drm/i915: Pin backing pages whilst exporting through a dmabuf vmap
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43                                                     unsigned alignment,
44                                                     bool map_and_fenceable,
45                                                     bool nonblocking);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47                                 struct drm_i915_gem_object *obj,
48                                 struct drm_i915_gem_pwrite *args,
49                                 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52                                  struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54                                          struct drm_i915_fence_reg *fence,
55                                          bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58                                     struct shrink_control *sc);
59 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65         if (obj->tiling_mode)
66                 i915_gem_release_mmap(obj);
67
68         /* As we do not have an associated fence register, we will force
69          * a tiling change if we ever need to acquire one.
70          */
71         obj->fence_dirty = false;
72         obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77                                   size_t size)
78 {
79         dev_priv->mm.object_count++;
80         dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84                                      size_t size)
85 {
86         dev_priv->mm.object_count--;
87         dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct drm_device *dev)
92 {
93         struct drm_i915_private *dev_priv = dev->dev_private;
94         struct completion *x = &dev_priv->error_completion;
95         unsigned long flags;
96         int ret;
97
98         if (!atomic_read(&dev_priv->mm.wedged))
99                 return 0;
100
101         /*
102          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103          * userspace. If it takes that long something really bad is going on and
104          * we should simply try to bail out and fail as gracefully as possible.
105          */
106         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113
114         if (atomic_read(&dev_priv->mm.wedged)) {
115                 /* GPU is hung, bump the completion count to account for
116                  * the token we just consumed so that we never hit zero and
117                  * end up waiting upon a subsequent completion event that
118                  * will never happen.
119                  */
120                 spin_lock_irqsave(&x->wait.lock, flags);
121                 x->done++;
122                 spin_unlock_irqrestore(&x->wait.lock, flags);
123         }
124         return 0;
125 }
126
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
128 {
129         int ret;
130
131         ret = i915_gem_wait_for_error(dev);
132         if (ret)
133                 return ret;
134
135         ret = mutex_lock_interruptible(&dev->struct_mutex);
136         if (ret)
137                 return ret;
138
139         WARN_ON(i915_verify_lists(dev));
140         return 0;
141 }
142
143 static inline bool
144 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145 {
146         return obj->gtt_space && !obj->active;
147 }
148
149 int
150 i915_gem_init_ioctl(struct drm_device *dev, void *data,
151                     struct drm_file *file)
152 {
153         struct drm_i915_gem_init *args = data;
154
155         if (drm_core_check_feature(dev, DRIVER_MODESET))
156                 return -ENODEV;
157
158         if (args->gtt_start >= args->gtt_end ||
159             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160                 return -EINVAL;
161
162         /* GEM with user mode setting was never supported on ilk and later. */
163         if (INTEL_INFO(dev)->gen >= 5)
164                 return -ENODEV;
165
166         mutex_lock(&dev->struct_mutex);
167         i915_gem_init_global_gtt(dev, args->gtt_start,
168                                  args->gtt_end, args->gtt_end);
169         mutex_unlock(&dev->struct_mutex);
170
171         return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176                             struct drm_file *file)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         struct drm_i915_gem_get_aperture *args = data;
180         struct drm_i915_gem_object *obj;
181         size_t pinned;
182
183         pinned = 0;
184         mutex_lock(&dev->struct_mutex);
185         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186                 if (obj->pin_count)
187                         pinned += obj->gtt_space->size;
188         mutex_unlock(&dev->struct_mutex);
189
190         args->aper_size = dev_priv->mm.gtt_total;
191         args->aper_available_size = args->aper_size - pinned;
192
193         return 0;
194 }
195
196 static int
197 i915_gem_create(struct drm_file *file,
198                 struct drm_device *dev,
199                 uint64_t size,
200                 uint32_t *handle_p)
201 {
202         struct drm_i915_gem_object *obj;
203         int ret;
204         u32 handle;
205
206         size = roundup(size, PAGE_SIZE);
207         if (size == 0)
208                 return -EINVAL;
209
210         /* Allocate the new object */
211         obj = i915_gem_alloc_object(dev, size);
212         if (obj == NULL)
213                 return -ENOMEM;
214
215         ret = drm_gem_handle_create(file, &obj->base, &handle);
216         if (ret) {
217                 drm_gem_object_release(&obj->base);
218                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219                 kfree(obj);
220                 return ret;
221         }
222
223         /* drop reference from allocate - handle holds it now */
224         drm_gem_object_unreference(&obj->base);
225         trace_i915_gem_object_create(obj);
226
227         *handle_p = handle;
228         return 0;
229 }
230
231 int
232 i915_gem_dumb_create(struct drm_file *file,
233                      struct drm_device *dev,
234                      struct drm_mode_create_dumb *args)
235 {
236         /* have to work out size/pitch and return them */
237         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238         args->size = args->pitch * args->height;
239         return i915_gem_create(file, dev,
240                                args->size, &args->handle);
241 }
242
243 int i915_gem_dumb_destroy(struct drm_file *file,
244                           struct drm_device *dev,
245                           uint32_t handle)
246 {
247         return drm_gem_handle_delete(file, handle);
248 }
249
250 /**
251  * Creates a new mm object and returns a handle to it.
252  */
253 int
254 i915_gem_create_ioctl(struct drm_device *dev, void *data,
255                       struct drm_file *file)
256 {
257         struct drm_i915_gem_create *args = data;
258
259         return i915_gem_create(file, dev,
260                                args->size, &args->handle);
261 }
262
263 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264 {
265         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266
267         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268                 obj->tiling_mode != I915_TILING_NONE;
269 }
270
271 static inline int
272 __copy_to_user_swizzled(char __user *cpu_vaddr,
273                         const char *gpu_vaddr, int gpu_offset,
274                         int length)
275 {
276         int ret, cpu_offset = 0;
277
278         while (length > 0) {
279                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280                 int this_length = min(cacheline_end - gpu_offset, length);
281                 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284                                      gpu_vaddr + swizzled_gpu_offset,
285                                      this_length);
286                 if (ret)
287                         return ret + length;
288
289                 cpu_offset += this_length;
290                 gpu_offset += this_length;
291                 length -= this_length;
292         }
293
294         return 0;
295 }
296
297 static inline int
298 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299                           const char __user *cpu_vaddr,
300                           int length)
301 {
302         int ret, cpu_offset = 0;
303
304         while (length > 0) {
305                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306                 int this_length = min(cacheline_end - gpu_offset, length);
307                 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310                                        cpu_vaddr + cpu_offset,
311                                        this_length);
312                 if (ret)
313                         return ret + length;
314
315                 cpu_offset += this_length;
316                 gpu_offset += this_length;
317                 length -= this_length;
318         }
319
320         return 0;
321 }
322
323 /* Per-page copy function for the shmem pread fastpath.
324  * Flushes invalid cachelines before reading the target if
325  * needs_clflush is set. */
326 static int
327 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328                  char __user *user_data,
329                  bool page_do_bit17_swizzling, bool needs_clflush)
330 {
331         char *vaddr;
332         int ret;
333
334         if (unlikely(page_do_bit17_swizzling))
335                 return -EINVAL;
336
337         vaddr = kmap_atomic(page);
338         if (needs_clflush)
339                 drm_clflush_virt_range(vaddr + shmem_page_offset,
340                                        page_length);
341         ret = __copy_to_user_inatomic(user_data,
342                                       vaddr + shmem_page_offset,
343                                       page_length);
344         kunmap_atomic(vaddr);
345
346         return ret;
347 }
348
349 static void
350 shmem_clflush_swizzled_range(char *addr, unsigned long length,
351                              bool swizzled)
352 {
353         if (unlikely(swizzled)) {
354                 unsigned long start = (unsigned long) addr;
355                 unsigned long end = (unsigned long) addr + length;
356
357                 /* For swizzling simply ensure that we always flush both
358                  * channels. Lame, but simple and it works. Swizzled
359                  * pwrite/pread is far from a hotpath - current userspace
360                  * doesn't use it at all. */
361                 start = round_down(start, 128);
362                 end = round_up(end, 128);
363
364                 drm_clflush_virt_range((void *)start, end - start);
365         } else {
366                 drm_clflush_virt_range(addr, length);
367         }
368
369 }
370
371 /* Only difference to the fast-path function is that this can handle bit17
372  * and uses non-atomic copy and kmap functions. */
373 static int
374 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375                  char __user *user_data,
376                  bool page_do_bit17_swizzling, bool needs_clflush)
377 {
378         char *vaddr;
379         int ret;
380
381         vaddr = kmap(page);
382         if (needs_clflush)
383                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384                                              page_length,
385                                              page_do_bit17_swizzling);
386
387         if (page_do_bit17_swizzling)
388                 ret = __copy_to_user_swizzled(user_data,
389                                               vaddr, shmem_page_offset,
390                                               page_length);
391         else
392                 ret = __copy_to_user(user_data,
393                                      vaddr + shmem_page_offset,
394                                      page_length);
395         kunmap(page);
396
397         return ret;
398 }
399
400 static int
401 i915_gem_shmem_pread(struct drm_device *dev,
402                      struct drm_i915_gem_object *obj,
403                      struct drm_i915_gem_pread *args,
404                      struct drm_file *file)
405 {
406         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
407         char __user *user_data;
408         ssize_t remain;
409         loff_t offset;
410         int shmem_page_offset, page_length, ret = 0;
411         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412         int hit_slowpath = 0;
413         int prefaulted = 0;
414         int needs_clflush = 0;
415         int release_page;
416
417         user_data = (char __user *) (uintptr_t) args->data_ptr;
418         remain = args->size;
419
420         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423                 /* If we're not in the cpu read domain, set ourself into the gtt
424                  * read domain and manually flush cachelines (if required). This
425                  * optimizes for the case when the gpu will dirty the data
426                  * anyway again before the next pread happens. */
427                 if (obj->cache_level == I915_CACHE_NONE)
428                         needs_clflush = 1;
429                 if (obj->gtt_space) {
430                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
431                         if (ret)
432                                 return ret;
433                 }
434         }
435
436         offset = args->offset;
437
438         while (remain > 0) {
439                 struct page *page;
440
441                 /* Operation in this page
442                  *
443                  * shmem_page_offset = offset within page in shmem file
444                  * page_length = bytes to copy for this page
445                  */
446                 shmem_page_offset = offset_in_page(offset);
447                 page_length = remain;
448                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
449                         page_length = PAGE_SIZE - shmem_page_offset;
450
451                 if (obj->pages) {
452                         page = obj->pages[offset >> PAGE_SHIFT];
453                         release_page = 0;
454                 } else {
455                         page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
456                         if (IS_ERR(page)) {
457                                 ret = PTR_ERR(page);
458                                 goto out;
459                         }
460                         release_page = 1;
461                 }
462
463                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464                         (page_to_phys(page) & (1 << 17)) != 0;
465
466                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467                                        user_data, page_do_bit17_swizzling,
468                                        needs_clflush);
469                 if (ret == 0)
470                         goto next_page;
471
472                 hit_slowpath = 1;
473                 page_cache_get(page);
474                 mutex_unlock(&dev->struct_mutex);
475
476                 if (!prefaulted) {
477                         ret = fault_in_multipages_writeable(user_data, remain);
478                         /* Userspace is tricking us, but we've already clobbered
479                          * its pages with the prefault and promised to write the
480                          * data up to the first fault. Hence ignore any errors
481                          * and just continue. */
482                         (void)ret;
483                         prefaulted = 1;
484                 }
485
486                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487                                        user_data, page_do_bit17_swizzling,
488                                        needs_clflush);
489
490                 mutex_lock(&dev->struct_mutex);
491                 page_cache_release(page);
492 next_page:
493                 mark_page_accessed(page);
494                 if (release_page)
495                         page_cache_release(page);
496
497                 if (ret) {
498                         ret = -EFAULT;
499                         goto out;
500                 }
501
502                 remain -= page_length;
503                 user_data += page_length;
504                 offset += page_length;
505         }
506
507 out:
508         if (hit_slowpath) {
509                 /* Fixup: Kill any reinstated backing storage pages */
510                 if (obj->madv == __I915_MADV_PURGED)
511                         i915_gem_object_truncate(obj);
512         }
513
514         return ret;
515 }
516
517 /**
518  * Reads data from the object referenced by handle.
519  *
520  * On error, the contents of *data are undefined.
521  */
522 int
523 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
524                      struct drm_file *file)
525 {
526         struct drm_i915_gem_pread *args = data;
527         struct drm_i915_gem_object *obj;
528         int ret = 0;
529
530         if (args->size == 0)
531                 return 0;
532
533         if (!access_ok(VERIFY_WRITE,
534                        (char __user *)(uintptr_t)args->data_ptr,
535                        args->size))
536                 return -EFAULT;
537
538         ret = i915_mutex_lock_interruptible(dev);
539         if (ret)
540                 return ret;
541
542         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
543         if (&obj->base == NULL) {
544                 ret = -ENOENT;
545                 goto unlock;
546         }
547
548         /* Bounds check source.  */
549         if (args->offset > obj->base.size ||
550             args->size > obj->base.size - args->offset) {
551                 ret = -EINVAL;
552                 goto out;
553         }
554
555         /* prime objects have no backing filp to GEM pread/pwrite
556          * pages from.
557          */
558         if (!obj->base.filp) {
559                 ret = -EINVAL;
560                 goto out;
561         }
562
563         trace_i915_gem_object_pread(obj, args->offset, args->size);
564
565         ret = i915_gem_shmem_pread(dev, obj, args, file);
566
567 out:
568         drm_gem_object_unreference(&obj->base);
569 unlock:
570         mutex_unlock(&dev->struct_mutex);
571         return ret;
572 }
573
574 /* This is the fast write path which cannot handle
575  * page faults in the source data
576  */
577
578 static inline int
579 fast_user_write(struct io_mapping *mapping,
580                 loff_t page_base, int page_offset,
581                 char __user *user_data,
582                 int length)
583 {
584         void __iomem *vaddr_atomic;
585         void *vaddr;
586         unsigned long unwritten;
587
588         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
589         /* We can use the cpu mem copy function because this is X86. */
590         vaddr = (void __force*)vaddr_atomic + page_offset;
591         unwritten = __copy_from_user_inatomic_nocache(vaddr,
592                                                       user_data, length);
593         io_mapping_unmap_atomic(vaddr_atomic);
594         return unwritten;
595 }
596
597 /**
598  * This is the fast pwrite path, where we copy the data directly from the
599  * user into the GTT, uncached.
600  */
601 static int
602 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
603                          struct drm_i915_gem_object *obj,
604                          struct drm_i915_gem_pwrite *args,
605                          struct drm_file *file)
606 {
607         drm_i915_private_t *dev_priv = dev->dev_private;
608         ssize_t remain;
609         loff_t offset, page_base;
610         char __user *user_data;
611         int page_offset, page_length, ret;
612
613         ret = i915_gem_object_pin(obj, 0, true, true);
614         if (ret)
615                 goto out;
616
617         ret = i915_gem_object_set_to_gtt_domain(obj, true);
618         if (ret)
619                 goto out_unpin;
620
621         ret = i915_gem_object_put_fence(obj);
622         if (ret)
623                 goto out_unpin;
624
625         user_data = (char __user *) (uintptr_t) args->data_ptr;
626         remain = args->size;
627
628         offset = obj->gtt_offset + args->offset;
629
630         while (remain > 0) {
631                 /* Operation in this page
632                  *
633                  * page_base = page offset within aperture
634                  * page_offset = offset within page
635                  * page_length = bytes to copy for this page
636                  */
637                 page_base = offset & PAGE_MASK;
638                 page_offset = offset_in_page(offset);
639                 page_length = remain;
640                 if ((page_offset + remain) > PAGE_SIZE)
641                         page_length = PAGE_SIZE - page_offset;
642
643                 /* If we get a fault while copying data, then (presumably) our
644                  * source page isn't available.  Return the error and we'll
645                  * retry in the slow path.
