Merge tag 'v3.14-rc6' into drm-intel-next-queued
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
34 {
35         if (i915.enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
36                 return false;
37
38         if (i915.enable_ppgtt == 1 && full)
39                 return false;
40
41 #ifdef CONFIG_INTEL_IOMMU
42         /* Disable ppgtt on SNB if VT-d is on. */
43         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
44                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
45                 return false;
46         }
47 #endif
48
49         /* Full ppgtt disabled by default for now due to issues. */
50         if (full)
51                 return false; /* HAS_PPGTT(dev) */
52         else
53                 return HAS_ALIASING_PPGTT(dev);
54 }
55
56 #define GEN6_PPGTT_PD_ENTRIES 512
57 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
58 typedef uint64_t gen8_gtt_pte_t;
59 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
60
61 /* PPGTT stuff */
62 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
63 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
64
65 #define GEN6_PDE_VALID                  (1 << 0)
66 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
67 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
68
69 #define GEN6_PTE_VALID                  (1 << 0)
70 #define GEN6_PTE_UNCACHED               (1 << 1)
71 #define HSW_PTE_UNCACHED                (0)
72 #define GEN6_PTE_CACHE_LLC              (2 << 1)
73 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
74 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
75 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
76
77 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
78  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
79  */
80 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
81                                          (((bits) & 0x8) << (11 - 3)))
82 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
83 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
84 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
85 #define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
86 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
87 #define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
88
89 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
90 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
91
92 /* GEN8 legacy style addressis defined as a 3 level page table:
93  * 31:30 | 29:21 | 20:12 |  11:0
94  * PDPE  |  PDE  |  PTE  | offset
95  * The difference as compared to normal x86 3 level page table is the PDPEs are
96  * programmed via register.
97  */
98 #define GEN8_PDPE_SHIFT                 30
99 #define GEN8_PDPE_MASK                  0x3
100 #define GEN8_PDE_SHIFT                  21
101 #define GEN8_PDE_MASK                   0x1ff
102 #define GEN8_PTE_SHIFT                  12
103 #define GEN8_PTE_MASK                   0x1ff
104
105 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
106 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
107 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
108 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
109
110 static void ppgtt_bind_vma(struct i915_vma *vma,
111                            enum i915_cache_level cache_level,
112                            u32 flags);
113 static void ppgtt_unbind_vma(struct i915_vma *vma);
114 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
115
116 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
117                                              enum i915_cache_level level,
118                                              bool valid)
119 {
120         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
121         pte |= addr;
122         if (level != I915_CACHE_NONE)
123                 pte |= PPAT_CACHED_INDEX;
124         else
125                 pte |= PPAT_UNCACHED_INDEX;
126         return pte;
127 }
128
129 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
130                                              dma_addr_t addr,
131                                              enum i915_cache_level level)
132 {
133         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
134         pde |= addr;
135         if (level != I915_CACHE_NONE)
136                 pde |= PPAT_CACHED_PDE_INDEX;
137         else
138                 pde |= PPAT_UNCACHED_INDEX;
139         return pde;
140 }
141
142 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
143                                      enum i915_cache_level level,
144                                      bool valid)
145 {
146         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
147         pte |= GEN6_PTE_ADDR_ENCODE(addr);
148
149         switch (level) {
150         case I915_CACHE_L3_LLC:
151         case I915_CACHE_LLC:
152                 pte |= GEN6_PTE_CACHE_LLC;
153                 break;
154         case I915_CACHE_NONE:
155                 pte |= GEN6_PTE_UNCACHED;
156                 break;
157         default:
158                 WARN_ON(1);
159         }
160
161         return pte;
162 }
163
164 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
165                                      enum i915_cache_level level,
166                                      bool valid)
167 {
168         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169         pte |= GEN6_PTE_ADDR_ENCODE(addr);
170
171         switch (level) {
172         case I915_CACHE_L3_LLC:
173                 pte |= GEN7_PTE_CACHE_L3_LLC;
174                 break;
175         case I915_CACHE_LLC:
176                 pte |= GEN6_PTE_CACHE_LLC;
177                 break;
178         case I915_CACHE_NONE:
179                 pte |= GEN6_PTE_UNCACHED;
180                 break;
181         default:
182                 WARN_ON(1);
183         }
184
185         return pte;
186 }
187
188 #define BYT_PTE_WRITEABLE               (1 << 1)
189 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
190
191 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
192                                      enum i915_cache_level level,
193                                      bool valid)
194 {
195         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
196         pte |= GEN6_PTE_ADDR_ENCODE(addr);
197
198         /* Mark the page as writeable.  Other platforms don't have a
199          * setting for read-only/writable, so this matches that behavior.
200          */
201         pte |= BYT_PTE_WRITEABLE;
202
203         if (level != I915_CACHE_NONE)
204                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
205
206         return pte;
207 }
208
209 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
210                                      enum i915_cache_level level,
211                                      bool valid)
212 {
213         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
214         pte |= HSW_PTE_ADDR_ENCODE(addr);
215
216         if (level != I915_CACHE_NONE)
217                 pte |= HSW_WB_LLC_AGE3;
218
219         return pte;
220 }
221
222 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
223                                       enum i915_cache_level level,
224                                       bool valid)
225 {
226         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
227         pte |= HSW_PTE_ADDR_ENCODE(addr);
228
229         switch (level) {
230         case I915_CACHE_NONE:
231                 break;
232         case I915_CACHE_WT:
233                 pte |= HSW_WT_ELLC_LLC_AGE3;
234                 break;
235         default:
236                 pte |= HSW_WB_ELLC_LLC_AGE3;
237                 break;
238         }
239
240         return pte;
241 }
242
243 /* Broadwell Page Directory Pointer Descriptors */
244 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
245                            uint64_t val, bool synchronous)
246 {
247         struct drm_i915_private *dev_priv = ring->dev->dev_private;
248         int ret;
249
250         BUG_ON(entry >= 4);
251
252         if (synchronous) {
253                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
254                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
255                 return 0;
256         }
257
258         ret = intel_ring_begin(ring, 6);
259         if (ret)
260                 return ret;
261
262         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
263         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
264         intel_ring_emit(ring, (u32)(val >> 32));
265         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
266         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
267         intel_ring_emit(ring, (u32)(val));
268         intel_ring_advance(ring);
269
270         return 0;
271 }
272
273 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
274                           struct intel_ring_buffer *ring,
275                           bool synchronous)
276 {
277         int i, ret;
278
279         /* bit of a hack to find the actual last used pd */
280         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
281
282         for (i = used_pd - 1; i >= 0; i--) {
283                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
284                 ret = gen8_write_pdp(ring, i, addr, synchronous);
285                 if (ret)
286                         return ret;
287         }
288
289         return 0;
290 }
291
292 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
293                                    uint64_t start,
294                                    uint64_t length,
295                                    bool use_scratch)
296 {
297         struct i915_hw_ppgtt *ppgtt =
298                 container_of(vm, struct i915_hw_ppgtt, base);
299         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
300         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
301         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
302         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
303         unsigned num_entries = length >> PAGE_SHIFT;
304         unsigned last_pte, i;
305
306         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
307                                       I915_CACHE_LLC, use_scratch);
308
309         while (num_entries) {
310                 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
311
312                 last_pte = pte + num_entries;
313                 if (last_pte > GEN8_PTES_PER_PAGE)
314                         last_pte = GEN8_PTES_PER_PAGE;
315
