Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv);
34
35 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
36 {
37         if (i915.enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
38                 return false;
39
40         if (i915.enable_ppgtt == 1 && full)
41                 return false;
42
43 #ifdef CONFIG_INTEL_IOMMU
44         /* Disable ppgtt on SNB if VT-d is on. */
45         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
46                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
47                 return false;
48         }
49 #endif
50
51         /* Full ppgtt disabled by default for now due to issues. */
52         if (full)
53                 return HAS_PPGTT(dev) && (i915.enable_ppgtt == 2);
54         else
55                 return HAS_ALIASING_PPGTT(dev);
56 }
57
58 #define GEN6_PPGTT_PD_ENTRIES 512
59 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
60 typedef uint64_t gen8_gtt_pte_t;
61 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
62
63 /* PPGTT stuff */
64 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
65 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
66
67 #define GEN6_PDE_VALID                  (1 << 0)
68 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
69 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
70
71 #define GEN6_PTE_VALID                  (1 << 0)
72 #define GEN6_PTE_UNCACHED               (1 << 1)
73 #define HSW_PTE_UNCACHED                (0)
74 #define GEN6_PTE_CACHE_LLC              (2 << 1)
75 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
76 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
77 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
78
79 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
80  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
81  */
82 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
83                                          (((bits) & 0x8) << (11 - 3)))
84 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
85 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
86 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
87 #define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
88 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
89 #define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
90
91 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
92 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
93
94 /* GEN8 legacy style addressis defined as a 3 level page table:
95  * 31:30 | 29:21 | 20:12 |  11:0
96  * PDPE  |  PDE  |  PTE  | offset
97  * The difference as compared to normal x86 3 level page table is the PDPEs are
98  * programmed via register.
99  */
100 #define GEN8_PDPE_SHIFT                 30
101 #define GEN8_PDPE_MASK                  0x3
102 #define GEN8_PDE_SHIFT                  21
103 #define GEN8_PDE_MASK                   0x1ff
104 #define GEN8_PTE_SHIFT                  12
105 #define GEN8_PTE_MASK                   0x1ff
106
107 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
108 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
109 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
110 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
111
112 static void ppgtt_bind_vma(struct i915_vma *vma,
113                            enum i915_cache_level cache_level,
114                            u32 flags);
115 static void ppgtt_unbind_vma(struct i915_vma *vma);
116 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
117
118 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
119                                              enum i915_cache_level level,
120                                              bool valid)
121 {
122         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
123         pte |= addr;
124         if (level != I915_CACHE_NONE)
125                 pte |= PPAT_CACHED_INDEX;
126         else
127                 pte |= PPAT_UNCACHED_INDEX;
128         return pte;
129 }
130
131 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
132                                              dma_addr_t addr,
133                                              enum i915_cache_level level)
134 {
135         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
136         pde |= addr;
137         if (level != I915_CACHE_NONE)
138                 pde |= PPAT_CACHED_PDE_INDEX;
139         else
140                 pde |= PPAT_UNCACHED_INDEX;
141         return pde;
142 }
143
144 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
145                                      enum i915_cache_level level,
146                                      bool valid)
147 {
148         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
149         pte |= GEN6_PTE_ADDR_ENCODE(addr);
150
151         switch (level) {
152         case I915_CACHE_L3_LLC:
153         case I915_CACHE_LLC:
154                 pte |= GEN6_PTE_CACHE_LLC;
155                 break;
156         case I915_CACHE_NONE:
157                 pte |= GEN6_PTE_UNCACHED;
158                 break;
159         default:
160                 WARN_ON(1);
161         }
162
163         return pte;
164 }
165
166 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
167                                      enum i915_cache_level level,
168                                      bool valid)
169 {
170         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
171         pte |= GEN6_PTE_ADDR_ENCODE(addr);
172
173         switch (level) {
174         case I915_CACHE_L3_LLC:
175                 pte |= GEN7_PTE_CACHE_L3_LLC;
176                 break;
177         case I915_CACHE_LLC:
178                 pte |= GEN6_PTE_CACHE_LLC;
179                 break;
180         case I915_CACHE_NONE:
181                 pte |= GEN6_PTE_UNCACHED;
182                 break;
183         default:
184                 WARN_ON(1);
185         }
186
187         return pte;
188 }
189
190 #define BYT_PTE_WRITEABLE               (1 << 1)
191 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
192
193 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
194                                      enum i915_cache_level level,
195                                      bool valid)
196 {
197         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
198         pte |= GEN6_PTE_ADDR_ENCODE(addr);
199
200         /* Mark the page as writeable.  Other platforms don't have a
201          * setting for read-only/writable, so this matches that behavior.
202          */
203         pte |= BYT_PTE_WRITEABLE;
204
205         if (level != I915_CACHE_NONE)
206                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
207
208         return pte;
209 }
210
211 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
212                                      enum i915_cache_level level,
213                                      bool valid)
214 {
215         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
216         pte |= HSW_PTE_ADDR_ENCODE(addr);
217
218         if (level != I915_CACHE_NONE)
219                 pte |= HSW_WB_LLC_AGE3;
220
221         return pte;
222 }
223
224 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
225                                       enum i915_cache_level level,
226                                       bool valid)
227 {
228         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
229         pte |= HSW_PTE_ADDR_ENCODE(addr);
230
231         switch (level) {
232         case I915_CACHE_NONE:
233                 break;
234         case I915_CACHE_WT:
235                 pte |= HSW_WT_ELLC_LLC_AGE3;
236                 break;
237         default:
238                 pte |= HSW_WB_ELLC_LLC_AGE3;
239                 break;
240         }
241
242         return pte;
243 }
244
245 /* Broadwell Page Directory Pointer Descriptors */
246 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
247                            uint64_t val, bool synchronous)
248 {
249         struct drm_i915_private *dev_priv = ring->dev->dev_private;
250         int ret;
251
252         BUG_ON(entry >= 4);
253
254         if (synchronous) {
255                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
256                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
257                 return 0;
258         }
259
260         ret = intel_ring_begin(ring, 6);
261         if (ret)
262                 return ret;
263
264         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
265         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
266         intel_ring_emit(ring, (u32)(val >> 32));
267         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
268         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
269         intel_ring_emit(ring, (u32)(val));
270         intel_ring_advance(ring);
271
272         return 0;
273 }
274
275 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
276                           struct intel_ring_buffer *ring,
277                           bool synchronous)
278 {
279         int i, ret;
280
281         /* bit of a hack to find the actual last used pd */
282         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
283
284         for (i = used_pd - 1; i >= 0; i--) {
285                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
286                 ret = gen8_write_pdp(ring, i, addr, synchronous);
287                 if (ret)
288                         return ret;
289         }
290
291         return 0;
292 }
293
294 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
295                                    uint64_t start,
296                                    uint64_t length,
297                                    bool use_scratch)
298 {
299         struct i915_hw_ppgtt *ppgtt =
300                 container_of(vm, struct i915_hw_ppgtt, base);
301         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
302         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
303         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
304         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
305         unsigned num_entries = length >> PAGE_SHIFT;
306         unsigned last_pte, i;
307
308         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
309                                       I915_CACHE_LLC, use_scratch);
310
311         while (num_entries) {
312                 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
313
314                 last_pte = pte + num_entries;
315                 if (last_pte > GEN8_PTES_PER_PAGE)
316                         last_pte = GEN8_PTES_PER_PAGE;