646                  */
647                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
648                                     page_offset, user_data, page_length)) {
649                         ret = -EFAULT;
650                         goto out_unpin;
651                 }
652
653                 remain -= page_length;
654                 user_data += page_length;
655                 offset += page_length;
656         }
657
658 out_unpin:
659         i915_gem_object_unpin(obj);
660 out:
661         return ret;
662 }
663
664 /* Per-page copy function for the shmem pwrite fastpath.
665  * Flushes invalid cachelines before writing to the target if
666  * needs_clflush_before is set and flushes out any written cachelines after
667  * writing if needs_clflush is set. */
668 static int
669 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
670                   char __user *user_data,
671                   bool page_do_bit17_swizzling,
672                   bool needs_clflush_before,
673                   bool needs_clflush_after)
674 {
675         char *vaddr;
676         int ret;
677
678         if (unlikely(page_do_bit17_swizzling))
679                 return -EINVAL;
680
681         vaddr = kmap_atomic(page);
682         if (needs_clflush_before)
683                 drm_clflush_virt_range(vaddr + shmem_page_offset,
684                                        page_length);
685         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
686                                                 user_data,
687                                                 page_length);
688         if (needs_clflush_after)
689                 drm_clflush_virt_range(vaddr + shmem_page_offset,
690                                        page_length);
691         kunmap_atomic(vaddr);
692
693         return ret;
694 }
695
696 /* Only difference to the fast-path function is that this can handle bit17
697  * and uses non-atomic copy and kmap functions. */
698 static int
699 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
700                   char __user *user_data,
701                   bool page_do_bit17_swizzling,
702                   bool needs_clflush_before,
703                   bool needs_clflush_after)
704 {
705         char *vaddr;
706         int ret;
707
708         vaddr = kmap(page);
709         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
710                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
711                                              page_length,
712                                              page_do_bit17_swizzling);
713         if (page_do_bit17_swizzling)
714                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
715                                                 user_data,
716                                                 page_length);
717         else
718                 ret = __copy_from_user(vaddr + shmem_page_offset,
719                                        user_data,
720                                        page_length);
721         if (needs_clflush_after)
722                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
723                                              page_length,
724                                              page_do_bit17_swizzling);
725         kunmap(page);
726
727         return ret;
728 }
729
730 static int
731 i915_gem_shmem_pwrite(struct drm_device *dev,
732                       struct drm_i915_gem_object *obj,
733                       struct drm_i915_gem_pwrite *args,
734                       struct drm_file *file)
735 {
736         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
737         ssize_t remain;
738         loff_t offset;
739         char __user *user_data;
740         int shmem_page_offset, page_length, ret = 0;
741         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
742         int hit_slowpath = 0;
743         int needs_clflush_after = 0;
744         int needs_clflush_before = 0;
745         int release_page;
746
747         user_data = (char __user *) (uintptr_t) args->data_ptr;
748         remain = args->size;
749
750         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
751
752         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
753                 /* If we're not in the cpu write domain, set ourself into the gtt
754                  * write domain and manually flush cachelines (if required). This
755                  * optimizes for the case when the gpu will use the data
756                  * right away and we therefore have to clflush anyway. */
757                 if (obj->cache_level == I915_CACHE_NONE)
758                         needs_clflush_after = 1;
759                 if (obj->gtt_space) {
760                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
761                         if (ret)
762                                 return ret;
763                 }
764         }
765         /* Same trick applies for invalidate partially written cachelines before
766          * writing.  */
767         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
768             && obj->cache_level == I915_CACHE_NONE)
769                 needs_clflush_before = 1;
770
771         offset = args->offset;
772         obj->dirty = 1;
773
774         while (remain > 0) {
775                 struct page *page;
776                 int partial_cacheline_write;
777
778                 /* Operation in this page
779                  *
780                  * shmem_page_offset = offset within page in shmem file
781                  * page_length = bytes to copy for this page
782                  */
783                 shmem_page_offset = offset_in_page(offset);
784
785                 page_length = remain;
786                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
787                         page_length = PAGE_SIZE - shmem_page_offset;
788
789                 /* If we don't overwrite a cacheline completely we need to be
790                  * careful to have up-to-date data by first clflushing. Don't
791                  * overcomplicate things and flush the entire patch. */
792                 partial_cacheline_write = needs_clflush_before &&
793                         ((shmem_page_offset | page_length)
794                                 & (boot_cpu_data.x86_clflush_size - 1));
795
796                 if (obj->pages) {
797                         page = obj->pages[offset >> PAGE_SHIFT];
798                         release_page = 0;
799                 } else {
800                         page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
801                         if (IS_ERR(page)) {
802                                 ret = PTR_ERR(page);
803                                 goto out;
804                         }
805                         release_page = 1;
806                 }
807
808                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
809                         (page_to_phys(page) & (1 << 17)) != 0;
810
811                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
812                                         user_data, page_do_bit17_swizzling,
813                                         partial_cacheline_write,
814                                         needs_clflush_after);
815                 if (ret == 0)
816                         goto next_page;
817
818                 hit_slowpath = 1;
819                 page_cache_get(page);
820                 mutex_unlock(&dev->struct_mutex);
821
822                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
823                                         user_data, page_do_bit17_swizzling,
824                                         partial_cacheline_write,
825                                         needs_clflush_after);
826
827                 mutex_lock(&dev->struct_mutex);
828                 page_cache_release(page);
829 next_page:
830                 set_page_dirty(page);
831                 mark_page_accessed(page);
832                 if (release_page)
833                         page_cache_release(page);
834
835                 if (ret) {
836                         ret = -EFAULT;
837                         goto out;
838                 }
839
840                 remain -= page_length;
841                 user_data += page_length;
842                 offset += page_length;
843         }
844
845 out:
846         if (hit_slowpath) {
847                 /* Fixup: Kill any reinstated backing storage pages */
848                 if (obj->madv == __I915_MADV_PURGED)
849                         i915_gem_object_truncate(obj);
850                 /* and flush dirty cachelines in case the object isn't in the cpu write
851                  * domain anymore. */
852                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
853                         i915_gem_clflush_object(obj);
854                         intel_gtt_chipset_flush();
855                 }
856         }
857
858         if (needs_clflush_after)
859                 intel_gtt_chipset_flush();
860
861         return ret;
862 }
863
864 /**
865  * Writes data to the object referenced by handle.
866  *
867  * On error, the contents of the buffer that were to be modified are undefined.
868  */
869 int
870 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
871                       struct drm_file *file)
872 {
873         struct drm_i915_gem_pwrite *args = data;
874         struct drm_i915_gem_object *obj;
875         int ret;
876
877         if (args->size == 0)
878                 return 0;
879
880         if (!access_ok(VERIFY_READ,
881                        (char __user *)(uintptr_t)args->data_ptr,
882                        args->size))
883                 return -EFAULT;
884
885         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
886                                            args->size);
887         if (ret)
888                 return -EFAULT;
889
890         ret = i915_mutex_lock_interruptible(dev);
891         if (ret)
892                 return ret;
893
894         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
895         if (&obj->base == NULL) {
896                 ret = -ENOENT;
897                 goto unlock;
898         }
899
900         /* Bounds check destination. */
901         if (args->offset > obj->base.size ||
902             args->size > obj->base.size - args->offset) {
903                 ret = -EINVAL;
904                 goto out;
905         }
906
907         /* prime objects have no backing filp to GEM pread/pwrite
908          * pages from.
909          */
910         if (!obj->base.filp) {
911                 ret = -EINVAL;
912                 goto out;
913         }
914
915         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
917         ret = -EFAULT;
918         /* We can only do the GTT pwrite on untiled buffers, as otherwise
919          * it would end up going through the fenced access, and we'll get
920          * different detiling behavior between reading and writing.
921          * pread/pwrite currently are reading and writing from the CPU
922          * perspective, requiring manual detiling by the client.
923          */
924         if (obj->phys_obj) {
925                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
926                 goto out;
927         }
928
929         if (obj->cache_level == I915_CACHE_NONE &&
930             obj->tiling_mode == I915_TILING_NONE &&
931             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
933                 /* Note that the gtt paths might fail with non-page-backed user
934                  * pointers (e.g. gtt mappings when moving data between
935                  * textures). Fallback to the shmem path in that case. */
936         }
937
938         if (ret == -EFAULT || ret == -ENOSPC)
939                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
940
941 out:
942         drm_gem_object_unreference(&obj->base);
943 unlock:
944         mutex_unlock(&dev->struct_mutex);
945         return ret;
946 }
947
948 int
949 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
950                      bool interruptible)
951 {
952         if (atomic_read(&dev_priv->mm.wedged)) {
953                 struct completion *x = &dev_priv->error_completion;
954                 bool recovery_complete;
955                 unsigned long flags;
956
957                 /* Give the error handler a chance to run. */
958                 spin_lock_irqsave(&x->wait.lock, flags);
959                 recovery_complete = x->done > 0;
960                 spin_unlock_irqrestore(&x->wait.lock, flags);
961
962                 /* Non-interruptible callers can't handle -EAGAIN, hence return
963                  * -EIO unconditionally for these. */
964                 if (!interruptible)
965                         return -EIO;
966
967                 /* Recovery complete, but still wedged means reset failure. */
968                 if (recovery_complete)
969                         return -EIO;
970
971                 return -EAGAIN;
972         }
973
974         return 0;
975 }
976
977 /*
978  * Compare seqno against outstanding lazy request. Emit a request if they are
979  * equal.
980  */
981 static int
982 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
983 {
984         int ret;
985
986         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
987
988         ret = 0;
989         if (seqno == ring->outstanding_lazy_request)
990                 ret = i915_add_request(ring, NULL, NULL);
991
992         return ret;
993 }
994
995 /**
996  * __wait_seqno - wait until execution of seqno has finished
997  * @ring: the ring expected to report seqno
998  * @seqno: duh!
999  * @interruptible: do an interruptible wait (normally yes)
1000  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1001  *
1002  * Returns 0 if the seqno was found within the alloted time. Else returns the
1003  * errno with remaining time filled in timeout argument.
1004  */
1005 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1006                         bool interruptible, struct timespec *timeout)
1007 {
1008         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1009         struct timespec before, now, wait_time={1,0};
1010         unsigned long timeout_jiffies;
1011         long end;
1012         bool wait_forever = true;
1013         int ret;
1014
1015         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1016                 return 0;
1017
1018         trace_i915_gem_request_wait_begin(ring, seqno);
1019
1020         if (timeout != NULL) {
1021                 wait_time = *timeout;
1022                 wait_forever = false;
1023         }
1024
1025         timeout_jiffies = timespec_to_jiffies(&wait_time);
1026
1027         if (WARN_ON(!ring->irq_get(ring)))
1028                 return -ENODEV;
1029
1030         /* Record current time in case interrupted by signal, or wedged * */
1031         getrawmonotonic(&before);
1032
1033 #define EXIT_COND \
1034         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1035         atomic_read(&dev_priv->mm.wedged))
1036         do {
1037                 if (interruptible)
1038                         end = wait_event_interruptible_timeout(ring->irq_queue,
1039                                                                EXIT_COND,
1040                                                                timeout_jiffies);
1041                 else
1042                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1043                                                  timeout_jiffies);
1044
1045                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1046                 if (ret)
1047                         end = ret;
1048         } while (end == 0 && wait_forever);
1049
1050         getrawmonotonic(&now);
1051
1052         ring->irq_put(ring);
1053         trace_i915_gem_request_wait_end(ring, seqno);
1054 #undef EXIT_COND
1055
1056         if (timeout) {
1057                 struct timespec sleep_time = timespec_sub(now, before);
1058                 *timeout = timespec_sub(*timeout, sleep_time);
1059         }
1060
1061         switch (end) {
1062         case -EIO:
1063         case -EAGAIN: /* Wedged */
1064         case -ERESTARTSYS: /* Signal */
1065                 return (int)end;
1066         case 0: /* Timeout */
1067                 if (timeout)
1068                         set_normalized_timespec(timeout, 0, 0);
1069                 return -ETIME;
1070         default: /* Completed */
1071                 WARN_ON(end < 0); /* We're not aware of other errors */
1072                 return 0;
1073         }
1074 }
1075
1076 /**
1077  * Waits for a sequence number to be signaled, and cleans up the
1078  * request and object lists appropriately for that event.
1079  */
1080 int
1081 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1082 {
1083         struct drm_device *dev = ring->dev;
1084         struct drm_i915_private *dev_priv = dev->dev_private;
1085         bool interruptible = dev_priv->mm.interruptible;
1086         int ret;
1087
1088         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1089         BUG_ON(seqno == 0);
1090
1091         ret = i915_gem_check_wedge(dev_priv, interruptible);
1092         if (ret)
1093                 return ret;
1094
1095         ret = i915_gem_check_olr(ring, seqno);
1096         if (ret)
1097                 return ret;
1098
1099         return __wait_seqno(ring, seqno, interruptible, NULL);
1100 }
1101
1102 /**
1103  * Ensures that all rendering to the object has completed and the object is
1104  * safe to unbind from the GTT or access from the CPU.
1105  */
1106 static __must_check int
1107 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1108                                bool readonly)
1109 {
1110         struct intel_ring_buffer *ring = obj->ring;
1111         u32 seqno;
1112         int ret;
1113
1114         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1115         if (seqno == 0)
1116                 return 0;
1117
1118         ret = i915_wait_seqno(ring, seqno);
1119         if (ret)
1120                 return ret;
1121
1122         i915_gem_retire_requests_ring(ring);
1123
1124         /* Manually manage the write flush as we may have not yet
1125          * retired the buffer.
1126          */
1127         if (obj->last_write_seqno &&
1128             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1129                 obj->last_write_seqno = 0;
1130                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1131         }
1132
1133         return 0;
1134 }
1135
1136 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1137  * as the object state may change during this call.
1138  */
1139 static __must_check int
1140 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1141                                             bool readonly)
1142 {
1143         struct drm_device *dev = obj->base.dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         struct intel_ring_buffer *ring = obj->ring;
1146         u32 seqno;
1147         int ret;
1148
1149         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1150         BUG_ON(!dev_priv->mm.interruptible);
1151
1152         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1153         if (seqno == 0)
1154                 return 0;
1155
1156         ret = i915_gem_check_wedge(dev_priv, true);
1157         if (ret)
1158                 return ret;
1159
1160         ret = i915_gem_check_olr(ring, seqno);
1161         if (ret)
1162                 return ret;
1163
1164         mutex_unlock(&dev->struct_mutex);
1165         ret = __wait_seqno(ring, seqno, true, NULL);
1166         mutex_lock(&dev->struct_mutex);
1167
1168         i915_gem_retire_requests_ring(ring);
1169
1170         /* Manually manage the write flush as we may have not yet
1171          * retired the buffer.
1172          */
1173         if (obj->last_write_seqno &&
1174             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1175                 obj->last_write_seqno = 0;
1176                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1177         }
1178
1179         return ret;
1180 }
1181
1182 /**
1183  * Called when user space prepares to use an object with the CPU, either
1184  * through the mmap ioctl's mapping or a GTT mapping.
1185  */
1186 int
1187 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1188                           struct drm_file *file)
1189 {
1190         struct drm_i915_gem_set_domain *args = data;
1191         struct drm_i915_gem_object *obj;
1192         uint32_t read_domains = args->read_domains;
1193         uint32_t write_domain = args->write_domain;
1194         int ret;
1195
1196         /* Only handle setting domains to types used by the CPU. */
1197         if (write_domain & I915_GEM_GPU_DOMAINS)
1198                 return -EINVAL;
1199
1200         if (read_domains & I915_GEM_GPU_DOMAINS)
1201                 return -EINVAL;
1202
1203         /* Having something in the write domain implies it's in the read
1204          * domain, and only that read domain.  Enforce that in the request.
