Merge branch 'rcu/next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47                                 struct drm_i915_gem_object *obj,
48                                 struct drm_i915_gem_pwrite *args,
49                                 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52                                  struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54                                          struct drm_i915_fence_reg *fence,
55                                          bool enable);
56
57 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
58                                              struct shrink_control *sc);
59 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
60                                             struct shrink_control *sc);
61 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
64 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67                                   enum i915_cache_level level)
68 {
69         return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75                 return true;
76
77         return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82         if (obj->tiling_mode)
83                 i915_gem_release_mmap(obj);
84
85         /* As we do not have an associated fence register, we will force
86          * a tiling change if we ever need to acquire one.
87          */
88         obj->fence_dirty = false;
89         obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94                                   size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count++;
98         dev_priv->mm.object_memory += size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103                                      size_t size)
104 {
105         spin_lock(&dev_priv->mm.object_stat_lock);
106         dev_priv->mm.object_count--;
107         dev_priv->mm.object_memory -= size;
108         spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114         int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117                    i915_terminally_wedged(error))
118         if (EXIT_COND)
119                 return 0;
120
121         /*
122          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123          * userspace. If it takes that long something really bad is going on and
124          * we should simply try to bail out and fail as gracefully as possible.
125          */
126         ret = wait_event_interruptible_timeout(error->reset_queue,
127                                                EXIT_COND,
128                                                10*HZ);
129         if (ret == 0) {
130                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131                 return -EIO;
132         } else if (ret < 0) {
133                 return ret;
134         }
135 #undef EXIT_COND
136
137         return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         int ret;
144
145         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146         if (ret)
147                 return ret;
148
149         ret = mutex_lock_interruptible(&dev->struct_mutex);
150         if (ret)
151                 return ret;
152
153         WARN_ON(i915_verify_lists(dev));
154         return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160         return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165                     struct drm_file *file)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168         struct drm_i915_gem_init *args = data;
169
170         if (drm_core_check_feature(dev, DRIVER_MODESET))
171                 return -ENODEV;
172
173         if (args->gtt_start >= args->gtt_end ||
174             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175                 return -EINVAL;
176
177         /* GEM with user mode setting was never supported on ilk and later. */
178         if (INTEL_INFO(dev)->gen >= 5)
179                 return -ENODEV;
180
181         mutex_lock(&dev->struct_mutex);
182         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183                                   args->gtt_end);
184         dev_priv->gtt.mappable_end = args->gtt_end;
185         mutex_unlock(&dev->struct_mutex);
186
187         return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192                             struct drm_file *file)
193 {
194         struct drm_i915_private *dev_priv = dev->dev_private;
195         struct drm_i915_gem_get_aperture *args = data;
196         struct drm_i915_gem_object *obj;
197         size_t pinned;
198
199         pinned = 0;
200         mutex_lock(&dev->struct_mutex);
201         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202                 if (i915_gem_obj_is_pinned(obj))
203                         pinned += i915_gem_obj_ggtt_size(obj);
204         mutex_unlock(&dev->struct_mutex);
205
206         args->aper_size = dev_priv->gtt.base.total;
207         args->aper_available_size = args->aper_size - pinned;
208
209         return 0;
210 }
211
212 void *i915_gem_object_alloc(struct drm_device *dev)
213 {
214         struct drm_i915_private *dev_priv = dev->dev_private;
215         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
216 }
217
218 void i915_gem_object_free(struct drm_i915_gem_object *obj)
219 {
220         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221         kmem_cache_free(dev_priv->slab, obj);
222 }
223
224 static int
225 i915_gem_create(struct drm_file *file,
226                 struct drm_device *dev,
227                 uint64_t size,
228                 uint32_t *handle_p)
229 {
230         struct drm_i915_gem_object *obj;
231         int ret;
232         u32 handle;
233
234         size = roundup(size, PAGE_SIZE);
235         if (size == 0)
236                 return -EINVAL;
237
238         /* Allocate the new object */
239         obj = i915_gem_alloc_object(dev, size);
240         if (obj == NULL)
241                 return -ENOMEM;
242
243         ret = drm_gem_handle_create(file, &obj->base, &handle);
244         /* drop reference from allocate - handle holds it now */
245         drm_gem_object_unreference_unlocked(&obj->base);
246         if (ret)
247                 return ret;
248
249         *handle_p = handle;
250         return 0;
251 }
252
253 int
254 i915_gem_dumb_create(struct drm_file *file,
255                      struct drm_device *dev,
256                      struct drm_mode_create_dumb *args)
257 {
258         /* have to work out size/pitch and return them */
259         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
260         args->size = args->pitch * args->height;
261         return i915_gem_create(file, dev,
262                                args->size, &args->handle);
263 }
264
265 /**
266  * Creates a new mm object and returns a handle to it.
267  */
268 int
269 i915_gem_create_ioctl(struct drm_device *dev, void *data,
270                       struct drm_file *file)
271 {
272         struct drm_i915_gem_create *args = data;
273
274         return i915_gem_create(file, dev,
275                                args->size, &args->handle);
276 }
277
278 static inline int
279 __copy_to_user_swizzled(char __user *cpu_vaddr,
280                         const char *gpu_vaddr, int gpu_offset,
281                         int length)
282 {
283         int ret, cpu_offset = 0;
284
285         while (length > 0) {
286                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287                 int this_length = min(cacheline_end - gpu_offset, length);
288                 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291                                      gpu_vaddr + swizzled_gpu_offset,
292                                      this_length);
293                 if (ret)
294                         return ret + length;
295
296                 cpu_offset += this_length;
297                 gpu_offset += this_length;
298                 length -= this_length;
299         }
300
301         return 0;
302 }
303
304 static inline int
305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306                           const char __user *cpu_vaddr,
307                           int length)
308 {
309         int ret, cpu_offset = 0;
310
311         while (length > 0) {
312                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313                 int this_length = min(cacheline_end - gpu_offset, length);
314                 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317                                        cpu_vaddr + cpu_offset,
318                                        this_length);
319                 if (ret)
320                         return ret + length;
321
322                 cpu_offset += this_length;
323                 gpu_offset += this_length;
324                 length -= this_length;
325         }
326
327         return 0;
328 }
329
330 /*
331  * Pins the specified object's pages and synchronizes the object with
332  * GPU accesses. Sets needs_clflush to non-zero if the caller should
333  * flush the object from the CPU cache.
334  */
335 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
336                                     int *needs_clflush)
337 {
338         int ret;
339
340         *needs_clflush = 0;
341
342         if (!obj->base.filp)
343                 return -EINVAL;
344
345         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
346                 /* If we're not in the cpu read domain, set ourself into the gtt
347                  * read domain and manually flush cachelines (if required). This
348                  * optimizes for the case when the gpu will dirty the data
349                  * anyway again before the next pread happens. */
350                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
351                                                         obj->cache_level);
352                 ret = i915_gem_object_wait_rendering(obj, true);
353                 if (ret)
354                         return ret;
355         }
356
357         ret = i915_gem_object_get_pages(obj);
358         if (ret)
359                 return ret;
360
361         i915_gem_object_pin_pages(obj);
362
363         return ret;
364 }
365
366 /* Per-page copy function for the shmem pread fastpath.
367  * Flushes invalid cachelines before reading the target if
368  * needs_clflush is set. */
369 static int
370 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
371                  char __user *user_data,
372                  bool page_do_bit17_swizzling, bool needs_clflush)
373 {
374         char *vaddr;
375         int ret;
376
377         if (unlikely(page_do_bit17_swizzling))
378                 return -EINVAL;
379
380         vaddr = kmap_atomic(page);
381         if (needs_clflush)
382                 drm_clflush_virt_range(vaddr + shmem_page_offset,
383                                        page_length);
384         ret = __copy_to_user_inatomic(user_data,
385                                       vaddr + shmem_page_offset,
386                                       page_length);
387         kunmap_atomic(vaddr);
388
389         return ret ? -EFAULT : 0;
390 }
391
392 static void
393 shmem_clflush_swizzled_range(char *addr, unsigned long length,
394                              bool swizzled)
395 {
396         if (unlikely(swizzled)) {
397                 unsigned long start = (unsigned long) addr;
398                 unsigned long end = (unsigned long) addr + length;
399
400                 /* For swizzling simply ensure that we always flush both
401                  * channels. Lame, but simple and it works. Swizzled
402                  * pwrite/pread is far from a hotpath - current userspace
403                  * doesn't use it at all. */
404                 start = round_down(start, 128);
405                 end = round_up(end, 128);
406
407                 drm_clflush_virt_range((void *)start, end - start);
408         } else {
409                 drm_clflush_virt_range(addr, length);
410         }
411
412 }
413
414 /* Only difference to the fast-path function is that this can handle bit17
415  * and uses non-atomic copy and kmap functions. */
416 static int
417 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
418                  char __user *user_data,
419                  bool page_do_bit17_swizzling, bool needs_clflush)
420 {
421         char *vaddr;
422         int ret;
423
424         vaddr = kmap(page);
425         if (needs_clflush)
426                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
427                                              page_length,
428                                              page_do_bit17_swizzling);
429
430         if (page_do_bit17_swizzling)
431                 ret = __copy_to_user_swizzled(user_data,
432                                               vaddr, shmem_page_offset,
433                                               page_length);
434         else
435                 ret = __copy_to_user(user_data,
436                                      vaddr + shmem_page_offset,
437                                      page_length);
438         kunmap(page);
439
440         return ret ? - EFAULT : 0;
441 }
442
443 static int
444 i915_gem_shmem_pread(struct drm_device *dev,
445                      struct drm_i915_gem_object *obj,
446                      struct drm_i915_gem_pread *args,
447                      struct drm_file *file)
448 {
449         char __user *user_data;
450         ssize_t remain;
451         loff_t offset;
452         int shmem_page_offset, page_length, ret = 0;
453         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
454         int prefaulted = 0;
455         int needs_clflush = 0;
456         struct sg_page_iter sg_iter;
457
458         user_data = to_user_ptr(args->data_ptr);
459         remain = args->size;
460
461         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
462
463         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
464         if (ret)
465                 return ret;
466
467         offset = args->offset;
468
469         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
470                          offset >> PAGE_SHIFT) {
471                 struct page *page = sg_page_iter_page(&sg_iter);
472
473                 if (remain <= 0)
474                         break;
475
476                 /* Operation in this page
477                  *
478                  * shmem_page_offset = offset within page in shmem file
479                  * page_length = bytes to copy for this page
480                  */
481                 shmem_page_offset = offset_in_page(offset);
482                 page_length = remain;
483                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
484                         page_length = PAGE_SIZE - shmem_page_offset;
485
486                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
487                         (page_to_phys(page) & (1 << 17)) != 0;
488
489                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492                 if (ret == 0)
493                         goto next_page;
494
495                 mutex_unlock(&dev->struct_mutex);
496
497                 if (likely(!i915.prefault_disable) && !prefaulted) {
498                         ret = fault_in_multipages_writeable(user_data, remain);
499                         /* Userspace is tricking us, but we've already clobbered
500                          * its pages with the prefault and promised to write the
501                          * data up to the first fault. Hence ignore any errors
502                          * and just continue. */
503                         (void)ret;
504                         prefaulted = 1;
505                 }
506
507                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
508                                        user_data, page_do_bit17_swizzling,
509                                        needs_clflush);
510
511                 mutex_lock(&dev->struct_mutex);
512
513                 if (ret)
514                         goto out;
515
516 next_page:
517                 remain -= page_length;
518                 user_data += page_length;
519                 offset += page_length;
520         }
521
522 out:
523         i915_gem_object_unpin_pages(obj);
524
525         return ret;
526 }
527
528 /**
529  * Reads data from the object referenced by handle.
530  *
531  * On error, the contents of *data are undefined.
532  */
533 int
534 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
535                      struct drm_file *file)
536 {
537         struct drm_i915_gem_pread *args = data;
538         struct drm_i915_gem_object *obj;
539         int ret = 0;
540
541         if (args->size == 0)
542                 return 0;
543
544         if (!access_ok(VERIFY_WRITE,
545                        to_user_ptr(args->data_ptr),
546                        args->size))
547                 return -EFAULT;
548
549         ret = i915_mutex_lock_interruptible(dev);
550         if (ret)
551                 return ret;
552
553         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
554         if (&obj->base == NULL) {
555                 ret = -ENOENT;
556                 goto unlock;
557         }
558
559         /* Bounds check source.  */
560         if (args->offset > obj->base.size ||
561             args->size > obj->base.size - args->offset) {
562                 ret = -EINVAL;
563                 goto out;
564         }
565
566         /* prime objects have no backing filp to GEM pread/pwrite
567          * pages from.
568          */
569         if (!obj->base.filp) {
570                 ret = -EINVAL;
571                 goto out;
572         }
573
574         trace_i915_gem_object_pread(obj, args->offset, args->size);
575
576         ret = i915_gem_shmem_pread(dev, obj, args, file);
577
578 out:
579         drm_gem_object_unreference(&obj->base);
580 unlock:
581         mutex_unlock(&dev->struct_mutex);
582         return ret;
583 }
584
585 /* This is the fast write path which cannot handle
586  * page faults in the source data
587  */
588
589 static inline int
590 fast_user_write(struct io_mapping *mapping,
591                 loff_t page_base, int page_offset,
592                 char __user *user_data,
593                 int length)
594 {
595         void __iomem *vaddr_atomic;
596         void *vaddr;
597         unsigned long unwritten;
598
599         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
600         /* We can use the cpu mem copy function because this is X86. */
601         vaddr = (void __force*)vaddr_atomic + page_offset;
602         unwritten = __copy_from_user_inatomic_nocache(vaddr,
603                                                       user_data, length);
604         io_mapping_unmap_atomic(vaddr_atomic);
605         return unwritten;
606 }
607
608 /**
609  * This is the fast pwrite path, where we copy the data directly from the
610  * user into the GTT, uncached.
611  */
612 static int
613 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
614                          struct drm_i915_gem_object *obj,
615                          struct drm_i915_gem_pwrite *args,
616                          struct drm_file *file)
617 {
618         struct drm_i915_private *dev_priv = dev->dev_private;
619         ssize_t remain;
620         loff_t offset, page_base;
621         char __user *user_data;
622         int page_offset, page_length, ret;
623
624         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
625         if (ret)
626                 goto out;
627
628         ret = i915_gem_object_set_to_gtt_domain(obj, true);
629         if (ret)
630                 goto out_unpin;
631
632         ret = i915_gem_object_put_fence(obj);
633         if (ret)
634                 goto out_unpin;
635
636         user_data = to_user_ptr(args->data_ptr);
637         remain = args->size;
638
639         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
640
641         while (remain > 0) {
642                 /* Operation in this page
643                  *
644                  * page_base = page offset within aperture
645                  * page_offset = offset within page
646                  * page_length = bytes to copy for this page
647                  */
648                 page_base = offset & PAGE_MASK;
649                 page_offset = offset_in_page(offset);
650                 page_length = remain;
651                 if ((page_offset + remain) > PAGE_SIZE)
652                         page_length = PAGE_SIZE - page_offset;
653
654                 /* If we get a fault while copying data, then (presumably) our
655                  * source page isn't available.  Return the error and we'll
656                  * retry in the slow path.
657                  */
658                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
659                                     page_offset, user_data, page_length)) {
660                         ret = -EFAULT;
661                         goto out_unpin;
662                 }
663
664                 remain -= page_length;
665                 user_data += page_length;
666                 offset += page_length;
667         }
668
669 out_unpin:
670         i915_gem_object_ggtt_unpin(obj);
671 out:
672         return ret;
673 }
674
675 /* Per-page copy function for the shmem pwrite fastpath.