316                 pt_vaddr = kmap_atomic(page_table);
317
318                 for (i = pte; i < last_pte; i++) {
319                         pt_vaddr[i] = scratch_pte;
320                         num_entries--;
321                 }
322
323                 kunmap_atomic(pt_vaddr);
324
325                 pte = 0;
326                 if (++pde == GEN8_PDES_PER_PAGE) {
327                         pdpe++;
328                         pde = 0;
329                 }
330         }
331 }
332
333 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
334                                       struct sg_table *pages,
335                                       uint64_t start,
336                                       enum i915_cache_level cache_level)
337 {
338         struct i915_hw_ppgtt *ppgtt =
339                 container_of(vm, struct i915_hw_ppgtt, base);
340         gen8_gtt_pte_t *pt_vaddr;
341         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
342         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
343         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
344         struct sg_page_iter sg_iter;
345
346         pt_vaddr = NULL;
347
348         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
349                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
350                         break;
351
352                 if (pt_vaddr == NULL)
353                         pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
354
355                 pt_vaddr[pte] =
356                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
357                                         cache_level, true);
358                 if (++pte == GEN8_PTES_PER_PAGE) {
359                         kunmap_atomic(pt_vaddr);
360                         pt_vaddr = NULL;
361                         if (++pde == GEN8_PDES_PER_PAGE) {
362                                 pdpe++;
363                                 pde = 0;
364                         }
365                         pte = 0;
366                 }
367         }
368         if (pt_vaddr)
369                 kunmap_atomic(pt_vaddr);
370 }
371
372 static void gen8_free_page_tables(struct page **pt_pages)
373 {
374         int i;
375
376         if (pt_pages == NULL)
377                 return;
378
379         for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
380                 if (pt_pages[i])
381                         __free_pages(pt_pages[i], 0);
382 }
383
384 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
385 {
386         int i;
387
388         for (i = 0; i < ppgtt->num_pd_pages; i++) {
389                 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
390                 kfree(ppgtt->gen8_pt_pages[i]);
391                 kfree(ppgtt->gen8_pt_dma_addr[i]);
392         }
393
394         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
395 }
396
397 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
398 {
399         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
400         int i, j;
401
402         for (i = 0; i < ppgtt->num_pd_pages; i++) {
403                 /* TODO: In the future we'll support sparse mappings, so this
404                  * will have to change. */
405                 if (!ppgtt->pd_dma_addr[i])
406                         continue;
407
408                 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
409                                PCI_DMA_BIDIRECTIONAL);
410
411                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
412                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
413                         if (addr)
414                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
415                                                PCI_DMA_BIDIRECTIONAL);
416                 }
417         }
418 }
419
420 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
421 {
422         struct i915_hw_ppgtt *ppgtt =
423                 container_of(vm, struct i915_hw_ppgtt, base);
424
425         list_del(&vm->global_link);
426         drm_mm_takedown(&vm->mm);
427
428         gen8_ppgtt_unmap_pages(ppgtt);
429         gen8_ppgtt_free(ppgtt);
430 }
431
432 static struct page **__gen8_alloc_page_tables(void)
433 {
434         struct page **pt_pages;
435         int i;
436
437         pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
438         if (!pt_pages)
439                 return ERR_PTR(-ENOMEM);
440
441         for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
442                 pt_pages[i] = alloc_page(GFP_KERNEL);
443                 if (!pt_pages[i])
444                         goto bail;
445         }
446
447         return pt_pages;
448
449 bail:
450         gen8_free_page_tables(pt_pages);
451         kfree(pt_pages);
452         return ERR_PTR(-ENOMEM);
453 }
454
455 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
456                                            const int max_pdp)
457 {
458         struct page **pt_pages[GEN8_LEGACY_PDPS];
459         int i, ret;
460
461         for (i = 0; i < max_pdp; i++) {
462                 pt_pages[i] = __gen8_alloc_page_tables();
463                 if (IS_ERR(pt_pages[i])) {
464                         ret = PTR_ERR(pt_pages[i]);
465                         goto unwind_out;
466                 }
467         }
468
469         /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
470          * "atomic" - for cleanup purposes.
471          */
472         for (i = 0; i < max_pdp; i++)
473                 ppgtt->gen8_pt_pages[i] = pt_pages[i];
474
475         return 0;
476
477 unwind_out:
478         while (i--) {
479                 gen8_free_page_tables(pt_pages[i]);
480                 kfree(pt_pages[i]);
481         }
482
483         return ret;
484 }
485
486 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
487 {
488         int i;
489
490         for (i = 0; i < ppgtt->num_pd_pages; i++) {
491                 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
492                                                      sizeof(dma_addr_t),
493                                                      GFP_KERNEL);
494                 if (!ppgtt->gen8_pt_dma_addr[i])
495                         return -ENOMEM;
496         }
497
498         return 0;
499 }
500
501 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
502                                                 const int max_pdp)
503 {
504         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
505         if (!ppgtt->pd_pages)
506                 return -ENOMEM;
507
508         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
509         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
510
511         return 0;
512 }
513
514 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
515                             const int max_pdp)
516 {
517         int ret;
518
519         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
520         if (ret)
521                 return ret;
522
523         ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
524         if (ret) {
525                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
526                 return ret;
527         }
528
529         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
530
531         ret = gen8_ppgtt_allocate_dma(ppgtt);
532         if (ret)
533                 gen8_ppgtt_free(ppgtt);
534
535         return ret;
536 }
537
538 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
539                                              const int pd)
540 {
541         dma_addr_t pd_addr;
542         int ret;
543
544         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
545                                &ppgtt->pd_pages[pd], 0,
546                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
547
548         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
549         if (ret)
550                 return ret;
551
552         ppgtt->pd_dma_addr[pd] = pd_addr;
553
554         return 0;
555 }
556
557 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
558                                         const int pd,
559                                         const int pt)
560 {
561         dma_addr_t pt_addr;
562         struct page *p;
563         int ret;
564
565         p = ppgtt->gen8_pt_pages[pd][pt];
566         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
567                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
568         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
569         if (ret)
570                 return ret;
571
572         ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
573
574         return 0;
575 }
576
577 /**
578  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
579  * with a net effect resembling a 2-level page table in normal x86 terms. Each
580  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
581  * space.
582  *
583  * FIXME: split allocation into smaller pieces. For now we only ever do this
584  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
585  * TODO: Do something with the size parameter
586  */
587 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
588 {
589         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
590         const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
591         int i, j, ret;
592
593         if (size % (1<<30))
594                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
595
596         /* 1. Do all our allocations for page directories and page tables. */
597         ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
598         if (ret)
599                 return ret;
600
601         /*
602          * 2. Create DMA mappings for the page directories and page tables.
603          */
604         for (i = 0; i < max_pdp; i++) {
605                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
606                 if (ret)
607                         goto bail;
608
609                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
610                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
611                         if (ret)
612                                 goto bail;
613                 }
614         }
615
616         /*
617          * 3. Map all the page directory entires to point to the page tables
618          * we've allocated.
619          *
620          * For now, the PPGTT helper functions all require that the PDEs are
621          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
622          * will never need to touch the PDEs again.