1205          */
1206         if (write_domain != 0 && read_domains != write_domain)
1207                 return -EINVAL;
1208
1209         ret = i915_mutex_lock_interruptible(dev);
1210         if (ret)
1211                 return ret;
1212
1213         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1214         if (&obj->base == NULL) {
1215                 ret = -ENOENT;
1216                 goto unlock;
1217         }
1218
1219         /* Try to flush the object off the GPU without holding the lock.
1220          * We will repeat the flush holding the lock in the normal manner
1221          * to catch cases where we are gazumped.
1222          */
1223         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1224         if (ret)
1225                 goto unref;
1226
1227         if (read_domains & I915_GEM_DOMAIN_GTT) {
1228                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1229
1230                 /* Silently promote "you're not bound, there was nothing to do"
1231                  * to success, since the client was just asking us to
1232                  * make sure everything was done.
1233                  */
1234                 if (ret == -EINVAL)
1235                         ret = 0;
1236         } else {
1237                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1238         }
1239
1240 unref:
1241         drm_gem_object_unreference(&obj->base);
1242 unlock:
1243         mutex_unlock(&dev->struct_mutex);
1244         return ret;
1245 }
1246
1247 /**
1248  * Called when user space has done writes to this buffer
1249  */
1250 int
1251 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1252                          struct drm_file *file)
1253 {
1254         struct drm_i915_gem_sw_finish *args = data;
1255         struct drm_i915_gem_object *obj;
1256         int ret = 0;
1257
1258         ret = i915_mutex_lock_interruptible(dev);
1259         if (ret)
1260                 return ret;
1261
1262         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1263         if (&obj->base == NULL) {
1264                 ret = -ENOENT;
1265                 goto unlock;
1266         }
1267
1268         /* Pinned buffers may be scanout, so flush the cache */
1269         if (obj->pin_count)
1270                 i915_gem_object_flush_cpu_write_domain(obj);
1271
1272         drm_gem_object_unreference(&obj->base);
1273 unlock:
1274         mutex_unlock(&dev->struct_mutex);
1275         return ret;
1276 }
1277
1278 /**
1279  * Maps the contents of an object, returning the address it is mapped
1280  * into.
1281  *
1282  * While the mapping holds a reference on the contents of the object, it doesn't
1283  * imply a ref on the object itself.
1284  */
1285 int
1286 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1287                     struct drm_file *file)
1288 {
1289         struct drm_i915_gem_mmap *args = data;
1290         struct drm_gem_object *obj;
1291         unsigned long addr;
1292
1293         obj = drm_gem_object_lookup(dev, file, args->handle);
1294         if (obj == NULL)
1295                 return -ENOENT;
1296
1297         /* prime objects have no backing filp to GEM mmap
1298          * pages from.
1299          */
1300         if (!obj->filp) {
1301                 drm_gem_object_unreference_unlocked(obj);
1302                 return -EINVAL;
1303         }
1304
1305         addr = vm_mmap(obj->filp, 0, args->size,
1306                        PROT_READ | PROT_WRITE, MAP_SHARED,
1307                        args->offset);
1308         drm_gem_object_unreference_unlocked(obj);
1309         if (IS_ERR((void *)addr))
1310                 return addr;
1311
1312         args->addr_ptr = (uint64_t) addr;
1313
1314         return 0;
1315 }
1316
1317 /**
1318  * i915_gem_fault - fault a page into the GTT
1319  * vma: VMA in question
1320  * vmf: fault info
1321  *
1322  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1323  * from userspace.  The fault handler takes care of binding the object to
1324  * the GTT (if needed), allocating and programming a fence register (again,
1325  * only if needed based on whether the old reg is still valid or the object
1326  * is tiled) and inserting a new PTE into the faulting process.
1327  *
1328  * Note that the faulting process may involve evicting existing objects
1329  * from the GTT and/or fence registers to make room.  So performance may
1330  * suffer if the GTT working set is large or there are few fence registers
1331  * left.
1332  */
1333 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1334 {
1335         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1336         struct drm_device *dev = obj->base.dev;
1337         drm_i915_private_t *dev_priv = dev->dev_private;
1338         pgoff_t page_offset;
1339         unsigned long pfn;
1340         int ret = 0;
1341         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1342
1343         /* We don't use vmf->pgoff since that has the fake offset */
1344         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1345                 PAGE_SHIFT;
1346
1347         ret = i915_mutex_lock_interruptible(dev);
1348         if (ret)
1349                 goto out;
1350
1351         trace_i915_gem_object_fault(obj, page_offset, true, write);
1352
1353         /* Now bind it into the GTT if needed */
1354         if (!obj->map_and_fenceable) {
1355                 ret = i915_gem_object_unbind(obj);
1356                 if (ret)
1357                         goto unlock;
1358         }
1359         if (!obj->gtt_space) {
1360                 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1361                 if (ret)
1362                         goto unlock;
1363
1364                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1365                 if (ret)
1366                         goto unlock;
1367         }
1368
1369         if (!obj->has_global_gtt_mapping)
1370                 i915_gem_gtt_bind_object(obj, obj->cache_level);
1371
1372         ret = i915_gem_object_get_fence(obj);
1373         if (ret)
1374                 goto unlock;
1375
1376         if (i915_gem_object_is_inactive(obj))
1377                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1378
1379         obj->fault_mappable = true;
1380
1381         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1382                 page_offset;
1383
1384         /* Finally, remap it using the new GTT offset */
1385         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1386 unlock:
1387         mutex_unlock(&dev->struct_mutex);
1388 out:
1389         switch (ret) {
1390         case -EIO:
1391                 /* If this -EIO is due to a gpu hang, give the reset code a
1392                  * chance to clean up the mess. Otherwise return the proper
1393                  * SIGBUS. */
1394                 if (!atomic_read(&dev_priv->mm.wedged))
1395                         return VM_FAULT_SIGBUS;
1396         case -EAGAIN:
1397                 /* Give the error handler a chance to run and move the
1398                  * objects off the GPU active list. Next time we service the
1399                  * fault, we should be able to transition the page into the
1400                  * GTT without touching the GPU (and so avoid further
1401                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1402                  * with coherency, just lost writes.
1403                  */
1404                 set_need_resched();
1405         case 0:
1406         case -ERESTARTSYS:
1407         case -EINTR:
1408                 return VM_FAULT_NOPAGE;
1409         case -ENOMEM:
1410                 return VM_FAULT_OOM;
1411         default:
1412                 return VM_FAULT_SIGBUS;
1413         }
1414 }
1415
1416 /**
1417  * i915_gem_release_mmap - remove physical page mappings
1418  * @obj: obj in question
1419  *
1420  * Preserve the reservation of the mmapping with the DRM core code, but
1421  * relinquish ownership of the pages back to the system.
1422  *
1423  * It is vital that we remove the page mapping if we have mapped a tiled
1424  * object through the GTT and then lose the fence register due to
1425  * resource pressure. Similarly if the object has been moved out of the
1426  * aperture, than pages mapped into userspace must be revoked. Removing the
1427  * mapping will then trigger a page fault on the next user access, allowing
1428  * fixup by i915_gem_fault().
1429  */
1430 void
1431 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1432 {
1433         if (!obj->fault_mappable)
1434                 return;
1435
1436         if (obj->base.dev->dev_mapping)
1437                 unmap_mapping_range(obj->base.dev->dev_mapping,
1438                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1439                                     obj->base.size, 1);
1440
1441         obj->fault_mappable = false;
1442 }
1443
1444 static uint32_t
1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446 {
1447         uint32_t gtt_size;
1448
1449         if (INTEL_INFO(dev)->gen >= 4 ||
1450             tiling_mode == I915_TILING_NONE)
1451                 return size;
1452
1453         /* Previous chips need a power-of-two fence region when tiling */
1454         if (INTEL_INFO(dev)->gen == 3)
1455                 gtt_size = 1024*1024;
1456         else
1457                 gtt_size = 512*1024;
1458
1459         while (gtt_size < size)
1460                 gtt_size <<= 1;
1461
1462         return gtt_size;
1463 }
1464
1465 /**
1466  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467  * @obj: object to check
1468  *
1469  * Return the required GTT alignment for an object, taking into account
1470  * potential fence register mapping.
1471  */
1472 static uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_device *dev,
1474                            uint32_t size,
1475                            int tiling_mode)
1476 {
1477         /*
1478          * Minimum alignment is 4k (GTT page size), but might be greater
1479          * if a fence register is needed for the object.
1480          */
1481         if (INTEL_INFO(dev)->gen >= 4 ||
1482             tiling_mode == I915_TILING_NONE)
1483                 return 4096;
1484
1485         /*
1486          * Previous chips need to be aligned to the size of the smallest
1487          * fence register that can contain the object.
1488          */
1489         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1490 }
1491
1492 /**
1493  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1494  *                                       unfenced object
1495  * @dev: the device
1496  * @size: size of the object
1497  * @tiling_mode: tiling mode of the object
1498  *
1499  * Return the required GTT alignment for an object, only taking into account
1500  * unfenced tiled surface requirements.
1501  */
1502 uint32_t
1503 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1504                                     uint32_t size,
1505                                     int tiling_mode)
1506 {
1507         /*
1508          * Minimum alignment is 4k (GTT page size) for sane hw.
1509          */
1510         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1511             tiling_mode == I915_TILING_NONE)
1512                 return 4096;
1513
1514         /* Previous hardware however needs to be aligned to a power-of-two
1515          * tile height. The simplest method for determining this is to reuse
1516          * the power-of-tile object size.
1517          */
1518         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1519 }
1520
1521 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1524         int ret;
1525
1526         if (obj->base.map_list.map)
1527                 return 0;
1528
1529         ret = drm_gem_create_mmap_offset(&obj->base);
1530         if (ret != -ENOSPC)
1531                 return ret;
1532
1533         /* Badly fragmented mmap space? The only way we can recover
1534          * space is by destroying unwanted objects. We can't randomly release
1535          * mmap_offsets as userspace expects them to be persistent for the
1536          * lifetime of the objects. The closest we can is to release the
1537          * offsets on purgeable objects by truncating it and marking it purged,
1538          * which prevents userspace from ever using that object again.
1539          */
1540         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1541         ret = drm_gem_create_mmap_offset(&obj->base);
1542         if (ret != -ENOSPC)
1543                 return ret;
1544
1545         i915_gem_shrink_all(dev_priv);
1546         return drm_gem_create_mmap_offset(&obj->base);
1547 }
1548
1549 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1550 {
1551         if (!obj->base.map_list.map)
1552                 return;
1553
1554         drm_gem_free_mmap_offset(&obj->base);
1555 }
1556
1557 int
1558 i915_gem_mmap_gtt(struct drm_file *file,
1559                   struct drm_device *dev,
1560                   uint32_t handle,
1561                   uint64_t *offset)
1562 {
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         struct drm_i915_gem_object *obj;
1565         int ret;
1566
1567         ret = i915_mutex_lock_interruptible(dev);
1568         if (ret)
1569                 return ret;
1570
1571         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1572         if (&obj->base == NULL) {
1573                 ret = -ENOENT;
1574                 goto unlock;
1575         }
1576
1577         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1578                 ret = -E2BIG;
1579                 goto out;
1580         }
1581
1582         if (obj->madv != I915_MADV_WILLNEED) {
1583                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1584                 ret = -EINVAL;
1585                 goto out;
1586         }
1587
1588         ret = i915_gem_object_create_mmap_offset(obj);
1589         if (ret)
1590                 goto out;
1591
1592         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1593
1594 out:
1595         drm_gem_object_unreference(&obj->base);
1596 unlock:
1597         mutex_unlock(&dev->struct_mutex);
1598         return ret;
1599 }
1600
1601 /**
1602  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1603  * @dev: DRM device
1604  * @data: GTT mapping ioctl data
1605  * @file: GEM object info
1606  *
1607  * Simply returns the fake offset to userspace so it can mmap it.
1608  * The mmap call will end up in drm_gem_mmap(), which will set things
1609  * up so we can get faults in the handler above.
1610  *
1611  * The fault handler will take care of binding the object into the GTT
1612  * (since it may have been evicted to make room for something), allocating
1613  * a fence register, and mapping the appropriate aperture address into
1614  * userspace.
1615  */
1616 int
1617 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1618                         struct drm_file *file)
1619 {
1620         struct drm_i915_gem_mmap_gtt *args = data;
1621
1622         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1623 }
1624
1625 /* Immediately discard the backing storage */
1626 static void
1627 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1628 {
1629         struct inode *inode;
1630
1631         i915_gem_object_free_mmap_offset(obj);
1632
1633         if (obj->base.filp == NULL)
1634                 return;
1635
1636         /* Our goal here is to return as much of the memory as
1637          * is possible back to the system as we are called from OOM.
1638          * To do this we must instruct the shmfs to drop all of its
1639          * backing pages, *now*.
1640          */
1641         inode = obj->base.filp->f_path.dentry->d_inode;
1642         shmem_truncate_range(inode, 0, (loff_t)-1);
1643
1644         obj->madv = __I915_MADV_PURGED;
1645 }
1646
1647 static inline int
1648 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1649 {
1650         return obj->madv == I915_MADV_DONTNEED;
1651 }
1652
1653 static void
1654 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1655 {
1656         int page_count = obj->base.size / PAGE_SIZE;
1657         int ret, i;
1658
1659         BUG_ON(obj->madv == __I915_MADV_PURGED);
1660
1661         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1662         if (ret) {
1663                 /* In the event of a disaster, abandon all caches and
1664                  * hope for the best.
1665                  */
1666                 WARN_ON(ret != -EIO);
1667                 i915_gem_clflush_object(obj);
1668                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1669         }
1670
1671         if (i915_gem_object_needs_bit17_swizzle(obj))
1672                 i915_gem_object_save_bit_17_swizzle(obj);
1673
1674         if (obj->madv == I915_MADV_DONTNEED)
1675                 obj->dirty = 0;
1676
1677         for (i = 0; i < page_count; i++) {
1678                 if (obj->dirty)
1679                         set_page_dirty(obj->pages[i]);
1680
1681                 if (obj->madv == I915_MADV_WILLNEED)
1682                         mark_page_accessed(obj->pages[i]);
1683
1684                 page_cache_release(obj->pages[i]);
1685         }
1686         obj->dirty = 0;
1687
1688         drm_free_large(obj->pages);
1689         obj->pages = NULL;
1690 }
1691
1692 static int
1693 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1694 {
1695         const struct drm_i915_gem_object_ops *ops = obj->ops;
1696
1697         if (obj->sg_table || obj->pages == NULL)
1698                 return 0;
1699
1700         BUG_ON(obj->gtt_space);
1701
1702         if (obj->pages_pin_count)
1703                 return -EBUSY;
1704
1705         ops->put_pages(obj);
1706
1707         list_del(&obj->gtt_list);
1708         if (i915_gem_object_is_purgeable(obj))
1709                 i915_gem_object_truncate(obj);
1710
1711         return 0;
1712 }
1713
1714 static long
1715 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1716 {
1717         struct drm_i915_gem_object *obj, *next;
1718         long count = 0;
1719
1720         list_for_each_entry_safe(obj, next,
1721                                  &dev_priv->mm.unbound_list,
1722                                  gtt_list) {
1723                 if (i915_gem_object_is_purgeable(obj) &&
1724                     i915_gem_object_put_pages(obj) == 0) {
1725                         count += obj->base.size >> PAGE_SHIFT;
1726                         if (count >= target)
1727                                 return count;
1728                 }
1729         }
1730
1731         list_for_each_entry_safe(obj, next,
1732                                  &dev_priv->mm.inactive_list,
1733                                  mm_list) {
1734                 if (i915_gem_object_is_purgeable(obj) &&
1735                     i915_gem_object_unbind(obj) == 0 &&
1736                     i915_gem_object_put_pages(obj) == 0) {
1737                         count += obj->base.size >> PAGE_SHIFT;
1738                         if (count >= target)
1739                                 return count;
1740                 }
1741         }
1742
1743         return count;
1744 }
1745
1746 static void
1747 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1748 {
1749         struct drm_i915_gem_object *obj, *next;
1750
1751         i915_gem_evict_everything(dev_priv->dev);
1752
1753         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1754                 i915_gem_object_put_pages(obj);
1755 }
1756
1757 static int
1758 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1759 {
1760         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1761         int page_count, i;
1762         struct address_space *mapping;
1763         struct page *page;
1764         gfp_t gfp;
1765
1766         /* Assert that the object is not currently in any GPU domain. As it
1767          * wasn't in the GTT, there shouldn't be any way it could have been in
1768          * a GPU cache
1769          */
1770         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1771         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1772
1773         /* Get the list of pages out of our struct file.  They'll be pinned
1774          * at this point until we release them.