317
318                 pt_vaddr = kmap_atomic(page_table);
319
320                 for (i = pte; i < last_pte; i++) {
321                         pt_vaddr[i] = scratch_pte;
322                         num_entries--;
323                 }
324
325                 kunmap_atomic(pt_vaddr);
326
327                 pte = 0;
328                 if (++pde == GEN8_PDES_PER_PAGE) {
329                         pdpe++;
330                         pde = 0;
331                 }
332         }
333 }
334
335 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
336                                       struct sg_table *pages,
337                                       uint64_t start,
338                                       enum i915_cache_level cache_level)
339 {
340         struct i915_hw_ppgtt *ppgtt =
341                 container_of(vm, struct i915_hw_ppgtt, base);
342         gen8_gtt_pte_t *pt_vaddr;
343         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
344         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
345         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
346         struct sg_page_iter sg_iter;
347
348         pt_vaddr = NULL;
349
350         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
351                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
352                         break;
353
354                 if (pt_vaddr == NULL)
355                         pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
356
357                 pt_vaddr[pte] =
358                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
359                                         cache_level, true);
360                 if (++pte == GEN8_PTES_PER_PAGE) {
361                         kunmap_atomic(pt_vaddr);
362                         pt_vaddr = NULL;
363                         if (++pde == GEN8_PDES_PER_PAGE) {
364                                 pdpe++;
365                                 pde = 0;
366                         }
367                         pte = 0;
368                 }
369         }
370         if (pt_vaddr)
371                 kunmap_atomic(pt_vaddr);
372 }
373
374 static void gen8_free_page_tables(struct page **pt_pages)
375 {
376         int i;
377
378         if (pt_pages == NULL)
379                 return;
380
381         for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
382                 if (pt_pages[i])
383                         __free_pages(pt_pages[i], 0);
384 }
385
386 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
387 {
388         int i;
389
390         for (i = 0; i < ppgtt->num_pd_pages; i++) {
391                 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
392                 kfree(ppgtt->gen8_pt_pages[i]);
393                 kfree(ppgtt->gen8_pt_dma_addr[i]);
394         }
395
396         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
397 }
398
399 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
400 {
401         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
402         int i, j;
403
404         for (i = 0; i < ppgtt->num_pd_pages; i++) {
405                 /* TODO: In the future we'll support sparse mappings, so this
406                  * will have to change. */
407                 if (!ppgtt->pd_dma_addr[i])
408                         continue;
409
410                 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
411                                PCI_DMA_BIDIRECTIONAL);
412
413                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
414                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
415                         if (addr)
416                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
417                                                PCI_DMA_BIDIRECTIONAL);
418                 }
419         }
420 }
421
422 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
423 {
424         struct i915_hw_ppgtt *ppgtt =
425                 container_of(vm, struct i915_hw_ppgtt, base);
426
427         list_del(&vm->global_link);
428         drm_mm_takedown(&vm->mm);
429
430         gen8_ppgtt_unmap_pages(ppgtt);
431         gen8_ppgtt_free(ppgtt);
432 }
433
434 static struct page **__gen8_alloc_page_tables(void)
435 {
436         struct page **pt_pages;
437         int i;
438
439         pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
440         if (!pt_pages)
441                 return ERR_PTR(-ENOMEM);
442
443         for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
444                 pt_pages[i] = alloc_page(GFP_KERNEL);
445                 if (!pt_pages[i])
446                         goto bail;
447         }
448
449         return pt_pages;
450
451 bail:
452         gen8_free_page_tables(pt_pages);
453         kfree(pt_pages);
454         return ERR_PTR(-ENOMEM);
455 }
456
457 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
458                                            const int max_pdp)
459 {
460         struct page **pt_pages[GEN8_LEGACY_PDPS];
461         int i, ret;
462
463         for (i = 0; i < max_pdp; i++) {
464                 pt_pages[i] = __gen8_alloc_page_tables();
465                 if (IS_ERR(pt_pages[i])) {
466                         ret = PTR_ERR(pt_pages[i]);
467                         goto unwind_out;
468                 }
469         }
470
471         /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
472          * "atomic" - for cleanup purposes.
473          */
474         for (i = 0; i < max_pdp; i++)
475                 ppgtt->gen8_pt_pages[i] = pt_pages[i];
476
477         return 0;
478
479 unwind_out:
480         while (i--) {
481                 gen8_free_page_tables(pt_pages[i]);
482                 kfree(pt_pages[i]);
483         }
484
485         return ret;
486 }
487
488 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
489 {
490         int i;
491
492         for (i = 0; i < ppgtt->num_pd_pages; i++) {
493                 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
494                                                      sizeof(dma_addr_t),
495                                                      GFP_KERNEL);
496                 if (!ppgtt->gen8_pt_dma_addr[i])
497                         return -ENOMEM;
498         }
499
500         return 0;
501 }
502
503 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
504                                                 const int max_pdp)
505 {
506         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
507         if (!ppgtt->pd_pages)
508                 return -ENOMEM;
509
510         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
511         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
512
513         return 0;
514 }
515
516 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
517                             const int max_pdp)
518 {
519         int ret;
520
521         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
522         if (ret)
523                 return ret;
524
525         ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
526         if (ret) {
527                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
528                 return ret;
529         }
530
531         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
532
533         ret = gen8_ppgtt_allocate_dma(ppgtt);
534         if (ret)
535                 gen8_ppgtt_free(ppgtt);
536
537         return ret;
538 }
539
540 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
541                                              const int pd)
542 {
543         dma_addr_t pd_addr;
544         int ret;
545
546         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
547                                &ppgtt->pd_pages[pd], 0,
548                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
549
550         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
551         if (ret)
552                 return ret;
553
554         ppgtt->pd_dma_addr[pd] = pd_addr;
555
556         return 0;
557 }
558
559 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
560                                         const int pd,
561                                         const int pt)
562 {
563         dma_addr_t pt_addr;
564         struct page *p;
565         int ret;
566
567         p = ppgtt->gen8_pt_pages[pd][pt];
568         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
569                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
570         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
571         if (ret)
572                 return ret;
573
574         ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
575
576         return 0;
577 }
578
579 /**
580  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
581  * with a net effect resembling a 2-level page table in normal x86 terms. Each
582  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
583  * space.
584  *
585  * FIXME: split allocation into smaller pieces. For now we only ever do this
586  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
587  * TODO: Do something with the size parameter
588  */
589 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
590 {
591         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
592         const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
593         int i, j, ret;
594
595         if (size % (1<<30))
596                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
597
598         /* 1. Do all our allocations for page directories and page tables. */
599         ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
600         if (ret)
601                 return ret;
602
603         /*
604          * 2. Create DMA mappings for the page directories and page tables.
605          */
606         for (i = 0; i < max_pdp; i++) {
607                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
608                 if (ret)
609                         goto bail;
610
611                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
612                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
613                         if (ret)
614                                 goto bail;
615                 }
616         }
617
618         /*
619          * 3. Map all the page directory entires to point to the page tables
620          * we've allocated.
621          *
622          * For now, the PPGTT helper functions all require that the PDEs are
623          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
624          * will never need to touch the PDEs again.