623          */
624         for (i = 0; i < max_pdp; i++) {
625                 gen8_ppgtt_pde_t *pd_vaddr;
626                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
627                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
628                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
629                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
630                                                       I915_CACHE_LLC);
631                 }
632                 kunmap_atomic(pd_vaddr);
633         }
634
635         ppgtt->enable = gen8_ppgtt_enable;
636         ppgtt->switch_mm = gen8_mm_switch;
637         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
638         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
639         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
640         ppgtt->base.start = 0;
641         ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
642
643         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
644
645         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
646                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
647         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
648                          ppgtt->num_pd_entries,
649                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
650         return 0;
651
652 bail:
653         gen8_ppgtt_unmap_pages(ppgtt);
654         gen8_ppgtt_free(ppgtt);
655         return ret;
656 }
657
658 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
659 {
660         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
661         struct i915_address_space *vm = &ppgtt->base;
662         gen6_gtt_pte_t __iomem *pd_addr;
663         gen6_gtt_pte_t scratch_pte;
664         uint32_t pd_entry;
665         int pte, pde;
666
667         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
668
669         pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
670                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
671
672         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
673                    ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
674         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
675                 u32 expected;
676                 gen6_gtt_pte_t *pt_vaddr;
677                 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
678                 pd_entry = readl(pd_addr + pde);
679                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
680
681                 if (pd_entry != expected)
682                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
683                                    pde,
684                                    pd_entry,
685                                    expected);
686                 seq_printf(m, "\tPDE: %x\n", pd_entry);
687
688                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
689                 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
690                         unsigned long va =
691                                 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
692                                 (pte * PAGE_SIZE);
693                         int i;
694                         bool found = false;
695                         for (i = 0; i < 4; i++)
696                                 if (pt_vaddr[pte + i] != scratch_pte)
697                                         found = true;
698                         if (!found)
699                                 continue;
700
701                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
702                         for (i = 0; i < 4; i++) {
703                                 if (pt_vaddr[pte + i] != scratch_pte)
704                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
705                                 else
706                                         seq_puts(m, "  SCRATCH ");
707                         }
708                         seq_puts(m, "\n");
709                 }
710                 kunmap_atomic(pt_vaddr);
711         }
712 }
713
714 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
715 {
716         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
717         gen6_gtt_pte_t __iomem *pd_addr;
718         uint32_t pd_entry;
719         int i;
720
721         WARN_ON(ppgtt->pd_offset & 0x3f);
722         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
723                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
724         for (i = 0; i < ppgtt->num_pd_entries; i++) {
725                 dma_addr_t pt_addr;
726
727                 pt_addr = ppgtt->pt_dma_addr[i];
728                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
729                 pd_entry |= GEN6_PDE_VALID;
730
731                 writel(pd_entry, pd_addr + i);
732         }
733         readl(pd_addr);
734 }
735
736 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
737 {
738         BUG_ON(ppgtt->pd_offset & 0x3f);
739
740         return (ppgtt->pd_offset / 64) << 16;
741 }
742
743 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
744                          struct intel_ring_buffer *ring,
745                          bool synchronous)
746 {
747         struct drm_device *dev = ppgtt->base.dev;
748         struct drm_i915_private *dev_priv = dev->dev_private;
749         int ret;
750
751         /* If we're in reset, we can assume the GPU is sufficiently idle to
752          * manually frob these bits. Ideally we could use the ring functions,
753          * except our error handling makes it quite difficult (can't use
754          * intel_ring_begin, ring->flush, or intel_ring_advance)
755          *
756          * FIXME: We should try not to special case reset
757          */
758         if (synchronous ||
759             i915_reset_in_progress(&dev_priv->gpu_error)) {
760                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
761                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
762                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
763                 POSTING_READ(RING_PP_DIR_BASE(ring));
764                 return 0;
765         }
766
767         /* NB: TLBs must be flushed and invalidated before a switch */
768         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
769         if (ret)
770                 return ret;
771
772         ret = intel_ring_begin(ring, 6);
773         if (ret)
774                 return ret;
775
776         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
777         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
778         intel_ring_emit(ring, PP_DIR_DCLV_2G);
779         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
780         intel_ring_emit(ring, get_pd_offset(ppgtt));
781         intel_ring_emit(ring, MI_NOOP);
782         intel_ring_advance(ring);
783
784         return 0;
785 }
786
787 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
788                           struct intel_ring_buffer *ring,
789                           bool synchronous)
790 {
791         struct drm_device *dev = ppgtt->base.dev;
792         struct drm_i915_private *dev_priv = dev->dev_private;
793         int ret;
794
795         /* If we're in reset, we can assume the GPU is sufficiently idle to
796          * manually frob these bits. Ideally we could use the ring functions,
797          * except our error handling makes it quite difficult (can't use
798          * intel_ring_begin, ring->flush, or intel_ring_advance)
799          *
800          * FIXME: We should try not to special case reset
801          */
802         if (synchronous ||
803             i915_reset_in_progress(&dev_priv->gpu_error)) {
804                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
805                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
806                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
807                 POSTING_READ(RING_PP_DIR_BASE(ring));
808                 return 0;
809         }
810
811         /* NB: TLBs must be flushed and invalidated before a switch */
812         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
813         if (ret)
814                 return ret;
815
816         ret = intel_ring_begin(ring, 6);
817         if (ret)
818                 return ret;
819
820         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
821         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
822         intel_ring_emit(ring, PP_DIR_DCLV_2G);
823         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
824         intel_ring_emit(ring, get_pd_offset(ppgtt));
825         intel_ring_emit(ring, MI_NOOP);
826         intel_ring_advance(ring);
827
828         /* XXX: RCS is the only one to auto invalidate the TLBs? */
829         if (ring->id != RCS) {
