector is active, but has no active pipe. This is
13434                  * fallout from our resume register restoring. Disable
13435                  * the encoder manually again. */
13436                 if (encoder->base.crtc) {
13437                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13438                                       encoder->base.base.id,
13439                                       encoder->base.name);
13440                         encoder->disable(encoder);
13441                         if (encoder->post_disable)
13442                                 encoder->post_disable(encoder);
13443                 }
13444                 encoder->base.crtc = NULL;
13445                 encoder->connectors_active = false;
13446
13447                 /* Inconsistent output/port/pipe state happens presumably due to
13448                  * a bug in one of the get_hw_state functions. Or someplace else
13449                  * in our code, like the register restore mess on resume. Clamp
13450                  * things to off as a safer default. */
13451                 list_for_each_entry(connector,
13452                                     &dev->mode_config.connector_list,
13453                                     base.head) {
13454                         if (connector->encoder != encoder)
13455                                 continue;
13456                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13457                         connector->base.encoder = NULL;
13458                 }
13459         }
13460         /* Enabled encoders without active connectors will be fixed in
13461          * the crtc fixup. */
13462 }
13463
13464 void i915_redisable_vga_power_on(struct drm_device *dev)
13465 {
13466         struct drm_i915_private *dev_priv = dev->dev_private;
13467         u32 vga_reg = i915_vgacntrl_reg(dev);
13468
13469         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13470                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13471                 i915_disable_vga(dev);
13472         }
13473 }
13474
13475 void i915_redisable_vga(struct drm_device *dev)
13476 {
13477         struct drm_i915_private *dev_priv = dev->dev_private;
13478
13479         /* This function can be called both from intel_modeset_setup_hw_state or
13480          * at a very early point in our resume sequence, where the power well
13481          * structures are not yet restored. Since this function is at a very
13482          * paranoid "someone might have enabled VGA while we were not looking"
13483          * level, just check if the power well is enabled instead of trying to
13484          * follow the "don't touch the power well if we don't need it" policy
13485          * the rest of the driver uses. */
13486         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13487                 return;
13488
13489         i915_redisable_vga_power_on(dev);
13490 }
13491
13492 static bool primary_get_hw_state(struct intel_crtc *crtc)
13493 {
13494         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13495
13496         if (!crtc->active)
13497                 return false;
13498
13499         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13500 }
13501
13502 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13503 {
13504         struct drm_i915_private *dev_priv = dev->dev_private;
13505         enum pipe pipe;
13506         struct intel_crtc *crtc;
13507         struct intel_encoder *encoder;
13508         struct intel_connector *connector;
13509         int i;
13510
13511         for_each_intel_crtc(dev, crtc) {
13512                 memset(&crtc->config, 0, sizeof(crtc->config));
13513
13514                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13515
13516                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13517                                                                  &crtc->config);
13518
13519                 crtc->base.enabled = crtc->active;
13520                 crtc->primary_enabled = primary_get_hw_state(crtc);
13521
13522                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13523                               crtc->base.base.id,
13524                               crtc->active ? "enabled" : "disabled");
13525         }
13526
13527         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13528                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13529
13530                 pll->on = pll->get_hw_state(dev_priv, pll,
13531                                             &pll->config.hw_state);
13532                 pll->active = 0;
13533                 pll->config.crtc_mask = 0;
13534                 for_each_intel_crtc(dev, crtc) {
13535                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13536                                 pll->active++;
13537                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13538                         }
13539                 }
13540
13541                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13542                               pll->name, pll->config.crtc_mask, pll->on);
13543
13544                 if (pll->config.crtc_mask)
13545                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13546         }
13547
13548         for_each_intel_encoder(dev, encoder) {
13549                 pipe = 0;
13550
13551                 if (encoder->get_hw_state(encoder, &pipe)) {
13552                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13553                         encoder->base.crtc = &crtc->base;
13554                         encoder->get_config(encoder, &crtc->config);
13555                 } else {
13556                         encoder->base.crtc = NULL;
13557                 }
13558
13559                 encoder->connectors_active = false;
13560                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13561                               encoder->base.base.id,
13562                               encoder->base.name,
13563                               encoder->base.crtc ? "enabled" : "disabled",
13564                               pipe_name(pipe));
13565         }
13566
13567         list_for_each_entry(connector, &dev->mode_config.connector_list,
13568                             base.head) {
13569                 if (connector->get_hw_state(connector)) {
13570                         connector->base.dpms = DRM_MODE_DPMS_ON;
13571                         connector->encoder->connectors_active = true;
13572                         connector->base.encoder = &connector->encoder->base;
13573                 } else {
13574                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13575                         connector->base.encoder = NULL;
13576                 }
13577                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13578                               connector->base.base.id,
13579                               connector->base.name,
13580                               connector->base.encoder ? "enabled" : "disabled");
13581         }
13582 }
13583
13584 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13585  * and i915 state tracking structures. */
13586 void intel_modeset_setup_hw_state(struct drm_device *dev,
13587                                   bool force_restore)
13588 {
13589         struct drm_i915_private *dev_priv = dev->dev_private;
13590         enum pipe pipe;
13591         struct intel_crtc *crtc;
13592         struct intel_encoder *encoder;
13593         int i;
13594
13595         intel_modeset_readout_hw_state(dev);
13596
13597         /*
13598          * Now that we have the config, copy it to each CRTC struct
13599          * Note that this could go away if we move to using crtc_config
13600          * checking everywhere.