1775          */
1776         page_count = obj->base.size / PAGE_SIZE;
1777         obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1778         if (obj->pages == NULL)
1779                 return -ENOMEM;
1780
1781         /* Fail silently without starting the shrinker */
1782         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1783         gfp = mapping_gfp_mask(mapping);
1784         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1785         gfp &= ~(__GFP_IO | __GFP_WAIT);
1786         for (i = 0; i < page_count; i++) {
1787                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788                 if (IS_ERR(page)) {
1789                         i915_gem_purge(dev_priv, page_count);
1790                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1791                 }
1792                 if (IS_ERR(page)) {
1793                         /* We've tried hard to allocate the memory by reaping
1794                          * our own buffer, now let the real VM do its job and
1795                          * go down in flames if truly OOM.
1796                          */
1797                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1798                         gfp |= __GFP_IO | __GFP_WAIT;
1799
1800                         i915_gem_shrink_all(dev_priv);
1801                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1802                         if (IS_ERR(page))
1803                                 goto err_pages;
1804
1805                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1806                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1807                 }
1808
1809                 obj->pages[i] = page;
1810         }
1811
1812         if (i915_gem_object_needs_bit17_swizzle(obj))
1813                 i915_gem_object_do_bit_17_swizzle(obj);
1814
1815         return 0;
1816
1817 err_pages:
1818         while (i--)
1819                 page_cache_release(obj->pages[i]);
1820
1821         drm_free_large(obj->pages);
1822         obj->pages = NULL;
1823         return PTR_ERR(page);
1824 }
1825
1826 /* Ensure that the associated pages are gathered from the backing storage
1827  * and pinned into our object. i915_gem_object_get_pages() may be called
1828  * multiple times before they are released by a single call to
1829  * i915_gem_object_put_pages() - once the pages are no longer referenced
1830  * either as a result of memory pressure (reaping pages under the shrinker)
1831  * or as the object is itself released.
1832  */
1833 int
1834 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1835 {
1836         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1837         const struct drm_i915_gem_object_ops *ops = obj->ops;
1838         int ret;
1839
1840         if (obj->sg_table || obj->pages)
1841                 return 0;
1842
1843         BUG_ON(obj->pages_pin_count);
1844
1845         ret = ops->get_pages(obj);
1846         if (ret)
1847                 return ret;
1848
1849         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1850         return 0;
1851 }
1852
1853 void
1854 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1855                                struct intel_ring_buffer *ring,
1856                                u32 seqno)
1857 {
1858         struct drm_device *dev = obj->base.dev;
1859         struct drm_i915_private *dev_priv = dev->dev_private;
1860
1861         BUG_ON(ring == NULL);
1862         obj->ring = ring;
1863
1864         /* Add a reference if we're newly entering the active list. */
1865         if (!obj->active) {
1866                 drm_gem_object_reference(&obj->base);
1867                 obj->active = 1;
1868         }
1869
1870         /* Move from whatever list we were on to the tail of execution. */
1871         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1872         list_move_tail(&obj->ring_list, &ring->active_list);
1873
1874         obj->last_read_seqno = seqno;
1875
1876         if (obj->fenced_gpu_access) {
1877                 obj->last_fenced_seqno = seqno;
1878
1879                 /* Bump MRU to take account of the delayed flush */
1880                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1881                         struct drm_i915_fence_reg *reg;
1882
1883                         reg = &dev_priv->fence_regs[obj->fence_reg];
1884                         list_move_tail(&reg->lru_list,
1885                                        &dev_priv->mm.fence_list);
1886                 }
1887         }
1888 }
1889
1890 static void
1891 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1892 {
1893         struct drm_device *dev = obj->base.dev;
1894         struct drm_i915_private *dev_priv = dev->dev_private;
1895
1896         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1897         BUG_ON(!obj->active);
1898
1899         if (obj->pin_count) /* are we a framebuffer? */
1900                 intel_mark_fb_idle(obj);
1901
1902         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1903
1904         list_del_init(&obj->ring_list);
1905         obj->ring = NULL;
1906
1907         obj->last_read_seqno = 0;
1908         obj->last_write_seqno = 0;
1909         obj->base.write_domain = 0;
1910
1911         obj->last_fenced_seqno = 0;
1912         obj->fenced_gpu_access = false;
1913
1914         obj->active = 0;
1915         drm_gem_object_unreference(&obj->base);
1916
1917         WARN_ON(i915_verify_lists(dev));
1918 }
1919
1920 static u32
1921 i915_gem_get_seqno(struct drm_device *dev)
1922 {
1923         drm_i915_private_t *dev_priv = dev->dev_private;
1924         u32 seqno = dev_priv->next_seqno;
1925
1926         /* reserve 0 for non-seqno */
1927         if (++dev_priv->next_seqno == 0)
1928                 dev_priv->next_seqno = 1;
1929
1930         return seqno;
1931 }
1932
1933 u32
1934 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1935 {
1936         if (ring->outstanding_lazy_request == 0)
1937                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1938
1939         return ring->outstanding_lazy_request;
1940 }
1941
1942 int
1943 i915_add_request(struct intel_ring_buffer *ring,
1944                  struct drm_file *file,
1945                  struct drm_i915_gem_request *request)
1946 {
1947         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1948         uint32_t seqno;
1949         u32 request_ring_position;
1950         int was_empty;
1951         int ret;
1952
1953         /*
1954          * Emit any outstanding flushes - execbuf can fail to emit the flush
1955          * after having emitted the batchbuffer command. Hence we need to fix
1956          * things up similar to emitting the lazy request. The difference here
1957          * is that the flush _must_ happen before the next request, no matter
1958          * what.
1959          */
1960         ret = intel_ring_flush_all_caches(ring);
1961         if (ret)
1962                 return ret;
1963
1964         if (request == NULL) {
1965                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1966                 if (request == NULL)
1967                         return -ENOMEM;
1968         }
1969
1970         seqno = i915_gem_next_request_seqno(ring);
1971
1972         /* Record the position of the start of the request so that
1973          * should we detect the updated seqno part-way through the
1974          * GPU processing the request, we never over-estimate the
1975          * position of the head.
1976          */
1977         request_ring_position = intel_ring_get_tail(ring);
1978
1979         ret = ring->add_request(ring, &seqno);
1980         if (ret) {
1981                 kfree(request);
1982                 return ret;
1983         }
1984
1985         trace_i915_gem_request_add(ring, seqno);
1986
1987         request->seqno = seqno;
1988         request->ring = ring;
1989         request->tail = request_ring_position;
1990         request->emitted_jiffies = jiffies;
1991         was_empty = list_empty(&ring->request_list);
1992         list_add_tail(&request->list, &ring->request_list);
1993         request->file_priv = NULL;
1994
1995         if (file) {
1996                 struct drm_i915_file_private *file_priv = file->driver_priv;
1997
1998                 spin_lock(&file_priv->mm.lock);
1999                 request->file_priv = file_priv;
2000                 list_add_tail(&request->client_list,
2001                               &file_priv->mm.request_list);
2002                 spin_unlock(&file_priv->mm.lock);
2003         }
2004
2005         ring->outstanding_lazy_request = 0;
2006
2007         if (!dev_priv->mm.suspended) {
2008                 if (i915_enable_hangcheck) {
2009                         mod_timer(&dev_priv->hangcheck_timer,
2010                                   jiffies +
2011                                   msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2012                 }
2013                 if (was_empty) {
2014                         queue_delayed_work(dev_priv->wq,
2015                                            &dev_priv->mm.retire_work, HZ);
2016                         intel_mark_busy(dev_priv->dev);
2017                 }
2018         }
2019
2020         return 0;
2021 }
2022
2023 static inline void
2024 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2025 {
2026         struct drm_i915_file_private *file_priv = request->file_priv;
2027
2028         if (!file_priv)
2029                 return;
2030
2031         spin_lock(&file_priv->mm.lock);
2032         if (request->file_priv) {
2033                 list_del(&request->client_list);
2034                 request->file_priv = NULL;
2035         }
2036         spin_unlock(&file_priv->mm.lock);
2037 }
2038
2039 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2040                                       struct intel_ring_buffer *ring)
2041 {
2042         while (!list_empty(&ring->request_list)) {
2043                 struct drm_i915_gem_request *request;
2044
2045                 request = list_first_entry(&ring->request_list,
2046                                            struct drm_i915_gem_request,
2047                                            list);
2048
2049                 list_del(&request->list);
2050                 i915_gem_request_remove_from_client(request);
2051                 kfree(request);
2052         }
2053
2054         while (!list_empty(&ring->active_list)) {
2055                 struct drm_i915_gem_object *obj;
2056
2057                 obj = list_first_entry(&ring->active_list,
2058                                        struct drm_i915_gem_object,
2059                                        ring_list);
2060
2061                 i915_gem_object_move_to_inactive(obj);
2062         }
2063 }
2064
2065 static void i915_gem_reset_fences(struct drm_device *dev)
2066 {
2067         struct drm_i915_private *dev_priv = dev->dev_private;
2068         int i;
2069
2070         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2071                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2072
2073                 i915_gem_write_fence(dev, i, NULL);
2074
2075                 if (reg->obj)
2076                         i915_gem_object_fence_lost(reg->obj);
2077
2078                 reg->pin_count = 0;
2079                 reg->obj = NULL;
2080                 INIT_LIST_HEAD(&reg->lru_list);
2081         }
2082
2083         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2084 }
2085
2086 void i915_gem_reset(struct drm_device *dev)
2087 {
2088         struct drm_i915_private *dev_priv = dev->dev_private;
2089         struct drm_i915_gem_object *obj;
2090         struct intel_ring_buffer *ring;
2091         int i;
2092
2093         for_each_ring(ring, dev_priv, i)
2094                 i915_gem_reset_ring_lists(dev_priv, ring);
2095
2096         /* Move everything out of the GPU domains to ensure we do any
2097          * necessary invalidation upon reuse.
2098          */
2099         list_for_each_entry(obj,
2100                             &dev_priv->mm.inactive_list,
2101                             mm_list)
2102         {
2103                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2104         }
2105
2106         /* The fence registers are invalidated so clear them out */
2107         i915_gem_reset_fences(dev);
2108 }
2109
2110 /**
2111  * This function clears the request list as sequence numbers are passed.
2112  */
2113 void
2114 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2115 {
2116         uint32_t seqno;
2117         int i;
2118
2119         if (list_empty(&ring->request_list))
2120                 return;
2121
2122         WARN_ON(i915_verify_lists(ring->dev));
2123
2124         seqno = ring->get_seqno(ring, true);
2125
2126         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2127                 if (seqno >= ring->sync_seqno[i])
2128                         ring->sync_seqno[i] = 0;
2129
2130         while (!list_empty(&ring->request_list)) {
2131                 struct drm_i915_gem_request *request;
2132
2133                 request = list_first_entry(&ring->request_list,
2134                                            struct drm_i915_gem_request,
2135                                            list);
2136
2137                 if (!i915_seqno_passed(seqno, request->seqno))
2138                         break;
2139
2140                 trace_i915_gem_request_retire(ring, request->seqno);
2141                 /* We know the GPU must have read the request to have
2142                  * sent us the seqno + interrupt, so use the position
2143                  * of tail of the request to update the last known position
2144                  * of the GPU head.
2145                  */
2146                 ring->last_retired_head = request->tail;
2147
2148                 list_del(&request->list);
2149                 i915_gem_request_remove_from_client(request);
2150                 kfree(request);
2151         }
2152
2153         /* Move any buffers on the active list that are no longer referenced
2154          * by the ringbuffer to the flushing/inactive lists as appropriate.
2155          */
2156         while (!list_empty(&ring->active_list)) {
2157                 struct drm_i915_gem_object *obj;
2158
2159                 obj = list_first_entry(&ring->active_list,
2160                                       struct drm_i915_gem_object,
2161                                       ring_list);
2162
2163                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2164                         break;
2165
2166                 i915_gem_object_move_to_inactive(obj);
2167         }
2168
2169         if (unlikely(ring->trace_irq_seqno &&
2170                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2171                 ring->irq_put(ring);
2172                 ring->trace_irq_seqno = 0;
2173         }
2174
2175         WARN_ON(i915_verify_lists(ring->dev));
2176 }
2177
2178 void
2179 i915_gem_retire_requests(struct drm_device *dev)
2180 {
2181         drm_i915_private_t *dev_priv = dev->dev_private;
2182         struct intel_ring_buffer *ring;
2183         int i;
2184
2185         for_each_ring(ring, dev_priv, i)
2186                 i915_gem_retire_requests_ring(ring);
2187 }
2188
2189 static void
2190 i915_gem_retire_work_handler(struct work_struct *work)
2191 {
2192         drm_i915_private_t *dev_priv;
2193         struct drm_device *dev;
2194         struct intel_ring_buffer *ring;
2195         bool idle;
2196         int i;
2197
2198         dev_priv = container_of(work, drm_i915_private_t,
2199                                 mm.retire_work.work);
2200         dev = dev_priv->dev;
2201
2202         /* Come back later if the device is busy... */
2203         if (!mutex_trylock(&dev->struct_mutex)) {
2204                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2205                 return;
2206         }
2207
2208         i915_gem_retire_requests(dev);
2209
2210         /* Send a periodic flush down the ring so we don't hold onto GEM
2211          * objects indefinitely.
2212          */
2213         idle = true;
2214         for_each_ring(ring, dev_priv, i) {
2215                 if (ring->gpu_caches_dirty)
2216                         i915_add_request(ring, NULL, NULL);
2217
2218                 idle &= list_empty(&ring->request_list);
2219         }
2220
2221         if (!dev_priv->mm.suspended && !idle)
2222                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2223         if (idle)
2224                 intel_mark_idle(dev);
2225
2226         mutex_unlock(&dev->struct_mutex);
2227 }
2228
2229 /**
2230  * Ensures that an object will eventually get non-busy by flushing any required
2231  * write domains, emitting any outstanding lazy request and retiring and
2232  * completed requests.
2233  */
2234 static int
2235 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2236 {
2237         int ret;
2238
2239         if (obj->active) {
2240                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2241                 if (ret)
2242                         return ret;
2243
2244                 i915_gem_retire_requests_ring(obj->ring);
2245         }
2246
2247         return 0;
2248 }
2249
2250 /**
2251  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2252  * @DRM_IOCTL_ARGS: standard ioctl arguments
2253  *
2254  * Returns 0 if successful, else an error is returned with the remaining time in
2255  * the timeout parameter.