830                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
831                 if (ret)
832                         return ret;
833         }
834
835         return 0;
836 }
837
838 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
839                           struct intel_ring_buffer *ring,
840                           bool synchronous)
841 {
842         struct drm_device *dev = ppgtt->base.dev;
843         struct drm_i915_private *dev_priv = dev->dev_private;
844
845         if (!synchronous)
846                 return 0;
847
848         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
849         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
850
851         POSTING_READ(RING_PP_DIR_DCLV(ring));
852
853         return 0;
854 }
855
856 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
857 {
858         struct drm_device *dev = ppgtt->base.dev;
859         struct drm_i915_private *dev_priv = dev->dev_private;
860         struct intel_ring_buffer *ring;
861         int j, ret;
862
863         for_each_ring(ring, dev_priv, j) {
864                 I915_WRITE(RING_MODE_GEN7(ring),
865                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
866
867                 /* We promise to do a switch later with FULL PPGTT. If this is
868                  * aliasing, this is the one and only switch we'll do */
869                 if (USES_FULL_PPGTT(dev))
870                         continue;
871
872                 ret = ppgtt->switch_mm(ppgtt, ring, true);
873                 if (ret)
874                         goto err_out;
875         }
876
877         return 0;
878
879 err_out:
880         for_each_ring(ring, dev_priv, j)
881                 I915_WRITE(RING_MODE_GEN7(ring),
882                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
883         return ret;
884 }
885
886 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
887 {
888         struct drm_device *dev = ppgtt->base.dev;
889         drm_i915_private_t *dev_priv = dev->dev_private;
890         struct intel_ring_buffer *ring;
891         uint32_t ecochk, ecobits;
892         int i;
893
894         ecobits = I915_READ(GAC_ECO_BITS);
895         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
896
897         ecochk = I915_READ(GAM_ECOCHK);
898         if (IS_HASWELL(dev)) {
899                 ecochk |= ECOCHK_PPGTT_WB_HSW;
900         } else {
901                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
902                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
903         }
904         I915_WRITE(GAM_ECOCHK, ecochk);
905
906         for_each_ring(ring, dev_priv, i) {
907                 int ret;
908                 /* GFX_MODE is per-ring on gen7+ */
909                 I915_WRITE(RING_MODE_GEN7(ring),
910                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
911
912                 /* We promise to do a switch later with FULL PPGTT. If this is
913                  * aliasing, this is the one and only switch we'll do */
914                 if (USES_FULL_PPGTT(dev))
915                         continue;
916
917                 ret = ppgtt->switch_mm(ppgtt, ring, true);
918                 if (ret)
919                         return ret;
920         }
921
922         return 0;
923 }
924
925 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
926 {
927         struct drm_device *dev = ppgtt->base.dev;
928         drm_i915_private_t *dev_priv = dev->dev_private;
929         struct intel_ring_buffer *ring;
930         uint32_t ecochk, gab_ctl, ecobits;
931         int i;
932
933         ecobits = I915_READ(GAC_ECO_BITS);
934         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
935                    ECOBITS_PPGTT_CACHE64B);
936
937         gab_ctl = I915_READ(GAB_CTL);
938         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
939
940         ecochk = I915_READ(GAM_ECOCHK);
941         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
942
943         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
944
945         for_each_ring(ring, dev_priv, i) {
946                 int ret = ppgtt->switch_mm(ppgtt, ring, true);
947                 if (ret)
948                         return ret;
949         }
950
951         return 0;
952 }
953
954 /* PPGTT support for Sandybdrige/Gen6 and later */
955 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
956                                    uint64_t start,
957                                    uint64_t length,
958                                    bool use_scratch)
959 {
960         struct i915_hw_ppgtt *ppgtt =
961                 container_of(vm, struct i915_hw_ppgtt, base);
962         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
963         unsigned first_entry = start >> PAGE_SHIFT;
964         unsigned num_entries = length >> PAGE_SHIFT;
965         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
966         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
967         unsigned last_pte, i;
968
969         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
970
971         while (num_entries) {
972                 last_pte = first_pte + num_entries;
973                 if (last_pte > I915_PPGTT_PT_ENTRIES)
974                         last_pte = I915_PPGTT_PT_ENTRIES;
975
976                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
977
978                 for (i = first_pte; i < last_pte; i++)
979                         pt_vaddr[i] = scratch_pte;
980
981                 kunmap_atomic(pt_vaddr);
982
983                 num_entries -= last_pte - first_pte;
984                 first_pte = 0;
985                 act_pt++;
986         }
987 }
988
989 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
990                                       struct sg_table *pages,
991                                       uint64_t start,
992                                       enum i915_cache_level cache_level)
993 {
994         struct i915_hw_ppgtt *ppgtt =
995                 container_of(vm, struct i915_hw_ppgtt, base);
996         gen6_gtt_pte_t *pt_vaddr;
997         unsigned first_entry = start >> PAGE_SHIFT;
998         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
999         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
1000         struct sg_page_iter sg_iter;
1001
1002         pt_vaddr = NULL;
1003         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1004                 if (pt_vaddr == NULL)
1005                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
1006
1007                 pt_vaddr[act_pte] =
1008                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1009                                        cache_level, true);
1010                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
1011                         kunmap_atomic(pt_vaddr);
1012                         pt_vaddr = NULL;
1013                         act_pt++;
1014                         act_pte = 0;
1015                 }
1016         }
1017         if (pt_vaddr)
1018                 kunmap_atomic(pt_vaddr);
1019 }
1020
1021 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
1022 {
1023         int i;
1024
1025         if (ppgtt->pt_dma_addr) {
1026                 for (i = 0; i < ppgtt->num_pd_entries; i++)
1027                         pci_unmap_page(ppgtt->base.dev->pdev,
1028                                        ppgtt->pt_dma_addr[i],
1029                                        4096, PCI_DMA_BIDIRECTIONAL);
1030         }
1031 }
1032
1033 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1034 {
1035         int i;
1036
1037         kfree(ppgtt->pt_dma_addr);
1038         for (i = 0; i < ppgtt->num_pd_entries; i++)
1039                 __free_page(ppgtt->pt_pages[i]);
1040         kfree(ppgtt->pt_pages);
1041 }
1042
1043 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1044 {
1045         struct i915_hw_ppgtt *ppgtt =
1046                 container_of(vm, struct i915_hw_ppgtt, base);
1047
1048         list_del(&vm->global_link);
1049         drm_mm_takedown(&ppgtt->base.mm);
1050         drm_mm_remove_node(&ppgtt->node);
1051
1052         gen6_ppgtt_unmap_pages(ppgtt);
1053         gen6_ppgtt_free(ppgtt);
1054 }
1055
1056 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1057 {
1058 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
1059 #define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
1060         struct drm_device *dev = ppgtt->base.dev;
1061         struct drm_i915_private *dev_priv = dev->dev_private;
1062         bool retried = false;
1063         int ret;
1064
1065         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1066          * allocator works in address space sizes, so it's multiplied by page
1067          * size. We allocate at the top of the GTT to avoid fragmentation.