13601          */
13602         for_each_intel_crtc(dev, crtc) {
13603                 if (crtc->active && i915.fastboot) {
13604                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13605                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13606                                       crtc->base.base.id);
13607                         drm_mode_debug_printmodeline(&crtc->base.mode);
13608                 }
13609         }
13610
13611         /* HW state is read out, now we need to sanitize this mess. */
13612         for_each_intel_encoder(dev, encoder) {
13613                 intel_sanitize_encoder(encoder);
13614         }
13615
13616         for_each_pipe(dev_priv, pipe) {
13617                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13618                 intel_sanitize_crtc(crtc);
13619                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13620         }
13621
13622         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13623                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13624
13625                 if (!pll->on || pll->active)
13626                         continue;
13627
13628                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13629
13630                 pll->disable(dev_priv, pll);
13631                 pll->on = false;
13632         }
13633
13634         if (IS_GEN9(dev))
13635                 skl_wm_get_hw_state(dev);
13636         else if (HAS_PCH_SPLIT(dev))
13637                 ilk_wm_get_hw_state(dev);
13638
13639         if (force_restore) {
13640                 i915_redisable_vga(dev);
13641
13642                 /*
13643                  * We need to use raw interfaces for restoring state to avoid
13644                  * checking (bogus) intermediate states.
13645                  */
13646                 for_each_pipe(dev_priv, pipe) {
13647                         struct drm_crtc *crtc =
13648                                 dev_priv->pipe_to_crtc_mapping[pipe];
13649
13650                         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13651                                        crtc->primary->fb);
13652                 }
13653         } else {
13654                 intel_modeset_update_staged_output_state(dev);
13655         }
13656
13657         intel_modeset_check_state(dev);
13658 }
13659
13660 void intel_modeset_gem_init(struct drm_device *dev)
13661 {
13662         struct drm_i915_private *dev_priv = dev->dev_private;
13663         struct drm_crtc *c;
13664         struct drm_i915_gem_object *obj;
13665
13666         mutex_lock(&dev->struct_mutex);
13667         intel_init_gt_powersave(dev);
13668         mutex_unlock(&dev->struct_mutex);
13669
13670         /*
13671          * There may be no VBT; and if the BIOS enabled SSC we can
13672          * just keep using it to avoid unnecessary flicker.  Whereas if the
13673          * BIOS isn't using it, don't assume it will work even if the VBT
13674          * indicates as much.
13675          */
13676         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13677                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13678                                                 DREF_SSC1_ENABLE);
13679
13680         intel_modeset_init_hw(dev);
13681
13682         intel_setup_overlay(dev);
13683
13684         /*
13685          * Make sure any fbs we allocated at startup are properly
13686          * pinned & fenced.  When we do the allocation it's too early
13687          * for this.
13688          */
13689         mutex_lock(&dev->struct_mutex);
13690         for_each_crtc(dev, c) {
13691                 obj = intel_fb_obj(c->primary->fb);
13692                 if (obj == NULL)
13693                         continue;
13694
13695                 if (intel_pin_and_fence_fb_obj(c->primary,
13696                                                c->primary->fb,
13697                                                NULL)) {
13698                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13699                                   to_intel_crtc(c)->pipe);
13700                         drm_framebuffer_unreference(c->primary->fb);
13701                         c->primary->fb = NULL;
13702                 }
13703         }
13704         mutex_unlock(&dev->struct_mutex);
13705
13706         intel_backlight_register(dev);
13707 }
13708
13709 void intel_connector_unregister(struct intel_connector *intel_connector)
13710 {
13711         struct drm_connector *connector = &intel_connector->base;
13712
13713         intel_panel_destroy_backlight(connector);
13714         drm_connector_unregister(connector);
13715 }
13716
13717 void intel_modeset_cleanup(struct drm_device *dev)
13718 {
13719         struct drm_i915_private *dev_priv = dev->dev_private;
13720         struct drm_connector *connector;
13721
13722         intel_disable_gt_powersave(dev);
13723
13724         intel_backlight_unregister(dev);
13725
13726         /*
13727          * Interrupts and polling as the first thing to avoid creating havoc.