625          */
626         for (i = 0; i < max_pdp; i++) {
627                 gen8_ppgtt_pde_t *pd_vaddr;
628                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
629                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
630                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
631                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
632                                                       I915_CACHE_LLC);
633                 }
634                 kunmap_atomic(pd_vaddr);
635         }
636
637         ppgtt->enable = gen8_ppgtt_enable;
638         ppgtt->switch_mm = gen8_mm_switch;
639         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
640         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
641         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
642         ppgtt->base.start = 0;
643         ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
644
645         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
646
647         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
648                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
649         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
650                          ppgtt->num_pd_entries,
651                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
652         return 0;
653
654 bail:
655         gen8_ppgtt_unmap_pages(ppgtt);
656         gen8_ppgtt_free(ppgtt);
657         return ret;
658 }
659
660 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
661 {
662         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
663         struct i915_address_space *vm = &ppgtt->base;
664         gen6_gtt_pte_t __iomem *pd_addr;
665         gen6_gtt_pte_t scratch_pte;
666         uint32_t pd_entry;
667         int pte, pde;
668
669         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
670
671         pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
672                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
673
674         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
675                    ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
676         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
677                 u32 expected;
678                 gen6_gtt_pte_t *pt_vaddr;
679                 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
680                 pd_entry = readl(pd_addr + pde);
681                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
682
683                 if (pd_entry != expected)
684                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
685                                    pde,
686                                    pd_entry,
687                                    expected);
688                 seq_printf(m, "\tPDE: %x\n", pd_entry);
689
690                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
691                 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
692                         unsigned long va =
693                                 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
694                                 (pte * PAGE_SIZE);
695                         int i;
696                         bool found = false;
697                         for (i = 0; i < 4; i++)
698                                 if (pt_vaddr[pte + i] != scratch_pte)
699                                         found = true;
700                         if (!found)
701                                 continue;
702
703                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
704                         for (i = 0; i < 4; i++) {
705                                 if (pt_vaddr[pte + i] != scratch_pte)
706                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
707                                 else
708                                         seq_puts(m, "  SCRATCH ");
709                         }
710                         seq_puts(m, "\n");
711                 }
712                 kunmap_atomic(pt_vaddr);
713         }
714 }
715
716 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
717 {
718         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
719         gen6_gtt_pte_t __iomem *pd_addr;
720         uint32_t pd_entry;
721         int i;
722
723         WARN_ON(ppgtt->pd_offset & 0x3f);
724         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
725                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
726         for (i = 0; i < ppgtt->num_pd_entries; i++) {
727                 dma_addr_t pt_addr;
728
729                 pt_addr = ppgtt->pt_dma_addr[i];
730                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
731                 pd_entry |= GEN6_PDE_VALID;
732
733                 writel(pd_entry, pd_addr + i);
734         }
735         readl(pd_addr);
736 }
737
738 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
739 {
740         BUG_ON(ppgtt->pd_offset & 0x3f);
741
742         return (ppgtt->pd_offset / 64) << 16;
743 }
744
745 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
746                          struct intel_ring_buffer *ring,
747                          bool synchronous)
748 {
749         struct drm_device *dev = ppgtt->base.dev;
750         struct drm_i915_private *dev_priv = dev->dev_private;
751         int ret;
752
753         /* If we're in reset, we can assume the GPU is sufficiently idle to
754          * manually frob these bits. Ideally we could use the ring functions,
755          * except our error handling makes it quite difficult (can't use
756          * intel_ring_begin, ring->flush, or intel_ring_advance)
757          *
758          * FIXME: We should try not to special case reset
759          */
760         if (synchronous ||
761             i915_reset_in_progress(&dev_priv->gpu_error)) {
762                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
763                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
764                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
765                 POSTING_READ(RING_PP_DIR_BASE(ring));
766                 return 0;
767         }
768
769         /* NB: TLBs must be flushed and invalidated before a switch */
770         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
771         if (ret)
772                 return ret;
773
774         ret = intel_ring_begin(ring, 6);
775         if (ret)
776                 return ret;
777
778         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
779         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
780         intel_ring_emit(ring, PP_DIR_DCLV_2G);
781         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
782         intel_ring_emit(ring, get_pd_offset(ppgtt));
783         intel_ring_emit(ring, MI_NOOP);
784         intel_ring_advance(ring);
785
786         return 0;
787 }
788
789 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
790                           struct intel_ring_buffer *ring,
791                           bool synchronous)
792 {
793         struct drm_device *dev = ppgtt->base.dev;
794         struct drm_i915_private *dev_priv = dev->dev_private;
795         int ret;
796
797         /* If we're in reset, we can assume the GPU is sufficiently idle to
798          * manually frob these bits. Ideally we could use the ring functions,
799          * except our error handling makes it quite difficult (can't use
800          * intel_ring_begin, ring->flush, or intel_ring_advance)
801          *
802          * FIXME: We should try not to special case reset
803          */
804         if (synchronous ||
805             i915_reset_in_progress(&dev_priv->gpu_error)) {
806                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
807                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
808                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
809                 POSTING_READ(RING_PP_DIR_BASE(ring));
810                 return 0;
811         }
812
813         /* NB: TLBs must be flushed and invalidated before a switch */
814         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
815         if (ret)
816                 return ret;
817
818         ret = intel_ring_begin(ring, 6);
819         if (ret)
820                 return ret;
821
822         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
823         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
824         intel_ring_emit(ring, PP_DIR_DCLV_2G);
825         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
826         intel_ring_emit(ring, get_pd_offset(ppgtt));
827         intel_ring_emit(ring, MI_NOOP);
828         intel_ring_advance(ring);
829
830         /* XXX: RCS is the only one to auto invalidate the TLBs? */
831         if (ring->id != RCS) {