1068          */
1069         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1070 alloc:
1071         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1072                                                   &ppgtt->node, GEN6_PD_SIZE,
1073                                                   GEN6_PD_ALIGN, 0,
1074                                                   0, dev_priv->gtt.base.total,
1075                                                   DRM_MM_SEARCH_DEFAULT);
1076         if (ret == -ENOSPC && !retried) {
1077                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1078                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1079                                                I915_CACHE_NONE, 0);
1080                 if (ret)
1081                         return ret;
1082
1083                 retried = true;
1084                 goto alloc;
1085         }
1086
1087         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1088                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1089
1090         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1091         return ret;
1092 }
1093
1094 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1095 {
1096         int i;
1097
1098         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1099                                   GFP_KERNEL);
1100
1101         if (!ppgtt->pt_pages)
1102                 return -ENOMEM;
1103
1104         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1105                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1106                 if (!ppgtt->pt_pages[i]) {
1107                         gen6_ppgtt_free(ppgtt);
1108                         return -ENOMEM;
1109                 }
1110         }
1111
1112         return 0;
1113 }
1114
1115 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1116 {
1117         int ret;
1118
1119         ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1120         if (ret)
1121                 return ret;
1122
1123         ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1124         if (ret) {
1125                 drm_mm_remove_node(&ppgtt->node);
1126                 return ret;
1127         }
1128
1129         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1130                                      GFP_KERNEL);
1131         if (!ppgtt->pt_dma_addr) {
1132                 drm_mm_remove_node(&ppgtt->node);
1133                 gen6_ppgtt_free(ppgtt);
1134                 return -ENOMEM;
1135         }
1136
1137         return 0;
1138 }
1139
1140 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1141 {
1142         struct drm_device *dev = ppgtt->base.dev;
1143         int i;
1144
1145         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1146                 dma_addr_t pt_addr;
1147
1148                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1149                                        PCI_DMA_BIDIRECTIONAL);
1150
1151                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1152                         gen6_ppgtt_unmap_pages(ppgtt);
1153                         return -EIO;
1154                 }
1155
1156                 ppgtt->pt_dma_addr[i] = pt_addr;
1157         }
1158
1159         return 0;
1160 }
1161
1162 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1163 {
1164         struct drm_device *dev = ppgtt->base.dev;
1165         struct drm_i915_private *dev_priv = dev->dev_private;
1166         int ret;
1167
1168         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1169         if (IS_GEN6(dev)) {
1170                 ppgtt->enable = gen6_ppgtt_enable;
1171                 ppgtt->switch_mm = gen6_mm_switch;
1172         } else if (IS_HASWELL(dev)) {
1173                 ppgtt->enable = gen7_ppgtt_enable;
1174                 ppgtt->switch_mm = hsw_mm_switch;
1175         } else if (IS_GEN7(dev)) {
1176                 ppgtt->enable = gen7_ppgtt_enable;
1177                 ppgtt->switch_mm = gen7_mm_switch;
1178         } else
1179                 BUG();
1180
1181         ret = gen6_ppgtt_alloc(ppgtt);
1182         if (ret)
1183                 return ret;
1184
1185         ret = gen6_ppgtt_setup_page_tables(ppgtt);
1186         if (ret) {
1187                 gen6_ppgtt_free(ppgtt);
1188                 return ret;
1189         }
1190
1191         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1192         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1193         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1194         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1195         ppgtt->base.start = 0;
1196         ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1197         ppgtt->debug_dump = gen6_dump_ppgtt;
1198
1199         ppgtt->pd_offset =
1200                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1201
1202         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1203
1204         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1205                          ppgtt->node.size >> 20,
1206                          ppgtt->node.start / PAGE_SIZE);
1207
1208         return 0;
1209 }
1210
1211 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1212 {
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214         int ret = 0;
1215
1216         ppgtt->base.dev = dev;
1217
1218         if (INTEL_INFO(dev)->gen < 8)
1219                 ret = gen6_ppgtt_init(ppgtt);
1220         else if (IS_GEN8(dev))
1221                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1222         else
1223                 BUG();
1224
1225         if (!ret) {
1226                 struct drm_i915_private *dev_priv = dev->dev_private;
1227                 kref_init(&ppgtt->ref);
1228                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1229                             ppgtt->base.total);
1230                 i915_init_vm(dev_priv, &ppgtt->base);
1231                 if (INTEL_INFO(dev)->gen < 8) {
1232                         gen6_write_pdes(ppgtt);
1233                         DRM_DEBUG("Adding PPGTT at offset %x\n",
1234                                   ppgtt->pd_offset << 10);
1235                 }
1236         }
1237
1238         return ret;
1239 }
1240
1241 static void
1242 ppgtt_bind_vma(struct i915_vma *vma,
1243                enum i915_cache_level cache_level,
1244                u32 flags)
1245 {
1246         WARN_ON(flags);
1247
1248         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1249                                 cache_level);
1250 }
1251
1252 static void ppgtt_unbind_vma(struct i915_vma *vma)
1253 {
1254         vma->vm->clear_range(vma->vm,
1255                              vma->node.start,
1256                              vma->obj->base.size,
1257                              true);
1258 }
1259
1260 extern int intel_iommu_gfx_mapped;
1261 /* Certain Gen5 chipsets require require idling the GPU before
1262  * unmapping anything from the GTT when VT-d is enabled.
1263  */
1264 static inline bool needs_idle_maps(struct drm_device *dev)
1265 {
1266 #ifdef CONFIG_INTEL_IOMMU
1267         /* Query intel_iommu to see if we need the workaround. Presumably that
1268          * was loaded first.
1269          */
1270         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1271                 return true;
1272 #endif
1273         return false;
1274 }
1275
1276 static bool do_idling(struct drm_i915_private *dev_priv)
1277 {
1278         bool ret = dev_priv->mm.interruptible;
1279
1280         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1281                 dev_priv->mm.interruptible = false;
1282                 if (i915_gpu_idle(dev_priv->dev)) {
1283                         DRM_ERROR("Couldn't idle GPU\n");
1284                         /* Wait a bit, in hopes it avoids the hang */
1285                         udelay(10);
1286                 }
1287         }
1288
1289         return ret;
1290 }
1291
1292 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1293 {
1294         if (unlikely(dev_priv->gtt.do_idle_maps))
1295                 dev_priv->mm.interruptible = interruptible;
1296 }
1297
1298 void i915_check_and_clear_faults(struct drm_device *dev)
1299 {
1300         struct drm_i915_private *dev_priv = dev->dev_private;
1301         struct intel_ring_buffer *ring;
1302         int i;
1303
1304         if (INTEL_INFO(dev)->gen < 6)
1305                 return;
1306
1307         for_each_ring(ring, dev_priv, i) {
1308                 u32 fault_reg;
1309                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1310                 if (fault_reg & RING_FAULT_VALID) {
1311                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1312                                          "\tAddr: 0x%08lx\\n"
1313                                          "\tAddress space: %s\n"
1314                                          "\tSource ID: %d\n"
1315                                          "\tType: %d\n",
1316                                          fault_reg & PAGE_MASK,
1317                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1318                                          RING_FAULT_SRCID(fault_reg),
1319                                          RING_FAULT_FAULT_TYPE(fault_reg));
1320                         I915_WRITE(RING_FAULT_REG(ring),
1321                                    fault_reg & ~RING_FAULT_VALID);
1322                 }
1323         }
1324         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1325 }
1326
1327 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1328 {
1329         struct drm_i915_private *dev_priv = dev->dev_private;
1330
1331         /* Don't bother messing with faults pre GEN6 as we have little
1332          * documentation supporting that it's a good idea.
1333          */
1334         if (INTEL_INFO(dev)->gen < 6)
1335                 return;
1336
1337         i915_check_and_clear_faults(dev);
1338
1339         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1340                                        dev_priv->gtt.base.start,
1341                                        dev_priv->gtt.base.total,
1342                                        false);
1343 }
1344
1345 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1346 {
1347         struct drm_i915_private *dev_priv = dev->dev_private;
1348         struct drm_i915_gem_object *obj;
1349         struct i915_address_space *vm;
1350
1351         i915_check_and_clear_faults(dev);
1352
1353         /* First fill our portion of the GTT with scratch pages */
1354         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1355                                        dev_priv->gtt.base.start,
1356                                        dev_priv->gtt.base.total,
1357                                        true);
1358
1359         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1360                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1361                                                            &dev_priv->gtt.base);
1362                 if (!vma)
1363                         continue;
1364
1365                 i915_gem_clflush_object(obj, obj->pin_display);
1366                 /* The bind_vma code tries to be smart about tracking mappings.
1367                  * Unfortunately above, we've just wiped out the mappings
1368                  * without telling our object about it. So we need to fake it.