676  * Flushes invalid cachelines before writing to the target if
677  * needs_clflush_before is set and flushes out any written cachelines after
678  * writing if needs_clflush is set. */
679 static int
680 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
681                   char __user *user_data,
682                   bool page_do_bit17_swizzling,
683                   bool needs_clflush_before,
684                   bool needs_clflush_after)
685 {
686         char *vaddr;
687         int ret;
688
689         if (unlikely(page_do_bit17_swizzling))
690                 return -EINVAL;
691
692         vaddr = kmap_atomic(page);
693         if (needs_clflush_before)
694                 drm_clflush_virt_range(vaddr + shmem_page_offset,
695                                        page_length);
696         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
697                                         user_data, page_length);
698         if (needs_clflush_after)
699                 drm_clflush_virt_range(vaddr + shmem_page_offset,
700                                        page_length);
701         kunmap_atomic(vaddr);
702
703         return ret ? -EFAULT : 0;
704 }
705
706 /* Only difference to the fast-path function is that this can handle bit17
707  * and uses non-atomic copy and kmap functions. */
708 static int
709 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
710                   char __user *user_data,
711                   bool page_do_bit17_swizzling,
712                   bool needs_clflush_before,
713                   bool needs_clflush_after)
714 {
715         char *vaddr;
716         int ret;
717
718         vaddr = kmap(page);
719         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
720                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721                                              page_length,
722                                              page_do_bit17_swizzling);
723         if (page_do_bit17_swizzling)
724                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
725                                                 user_data,
726                                                 page_length);
727         else
728                 ret = __copy_from_user(vaddr + shmem_page_offset,
729                                        user_data,
730                                        page_length);
731         if (needs_clflush_after)
732                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
733                                              page_length,
734                                              page_do_bit17_swizzling);
735         kunmap(page);
736
737         return ret ? -EFAULT : 0;
738 }
739
740 static int
741 i915_gem_shmem_pwrite(struct drm_device *dev,
742                       struct drm_i915_gem_object *obj,
743                       struct drm_i915_gem_pwrite *args,
744                       struct drm_file *file)
745 {
746         ssize_t remain;
747         loff_t offset;
748         char __user *user_data;
749         int shmem_page_offset, page_length, ret = 0;
750         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
751         int hit_slowpath = 0;
752         int needs_clflush_after = 0;
753         int needs_clflush_before = 0;
754         struct sg_page_iter sg_iter;
755
756         user_data = to_user_ptr(args->data_ptr);
757         remain = args->size;
758
759         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
760
761         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
762                 /* If we're not in the cpu write domain, set ourself into the gtt
763                  * write domain and manually flush cachelines (if required). This
764                  * optimizes for the case when the gpu will use the data
765                  * right away and we therefore have to clflush anyway. */
766                 needs_clflush_after = cpu_write_needs_clflush(obj);
767                 ret = i915_gem_object_wait_rendering(obj, false);
768                 if (ret)
769                         return ret;
770         }
771         /* Same trick applies to invalidate partially written cachelines read
772          * before writing. */
773         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
774                 needs_clflush_before =
775                         !cpu_cache_is_coherent(dev, obj->cache_level);
776
777         ret = i915_gem_object_get_pages(obj);
778         if (ret)
779                 return ret;
780
781         i915_gem_object_pin_pages(obj);
782
783         offset = args->offset;
784         obj->dirty = 1;
785
786         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
787                          offset >> PAGE_SHIFT) {
788                 struct page *page = sg_page_iter_page(&sg_iter);
789                 int partial_cacheline_write;
790
791                 if (remain <= 0)
792                         break;
793
794                 /* Operation in this page
795                  *
796                  * shmem_page_offset = offset within page in shmem file
797                  * page_length = bytes to copy for this page
798                  */
799                 shmem_page_offset = offset_in_page(offset);
800
801                 page_length = remain;
802                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
803                         page_length = PAGE_SIZE - shmem_page_offset;
804
805                 /* If we don't overwrite a cacheline completely we need to be
806                  * careful to have up-to-date data by first clflushing. Don't
807                  * overcomplicate things and flush the entire patch. */
808                 partial_cacheline_write = needs_clflush_before &&
809                         ((shmem_page_offset | page_length)
810                                 & (boot_cpu_data.x86_clflush_size - 1));
811
812                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
813                         (page_to_phys(page) & (1 << 17)) != 0;
814
815                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
816                                         user_data, page_do_bit17_swizzling,
817                                         partial_cacheline_write,
818                                         needs_clflush_after);
819                 if (ret == 0)
820                         goto next_page;
821
822                 hit_slowpath = 1;
823                 mutex_unlock(&dev->struct_mutex);
824                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
825                                         user_data, page_do_bit17_swizzling,
826                                         partial_cacheline_write,
827                                         needs_clflush_after);
828
829                 mutex_lock(&dev->struct_mutex);
830
831                 if (ret)
832                         goto out;
833
834 next_page:
835                 remain -= page_length;
836                 user_data += page_length;
837                 offset += page_length;
838         }
839
840 out:
841         i915_gem_object_unpin_pages(obj);
842
843         if (hit_slowpath) {
844                 /*
845                  * Fixup: Flush cpu caches in case we didn't flush the dirty
846                  * cachelines in-line while writing and the object moved
847                  * out of the cpu write domain while we've dropped the lock.
848                  */
849                 if (!needs_clflush_after &&
850                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
851                         if (i915_gem_clflush_object(obj, obj->pin_display))
852                                 i915_gem_chipset_flush(dev);
853                 }
854         }
855
856         if (needs_clflush_after)
857                 i915_gem_chipset_flush(dev);
858
859         return ret;
860 }
861
862 /**
863  * Writes data to the object referenced by handle.
864  *
865  * On error, the contents of the buffer that were to be modified are undefined.
866  */
867 int
868 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
869                       struct drm_file *file)
870 {
871         struct drm_i915_gem_pwrite *args = data;
872         struct drm_i915_gem_object *obj;
873         int ret;
874
875         if (args->size == 0)
876                 return 0;
877
878         if (!access_ok(VERIFY_READ,
879                        to_user_ptr(args->data_ptr),
880                        args->size))
881                 return -EFAULT;
882
883         if (likely(!i915.prefault_disable)) {
884                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
885                                                    args->size);
886                 if (ret)
887                         return -EFAULT;
888         }
889
890         ret = i915_mutex_lock_interruptible(dev);
891         if (ret)
892                 return ret;
893
894         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
895         if (&obj->base == NULL) {
896                 ret = -ENOENT;
897                 goto unlock;
898         }
899
900         /* Bounds check destination. */
901         if (args->offset > obj->base.size ||
902             args->size > obj->base.size - args->offset) {
903                 ret = -EINVAL;
904                 goto out;
905         }
906
907         /* prime objects have no backing filp to GEM pread/pwrite
908          * pages from.
909          */
910         if (!obj->base.filp) {
911                 ret = -EINVAL;
912                 goto out;
913         }
914
915         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
917         ret = -EFAULT;
918         /* We can only do the GTT pwrite on untiled buffers, as otherwise
919          * it would end up going through the fenced access, and we'll get
920          * different detiling behavior between reading and writing.
921          * pread/pwrite currently are reading and writing from the CPU
922          * perspective, requiring manual detiling by the client.
923          */
924         if (obj->phys_obj) {
925                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
926                 goto out;
927         }
928
929         if (obj->tiling_mode == I915_TILING_NONE &&
930             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
931             cpu_write_needs_clflush(obj)) {
932                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
933                 /* Note that the gtt paths might fail with non-page-backed user
934                  * pointers (e.g. gtt mappings when moving data between
935                  * textures). Fallback to the shmem path in that case. */
936         }
937
938         if (ret == -EFAULT || ret == -ENOSPC)
939                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
940
941 out:
942         drm_gem_object_unreference(&obj->base);
943 unlock:
944         mutex_unlock(&dev->struct_mutex);
945         return ret;
946 }
947
948 int
949 i915_gem_check_wedge(struct i915_gpu_error *error,
950                      bool interruptible)
951 {
952         if (i915_reset_in_progress(error)) {
953                 /* Non-interruptible callers can't handle -EAGAIN, hence return
954                  * -EIO unconditionally for these. */
955                 if (!interruptible)
956                         return -EIO;
957
958                 /* Recovery complete, but the reset failed ... */
959                 if (i915_terminally_wedged(error))
960                         return -EIO;
961
962                 return -EAGAIN;
963         }
964
965         return 0;
966 }
967
968 /*
969  * Compare seqno against outstanding lazy request. Emit a request if they are
970  * equal.
971  */
972 static int
973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974 {
975         int ret;
976
977         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979         ret = 0;
980         if (seqno == ring->outstanding_lazy_seqno)
981                 ret = i915_add_request(ring, NULL);
982
983         return ret;
984 }
985
986 static void fake_irq(unsigned long data)
987 {
988         wake_up_process((struct task_struct *)data);
989 }
990
991 static bool missed_irq(struct drm_i915_private *dev_priv,
992                        struct intel_ring_buffer *ring)
993 {
994         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
995 }
996
997 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
998 {
999         if (file_priv == NULL)
1000                 return true;
1001
1002         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1003 }
1004
1005 /**
1006  * __wait_seqno - wait until execution of seqno has finished
1007  * @ring: the ring expected to report seqno
1008  * @seqno: duh!
1009  * @reset_counter: reset sequence associated with the given seqno
1010  * @interruptible: do an interruptible wait (normally yes)
1011  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1012  *
1013  * Note: It is of utmost importance that the passed in seqno and reset_counter
1014  * values have been read by the caller in an smp safe manner. Where read-side
1015  * locks are involved, it is sufficient to read the reset_counter before
1016  * unlocking the lock that protects the seqno. For lockless tricks, the
1017  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1018  * inserted.
1019  *
1020  * Returns 0 if the seqno was found within the alloted time. Else returns the
1021  * errno with remaining time filled in timeout argument.
1022  */
1023 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1024                         unsigned reset_counter,
1025                         bool interruptible,
1026                         struct timespec *timeout,
1027                         struct drm_i915_file_private *file_priv)
1028 {
1029         struct drm_device *dev = ring->dev;
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         const bool irq_test_in_progress =
1032                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1033         struct timespec before, now;
1034         DEFINE_WAIT(wait);
1035         unsigned long timeout_expire;
1036         int ret;
1037
1038         WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1039
1040         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1041                 return 0;
1042
1043         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1044
1045         if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1046                 gen6_rps_boost(dev_priv);
1047                 if (file_priv)
1048                         mod_delayed_work(dev_priv->wq,
1049                                          &file_priv->mm.idle_work,
1050                                          msecs_to_jiffies(100));
1051         }
1052
1053         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1054                 return -ENODEV;
1055
1056         /* Record current time in case interrupted by signal, or wedged */
1057         trace_i915_gem_request_wait_begin(ring, seqno);
1058         getrawmonotonic(&before);
1059         for (;;) {
1060                 struct timer_list timer;
1061
1062                 prepare_to_wait(&ring->irq_queue, &wait,
1063                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1064
1065                 /* We need to check whether any gpu reset happened in between
1066                  * the caller grabbing the seqno and now ... */
1067                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1068                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1069                          * is truely gone. */
1070                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1071                         if (ret == 0)
1072                                 ret = -EAGAIN;
1073                         break;
1074                 }
1075
1076                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1077                         ret = 0;
1078                         break;
1079                 }
1080
1081                 if (interruptible && signal_pending(current)) {
1082                         ret = -ERESTARTSYS;
1083                         break;
1084                 }
1085
1086                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1087                         ret = -ETIME;
1088                         break;
1089                 }
1090
1091                 timer.function = NULL;
1092                 if (timeout || missed_irq(dev_priv, ring)) {
1093                         unsigned long expire;
1094
1095                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1096                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1097                         mod_timer(&timer, expire);
1098                 }
1099
1100                 io_schedule();
1101
1102                 if (timer.function) {
1103                         del_singleshot_timer_sync(&timer);
1104                         destroy_timer_on_stack(&timer);
1105                 }
1106         }
1107         getrawmonotonic(&now);
1108         trace_i915_gem_request_wait_end(ring, seqno);
1109
1110         if (!irq_test_in_progress)
1111                 ring->irq_put(ring);
1112
1113         finish_wait(&ring->irq_queue, &wait);
1114
1115         if (timeout) {
1116                 struct timespec sleep_time = timespec_sub(now, before);
1117                 *timeout = timespec_sub(*timeout, sleep_time);
1118                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1119                         set_normalized_timespec(timeout, 0, 0);
1120         }
1121
1122         return ret;
1123 }
1124
1125 /**
1126  * Waits for a sequence number to be signaled, and cleans up the
1127  * request and object lists appropriately for that event.
1128  */
1129 int
1130 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1131 {
1132         struct drm_device *dev = ring->dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         bool interruptible = dev_priv->mm.interruptible;
1135         int ret;
1136
1137         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1138         BUG_ON(seqno == 0);
1139
1140         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1141         if (ret)
1142                 return ret;
1143
1144         ret = i915_gem_check_olr(ring, seqno);
1145         if (ret)
1146                 return ret;
1147
1148         return __wait_seqno(ring, seqno,
1149                             atomic_read(&dev_priv->gpu_error.reset_counter),
1150                             interruptible, NULL, NULL);
1151 }
1152
1153 static int
1154 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1155                                      struct intel_ring_buffer *ring)
1156 {
1157         i915_gem_retire_requests_ring(ring);
1158
1159         /* Manually manage the write flush as we may have not yet
1160          * retired the buffer.
1161          *
1162          * Note that the last_write_seqno is always the earlier of
1163          * the two (read/write) seqno, so if we haved successfully waited,
1164          * we know we have passed the last write.
1165          */
1166         obj->last_write_seqno = 0;
1167         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168
1169         return 0;
1170 }
1171
1172 /**
1173  * Ensures that all rendering to the object has completed and the object is
1174  * safe to unbind from the GTT or access from the CPU.
1175  */
1176 static __must_check int
1177 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1178                                bool readonly)
1179 {
1180         struct intel_ring_buffer *ring = obj->ring;
1181         u32 seqno;
1182         int ret;
1183
1184         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1185         if (seqno == 0)
1186                 return 0;
1187
1188         ret = i915_wait_seqno(ring, seqno);
1189         if (ret)
1190                 return ret;
1191
1192         return i915_gem_object_wait_rendering__tail(obj, ring);
1193 }
1194
1195 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1196  * as the object state may change during this call.
1197  */
1198 static __must_check int
1199 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1200                                             struct drm_i915_file_private *file_priv,
1201                                             bool readonly)
1202 {
1203         struct drm_device *dev = obj->base.dev;
1204         struct drm_i915_private *dev_priv = dev->dev_private;
1205         struct intel_ring_buffer *ring = obj->ring;
1206         unsigned reset_counter;
1207         u32 seqno;
1208         int ret;
1209
1210         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1211         BUG_ON(!dev_priv->mm.interruptible);
1212
1213         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1214         if (seqno == 0)
1215                 return 0;
1216
1217         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1218         if (ret)
1219                 return ret;
1220
1221         ret = i915_gem_check_olr(ring, seqno);
1222         if (ret)
1223                 return ret;
1224
1225         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1226         mutex_unlock(&dev->struct_mutex);
1227         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1228         mutex_lock(&dev->struct_mutex);
1229         if (ret)
1230                 return ret;
1231
1232         return i915_gem_object_wait_rendering__tail(obj, ring);
1233 }
1234
1235 /**
1236  * Called when user space prepares to use an object with the CPU, either
1237  * through the mmap ioctl's mapping or a GTT mapping.
1238  */
1239 int
1240 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1241                           struct drm_file *file)
1242 {
1243         struct drm_i915_gem_set_domain *args = data;
1244         struct drm_i915_gem_object *obj;
1245         uint32_t read_domains = args->read_domains;
1246         uint32_t write_domain = args->write_domain;
1247         int ret;
1248
1249         /* Only handle setting domains to types used by the CPU. */
1250         if (write_domain & I915_GEM_GPU_DOMAINS)
1251                 return -EINVAL;
1252
1253         if (read_domains & I915_GEM_GPU_DOMAINS)
1254                 return -EINVAL;
1255
1256         /* Having something in the write domain implies it's in the read
1257          * domain, and only that read domain.  Enforce that in the request.
