Merge branch 'drm-intel-next' of git://people.freedesktop.org/~danvet/drm-intel into...
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
36
37 struct change_domains {
38         uint32_t invalidate_domains;
39         uint32_t flush_domains;
40         uint32_t flush_rings;
41         uint32_t flips;
42 };
43
44 /*
45  * Set the next domain for the specified object. This
46  * may not actually perform the necessary flushing/invaliding though,
47  * as that may want to be batched with other set_domain operations
48  *
49  * This is (we hope) the only really tricky part of gem. The goal
50  * is fairly simple -- track which caches hold bits of the object
51  * and make sure they remain coherent. A few concrete examples may
52  * help to explain how it works. For shorthand, we use the notation
53  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54  * a pair of read and write domain masks.
55  *
56  * Case 1: the batch buffer
57  *
58  *      1. Allocated
59  *      2. Written by CPU
60  *      3. Mapped to GTT
61  *      4. Read by GPU
62  *      5. Unmapped from GTT
63  *      6. Freed
64  *
65  *      Let's take these a step at a time
66  *
67  *      1. Allocated
68  *              Pages allocated from the kernel may still have
69  *              cache contents, so we set them to (CPU, CPU) always.
70  *      2. Written by CPU (using pwrite)
71  *              The pwrite function calls set_domain (CPU, CPU) and
72  *              this function does nothing (as nothing changes)
73  *      3. Mapped by GTT
74  *              This function asserts that the object is not
75  *              currently in any GPU-based read or write domains
76  *      4. Read by GPU
77  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
78  *              As write_domain is zero, this function adds in the
79  *              current read domains (CPU+COMMAND, 0).
80  *              flush_domains is set to CPU.
81  *              invalidate_domains is set to COMMAND
82  *              clflush is run to get data out of the CPU caches
83  *              then i915_dev_set_domain calls i915_gem_flush to
84  *              emit an MI_FLUSH and drm_agp_chipset_flush
85  *      5. Unmapped from GTT
86  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
87  *              flush_domains and invalidate_domains end up both zero
88  *              so no flushing/invalidating happens
89  *      6. Freed
90  *              yay, done
91  *
92  * Case 2: The shared render buffer
93  *
94  *      1. Allocated
95  *      2. Mapped to GTT
96  *      3. Read/written by GPU
97  *      4. set_domain to (CPU,CPU)
98  *      5. Read/written by CPU
99  *      6. Read/written by GPU
100  *
101  *      1. Allocated
102  *              Same as last example, (CPU, CPU)
103  *      2. Mapped to GTT
104  *              Nothing changes (assertions find that it is not in the GPU)
105  *      3. Read/written by GPU
106  *              execbuffer calls set_domain (RENDER, RENDER)
107  *              flush_domains gets CPU
108  *              invalidate_domains gets GPU
109  *              clflush (obj)
110  *              MI_FLUSH and drm_agp_chipset_flush
111  *      4. set_domain (CPU, CPU)
112  *              flush_domains gets GPU
113  *              invalidate_domains gets CPU
114  *              wait_rendering (obj) to make sure all drawing is complete.
115  *              This will include an MI_FLUSH to get the data from GPU
116  *              to memory
117  *              clflush (obj) to invalidate the CPU cache
118  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119  *      5. Read/written by CPU
120  *              cache lines are loaded and dirtied
121  *      6. Read written by GPU
122  *              Same as last GPU access
123  *
124  * Case 3: The constant buffer
125  *
126  *      1. Allocated
127  *      2. Written by CPU
128  *      3. Read by GPU
129  *      4. Updated (written) by CPU again
130  *      5. Read by GPU
131  *
132  *      1. Allocated
133  *              (CPU, CPU)
134  *      2. Written by CPU
135  *              (CPU, CPU)
136  *      3. Read by GPU
137  *              (CPU+RENDER, 0)
138  *              flush_domains = CPU
139  *              invalidate_domains = RENDER
140  *              clflush (obj)
141  *              MI_FLUSH
142  *              drm_agp_chipset_flush
143  *      4. Updated (written) by CPU again
144  *              (CPU, CPU)
145  *              flush_domains = 0 (no previous write domain)
146  *              invalidate_domains = 0 (no new read domains)
147  *      5. Read by GPU
148  *              (CPU+RENDER, 0)
149  *              flush_domains = CPU
150  *              invalidate_domains = RENDER
151  *              clflush (obj)
152  *              MI_FLUSH
153  *              drm_agp_chipset_flush
154  */
155 static void
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157                                   struct intel_ring_buffer *ring,
158                                   struct change_domains *cd)
159 {
160         uint32_t invalidate_domains = 0, flush_domains = 0;
161
162         /*
163          * If the object isn't moving to a new write domain,
164          * let the object stay in multiple read domains
165          */
166         if (obj->base.pending_write_domain == 0)
167                 obj->base.pending_read_domains |= obj->base.read_domains;
168
169         /*
170          * Flush the current write domain if
171          * the new read domains don't match. Invalidate
172          * any read domains which differ from the old
173          * write domain
174          */
175         if (obj->base.write_domain &&
176             (((obj->base.write_domain != obj->base.pending_read_domains ||
177                obj->ring != ring)) ||
178              (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179                 flush_domains |= obj->base.write_domain;
180                 invalidate_domains |=
181                         obj->base.pending_read_domains & ~obj->base.write_domain;
182         }
183         /*
184          * Invalidate any read caches which may have
185          * stale data. That is, any new read domains.
186          */
187         invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189                 i915_gem_clflush_object(obj);
190
191         if (obj->base.pending_write_domain)
192                 cd->flips |= atomic_read(&obj->pending_flip);
193
194         /* The actual obj->write_domain will be updated with
195          * pending_write_domain after we emit the accumulated flush for all
196          * of our domain changes in execbuffers (which clears objects'
197          * write_domains).  So if we have a current write domain that we
198          * aren't changing, set pending_write_domain to that.