2256  *  -ETIME: object is still busy after timeout
2257  *  -ERESTARTSYS: signal interrupted the wait
2258  *  -ENONENT: object doesn't exist
2259  * Also possible, but rare:
2260  *  -EAGAIN: GPU wedged
2261  *  -ENOMEM: damn
2262  *  -ENODEV: Internal IRQ fail
2263  *  -E?: The add request failed
2264  *
2265  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2266  * non-zero timeout parameter the wait ioctl will wait for the given number of
2267  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2268  * without holding struct_mutex the object may become re-busied before this
2269  * function completes. A similar but shorter * race condition exists in the busy
2270  * ioctl
2271  */
2272 int
2273 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2274 {
2275         struct drm_i915_gem_wait *args = data;
2276         struct drm_i915_gem_object *obj;
2277         struct intel_ring_buffer *ring = NULL;
2278         struct timespec timeout_stack, *timeout = NULL;
2279         u32 seqno = 0;
2280         int ret = 0;
2281
2282         if (args->timeout_ns >= 0) {
2283                 timeout_stack = ns_to_timespec(args->timeout_ns);
2284                 timeout = &timeout_stack;
2285         }
2286
2287         ret = i915_mutex_lock_interruptible(dev);
2288         if (ret)
2289                 return ret;
2290
2291         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2292         if (&obj->base == NULL) {
2293                 mutex_unlock(&dev->struct_mutex);
2294                 return -ENOENT;
2295         }
2296
2297         /* Need to make sure the object gets inactive eventually. */
2298         ret = i915_gem_object_flush_active(obj);
2299         if (ret)
2300                 goto out;
2301
2302         if (obj->active) {
2303                 seqno = obj->last_read_seqno;
2304                 ring = obj->ring;
2305         }
2306
2307         if (seqno == 0)
2308                  goto out;
2309
2310         /* Do this after OLR check to make sure we make forward progress polling
2311          * on this IOCTL with a 0 timeout (like busy ioctl)
2312          */
2313         if (!args->timeout_ns) {
2314                 ret = -ETIME;
2315                 goto out;
2316         }
2317
2318         drm_gem_object_unreference(&obj->base);
2319         mutex_unlock(&dev->struct_mutex);
2320
2321         ret = __wait_seqno(ring, seqno, true, timeout);
2322         if (timeout) {
2323                 WARN_ON(!timespec_valid(timeout));
2324                 args->timeout_ns = timespec_to_ns(timeout);
2325         }
2326         return ret;
2327
2328 out:
2329         drm_gem_object_unreference(&obj->base);
2330         mutex_unlock(&dev->struct_mutex);
2331         return ret;
2332 }
2333
2334 /**
2335  * i915_gem_object_sync - sync an object to a ring.
2336  *
2337  * @obj: object which may be in use on another ring.
2338  * @to: ring we wish to use the object on. May be NULL.
2339  *
2340  * This code is meant to abstract object synchronization with the GPU.
2341  * Calling with NULL implies synchronizing the object with the CPU
2342  * rather than a particular GPU ring.
2343  *
2344  * Returns 0 if successful, else propagates up the lower layer error.
2345  */
2346 int
2347 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2348                      struct intel_ring_buffer *to)
2349 {
2350         struct intel_ring_buffer *from = obj->ring;
2351         u32 seqno;
2352         int ret, idx;
2353
2354         if (from == NULL || to == from)
2355                 return 0;
2356
2357         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2358                 return i915_gem_object_wait_rendering(obj, false);
2359
2360         idx = intel_ring_sync_index(from, to);
2361
2362         seqno = obj->last_read_seqno;
2363         if (seqno <= from->sync_seqno[idx])
2364                 return 0;
2365
2366         ret = i915_gem_check_olr(obj->ring, seqno);
2367         if (ret)
2368                 return ret;
2369
2370         ret = to->sync_to(to, from, seqno);
2371         if (!ret)
2372                 from->sync_seqno[idx] = seqno;
2373
2374         return ret;
2375 }
2376
2377 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2378 {
2379         u32 old_write_domain, old_read_domains;
2380
2381         /* Act a barrier for all accesses through the GTT */
2382         mb();
2383
2384         /* Force a pagefault for domain tracking on next user access */
2385         i915_gem_release_mmap(obj);
2386
2387         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2388                 return;
2389
2390         old_read_domains = obj->base.read_domains;
2391         old_write_domain = obj->base.write_domain;
2392
2393         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2394         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2395
2396         trace_i915_gem_object_change_domain(obj,
2397                                             old_read_domains,
2398                                             old_write_domain);
2399 }
2400
2401 /**
2402  * Unbinds an object from the GTT aperture.
2403  */
2404 int
2405 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2406 {
2407         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2408         int ret = 0;
2409
2410         if (obj->gtt_space == NULL)
2411                 return 0;
2412
2413         if (obj->pin_count)
2414                 return -EBUSY;
2415
2416         BUG_ON(obj->pages == NULL);
2417
2418         ret = i915_gem_object_finish_gpu(obj);
2419         if (ret)
2420                 return ret;
2421         /* Continue on if we fail due to EIO, the GPU is hung so we
2422          * should be safe and we need to cleanup or else we might
2423          * cause memory corruption through use-after-free.
2424          */
2425
2426         i915_gem_object_finish_gtt(obj);
2427
2428         /* release the fence reg _after_ flushing */
2429         ret = i915_gem_object_put_fence(obj);
2430         if (ret)
2431                 return ret;
2432
2433         trace_i915_gem_object_unbind(obj);
2434
2435         if (obj->has_global_gtt_mapping)
2436                 i915_gem_gtt_unbind_object(obj);
2437         if (obj->has_aliasing_ppgtt_mapping) {
2438                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2439                 obj->has_aliasing_ppgtt_mapping = 0;
2440         }
2441         i915_gem_gtt_finish_object(obj);
2442
2443         list_del(&obj->mm_list);
2444         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2445         /* Avoid an unnecessary call to unbind on rebind. */
2446         obj->map_and_fenceable = true;
2447
2448         drm_mm_put_block(obj->gtt_space);
2449         obj->gtt_space = NULL;
2450         obj->gtt_offset = 0;
2451
2452         return 0;
2453 }
2454
2455 static int i915_ring_idle(struct intel_ring_buffer *ring)
2456 {
2457         if (list_empty(&ring->active_list))
2458                 return 0;
2459
2460         return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2461 }
2462
2463 int i915_gpu_idle(struct drm_device *dev)
2464 {
2465         drm_i915_private_t *dev_priv = dev->dev_private;
2466         struct intel_ring_buffer *ring;
2467         int ret, i;
2468
2469         /* Flush everything onto the inactive list. */
2470         for_each_ring(ring, dev_priv, i) {
2471                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2472                 if (ret)
2473                         return ret;
2474
2475                 ret = i915_ring_idle(ring);
2476                 if (ret)
2477                         return ret;
2478         }
2479
2480         return 0;
2481 }
2482
2483 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2484                                         struct drm_i915_gem_object *obj)
2485 {
2486         drm_i915_private_t *dev_priv = dev->dev_private;
2487         uint64_t val;
2488
2489         if (obj) {
2490                 u32 size = obj->gtt_space->size;
2491
2492                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2493                                  0xfffff000) << 32;
2494                 val |= obj->gtt_offset & 0xfffff000;
2495                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2496                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2497
2498                 if (obj->tiling_mode == I915_TILING_Y)
2499                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2500                 val |= I965_FENCE_REG_VALID;
2501         } else
2502                 val = 0;
2503
2504         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2505         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2506 }
2507
2508 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2509                                  struct drm_i915_gem_object *obj)
2510 {
2511         drm_i915_private_t *dev_priv = dev->dev_private;
2512         uint64_t val;
2513
2514         if (obj) {
2515                 u32 size = obj->gtt_space->size;
2516
2517                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2518                                  0xfffff000) << 32;
2519                 val |= obj->gtt_offset & 0xfffff000;
2520                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2521                 if (obj->tiling_mode == I915_TILING_Y)
2522                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2523                 val |= I965_FENCE_REG_VALID;
2524         } else
2525                 val = 0;
2526
2527         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2528         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2529 }
2530
2531 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2532                                  struct drm_i915_gem_object *obj)
2533 {
2534         drm_i915_private_t *dev_priv = dev->dev_private;
2535         u32 val;
2536
2537         if (obj) {
2538                 u32 size = obj->gtt_space->size;
2539                 int pitch_val;
2540                 int tile_width;
2541
2542                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2543                      (size & -size) != size ||
2544                      (obj->gtt_offset & (size - 1)),
2545                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2546                      obj->gtt_offset, obj->map_and_fenceable, size);
2547
2548                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2549                         tile_width = 128;
2550                 else
2551                         tile_width = 512;
2552
2553                 /* Note: pitch better be a power of two tile widths */
2554                 pitch_val = obj->stride / tile_width;
2555                 pitch_val = ffs(pitch_val) - 1;
2556
2557                 val = obj->gtt_offset;
2558                 if (obj->tiling_mode == I915_TILING_Y)
2559                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2560                 val |= I915_FENCE_SIZE_BITS(size);
2561                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2562                 val |= I830_FENCE_REG_VALID;
2563         } else
2564                 val = 0;
2565
2566         if (reg < 8)
2567                 reg = FENCE_REG_830_0 + reg * 4;
2568         else
2569                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2570
2571         I915_WRITE(reg, val);
2572         POSTING_READ(reg);
2573 }
2574
2575 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2576                                 struct drm_i915_gem_object *obj)
2577 {
2578         drm_i915_private_t *dev_priv = dev->dev_private;
2579         uint32_t val;
2580
2581         if (obj) {
2582                 u32 size = obj->gtt_space->size;
2583                 uint32_t pitch_val;
2584
2585                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2586                      (size & -size) != size ||
2587                      (obj->gtt_offset & (size - 1)),
2588                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2589                      obj->gtt_offset, size);
2590
2591                 pitch_val = obj->stride / 128;
2592                 pitch_val = ffs(pitch_val) - 1;
2593
2594                 val = obj->gtt_offset;
2595                 if (obj->tiling_mode == I915_TILING_Y)
2596                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2597                 val |= I830_FENCE_SIZE_BITS(size);
2598                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2599                 val |= I830_FENCE_REG_VALID;
2600         } else
2601                 val = 0;
2602
2603         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2604         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2605 }
2606
2607 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2608                                  struct drm_i915_gem_object *obj)
2609 {
2610         switch (INTEL_INFO(dev)->gen) {
2611         case 7:
2612         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2613         case 5:
2614         case 4: i965_write_fence_reg(dev, reg, obj); break;
2615         case 3: i915_write_fence_reg(dev, reg, obj); break;
2616         case 2: i830_write_fence_reg(dev, reg, obj); break;
2617         default: break;
2618         }
2619 }
2620
2621 static inline int fence_number(struct drm_i915_private *dev_priv,
2622                                struct drm_i915_fence_reg *fence)
2623 {
2624         return fence - dev_priv->fence_regs;
2625 }
2626
2627 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2628                                          struct drm_i915_fence_reg *fence,
2629                                          bool enable)
2630 {
2631         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2632         int reg = fence_number(dev_priv, fence);
2633
2634         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2635
2636         if (enable) {
2637                 obj->fence_reg = reg;
2638                 fence->obj = obj;
2639                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2640         } else {
2641                 obj->fence_reg = I915_FENCE_REG_NONE;
2642                 fence->obj = NULL;
2643                 list_del_init(&fence->lru_list);
2644         }
2645 }
2646
2647 static int
2648 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2649 {
2650         if (obj->last_fenced_seqno) {
2651                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2652                 if (ret)
2653                         return ret;
2654
2655                 obj->last_fenced_seqno = 0;
2656         }
2657
2658         /* Ensure that all CPU reads are completed before installing a fence
2659          * and all writes before removing the fence.
2660          */
2661         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2662                 mb();
2663
2664         obj->fenced_gpu_access = false;
2665         return 0;
2666 }
2667
2668 int
2669 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2670 {
2671         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2672         int ret;
2673
2674         ret = i915_gem_object_flush_fence(obj);
2675         if (ret)
2676                 return ret;
2677
2678         if (obj->fence_reg == I915_FENCE_REG_NONE)
2679                 return 0;
2680
2681         i915_gem_object_update_fence(obj,
2682                                      &dev_priv->fence_regs[obj->fence_reg],
2683                                      false);
2684         i915_gem_object_fence_lost(obj);
2685
2686         return 0;
2687 }
2688
2689 static struct drm_i915_fence_reg *
2690 i915_find_fence_reg(struct drm_device *dev)
2691 {
2692         struct drm_i915_private *dev_priv = dev->dev_private;
2693         struct drm_i915_fence_reg *reg, *avail;
2694         int i;
2695
2696         /* First try to find a free reg */
2697         avail = NULL;
2698         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2699                 reg = &dev_priv->fence_regs[i];
2700                 if (!reg->obj)
2701                         return reg;
2702
2703                 if (!reg->pin_count)
2704                         avail = reg;
2705         }
2706
2707         if (avail == NULL)
2708                 return NULL;
2709
2710         /* None available, try to steal one or wait for a user to finish */
2711         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2712                 if (reg->pin_count)
2713                         continue;
2714
2715                 return reg;
2716         }
2717
2718         return NULL;
2719 }
2720
2721 /**
2722  * i915_gem_object_get_fence - set up fencing for an object
2723  * @obj: object to map through a fence reg
2724  *
2725  * When mapping objects through the GTT, userspace wants to be able to write
2726  * to them without having to worry about swizzling if the object is tiled.
2727  * This function walks the fence regs looking for a free one for @obj,
2728  * stealing one if it can't find any.
2729  *
2730  * It then sets up the reg based on the object's properties: address, pitch
2731  * and tiling format.
2732  *
2733  * For an untiled surface, this removes any existing fence.
2734  */
2735 int
2736 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2737 {
2738         struct drm_device *dev = obj->base.dev;
2739         struct drm_i915_private *dev_priv = dev->dev_private;
2740         bool enable = obj->tiling_mode != I915_TILING_NONE;
2741         struct drm_i915_fence_reg *reg;
2742         int ret;
2743
2744         /* Have we updated the tiling parameters upon the object and so
2745          * will need to serialise the write to the associated fence register?
2746          */
2747         if (obj->fence_dirty) {
2748                 ret = i915_gem_object_flush_fence(obj);
2749                 if (ret)
2750                         return ret;
2751         }
2752
2753         /* Just update our place in the LRU if our fence is getting reused. */
2754         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2755                 reg = &dev_priv->fence_regs[obj->fence_reg];
2756                 if (!obj->fence_dirty) {
2757                         list_move_tail(&reg->lru_list,
2758                                        &dev_priv->mm.fence_list);
2759                         return 0;
2760                 }
2761         } else if (enable) {
2762                 reg = i915_find_fence_reg(dev);
2763                 if (reg == NULL)
2764                         return -EDEADLK;
2765
2766                 if (reg->obj) {
2767                         struct drm_i915_gem_object *old = reg->obj;
2768
2769                         ret = i915_gem_object_flush_fence(old);
2770                         if (ret)
2771                                 return ret;
2772
2773                         i915_gem_object_fence_lost(old);
2774                 }
2775         } else
2776                 return 0;
2777
2778         i915_gem_object_update_fence(obj, reg, enable);
2779         obj->fence_dirty = false;
2780
2781         return 0;
2782 }
2783
2784 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2785                                      struct drm_mm_node *gtt_space,
2786                                      unsigned long cache_level)
2787 {
2788         struct drm_mm_node *other;
2789
2790         /* On non-LLC machines we have to be careful when putting differing
2791          * types of snoopable memory together to avoid the prefetcher
2792          * crossing memory domains and dieing.