1258          */
1259         if (write_domain != 0 && read_domains != write_domain)
1260                 return -EINVAL;
1261
1262         ret = i915_mutex_lock_interruptible(dev);
1263         if (ret)
1264                 return ret;
1265
1266         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1267         if (&obj->base == NULL) {
1268                 ret = -ENOENT;
1269                 goto unlock;
1270         }
1271
1272         /* Try to flush the object off the GPU without holding the lock.
1273          * We will repeat the flush holding the lock in the normal manner
1274          * to catch cases where we are gazumped.
1275          */
1276         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1277                                                           file->driver_priv,
1278                                                           !write_domain);
1279         if (ret)
1280                 goto unref;
1281
1282         if (read_domains & I915_GEM_DOMAIN_GTT) {
1283                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1284
1285                 /* Silently promote "you're not bound, there was nothing to do"
1286                  * to success, since the client was just asking us to
1287                  * make sure everything was done.
1288                  */
1289                 if (ret == -EINVAL)
1290                         ret = 0;
1291         } else {
1292                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1293         }
1294
1295 unref:
1296         drm_gem_object_unreference(&obj->base);
1297 unlock:
1298         mutex_unlock(&dev->struct_mutex);
1299         return ret;
1300 }
1301
1302 /**
1303  * Called when user space has done writes to this buffer
1304  */
1305 int
1306 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1307                          struct drm_file *file)
1308 {
1309         struct drm_i915_gem_sw_finish *args = data;
1310         struct drm_i915_gem_object *obj;
1311         int ret = 0;
1312
1313         ret = i915_mutex_lock_interruptible(dev);
1314         if (ret)
1315                 return ret;
1316
1317         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1318         if (&obj->base == NULL) {
1319                 ret = -ENOENT;
1320                 goto unlock;
1321         }
1322
1323         /* Pinned buffers may be scanout, so flush the cache */
1324         if (obj->pin_display)
1325                 i915_gem_object_flush_cpu_write_domain(obj, true);
1326
1327         drm_gem_object_unreference(&obj->base);
1328 unlock:
1329         mutex_unlock(&dev->struct_mutex);
1330         return ret;
1331 }
1332
1333 /**
1334  * Maps the contents of an object, returning the address it is mapped
1335  * into.
1336  *
1337  * While the mapping holds a reference on the contents of the object, it doesn't
1338  * imply a ref on the object itself.
1339  */
1340 int
1341 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1342                     struct drm_file *file)
1343 {
1344         struct drm_i915_gem_mmap *args = data;
1345         struct drm_gem_object *obj;
1346         unsigned long addr;
1347
1348         obj = drm_gem_object_lookup(dev, file, args->handle);
1349         if (obj == NULL)
1350                 return -ENOENT;
1351
1352         /* prime objects have no backing filp to GEM mmap
1353          * pages from.
1354          */
1355         if (!obj->filp) {
1356                 drm_gem_object_unreference_unlocked(obj);
1357                 return -EINVAL;
1358         }
1359
1360         addr = vm_mmap(obj->filp, 0, args->size,
1361                        PROT_READ | PROT_WRITE, MAP_SHARED,
1362                        args->offset);
1363         drm_gem_object_unreference_unlocked(obj);
1364         if (IS_ERR((void *)addr))
1365                 return addr;
1366
1367         args->addr_ptr = (uint64_t) addr;
1368
1369         return 0;
1370 }
1371
1372 /**
1373  * i915_gem_fault - fault a page into the GTT
1374  * vma: VMA in question
1375  * vmf: fault info
1376  *
1377  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1378  * from userspace.  The fault handler takes care of binding the object to
1379  * the GTT (if needed), allocating and programming a fence register (again,
1380  * only if needed based on whether the old reg is still valid or the object
1381  * is tiled) and inserting a new PTE into the faulting process.
1382  *
1383  * Note that the faulting process may involve evicting existing objects
1384  * from the GTT and/or fence registers to make room.  So performance may
1385  * suffer if the GTT working set is large or there are few fence registers
1386  * left.
1387  */
1388 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1389 {
1390         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1391         struct drm_device *dev = obj->base.dev;
1392         struct drm_i915_private *dev_priv = dev->dev_private;
1393         pgoff_t page_offset;
1394         unsigned long pfn;
1395         int ret = 0;
1396         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1397
1398         intel_runtime_pm_get(dev_priv);
1399
1400         /* We don't use vmf->pgoff since that has the fake offset */
1401         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1402                 PAGE_SHIFT;
1403
1404         ret = i915_mutex_lock_interruptible(dev);
1405         if (ret)
1406                 goto out;
1407
1408         trace_i915_gem_object_fault(obj, page_offset, true, write);
1409
1410         /* Try to flush the object off the GPU first without holding the lock.
1411          * Upon reacquiring the lock, we will perform our sanity checks and then
1412          * repeat the flush holding the lock in the normal manner to catch cases
1413          * where we are gazumped.
1414          */
1415         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1416         if (ret)
1417                 goto unlock;
1418
1419         /* Access to snoopable pages through the GTT is incoherent. */
1420         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1421                 ret = -EINVAL;
1422                 goto unlock;
1423         }
1424
1425         /* Now bind it into the GTT if needed */
1426         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1427         if (ret)
1428                 goto unlock;
1429
1430         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1431         if (ret)
1432                 goto unpin;
1433
1434         ret = i915_gem_object_get_fence(obj);
1435         if (ret)
1436                 goto unpin;
1437
1438         obj->fault_mappable = true;
1439
1440         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1441         pfn >>= PAGE_SHIFT;
1442         pfn += page_offset;
1443
1444         /* Finally, remap it using the new GTT offset */
1445         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1446 unpin:
1447         i915_gem_object_ggtt_unpin(obj);
1448 unlock:
1449         mutex_unlock(&dev->struct_mutex);
1450 out:
1451         switch (ret) {
1452         case -EIO:
1453                 /* If this -EIO is due to a gpu hang, give the reset code a
1454                  * chance to clean up the mess. Otherwise return the proper
1455                  * SIGBUS. */
1456                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1457                         ret = VM_FAULT_SIGBUS;
1458                         break;
1459                 }
1460         case -EAGAIN:
1461                 /*
1462                  * EAGAIN means the gpu is hung and we'll wait for the error
1463                  * handler to reset everything when re-faulting in
1464                  * i915_mutex_lock_interruptible.
1465                  */
1466         case 0:
1467         case -ERESTARTSYS:
1468         case -EINTR:
1469         case -EBUSY:
1470                 /*
1471                  * EBUSY is ok: this just means that another thread
1472                  * already did the job.
1473                  */
1474                 ret = VM_FAULT_NOPAGE;
1475                 break;
1476         case -ENOMEM:
1477                 ret = VM_FAULT_OOM;
1478                 break;
1479         case -ENOSPC:
1480         case -EFAULT:
1481                 ret = VM_FAULT_SIGBUS;
1482                 break;
1483         default:
1484                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1485                 ret = VM_FAULT_SIGBUS;
1486                 break;
1487         }
1488
1489         intel_runtime_pm_put(dev_priv);
1490         return ret;
1491 }
1492
1493 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1494 {
1495         struct i915_vma *vma;
1496
1497         /*
1498          * Only the global gtt is relevant for gtt memory mappings, so restrict
1499          * list traversal to objects bound into the global address space. Note
1500          * that the active list should be empty, but better safe than sorry.
1501          */
1502         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1503         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1504                 i915_gem_release_mmap(vma->obj);
1505         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1506                 i915_gem_release_mmap(vma->obj);
1507 }
1508
1509 /**
1510  * i915_gem_release_mmap - remove physical page mappings
1511  * @obj: obj in question
1512  *
1513  * Preserve the reservation of the mmapping with the DRM core code, but
1514  * relinquish ownership of the pages back to the system.
1515  *
1516  * It is vital that we remove the page mapping if we have mapped a tiled
1517  * object through the GTT and then lose the fence register due to
1518  * resource pressure. Similarly if the object has been moved out of the
1519  * aperture, than pages mapped into userspace must be revoked. Removing the
1520  * mapping will then trigger a page fault on the next user access, allowing
1521  * fixup by i915_gem_fault().
1522  */
1523 void
1524 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1525 {
1526         if (!obj->fault_mappable)
1527                 return;
1528
1529         drm_vma_node_unmap(&obj->base.vma_node,
1530                            obj->base.dev->anon_inode->i_mapping);
1531         obj->fault_mappable = false;
1532 }
1533
1534 uint32_t
1535 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1536 {
1537         uint32_t gtt_size;
1538
1539         if (INTEL_INFO(dev)->gen >= 4 ||
1540             tiling_mode == I915_TILING_NONE)
1541                 return size;
1542
1543         /* Previous chips need a power-of-two fence region when tiling */
1544         if (INTEL_INFO(dev)->gen == 3)
1545                 gtt_size = 1024*1024;
1546         else
1547                 gtt_size = 512*1024;
1548
1549         while (gtt_size < size)
1550                 gtt_size <<= 1;
1551
1552         return gtt_size;
1553 }
1554
1555 /**
1556  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1557  * @obj: object to check
1558  *
1559  * Return the required GTT alignment for an object, taking into account
1560  * potential fence register mapping.
1561  */
1562 uint32_t
1563 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1564                            int tiling_mode, bool fenced)
1565 {
1566         /*
1567          * Minimum alignment is 4k (GTT page size), but might be greater
1568          * if a fence register is needed for the object.
1569          */
1570         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1571             tiling_mode == I915_TILING_NONE)
1572                 return 4096;
1573
1574         /*
1575          * Previous chips need to be aligned to the size of the smallest
1576          * fence register that can contain the object.
1577          */
1578         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1579 }
1580
1581 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1582 {
1583         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1584         int ret;
1585
1586         if (drm_vma_node_has_offset(&obj->base.vma_node))
1587                 return 0;
1588
1589         dev_priv->mm.shrinker_no_lock_stealing = true;
1590
1591         ret = drm_gem_create_mmap_offset(&obj->base);
1592         if (ret != -ENOSPC)
1593                 goto out;
1594
1595         /* Badly fragmented mmap space? The only way we can recover
1596          * space is by destroying unwanted objects. We can't randomly release
1597          * mmap_offsets as userspace expects them to be persistent for the
1598          * lifetime of the objects. The closest we can is to release the
1599          * offsets on purgeable objects by truncating it and marking it purged,
1600          * which prevents userspace from ever using that object again.
1601          */
1602         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1603         ret = drm_gem_create_mmap_offset(&obj->base);
1604         if (ret != -ENOSPC)
1605                 goto out;
1606
1607         i915_gem_shrink_all(dev_priv);
1608         ret = drm_gem_create_mmap_offset(&obj->base);
1609 out:
1610         dev_priv->mm.shrinker_no_lock_stealing = false;
1611
1612         return ret;
1613 }
1614
1615 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1616 {
1617         drm_gem_free_mmap_offset(&obj->base);
1618 }
1619
1620 int
1621 i915_gem_mmap_gtt(struct drm_file *file,
1622                   struct drm_device *dev,
1623                   uint32_t handle,
1624                   uint64_t *offset)
1625 {
1626         struct drm_i915_private *dev_priv = dev->dev_private;
1627         struct drm_i915_gem_object *obj;
1628         int ret;
1629
1630         ret = i915_mutex_lock_interruptible(dev);
1631         if (ret)
1632                 return ret;
1633
1634         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1635         if (&obj->base == NULL) {
1636                 ret = -ENOENT;
1637                 goto unlock;
1638         }
1639
1640         if (obj->base.size > dev_priv->gtt.mappable_end) {
1641                 ret = -E2BIG;
1642                 goto out;
1643         }
1644
1645         if (obj->madv != I915_MADV_WILLNEED) {
1646                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1647                 ret = -EFAULT;
1648                 goto out;
1649         }
1650
1651         ret = i915_gem_object_create_mmap_offset(obj);
1652         if (ret)
1653                 goto out;
1654
1655         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1656
1657 out:
1658         drm_gem_object_unreference(&obj->base);
1659 unlock:
1660         mutex_unlock(&dev->struct_mutex);
1661         return ret;
1662 }
1663
1664 /**
1665  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1666  * @dev: DRM device
1667  * @data: GTT mapping ioctl data
1668  * @file: GEM object info
1669  *
1670  * Simply returns the fake offset to userspace so it can mmap it.
1671  * The mmap call will end up in drm_gem_mmap(), which will set things
1672  * up so we can get faults in the handler above.
1673  *
1674  * The fault handler will take care of binding the object into the GTT
1675  * (since it may have been evicted to make room for something), allocating
1676  * a fence register, and mapping the appropriate aperture address into
1677  * userspace.
1678  */
1679 int
1680 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1681                         struct drm_file *file)
1682 {
1683         struct drm_i915_gem_mmap_gtt *args = data;
1684
1685         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1686 }
1687
1688 /* Immediately discard the backing storage */
1689 static void
1690 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1691 {
1692         struct inode *inode;
1693
1694         i915_gem_object_free_mmap_offset(obj);
1695
1696         if (obj->base.filp == NULL)
1697                 return;
1698
1699         /* Our goal here is to return as much of the memory as
1700          * is possible back to the system as we are called from OOM.
1701          * To do this we must instruct the shmfs to drop all of its
1702          * backing pages, *now*.
1703          */
1704         inode = file_inode(obj->base.filp);
1705         shmem_truncate_range(inode, 0, (loff_t)-1);
1706
1707         obj->madv = __I915_MADV_PURGED;
1708 }
1709
1710 static inline int
1711 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1712 {
1713         return obj->madv == I915_MADV_DONTNEED;
1714 }
1715
1716 static void
1717 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1718 {
1719         struct sg_page_iter sg_iter;
1720         int ret;
1721
1722         BUG_ON(obj->madv == __I915_MADV_PURGED);
1723
1724         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1725         if (ret) {
1726                 /* In the event of a disaster, abandon all caches and
1727                  * hope for the best.
1728                  */
1729                 WARN_ON(ret != -EIO);
1730                 i915_gem_clflush_object(obj, true);
1731                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1732         }
1733
1734         if (i915_gem_object_needs_bit17_swizzle(obj))
1735                 i915_gem_object_save_bit_17_swizzle(obj);
1736
1737         if (obj->madv == I915_MADV_DONTNEED)
1738                 obj->dirty = 0;
1739
1740         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1741                 struct page *page = sg_page_iter_page(&sg_iter);
1742
1743                 if (obj->dirty)
1744                         set_page_dirty(page);
1745
1746                 if (obj->madv == I915_MADV_WILLNEED)
1747                         mark_page_accessed(page);
1748
1749                 page_cache_release(page);
1750         }
1751         obj->dirty = 0;
1752
1753         sg_free_table(obj->pages);
1754         kfree(obj->pages);
1755 }
1756
1757 int
1758 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1759 {
1760         const struct drm_i915_gem_object_ops *ops = obj->ops;
1761
1762         if (obj->pages == NULL)
1763                 return 0;
1764
1765         if (obj->pages_pin_count)
1766                 return -EBUSY;
1767
1768         BUG_ON(i915_gem_obj_bound_any(obj));
1769
1770         /* ->put_pages might need to allocate memory for the bit17 swizzle
1771          * array, hence protect them from being reaped by removing them from gtt
1772          * lists early. */
1773         list_del(&obj->global_list);
1774
1775         ops->put_pages(obj);
1776         obj->pages = NULL;
1777
1778         if (i915_gem_object_is_purgeable(obj))
1779                 i915_gem_object_truncate(obj);
1780
1781         return 0;
1782 }
1783
1784 static unsigned long
1785 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1786                   bool purgeable_only)
1787 {
1788         struct list_head still_bound_list;
1789         struct drm_i915_gem_object *obj, *next;
1790         unsigned long count = 0;
1791
1792         list_for_each_entry_safe(obj, next,
1793                                  &dev_priv->mm.unbound_list,
1794                                  global_list) {
1795                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1796                     i915_gem_object_put_pages(obj) == 0) {
1797                         count += obj->base.size >> PAGE_SHIFT;
1798                         if (count >= target)
1799                                 return count;
1800                 }
1801         }
1802
1803         /*
1804          * As we may completely rewrite the bound list whilst unbinding
1805          * (due to retiring requests) we have to strictly process only
1806          * one element of the list at the time, and recheck the list
1807          * on every iteration.