832                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
833                 if (ret)
834                         return ret;
835         }
836
837         return 0;
838 }
839
840 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
841                           struct intel_ring_buffer *ring,
842                           bool synchronous)
843 {
844         struct drm_device *dev = ppgtt->base.dev;
845         struct drm_i915_private *dev_priv = dev->dev_private;
846
847         if (!synchronous)
848                 return 0;
849
850         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
851         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
852
853         POSTING_READ(RING_PP_DIR_DCLV(ring));
854
855         return 0;
856 }
857
858 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
859 {
860         struct drm_device *dev = ppgtt->base.dev;
861         struct drm_i915_private *dev_priv = dev->dev_private;
862         struct intel_ring_buffer *ring;
863         int j, ret;
864
865         for_each_ring(ring, dev_priv, j) {
866                 I915_WRITE(RING_MODE_GEN7(ring),
867                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
868
869                 /* We promise to do a switch later with FULL PPGTT. If this is
870                  * aliasing, this is the one and only switch we'll do */
871                 if (USES_FULL_PPGTT(dev))
872                         continue;
873
874                 ret = ppgtt->switch_mm(ppgtt, ring, true);
875                 if (ret)
876                         goto err_out;
877         }
878
879         return 0;
880
881 err_out:
882         for_each_ring(ring, dev_priv, j)
883                 I915_WRITE(RING_MODE_GEN7(ring),
884                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
885         return ret;
886 }
887
888 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
889 {
890         struct drm_device *dev = ppgtt->base.dev;
891         struct drm_i915_private *dev_priv = dev->dev_private;
892         struct intel_ring_buffer *ring;
893         uint32_t ecochk, ecobits;
894         int i;
895
896         ecobits = I915_READ(GAC_ECO_BITS);
897         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
898
899         ecochk = I915_READ(GAM_ECOCHK);
900         if (IS_HASWELL(dev)) {
901                 ecochk |= ECOCHK_PPGTT_WB_HSW;
902         } else {
903                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
904                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
905         }
906         I915_WRITE(GAM_ECOCHK, ecochk);
907
908         for_each_ring(ring, dev_priv, i) {
909                 int ret;
910                 /* GFX_MODE is per-ring on gen7+ */
911                 I915_WRITE(RING_MODE_GEN7(ring),
912                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
913
914                 /* We promise to do a switch later with FULL PPGTT. If this is
915                  * aliasing, this is the one and only switch we'll do */
916                 if (USES_FULL_PPGTT(dev))
917                         continue;
918
919                 ret = ppgtt->switch_mm(ppgtt, ring, true);
920                 if (ret)
921                         return ret;
922         }
923
924         return 0;
925 }
926
927 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
928 {
929         struct drm_device *dev = ppgtt->base.dev;
930         struct drm_i915_private *dev_priv = dev->dev_private;
931         struct intel_ring_buffer *ring;
932         uint32_t ecochk, gab_ctl, ecobits;
933         int i;
934
935         ecobits = I915_READ(GAC_ECO_BITS);
936         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
937                    ECOBITS_PPGTT_CACHE64B);
938
939         gab_ctl = I915_READ(GAB_CTL);
940         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
941
942         ecochk = I915_READ(GAM_ECOCHK);
943         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
944
945         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
946
947         for_each_ring(ring, dev_priv, i) {
948                 int ret = ppgtt->switch_mm(ppgtt, ring, true);
949                 if (ret)
950                         return ret;
951         }
952
953         return 0;
954 }
955
956 /* PPGTT support for Sandybdrige/Gen6 and later */
957 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
958                                    uint64_t start,
959                                    uint64_t length,
960                                    bool use_scratch)
961 {
962         struct i915_hw_ppgtt *ppgtt =
963                 container_of(vm, struct i915_hw_ppgtt, base);
964         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
965         unsigned first_entry = start >> PAGE_SHIFT;
966         unsigned num_entries = length >> PAGE_SHIFT;
967         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
968         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
969         unsigned last_pte, i;
970
971         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
972
973         while (num_entries) {
974                 last_pte = first_pte + num_entries;
975                 if (last_pte > I915_PPGTT_PT_ENTRIES)
976                         last_pte = I915_PPGTT_PT_ENTRIES;
977
978                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
979
980                 for (i = first_pte; i < last_pte; i++)
981                         pt_vaddr[i] = scratch_pte;
982
983                 kunmap_atomic(pt_vaddr);
984
985                 num_entries -= last_pte - first_pte;
986                 first_pte = 0;
987                 act_pt++;
988         }
989 }
990
991 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
992                                       struct sg_table *pages,
993                                       uint64_t start,
994                                       enum i915_cache_level cache_level)
995 {
996         struct i915_hw_ppgtt *ppgtt =
997                 container_of(vm, struct i915_hw_ppgtt, base);
998         gen6_gtt_pte_t *pt_vaddr;
999         unsigned first_entry = start >> PAGE_SHIFT;
1000         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
1001         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
1002         struct sg_page_iter sg_iter;
1003
1004         pt_vaddr = NULL;
1005         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1006                 if (pt_vaddr == NULL)
1007                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
1008
1009                 pt_vaddr[act_pte] =
1010                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1011                                        cache_level, true);
1012                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
1013                         kunmap_atomic(pt_vaddr);
1014                         pt_vaddr = NULL;
1015                         act_pt++;
1016                         act_pte = 0;
1017                 }
1018         }
1019         if (pt_vaddr)
1020                 kunmap_atomic(pt_vaddr);
1021 }
1022
1023 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
1024 {
1025         int i;
1026
1027         if (ppgtt->pt_dma_addr) {
1028                 for (i = 0; i < ppgtt->num_pd_entries; i++)
1029                         pci_unmap_page(ppgtt->base.dev->pdev,
1030                                        ppgtt->pt_dma_addr[i],
1031                                        4096, PCI_DMA_BIDIRECTIONAL);
1032         }
1033 }
1034
1035 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1036 {
1037         int i;
1038
1039         kfree(ppgtt->pt_dma_addr);
1040         for (i = 0; i < ppgtt->num_pd_entries; i++)
1041                 __free_page(ppgtt->pt_pages[i]);
1042         kfree(ppgtt->pt_pages);
1043 }
1044
1045 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1046 {
1047         struct i915_hw_ppgtt *ppgtt =
1048                 container_of(vm, struct i915_hw_ppgtt, base);
1049
1050         list_del(&vm->global_link);
1051         drm_mm_takedown(&ppgtt->base.mm);
1052         drm_mm_remove_node(&ppgtt->node);
1053
1054         gen6_ppgtt_unmap_pages(ppgtt);
1055         gen6_ppgtt_free(ppgtt);
1056 }
1057
1058 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1059 {
1060 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
1061 #define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
1062         struct drm_device *dev = ppgtt->base.dev;
1063         struct drm_i915_private *dev_priv = dev->dev_private;
1064         bool retried = false;
1065         int ret;
1066
1067         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1068          * allocator works in address space sizes, so it's multiplied by page
1069          * size. We allocate at the top of the GTT to avoid fragmentation.