2793          */
2794         if (HAS_LLC(dev))
2795                 return true;
2796
2797         if (gtt_space == NULL)
2798                 return true;
2799
2800         if (list_empty(&gtt_space->node_list))
2801                 return true;
2802
2803         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2804         if (other->allocated && !other->hole_follows && other->color != cache_level)
2805                 return false;
2806
2807         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2808         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2809                 return false;
2810
2811         return true;
2812 }
2813
2814 static void i915_gem_verify_gtt(struct drm_device *dev)
2815 {
2816 #if WATCH_GTT
2817         struct drm_i915_private *dev_priv = dev->dev_private;
2818         struct drm_i915_gem_object *obj;
2819         int err = 0;
2820
2821         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2822                 if (obj->gtt_space == NULL) {
2823                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2824                         err++;
2825                         continue;
2826                 }
2827
2828                 if (obj->cache_level != obj->gtt_space->color) {
2829                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2830                                obj->gtt_space->start,
2831                                obj->gtt_space->start + obj->gtt_space->size,
2832                                obj->cache_level,
2833                                obj->gtt_space->color);
2834                         err++;
2835                         continue;
2836                 }
2837
2838                 if (!i915_gem_valid_gtt_space(dev,
2839                                               obj->gtt_space,
2840                                               obj->cache_level)) {
2841                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2842                                obj->gtt_space->start,
2843                                obj->gtt_space->start + obj->gtt_space->size,
2844                                obj->cache_level);
2845                         err++;
2846                         continue;
2847                 }
2848         }
2849
2850         WARN_ON(err);
2851 #endif
2852 }
2853
2854 /**
2855  * Finds free space in the GTT aperture and binds the object there.
2856  */
2857 static int
2858 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2859                             unsigned alignment,
2860                             bool map_and_fenceable,
2861                             bool nonblocking)
2862 {
2863         struct drm_device *dev = obj->base.dev;
2864         drm_i915_private_t *dev_priv = dev->dev_private;
2865         struct drm_mm_node *free_space;
2866         u32 size, fence_size, fence_alignment, unfenced_alignment;
2867         bool mappable, fenceable;
2868         int ret;
2869
2870         if (obj->madv != I915_MADV_WILLNEED) {
2871                 DRM_ERROR("Attempting to bind a purgeable object\n");
2872                 return -EINVAL;
2873         }
2874
2875         fence_size = i915_gem_get_gtt_size(dev,
2876                                            obj->base.size,
2877                                            obj->tiling_mode);
2878         fence_alignment = i915_gem_get_gtt_alignment(dev,
2879                                                      obj->base.size,
2880                                                      obj->tiling_mode);
2881         unfenced_alignment =
2882                 i915_gem_get_unfenced_gtt_alignment(dev,
2883                                                     obj->base.size,
2884                                                     obj->tiling_mode);
2885
2886         if (alignment == 0)
2887                 alignment = map_and_fenceable ? fence_alignment :
2888                                                 unfenced_alignment;
2889         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2890                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2891                 return -EINVAL;
2892         }
2893
2894         size = map_and_fenceable ? fence_size : obj->base.size;
2895
2896         /* If the object is bigger than the entire aperture, reject it early
2897          * before evicting everything in a vain attempt to find space.
2898          */
2899         if (obj->base.size >
2900             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2901                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2902                 return -E2BIG;
2903         }
2904
2905         ret = i915_gem_object_get_pages(obj);
2906         if (ret)
2907                 return ret;
2908
2909  search_free:
2910         if (map_and_fenceable)
2911                 free_space =
2912                         drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2913                                                           size, alignment, obj->cache_level,
2914                                                           0, dev_priv->mm.gtt_mappable_end,
2915                                                           false);
2916         else
2917                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2918                                                       size, alignment, obj->cache_level,
2919                                                       false);
2920
2921         if (free_space != NULL) {
2922                 if (map_and_fenceable)
2923                         obj->gtt_space =
2924                                 drm_mm_get_block_range_generic(free_space,
2925                                                                size, alignment, obj->cache_level,
2926                                                                0, dev_priv->mm.gtt_mappable_end,
2927                                                                false);
2928                 else
2929                         obj->gtt_space =
2930                                 drm_mm_get_block_generic(free_space,
2931                                                          size, alignment, obj->cache_level,
2932                                                          false);
2933         }
2934         if (obj->gtt_space == NULL) {
2935                 ret = i915_gem_evict_something(dev, size, alignment,
2936                                                obj->cache_level,
2937                                                map_and_fenceable,
2938                                                nonblocking);
2939                 if (ret)
2940                         return ret;
2941
2942                 goto search_free;
2943         }
2944         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2945                                               obj->gtt_space,
2946                                               obj->cache_level))) {
2947                 drm_mm_put_block(obj->gtt_space);
2948                 obj->gtt_space = NULL;
2949                 return -EINVAL;
2950         }
2951
2952
2953         ret = i915_gem_gtt_prepare_object(obj);
2954         if (ret) {
2955                 drm_mm_put_block(obj->gtt_space);
2956                 obj->gtt_space = NULL;
2957                 return ret;
2958         }
2959
2960         if (!dev_priv->mm.aliasing_ppgtt)
2961                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2962
2963         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2964         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2965
2966         obj->gtt_offset = obj->gtt_space->start;
2967
2968         fenceable =
2969                 obj->gtt_space->size == fence_size &&
2970                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2971
2972         mappable =
2973                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2974
2975         obj->map_and_fenceable = mappable && fenceable;
2976
2977         trace_i915_gem_object_bind(obj, map_and_fenceable);
2978         i915_gem_verify_gtt(dev);
2979         return 0;
2980 }
2981
2982 void
2983 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2984 {
2985         /* If we don't have a page list set up, then we're not pinned
2986          * to GPU, and we can ignore the cache flush because it'll happen
2987          * again at bind time.
2988          */
2989         if (obj->pages == NULL)
2990                 return;
2991
2992         /* If the GPU is snooping the contents of the CPU cache,
2993          * we do not need to manually clear the CPU cache lines.  However,
2994          * the caches are only snooped when the render cache is
2995          * flushed/invalidated.  As we always have to emit invalidations
2996          * and flushes when moving into and out of the RENDER domain, correct
2997          * snooping behaviour occurs naturally as the result of our domain
2998          * tracking.
2999          */
3000         if (obj->cache_level != I915_CACHE_NONE)
3001                 return;
3002
3003         trace_i915_gem_object_clflush(obj);
3004
3005         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
3006 }
3007
3008 /** Flushes the GTT write domain for the object if it's dirty. */
3009 static void
3010 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3011 {
3012         uint32_t old_write_domain;
3013
3014         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3015                 return;
3016
3017         /* No actual flushing is required for the GTT write domain.  Writes
3018          * to it immediately go to main memory as far as we know, so there's
3019          * no chipset flush.  It also doesn't land in render cache.
3020          *
3021          * However, we do have to enforce the order so that all writes through
3022          * the GTT land before any writes to the device, such as updates to
3023          * the GATT itself.
3024          */
3025         wmb();
3026
3027         old_write_domain = obj->base.write_domain;
3028         obj->base.write_domain = 0;
3029
3030         trace_i915_gem_object_change_domain(obj,
3031                                             obj->base.read_domains,
3032                                             old_write_domain);
3033 }
3034
3035 /** Flushes the CPU write domain for the object if it's dirty. */
3036 static void
3037 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3038 {
3039         uint32_t old_write_domain;
3040
3041         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3042                 return;
3043
3044         i915_gem_clflush_object(obj);
3045         intel_gtt_chipset_flush();
3046         old_write_domain = obj->base.write_domain;
3047         obj->base.write_domain = 0;
3048
3049         trace_i915_gem_object_change_domain(obj,
3050                                             obj->base.read_domains,
3051                                             old_write_domain);
3052 }
3053
3054 /**
3055  * Moves a single object to the GTT read, and possibly write domain.
3056  *
3057  * This function returns when the move is complete, including waiting on
3058  * flushes to occur.
3059  */
3060 int
3061 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3062 {
3063         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3064         uint32_t old_write_domain, old_read_domains;
3065         int ret;
3066
3067         /* Not valid to be called on unbound objects. */
3068         if (obj->gtt_space == NULL)
3069                 return -EINVAL;
3070
3071         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3072                 return 0;
3073
3074         ret = i915_gem_object_wait_rendering(obj, !write);
3075         if (ret)
3076                 return ret;
3077
3078         i915_gem_object_flush_cpu_write_domain(obj);
3079
3080         old_write_domain = obj->base.write_domain;
3081         old_read_domains = obj->base.read_domains;
3082
3083         /* It should now be out of any other write domains, and we can update
3084          * the domain values for our changes.
3085          */
3086         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3087         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3088         if (write) {
3089                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3090                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3091                 obj->dirty = 1;
3092         }
3093
3094         trace_i915_gem_object_change_domain(obj,
3095                                             old_read_domains,
3096                                             old_write_domain);
3097
3098         /* And bump the LRU for this access */
3099         if (i915_gem_object_is_inactive(obj))
3100                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3101
3102         return 0;
3103 }
3104
3105 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3106                                     enum i915_cache_level cache_level)
3107 {
3108         struct drm_device *dev = obj->base.dev;
3109         drm_i915_private_t *dev_priv = dev->dev_private;
3110         int ret;
3111
3112         if (obj->cache_level == cache_level)
3113                 return 0;
3114
3115         if (obj->pin_count) {
3116                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3117                 return -EBUSY;
3118         }
3119
3120         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3121                 ret = i915_gem_object_unbind(obj);
3122                 if (ret)
3123                         return ret;
3124         }
3125
3126         if (obj->gtt_space) {
3127                 ret = i915_gem_object_finish_gpu(obj);
3128                 if (ret)
3129                         return ret;
3130
3131                 i915_gem_object_finish_gtt(obj);
3132
3133                 /* Before SandyBridge, you could not use tiling or fence
3134                  * registers with snooped memory, so relinquish any fences
3135                  * currently pointing to our region in the aperture.
3136                  */
3137                 if (INTEL_INFO(dev)->gen < 6) {
3138                         ret = i915_gem_object_put_fence(obj);
3139                         if (ret)
3140                                 return ret;
3141                 }
3142
3143                 if (obj->has_global_gtt_mapping)
3144                         i915_gem_gtt_bind_object(obj, cache_level);
3145                 if (obj->has_aliasing_ppgtt_mapping)
3146                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3147                                                obj, cache_level);
3148
3149                 obj->gtt_space->color = cache_level;
3150         }
3151
3152         if (cache_level == I915_CACHE_NONE) {
3153                 u32 old_read_domains, old_write_domain;
3154
3155                 /* If we're coming from LLC cached, then we haven't
3156                  * actually been tracking whether the data is in the
3157                  * CPU cache or not, since we only allow one bit set
3158                  * in obj->write_domain and have been skipping the clflushes.
3159                  * Just set it to the CPU cache for now.
3160                  */
3161                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3162                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3163
3164                 old_read_domains = obj->base.read_domains;
3165                 old_write_domain = obj->base.write_domain;
3166
3167                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3168                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3169
3170                 trace_i915_gem_object_change_domain(obj,
3171                                                     old_read_domains,
3172                                                     old_write_domain);
3173         }
3174
3175         obj->cache_level = cache_level;
3176         i915_gem_verify_gtt(dev);
3177         return 0;
3178 }
3179
3180 int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
3181                                 struct drm_file *file)
3182 {
3183         struct drm_i915_gem_cacheing *args = data;
3184         struct drm_i915_gem_object *obj;
3185         int ret;
3186
3187         ret = i915_mutex_lock_interruptible(dev);
3188         if (ret)
3189                 return ret;
3190
3191         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3192         if (&obj->base == NULL) {
3193                 ret = -ENOENT;
3194                 goto unlock;
3195         }
3196
3197         args->cacheing = obj->cache_level != I915_CACHE_NONE;
3198
3199         drm_gem_object_unreference(&obj->base);
3200 unlock:
3201         mutex_unlock(&dev->struct_mutex);
3202         return ret;
3203 }
3204
3205 int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
3206                                 struct drm_file *file)
3207 {
3208         struct drm_i915_gem_cacheing *args = data;
3209         struct drm_i915_gem_object *obj;
3210         enum i915_cache_level level;
3211         int ret;
3212
3213         ret = i915_mutex_lock_interruptible(dev);
3214         if (ret)
3215                 return ret;
3216
3217         switch (args->cacheing) {
3218         case I915_CACHEING_NONE:
3219                 level = I915_CACHE_NONE;
3220                 break;
3221         case I915_CACHEING_CACHED:
3222                 level = I915_CACHE_LLC;
3223                 break;
3224         default:
3225                 return -EINVAL;
3226         }
3227
3228         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3229         if (&obj->base == NULL) {
3230                 ret = -ENOENT;
3231                 goto unlock;
3232         }
3233
3234         ret = i915_gem_object_set_cache_level(obj, level);
3235
3236         drm_gem_object_unreference(&obj->base);
3237 unlock:
3238         mutex_unlock(&dev->struct_mutex);
3239         return ret;
3240 }
3241
3242 /*
3243  * Prepare buffer for display plane (scanout, cursors, etc).
3244  * Can be called from an uninterruptible phase (modesetting) and allows
3245  * any flushes to be pipelined (for pageflips).
3246  */
3247 int
3248 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3249                                      u32 alignment,
3250                                      struct intel_ring_buffer *pipelined)
3251 {
3252         u32 old_read_domains, old_write_domain;
3253         int ret;
3254
3255         if (pipelined != obj->ring) {
3256                 ret = i915_gem_object_sync(obj, pipelined);
3257                 if (ret)
3258                         return ret;
3259         }
3260
3261         /* The display engine is not coherent with the LLC cache on gen6.  As
3262          * a result, we make sure that the pinning that is about to occur is
3263          * done with uncached PTEs. This is lowest common denominator for all
3264          * chipsets.
3265          *
3266          * However for gen6+, we could do better by using the GFDT bit instead
3267          * of uncaching, which would allow us to flush all the LLC-cached data
3268          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3269          */
3270         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3271         if (ret)
3272                 return ret;
3273
3274         /* As the user may map the buffer once pinned in the display plane
3275          * (e.g. libkms for the bootup splash), we have to ensure that we
3276          * always use map_and_fenceable for all scanout buffers.
3277          */
3278         ret = i915_gem_object_pin(obj, alignment, true, false);
3279         if (ret)
3280                 return ret;
3281
3282         i915_gem_object_flush_cpu_write_domain(obj);
3283
3284         old_write_domain = obj->base.write_domain;
3285         old_read_domains = obj->base.read_domains;
3286
3287         /* It should now be out of any other write domains, and we can update
3288          * the domain values for our changes.
3289          */
3290         obj->base.write_domain = 0;
3291         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3292
3293         trace_i915_gem_object_change_domain(obj,
3294                                             old_read_domains,
3295                                             old_write_domain);
3296
3297         return 0;
3298 }
3299
3300 int
3301 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3302 {
3303         int ret;
3304
3305         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3306                 return 0;
3307
3308         ret = i915_gem_object_wait_rendering(obj, false);
3309         if (ret)
3310                 return ret;
3311
3312         /* Ensure that we invalidate the GPU's caches and TLBs. */
3313         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3314         return 0;
3315 }
3316
3317 /**
3318  * Moves a single object to the CPU read, and possibly write domain.
3319  *
3320  * This function returns when the move is complete, including waiting on
3321  * flushes to occur.