1808          */
1809         INIT_LIST_HEAD(&still_bound_list);
1810         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1811                 struct i915_vma *vma, *v;
1812
1813                 obj = list_first_entry(&dev_priv->mm.bound_list,
1814                                        typeof(*obj), global_list);
1815                 list_move_tail(&obj->global_list, &still_bound_list);
1816
1817                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1818                         continue;
1819
1820                 /*
1821                  * Hold a reference whilst we unbind this object, as we may
1822                  * end up waiting for and retiring requests. This might
1823                  * release the final reference (held by the active list)
1824                  * and result in the object being freed from under us.
1825                  * in this object being freed.
1826                  *
1827                  * Note 1: Shrinking the bound list is special since only active
1828                  * (and hence bound objects) can contain such limbo objects, so
1829                  * we don't need special tricks for shrinking the unbound list.
1830                  * The only other place where we have to be careful with active
1831                  * objects suddenly disappearing due to retiring requests is the
1832                  * eviction code.
1833                  *
1834                  * Note 2: Even though the bound list doesn't hold a reference
1835                  * to the object we can safely grab one here: The final object
1836                  * unreferencing and the bound_list are both protected by the
1837                  * dev->struct_mutex and so we won't ever be able to observe an
1838                  * object on the bound_list with a reference count equals 0.
1839                  */
1840                 drm_gem_object_reference(&obj->base);
1841
1842                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1843                         if (i915_vma_unbind(vma))
1844                                 break;
1845
1846                 if (i915_gem_object_put_pages(obj) == 0)
1847                         count += obj->base.size >> PAGE_SHIFT;
1848
1849                 drm_gem_object_unreference(&obj->base);
1850         }
1851         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1852
1853         return count;
1854 }
1855
1856 static unsigned long
1857 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1858 {
1859         return __i915_gem_shrink(dev_priv, target, true);
1860 }
1861
1862 static unsigned long
1863 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1864 {
1865         struct drm_i915_gem_object *obj, *next;
1866         long freed = 0;
1867
1868         i915_gem_evict_everything(dev_priv->dev);
1869
1870         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1871                                  global_list) {
1872                 if (i915_gem_object_put_pages(obj) == 0)
1873                         freed += obj->base.size >> PAGE_SHIFT;
1874         }
1875         return freed;
1876 }
1877
1878 static int
1879 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1880 {
1881         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1882         int page_count, i;
1883         struct address_space *mapping;
1884         struct sg_table *st;
1885         struct scatterlist *sg;
1886         struct sg_page_iter sg_iter;
1887         struct page *page;
1888         unsigned long last_pfn = 0;     /* suppress gcc warning */
1889         gfp_t gfp;
1890
1891         /* Assert that the object is not currently in any GPU domain. As it
1892          * wasn't in the GTT, there shouldn't be any way it could have been in
1893          * a GPU cache
1894          */
1895         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1896         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1897
1898         st = kmalloc(sizeof(*st), GFP_KERNEL);
1899         if (st == NULL)
1900                 return -ENOMEM;
1901
1902         page_count = obj->base.size / PAGE_SIZE;
1903         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1904                 kfree(st);
1905                 return -ENOMEM;
1906         }
1907
1908         /* Get the list of pages out of our struct file.  They'll be pinned
1909          * at this point until we release them.
1910          *
1911          * Fail silently without starting the shrinker
1912          */
1913         mapping = file_inode(obj->base.filp)->i_mapping;
1914         gfp = mapping_gfp_mask(mapping);
1915         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1916         gfp &= ~(__GFP_IO | __GFP_WAIT);
1917         sg = st->sgl;
1918         st->nents = 0;
1919         for (i = 0; i < page_count; i++) {
1920                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921                 if (IS_ERR(page)) {
1922                         i915_gem_purge(dev_priv, page_count);
1923                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1924                 }
1925                 if (IS_ERR(page)) {
1926                         /* We've tried hard to allocate the memory by reaping
1927                          * our own buffer, now let the real VM do its job and
1928                          * go down in flames if truly OOM.
1929                          */
1930                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1931                         gfp |= __GFP_IO | __GFP_WAIT;
1932
1933                         i915_gem_shrink_all(dev_priv);
1934                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1935                         if (IS_ERR(page))
1936                                 goto err_pages;
1937
1938                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1939                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1940                 }
1941 #ifdef CONFIG_SWIOTLB
1942                 if (swiotlb_nr_tbl()) {
1943                         st->nents++;
1944                         sg_set_page(sg, page, PAGE_SIZE, 0);
1945                         sg = sg_next(sg);
1946                         continue;
1947                 }
1948 #endif
1949                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1950                         if (i)
1951                                 sg = sg_next(sg);
1952                         st->nents++;
1953                         sg_set_page(sg, page, PAGE_SIZE, 0);
1954                 } else {
1955                         sg->length += PAGE_SIZE;
1956                 }
1957                 last_pfn = page_to_pfn(page);
1958
1959                 /* Check that the i965g/gm workaround works. */
1960                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1961         }
1962 #ifdef CONFIG_SWIOTLB
1963         if (!swiotlb_nr_tbl())
1964 #endif
1965                 sg_mark_end(sg);
1966         obj->pages = st;
1967
1968         if (i915_gem_object_needs_bit17_swizzle(obj))
1969                 i915_gem_object_do_bit_17_swizzle(obj);
1970
1971         return 0;
1972
1973 err_pages:
1974         sg_mark_end(sg);
1975         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1976                 page_cache_release(sg_page_iter_page(&sg_iter));
1977         sg_free_table(st);
1978         kfree(st);
1979         return PTR_ERR(page);
1980 }
1981
1982 /* Ensure that the associated pages are gathered from the backing storage
1983  * and pinned into our object. i915_gem_object_get_pages() may be called
1984  * multiple times before they are released by a single call to
1985  * i915_gem_object_put_pages() - once the pages are no longer referenced
1986  * either as a result of memory pressure (reaping pages under the shrinker)
1987  * or as the object is itself released.
1988  */
1989 int
1990 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1991 {
1992         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1993         const struct drm_i915_gem_object_ops *ops = obj->ops;
1994         int ret;
1995
1996         if (obj->pages)
1997                 return 0;
1998
1999         if (obj->madv != I915_MADV_WILLNEED) {
2000                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2001                 return -EFAULT;
2002         }
2003
2004         BUG_ON(obj->pages_pin_count);
2005
2006         ret = ops->get_pages(obj);
2007         if (ret)
2008                 return ret;
2009
2010         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2011         return 0;
2012 }
2013
2014 static void
2015 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2016                                struct intel_ring_buffer *ring)
2017 {
2018         struct drm_device *dev = obj->base.dev;
2019         struct drm_i915_private *dev_priv = dev->dev_private;
2020         u32 seqno = intel_ring_get_seqno(ring);
2021
2022         BUG_ON(ring == NULL);
2023         if (obj->ring != ring && obj->last_write_seqno) {
2024                 /* Keep the seqno relative to the current ring */
2025                 obj->last_write_seqno = seqno;
2026         }
2027         obj->ring = ring;
2028
2029         /* Add a reference if we're newly entering the active list. */
2030         if (!obj->active) {
2031                 drm_gem_object_reference(&obj->base);
2032                 obj->active = 1;
2033         }
2034
2035         list_move_tail(&obj->ring_list, &ring->active_list);
2036
2037         obj->last_read_seqno = seqno;
2038
2039         if (obj->fenced_gpu_access) {
2040                 obj->last_fenced_seqno = seqno;
2041
2042                 /* Bump MRU to take account of the delayed flush */
2043                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2044                         struct drm_i915_fence_reg *reg;
2045
2046                         reg = &dev_priv->fence_regs[obj->fence_reg];
2047                         list_move_tail(&reg->lru_list,
2048                                        &dev_priv->mm.fence_list);
2049                 }
2050         }
2051 }
2052
2053 void i915_vma_move_to_active(struct i915_vma *vma,
2054                              struct intel_ring_buffer *ring)
2055 {
2056         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2057         return i915_gem_object_move_to_active(vma->obj, ring);
2058 }
2059
2060 static void
2061 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2062 {
2063         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2064         struct i915_address_space *vm;
2065         struct i915_vma *vma;
2066
2067         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2068         BUG_ON(!obj->active);
2069
2070         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2071                 vma = i915_gem_obj_to_vma(obj, vm);
2072                 if (vma && !list_empty(&vma->mm_list))
2073                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2074         }
2075
2076         list_del_init(&obj->ring_list);
2077         obj->ring = NULL;
2078
2079         obj->last_read_seqno = 0;
2080         obj->last_write_seqno = 0;
2081         obj->base.write_domain = 0;
2082
2083         obj->last_fenced_seqno = 0;
2084         obj->fenced_gpu_access = false;
2085
2086         obj->active = 0;
2087         drm_gem_object_unreference(&obj->base);
2088
2089         WARN_ON(i915_verify_lists(dev));
2090 }
2091
2092 static int
2093 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2094 {
2095         struct drm_i915_private *dev_priv = dev->dev_private;
2096         struct intel_ring_buffer *ring;
2097         int ret, i, j;
2098
2099         /* Carefully retire all requests without writing to the rings */
2100         for_each_ring(ring, dev_priv, i) {
2101                 ret = intel_ring_idle(ring);
2102                 if (ret)
2103                         return ret;
2104         }
2105         i915_gem_retire_requests(dev);
2106
2107         /* Finally reset hw state */
2108         for_each_ring(ring, dev_priv, i) {
2109                 intel_ring_init_seqno(ring, seqno);
2110
2111                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2112                         ring->sync_seqno[j] = 0;
2113         }
2114
2115         return 0;
2116 }
2117
2118 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2119 {
2120         struct drm_i915_private *dev_priv = dev->dev_private;
2121         int ret;
2122
2123         if (seqno == 0)
2124                 return -EINVAL;
2125
2126         /* HWS page needs to be set less than what we
2127          * will inject to ring
2128          */
2129         ret = i915_gem_init_seqno(dev, seqno - 1);
2130         if (ret)
2131                 return ret;
2132
2133         /* Carefully set the last_seqno value so that wrap
2134          * detection still works
2135          */
2136         dev_priv->next_seqno = seqno;
2137         dev_priv->last_seqno = seqno - 1;
2138         if (dev_priv->last_seqno == 0)
2139                 dev_priv->last_seqno--;
2140
2141         return 0;
2142 }
2143
2144 int
2145 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2146 {
2147         struct drm_i915_private *dev_priv = dev->dev_private;
2148
2149         /* reserve 0 for non-seqno */
2150         if (dev_priv->next_seqno == 0) {
2151                 int ret = i915_gem_init_seqno(dev, 0);
2152                 if (ret)
2153                         return ret;
2154
2155                 dev_priv->next_seqno = 1;
2156         }
2157
2158         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2159         return 0;
2160 }
2161
2162 int __i915_add_request(struct intel_ring_buffer *ring,
2163                        struct drm_file *file,
2164                        struct drm_i915_gem_object *obj,
2165                        u32 *out_seqno)
2166 {
2167         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2168         struct drm_i915_gem_request *request;
2169         u32 request_ring_position, request_start;
2170         int ret;
2171
2172         request_start = intel_ring_get_tail(ring);
2173         /*
2174          * Emit any outstanding flushes - execbuf can fail to emit the flush
2175          * after having emitted the batchbuffer command. Hence we need to fix
2176          * things up similar to emitting the lazy request. The difference here
2177          * is that the flush _must_ happen before the next request, no matter
2178          * what.
2179          */
2180         ret = intel_ring_flush_all_caches(ring);
2181         if (ret)
2182                 return ret;
2183
2184         request = ring->preallocated_lazy_request;
2185         if (WARN_ON(request == NULL))
2186                 return -ENOMEM;
2187
2188         /* Record the position of the start of the request so that
2189          * should we detect the updated seqno part-way through the
2190          * GPU processing the request, we never over-estimate the
2191          * position of the head.
2192          */
2193         request_ring_position = intel_ring_get_tail(ring);
2194
2195         ret = ring->add_request(ring);
2196         if (ret)
2197                 return ret;
2198
2199         request->seqno = intel_ring_get_seqno(ring);
2200         request->ring = ring;
2201         request->head = request_start;
2202         request->tail = request_ring_position;
2203
2204         /* Whilst this request exists, batch_obj will be on the
2205          * active_list, and so will hold the active reference. Only when this
2206          * request is retired will the the batch_obj be moved onto the
2207          * inactive_list and lose its active reference. Hence we do not need
2208          * to explicitly hold another reference here.
2209          */
2210         request->batch_obj = obj;
2211
2212         /* Hold a reference to the current context so that we can inspect
2213          * it later in case a hangcheck error event fires.
2214          */
2215         request->ctx = ring->last_context;
2216         if (request->ctx)
2217                 i915_gem_context_reference(request->ctx);
2218
2219         request->emitted_jiffies = jiffies;
2220         list_add_tail(&request->list, &ring->request_list);
2221         request->file_priv = NULL;
2222
2223         if (file) {
2224                 struct drm_i915_file_private *file_priv = file->driver_priv;
2225
2226                 spin_lock(&file_priv->mm.lock);
2227                 request->file_priv = file_priv;
2228                 list_add_tail(&request->client_list,
2229                               &file_priv->mm.request_list);
2230                 spin_unlock(&file_priv->mm.lock);
2231         }
2232
2233         trace_i915_gem_request_add(ring, request->seqno);
2234         ring->outstanding_lazy_seqno = 0;
2235         ring->preallocated_lazy_request = NULL;
2236
2237         if (!dev_priv->ums.mm_suspended) {
2238                 i915_queue_hangcheck(ring->dev);
2239
2240                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2241                 queue_delayed_work(dev_priv->wq,
2242                                    &dev_priv->mm.retire_work,
2243                                    round_jiffies_up_relative(HZ));
2244                 intel_mark_busy(dev_priv->dev);
2245         }
2246
2247         if (out_seqno)
2248                 *out_seqno = request->seqno;
2249         return 0;
2250 }
2251
2252 static inline void
2253 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2254 {
2255         struct drm_i915_file_private *file_priv = request->file_priv;
2256
2257         if (!file_priv)
2258                 return;
2259
2260         spin_lock(&file_priv->mm.lock);
2261         list_del(&request->client_list);
2262         request->file_priv = NULL;
2263         spin_unlock(&file_priv->mm.lock);
2264 }
2265
2266 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2267                                    const struct i915_hw_context *ctx)
2268 {
2269         unsigned long elapsed;
2270
2271         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2272
2273         if (ctx->hang_stats.banned)
2274                 return true;
2275
2276         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2277                 if (!i915_gem_context_is_default(ctx)) {
2278                         DRM_DEBUG("context hanging too fast, banning!\n");
2279                         return true;
2280                 } else if (dev_priv->gpu_error.stop_rings == 0) {
2281                         DRM_ERROR("gpu hanging too fast, banning!\n");
2282                         return true;
2283                 }
2284         }
2285
2286         return false;
2287 }
2288
2289 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2290                                   struct i915_hw_context *ctx,
2291                                   const bool guilty)
2292 {
2293         struct i915_ctx_hang_stats *hs;
2294
2295         if (WARN_ON(!ctx))
2296                 return;
2297
2298         hs = &ctx->hang_stats;
2299
2300         if (guilty) {
2301                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2302                 hs->batch_active++;
2303                 hs->guilty_ts = get_seconds();
2304         } else {
2305                 hs->batch_pending++;
2306         }
2307 }
2308
2309 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2310 {
2311         list_del(&request->list);
2312         i915_gem_request_remove_from_client(request);
2313
2314         if (request->ctx)
2315                 i915_gem_context_unreference(request->ctx);
2316
2317         kfree(request);
2318 }
2319
2320 struct drm_i915_gem_request *
2321 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2322 {
2323         struct drm_i915_gem_request *request;
2324         u32 completed_seqno;
2325
2326         completed_seqno = ring->get_seqno(ring, false);
2327
2328         list_for_each_entry(request, &ring->request_list, list) {
2329                 if (i915_seqno_passed(completed_seqno, request->seqno))
2330                         continue;
2331
2332                 return request;
2333         }
2334
2335         return NULL;
2336 }
2337
2338 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2339                                        struct intel_ring_buffer *ring)
2340 {
2341         struct drm_i915_gem_request *request;
2342         bool ring_hung;
2343
2344         request = i915_gem_find_active_request(ring);
2345
2346         if (request == NULL)
2347                 return;
2348
2349         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2350
2351         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2352
2353         list_for_each_entry_continue(request, &ring->request_list, list)
2354                 i915_set_reset_status(dev_priv, request->ctx, false);
2355 }
2356
2357 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2358                                         struct intel_ring_buffer *ring)
2359 {
2360         while (!list_empty(&ring->active_list)) {
2361                 struct drm_i915_gem_object *obj;
2362
2363                 obj = list_first_entry(&ring->active_list,
2364                                        struct drm_i915_gem_object,
2365                                        ring_list);
2366
2367                 i915_gem_object_move_to_inactive(obj);
2368         }
2369
2370         /*
2371          * We must free the requests after all the corresponding objects have
2372          * been moved off active lists. Which is the same order as the normal
2373          * retire_requests function does. This is important if object hold
2374          * implicit references on things like e.g. ppgtt address spaces through
2375          * the request.