199          */
200         if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201                 obj->base.pending_write_domain = obj->base.write_domain;
202
203         cd->invalidate_domains |= invalidate_domains;
204         cd->flush_domains |= flush_domains;
205         if (flush_domains & I915_GEM_GPU_DOMAINS)
206                 cd->flush_rings |= intel_ring_flag(obj->ring);
207         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208                 cd->flush_rings |= intel_ring_flag(ring);
209 }
210
211 struct eb_objects {
212         int and;
213         struct hlist_head buckets[0];
214 };
215
216 static struct eb_objects *
217 eb_create(int size)
218 {
219         struct eb_objects *eb;
220         int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221         while (count > size)
222                 count >>= 1;
223         eb = kzalloc(count*sizeof(struct hlist_head) +
224                      sizeof(struct eb_objects),
225                      GFP_KERNEL);
226         if (eb == NULL)
227                 return eb;
228
229         eb->and = count - 1;
230         return eb;
231 }
232
233 static void
234 eb_reset(struct eb_objects *eb)
235 {
236         memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237 }
238
239 static void
240 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241 {
242         hlist_add_head(&obj->exec_node,
243                        &eb->buckets[obj->exec_handle & eb->and]);
244 }
245
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 {
249         struct hlist_head *head;
250         struct hlist_node *node;
251         struct drm_i915_gem_object *obj;
252
253         head = &eb->buckets[handle & eb->and];
254         hlist_for_each(node, head) {
255                 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256                 if (obj->exec_handle == handle)
257                         return obj;
258         }
259
260         return NULL;
261 }
262
263 static void
264 eb_destroy(struct eb_objects *eb)
265 {
266         kfree(eb);
267 }
268
269 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
270 {
271         return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
272                 obj->cache_level != I915_CACHE_NONE);
273 }
274
275 static int
276 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
277                                    struct eb_objects *eb,
278                                    struct drm_i915_gem_relocation_entry *reloc)
279 {
280         struct drm_device *dev = obj->base.dev;
281         struct drm_gem_object *target_obj;
282         struct drm_i915_gem_object *target_i915_obj;
283         uint32_t target_offset;
284         int ret = -EINVAL;
285
286         /* we've already hold a reference to all valid objects */
287         target_obj = &eb_get_object(eb, reloc->target_handle)->base;
288         if (unlikely(target_obj == NULL))
289                 return -ENOENT;
290
291         target_i915_obj = to_intel_bo(target_obj);
292         target_offset = target_i915_obj->gtt_offset;
293
294         /* The target buffer should have appeared before us in the
295          * exec_object list, so it should have a GTT space bound by now.
296          */
297         if (unlikely(target_offset == 0)) {
298                 DRM_DEBUG("No GTT space found for object %d\n",
299                           reloc->target_handle);
300                 return ret;
301         }
302
303         /* Validate that the target is in a valid r/w GPU domain */
304         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
305                 DRM_DEBUG("reloc with multiple write domains: "
306                           "obj %p target %d offset %d "
307                           "read %08x write %08x",
308                           obj, reloc->target_handle,
309                           (int) reloc->offset,
310                           reloc->read_domains,
311                           reloc->write_domain);
312                 return ret;
313         }
314         if (unlikely((reloc->write_domain | reloc->read_domains)
315                      & ~I915_GEM_GPU_DOMAINS)) {
316                 DRM_DEBUG("reloc with read/write non-GPU domains: "
317                           "obj %p target %d offset %d "
318                           "read %08x write %08x",
319                           obj, reloc->target_handle,
320                           (int) reloc->offset,
321                           reloc->read_domains,
322                           reloc->write_domain);
323                 return ret;
324         }
325         if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
326                      reloc->write_domain != target_obj->pending_write_domain)) {
327                 DRM_DEBUG("Write domain conflict: "
328                           "obj %p target %d offset %d "
329                           "new %08x old %08x\n",
330                           obj, reloc->target_handle,
331                           (int) reloc->offset,
332                           reloc->write_domain,
333                           target_obj->pending_write_domain);
334                 return ret;
335         }
336
337         target_obj->pending_read_domains |= reloc->read_domains;
338         target_obj->pending_write_domain |= reloc->write_domain;
339
340         /* If the relocation already has the right value in it, no
341          * more work needs to be done.