13728          * Too much stuff here (turning of connectors, ...) would
13729          * experience fancy races otherwise.
13730          */
13731         intel_irq_uninstall(dev_priv);
13732
13733         /*
13734          * Due to the hpd irq storm handling the hotplug work can re-arm the
13735          * poll handlers. Hence disable polling after hpd handling is shut down.
13736          */
13737         drm_kms_helper_poll_fini(dev);
13738
13739         mutex_lock(&dev->struct_mutex);
13740
13741         intel_unregister_dsm_handler();
13742
13743         intel_disable_fbc(dev);
13744
13745         ironlake_teardown_rc6(dev);
13746
13747         mutex_unlock(&dev->struct_mutex);
13748
13749         /* flush any delayed tasks or pending work */
13750         flush_scheduled_work();
13751
13752         /* destroy the backlight and sysfs files before encoders/connectors */
13753         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13754                 struct intel_connector *intel_connector;
13755
13756                 intel_connector = to_intel_connector(connector);
13757                 intel_connector->unregister(intel_connector);
13758         }
13759
13760         drm_mode_config_cleanup(dev);
13761
13762         intel_cleanup_overlay(dev);
13763
13764         mutex_lock(&dev->struct_mutex);
13765         intel_cleanup_gt_powersave(dev);
13766         mutex_unlock(&dev->struct_mutex);
13767 }
13768
13769 /*
13770  * Return which encoder is currently attached for connector.
13771  */
13772 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13773 {
13774         return &intel_attached_encoder(connector)->base;
13775 }
13776
13777 void intel_connector_attach_encoder(struct intel_connector *connector,
13778                                     struct intel_encoder *encoder)
13779 {
13780         connector->encoder = encoder;
13781         drm_mode_connector_attach_encoder(&connector->base,
13782                                           &encoder->base);
13783 }
13784
13785 /*
13786  * set vga decode state - true == enable VGA decode
13787  */
13788 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13789 {
13790         struct drm_i915_private *dev_priv = dev->dev_private;
13791         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13792         u16 gmch_ctrl;
13793
13794         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13795                 DRM_ERROR("failed to read control word\n");
13796                 return -EIO;
13797         }
13798
13799         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13800                 return 0;
13801
13802         if (state)
13803                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13804         else
13805                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13806
13807         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13808                 DRM_ERROR("failed to write control word\n");
13809                 return -EIO;
13810         }
13811
13812         return 0;
13813 }
13814
13815 struct intel_display_error_state {
13816
13817         u32 power_well_driver;
13818
13819         int num_transcoders;
13820
13821         struct intel_cursor_error_state {
13822                 u32 control;
13823                 u32 position;
13824                 u32 base;
13825                 u32 size;
13826         } cursor[I915_MAX_PIPES];
13827
13828         struct intel_pipe_error_state {
13829                 bool power_domain_on;
13830                 u32 source;
13831                 u32 stat;
13832         } pipe[I915_MAX_PIPES];
13833
13834         struct intel_plane_error_state {
13835                 u32 control;
13836                 u32 stride;
13837                 u32 size;
13838                 u32 pos;
13839                 u32 addr;
13840                 u32 surface;
13841                 u32 tile_offset;
13842         } plane[I915_MAX_PIPES];
13843
13844         struct intel_transcoder_error_state {
13845                 bool power_domain_on;
13846                 enum transcoder cpu_transcoder;
13847
13848                 u32 conf;
13849
13850                 u32 htotal;
13851                 u32 hblank;
13852                 u32 hsync;
13853                 u32 vtotal;
13854                 u32 vblank;
13855                 u32 vsync;
13856         } transcoder[4];
13857 };
13858
13859 struct intel_display_error_state *
13860 intel_display_capture_error_state(struct drm_device *dev)
13861 {
13862         struct drm_i915_private *dev_priv = dev->dev_private;
13863         struct intel_display_error_state *error;
13864         int transcoders[] = {
13865                 TRANSCODER_A,
13866                 TRANSCODER_B,
13867                 TRANSCODER_C,
13868                 TRANSCODER_EDP,
13869         };
13870         int i;
13871
13872         if (INTEL_INFO(dev)->num_pipes == 0)
13873                 return NULL;
13874
13875         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13876         if (error == NULL)
13877                 return NULL;
13878
13879         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13880                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13881
13882         for_each_pipe(dev_priv, i) {
13883                 error->pipe[i].power_domain_on =
13884                         __intel_display_power_is_enabled(dev_priv,
13885                                                          POWER_DOMAIN_PIPE(i));
13886                 if (!error->pipe[i].power_domain_on)
13887                         continue;
13888
13889                 error->cursor[i].control = I915_READ(CURCNTR(i));
13890                 error->cursor[i].position = I915_READ(CURPOS(i));
13891                 error->cursor[i].base = I915_READ(CURBASE(i));
13892
13893                 error->plane[i].control = I915_READ(DSPCNTR(i));