2376          */
2377         while (!list_empty(&ring->request_list)) {
2378                 struct drm_i915_gem_request *request;
2379
2380                 request = list_first_entry(&ring->request_list,
2381                                            struct drm_i915_gem_request,
2382                                            list);
2383
2384                 i915_gem_free_request(request);
2385         }
2386 }
2387
2388 void i915_gem_restore_fences(struct drm_device *dev)
2389 {
2390         struct drm_i915_private *dev_priv = dev->dev_private;
2391         int i;
2392
2393         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2394                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2395
2396                 /*
2397                  * Commit delayed tiling changes if we have an object still
2398                  * attached to the fence, otherwise just clear the fence.
2399                  */
2400                 if (reg->obj) {
2401                         i915_gem_object_update_fence(reg->obj, reg,
2402                                                      reg->obj->tiling_mode);
2403                 } else {
2404                         i915_gem_write_fence(dev, i, NULL);
2405                 }
2406         }
2407 }
2408
2409 void i915_gem_reset(struct drm_device *dev)
2410 {
2411         struct drm_i915_private *dev_priv = dev->dev_private;
2412         struct intel_ring_buffer *ring;
2413         int i;
2414
2415         /*
2416          * Before we free the objects from the requests, we need to inspect
2417          * them for finding the guilty party. As the requests only borrow
2418          * their reference to the objects, the inspection must be done first.
2419          */
2420         for_each_ring(ring, dev_priv, i)
2421                 i915_gem_reset_ring_status(dev_priv, ring);
2422
2423         for_each_ring(ring, dev_priv, i)
2424                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2425
2426         i915_gem_cleanup_ringbuffer(dev);
2427
2428         i915_gem_context_reset(dev);
2429
2430         i915_gem_restore_fences(dev);
2431 }
2432
2433 /**
2434  * This function clears the request list as sequence numbers are passed.
2435  */
2436 static void
2437 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2438 {
2439         uint32_t seqno;
2440
2441         if (list_empty(&ring->request_list))
2442                 return;
2443
2444         WARN_ON(i915_verify_lists(ring->dev));
2445
2446         seqno = ring->get_seqno(ring, true);
2447
2448         /* Move any buffers on the active list that are no longer referenced
2449          * by the ringbuffer to the flushing/inactive lists as appropriate,
2450          * before we free the context associated with the requests.
2451          */
2452         while (!list_empty(&ring->active_list)) {
2453                 struct drm_i915_gem_object *obj;
2454
2455                 obj = list_first_entry(&ring->active_list,
2456                                       struct drm_i915_gem_object,
2457                                       ring_list);
2458
2459                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2460                         break;
2461
2462                 i915_gem_object_move_to_inactive(obj);
2463         }
2464
2465
2466         while (!list_empty(&ring->request_list)) {
2467                 struct drm_i915_gem_request *request;
2468
2469                 request = list_first_entry(&ring->request_list,
2470                                            struct drm_i915_gem_request,
2471                                            list);
2472
2473                 if (!i915_seqno_passed(seqno, request->seqno))
2474                         break;
2475
2476                 trace_i915_gem_request_retire(ring, request->seqno);
2477                 /* We know the GPU must have read the request to have
2478                  * sent us the seqno + interrupt, so use the position
2479                  * of tail of the request to update the last known position
2480                  * of the GPU head.
2481                  */
2482                 ring->last_retired_head = request->tail;
2483
2484                 i915_gem_free_request(request);
2485         }
2486
2487         if (unlikely(ring->trace_irq_seqno &&
2488                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2489                 ring->irq_put(ring);
2490                 ring->trace_irq_seqno = 0;
2491         }
2492
2493         WARN_ON(i915_verify_lists(ring->dev));
2494 }
2495
2496 bool
2497 i915_gem_retire_requests(struct drm_device *dev)
2498 {
2499         struct drm_i915_private *dev_priv = dev->dev_private;
2500         struct intel_ring_buffer *ring;
2501         bool idle = true;
2502         int i;
2503
2504         for_each_ring(ring, dev_priv, i) {
2505                 i915_gem_retire_requests_ring(ring);
2506                 idle &= list_empty(&ring->request_list);
2507         }
2508
2509         if (idle)
2510                 mod_delayed_work(dev_priv->wq,
2511                                    &dev_priv->mm.idle_work,
2512                                    msecs_to_jiffies(100));
2513
2514         return idle;
2515 }
2516
2517 static void
2518 i915_gem_retire_work_handler(struct work_struct *work)
2519 {
2520         struct drm_i915_private *dev_priv =
2521                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2522         struct drm_device *dev = dev_priv->dev;
2523         bool idle;
2524
2525         /* Come back later if the device is busy... */
2526         idle = false;
2527         if (mutex_trylock(&dev->struct_mutex)) {
2528                 idle = i915_gem_retire_requests(dev);
2529                 mutex_unlock(&dev->struct_mutex);
2530         }
2531         if (!idle)
2532                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2533                                    round_jiffies_up_relative(HZ));
2534 }
2535
2536 static void
2537 i915_gem_idle_work_handler(struct work_struct *work)
2538 {
2539         struct drm_i915_private *dev_priv =
2540                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2541
2542         intel_mark_idle(dev_priv->dev);
2543 }
2544
2545 /**
2546  * Ensures that an object will eventually get non-busy by flushing any required
2547  * write domains, emitting any outstanding lazy request and retiring and
2548  * completed requests.
2549  */
2550 static int
2551 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2552 {
2553         int ret;
2554
2555         if (obj->active) {
2556                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2557                 if (ret)
2558                         return ret;
2559
2560                 i915_gem_retire_requests_ring(obj->ring);
2561         }
2562
2563         return 0;
2564 }
2565
2566 /**
2567  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2568  * @DRM_IOCTL_ARGS: standard ioctl arguments
2569  *
2570  * Returns 0 if successful, else an error is returned with the remaining time in
2571  * the timeout parameter.
2572  *  -ETIME: object is still busy after timeout
2573  *  -ERESTARTSYS: signal interrupted the wait
2574  *  -ENONENT: object doesn't exist
2575  * Also possible, but rare:
2576  *  -EAGAIN: GPU wedged
2577  *  -ENOMEM: damn
2578  *  -ENODEV: Internal IRQ fail
2579  *  -E?: The add request failed
2580  *
2581  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2582  * non-zero timeout parameter the wait ioctl will wait for the given number of
2583  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2584  * without holding struct_mutex the object may become re-busied before this
2585  * function completes. A similar but shorter * race condition exists in the busy
2586  * ioctl
2587  */
2588 int
2589 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2590 {
2591         struct drm_i915_private *dev_priv = dev->dev_private;
2592         struct drm_i915_gem_wait *args = data;
2593         struct drm_i915_gem_object *obj;
2594         struct intel_ring_buffer *ring = NULL;
2595         struct timespec timeout_stack, *timeout = NULL;
2596         unsigned reset_counter;
2597         u32 seqno = 0;
2598         int ret = 0;
2599
2600         if (args->timeout_ns >= 0) {
2601                 timeout_stack = ns_to_timespec(args->timeout_ns);
2602                 timeout = &timeout_stack;
2603         }
2604
2605         ret = i915_mutex_lock_interruptible(dev);
2606         if (ret)
2607                 return ret;
2608
2609         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2610         if (&obj->base == NULL) {
2611                 mutex_unlock(&dev->struct_mutex);
2612                 return -ENOENT;
2613         }
2614
2615         /* Need to make sure the object gets inactive eventually. */
2616         ret = i915_gem_object_flush_active(obj);
2617         if (ret)
2618                 goto out;
2619
2620         if (obj->active) {
2621                 seqno = obj->last_read_seqno;
2622                 ring = obj->ring;
2623         }
2624
2625         if (seqno == 0)
2626                  goto out;
2627
2628         /* Do this after OLR check to make sure we make forward progress polling
2629          * on this IOCTL with a 0 timeout (like busy ioctl)
2630          */
2631         if (!args->timeout_ns) {
2632                 ret = -ETIME;
2633                 goto out;
2634         }
2635
2636         drm_gem_object_unreference(&obj->base);
2637         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2638         mutex_unlock(&dev->struct_mutex);
2639
2640         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2641         if (timeout)
2642                 args->timeout_ns = timespec_to_ns(timeout);
2643         return ret;
2644
2645 out:
2646         drm_gem_object_unreference(&obj->base);
2647         mutex_unlock(&dev->struct_mutex);
2648         return ret;
2649 }
2650
2651 /**
2652  * i915_gem_object_sync - sync an object to a ring.
2653  *
2654  * @obj: object which may be in use on another ring.
2655  * @to: ring we wish to use the object on. May be NULL.
2656  *
2657  * This code is meant to abstract object synchronization with the GPU.
2658  * Calling with NULL implies synchronizing the object with the CPU
2659  * rather than a particular GPU ring.
2660  *
2661  * Returns 0 if successful, else propagates up the lower layer error.
2662  */
2663 int
2664 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2665                      struct intel_ring_buffer *to)
2666 {
2667         struct intel_ring_buffer *from = obj->ring;
2668         u32 seqno;
2669         int ret, idx;
2670
2671         if (from == NULL || to == from)
2672                 return 0;
2673
2674         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2675                 return i915_gem_object_wait_rendering(obj, false);
2676
2677         idx = intel_ring_sync_index(from, to);
2678
2679         seqno = obj->last_read_seqno;
2680         if (seqno <= from->sync_seqno[idx])
2681                 return 0;
2682
2683         ret = i915_gem_check_olr(obj->ring, seqno);
2684         if (ret)
2685                 return ret;
2686
2687         trace_i915_gem_ring_sync_to(from, to, seqno);
2688         ret = to->sync_to(to, from, seqno);
2689         if (!ret)
2690                 /* We use last_read_seqno because sync_to()
2691                  * might have just caused seqno wrap under
2692                  * the radar.
2693                  */
2694                 from->sync_seqno[idx] = obj->last_read_seqno;
2695
2696         return ret;
2697 }
2698
2699 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2700 {
2701         u32 old_write_domain, old_read_domains;
2702
2703         /* Force a pagefault for domain tracking on next user access */
2704         i915_gem_release_mmap(obj);
2705
2706         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2707                 return;
2708
2709         /* Wait for any direct GTT access to complete */
2710         mb();
2711
2712         old_read_domains = obj->base.read_domains;
2713         old_write_domain = obj->base.write_domain;
2714
2715         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2716         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2717
2718         trace_i915_gem_object_change_domain(obj,
2719                                             old_read_domains,
2720                                             old_write_domain);
2721 }
2722
2723 int i915_vma_unbind(struct i915_vma *vma)
2724 {
2725         struct drm_i915_gem_object *obj = vma->obj;
2726         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2727         int ret;
2728
2729         if (list_empty(&vma->vma_link))
2730                 return 0;
2731
2732         if (!drm_mm_node_allocated(&vma->node)) {
2733                 i915_gem_vma_destroy(vma);
2734                 return 0;
2735         }
2736
2737         if (vma->pin_count)
2738                 return -EBUSY;
2739
2740         BUG_ON(obj->pages == NULL);
2741
2742         ret = i915_gem_object_finish_gpu(obj);
2743         if (ret)
2744                 return ret;
2745         /* Continue on if we fail due to EIO, the GPU is hung so we
2746          * should be safe and we need to cleanup or else we might
2747          * cause memory corruption through use-after-free.
2748          */
2749
2750         i915_gem_object_finish_gtt(obj);
2751
2752         /* release the fence reg _after_ flushing */
2753         ret = i915_gem_object_put_fence(obj);
2754         if (ret)
2755                 return ret;
2756
2757         trace_i915_vma_unbind(vma);
2758
2759         vma->unbind_vma(vma);
2760
2761         i915_gem_gtt_finish_object(obj);
2762
2763         list_del_init(&vma->mm_list);
2764         /* Avoid an unnecessary call to unbind on rebind. */
2765         if (i915_is_ggtt(vma->vm))
2766                 obj->map_and_fenceable = true;
2767
2768         drm_mm_remove_node(&vma->node);
2769         i915_gem_vma_destroy(vma);
2770
2771         /* Since the unbound list is global, only move to that list if
2772          * no more VMAs exist. */
2773         if (list_empty(&obj->vma_list))
2774                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2775
2776         /* And finally now the object is completely decoupled from this vma,
2777          * we can drop its hold on the backing storage and allow it to be
2778          * reaped by the shrinker.
2779          */
2780         i915_gem_object_unpin_pages(obj);
2781
2782         return 0;
2783 }
2784
2785 int i915_gpu_idle(struct drm_device *dev)
2786 {
2787         struct drm_i915_private *dev_priv = dev->dev_private;
2788         struct intel_ring_buffer *ring;
2789         int ret, i;
2790
2791         /* Flush everything onto the inactive list. */
2792         for_each_ring(ring, dev_priv, i) {
2793                 ret = i915_switch_context(ring, ring->default_context);
2794                 if (ret)
2795                         return ret;
2796
2797                 ret = intel_ring_idle(ring);
2798                 if (ret)
2799                         return ret;
2800         }
2801
2802         return 0;
2803 }
2804
2805 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2806                                  struct drm_i915_gem_object *obj)
2807 {
2808         struct drm_i915_private *dev_priv = dev->dev_private;
2809         int fence_reg;
2810         int fence_pitch_shift;
2811
2812         if (INTEL_INFO(dev)->gen >= 6) {
2813                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2814                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2815         } else {
2816                 fence_reg = FENCE_REG_965_0;
2817                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2818         }
2819
2820         fence_reg += reg * 8;
2821
2822         /* To w/a incoherency with non-atomic 64-bit register updates,
2823          * we split the 64-bit update into two 32-bit writes. In order
2824          * for a partial fence not to be evaluated between writes, we
2825          * precede the update with write to turn off the fence register,
2826          * and only enable the fence as the last step.
2827          *
2828          * For extra levels of paranoia, we make sure each step lands
2829          * before applying the next step.