342          */
343         if (target_offset == reloc->presumed_offset)
344                 return 0;
345
346         /* Check that the relocation address is valid... */
347         if (unlikely(reloc->offset > obj->base.size - 4)) {
348                 DRM_DEBUG("Relocation beyond object bounds: "
349                           "obj %p target %d offset %d size %d.\n",
350                           obj, reloc->target_handle,
351                           (int) reloc->offset,
352                           (int) obj->base.size);
353                 return ret;
354         }
355         if (unlikely(reloc->offset & 3)) {
356                 DRM_DEBUG("Relocation not 4-byte aligned: "
357                           "obj %p target %d offset %d.\n",
358                           obj, reloc->target_handle,
359                           (int) reloc->offset);
360                 return ret;
361         }
362
363         /* We can't wait for rendering with pagefaults disabled */
364         if (obj->active && in_atomic())
365                 return -EFAULT;
366
367         reloc->delta += target_offset;
368         if (use_cpu_reloc(obj)) {
369                 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
370                 char *vaddr;
371
372                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
373                 if (ret)
374                         return ret;
375
376                 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
377                 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
378                 kunmap_atomic(vaddr);
379         } else {
380                 struct drm_i915_private *dev_priv = dev->dev_private;
381                 uint32_t __iomem *reloc_entry;
382                 void __iomem *reloc_page;
383
384                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
385                 if (ret)
386                         return ret;
387
388                 /* Map the page containing the relocation we're going to perform.  */
389                 reloc->offset += obj->gtt_offset;
390                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
391                                                       reloc->offset & PAGE_MASK);
392                 reloc_entry = (uint32_t __iomem *)
393                         (reloc_page + (reloc->offset & ~PAGE_MASK));
394                 iowrite32(reloc->delta, reloc_entry);
395                 io_mapping_unmap_atomic(reloc_page);
396         }
397
398         /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
399          * pipe_control writes because the gpu doesn't properly redirect them
400          * through the ppgtt for non_secure batchbuffers. */
401         if (unlikely(IS_GEN6(dev) &&
402             reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
403             !target_i915_obj->has_global_gtt_mapping)) {
404                 i915_gem_gtt_bind_object(target_i915_obj,
405                                          target_i915_obj->cache_level);
406         }
407
408         /* and update the user's relocation entry */
409         reloc->presumed_offset = target_offset;
410
411         return 0;
412 }
413
414 static int
415 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
416                                     struct eb_objects *eb)
417 {
418 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
419         struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
420         struct drm_i915_gem_relocation_entry __user *user_relocs;
421         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
422         int remain, ret;
423
424         user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
425
426         remain = entry->relocation_count;
427         while (remain) {
428                 struct drm_i915_gem_relocation_entry *r = stack_reloc;
429                 int count = remain;
430                 if (count > ARRAY_SIZE(stack_reloc))
431                         count = ARRAY_SIZE(stack_reloc);
432                 remain -= count;
433
434                 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
435                         return -EFAULT;
436
437                 do {
438                         u64 offset = r->presumed_offset;
439
440                         ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
441                         if (ret)
442                                 return ret;
443
444                         if (r->presumed_offset != offset &&
445                             __copy_to_user_inatomic(&user_relocs->presumed_offset,
446                                                     &r->presumed_offset,
447                                                     sizeof(r->presumed_offset))) {
448                                 return -EFAULT;
449                         }
450
451                         user_relocs++;
452                         r++;
453                 } while (--count);
454         }
455
456         return 0;
457 #undef N_RELOC
458 }
459
460 static int
461 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
462                                          struct eb_objects *eb,
463                                          struct drm_i915_gem_relocation_entry *relocs)
464 {
465         const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
466         int i, ret;
467
468         for (i = 0; i < entry->relocation_count; i++) {
469                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
470                 if (ret)
471                         return ret;
472         }
473
474         return 0;
475 }
476
477 static int
478 i915_gem_execbuffer_relocate(struct drm_device *dev,
479                              struct eb_objects *eb,
480                              struct list_head *objects)
481 {
482         struct drm_i915_gem_object *obj;
483         int ret = 0;
484
485         /* This is the fast path and we cannot handle a pagefault whilst
486          * holding the struct mutex lest the user pass in the relocations
487          * contained within a mmaped bo. For in such a case we, the page
488          * fault handler would call i915_gem_fault() and we would try to
489          * acquire the struct mutex again. Obviously this is bad and so
490          * lockdep complains vehemently.
491          */
492         pagefault_disable();
493         list_for_each_entry(obj, objects, exec_list) {
494                 ret = i915_gem_execbuffer_relocate_object(obj, eb);
495                 if (ret)
496                         break;
497         }
498         pagefault_enable();
499
500         return ret;
501 }
502
503 #define  __EXEC_OBJECT_HAS_FENCE (1<<31)
504
505 static int
506 need_reloc_mappable(struct drm_i915_gem_object *obj)
507 {
508         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
509         return entry->relocation_count && !use_cpu_reloc(obj);
510 }
511
512 static int
513 pin_and_fence_object(struct drm_i915_gem_object *obj,
514                      struct intel_ring_buffer *ring)
515 {
516         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
517         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
518         bool need_fence, need_mappable;
519         int ret;
520
521         need_fence =
522                 has_fenced_gpu_access &&
523                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
524                 obj->tiling_mode != I915_TILING_NONE;
525         need_mappable = need_fence || need_reloc_mappable(obj);
526
527         ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
528         if (ret)
529                 return ret;
530
531         if (has_fenced_gpu_access) {
532                 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
533                         if (obj->tiling_mode) {
534                                 ret = i915_gem_object_get_fence(obj, ring);
535                                 if (ret)
536                                         goto err_unpin;
537
538                                 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
539                                 i915_gem_object_pin_fence(obj);
540                         } else {
541                                 ret = i915_gem_object_put_fence(obj);
542                                 if (ret)
543                                         goto err_unpin;
544                         }
545                         obj->pending_fenced_gpu_access = true;
546                 }
547         }
548
549         entry->offset = obj->gtt_offset;
550         return 0;
551
552 err_unpin:
553         i915_gem_object_unpin(obj);
554         return ret;
555 }
556
557 static int
558 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
559                             struct drm_file *file,
560                             struct list_head *objects)
561 {
562         drm_i915_private_t *dev_priv = ring->dev->dev_private;
563         struct drm_i915_gem_object *obj;
564         int ret, retry;
565         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
566         struct list_head ordered_objects;
567
568         INIT_LIST_HEAD(&ordered_objects);
569         while (!list_empty(objects)) {
570                 struct drm_i915_gem_exec_object2 *entry;
571                 bool need_fence, need_mappable;
572
573                 obj = list_first_entry(objects,
574                                        struct drm_i915_gem_object,
575                                        exec_list);
576                 entry = obj->exec_entry;
577
578                 need_fence =
579                         has_fenced_gpu_access &&
580                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
581                         obj->tiling_mode != I915_TILING_NONE;
582                 need_mappable = need_fence || need_reloc_mappable(obj);
583
584                 if (need_mappable)
585                         list_move(&obj->exec_list, &ordered_objects);
586                 else
587                         list_move_tail(&obj->exec_list, &ordered_objects);
588
589                 obj->base.pending_read_domains = 0;
590                 obj->base.pending_write_domain = 0;
591         }
592         list_splice(&ordered_objects, objects);
593
594         /* Attempt to pin all of the buffers into the GTT.