1070          */
1071         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1072 alloc:
1073         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1074                                                   &ppgtt->node, GEN6_PD_SIZE,
1075                                                   GEN6_PD_ALIGN, 0,
1076                                                   0, dev_priv->gtt.base.total,
1077                                                   DRM_MM_SEARCH_DEFAULT,
1078                                                   DRM_MM_CREATE_DEFAULT);
1079         if (ret == -ENOSPC && !retried) {
1080                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1081                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1082                                                I915_CACHE_NONE, 0);
1083                 if (ret)
1084                         return ret;
1085
1086                 retried = true;
1087                 goto alloc;
1088         }
1089
1090         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1091                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1092
1093         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1094         return ret;
1095 }
1096
1097 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1098 {
1099         int i;
1100
1101         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1102                                   GFP_KERNEL);
1103
1104         if (!ppgtt->pt_pages)
1105                 return -ENOMEM;
1106
1107         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1108                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1109                 if (!ppgtt->pt_pages[i]) {
1110                         gen6_ppgtt_free(ppgtt);
1111                         return -ENOMEM;
1112                 }
1113         }
1114
1115         return 0;
1116 }
1117
1118 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1119 {
1120         int ret;
1121
1122         ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1123         if (ret)
1124                 return ret;
1125
1126         ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1127         if (ret) {
1128                 drm_mm_remove_node(&ppgtt->node);
1129                 return ret;
1130         }
1131
1132         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1133                                      GFP_KERNEL);
1134         if (!ppgtt->pt_dma_addr) {
1135                 drm_mm_remove_node(&ppgtt->node);
1136                 gen6_ppgtt_free(ppgtt);
1137                 return -ENOMEM;
1138         }
1139
1140         return 0;
1141 }
1142
1143 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1144 {
1145         struct drm_device *dev = ppgtt->base.dev;
1146         int i;
1147
1148         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1149                 dma_addr_t pt_addr;
1150
1151                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1152                                        PCI_DMA_BIDIRECTIONAL);
1153
1154                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1155                         gen6_ppgtt_unmap_pages(ppgtt);
1156                         return -EIO;
1157                 }
1158
1159                 ppgtt->pt_dma_addr[i] = pt_addr;
1160         }
1161
1162         return 0;
1163 }
1164
1165 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1166 {
1167         struct drm_device *dev = ppgtt->base.dev;
1168         struct drm_i915_private *dev_priv = dev->dev_private;
1169         int ret;
1170
1171         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1172         if (IS_GEN6(dev)) {
1173                 ppgtt->enable = gen6_ppgtt_enable;
1174                 ppgtt->switch_mm = gen6_mm_switch;
1175         } else if (IS_HASWELL(dev)) {
1176                 ppgtt->enable = gen7_ppgtt_enable;
1177                 ppgtt->switch_mm = hsw_mm_switch;
1178         } else if (IS_GEN7(dev)) {
1179                 ppgtt->enable = gen7_ppgtt_enable;
1180                 ppgtt->switch_mm = gen7_mm_switch;
1181         } else
1182                 BUG();
1183
1184         ret = gen6_ppgtt_alloc(ppgtt);
1185         if (ret)
1186                 return ret;
1187
1188         ret = gen6_ppgtt_setup_page_tables(ppgtt);
1189         if (ret) {
1190                 gen6_ppgtt_free(ppgtt);
1191                 return ret;
1192         }
1193
1194         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1195         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1196         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1197         ppgtt->base.start = 0;
1198         ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1199         ppgtt->debug_dump = gen6_dump_ppgtt;
1200
1201         ppgtt->pd_offset =
1202                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1203
1204         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1205
1206         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1207                          ppgtt->node.size >> 20,
1208                          ppgtt->node.start / PAGE_SIZE);
1209
1210         return 0;
1211 }
1212
1213 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1214 {
1215         struct drm_i915_private *dev_priv = dev->dev_private;
1216         int ret = 0;
1217
1218         ppgtt->base.dev = dev;
1219         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1220
1221         if (INTEL_INFO(dev)->gen < 8)
1222                 ret = gen6_ppgtt_init(ppgtt);
1223         else if (IS_GEN8(dev))
1224                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1225         else
1226                 BUG();
1227
1228         if (!ret) {
1229                 struct drm_i915_private *dev_priv = dev->dev_private;
1230                 kref_init(&ppgtt->ref);
1231                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1232                             ppgtt->base.total);
1233                 i915_init_vm(dev_priv, &ppgtt->base);
1234                 if (INTEL_INFO(dev)->gen < 8) {
1235                         gen6_write_pdes(ppgtt);
1236                         DRM_DEBUG("Adding PPGTT at offset %x\n",
1237                                   ppgtt->pd_offset << 10);
1238                 }
1239         }
1240
1241         return ret;
1242 }
1243
1244 static void
1245 ppgtt_bind_vma(struct i915_vma *vma,
1246                enum i915_cache_level cache_level,
1247                u32 flags)
1248 {
1249         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1250                                 cache_level);
1251 }
1252
1253 static void ppgtt_unbind_vma(struct i915_vma *vma)
1254 {
1255         vma->vm->clear_range(vma->vm,
1256                              vma->node.start,
1257                              vma->obj->base.size,
1258                              true);
1259 }
1260
1261 extern int intel_iommu_gfx_mapped;
1262 /* Certain Gen5 chipsets require require idling the GPU before
1263  * unmapping anything from the GTT when VT-d is enabled.
1264  */
1265 static inline bool needs_idle_maps(struct drm_device *dev)
1266 {
1267 #ifdef CONFIG_INTEL_IOMMU
1268         /* Query intel_iommu to see if we need the workaround. Presumably that
1269          * was loaded first.
1270          */
1271         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1272                 return true;
1273 #endif
1274         return false;
1275 }
1276
1277 static bool do_idling(struct drm_i915_private *dev_priv)
1278 {
1279         bool ret = dev_priv->mm.interruptible;
1280
1281         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1282                 dev_priv->mm.interruptible = false;
1283                 if (i915_gpu_idle(dev_priv->dev)) {
1284                         DRM_ERROR("Couldn't idle GPU\n");
1285                         /* Wait a bit, in hopes it avoids the hang */
1286                         udelay(10);
1287                 }
1288         }
1289
1290         return ret;
1291 }
1292
1293 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1294 {
1295         if (unlikely(dev_priv->gtt.do_idle_maps))
1296                 dev_priv->mm.interruptible = interruptible;
1297 }
1298
1299 void i915_check_and_clear_faults(struct drm_device *dev)
1300 {
1301         struct drm_i915_private *dev_priv = dev->dev_private;
1302         struct intel_ring_buffer *ring;
1303         int i;
1304
1305         if (INTEL_INFO(dev)->gen < 6)
1306                 return;
1307
1308         for_each_ring(ring, dev_priv, i) {
1309                 u32 fault_reg;
1310                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1311                 if (fault_reg & RING_FAULT_VALID) {
1312                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1313                                          "\tAddr: 0x%08lx\\n"
1314                                          "\tAddress space: %s\n"
1315                                          "\tSource ID: %d\n"
1316                                          "\tType: %d\n",
1317                                          fault_reg & PAGE_MASK,
1318                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1319                                          RING_FAULT_SRCID(fault_reg),
1320                                          RING_FAULT_FAULT_TYPE(fault_reg));
1321                         I915_WRITE(RING_FAULT_REG(ring),
1322                                    fault_reg & ~RING_FAULT_VALID);
1323                 }
1324         }
1325         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1326 }
1327
1328 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1329 {
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331
1332         /* Don't bother messing with faults pre GEN6 as we have little
1333          * documentation supporting that it's a good idea.
1334          */
1335         if (INTEL_INFO(dev)->gen < 6)
1336                 return;
1337
1338         i915_check_and_clear_faults(dev);
1339
1340         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1341                                        dev_priv->gtt.base.start,
1342                                        dev_priv->gtt.base.total,
1343                                        true);
1344 }
1345
1346 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1347 {
1348         struct drm_i915_private *dev_priv = dev->dev_private;
1349         struct drm_i915_gem_object *obj;
1350         struct i915_address_space *vm;
1351
1352         i915_check_and_clear_faults(dev);
1353
1354         /* First fill our portion of the GTT with scratch pages */
1355         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1356                                        dev_priv->gtt.base.start,
1357                                        dev_priv->gtt.base.total,
1358                                        true);
1359
1360         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1361                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1362                                                            &dev_priv->gtt.base);
1363                 if (!vma)
1364                         continue;
1365
1366                 i915_gem_clflush_object(obj, obj->pin_display);
1367                 /* The bind_vma code tries to be smart about tracking mappings.
1368                  * Unfortunately above, we've just wiped out the mappings
1369                  * without telling our object about it. So we need to fake it.