2830          */
2831         I915_WRITE(fence_reg, 0);
2832         POSTING_READ(fence_reg);
2833
2834         if (obj) {
2835                 u32 size = i915_gem_obj_ggtt_size(obj);
2836                 uint64_t val;
2837
2838                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2839                                  0xfffff000) << 32;
2840                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2841                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2842                 if (obj->tiling_mode == I915_TILING_Y)
2843                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2844                 val |= I965_FENCE_REG_VALID;
2845
2846                 I915_WRITE(fence_reg + 4, val >> 32);
2847                 POSTING_READ(fence_reg + 4);
2848
2849                 I915_WRITE(fence_reg + 0, val);
2850                 POSTING_READ(fence_reg);
2851         } else {
2852                 I915_WRITE(fence_reg + 4, 0);
2853                 POSTING_READ(fence_reg + 4);
2854         }
2855 }
2856
2857 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2858                                  struct drm_i915_gem_object *obj)
2859 {
2860         struct drm_i915_private *dev_priv = dev->dev_private;
2861         u32 val;
2862
2863         if (obj) {
2864                 u32 size = i915_gem_obj_ggtt_size(obj);
2865                 int pitch_val;
2866                 int tile_width;
2867
2868                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2869                      (size & -size) != size ||
2870                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2871                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2872                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2873
2874                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2875                         tile_width = 128;
2876                 else
2877                         tile_width = 512;
2878
2879                 /* Note: pitch better be a power of two tile widths */
2880                 pitch_val = obj->stride / tile_width;
2881                 pitch_val = ffs(pitch_val) - 1;
2882
2883                 val = i915_gem_obj_ggtt_offset(obj);
2884                 if (obj->tiling_mode == I915_TILING_Y)
2885                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2886                 val |= I915_FENCE_SIZE_BITS(size);
2887                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2888                 val |= I830_FENCE_REG_VALID;
2889         } else
2890                 val = 0;
2891
2892         if (reg < 8)
2893                 reg = FENCE_REG_830_0 + reg * 4;
2894         else
2895                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2896
2897         I915_WRITE(reg, val);
2898         POSTING_READ(reg);
2899 }
2900
2901 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2902                                 struct drm_i915_gem_object *obj)
2903 {
2904         struct drm_i915_private *dev_priv = dev->dev_private;
2905         uint32_t val;
2906
2907         if (obj) {
2908                 u32 size = i915_gem_obj_ggtt_size(obj);
2909                 uint32_t pitch_val;
2910
2911                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2912                      (size & -size) != size ||
2913                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2914                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2915                      i915_gem_obj_ggtt_offset(obj), size);
2916
2917                 pitch_val = obj->stride / 128;
2918                 pitch_val = ffs(pitch_val) - 1;
2919
2920                 val = i915_gem_obj_ggtt_offset(obj);
2921                 if (obj->tiling_mode == I915_TILING_Y)
2922                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2923                 val |= I830_FENCE_SIZE_BITS(size);
2924                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2925                 val |= I830_FENCE_REG_VALID;
2926         } else
2927                 val = 0;
2928
2929         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2930         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2931 }
2932
2933 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2934 {
2935         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2936 }
2937
2938 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2939                                  struct drm_i915_gem_object *obj)
2940 {
2941         struct drm_i915_private *dev_priv = dev->dev_private;
2942
2943         /* Ensure that all CPU reads are completed before installing a fence
2944          * and all writes before removing the fence.
2945          */
2946         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2947                 mb();
2948
2949         WARN(obj && (!obj->stride || !obj->tiling_mode),
2950              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2951              obj->stride, obj->tiling_mode);
2952
2953         switch (INTEL_INFO(dev)->gen) {
2954         case 8:
2955         case 7:
2956         case 6:
2957         case 5:
2958         case 4: i965_write_fence_reg(dev, reg, obj); break;
2959         case 3: i915_write_fence_reg(dev, reg, obj); break;
2960         case 2: i830_write_fence_reg(dev, reg, obj); break;
2961         default: BUG();
2962         }
2963
2964         /* And similarly be paranoid that no direct access to this region
2965          * is reordered to before the fence is installed.
2966          */
2967         if (i915_gem_object_needs_mb(obj))
2968                 mb();
2969 }
2970
2971 static inline int fence_number(struct drm_i915_private *dev_priv,
2972                                struct drm_i915_fence_reg *fence)
2973 {
2974         return fence - dev_priv->fence_regs;
2975 }
2976
2977 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2978                                          struct drm_i915_fence_reg *fence,
2979                                          bool enable)
2980 {
2981         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2982         int reg = fence_number(dev_priv, fence);
2983
2984         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2985
2986         if (enable) {
2987                 obj->fence_reg = reg;
2988                 fence->obj = obj;
2989                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2990         } else {
2991                 obj->fence_reg = I915_FENCE_REG_NONE;
2992                 fence->obj = NULL;
2993                 list_del_init(&fence->lru_list);
2994         }
2995         obj->fence_dirty = false;
2996 }
2997
2998 static int
2999 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3000 {
3001         if (obj->last_fenced_seqno) {
3002                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3003                 if (ret)
3004                         return ret;
3005
3006                 obj->last_fenced_seqno = 0;
3007         }
3008
3009         obj->fenced_gpu_access = false;
3010         return 0;
3011 }
3012
3013 int
3014 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3015 {
3016         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3017         struct drm_i915_fence_reg *fence;
3018         int ret;
3019
3020         ret = i915_gem_object_wait_fence(obj);
3021         if (ret)
3022                 return ret;
3023
3024         if (obj->fence_reg == I915_FENCE_REG_NONE)
3025                 return 0;
3026
3027         fence = &dev_priv->fence_regs[obj->fence_reg];
3028
3029         i915_gem_object_fence_lost(obj);
3030         i915_gem_object_update_fence(obj, fence, false);
3031
3032         return 0;
3033 }
3034
3035 static struct drm_i915_fence_reg *
3036 i915_find_fence_reg(struct drm_device *dev)
3037 {
3038         struct drm_i915_private *dev_priv = dev->dev_private;
3039         struct drm_i915_fence_reg *reg, *avail;
3040         int i;
3041
3042         /* First try to find a free reg */
3043         avail = NULL;
3044         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3045                 reg = &dev_priv->fence_regs[i];
3046                 if (!reg->obj)
3047                         return reg;
3048
3049                 if (!reg->pin_count)
3050                         avail = reg;
3051         }
3052
3053         if (avail == NULL)
3054                 goto deadlock;
3055
3056         /* None available, try to steal one or wait for a user to finish */
3057         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3058                 if (reg->pin_count)
3059                         continue;
3060
3061                 return reg;
3062         }
3063
3064 deadlock:
3065         /* Wait for completion of pending flips which consume fences */
3066         if (intel_has_pending_fb_unpin(dev))
3067                 return ERR_PTR(-EAGAIN);
3068
3069         return ERR_PTR(-EDEADLK);
3070 }
3071
3072 /**
3073  * i915_gem_object_get_fence - set up fencing for an object
3074  * @obj: object to map through a fence reg
3075  *
3076  * When mapping objects through the GTT, userspace wants to be able to write
3077  * to them without having to worry about swizzling if the object is tiled.
3078  * This function walks the fence regs looking for a free one for @obj,
3079  * stealing one if it can't find any.
3080  *
3081  * It then sets up the reg based on the object's properties: address, pitch
3082  * and tiling format.
3083  *
3084  * For an untiled surface, this removes any existing fence.
3085  */
3086 int
3087 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3088 {
3089         struct drm_device *dev = obj->base.dev;
3090         struct drm_i915_private *dev_priv = dev->dev_private;
3091         bool enable = obj->tiling_mode != I915_TILING_NONE;
3092         struct drm_i915_fence_reg *reg;
3093         int ret;
3094
3095         /* Have we updated the tiling parameters upon the object and so
3096          * will need to serialise the write to the associated fence register?
3097          */
3098         if (obj->fence_dirty) {
3099                 ret = i915_gem_object_wait_fence(obj);
3100                 if (ret)
3101                         return ret;
3102         }
3103
3104         /* Just update our place in the LRU if our fence is getting reused. */
3105         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3106                 reg = &dev_priv->fence_regs[obj->fence_reg];
3107                 if (!obj->fence_dirty) {
3108                         list_move_tail(&reg->lru_list,
3109                                        &dev_priv->mm.fence_list);
3110                         return 0;
3111                 }
3112         } else if (enable) {
3113                 reg = i915_find_fence_reg(dev);
3114                 if (IS_ERR(reg))
3115                         return PTR_ERR(reg);
3116
3117                 if (reg->obj) {
3118                         struct drm_i915_gem_object *old = reg->obj;
3119
3120                         ret = i915_gem_object_wait_fence(old);
3121                         if (ret)
3122                                 return ret;
3123
3124                         i915_gem_object_fence_lost(old);
3125                 }
3126         } else
3127                 return 0;
3128
3129         i915_gem_object_update_fence(obj, reg, enable);
3130
3131         return 0;
3132 }
3133
3134 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3135                                      struct drm_mm_node *gtt_space,
3136                                      unsigned long cache_level)
3137 {
3138         struct drm_mm_node *other;
3139
3140         /* On non-LLC machines we have to be careful when putting differing
3141          * types of snoopable memory together to avoid the prefetcher
3142          * crossing memory domains and dying.
3143          */
3144         if (HAS_LLC(dev))
3145                 return true;
3146
3147         if (!drm_mm_node_allocated(gtt_space))
3148                 return true;
3149
3150         if (list_empty(&gtt_space->node_list))
3151                 return true;
3152
3153         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3154         if (other->allocated && !other->hole_follows && other->color != cache_level)
3155                 return false;
3156
3157         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3158         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3159                 return false;
3160
3161         return true;
3162 }
3163
3164 static void i915_gem_verify_gtt(struct drm_device *dev)
3165 {
3166 #if WATCH_GTT
3167         struct drm_i915_private *dev_priv = dev->dev_private;
3168         struct drm_i915_gem_object *obj;
3169         int err = 0;
3170
3171         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3172                 if (obj->gtt_space == NULL) {
3173                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3174                         err++;
3175                         continue;
3176                 }
3177
3178                 if (obj->cache_level != obj->gtt_space->color) {
3179                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3180                                i915_gem_obj_ggtt_offset(obj),
3181                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3182                                obj->cache_level,
3183                                obj->gtt_space->color);
3184                         err++;
3185                         continue;
3186                 }
3187
3188                 if (!i915_gem_valid_gtt_space(dev,
3189                                               obj->gtt_space,
3190                                               obj->cache_level)) {
3191                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3192                                i915_gem_obj_ggtt_offset(obj),
3193                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3194                                obj->cache_level);
3195                         err++;
3196                         continue;
3197                 }
3198         }
3199
3200         WARN_ON(err);
3201 #endif
3202 }
3203
3204 /**
3205  * Finds free space in the GTT aperture and binds the object there.
3206  */
3207 static struct i915_vma *
3208 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3209                            struct i915_address_space *vm,
3210                            unsigned alignment,
3211                            unsigned flags)
3212 {
3213         struct drm_device *dev = obj->base.dev;
3214         struct drm_i915_private *dev_priv = dev->dev_private;
3215         u32 size, fence_size, fence_alignment, unfenced_alignment;
3216         size_t gtt_max =
3217                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3218         struct i915_vma *vma;
3219         int ret;
3220
3221         fence_size = i915_gem_get_gtt_size(dev,
3222                                            obj->base.size,
3223                                            obj->tiling_mode);
3224         fence_alignment = i915_gem_get_gtt_alignment(dev,
3225                                                      obj->base.size,
3226                                                      obj->tiling_mode, true);
3227         unfenced_alignment =
3228                 i915_gem_get_gtt_alignment(dev,
3229                                            obj->base.size,
3230                                            obj->tiling_mode, false);
3231
3232         if (alignment == 0)
3233                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3234                                                 unfenced_alignment;
3235         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3236                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3237                 return ERR_PTR(-EINVAL);
3238         }
3239
3240         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3241
3242         /* If the object is bigger than the entire aperture, reject it early
3243          * before evicting everything in a vain attempt to find space.
3244          */
3245         if (obj->base.size > gtt_max) {
3246                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3247                           obj->base.size,
3248                           flags & PIN_MAPPABLE ? "mappable" : "total",
3249                           gtt_max);
3250                 return ERR_PTR(-E2BIG);
3251         }
3252
3253         ret = i915_gem_object_get_pages(obj);
3254         if (ret)
3255                 return ERR_PTR(ret);
3256
3257         i915_gem_object_pin_pages(obj);
3258
3259         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3260         if (IS_ERR(vma))
3261                 goto err_unpin;
3262
3263 search_free:
3264         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3265                                                   size, alignment,
3266                                                   obj->cache_level, 0, gtt_max,
3267                                                   DRM_MM_SEARCH_DEFAULT,
3268                                                   DRM_MM_CREATE_DEFAULT);
3269         if (ret) {
3270                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3271                                                obj->cache_level, flags);
3272                 if (ret == 0)
3273                         goto search_free;
3274
3275                 goto err_free_vma;
3276         }
3277         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3278                                               obj->cache_level))) {
3279                 ret = -EINVAL;
3280                 goto err_remove_node;
3281         }
3282
3283         ret = i915_gem_gtt_prepare_object(obj);
3284         if (ret)
3285                 goto err_remove_node;
3286
3287         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3288         list_add_tail(&vma->mm_list, &vm->inactive_list);
3289
3290         if (i915_is_ggtt(vm)) {
3291                 bool mappable, fenceable;
3292
3293                 fenceable = (vma->node.size == fence_size &&
3294                              (vma->node.start & (fence_alignment - 1)) == 0);
3295
3296                 mappable = (vma->node.start + obj->base.size <=
3297                             dev_priv->gtt.mappable_end);
3298
3299                 obj->map_and_fenceable = mappable && fenceable;
3300         }
3301
3302         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3303
3304         trace_i915_vma_bind(vma, flags);
3305         vma->bind_vma(vma, obj->cache_level,
3306                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3307
3308         i915_gem_verify_gtt(dev);
3309         return vma;
3310
3311 err_remove_node:
3312         drm_mm_remove_node(&vma->node);
3313 err_free_vma:
3314         i915_gem_vma_destroy(vma);
3315         vma = ERR_PTR(ret);
3316 err_unpin:
3317         i915_gem_object_unpin_pages(obj);
3318         return vma;
3319 }
3320
3321 bool
3322 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3323                         bool force)
3324 {
3325         /* If we don't have a page list set up, then we're not pinned
3326          * to GPU, and we can ignore the cache flush because it'll happen
3327          * again at bind time.
3328          */
3329         if (obj->pages == NULL)
3330                 return false;
3331
3332         /*
3333          * Stolen memory is always coherent with the GPU as it is explicitly
3334          * marked as wc by the system, or the system is cache-coherent.
3335          */
3336         if (obj->stolen)
3337                 return false;
3338
3339         /* If the GPU is snooping the contents of the CPU cache,
3340          * we do not need to manually clear the CPU cache lines.  However,
3341          * the caches are only snooped when the render cache is
3342          * flushed/invalidated.  As we always have to emit invalidations
3343          * and flushes when moving into and out of the RENDER domain, correct
3344          * snooping behaviour occurs naturally as the result of our domain
3345          * tracking.
3346          */
3347         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3348                 return false;
3349
3350         trace_i915_gem_object_clflush(obj);
3351         drm_clflush_sg(obj->pages);
3352
3353         return true;
3354 }
3355
3356 /** Flushes the GTT write domain for the object if it's dirty. */
3357 static void
3358 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3359 {
3360         uint32_t old_write_domain;
3361
3362         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3363                 return;
3364
3365         /* No actual flushing is required for the GTT write domain.  Writes
3366          * to it immediately go to main memory as far as we know, so there's
3367          * no chipset flush.  It also doesn't land in render cache.
3368          *
3369          * However, we do have to enforce the order so that all writes through
3370          * the GTT land before any writes to the device, such as updates to
3371          * the GATT itself.