595          * This is done in 3 phases:
596          *
597          * 1a. Unbind all objects that do not match the GTT constraints for
598          *     the execbuffer (fenceable, mappable, alignment etc).
599          * 1b. Increment pin count for already bound objects.
600          * 2.  Bind new objects.
601          * 3.  Decrement pin count.
602          *
603          * This avoid unnecessary unbinding of later objects in order to makr
604          * room for the earlier objects *unless* we need to defragment.
605          */
606         retry = 0;
607         do {
608                 ret = 0;
609
610                 /* Unbind any ill-fitting objects or pin. */
611                 list_for_each_entry(obj, objects, exec_list) {
612                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
613                         bool need_fence, need_mappable;
614
615                         if (!obj->gtt_space)
616                                 continue;
617
618                         need_fence =
619                                 has_fenced_gpu_access &&
620                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
621                                 obj->tiling_mode != I915_TILING_NONE;
622                         need_mappable = need_fence || need_reloc_mappable(obj);
623
624                         if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
625                             (need_mappable && !obj->map_and_fenceable))
626                                 ret = i915_gem_object_unbind(obj);
627                         else
628                                 ret = pin_and_fence_object(obj, ring);
629                         if (ret)
630                                 goto err;
631                 }
632
633                 /* Bind fresh objects */
634                 list_for_each_entry(obj, objects, exec_list) {
635                         if (obj->gtt_space)
636                                 continue;
637
638                         ret = pin_and_fence_object(obj, ring);
639                         if (ret) {
640                                 int ret_ignore;
641
642                                 /* This can potentially raise a harmless
643                                  * -EINVAL if we failed to bind in the above
644                                  * call. It cannot raise -EINTR since we know
645                                  * that the bo is freshly bound and so will
646                                  * not need to be flushed or waited upon.
647                                  */
648                                 ret_ignore = i915_gem_object_unbind(obj);
649                                 (void)ret_ignore;
650                                 WARN_ON(obj->gtt_space);
651                                 break;
652                         }
653                 }
654
655                 /* Decrement pin count for bound objects */
656                 list_for_each_entry(obj, objects, exec_list) {
657                         struct drm_i915_gem_exec_object2 *entry;
658
659                         if (!obj->gtt_space)
660                                 continue;
661
662                         entry = obj->exec_entry;
663                         if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
664                                 i915_gem_object_unpin_fence(obj);
665                                 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
666                         }
667
668                         i915_gem_object_unpin(obj);
669
670                         /* ... and ensure ppgtt mapping exist if needed. */
671                         if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
672                                 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
673                                                        obj, obj->cache_level);
674
675                                 obj->has_aliasing_ppgtt_mapping = 1;
676                         }
677                 }
678
679                 if (ret != -ENOSPC || retry > 1)
680                         return ret;
681
682                 /* First attempt, just clear anything that is purgeable.
683                  * Second attempt, clear the entire GTT.
684                  */
685                 ret = i915_gem_evict_everything(ring->dev, retry == 0);
686                 if (ret)
687                         return ret;
688
689                 retry++;
690         } while (1);
691
692 err:
693         list_for_each_entry_continue_reverse(obj, objects, exec_list) {
694                 struct drm_i915_gem_exec_object2 *entry;
695
696                 if (!obj->gtt_space)
697                         continue;
698
699                 entry = obj->exec_entry;
700                 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
701                         i915_gem_object_unpin_fence(obj);
702                         entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
703                 }
704
705                 i915_gem_object_unpin(obj);
706         }
707
708         return ret;
709 }
710
711 static int
712 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
713                                   struct drm_file *file,
714                                   struct intel_ring_buffer *ring,
715                                   struct list_head *objects,
716                                   struct eb_objects *eb,
717                                   struct drm_i915_gem_exec_object2 *exec,
718                                   int count)
719 {
720         struct drm_i915_gem_relocation_entry *reloc;
721         struct drm_i915_gem_object *obj;
722         int *reloc_offset;
723         int i, total, ret;
724
725         /* We may process another execbuffer during the unlock... */
726         while (!list_empty(objects)) {
727                 obj = list_first_entry(objects,
728                                        struct drm_i915_gem_object,
729                                        exec_list);
730                 list_del_init(&obj->exec_list);
731                 drm_gem_object_unreference(&obj->base);
732         }
733
734         mutex_unlock(&dev->struct_mutex);
735
736         total = 0;
737         for (i = 0; i < count; i++)
738                 total += exec[i].relocation_count;
739
740         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
741         reloc = drm_malloc_ab(total, sizeof(*reloc));
742         if (reloc == NULL || reloc_offset == NULL) {
743                 drm_free_large(reloc);
744                 drm_free_large(reloc_offset);
745                 mutex_lock(&dev->struct_mutex);
746                 return -ENOMEM;
747         }
748
749         total = 0;
750         for (i = 0; i < count; i++) {
751                 struct drm_i915_gem_relocation_entry __user *user_relocs;
752
753                 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
754
755                 if (copy_from_user(reloc+total, user_relocs,
756                                    exec[i].relocation_count * sizeof(*reloc))) {
757                         ret = -EFAULT;
758                         mutex_lock(&dev->struct_mutex);
759                         goto err;
760                 }
761
762                 reloc_offset[i] = total;
763                 total += exec[i].relocation_count;
764         }
765
766         ret = i915_mutex_lock_interruptible(dev);
767         if (ret) {
768                 mutex_lock(&dev->struct_mutex);
769                 goto err;
770         }
771
772         /* reacquire the objects */
773         eb_reset(eb);
774         for (i = 0; i < count; i++) {
775                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
776                                                         exec[i].handle));
777                 if (&obj->base == NULL) {
778                         DRM_DEBUG("Invalid object handle %d at index %d\n",
779                                    exec[i].handle, i);
780                         ret = -ENOENT;
781                         goto err;
782                 }
783
784                 list_add_tail(&obj->exec_list, objects);
785                 obj->exec_handle = exec[i].handle;
786                 obj->exec_entry = &exec[i];
787                 eb_add_object(eb, obj);
788         }
789
790         ret = i915_gem_execbuffer_reserve(ring, file, objects);
791         if (ret)
792                 goto err;
793
794         list_for_each_entry(obj, objects, exec_list) {
795                 int offset = obj->exec_entry - exec;
796                 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
797                                                                reloc + reloc_offset[offset]);
798                 if (ret)
799                         goto err;
800         }
801
802         /* Leave the user relocations as are, this is the painfully slow path,
803          * and we want to avoid the complication of dropping the lock whilst
804          * having buffers reserved in the aperture and so causing spurious
805          * ENOSPC for random operations.