3322  */
3323 int
3324 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3325 {
3326         uint32_t old_write_domain, old_read_domains;
3327         int ret;
3328
3329         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3330                 return 0;
3331
3332         ret = i915_gem_object_wait_rendering(obj, !write);
3333         if (ret)
3334                 return ret;
3335
3336         i915_gem_object_flush_gtt_write_domain(obj);
3337
3338         old_write_domain = obj->base.write_domain;
3339         old_read_domains = obj->base.read_domains;
3340
3341         /* Flush the CPU cache if it's still invalid. */
3342         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3343                 i915_gem_clflush_object(obj);
3344
3345                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3346         }
3347
3348         /* It should now be out of any other write domains, and we can update
3349          * the domain values for our changes.
3350          */
3351         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3352
3353         /* If we're writing through the CPU, then the GPU read domains will
3354          * need to be invalidated at next use.
3355          */
3356         if (write) {
3357                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3358                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3359         }
3360
3361         trace_i915_gem_object_change_domain(obj,
3362                                             old_read_domains,
3363                                             old_write_domain);
3364
3365         return 0;
3366 }
3367
3368 /* Throttle our rendering by waiting until the ring has completed our requests
3369  * emitted over 20 msec ago.
3370  *
3371  * Note that if we were to use the current jiffies each time around the loop,
3372  * we wouldn't escape the function with any frames outstanding if the time to
3373  * render a frame was over 20ms.
3374  *
3375  * This should get us reasonable parallelism between CPU and GPU but also
3376  * relatively low latency when blocking on a particular request to finish.
3377  */
3378 static int
3379 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3380 {
3381         struct drm_i915_private *dev_priv = dev->dev_private;
3382         struct drm_i915_file_private *file_priv = file->driver_priv;
3383         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3384         struct drm_i915_gem_request *request;
3385         struct intel_ring_buffer *ring = NULL;
3386         u32 seqno = 0;
3387         int ret;
3388
3389         if (atomic_read(&dev_priv->mm.wedged))
3390                 return -EIO;
3391
3392         spin_lock(&file_priv->mm.lock);
3393         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3394                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3395                         break;
3396
3397                 ring = request->ring;
3398                 seqno = request->seqno;
3399         }
3400         spin_unlock(&file_priv->mm.lock);
3401
3402         if (seqno == 0)
3403                 return 0;
3404
3405         ret = __wait_seqno(ring, seqno, true, NULL);
3406         if (ret == 0)
3407                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3408
3409         return ret;
3410 }
3411
3412 int
3413 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3414                     uint32_t alignment,
3415                     bool map_and_fenceable,
3416                     bool nonblocking)
3417 {
3418         int ret;
3419
3420         BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3421
3422         if (obj->gtt_space != NULL) {
3423                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3424                     (map_and_fenceable && !obj->map_and_fenceable)) {
3425                         WARN(obj->pin_count,
3426                              "bo is already pinned with incorrect alignment:"
3427                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3428                              " obj->map_and_fenceable=%d\n",
3429                              obj->gtt_offset, alignment,
3430                              map_and_fenceable,
3431                              obj->map_and_fenceable);
3432                         ret = i915_gem_object_unbind(obj);
3433                         if (ret)
3434                                 return ret;
3435                 }
3436         }
3437
3438         if (obj->gtt_space == NULL) {
3439                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3440                                                   map_and_fenceable,
3441                                                   nonblocking);
3442                 if (ret)
3443                         return ret;
3444         }
3445
3446         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3447                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3448
3449         obj->pin_count++;
3450         obj->pin_mappable |= map_and_fenceable;
3451
3452         return 0;
3453 }
3454
3455 void
3456 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3457 {
3458         BUG_ON(obj->pin_count == 0);
3459         BUG_ON(obj->gtt_space == NULL);
3460
3461         if (--obj->pin_count == 0)
3462                 obj->pin_mappable = false;
3463 }
3464
3465 int
3466 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3467                    struct drm_file *file)
3468 {
3469         struct drm_i915_gem_pin *args = data;
3470         struct drm_i915_gem_object *obj;
3471         int ret;
3472
3473         ret = i915_mutex_lock_interruptible(dev);
3474         if (ret)
3475                 return ret;
3476
3477         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3478         if (&obj->base == NULL) {
3479                 ret = -ENOENT;
3480                 goto unlock;
3481         }
3482
3483         if (obj->madv != I915_MADV_WILLNEED) {
3484                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3485                 ret = -EINVAL;
3486                 goto out;
3487         }
3488
3489         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3490                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3491                           args->handle);
3492                 ret = -EINVAL;
3493                 goto out;
3494         }
3495
3496         obj->user_pin_count++;
3497         obj->pin_filp = file;
3498         if (obj->user_pin_count == 1) {
3499                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3500                 if (ret)
3501                         goto out;
3502         }
3503
3504         /* XXX - flush the CPU caches for pinned objects
3505          * as the X server doesn't manage domains yet
3506          */
3507         i915_gem_object_flush_cpu_write_domain(obj);
3508         args->offset = obj->gtt_offset;
3509 out:
3510         drm_gem_object_unreference(&obj->base);
3511 unlock:
3512         mutex_unlock(&dev->struct_mutex);
3513         return ret;
3514 }
3515
3516 int
3517 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3518                      struct drm_file *file)
3519 {
3520         struct drm_i915_gem_pin *args = data;
3521         struct drm_i915_gem_object *obj;
3522         int ret;
3523
3524         ret = i915_mutex_lock_interruptible(dev);
3525         if (ret)
3526                 return ret;
3527
3528         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3529         if (&obj->base == NULL) {
3530                 ret = -ENOENT;
3531                 goto unlock;
3532         }
3533
3534         if (obj->pin_filp != file) {
3535                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3536                           args->handle);
3537                 ret = -EINVAL;
3538                 goto out;
3539         }
3540         obj->user_pin_count--;
3541         if (obj->user_pin_count == 0) {
3542                 obj->pin_filp = NULL;
3543                 i915_gem_object_unpin(obj);
3544         }
3545
3546 out:
3547         drm_gem_object_unreference(&obj->base);
3548 unlock:
3549         mutex_unlock(&dev->struct_mutex);
3550         return ret;
3551 }
3552
3553 int
3554 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3555                     struct drm_file *file)
3556 {
3557         struct drm_i915_gem_busy *args = data;
3558         struct drm_i915_gem_object *obj;
3559         int ret;
3560
3561         ret = i915_mutex_lock_interruptible(dev);
3562         if (ret)
3563                 return ret;
3564
3565         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3566         if (&obj->base == NULL) {
3567                 ret = -ENOENT;
3568                 goto unlock;
3569         }
3570
3571         /* Count all active objects as busy, even if they are currently not used
3572          * by the gpu. Users of this interface expect objects to eventually
3573          * become non-busy without any further actions, therefore emit any
3574          * necessary flushes here.
3575          */
3576         ret = i915_gem_object_flush_active(obj);
3577
3578         args->busy = obj->active;
3579         if (obj->ring) {
3580                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3581                 args->busy |= intel_ring_flag(obj->ring) << 16;
3582         }
3583
3584         drm_gem_object_unreference(&obj->base);
3585 unlock:
3586         mutex_unlock(&dev->struct_mutex);
3587         return ret;
3588 }
3589
3590 int
3591 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3592                         struct drm_file *file_priv)
3593 {
3594         return i915_gem_ring_throttle(dev, file_priv);
3595 }
3596
3597 int
3598 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3599                        struct drm_file *file_priv)
3600 {
3601         struct drm_i915_gem_madvise *args = data;
3602         struct drm_i915_gem_object *obj;
3603         int ret;
3604
3605         switch (args->madv) {
3606         case I915_MADV_DONTNEED:
3607         case I915_MADV_WILLNEED:
3608             break;
3609         default:
3610             return -EINVAL;
3611         }
3612
3613         ret = i915_mutex_lock_interruptible(dev);
3614         if (ret)
3615                 return ret;
3616
3617         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3618         if (&obj->base == NULL) {
3619                 ret = -ENOENT;
3620                 goto unlock;
3621         }
3622
3623         if (obj->pin_count) {
3624                 ret = -EINVAL;
3625                 goto out;
3626         }
3627
3628         if (obj->madv != __I915_MADV_PURGED)
3629                 obj->madv = args->madv;
3630
3631         /* if the object is no longer attached, discard its backing storage */
3632         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3633                 i915_gem_object_truncate(obj);
3634
3635         args->retained = obj->madv != __I915_MADV_PURGED;
3636
3637 out:
3638         drm_gem_object_unreference(&obj->base);
3639 unlock:
3640         mutex_unlock(&dev->struct_mutex);
3641         return ret;
3642 }
3643
3644 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3645                           const struct drm_i915_gem_object_ops *ops)
3646 {
3647         INIT_LIST_HEAD(&obj->mm_list);
3648         INIT_LIST_HEAD(&obj->gtt_list);
3649         INIT_LIST_HEAD(&obj->ring_list);
3650         INIT_LIST_HEAD(&obj->exec_list);
3651
3652         obj->ops = ops;
3653
3654         obj->fence_reg = I915_FENCE_REG_NONE;
3655         obj->madv = I915_MADV_WILLNEED;
3656         /* Avoid an unnecessary call to unbind on the first bind. */
3657         obj->map_and_fenceable = true;
3658
3659         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3660 }
3661
3662 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3663         .get_pages = i915_gem_object_get_pages_gtt,
3664         .put_pages = i915_gem_object_put_pages_gtt,
3665 };
3666
3667 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3668                                                   size_t size)
3669 {
3670         struct drm_i915_gem_object *obj;
3671         struct address_space *mapping;
3672         u32 mask;
3673
3674         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3675         if (obj == NULL)
3676                 return NULL;
3677
3678         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3679                 kfree(obj);
3680                 return NULL;
3681         }
3682
3683         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3684         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3685                 /* 965gm cannot relocate objects above 4GiB. */
3686                 mask &= ~__GFP_HIGHMEM;
3687                 mask |= __GFP_DMA32;
3688         }
3689
3690         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3691         mapping_set_gfp_mask(mapping, mask);
3692
3693         i915_gem_object_init(obj, &i915_gem_object_ops);
3694
3695         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3696         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3697
3698         if (HAS_LLC(dev)) {
3699                 /* On some devices, we can have the GPU use the LLC (the CPU
3700                  * cache) for about a 10% performance improvement
3701                  * compared to uncached.  Graphics requests other than
3702                  * display scanout are coherent with the CPU in
3703                  * accessing this cache.  This means in this mode we
3704                  * don't need to clflush on the CPU side, and on the
3705                  * GPU side we only need to flush internal caches to
3706                  * get data visible to the CPU.
3707                  *
3708                  * However, we maintain the display planes as UC, and so
3709                  * need to rebind when first used as such.
3710                  */
3711                 obj->cache_level = I915_CACHE_LLC;
3712         } else
3713                 obj->cache_level = I915_CACHE_NONE;
3714
3715         return obj;
3716 }
3717
3718 int i915_gem_init_object(struct drm_gem_object *obj)
3719 {
3720         BUG();
3721
3722         return 0;
3723 }
3724
3725 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3726 {
3727         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3728         struct drm_device *dev = obj->base.dev;
3729         drm_i915_private_t *dev_priv = dev->dev_private;
3730
3731         trace_i915_gem_object_destroy(obj);
3732
3733         if (gem_obj->import_attach)
3734                 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3735
3736         if (obj->phys_obj)
3737                 i915_gem_detach_phys_object(dev, obj);
3738
3739         obj->pin_count = 0;
3740         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3741                 bool was_interruptible;
3742
3743                 was_interruptible = dev_priv->mm.interruptible;
3744                 dev_priv->mm.interruptible = false;
3745
3746                 WARN_ON(i915_gem_object_unbind(obj));
3747
3748                 dev_priv->mm.interruptible = was_interruptible;
3749         }
3750
3751         obj->pages_pin_count = 0;
3752         i915_gem_object_put_pages(obj);
3753         i915_gem_object_free_mmap_offset(obj);
3754
3755         drm_gem_object_release(&obj->base);
3756         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3757
3758         kfree(obj->bit_17);
3759         kfree(obj);
3760 }
3761
3762 int
3763 i915_gem_idle(struct drm_device *dev)
3764 {
3765         drm_i915_private_t *dev_priv = dev->dev_private;
3766         int ret;
3767
3768         mutex_lock(&dev->struct_mutex);
3769
3770         if (dev_priv->mm.suspended) {
3771                 mutex_unlock(&dev->struct_mutex);
3772                 return 0;
3773         }
3774
3775         ret = i915_gpu_idle(dev);
3776         if (ret) {
3777                 mutex_unlock(&dev->struct_mutex);
3778                 return ret;
3779         }
3780         i915_gem_retire_requests(dev);
3781
3782         /* Under UMS, be paranoid and evict. */
3783         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3784                 i915_gem_evict_everything(dev);
3785
3786         i915_gem_reset_fences(dev);
3787
3788         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3789          * We need to replace this with a semaphore, or something.
3790          * And not confound mm.suspended!
3791          */
3792         dev_priv->mm.suspended = 1;
3793         del_timer_sync(&dev_priv->hangcheck_timer);
3794
3795         i915_kernel_lost_context(dev);
3796         i915_gem_cleanup_ringbuffer(dev);
3797
3798         mutex_unlock(&dev->struct_mutex);
3799
3800         /* Cancel the retire work handler, which should be idle now. */
3801         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3802
3803         return 0;
3804 }
3805
3806 void i915_gem_l3_remap(struct drm_device *dev)
3807 {
3808         drm_i915_private_t *dev_priv = dev->dev_private;
3809         u32 misccpctl;
3810         int i;
3811
3812         if (!IS_IVYBRIDGE(dev))
3813                 return;
3814
3815         if (!dev_priv->mm.l3_remap_info)
3816                 return;
3817
3818         misccpctl = I915_READ(GEN7_MISCCPCTL);
3819         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3820         POSTING_READ(GEN7_MISCCPCTL);
3821
3822         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3823                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3824                 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3825                         DRM_DEBUG("0x%x was already programmed to %x\n",
3826                                   GEN7_L3LOG_BASE + i, remap);
3827                 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3828                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3829                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3830         }
3831
3832         /* Make sure all the writes land before disabling dop clock gating */
3833         POSTING_READ(GEN7_L3LOG_BASE);
3834
3835         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3836 }
3837
3838 void i915_gem_init_swizzling(struct drm_device *dev)
3839 {
3840         drm_i915_private_t *dev_priv = dev->dev_private;
3841
3842         if (INTEL_INFO(dev)->gen < 5 ||
3843             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3844                 return;
3845
3846         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3847                                  DISP_TILE_SURFACE_SWIZZLING);
3848
3849         if (IS_GEN5(dev))
3850                 return;
3851
3852         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3853         if (IS_GEN6(dev))
3854                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3855         else
3856                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3857 }
3858
3859 void i915_gem_init_ppgtt(struct drm_device *dev)
3860 {
3861         drm_i915_private_t *dev_priv = dev->dev_private;
3862         uint32_t pd_offset;
3863         struct intel_ring_buffer *ring;
3864         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3865         uint32_t __iomem *pd_addr;
3866         uint32_t pd_entry;
3867         int i;
3868
3869         if (!dev_priv->mm.aliasing_ppgtt)
3870                 return;
3871
3872
3873         pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3874         for (i = 0; i < ppgtt->num_pd_entries; i++) {
3875                 dma_addr_t pt_addr;
3876
3877                 if (dev_priv->mm.gtt->needs_dmar)
3878                         pt_addr = ppgtt->pt_dma_addr[i];
3879                 else
3880                         pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3881
3882                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3883                 pd_entry |= GEN6_PDE_VALID;
3884
3885                 writel(pd_entry, pd_addr + i);
3886         }
3887         readl(pd_addr);
3888
3889         pd_offset = ppgtt->pd_offset;
3890         pd_offset /= 64; /* in cachelines, */
3891         pd_offset <<= 16;
3892
3893         if (INTEL_INFO(dev)->gen == 6) {
3894                 uint32_t ecochk, gab_ctl, ecobits;
3895
3896                 ecobits = I915_READ(GAC_ECO_BITS); 
3897                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3898
3899                 gab_ctl = I915_READ(GAB_CTL);
3900                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3901
3902                 ecochk = I915_READ(GAM_ECOCHK);
3903                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3904                                        ECOCHK_PPGTT_CACHE64B);
3905                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3906         } else if (INTEL_INFO(dev)->gen >= 7) {
3907                 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3908                 /* GFX_MODE is per-ring on gen7+ */
3909         }
3910
3911         for_each_ring(ring, dev_priv, i) {
3912                 if (INTEL_INFO(dev)->gen >= 7)
3913                         I915_WRITE(RING_MODE_GEN7(ring),
3914                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3915
3916                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3917                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3918         }
3919 }
3920
3921 static bool
3922 intel_enable_blt(struct drm_device *dev)
3923 {
3924         if (!HAS_BLT(dev))
3925                 return false;
3926
3927         /* The blitter was dysfunctional on early prototypes */
3928         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3929                 DRM_INFO("BLT not supported on this pre-production hardware;"
3930                          " graphics performance will be degraded.\n");
3931                 return false;
3932         }
3933
3934         return true;
3935 }
3936
3937 int
3938 i915_gem_init_hw(struct drm_device *dev)
3939 {
3940         drm_i915_private_t *dev_priv = dev->dev_private;
3941         int ret;
3942
3943         if (!intel_enable_gtt())
3944                 return -EIO;
3945
3946         i915_gem_l3_remap(dev);
3947
3948         i915_gem_init_swizzling(dev);
3949
3950         ret = intel_init_render_ring_buffer(dev);
3951         if (ret)
3952                 return ret;
3953
3954         if (HAS_BSD(dev)) {
3955                 ret = intel_init_bsd_ring_buffer(dev);
3956                 if (ret)
3957                         goto cleanup_render_ring;
3958         }
3959
3960         if (intel_enable_blt(dev)) {
3961                 ret = intel_init_blt_ring_buffer(dev);
3962                 if (ret)
3963                         goto cleanup_bsd_ring;
3964         }
3965
3966         dev_priv->next_seqno = 1;
3967
3968         /*
3969          * XXX: There was some w/a described somewhere suggesting loading
3970          * contexts before PPGTT.