3372          */
3373         wmb();
3374
3375         old_write_domain = obj->base.write_domain;
3376         obj->base.write_domain = 0;
3377
3378         trace_i915_gem_object_change_domain(obj,
3379                                             obj->base.read_domains,
3380                                             old_write_domain);
3381 }
3382
3383 /** Flushes the CPU write domain for the object if it's dirty. */
3384 static void
3385 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3386                                        bool force)
3387 {
3388         uint32_t old_write_domain;
3389
3390         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3391                 return;
3392
3393         if (i915_gem_clflush_object(obj, force))
3394                 i915_gem_chipset_flush(obj->base.dev);
3395
3396         old_write_domain = obj->base.write_domain;
3397         obj->base.write_domain = 0;
3398
3399         trace_i915_gem_object_change_domain(obj,
3400                                             obj->base.read_domains,
3401                                             old_write_domain);
3402 }
3403
3404 /**
3405  * Moves a single object to the GTT read, and possibly write domain.
3406  *
3407  * This function returns when the move is complete, including waiting on
3408  * flushes to occur.
3409  */
3410 int
3411 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3412 {
3413         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3414         uint32_t old_write_domain, old_read_domains;
3415         int ret;
3416
3417         /* Not valid to be called on unbound objects. */
3418         if (!i915_gem_obj_bound_any(obj))
3419                 return -EINVAL;
3420
3421         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3422                 return 0;
3423
3424         ret = i915_gem_object_wait_rendering(obj, !write);
3425         if (ret)
3426                 return ret;
3427
3428         i915_gem_object_flush_cpu_write_domain(obj, false);
3429
3430         /* Serialise direct access to this object with the barriers for
3431          * coherent writes from the GPU, by effectively invalidating the
3432          * GTT domain upon first access.
3433          */
3434         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3435                 mb();
3436
3437         old_write_domain = obj->base.write_domain;
3438         old_read_domains = obj->base.read_domains;
3439
3440         /* It should now be out of any other write domains, and we can update
3441          * the domain values for our changes.
3442          */
3443         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3444         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3445         if (write) {
3446                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3447                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3448                 obj->dirty = 1;
3449         }
3450
3451         trace_i915_gem_object_change_domain(obj,
3452                                             old_read_domains,
3453                                             old_write_domain);
3454
3455         /* And bump the LRU for this access */
3456         if (i915_gem_object_is_inactive(obj)) {
3457                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3458                 if (vma)
3459                         list_move_tail(&vma->mm_list,
3460                                        &dev_priv->gtt.base.inactive_list);
3461
3462         }
3463
3464         return 0;
3465 }
3466
3467 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3468                                     enum i915_cache_level cache_level)
3469 {
3470         struct drm_device *dev = obj->base.dev;
3471         struct i915_vma *vma, *next;
3472         int ret;
3473
3474         if (obj->cache_level == cache_level)
3475                 return 0;
3476
3477         if (i915_gem_obj_is_pinned(obj)) {
3478                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3479                 return -EBUSY;
3480         }
3481
3482         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3483                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3484                         ret = i915_vma_unbind(vma);
3485                         if (ret)
3486                                 return ret;
3487                 }
3488         }
3489
3490         if (i915_gem_obj_bound_any(obj)) {
3491                 ret = i915_gem_object_finish_gpu(obj);
3492                 if (ret)
3493                         return ret;
3494
3495                 i915_gem_object_finish_gtt(obj);
3496
3497                 /* Before SandyBridge, you could not use tiling or fence
3498                  * registers with snooped memory, so relinquish any fences
3499                  * currently pointing to our region in the aperture.
3500                  */
3501                 if (INTEL_INFO(dev)->gen < 6) {
3502                         ret = i915_gem_object_put_fence(obj);
3503                         if (ret)
3504                                 return ret;
3505                 }
3506
3507                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3508                         if (drm_mm_node_allocated(&vma->node))
3509                                 vma->bind_vma(vma, cache_level,
3510                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3511         }
3512
3513         list_for_each_entry(vma, &obj->vma_list, vma_link)
3514                 vma->node.color = cache_level;
3515         obj->cache_level = cache_level;
3516
3517         if (cpu_write_needs_clflush(obj)) {
3518                 u32 old_read_domains, old_write_domain;
3519
3520                 /* If we're coming from LLC cached, then we haven't
3521                  * actually been tracking whether the data is in the
3522                  * CPU cache or not, since we only allow one bit set
3523                  * in obj->write_domain and have been skipping the clflushes.
3524                  * Just set it to the CPU cache for now.
3525                  */
3526                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3527
3528                 old_read_domains = obj->base.read_domains;
3529                 old_write_domain = obj->base.write_domain;
3530
3531                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3532                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3533
3534                 trace_i915_gem_object_change_domain(obj,
3535                                                     old_read_domains,
3536                                                     old_write_domain);
3537         }
3538
3539         i915_gem_verify_gtt(dev);
3540         return 0;
3541 }
3542
3543 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3544                                struct drm_file *file)
3545 {
3546         struct drm_i915_gem_caching *args = data;
3547         struct drm_i915_gem_object *obj;
3548         int ret;
3549
3550         ret = i915_mutex_lock_interruptible(dev);
3551         if (ret)
3552                 return ret;
3553
3554         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3555         if (&obj->base == NULL) {
3556                 ret = -ENOENT;
3557                 goto unlock;
3558         }
3559
3560         switch (obj->cache_level) {
3561         case I915_CACHE_LLC:
3562         case I915_CACHE_L3_LLC:
3563                 args->caching = I915_CACHING_CACHED;
3564                 break;
3565
3566         case I915_CACHE_WT:
3567                 args->caching = I915_CACHING_DISPLAY;
3568                 break;
3569
3570         default:
3571                 args->caching = I915_CACHING_NONE;
3572                 break;
3573         }
3574
3575         drm_gem_object_unreference(&obj->base);
3576 unlock:
3577         mutex_unlock(&dev->struct_mutex);
3578         return ret;
3579 }
3580
3581 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3582                                struct drm_file *file)
3583 {
3584         struct drm_i915_gem_caching *args = data;
3585         struct drm_i915_gem_object *obj;
3586         enum i915_cache_level level;
3587         int ret;
3588
3589         switch (args->caching) {
3590         case I915_CACHING_NONE:
3591                 level = I915_CACHE_NONE;
3592                 break;
3593         case I915_CACHING_CACHED:
3594                 level = I915_CACHE_LLC;
3595                 break;
3596         case I915_CACHING_DISPLAY:
3597                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3598                 break;
3599         default:
3600                 return -EINVAL;
3601         }
3602
3603         ret = i915_mutex_lock_interruptible(dev);
3604         if (ret)
3605                 return ret;
3606
3607         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3608         if (&obj->base == NULL) {
3609                 ret = -ENOENT;
3610                 goto unlock;
3611         }
3612
3613         ret = i915_gem_object_set_cache_level(obj, level);
3614
3615         drm_gem_object_unreference(&obj->base);
3616 unlock:
3617         mutex_unlock(&dev->struct_mutex);
3618         return ret;
3619 }
3620
3621 static bool is_pin_display(struct drm_i915_gem_object *obj)
3622 {
3623         /* There are 3 sources that pin objects:
3624          *   1. The display engine (scanouts, sprites, cursors);
3625          *   2. Reservations for execbuffer;
3626          *   3. The user.
3627          *
3628          * We can ignore reservations as we hold the struct_mutex and
3629          * are only called outside of the reservation path.  The user
3630          * can only increment pin_count once, and so if after
3631          * subtracting the potential reference by the user, any pin_count
3632          * remains, it must be due to another use by the display engine.
3633          */
3634         return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3635 }
3636
3637 /*
3638  * Prepare buffer for display plane (scanout, cursors, etc).
3639  * Can be called from an uninterruptible phase (modesetting) and allows
3640  * any flushes to be pipelined (for pageflips).
3641  */
3642 int
3643 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3644                                      u32 alignment,
3645                                      struct intel_ring_buffer *pipelined)
3646 {
3647         u32 old_read_domains, old_write_domain;
3648         int ret;
3649
3650         if (pipelined != obj->ring) {
3651                 ret = i915_gem_object_sync(obj, pipelined);
3652                 if (ret)
3653                         return ret;
3654         }
3655
3656         /* Mark the pin_display early so that we account for the
3657          * display coherency whilst setting up the cache domains.
3658          */
3659         obj->pin_display = true;
3660
3661         /* The display engine is not coherent with the LLC cache on gen6.  As
3662          * a result, we make sure that the pinning that is about to occur is
3663          * done with uncached PTEs. This is lowest common denominator for all
3664          * chipsets.
3665          *
3666          * However for gen6+, we could do better by using the GFDT bit instead
3667          * of uncaching, which would allow us to flush all the LLC-cached data
3668          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3669          */
3670         ret = i915_gem_object_set_cache_level(obj,
3671                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3672         if (ret)
3673                 goto err_unpin_display;
3674
3675         /* As the user may map the buffer once pinned in the display plane
3676          * (e.g. libkms for the bootup splash), we have to ensure that we
3677          * always use map_and_fenceable for all scanout buffers.
3678          */
3679         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3680         if (ret)
3681                 goto err_unpin_display;
3682
3683         i915_gem_object_flush_cpu_write_domain(obj, true);
3684
3685         old_write_domain = obj->base.write_domain;
3686         old_read_domains = obj->base.read_domains;
3687
3688         /* It should now be out of any other write domains, and we can update
3689          * the domain values for our changes.
3690          */
3691         obj->base.write_domain = 0;
3692         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3693
3694         trace_i915_gem_object_change_domain(obj,
3695                                             old_read_domains,
3696                                             old_write_domain);
3697
3698         return 0;
3699
3700 err_unpin_display:
3701         obj->pin_display = is_pin_display(obj);
3702         return ret;
3703 }
3704
3705 void
3706 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3707 {
3708         i915_gem_object_ggtt_unpin(obj);
3709         obj->pin_display = is_pin_display(obj);
3710 }
3711
3712 int
3713 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3714 {
3715         int ret;
3716
3717         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3718                 return 0;
3719
3720         ret = i915_gem_object_wait_rendering(obj, false);
3721         if (ret)
3722                 return ret;
3723
3724         /* Ensure that we invalidate the GPU's caches and TLBs. */
3725         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3726         return 0;
3727 }
3728
3729 /**
3730  * Moves a single object to the CPU read, and possibly write domain.
3731  *
3732  * This function returns when the move is complete, including waiting on
3733  * flushes to occur.
3734  */
3735 int
3736 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3737 {
3738         uint32_t old_write_domain, old_read_domains;
3739         int ret;
3740
3741         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3742                 return 0;
3743
3744         ret = i915_gem_object_wait_rendering(obj, !write);
3745         if (ret)
3746                 return ret;
3747
3748         i915_gem_object_flush_gtt_write_domain(obj);
3749
3750         old_write_domain = obj->base.write_domain;
3751         old_read_domains = obj->base.read_domains;
3752
3753         /* Flush the CPU cache if it's still invalid. */
3754         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3755                 i915_gem_clflush_object(obj, false);
3756
3757                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3758         }
3759
3760         /* It should now be out of any other write domains, and we can update
3761          * the domain values for our changes.
3762          */
3763         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3764
3765         /* If we're writing through the CPU, then the GPU read domains will
3766          * need to be invalidated at next use.
3767          */
3768         if (write) {
3769                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3770                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3771         }
3772
3773         trace_i915_gem_object_change_domain(obj,
3774                                             old_read_domains,
3775                                             old_write_domain);
3776
3777         return 0;
3778 }
3779
3780 /* Throttle our rendering by waiting until the ring has completed our requests
3781  * emitted over 20 msec ago.
3782  *
3783  * Note that if we were to use the current jiffies each time around the loop,
3784  * we wouldn't escape the function with any frames outstanding if the time to
3785  * render a frame was over 20ms.
3786  *
3787  * This should get us reasonable parallelism between CPU and GPU but also
3788  * relatively low latency when blocking on a particular request to finish.
3789  */
3790 static int
3791 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3792 {
3793         struct drm_i915_private *dev_priv = dev->dev_private;
3794         struct drm_i915_file_private *file_priv = file->driver_priv;
3795         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3796         struct drm_i915_gem_request *request;
3797         struct intel_ring_buffer *ring = NULL;
3798         unsigned reset_counter;
3799         u32 seqno = 0;
3800         int ret;
3801
3802         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3803         if (ret)
3804                 return ret;
3805
3806         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3807         if (ret)
3808                 return ret;
3809
3810         spin_lock(&file_priv->mm.lock);
3811         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3812                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3813                         break;
3814
3815                 ring = request->ring;
3816                 seqno = request->seqno;
3817         }
3818         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3819         spin_unlock(&file_priv->mm.lock);
3820
3821         if (seqno == 0)
3822                 return 0;
3823
3824         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3825         if (ret == 0)
3826                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3827
3828         return ret;
3829 }
3830
3831 int
3832 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3833                     struct i915_address_space *vm,
3834                     uint32_t alignment,
3835                     unsigned flags)
3836 {
3837         struct i915_vma *vma;
3838         int ret;
3839
3840         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3841                 return -EINVAL;
3842
3843         vma = i915_gem_obj_to_vma(obj, vm);
3844         if (vma) {
3845                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3846                         return -EBUSY;
3847
3848                 if ((alignment &&
3849                      vma->node.start & (alignment - 1)) ||
3850                     (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3851                         WARN(vma->pin_count,
3852                              "bo is already pinned with incorrect alignment:"
3853                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3854                              " obj->map_and_fenceable=%d\n",
3855                              i915_gem_obj_offset(obj, vm), alignment,
3856                              flags & PIN_MAPPABLE,
3857                              obj->map_and_fenceable);
3858                         ret = i915_vma_unbind(vma);
3859                         if (ret)
3860                                 return ret;
3861
3862                         vma = NULL;
3863                 }
3864         }
3865
3866         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3867                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3868                 if (IS_ERR(vma))
3869                         return PTR_ERR(vma);
3870         }
3871
3872         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3873                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3874
3875         vma->pin_count++;
3876         if (flags & PIN_MAPPABLE)
3877                 obj->pin_mappable |= true;
3878
3879         return 0;
3880 }
3881
3882 void
3883 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3884 {
3885         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3886
3887         BUG_ON(!vma);
3888         BUG_ON(vma->pin_count == 0);
3889         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3890
3891         if (--vma->pin_count == 0)
3892                 obj->pin_mappable = false;
3893 }
3894
3895 int
3896 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3897                    struct drm_file *file)
3898 {
3899         struct drm_i915_gem_pin *args = data;
3900         struct drm_i915_gem_object *obj;
3901         int ret;
3902
3903         if (INTEL_INFO(dev)->gen >= 6)
3904                 return -ENODEV;
3905
3906         ret = i915_mutex_lock_interruptible(dev);
3907         if (ret)
3908                 return ret;
3909
3910         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3911         if (&obj->base == NULL) {
3912                 ret = -ENOENT;
3913                 goto unlock;
3914         }
3915
3916         if (obj->madv != I915_MADV_WILLNEED) {
3917                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
3918                 ret = -EFAULT;
3919                 goto out;
3920         }
3921
3922         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3923                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
3924                           args->handle);
3925                 ret = -EINVAL;
3926                 goto out;
3927         }
3928
3929         if (obj->user_pin_count == ULONG_MAX) {
3930                 ret = -EBUSY;
3931                 goto out;
3932         }
3933
3934         if (obj->user_pin_count == 0) {
3935                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
3936                 if (ret)
3937                         goto out;
3938         }
3939
3940         obj->user_pin_count++;
3941         obj->pin_filp = file;
3942
3943         args->offset = i915_gem_obj_ggtt_offset(obj);
3944 out:
3945         drm_gem_object_unreference(&obj->base);
3946 unlock:
3947         mutex_unlock(&dev->struct_mutex);
3948         return ret;
3949 }
3950
3951 int
3952 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3953                      struct drm_file *file)
3954 {
3955         struct drm_i915_gem_pin *args = data;
3956         struct drm_i915_gem_object *obj;
3957         int ret;
3958
3959         ret = i915_mutex_lock_interruptible(dev);
3960         if (ret)
3961                 return ret;
3962
3963         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3964         if (&obj->base == NULL) {
3965                 ret = -ENOENT;
3966                 goto unlock;
3967         }
3968
3969         if (obj->pin_filp != file) {
3970                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3971                           args->handle);
3972                 ret = -EINVAL;
3973                 goto out;
3974         }
3975         obj->user_pin_count--;
3976         if (obj->user_pin_count == 0) {
3977                 obj->pin_filp = NULL;
3978                 i915_gem_object_ggtt_unpin(obj);
3979         }
3980
3981 out:
3982         drm_gem_object_unreference(&obj->base);
3983 unlock:
3984         mutex_unlock(&dev->struct_mutex);
3985         return ret;
3986 }
3987
3988 int
3989 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3990                     struct drm_file *file)
3991 {
3992         struct drm_i915_gem_busy *args = data;
3993         struct drm_i915_gem_object *obj;
3994         int ret;
3995
3996         ret = i915_mutex_lock_interruptible(dev);
3997         if (ret)
3998                 return ret;
3999
4000         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4001         if (&obj->base == NULL) {
4002                 ret = -ENOENT;
4003                 goto unlock;
4004         }
4005
4006         /* Count all active objects as busy, even if they are currently not used
4007          * by the gpu. Users of this interface expect objects to eventually
4008          * become non-busy without any further actions, therefore emit any
4009          * necessary flushes here.