806          */
807
808 err:
809         drm_free_large(reloc);
810         drm_free_large(reloc_offset);
811         return ret;
812 }
813
814 static int
815 i915_gem_execbuffer_flush(struct drm_device *dev,
816                           uint32_t invalidate_domains,
817                           uint32_t flush_domains,
818                           uint32_t flush_rings)
819 {
820         drm_i915_private_t *dev_priv = dev->dev_private;
821         int i, ret;
822
823         if (flush_domains & I915_GEM_DOMAIN_CPU)
824                 intel_gtt_chipset_flush();
825
826         if (flush_domains & I915_GEM_DOMAIN_GTT)
827                 wmb();
828
829         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
830                 for (i = 0; i < I915_NUM_RINGS; i++)
831                         if (flush_rings & (1 << i)) {
832                                 ret = i915_gem_flush_ring(&dev_priv->ring[i],
833                                                           invalidate_domains,
834                                                           flush_domains);
835                                 if (ret)
836                                         return ret;
837                         }
838         }
839
840         return 0;
841 }
842
843 static bool
844 intel_enable_semaphores(struct drm_device *dev)
845 {
846         if (INTEL_INFO(dev)->gen < 6)
847                 return 0;
848
849         if (i915_semaphores >= 0)
850                 return i915_semaphores;
851
852         /* Disable semaphores on SNB */
853         if (INTEL_INFO(dev)->gen == 6)
854                 return 0;
855
856         return 1;
857 }
858
859 static int
860 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
861                                struct intel_ring_buffer *to)
862 {
863         struct intel_ring_buffer *from = obj->ring;
864         u32 seqno;
865         int ret, idx;
866
867         if (from == NULL || to == from)
868                 return 0;
869
870         /* XXX gpu semaphores are implicated in various hard hangs on SNB */
871         if (!intel_enable_semaphores(obj->base.dev))
872                 return i915_gem_object_wait_rendering(obj);
873
874         idx = intel_ring_sync_index(from, to);
875
876         seqno = obj->last_rendering_seqno;
877         if (seqno <= from->sync_seqno[idx])
878                 return 0;
879
880         if (seqno == from->outstanding_lazy_request) {
881                 struct drm_i915_gem_request *request;
882
883                 request = kzalloc(sizeof(*request), GFP_KERNEL);
884                 if (request == NULL)
885                         return -ENOMEM;
886
887                 ret = i915_add_request(from, NULL, request);
888                 if (ret) {
889                         kfree(request);
890                         return ret;
891                 }
892
893                 seqno = request->seqno;
894         }
895
896         from->sync_seqno[idx] = seqno;
897
898         return to->sync_to(to, from, seqno - 1);
899 }
900
901 static int
902 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
903 {
904         u32 plane, flip_mask;
905         int ret;
906
907         /* Check for any pending flips. As we only maintain a flip queue depth
908          * of 1, we can simply insert a WAIT for the next display flip prior
909          * to executing the batch and avoid stalling the CPU.