1370                  */
1371                 obj->has_global_gtt_mapping = 0;
1372                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1373         }
1374
1375
1376         if (INTEL_INFO(dev)->gen >= 8) {
1377                 gen8_setup_private_ppat(dev_priv);
1378                 return;
1379         }
1380
1381         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1382                 /* TODO: Perhaps it shouldn't be gen6 specific */
1383                 if (i915_is_ggtt(vm)) {
1384                         if (dev_priv->mm.aliasing_ppgtt)
1385                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1386                         continue;
1387                 }
1388
1389                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1390         }
1391
1392         i915_gem_chipset_flush(dev);
1393 }
1394
1395 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1396 {
1397         if (obj->has_dma_mapping)
1398                 return 0;
1399
1400         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1401                         obj->pages->sgl, obj->pages->nents,
1402                         PCI_DMA_BIDIRECTIONAL))
1403                 return -ENOSPC;
1404
1405         return 0;
1406 }
1407
1408 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1409 {
1410 #ifdef writeq
1411         writeq(pte, addr);
1412 #else
1413         iowrite32((u32)pte, addr);
1414         iowrite32(pte >> 32, addr + 4);
1415 #endif
1416 }
1417
1418 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1419                                      struct sg_table *st,
1420                                      uint64_t start,
1421                                      enum i915_cache_level level)
1422 {
1423         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1424         unsigned first_entry = start >> PAGE_SHIFT;
1425         gen8_gtt_pte_t __iomem *gtt_entries =
1426                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1427         int i = 0;
1428         struct sg_page_iter sg_iter;
1429         dma_addr_t addr;
1430
1431         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1432                 addr = sg_dma_address(sg_iter.sg) +
1433                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1434                 gen8_set_pte(&gtt_entries[i],
1435                              gen8_pte_encode(addr, level, true));
1436                 i++;
1437         }
1438
1439         /*
1440          * XXX: This serves as a posting read to make sure that the PTE has
1441          * actually been updated. There is some concern that even though
1442          * registers and PTEs are within the same BAR that they are potentially
1443          * of NUMA access patterns. Therefore, even with the way we assume
1444          * hardware should work, we must keep this posting read for paranoia.
1445          */
1446         if (i != 0)
1447                 WARN_ON(readq(&gtt_entries[i-1])
1448                         != gen8_pte_encode(addr, level, true));
1449
1450         /* This next bit makes the above posting read even more important. We
1451          * want to flush the TLBs only after we're certain all the PTE updates
1452          * have finished.
1453          */
1454         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1455         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1456 }
1457
1458 /*
1459  * Binds an object into the global gtt with the specified cache level. The object
1460  * will be accessible to the GPU via commands whose operands reference offsets
1461  * within the global GTT as well as accessible by the GPU through the GMADR
1462  * mapped BAR (dev_priv->mm.gtt->gtt).
1463  */
1464 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1465                                      struct sg_table *st,
1466                                      uint64_t start,
1467                                      enum i915_cache_level level)
1468 {
1469         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1470         unsigned first_entry = start >> PAGE_SHIFT;
1471         gen6_gtt_pte_t __iomem *gtt_entries =
1472                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1473         int i = 0;
1474         struct sg_page_iter sg_iter;
1475         dma_addr_t addr;
1476
1477         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1478                 addr = sg_page_iter_dma_address(&sg_iter);
1479                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1480                 i++;
1481         }
1482
1483         /* XXX: This serves as a posting read to make sure that the PTE has
1484          * actually been updated. There is some concern that even though
1485          * registers and PTEs are within the same BAR that they are potentially
1486          * of NUMA access patterns. Therefore, even with the way we assume
1487          * hardware should work, we must keep this posting read for paranoia.
1488          */
1489         if (i != 0)
1490                 WARN_ON(readl(&gtt_entries[i-1]) !=
1491                         vm->pte_encode(addr, level, true));
1492
1493         /* This next bit makes the above posting read even more important. We
1494          * want to flush the TLBs only after we're certain all the PTE updates
1495          * have finished.
1496          */
1497         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1498         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1499 }
1500
1501 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1502                                   uint64_t start,
1503                                   uint64_t length,
1504                                   bool use_scratch)
1505 {
1506         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1507         unsigned first_entry = start >> PAGE_SHIFT;
1508         unsigned num_entries = length >> PAGE_SHIFT;
1509         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1510                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1511         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1512         int i;
1513
1514         if (WARN(num_entries > max_entries,
1515                  "First entry = %d; Num entries = %d (max=%d)\n",
1516                  first_entry, num_entries, max_entries))
1517                 num_entries = max_entries;
1518
1519         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1520                                       I915_CACHE_LLC,
1521                                       use_scratch);
1522         for (i = 0; i < num_entries; i++)
1523                 gen8_set_pte(&gtt_base[i], scratch_pte);
1524         readl(gtt_base);
1525 }
1526
1527 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1528                                   uint64_t start,
1529                                   uint64_t length,
1530                                   bool use_scratch)
1531 {
1532         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1533         unsigned first_entry = start >> PAGE_SHIFT;
1534         unsigned num_entries = length >> PAGE_SHIFT;
1535         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1536                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1537         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1538         int i;
1539
1540         if (WARN(num_entries > max_entries,
1541                  "First entry = %d; Num entries = %d (max=%d)\n",
1542                  first_entry, num_entries, max_entries))
1543                 num_entries = max_entries;
1544
1545         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1546
1547         for (i = 0; i < num_entries; i++)
1548                 iowrite32(scratch_pte, &gtt_base[i]);
1549         readl(gtt_base);
1550 }
1551
1552
1553 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1554                                enum i915_cache_level cache_level,
1555                                u32 unused)
1556 {
1557         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1558         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1559                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1560
1561         BUG_ON(!i915_is_ggtt(vma->vm));
1562         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1563         vma->obj->has_global_gtt_mapping = 1;
1564 }
1565
1566 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1567                                   uint64_t start,
1568                                   uint64_t length,
1569                                   bool unused)
1570 {
1571         unsigned first_entry = start >> PAGE_SHIFT;
1572         unsigned num_entries = length >> PAGE_SHIFT;
1573         intel_gtt_clear_range(first_entry, num_entries);
1574 }
1575
1576 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1577 {
1578         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1579         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1580
1581         BUG_ON(!i915_is_ggtt(vma->vm));
1582         vma->obj->has_global_gtt_mapping = 0;
1583         intel_gtt_clear_range(first, size);
1584 }
1585
1586 static void ggtt_bind_vma(struct i915_vma *vma,
1587                           enum i915_cache_level cache_level,
1588                           u32 flags)
1589 {
1590         struct drm_device *dev = vma->vm->dev;
1591         struct drm_i915_private *dev_priv = dev->dev_private;
1592         struct drm_i915_gem_object *obj = vma->obj;
1593
1594         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1595          * or we have a global mapping already but the cacheability flags have
1596          * changed, set the global PTEs.
1597          *
1598          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1599          * instead if none of the above hold true.
1600          *
1601          * NB: A global mapping should only be needed for special regions like
1602          * "gtt mappable", SNB errata, or if specified via special execbuf
1603          * flags. At all other times, the GPU will use the aliasing PPGTT.