1369                  */
1370                 obj->has_global_gtt_mapping = 0;
1371                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1372         }
1373
1374
1375         if (INTEL_INFO(dev)->gen >= 8)
1376                 return;
1377
1378         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1379                 /* TODO: Perhaps it shouldn't be gen6 specific */
1380                 if (i915_is_ggtt(vm)) {
1381                         if (dev_priv->mm.aliasing_ppgtt)
1382                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1383                         continue;
1384                 }
1385
1386                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1387         }
1388
1389         i915_gem_chipset_flush(dev);
1390 }
1391
1392 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1393 {
1394         if (obj->has_dma_mapping)
1395                 return 0;
1396
1397         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1398                         obj->pages->sgl, obj->pages->nents,
1399                         PCI_DMA_BIDIRECTIONAL))
1400                 return -ENOSPC;
1401
1402         return 0;
1403 }
1404
1405 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1406 {
1407 #ifdef writeq
1408         writeq(pte, addr);
1409 #else
1410         iowrite32((u32)pte, addr);
1411         iowrite32(pte >> 32, addr + 4);
1412 #endif
1413 }
1414
1415 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1416                                      struct sg_table *st,
1417                                      uint64_t start,
1418                                      enum i915_cache_level level)
1419 {
1420         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1421         unsigned first_entry = start >> PAGE_SHIFT;
1422         gen8_gtt_pte_t __iomem *gtt_entries =
1423                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1424         int i = 0;
1425         struct sg_page_iter sg_iter;
1426         dma_addr_t addr;
1427
1428         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1429                 addr = sg_dma_address(sg_iter.sg) +
1430                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1431                 gen8_set_pte(&gtt_entries[i],
1432                              gen8_pte_encode(addr, level, true));
1433                 i++;
1434         }
1435
1436         /*
1437          * XXX: This serves as a posting read to make sure that the PTE has
1438          * actually been updated. There is some concern that even though
1439          * registers and PTEs are within the same BAR that they are potentially
1440          * of NUMA access patterns. Therefore, even with the way we assume
1441          * hardware should work, we must keep this posting read for paranoia.
1442          */
1443         if (i != 0)
1444                 WARN_ON(readq(&gtt_entries[i-1])
1445                         != gen8_pte_encode(addr, level, true));
1446
1447         /* This next bit makes the above posting read even more important. We
1448          * want to flush the TLBs only after we're certain all the PTE updates
1449          * have finished.
1450          */
1451         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1452         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1453 }
1454
1455 /*
1456  * Binds an object into the global gtt with the specified cache level. The object
1457  * will be accessible to the GPU via commands whose operands reference offsets
1458  * within the global GTT as well as accessible by the GPU through the GMADR
1459  * mapped BAR (dev_priv->mm.gtt->gtt).
1460  */
1461 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1462                                      struct sg_table *st,
1463                                      uint64_t start,
1464                                      enum i915_cache_level level)
1465 {
1466         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1467         unsigned first_entry = start >> PAGE_SHIFT;
1468         gen6_gtt_pte_t __iomem *gtt_entries =
1469                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1470         int i = 0;
1471         struct sg_page_iter sg_iter;
1472         dma_addr_t addr;
1473
1474         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1475                 addr = sg_page_iter_dma_address(&sg_iter);
1476                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1477                 i++;
1478         }
1479
1480         /* XXX: This serves as a posting read to make sure that the PTE has
1481          * actually been updated. There is some concern that even though
1482          * registers and PTEs are within the same BAR that they are potentially
1483          * of NUMA access patterns. Therefore, even with the way we assume
1484          * hardware should work, we must keep this posting read for paranoia.
1485          */
1486         if (i != 0)
1487                 WARN_ON(readl(&gtt_entries[i-1]) !=
1488                         vm->pte_encode(addr, level, true));
1489
1490         /* This next bit makes the above posting read even more important. We
1491          * want to flush the TLBs only after we're certain all the PTE updates
1492          * have finished.
1493          */
1494         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1495         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1496 }
1497
1498 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1499                                   uint64_t start,
1500                                   uint64_t length,
1501                                   bool use_scratch)
1502 {
1503         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1504         unsigned first_entry = start >> PAGE_SHIFT;
1505         unsigned num_entries = length >> PAGE_SHIFT;
1506         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1507                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1508         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1509         int i;
1510
1511         if (WARN(num_entries > max_entries,
1512                  "First entry = %d; Num entries = %d (max=%d)\n",
1513                  first_entry, num_entries, max_entries))
1514                 num_entries = max_entries;
1515
1516         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1517                                       I915_CACHE_LLC,
1518                                       use_scratch);
1519         for (i = 0; i < num_entries; i++)
1520                 gen8_set_pte(&gtt_base[i], scratch_pte);
1521         readl(gtt_base);
1522 }
1523
1524 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1525                                   uint64_t start,
1526                                   uint64_t length,
1527                                   bool use_scratch)
1528 {
1529         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1530         unsigned first_entry = start >> PAGE_SHIFT;
1531         unsigned num_entries = length >> PAGE_SHIFT;
1532         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1533                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1534         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1535         int i;
1536
1537         if (WARN(num_entries > max_entries,
1538                  "First entry = %d; Num entries = %d (max=%d)\n",
1539                  first_entry, num_entries, max_entries))
1540                 num_entries = max_entries;
1541
1542         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1543
1544         for (i = 0; i < num_entries; i++)
1545                 iowrite32(scratch_pte, &gtt_base[i]);
1546         readl(gtt_base);
1547 }
1548
1549
1550 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1551                                enum i915_cache_level cache_level,
1552                                u32 unused)
1553 {
1554         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1555         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1556                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1557
1558         BUG_ON(!i915_is_ggtt(vma->vm));
1559         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1560         vma->obj->has_global_gtt_mapping = 1;
1561 }
1562
1563 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1564                                   uint64_t start,
1565                                   uint64_t length,
1566                                   bool unused)
1567 {
1568         unsigned first_entry = start >> PAGE_SHIFT;
1569         unsigned num_entries = length >> PAGE_SHIFT;
1570         intel_gtt_clear_range(first_entry, num_entries);
1571 }
1572
1573 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1574 {
1575         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1576         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1577
1578         BUG_ON(!i915_is_ggtt(vma->vm));
1579         vma->obj->has_global_gtt_mapping = 0;
1580         intel_gtt_clear_range(first, size);
1581 }
1582
1583 static void ggtt_bind_vma(struct i915_vma *vma,
1584                           enum i915_cache_level cache_level,
1585                           u32 flags)
1586 {
1587         struct drm_device *dev = vma->vm->dev;
1588         struct drm_i915_private *dev_priv = dev->dev_private;
1589         struct drm_i915_gem_object *obj = vma->obj;
1590
1591         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1592          * or we have a global mapping already but the cacheability flags have
1593          * changed, set the global PTEs.
1594          *
1595          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1596          * instead if none of the above hold true.
1597          *
1598          * NB: A global mapping should only be needed for special regions like
1599          * "gtt mappable", SNB errata, or if specified via special execbuf
1600          * flags. At all other times, the GPU will use the aliasing PPGTT.