910          */
911
912         for (plane = 0; flips >> plane; plane++) {
913                 if (((flips >> plane) & 1) == 0)
914                         continue;
915
916                 if (plane)
917                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
918                 else
919                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
920
921                 ret = intel_ring_begin(ring, 2);
922                 if (ret)
923                         return ret;
924
925                 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
926                 intel_ring_emit(ring, MI_NOOP);
927                 intel_ring_advance(ring);
928         }
929
930         return 0;
931 }
932
933
934 static int
935 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
936                                 struct list_head *objects)
937 {
938         struct drm_i915_gem_object *obj;
939         struct change_domains cd;
940         int ret;
941
942         memset(&cd, 0, sizeof(cd));
943         list_for_each_entry(obj, objects, exec_list)
944                 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
945
946         if (cd.invalidate_domains | cd.flush_domains) {
947                 ret = i915_gem_execbuffer_flush(ring->dev,
948                                                 cd.invalidate_domains,
949                                                 cd.flush_domains,
950                                                 cd.flush_rings);
951                 if (ret)
952                         return ret;
953         }
954
955         if (cd.flips) {
956                 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
957                 if (ret)
958                         return ret;
959         }
960
961         list_for_each_entry(obj, objects, exec_list) {
962                 ret = i915_gem_execbuffer_sync_rings(obj, ring);
963                 if (ret)
964                         return ret;
965         }
966
967         return 0;
968 }
969
970 static bool
971 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
972 {
973         return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
974 }
975
976 static int
977 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
978                    int count)
979 {
980         int i;
981
982         for (i = 0; i < count; i++) {
983                 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
984                 int length; /* limited by fault_in_pages_readable() */
985
986                 /* First check for malicious input causing overflow */
987                 if (exec[i].relocation_count >
988                     INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
989                         return -EINVAL;
990
991                 length = exec[i].relocation_count *
992                         sizeof(struct drm_i915_gem_relocation_entry);
993                 if (!access_ok(VERIFY_READ, ptr, length))
994                         return -EFAULT;
995
996                 /* we may also need to update the presumed offsets */
997                 if (!access_ok(VERIFY_WRITE, ptr, length))
998                         return -EFAULT;
999
1000                 if (fault_in_multipages_readable(ptr, length))
1001                         return -EFAULT;
1002         }
1003
1004         return 0;
1005 }
1006
1007 static void
1008 i915_gem_execbuffer_move_to_active(struct list_head *objects,
1009                                    struct intel_ring_buffer *ring,
1010                                    u32 seqno)
1011 {
1012         struct drm_i915_gem_object *obj;
1013
1014         list_for_each_entry(obj, objects, exec_list) {
1015                   u32 old_read = obj->base.read_domains;
1016                   u32 old_write = obj->base.write_domain;
1017
1018
1019                 obj->base.read_domains = obj->base.pending_read_domains;
1020                 obj->base.write_domain = obj->base.pending_write_domain;
1021                 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
1022
1023                 i915_gem_object_move_to_active(obj, ring, seqno);
1024                 if (obj->base.write_domain) {
1025                         obj->dirty = 1;
1026                         obj->pending_gpu_write = true;
1027                         list_move_tail(&obj->gpu_write_list,
1028                                        &ring->gpu_write_list);
1029                         intel_mark_busy(ring->dev, obj);
1030                 }
1031
1032                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1033         }
1034 }
1035
1036 static void
1037 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
1038                                     struct drm_file *file,
1039                                     struct intel_ring_buffer *ring)
1040 {
1041         struct drm_i915_gem_request *request;
1042         u32 invalidate;
1043
1044         /*
1045          * Ensure that the commands in the batch buffer are
1046          * finished before the interrupt fires.
1047          *
1048          * The sampler always gets flushed on i965 (sigh).
1049          */
1050         invalidate = I915_GEM_DOMAIN_COMMAND;
1051         if (INTEL_INFO(dev)->gen >= 4)
1052                 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1053         if (ring->flush(ring, invalidate, 0)) {
1054                 i915_gem_next_request_seqno(ring);
1055                 return;
1056         }
1057
1058         /* Add a breadcrumb for the completion of the batch buffer */
1059         request = kzalloc(sizeof(*request), GFP_KERNEL);
1060         if (request == NULL || i915_add_request(ring, file, request)) {
1061                 i915_gem_next_request_seqno(ring);
1062                 kfree(request);
1063         }
1064 }
1065
1066 static int
1067 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1068                             struct intel_ring_buffer *ring)
1069 {
1070         drm_i915_private_t *dev_priv = dev->dev_private;
1071         int ret, i;
1072
1073         if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1074                 return 0;
1075
1076         ret = intel_ring_begin(ring, 4 * 3);
1077         if (ret)
1078                 return ret;
1079
1080         for (i = 0; i < 4; i++) {
1081                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1082                 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1083                 intel_ring_emit(ring, 0);
1084         }
1085
1086         intel_ring_advance(ring);
1087
1088         return 0;
1089 }
1090
1091 static int
1092 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1093                        struct drm_file *file,
1094                        struct drm_i915_gem_execbuffer2 *args,
1095                        struct drm_i915_gem_exec_object2 *exec)
1096 {
1097         drm_i915_private_t *dev_priv = dev->dev_private;
1098         struct list_head objects;
1099         struct eb_objects *eb;
1100         struct drm_i915_gem_object *batch_obj;
1101         struct drm_clip_rect *cliprects = NULL;
1102         struct intel_ring_buffer *ring;
1103         u32 exec_start, exec_len;
1104         u32 seqno;
1105         u32 mask;
1106         int ret, mode, i;
1107
1108         if (!i915_gem_check_execbuffer(args)) {
1109                 DRM_DEBUG("execbuf with invalid offset/length\n");
1110                 return -EINVAL;
1111         }
1112
1113         ret = validate_exec_list(exec, args->buffer_count);
1114         if (ret)
1115                 return ret;
1116
1117         switch (args->flags & I915_EXEC_RING_MASK) {
1118         case I915_EXEC_DEFAULT:
1119         case I915_EXEC_RENDER:
1120                 ring = &dev_priv->ring[RCS];
1121                 break;
1122         case I915_EXEC_BSD:
1123                 if (!HAS_BSD(dev)) {
1124                         DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1125                         return -EINVAL;
1126                 }
1127                 ring = &dev_priv->ring[VCS];
1128                 break;
1129         case I915_EXEC_BLT:
1130                 if (!HAS_BLT(dev)) {
1131                         DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1132                         return -EINVAL;
1133                 }
1134                 ring = &dev_priv->ring[BCS];
1135                 break;
1136         default:
1137                 DRM_DEBUG("execbuf with unknown ring: %d\n",
1138                           (int)(args->flags & I915_EXEC_RING_MASK));
1139                 return -EINVAL;
1140         }
1141
1142         mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1143         mask = I915_EXEC_CONSTANTS_MASK;
1144         switch (mode) {
1145         case I915_EXEC_CONSTANTS_REL_GENERAL:
1146         case I915_EXEC_CONSTANTS_ABSOLUTE:
1147         case I915_EXEC_CONSTANTS_REL_SURFACE:
1148                 if (ring == &dev_priv->ring[RCS] &&
1149                     mode != dev_priv->relative_constants_mode) {
1150                         if (INTEL_INFO(dev)->gen < 4)
1151                                 return -EINVAL;
1152
1153                         if (INTEL_INFO(dev)->gen > 5 &&
1154                             mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1155                                 return -EINVAL;
1156
1157                         /* The HW changed the meaning on this bit on gen6 */
1158                         if (INTEL_INFO(dev)->gen >= 6)
1159                                 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1160                 }
1161                 break;
1162         default:
1163                 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1164                 return -EINVAL;
1165         }
1166
1167         if (args->buffer_count < 1) {
1168                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1169                 return -EINVAL;
1170         }
1171
1172         if (args->num_cliprects != 0) {
1173                 if (ring != &dev_priv->ring[RCS]) {
1174                         DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1175                         return -EINVAL;
1176                 }
1177
1178                 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1179                                     GFP_KERNEL);
1180                 if (cliprects == NULL) {
1181                         ret = -ENOMEM;
1182                         goto pre_mutex_err;
1183                 }
1184
1185                 if (copy_from_user(cliprects,
1186                                      (struct drm_clip_rect __user *)(uintptr_t)
1187                                      args->cliprects_ptr,
1188                                      sizeof(*cliprects)*args->num_cliprects)) {
1189                         ret = -EFAULT;
1190                         goto pre_mutex_err;
1191                 }
1192         }
1193
1194         ret = i915_mutex_lock_interruptible(dev);
1195         if (ret)
1196                 goto pre_mutex_err;
1197
1198         if (dev_priv->mm.suspended) {
1199                 mutex_unlock(&dev->struct_mutex);
1200                 ret = -EBUSY;
1201                 goto pre_mutex_err;
1202         }
1203
1204         eb = eb_create(args->buffer_count);
1205         if (eb == NULL) {
1206                 mutex_unlock(&dev->struct_mutex);
1207                 ret = -ENOMEM;
1208                 goto pre_mutex_err;
1209         }
1210
1211         /* Look up object handles */
1212         INIT_LIST_HEAD(&objects);
1213         for (i = 0; i < args->buffer_count; i++) {
1214                 struct drm_i915_gem_object *obj;
1215
1216                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1217                                                         exec[i].handle));
1218                 if (&obj->base == NULL) {
1219                         DRM_DEBUG("Invalid object handle %d at index %d\n",
1220                                    exec[i].handle, i);
1221                         /* prevent error path from reading uninitialized data */
1222                         ret = -ENOENT;
1223                         goto err;
1224                 }
1225
1226                 if (!list_empty(&obj->exec_list)) {
1227                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1228                                    obj, exec[i].handle, i);
1229                         ret = -EINVAL;
1230                         goto err;
1231                 }
1232
1233                 list_add_tail(&obj->exec_list, &objects);
1234                 obj->exec_handle = exec[i].handle;
1235                 obj->exec_entry = &exec[i];
1236                 eb_add_object(eb, obj);
1237         }
1238
1239         /* take note of the batch buffer before we might reorder the lists */
1240         batch_obj = list_entry(objects.prev,
1241                                struct drm_i915_gem_object,
1242                                exec_list);
1243
1244         /* Move the objects en-masse into the GTT, evicting if necessary. */
1245         ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1246         if (ret)
1247                 goto err;
1248
1249         /* The objects are in their final locations, apply the relocations. */
1250         ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1251         if (ret) {
1252                 if (ret == -EFAULT) {
1253                         ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1254                                                                 &objects, eb,
1255                                                                 exec,
1256                                                                 args->buffer_count);
1257                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1258                 }
1259                 if (ret)
1260                         goto err;
1261         }
1262
1263         /* Set the pending read domains for the batch buffer to COMMAND */
1264         if (batch_obj->base.pending_write_domain) {
1265                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1266                 ret = -EINVAL;
1267                 goto err;
1268         }
1269         batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1270
1271         ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1272         if (ret)
1273                 goto err;
1274
1275         seqno = i915_gem_next_request_seqno(ring);
1276         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1277                 if (seqno < ring->sync_seqno[i]) {
1278                         /* The GPU can not handle its semaphore value wrapping,
1279                          * so every billion or so execbuffers, we need to stall
1280                          * the GPU in order to reset the counters.
1281                          */
1282                         ret = i915_gpu_idle(dev, true);
1283                         if (ret)
1284                                 goto err;
1285
1286                         BUG_ON(ring->sync_seqno[i]);
1287                 }
1288         }
1289
1290         if (ring == &dev_priv->ring[RCS] &&
1291             mode != dev_priv->relative_constants_mode) {
1292                 ret = intel_ring_begin(ring, 4);
1293                 if (ret)
1294                                 goto err;
1295
1296                 intel_ring_emit(ring, MI_NOOP);
1297                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1298                 intel_ring_emit(ring, INSTPM);
1299                 intel_ring_emit(ring, mask << 16 | mode);
1300                 intel_ring_advance(ring);
1301
1302                 dev_priv->relative_constants_mode = mode;
1303         }
1304
1305         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1306                 ret = i915_reset_gen7_sol_offsets(dev, ring);
1307                 if (ret)
1308                         goto err;
1309         }
1310
1311         trace_i915_gem_ring_dispatch(ring, seqno);
1312
1313         exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1314         exec_len = args->batch_len;
1315         if (cliprects) {
1316                 for (i = 0; i < args->num_cliprects; i++) {
1317                         ret = i915_emit_box(dev, &cliprects[i],
1318                                             args->DR1, args->DR4);
1319                         if (ret)
1320                                 goto err;
1321
1322                         ret = ring->dispatch_execbuffer(ring,
1323                                                         exec_start, exec_len);
1324                         if (ret)
1325                                 goto err;
1326                 }
1327         } else {
1328                 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1329                 if (ret)
1330                         goto err;
1331         }
1332
1333         i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1334         i915_gem_execbuffer_retire_commands(dev, file, ring);
1335
1336 err:
1337         eb_destroy(eb);
1338         while (!list_empty(&objects)) {
1339                 struct drm_i915_gem_object *obj;
1340
1341                 obj = list_first_entry(&objects,
1342                                        struct drm_i915_gem_object,
1343                                        exec_list);
1344                 list_del_init(&obj->exec_list);
1345                 drm_gem_object_unreference(&obj->base);
1346         }
1347
1348         mutex_unlock(&dev->struct_mutex);
1349
1350 pre_mutex_err:
1351         kfree(cliprects);
1352         return ret;
1353 }
1354
1355 /*
1356  * Legacy execbuffer just creates an exec2 list from the original exec object
1357  * list array and passes it to the real function.