3971          */
3972         i915_gem_context_init(dev);
3973         i915_gem_init_ppgtt(dev);
3974
3975         return 0;
3976
3977 cleanup_bsd_ring:
3978         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3979 cleanup_render_ring:
3980         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3981         return ret;
3982 }
3983
3984 static bool
3985 intel_enable_ppgtt(struct drm_device *dev)
3986 {
3987         if (i915_enable_ppgtt >= 0)
3988                 return i915_enable_ppgtt;
3989
3990 #ifdef CONFIG_INTEL_IOMMU
3991         /* Disable ppgtt on SNB if VT-d is on. */
3992         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3993                 return false;
3994 #endif
3995
3996         return true;
3997 }
3998
3999 int i915_gem_init(struct drm_device *dev)
4000 {
4001         struct drm_i915_private *dev_priv = dev->dev_private;
4002         unsigned long gtt_size, mappable_size;
4003         int ret;
4004
4005         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4006         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4007
4008         mutex_lock(&dev->struct_mutex);
4009         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4010                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4011                  * aperture accordingly when using aliasing ppgtt. */
4012                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4013
4014                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4015
4016                 ret = i915_gem_init_aliasing_ppgtt(dev);
4017                 if (ret) {
4018                         mutex_unlock(&dev->struct_mutex);
4019                         return ret;
4020                 }
4021         } else {
4022                 /* Let GEM Manage all of the aperture.
4023                  *
4024                  * However, leave one page at the end still bound to the scratch
4025                  * page.  There are a number of places where the hardware
4026                  * apparently prefetches past the end of the object, and we've
4027                  * seen multiple hangs with the GPU head pointer stuck in a
4028                  * batchbuffer bound at the last page of the aperture.  One page
4029                  * should be enough to keep any prefetching inside of the
4030                  * aperture.
4031                  */
4032                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4033                                          gtt_size);
4034         }
4035
4036         ret = i915_gem_init_hw(dev);
4037         mutex_unlock(&dev->struct_mutex);
4038         if (ret) {
4039                 i915_gem_cleanup_aliasing_ppgtt(dev);
4040                 return ret;
4041         }
4042
4043         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4044         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4045                 dev_priv->dri1.allow_batchbuffer = 1;
4046         return 0;
4047 }
4048
4049 void
4050 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4051 {
4052         drm_i915_private_t *dev_priv = dev->dev_private;
4053         struct intel_ring_buffer *ring;
4054         int i;
4055
4056         for_each_ring(ring, dev_priv, i)
4057                 intel_cleanup_ring_buffer(ring);
4058 }
4059
4060 int
4061 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4062                        struct drm_file *file_priv)
4063 {
4064         drm_i915_private_t *dev_priv = dev->dev_private;
4065         int ret;
4066
4067         if (drm_core_check_feature(dev, DRIVER_MODESET))
4068                 return 0;
4069
4070         if (atomic_read(&dev_priv->mm.wedged)) {
4071                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4072                 atomic_set(&dev_priv->mm.wedged, 0);
4073         }
4074
4075         mutex_lock(&dev->struct_mutex);
4076         dev_priv->mm.suspended = 0;
4077
4078         ret = i915_gem_init_hw(dev);
4079         if (ret != 0) {
4080                 mutex_unlock(&dev->struct_mutex);
4081                 return ret;
4082         }
4083
4084         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4085         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4086         mutex_unlock(&dev->struct_mutex);
4087
4088         ret = drm_irq_install(dev);
4089         if (ret)
4090                 goto cleanup_ringbuffer;
4091
4092         return 0;
4093
4094 cleanup_ringbuffer:
4095         mutex_lock(&dev->struct_mutex);
4096         i915_gem_cleanup_ringbuffer(dev);
4097         dev_priv->mm.suspended = 1;
4098         mutex_unlock(&dev->struct_mutex);
4099
4100         return ret;
4101 }
4102
4103 int
4104 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4105                        struct drm_file *file_priv)
4106 {
4107         if (drm_core_check_feature(dev, DRIVER_MODESET))
4108                 return 0;
4109
4110         drm_irq_uninstall(dev);
4111         return i915_gem_idle(dev);
4112 }
4113
4114 void
4115 i915_gem_lastclose(struct drm_device *dev)
4116 {
4117         int ret;
4118
4119         if (drm_core_check_feature(dev, DRIVER_MODESET))
4120                 return;
4121
4122         ret = i915_gem_idle(dev);
4123         if (ret)
4124                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4125 }
4126
4127 static void
4128 init_ring_lists(struct intel_ring_buffer *ring)
4129 {
4130         INIT_LIST_HEAD(&ring->active_list);
4131         INIT_LIST_HEAD(&ring->request_list);
4132 }
4133
4134 void
4135 i915_gem_load(struct drm_device *dev)
4136 {
4137         int i;
4138         drm_i915_private_t *dev_priv = dev->dev_private;
4139
4140         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4141         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4142         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4143         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4144         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4145         for (i = 0; i < I915_NUM_RINGS; i++)
4146                 init_ring_lists(&dev_priv->ring[i]);
4147         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4148                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4149         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4150                           i915_gem_retire_work_handler);
4151         init_completion(&dev_priv->error_completion);
4152
4153         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4154         if (IS_GEN3(dev)) {
4155                 I915_WRITE(MI_ARB_STATE,
4156                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4157         }
4158
4159         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4160
4161         /* Old X drivers will take 0-2 for front, back, depth buffers */
4162         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4163                 dev_priv->fence_reg_start = 3;
4164
4165         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4166                 dev_priv->num_fence_regs = 16;
4167         else
4168                 dev_priv->num_fence_regs = 8;
4169
4170         /* Initialize fence registers to zero */
4171         i915_gem_reset_fences(dev);
4172
4173         i915_gem_detect_bit_6_swizzle(dev);
4174         init_waitqueue_head(&dev_priv->pending_flip_queue);
4175
4176         dev_priv->mm.interruptible = true;
4177
4178         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4179         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4180         register_shrinker(&dev_priv->mm.inactive_shrinker);
4181 }
4182
4183 /*
4184  * Create a physically contiguous memory object for this object
4185  * e.g. for cursor + overlay regs
4186  */
4187 static int i915_gem_init_phys_object(struct drm_device *dev,
4188                                      int id, int size, int align)
4189 {
4190         drm_i915_private_t *dev_priv = dev->dev_private;
4191         struct drm_i915_gem_phys_object *phys_obj;
4192         int ret;
4193
4194         if (dev_priv->mm.phys_objs[id - 1] || !size)
4195                 return 0;
4196
4197         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4198         if (!phys_obj)
4199                 return -ENOMEM;
4200
4201         phys_obj->id = id;
4202
4203         phys_obj->handle = drm_pci_alloc(dev, size, align);
4204         if (!phys_obj->handle) {
4205                 ret = -ENOMEM;
4206                 goto kfree_obj;
4207         }
4208 #ifdef CONFIG_X86
4209         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4210 #endif
4211
4212         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4213
4214         return 0;
4215 kfree_obj:
4216         kfree(phys_obj);
4217         return ret;
4218 }
4219
4220 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4221 {
4222         drm_i915_private_t *dev_priv = dev->dev_private;
4223         struct drm_i915_gem_phys_object *phys_obj;
4224
4225         if (!dev_priv->mm.phys_objs[id - 1])
4226                 return;
4227
4228         phys_obj = dev_priv->mm.phys_objs[id - 1];
4229         if (phys_obj->cur_obj) {
4230                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4231         }
4232
4233 #ifdef CONFIG_X86
4234         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4235 #endif
4236         drm_pci_free(dev, phys_obj->handle);
4237         kfree(phys_obj);
4238         dev_priv->mm.phys_objs[id - 1] = NULL;
4239 }
4240
4241 void i915_gem_free_all_phys_object(struct drm_device *dev)
4242 {
4243         int i;
4244
4245         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4246                 i915_gem_free_phys_object(dev, i);
4247 }
4248
4249 void i915_gem_detach_phys_object(struct drm_device *dev,
4250                                  struct drm_i915_gem_object *obj)
4251 {
4252         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4253         char *vaddr;
4254         int i;
4255         int page_count;
4256
4257         if (!obj->phys_obj)
4258                 return;
4259         vaddr = obj->phys_obj->handle->vaddr;
4260
4261         page_count = obj->base.size / PAGE_SIZE;
4262         for (i = 0; i < page_count; i++) {
4263                 struct page *page = shmem_read_mapping_page(mapping, i);
4264                 if (!IS_ERR(page)) {
4265                         char *dst = kmap_atomic(page);
4266                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4267                         kunmap_atomic(dst);
4268
4269                         drm_clflush_pages(&page, 1);
4270
4271                         set_page_dirty(page);
4272                         mark_page_accessed(page);
4273                         page_cache_release(page);
4274                 }
4275         }
4276         intel_gtt_chipset_flush();
4277
4278         obj->phys_obj->cur_obj = NULL;
4279         obj->phys_obj = NULL;
4280 }
4281
4282 int
4283 i915_gem_attach_phys_object(struct drm_device *dev,
4284                             struct drm_i915_gem_object *obj,
4285                             int id,
4286                             int align)
4287 {
4288         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4289         drm_i915_private_t *dev_priv = dev->dev_private;
4290         int ret = 0;
4291         int page_count;
4292         int i;
4293
4294         if (id > I915_MAX_PHYS_OBJECT)
4295                 return -EINVAL;
4296
4297         if (obj->phys_obj) {
4298                 if (obj->phys_obj->id == id)
4299                         return 0;
4300                 i915_gem_detach_phys_object(dev, obj);
4301         }
4302
4303         /* create a new object */
4304         if (!dev_priv->mm.phys_objs[id - 1]) {
4305                 ret = i915_gem_init_phys_object(dev, id,
4306                                                 obj->base.size, align);
4307                 if (ret) {
4308                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4309                                   id, obj->base.size);
4310                         return ret;
4311                 }
4312         }
4313
4314         /* bind to the object */
4315         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4316         obj->phys_obj->cur_obj = obj;
4317
4318         page_count = obj->base.size / PAGE_SIZE;
4319
4320         for (i = 0; i < page_count; i++) {
4321                 struct page *page;
4322                 char *dst, *src;
4323
4324                 page = shmem_read_mapping_page(mapping, i);
4325                 if (IS_ERR(page))
4326                         return PTR_ERR(page);
4327
4328                 src = kmap_atomic(page);
4329                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4330                 memcpy(dst, src, PAGE_SIZE);
4331                 kunmap_atomic(src);
4332
4333                 mark_page_accessed(page);
4334                 page_cache_release(page);
4335         }
4336
4337         return 0;
4338 }
4339
4340 static int
4341 i915_gem_phys_pwrite(struct drm_device *dev,
4342                      struct drm_i915_gem_object *obj,
4343                      struct drm_i915_gem_pwrite *args,
4344                      struct drm_file *file_priv)
4345 {
4346         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4347         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4348
4349         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4350                 unsigned long unwritten;
4351
4352                 /* The physical object once assigned is fixed for the lifetime
4353                  * of the obj, so we can safely drop the lock and continue
4354                  * to access vaddr.
4355                  */
4356                 mutex_unlock(&dev->struct_mutex);
4357                 unwritten = copy_from_user(vaddr, user_data, args->size);
4358                 mutex_lock(&dev->struct_mutex);
4359                 if (unwritten)
4360                         return -EFAULT;
4361         }
4362
4363         intel_gtt_chipset_flush();
4364         return 0;
4365 }
4366
4367 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4368 {
4369         struct drm_i915_file_private *file_priv = file->driver_priv;
4370
4371         /* Clean up our request list when the client is going away, so that
4372          * later retire_requests won't dereference our soon-to-be-gone
4373          * file_priv.
4374          */
4375         spin_lock(&file_priv->mm.lock);
4376         while (!list_empty(&file_priv->mm.request_list)) {
4377                 struct drm_i915_gem_request *request;
4378
4379                 request = list_first_entry(&file_priv->mm.request_list,
4380                                            struct drm_i915_gem_request,
4381                                            client_list);
4382                 list_del(&request->client_list);
4383                 request->file_priv = NULL;
4384         }
4385         spin_unlock(&file_priv->mm.lock);
4386 }
4387
4388 static int
4389 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4390 {
4391         struct drm_i915_private *dev_priv =
4392                 container_of(shrinker,
4393                              struct drm_i915_private,
4394                              mm.inactive_shrinker);
4395         struct drm_device *dev = dev_priv->dev;
4396         struct drm_i915_gem_object *obj;
4397         int nr_to_scan = sc->nr_to_scan;
4398         int cnt;
4399
4400         if (!mutex_trylock(&dev->struct_mutex))
4401                 return 0;
4402
4403         if (nr_to_scan) {
4404                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4405                 if (nr_to_scan > 0)
4406                         i915_gem_shrink_all(dev_priv);
4407         }
4408
4409         cnt = 0;
4410         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4411                 if (obj->pages_pin_count == 0)
4412                         cnt += obj->base.size >> PAGE_SHIFT;
4413         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4414                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4415                         cnt += obj->base.size >> PAGE_SHIFT;
4416
4417         mutex_unlock(&dev->struct_mutex);
4418         return cnt;
4419 }