1604          */
1605         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1606                 if (!obj->has_global_gtt_mapping ||
1607                     (cache_level != obj->cache_level)) {
1608                         vma->vm->insert_entries(vma->vm, obj->pages,
1609                                                 vma->node.start,
1610                                                 cache_level);
1611                         obj->has_global_gtt_mapping = 1;
1612                 }
1613         }
1614
1615         if (dev_priv->mm.aliasing_ppgtt &&
1616             (!obj->has_aliasing_ppgtt_mapping ||
1617              (cache_level != obj->cache_level))) {
1618                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1619                 appgtt->base.insert_entries(&appgtt->base,
1620                                             vma->obj->pages,
1621                                             vma->node.start,
1622                                             cache_level);
1623                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1624         }
1625 }
1626
1627 static void ggtt_unbind_vma(struct i915_vma *vma)
1628 {
1629         struct drm_device *dev = vma->vm->dev;
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         struct drm_i915_gem_object *obj = vma->obj;
1632
1633         if (obj->has_global_gtt_mapping) {
1634                 vma->vm->clear_range(vma->vm,
1635                                      vma->node.start,
1636                                      obj->base.size,
1637                                      true);
1638                 obj->has_global_gtt_mapping = 0;
1639         }
1640
1641         if (obj->has_aliasing_ppgtt_mapping) {
1642                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1643                 appgtt->base.clear_range(&appgtt->base,
1644                                          vma->node.start,
1645                                          obj->base.size,
1646                                          true);
1647                 obj->has_aliasing_ppgtt_mapping = 0;
1648         }
1649 }
1650
1651 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1652 {
1653         struct drm_device *dev = obj->base.dev;
1654         struct drm_i915_private *dev_priv = dev->dev_private;
1655         bool interruptible;
1656
1657         interruptible = do_idling(dev_priv);
1658
1659         if (!obj->has_dma_mapping)
1660                 dma_unmap_sg(&dev->pdev->dev,
1661                              obj->pages->sgl, obj->pages->nents,
1662                              PCI_DMA_BIDIRECTIONAL);
1663
1664         undo_idling(dev_priv, interruptible);
1665 }
1666
1667 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1668                                   unsigned long color,
1669                                   unsigned long *start,
1670                                   unsigned long *end)
1671 {
1672         if (node->color != color)
1673                 *start += 4096;
1674
1675         if (!list_empty(&node->node_list)) {
1676                 node = list_entry(node->node_list.next,
1677                                   struct drm_mm_node,
1678                                   node_list);
1679                 if (node->allocated && node->color != color)
1680                         *end -= 4096;
1681         }
1682 }
1683
1684 void i915_gem_setup_global_gtt(struct drm_device *dev,
1685                                unsigned long start,
1686                                unsigned long mappable_end,
1687                                unsigned long end)
1688 {
1689         /* Let GEM Manage all of the aperture.
1690          *
1691          * However, leave one page at the end still bound to the scratch page.
1692          * There are a number of places where the hardware apparently prefetches
1693          * past the end of the object, and we've seen multiple hangs with the
1694          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1695          * aperture.  One page should be enough to keep any prefetching inside
1696          * of the aperture.
1697          */
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1700         struct drm_mm_node *entry;
1701         struct drm_i915_gem_object *obj;
1702         unsigned long hole_start, hole_end;
1703
1704         BUG_ON(mappable_end > end);
1705
1706         /* Subtract the guard page ... */
1707         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1708         if (!HAS_LLC(dev))
1709                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1710
1711         /* Mark any preallocated objects as occupied */
1712         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1713                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1714                 int ret;
1715                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1716                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1717
1718                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1719                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1720                 if (ret)
1721                         DRM_DEBUG_KMS("Reservation failed\n");
1722                 obj->has_global_gtt_mapping = 1;
1723         }
1724
1725         dev_priv->gtt.base.start = start;
1726         dev_priv->gtt.base.total = end - start;
1727
1728         /* Clear any non-preallocated blocks */
1729         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1730                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1731                               hole_start, hole_end);
1732                 ggtt_vm->clear_range(ggtt_vm, hole_start,
1733                                      hole_end - hole_start, true);
1734         }
1735
1736         /* And finally clear the reserved guard page */
1737         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1738 }
1739
1740 void i915_gem_init_global_gtt(struct drm_device *dev)
1741 {
1742         struct drm_i915_private *dev_priv = dev->dev_private;
1743         unsigned long gtt_size, mappable_size;
1744
1745         gtt_size = dev_priv->gtt.base.total;
1746         mappable_size = dev_priv->gtt.mappable_end;
1747
1748         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1749 }
1750
1751 static int setup_scratch_page(struct drm_device *dev)
1752 {
1753         struct drm_i915_private *dev_priv = dev->dev_private;
1754         struct page *page;
1755         dma_addr_t dma_addr;
1756
1757         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1758         if (page == NULL)
1759                 return -ENOMEM;
1760         get_page(page);
1761         set_pages_uc(page, 1);
1762
1763 #ifdef CONFIG_INTEL_IOMMU
1764         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1765                                 PCI_DMA_BIDIRECTIONAL);
1766         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1767                 return -EINVAL;
1768 #else
1769         dma_addr = page_to_phys(page);
1770 #endif
1771         dev_priv->gtt.base.scratch.page = page;
1772         dev_priv->gtt.base.scratch.addr = dma_addr;
1773
1774         return 0;
1775 }
1776
1777 static void teardown_scratch_page(struct drm_device *dev)
1778 {
1779         struct drm_i915_private *dev_priv = dev->dev_private;
1780         struct page *page = dev_priv->gtt.base.scratch.page;
1781
1782         set_pages_wb(page, 1);
1783         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1784                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1785         put_page(page);
1786         __free_page(page);
1787 }
1788
1789 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1790 {
1791         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1792         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1793         return snb_gmch_ctl << 20;
1794 }
1795
1796 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1797 {
1798         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1799         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1800         if (bdw_gmch_ctl)
1801                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1802         return bdw_gmch_ctl << 20;
1803 }
1804
1805 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1806 {
1807         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1808         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1809         return snb_gmch_ctl << 25; /* 32 MB units */
1810 }
1811
1812 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1813 {
1814         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1815         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1816         return bdw_gmch_ctl << 25; /* 32 MB units */
1817 }
1818
1819 static int ggtt_probe_common(struct drm_device *dev,
1820                              size_t gtt_size)
1821 {
1822         struct drm_i915_private *dev_priv = dev->dev_private;
1823         phys_addr_t gtt_phys_addr;
1824         int ret;
1825
1826         /* For Modern GENs the PTEs and register space are split in the BAR */
1827         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1828                 (pci_resource_len(dev->pdev, 0) / 2);
1829
1830         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1831         if (!dev_priv->gtt.gsm) {
1832                 DRM_ERROR("Failed to map the gtt page table\n");
1833                 return -ENOMEM;
1834         }
1835
1836         ret = setup_scratch_page(dev);
1837         if (ret) {
1838                 DRM_ERROR("Scratch setup failed\n");
1839                 /* iounmap will also get called at remove, but meh */
1840                 iounmap(dev_priv->gtt.gsm);
1841         }
1842
1843         return ret;
1844 }
1845