1358  */
1359 int
1360 i915_gem_execbuffer(struct drm_device *dev, void *data,
1361                     struct drm_file *file)
1362 {
1363         struct drm_i915_gem_execbuffer *args = data;
1364         struct drm_i915_gem_execbuffer2 exec2;
1365         struct drm_i915_gem_exec_object *exec_list = NULL;
1366         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1367         int ret, i;
1368
1369         if (args->buffer_count < 1) {
1370                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1371                 return -EINVAL;
1372         }
1373
1374         /* Copy in the exec list from userland */
1375         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1376         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1377         if (exec_list == NULL || exec2_list == NULL) {
1378                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1379                           args->buffer_count);
1380                 drm_free_large(exec_list);
1381                 drm_free_large(exec2_list);
1382                 return -ENOMEM;
1383         }
1384         ret = copy_from_user(exec_list,
1385                              (struct drm_i915_relocation_entry __user *)
1386                              (uintptr_t) args->buffers_ptr,
1387                              sizeof(*exec_list) * args->buffer_count);
1388         if (ret != 0) {
1389                 DRM_DEBUG("copy %d exec entries failed %d\n",
1390                           args->buffer_count, ret);
1391                 drm_free_large(exec_list);
1392                 drm_free_large(exec2_list);
1393                 return -EFAULT;
1394         }
1395
1396         for (i = 0; i < args->buffer_count; i++) {
1397                 exec2_list[i].handle = exec_list[i].handle;
1398                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1399                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1400                 exec2_list[i].alignment = exec_list[i].alignment;
1401                 exec2_list[i].offset = exec_list[i].offset;
1402                 if (INTEL_INFO(dev)->gen < 4)
1403                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1404                 else
1405                         exec2_list[i].flags = 0;
1406         }
1407
1408         exec2.buffers_ptr = args->buffers_ptr;
1409         exec2.buffer_count = args->buffer_count;
1410         exec2.batch_start_offset = args->batch_start_offset;
1411         exec2.batch_len = args->batch_len;
1412         exec2.DR1 = args->DR1;
1413         exec2.DR4 = args->DR4;
1414         exec2.num_cliprects = args->num_cliprects;
1415         exec2.cliprects_ptr = args->cliprects_ptr;
1416         exec2.flags = I915_EXEC_RENDER;
1417
1418         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1419         if (!ret) {
1420                 /* Copy the new buffer offsets back to the user's exec list. */
1421                 for (i = 0; i < args->buffer_count; i++)
1422                         exec_list[i].offset = exec2_list[i].offset;
1423                 /* ... and back out to userspace */
1424                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1425                                    (uintptr_t) args->buffers_ptr,
1426                                    exec_list,
1427                                    sizeof(*exec_list) * args->buffer_count);
1428                 if (ret) {
1429                         ret = -EFAULT;
1430                         DRM_DEBUG("failed to copy %d exec entries "
1431                                   "back to user (%d)\n",
1432                                   args->buffer_count, ret);
1433                 }
1434         }
1435
1436         drm_free_large(exec_list);
1437         drm_free_large(exec2_list);
1438         return ret;
1439 }
1440
1441 int
1442 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1443                      struct drm_file *file)
1444 {
1445         struct drm_i915_gem_execbuffer2 *args = data;
1446         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1447         int ret;
1448
1449         if (args->buffer_count < 1) {
1450                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1451                 return -EINVAL;
1452         }
1453
1454         exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1455                              GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1456         if (exec2_list == NULL)
1457                 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1458                                            args->buffer_count);
1459         if (exec2_list == NULL) {
1460                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1461                           args->buffer_count);
1462                 return -ENOMEM;
1463         }
1464         ret = copy_from_user(exec2_list,
1465                              (struct drm_i915_relocation_entry __user *)
1466                              (uintptr_t) args->buffers_ptr,
1467                              sizeof(*exec2_list) * args->buffer_count);
1468         if (ret != 0) {
1469                 DRM_DEBUG("copy %d exec entries failed %d\n",
1470                           args->buffer_count, ret);
1471                 drm_free_large(exec2_list);
1472                 return -EFAULT;
1473         }
1474
1475         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1476         if (!ret) {
1477                 /* Copy the new buffer offsets back to the user's exec list. */
1478                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1479                                    (uintptr_t) args->buffers_ptr,
1480                                    exec2_list,
1481                                    sizeof(*exec2_list) * args->buffer_count);
1482                 if (ret) {
1483                         ret = -EFAULT;
1484                         DRM_DEBUG("failed to copy %d exec entries "
1485                                   "back to user (%d)\n",
1486                                   args->buffer_count, ret);
1487                 }
1488         }
1489
1490         drm_free_large(exec2_list);
1491         return ret;
1492 }