13894                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13895                 if (INTEL_INFO(dev)->gen <= 3) {
13896                         error->plane[i].size = I915_READ(DSPSIZE(i));
13897                         error->plane[i].pos = I915_READ(DSPPOS(i));
13898                 }
13899                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13900                         error->plane[i].addr = I915_READ(DSPADDR(i));
13901                 if (INTEL_INFO(dev)->gen >= 4) {
13902                         error->plane[i].surface = I915_READ(DSPSURF(i));
13903                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13904                 }
13905
13906                 error->pipe[i].source = I915_READ(PIPESRC(i));
13907
13908                 if (HAS_GMCH_DISPLAY(dev))
13909                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13910         }
13911
13912         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13913         if (HAS_DDI(dev_priv->dev))
13914                 error->num_transcoders++; /* Account for eDP. */
13915
13916         for (i = 0; i < error->num_transcoders; i++) {
13917                 enum transcoder cpu_transcoder = transcoders[i];
13918
13919                 error->transcoder[i].power_domain_on =
13920                         __intel_display_power_is_enabled(dev_priv,
13921                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13922                 if (!error->transcoder[i].power_domain_on)
13923                         continue;
13924
13925                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13926
13927                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13928                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13929                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13930                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13931                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13932                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13933                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13934         }
13935
13936         return error;
13937 }
13938
13939 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13940
13941 void
13942 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13943                                 struct drm_device *dev,
13944                                 struct intel_display_error_state *error)
13945 {
13946         struct drm_i915_private *dev_priv = dev->dev_private;
13947         int i;
13948
13949         if (!error)
13950                 return;
13951
13952         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13953         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13954                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13955                            error->power_well_driver);
13956         for_each_pipe(dev_priv, i) {
13957                 err_printf(m, "Pipe [%d]:\n", i);
13958                 err_printf(m, "  Power: %s\n",
13959                            error->pipe[i].power_domain_on ? "on" : "off");
13960                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13961                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13962
13963                 err_printf(m, "Plane [%d]:\n", i);
13964                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13965                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13966                 if (INTEL_INFO(dev)->gen <= 3) {
13967                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13968                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13969                 }
13970                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13971                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13972                 if (INTEL_INFO(dev)->gen >= 4) {
13973                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13974                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13975                 }
13976
13977                 err_printf(m, "Cursor [%d]:\n", i);
13978                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13979                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13980                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13981         }
13982
13983         for (i = 0; i < error->num_transcoders; i++) {
13984                 err_printf(m, "CPU transcoder: %c\n",
13985                            transcoder_name(error->transcoder[i].cpu_transcoder));
13986                 err_printf(m, "  Power: %s\n",
13987                            error->transcoder[i].power_domain_on ? "on" : "off");
13988                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13989                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13990                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13991                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13992                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13993                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13994                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13995         }
13996 }
13997
13998 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13999 {
14000         struct intel_crtc *crtc;
14001
14002         for_each_intel_crtc(dev, crtc) {
14003                 struct intel_unpin_work *work;
14004
14005                 spin_lock_irq(&dev->event_lock);
14006
14007                 work = crtc->unpin_work;
14008
14009                 if (work && work->event &&
14010                     work->event->base.file_priv == file) {
14011                         kfree(work->event);
14012                         work->event = NULL;
14013                 }
14014
14015                 spin_unlock_irq(&dev->event_lock);
14016         }
14017 }