1601          */
1602         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1603                 if (!obj->has_global_gtt_mapping ||
1604                     (cache_level != obj->cache_level)) {
1605                         vma->vm->insert_entries(vma->vm, obj->pages,
1606                                                 vma->node.start,
1607                                                 cache_level);
1608                         obj->has_global_gtt_mapping = 1;
1609                 }
1610         }
1611
1612         if (dev_priv->mm.aliasing_ppgtt &&
1613             (!obj->has_aliasing_ppgtt_mapping ||
1614              (cache_level != obj->cache_level))) {
1615                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1616                 appgtt->base.insert_entries(&appgtt->base,
1617                                             vma->obj->pages,
1618                                             vma->node.start,
1619                                             cache_level);
1620                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1621         }
1622 }
1623
1624 static void ggtt_unbind_vma(struct i915_vma *vma)
1625 {
1626         struct drm_device *dev = vma->vm->dev;
1627         struct drm_i915_private *dev_priv = dev->dev_private;
1628         struct drm_i915_gem_object *obj = vma->obj;
1629
1630         if (obj->has_global_gtt_mapping) {
1631                 vma->vm->clear_range(vma->vm,
1632                                      vma->node.start,
1633                                      obj->base.size,
1634                                      true);
1635                 obj->has_global_gtt_mapping = 0;
1636         }
1637
1638         if (obj->has_aliasing_ppgtt_mapping) {
1639                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1640                 appgtt->base.clear_range(&appgtt->base,
1641                                          vma->node.start,
1642                                          obj->base.size,
1643                                          true);
1644                 obj->has_aliasing_ppgtt_mapping = 0;
1645         }
1646 }
1647
1648 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1649 {
1650         struct drm_device *dev = obj->base.dev;
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652         bool interruptible;
1653
1654         interruptible = do_idling(dev_priv);
1655
1656         if (!obj->has_dma_mapping)
1657                 dma_unmap_sg(&dev->pdev->dev,
1658                              obj->pages->sgl, obj->pages->nents,
1659                              PCI_DMA_BIDIRECTIONAL);
1660
1661         undo_idling(dev_priv, interruptible);
1662 }
1663
1664 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1665                                   unsigned long color,
1666                                   unsigned long *start,
1667                                   unsigned long *end)
1668 {
1669         if (node->color != color)
1670                 *start += 4096;
1671
1672         if (!list_empty(&node->node_list)) {
1673                 node = list_entry(node->node_list.next,
1674                                   struct drm_mm_node,
1675                                   node_list);
1676                 if (node->allocated && node->color != color)
1677                         *end -= 4096;
1678         }
1679 }
1680
1681 void i915_gem_setup_global_gtt(struct drm_device *dev,
1682                                unsigned long start,
1683                                unsigned long mappable_end,
1684                                unsigned long end)
1685 {
1686         /* Let GEM Manage all of the aperture.
1687          *
1688          * However, leave one page at the end still bound to the scratch page.
1689          * There are a number of places where the hardware apparently prefetches
1690          * past the end of the object, and we've seen multiple hangs with the
1691          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1692          * aperture.  One page should be enough to keep any prefetching inside
1693          * of the aperture.
1694          */
1695         struct drm_i915_private *dev_priv = dev->dev_private;
1696         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1697         struct drm_mm_node *entry;
1698         struct drm_i915_gem_object *obj;
1699         unsigned long hole_start, hole_end;
1700
1701         BUG_ON(mappable_end > end);
1702
1703         /* Subtract the guard page ... */
1704         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1705         if (!HAS_LLC(dev))
1706                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1707
1708         /* Mark any preallocated objects as occupied */
1709         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1710                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1711                 int ret;
1712                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1713                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1714
1715                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1716                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1717                 if (ret)
1718                         DRM_DEBUG_KMS("Reservation failed\n");
1719                 obj->has_global_gtt_mapping = 1;
1720         }
1721
1722         dev_priv->gtt.base.start = start;
1723         dev_priv->gtt.base.total = end - start;
1724
1725         /* Clear any non-preallocated blocks */
1726         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1727                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1728                               hole_start, hole_end);
1729                 ggtt_vm->clear_range(ggtt_vm, hole_start,
1730                                      hole_end - hole_start, true);
1731         }
1732
1733         /* And finally clear the reserved guard page */
1734         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1735 }
1736
1737 void i915_gem_init_global_gtt(struct drm_device *dev)
1738 {
1739         struct drm_i915_private *dev_priv = dev->dev_private;
1740         unsigned long gtt_size, mappable_size;
1741
1742         gtt_size = dev_priv->gtt.base.total;
1743         mappable_size = dev_priv->gtt.mappable_end;
1744
1745         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1746 }
1747
1748 static int setup_scratch_page(struct drm_device *dev)
1749 {
1750         struct drm_i915_private *dev_priv = dev->dev_private;
1751         struct page *page;
1752         dma_addr_t dma_addr;
1753
1754         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1755         if (page == NULL)
1756                 return -ENOMEM;
1757         get_page(page);
1758         set_pages_uc(page, 1);
1759
1760 #ifdef CONFIG_INTEL_IOMMU
1761         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1762                                 PCI_DMA_BIDIRECTIONAL);
1763         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1764                 return -EINVAL;
1765 #else
1766         dma_addr = page_to_phys(page);
1767 #endif
1768         dev_priv->gtt.base.scratch.page = page;
1769         dev_priv->gtt.base.scratch.addr = dma_addr;
1770
1771         return 0;
1772 }
1773
1774 static void teardown_scratch_page(struct drm_device *dev)
1775 {
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct page *page = dev_priv->gtt.base.scratch.page;
1778
1779         set_pages_wb(page, 1);
1780         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1781                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1782         put_page(page);
1783         __free_page(page);
1784 }
1785
1786 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1787 {
1788         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1789         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1790         return snb_gmch_ctl << 20;
1791 }
1792
1793 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1794 {
1795         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1796         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1797         if (bdw_gmch_ctl)
1798                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1799         return bdw_gmch_ctl << 20;
1800 }
1801
1802 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1803 {
1804         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1805         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1806         return snb_gmch_ctl << 25; /* 32 MB units */
1807 }
1808
1809 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1810 {
1811         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1812         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1813         return bdw_gmch_ctl << 25; /* 32 MB units */
1814 }
1815
1816 static int ggtt_probe_common(struct drm_device *dev,
1817                              size_t gtt_size)
1818 {
1819         struct drm_i915_private *dev_priv = dev->dev_private;
1820         phys_addr_t gtt_phys_addr;
1821         int ret;
1822
1823         /* For Modern GENs the PTEs and register space are split in the BAR */
1824         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1825                 (pci_resource_len(dev->pdev, 0) / 2);
1826
1827         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1828         if (!dev_priv->gtt.gsm) {
1829                 DRM_ERROR("Failed to map the gtt page table\n");
1830                 return -ENOMEM;
1831         }
1832
1833         ret = setup_scratch_page(dev);
1834         if (ret) {
1835                 DRM_ERROR("Scratch setup failed\n");
1836                 /* iounmap will also get called at remove, but meh */
1837                 iounmap(dev_priv->gtt.gsm);
1838         }
1839
1840         return ret;
1841 }
1842