1846 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1847  * bits. When using advanced contexts each context stores its own PAT, but
1848  * writing this data shouldn't be harmful even in those cases. */
1849 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1850 {
1851 #define GEN8_PPAT_UC            (0<<0)
1852 #define GEN8_PPAT_WC            (1<<0)
1853 #define GEN8_PPAT_WT            (2<<0)
1854 #define GEN8_PPAT_WB            (3<<0)
1855 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1856 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1857 #define GEN8_PPAT_LLC           (1<<2)
1858 #define GEN8_PPAT_LLCELLC       (2<<2)
1859 #define GEN8_PPAT_LLCeLLC       (3<<2)
1860 #define GEN8_PPAT_AGE(x)        (x<<4)
1861 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1862         uint64_t pat;
1863
1864         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1865               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1866               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1867               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1868               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1869               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1870               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1871               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1872
1873         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1874          * write would work. */
1875         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1876         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1877 }
1878
1879 static int gen8_gmch_probe(struct drm_device *dev,
1880                            size_t *gtt_total,
1881                            size_t *stolen,
1882                            phys_addr_t *mappable_base,
1883                            unsigned long *mappable_end)
1884 {
1885         struct drm_i915_private *dev_priv = dev->dev_private;
1886         unsigned int gtt_size;
1887         u16 snb_gmch_ctl;
1888         int ret;
1889
1890         /* TODO: We're not aware of mappable constraints on gen8 yet */
1891         *mappable_base = pci_resource_start(dev->pdev, 2);
1892         *mappable_end = pci_resource_len(dev->pdev, 2);
1893
1894         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1895                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1896
1897         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1898
1899         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1900
1901         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1902         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1903
1904         gen8_setup_private_ppat(dev_priv);
1905
1906         ret = ggtt_probe_common(dev, gtt_size);
1907
1908         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1909         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1910
1911         return ret;
1912 }
1913
1914 static int gen6_gmch_probe(struct drm_device *dev,
1915                            size_t *gtt_total,
1916                            size_t *stolen,
1917                            phys_addr_t *mappable_base,
1918                            unsigned long *mappable_end)
1919 {
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         unsigned int gtt_size;
1922         u16 snb_gmch_ctl;
1923         int ret;
1924
1925         *mappable_base = pci_resource_start(dev->pdev, 2);
1926         *mappable_end = pci_resource_len(dev->pdev, 2);
1927
1928         /* 64/512MB is the current min/max we actually know of, but this is just
1929          * a coarse sanity check.
1930          */
1931         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1932                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1933                           dev_priv->gtt.mappable_end);
1934                 return -ENXIO;
1935         }
1936
1937         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1938                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1939         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1940
1941         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1942
1943         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1944         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1945
1946         ret = ggtt_probe_common(dev, gtt_size);
1947
1948         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1949         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1950
1951         return ret;
1952 }
1953
1954 static void gen6_gmch_remove(struct i915_address_space *vm)
1955 {
1956
1957         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1958
1959         drm_mm_takedown(&vm->mm);
1960         iounmap(gtt->gsm);
1961         teardown_scratch_page(vm->dev);
1962 }
1963
1964 static int i915_gmch_probe(struct drm_device *dev,
1965                            size_t *gtt_total,
1966                            size_t *stolen,
1967                            phys_addr_t *mappable_base,
1968                            unsigned long *mappable_end)
1969 {
1970         struct drm_i915_private *dev_priv = dev->dev_private;
1971         int ret;
1972
1973         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1974         if (!ret) {
1975                 DRM_ERROR("failed to set up gmch\n");
1976                 return -EIO;
1977         }
1978
1979         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1980
1981         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1982         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1983
1984         if (unlikely(dev_priv->gtt.do_idle_maps))
1985                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1986
1987         return 0;
1988 }
1989
1990 static void i915_gmch_remove(struct i915_address_space *vm)
1991 {
1992         intel_gmch_remove();
1993 }
1994
1995 int i915_gem_gtt_init(struct drm_device *dev)
1996 {
1997         struct drm_i915_private *dev_priv = dev->dev_private;
1998         struct i915_gtt *gtt = &dev_priv->gtt;
1999         int ret;
2000
2001         if (INTEL_INFO(dev)->gen <= 5) {
2002                 gtt->gtt_probe = i915_gmch_probe;
2003                 gtt->base.cleanup = i915_gmch_remove;
2004         } else if (INTEL_INFO(dev)->gen < 8) {
2005                 gtt->gtt_probe = gen6_gmch_probe;
2006                 gtt->base.cleanup = gen6_gmch_remove;
2007                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2008                         gtt->base.pte_encode = iris_pte_encode;
2009                 else if (IS_HASWELL(dev))
2010                         gtt->base.pte_encode = hsw_pte_encode;
2011                 else if (IS_VALLEYVIEW(dev))
2012                         gtt->base.pte_encode = byt_pte_encode;
2013                 else if (INTEL_INFO(dev)->gen >= 7)
2014                         gtt->base.pte_encode = ivb_pte_encode;
2015                 else
2016                         gtt->base.pte_encode = snb_pte_encode;
2017         } else {
2018                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2019                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2020         }
2021
2022         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2023                              &gtt->mappable_base, &gtt->mappable_end);
2024         if (ret)
2025                 return ret;
2026
2027         gtt->base.dev = dev;
2028
2029         /* GMADR is the PCI mmio aperture into the global GTT. */
2030         DRM_INFO("Memory usable by graphics device = %zdM\n",
2031                  gtt->base.total >> 20);
2032         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2033         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2034
2035         return 0;
2036 }
2037
2038 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2039                                               struct i915_address_space *vm)
2040 {
2041         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2042         if (vma == NULL)
2043                 return ERR_PTR(-ENOMEM);
2044
2045         INIT_LIST_HEAD(&vma->vma_link);
2046         INIT_LIST_HEAD(&vma->mm_list);
2047         INIT_LIST_HEAD(&vma->exec_list);
2048         vma->vm = vm;
2049         vma->obj = obj;
2050
2051         switch (INTEL_INFO(vm->dev)->gen) {
2052         case 8:
2053         case 7:
2054         case 6:
2055                 if (i915_is_ggtt(vm)) {
2056                         vma->unbind_vma = ggtt_unbind_vma;
2057                         vma->bind_vma = ggtt_bind_vma;
2058                 } else {
2059                         vma->unbind_vma = ppgtt_unbind_vma;
2060                         vma->bind_vma = ppgtt_bind_vma;
2061                 }
2062                 break;
2063         case 5:
2064         case 4:
2065         case 3:
2066         case 2:
2067                 BUG_ON(!i915_is_ggtt(vm));
2068                 vma->unbind_vma = i915_ggtt_unbind_vma;
2069                 vma->bind_vma = i915_ggtt_bind_vma;
2070                 break;
2071         default:
2072                 BUG();
2073         }
2074
2075         /* Keep GGTT vmas first to make debug easier */
2076         if (i915_is_ggtt(vm))
2077                 list_add(&vma->vma_link, &obj->vma_list);
2078         else
2079                 list_add_tail(&vma->vma_link, &obj->vma_list);
2080
2081         return vma;
2082 }
2083
2084 struct i915_vma *
2085 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2086                                   struct i915_address_space *vm)
2087 {
2088         struct i915_vma *vma;
2089
2090         vma = i915_gem_obj_to_vma(obj, vm);
2091         if (!vma)
2092                 vma = __i915_gem_vma_create(obj, vm);
2093
2094         return vma;
2095 }