1843 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1844  * bits. When using advanced contexts each context stores its own PAT, but
1845  * writing this data shouldn't be harmful even in those cases. */
1846 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1847 {
1848 #define GEN8_PPAT_UC            (0<<0)
1849 #define GEN8_PPAT_WC            (1<<0)
1850 #define GEN8_PPAT_WT            (2<<0)
1851 #define GEN8_PPAT_WB            (3<<0)
1852 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1853 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1854 #define GEN8_PPAT_LLC           (1<<2)
1855 #define GEN8_PPAT_LLCELLC       (2<<2)
1856 #define GEN8_PPAT_LLCeLLC       (3<<2)
1857 #define GEN8_PPAT_AGE(x)        (x<<4)
1858 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1859         uint64_t pat;
1860
1861         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1862               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1863               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1864               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1865               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1866               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1867               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1868               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1869
1870         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1871          * write would work. */
1872         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1873         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1874 }
1875
1876 static int gen8_gmch_probe(struct drm_device *dev,
1877                            size_t *gtt_total,
1878                            size_t *stolen,
1879                            phys_addr_t *mappable_base,
1880                            unsigned long *mappable_end)
1881 {
1882         struct drm_i915_private *dev_priv = dev->dev_private;
1883         unsigned int gtt_size;
1884         u16 snb_gmch_ctl;
1885         int ret;
1886
1887         /* TODO: We're not aware of mappable constraints on gen8 yet */
1888         *mappable_base = pci_resource_start(dev->pdev, 2);
1889         *mappable_end = pci_resource_len(dev->pdev, 2);
1890
1891         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1892                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1893
1894         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1895
1896         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1897
1898         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1899         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1900
1901         gen8_setup_private_ppat(dev_priv);
1902
1903         ret = ggtt_probe_common(dev, gtt_size);
1904
1905         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1906         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1907
1908         return ret;
1909 }
1910
1911 static int gen6_gmch_probe(struct drm_device *dev,
1912                            size_t *gtt_total,
1913                            size_t *stolen,
1914                            phys_addr_t *mappable_base,
1915                            unsigned long *mappable_end)
1916 {
1917         struct drm_i915_private *dev_priv = dev->dev_private;
1918         unsigned int gtt_size;
1919         u16 snb_gmch_ctl;
1920         int ret;
1921
1922         *mappable_base = pci_resource_start(dev->pdev, 2);
1923         *mappable_end = pci_resource_len(dev->pdev, 2);
1924
1925         /* 64/512MB is the current min/max we actually know of, but this is just
1926          * a coarse sanity check.
1927          */
1928         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1929                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1930                           dev_priv->gtt.mappable_end);
1931                 return -ENXIO;
1932         }
1933
1934         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1935                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1936         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1937
1938         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1939
1940         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1941         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1942
1943         ret = ggtt_probe_common(dev, gtt_size);
1944
1945         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1946         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1947
1948         return ret;
1949 }
1950
1951 static void gen6_gmch_remove(struct i915_address_space *vm)
1952 {
1953
1954         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1955
1956         drm_mm_takedown(&vm->mm);
1957         iounmap(gtt->gsm);
1958         teardown_scratch_page(vm->dev);
1959 }
1960
1961 static int i915_gmch_probe(struct drm_device *dev,
1962                            size_t *gtt_total,
1963                            size_t *stolen,
1964                            phys_addr_t *mappable_base,
1965                            unsigned long *mappable_end)
1966 {
1967         struct drm_i915_private *dev_priv = dev->dev_private;
1968         int ret;
1969
1970         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1971         if (!ret) {
1972                 DRM_ERROR("failed to set up gmch\n");
1973                 return -EIO;
1974         }
1975
1976         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1977
1978         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1979         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1980
1981         if (unlikely(dev_priv->gtt.do_idle_maps))
1982                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1983
1984         return 0;
1985 }
1986
1987 static void i915_gmch_remove(struct i915_address_space *vm)
1988 {
1989         intel_gmch_remove();
1990 }
1991
1992 int i915_gem_gtt_init(struct drm_device *dev)
1993 {
1994         struct drm_i915_private *dev_priv = dev->dev_private;
1995         struct i915_gtt *gtt = &dev_priv->gtt;
1996         int ret;
1997
1998         if (INTEL_INFO(dev)->gen <= 5) {
1999                 gtt->gtt_probe = i915_gmch_probe;
2000                 gtt->base.cleanup = i915_gmch_remove;
2001         } else if (INTEL_INFO(dev)->gen < 8) {
2002                 gtt->gtt_probe = gen6_gmch_probe;
2003                 gtt->base.cleanup = gen6_gmch_remove;
2004                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2005                         gtt->base.pte_encode = iris_pte_encode;
2006                 else if (IS_HASWELL(dev))
2007                         gtt->base.pte_encode = hsw_pte_encode;
2008                 else if (IS_VALLEYVIEW(dev))
2009                         gtt->base.pte_encode = byt_pte_encode;
2010                 else if (INTEL_INFO(dev)->gen >= 7)
2011                         gtt->base.pte_encode = ivb_pte_encode;
2012                 else
2013                         gtt->base.pte_encode = snb_pte_encode;
2014         } else {
2015                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2016                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2017         }
2018
2019         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2020                              &gtt->mappable_base, &gtt->mappable_end);
2021         if (ret)
2022                 return ret;
2023
2024         gtt->base.dev = dev;
2025
2026         /* GMADR is the PCI mmio aperture into the global GTT. */
2027         DRM_INFO("Memory usable by graphics device = %zdM\n",
2028                  gtt->base.total >> 20);
2029         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2030         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2031
2032         return 0;
2033 }
2034
2035 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2036                                               struct i915_address_space *vm)
2037 {
2038         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2039         if (vma == NULL)
2040                 return ERR_PTR(-ENOMEM);
2041
2042         INIT_LIST_HEAD(&vma->vma_link);
2043         INIT_LIST_HEAD(&vma->mm_list);
2044         INIT_LIST_HEAD(&vma->exec_list);
2045         vma->vm = vm;
2046         vma->obj = obj;
2047
2048         switch (INTEL_INFO(vm->dev)->gen) {
2049         case 8:
2050         case 7:
2051         case 6:
2052                 if (i915_is_ggtt(vm)) {
2053                         vma->unbind_vma = ggtt_unbind_vma;
2054                         vma->bind_vma = ggtt_bind_vma;
2055                 } else {
2056                         vma->unbind_vma = ppgtt_unbind_vma;
2057                         vma->bind_vma = ppgtt_bind_vma;
2058                 }
2059                 break;
2060         case 5:
2061         case 4:
2062         case 3:
2063         case 2:
2064                 BUG_ON(!i915_is_ggtt(vm));
2065                 vma->unbind_vma = i915_ggtt_unbind_vma;
2066                 vma->bind_vma = i915_ggtt_bind_vma;
2067                 break;
2068         default:
2069                 BUG();
2070         }
2071
2072         /* Keep GGTT vmas first to make debug easier */
2073         if (i915_is_ggtt(vm))
2074                 list_add(&vma->vma_link, &obj->vma_list);
2075         else
2076                 list_add_tail(&vma->vma_link, &obj->vma_list);
2077
2078         return vma;
2079 }
2080
2081 struct i915_vma *
2082 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2083                                   struct i915_address_space *vm)
2084 {
2085         struct i915_vma *vma;
2086
2087         vma = i915_gem_obj_to_vma(obj, vm);
2088         if (!vma)
2089                 vma = __i915_gem_vma_create(obj, vm);
2090
2091         return vma;
2092 }