4010          */
4011         ret = i915_gem_object_flush_active(obj);
4012
4013         args->busy = obj->active;
4014         if (obj->ring) {
4015                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4016                 args->busy |= intel_ring_flag(obj->ring) << 16;
4017         }
4018
4019         drm_gem_object_unreference(&obj->base);
4020 unlock:
4021         mutex_unlock(&dev->struct_mutex);
4022         return ret;
4023 }
4024
4025 int
4026 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4027                         struct drm_file *file_priv)
4028 {
4029         return i915_gem_ring_throttle(dev, file_priv);
4030 }
4031
4032 int
4033 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4034                        struct drm_file *file_priv)
4035 {
4036         struct drm_i915_gem_madvise *args = data;
4037         struct drm_i915_gem_object *obj;
4038         int ret;
4039
4040         switch (args->madv) {
4041         case I915_MADV_DONTNEED:
4042         case I915_MADV_WILLNEED:
4043             break;
4044         default:
4045             return -EINVAL;
4046         }
4047
4048         ret = i915_mutex_lock_interruptible(dev);
4049         if (ret)
4050                 return ret;
4051
4052         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4053         if (&obj->base == NULL) {
4054                 ret = -ENOENT;
4055                 goto unlock;
4056         }
4057
4058         if (i915_gem_obj_is_pinned(obj)) {
4059                 ret = -EINVAL;
4060                 goto out;
4061         }
4062
4063         if (obj->madv != __I915_MADV_PURGED)
4064                 obj->madv = args->madv;
4065
4066         /* if the object is no longer attached, discard its backing storage */
4067         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4068                 i915_gem_object_truncate(obj);
4069
4070         args->retained = obj->madv != __I915_MADV_PURGED;
4071
4072 out:
4073         drm_gem_object_unreference(&obj->base);
4074 unlock:
4075         mutex_unlock(&dev->struct_mutex);
4076         return ret;
4077 }
4078
4079 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4080                           const struct drm_i915_gem_object_ops *ops)
4081 {
4082         INIT_LIST_HEAD(&obj->global_list);
4083         INIT_LIST_HEAD(&obj->ring_list);
4084         INIT_LIST_HEAD(&obj->obj_exec_link);
4085         INIT_LIST_HEAD(&obj->vma_list);
4086
4087         obj->ops = ops;
4088
4089         obj->fence_reg = I915_FENCE_REG_NONE;
4090         obj->madv = I915_MADV_WILLNEED;
4091         /* Avoid an unnecessary call to unbind on the first bind. */
4092         obj->map_and_fenceable = true;
4093
4094         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4095 }
4096
4097 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4098         .get_pages = i915_gem_object_get_pages_gtt,
4099         .put_pages = i915_gem_object_put_pages_gtt,
4100 };
4101
4102 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4103                                                   size_t size)
4104 {
4105         struct drm_i915_gem_object *obj;
4106         struct address_space *mapping;
4107         gfp_t mask;
4108
4109         obj = i915_gem_object_alloc(dev);
4110         if (obj == NULL)
4111                 return NULL;
4112
4113         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4114                 i915_gem_object_free(obj);
4115                 return NULL;
4116         }
4117
4118         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4119         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4120                 /* 965gm cannot relocate objects above 4GiB. */
4121                 mask &= ~__GFP_HIGHMEM;
4122                 mask |= __GFP_DMA32;
4123         }
4124
4125         mapping = file_inode(obj->base.filp)->i_mapping;
4126         mapping_set_gfp_mask(mapping, mask);
4127
4128         i915_gem_object_init(obj, &i915_gem_object_ops);
4129
4130         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4131         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4132
4133         if (HAS_LLC(dev)) {
4134                 /* On some devices, we can have the GPU use the LLC (the CPU
4135                  * cache) for about a 10% performance improvement
4136                  * compared to uncached.  Graphics requests other than
4137                  * display scanout are coherent with the CPU in
4138                  * accessing this cache.  This means in this mode we
4139                  * don't need to clflush on the CPU side, and on the
4140                  * GPU side we only need to flush internal caches to
4141                  * get data visible to the CPU.
4142                  *
4143                  * However, we maintain the display planes as UC, and so
4144                  * need to rebind when first used as such.
4145                  */
4146                 obj->cache_level = I915_CACHE_LLC;
4147         } else
4148                 obj->cache_level = I915_CACHE_NONE;
4149
4150         trace_i915_gem_object_create(obj);
4151
4152         return obj;
4153 }
4154
4155 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4156 {
4157         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4158         struct drm_device *dev = obj->base.dev;
4159         struct drm_i915_private *dev_priv = dev->dev_private;
4160         struct i915_vma *vma, *next;
4161
4162         intel_runtime_pm_get(dev_priv);
4163
4164         trace_i915_gem_object_destroy(obj);
4165
4166         if (obj->phys_obj)
4167                 i915_gem_detach_phys_object(dev, obj);
4168
4169         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4170                 int ret;
4171
4172                 vma->pin_count = 0;
4173                 ret = i915_vma_unbind(vma);
4174                 if (WARN_ON(ret == -ERESTARTSYS)) {
4175                         bool was_interruptible;
4176
4177                         was_interruptible = dev_priv->mm.interruptible;
4178                         dev_priv->mm.interruptible = false;
4179
4180                         WARN_ON(i915_vma_unbind(vma));
4181
4182                         dev_priv->mm.interruptible = was_interruptible;
4183                 }
4184         }
4185
4186         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4187          * before progressing. */
4188         if (obj->stolen)
4189                 i915_gem_object_unpin_pages(obj);
4190
4191         if (WARN_ON(obj->pages_pin_count))
4192                 obj->pages_pin_count = 0;
4193         i915_gem_object_put_pages(obj);
4194         i915_gem_object_free_mmap_offset(obj);
4195         i915_gem_object_release_stolen(obj);
4196
4197         BUG_ON(obj->pages);
4198
4199         if (obj->base.import_attach)
4200                 drm_prime_gem_destroy(&obj->base, NULL);
4201
4202         drm_gem_object_release(&obj->base);
4203         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4204
4205         kfree(obj->bit_17);
4206         i915_gem_object_free(obj);
4207
4208         intel_runtime_pm_put(dev_priv);
4209 }
4210
4211 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4212                                      struct i915_address_space *vm)
4213 {
4214         struct i915_vma *vma;
4215         list_for_each_entry(vma, &obj->vma_list, vma_link)
4216                 if (vma->vm == vm)
4217                         return vma;
4218
4219         return NULL;
4220 }
4221
4222 void i915_gem_vma_destroy(struct i915_vma *vma)
4223 {
4224         WARN_ON(vma->node.allocated);
4225
4226         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4227         if (!list_empty(&vma->exec_list))
4228                 return;
4229
4230         list_del(&vma->vma_link);
4231
4232         kfree(vma);
4233 }
4234
4235 int
4236 i915_gem_suspend(struct drm_device *dev)
4237 {
4238         struct drm_i915_private *dev_priv = dev->dev_private;
4239         int ret = 0;
4240
4241         mutex_lock(&dev->struct_mutex);
4242         if (dev_priv->ums.mm_suspended)
4243                 goto err;
4244
4245         ret = i915_gpu_idle(dev);
4246         if (ret)
4247                 goto err;
4248
4249         i915_gem_retire_requests(dev);
4250
4251         /* Under UMS, be paranoid and evict. */
4252         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4253                 i915_gem_evict_everything(dev);
4254
4255         i915_kernel_lost_context(dev);
4256         i915_gem_cleanup_ringbuffer(dev);
4257
4258         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4259          * We need to replace this with a semaphore, or something.
4260          * And not confound ums.mm_suspended!
4261          */
4262         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4263                                                              DRIVER_MODESET);
4264         mutex_unlock(&dev->struct_mutex);
4265
4266         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4267         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4268         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4269
4270         return 0;
4271
4272 err:
4273         mutex_unlock(&dev->struct_mutex);
4274         return ret;
4275 }
4276
4277 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4278 {
4279         struct drm_device *dev = ring->dev;
4280         struct drm_i915_private *dev_priv = dev->dev_private;
4281         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4282         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4283         int i, ret;
4284
4285         if (!HAS_L3_DPF(dev) || !remap_info)
4286                 return 0;
4287
4288         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4289         if (ret)
4290                 return ret;
4291
4292         /*
4293          * Note: We do not worry about the concurrent register cacheline hang
4294          * here because no other code should access these registers other than
4295          * at initialization time.
4296          */
4297         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4298                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4299                 intel_ring_emit(ring, reg_base + i);
4300                 intel_ring_emit(ring, remap_info[i/4]);
4301         }
4302
4303         intel_ring_advance(ring);
4304
4305         return ret;
4306 }
4307
4308 void i915_gem_init_swizzling(struct drm_device *dev)
4309 {
4310         struct drm_i915_private *dev_priv = dev->dev_private;
4311
4312         if (INTEL_INFO(dev)->gen < 5 ||
4313             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4314                 return;
4315
4316         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4317                                  DISP_TILE_SURFACE_SWIZZLING);
4318
4319         if (IS_GEN5(dev))
4320                 return;
4321
4322         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4323         if (IS_GEN6(dev))
4324                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4325         else if (IS_GEN7(dev))
4326                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4327         else if (IS_GEN8(dev))
4328                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4329         else
4330                 BUG();
4331 }
4332
4333 static bool
4334 intel_enable_blt(struct drm_device *dev)
4335 {
4336         if (!HAS_BLT(dev))
4337                 return false;
4338
4339         /* The blitter was dysfunctional on early prototypes */
4340         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4341                 DRM_INFO("BLT not supported on this pre-production hardware;"
4342                          " graphics performance will be degraded.\n");
4343                 return false;
4344         }
4345
4346         return true;
4347 }
4348
4349 static int i915_gem_init_rings(struct drm_device *dev)
4350 {
4351         struct drm_i915_private *dev_priv = dev->dev_private;
4352         int ret;
4353
4354         ret = intel_init_render_ring_buffer(dev);
4355         if (ret)
4356                 return ret;
4357
4358         if (HAS_BSD(dev)) {
4359                 ret = intel_init_bsd_ring_buffer(dev);
4360                 if (ret)
4361                         goto cleanup_render_ring;
4362         }
4363
4364         if (intel_enable_blt(dev)) {
4365                 ret = intel_init_blt_ring_buffer(dev);
4366                 if (ret)
4367                         goto cleanup_bsd_ring;
4368         }
4369
4370         if (HAS_VEBOX(dev)) {
4371                 ret = intel_init_vebox_ring_buffer(dev);
4372                 if (ret)
4373                         goto cleanup_blt_ring;
4374         }
4375
4376
4377         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4378         if (ret)
4379                 goto cleanup_vebox_ring;
4380
4381         return 0;
4382
4383 cleanup_vebox_ring:
4384         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4385 cleanup_blt_ring:
4386         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4387 cleanup_bsd_ring:
4388         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4389 cleanup_render_ring:
4390         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4391
4392         return ret;
4393 }
4394
4395 int
4396 i915_gem_init_hw(struct drm_device *dev)
4397 {
4398         struct drm_i915_private *dev_priv = dev->dev_private;
4399         int ret, i;
4400
4401         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4402                 return -EIO;
4403
4404         if (dev_priv->ellc_size)
4405                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4406
4407         if (IS_HASWELL(dev))
4408                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4409                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4410
4411         if (HAS_PCH_NOP(dev)) {
4412                 if (IS_IVYBRIDGE(dev)) {
4413                         u32 temp = I915_READ(GEN7_MSG_CTL);
4414                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4415                         I915_WRITE(GEN7_MSG_CTL, temp);
4416                 } else if (INTEL_INFO(dev)->gen >= 7) {
4417                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4418                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4419                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4420                 }
4421         }
4422
4423         i915_gem_init_swizzling(dev);
4424
4425         ret = i915_gem_init_rings(dev);
4426         if (ret)
4427                 return ret;
4428
4429         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4430                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4431
4432         /*
4433          * XXX: Contexts should only be initialized once. Doing a switch to the
4434          * default context switch however is something we'd like to do after
4435          * reset or thaw (the latter may not actually be necessary for HW, but
4436          * goes with our code better). Context switching requires rings (for
4437          * the do_switch), but before enabling PPGTT. So don't move this.
4438          */
4439         ret = i915_gem_context_enable(dev_priv);
4440         if (ret) {
4441                 DRM_ERROR("Context enable failed %d\n", ret);
4442                 goto err_out;
4443         }
4444
4445         return 0;
4446
4447 err_out:
4448         i915_gem_cleanup_ringbuffer(dev);
4449         return ret;
4450 }
4451
4452 int i915_gem_init(struct drm_device *dev)
4453 {
4454         struct drm_i915_private *dev_priv = dev->dev_private;
4455         int ret;
4456
4457         mutex_lock(&dev->struct_mutex);
4458
4459         if (IS_VALLEYVIEW(dev)) {
4460                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4461                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4462                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4463                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4464         }
4465
4466         i915_gem_init_global_gtt(dev);
4467
4468         ret = i915_gem_context_init(dev);
4469         if (ret) {
4470                 mutex_unlock(&dev->struct_mutex);
4471                 return ret;
4472         }
4473
4474         ret = i915_gem_init_hw(dev);
4475         mutex_unlock(&dev->struct_mutex);
4476         if (ret) {
4477                 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4478                 i915_gem_context_fini(dev);
4479                 drm_mm_takedown(&dev_priv->gtt.base.mm);
4480                 return ret;
4481         }
4482
4483         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4484         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4485                 dev_priv->dri1.allow_batchbuffer = 1;
4486         return 0;
4487 }
4488
4489 void
4490 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4491 {
4492         struct drm_i915_private *dev_priv = dev->dev_private;
4493         struct intel_ring_buffer *ring;
4494         int i;
4495
4496         for_each_ring(ring, dev_priv, i)
4497                 intel_cleanup_ring_buffer(ring);
4498 }
4499
4500 int
4501 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4502                        struct drm_file *file_priv)
4503 {
4504         struct drm_i915_private *dev_priv = dev->dev_private;
4505         int ret;
4506
4507         if (drm_core_check_feature(dev, DRIVER_MODESET))
4508                 return 0;
4509
4510         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4511                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4512                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4513         }
4514
4515         mutex_lock(&dev->struct_mutex);
4516         dev_priv->ums.mm_suspended = 0;
4517
4518         ret = i915_gem_init_hw(dev);
4519         if (ret != 0) {
4520                 mutex_unlock(&dev->struct_mutex);
4521                 return ret;
4522         }
4523
4524         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4525         mutex_unlock(&dev->struct_mutex);
4526
4527         ret = drm_irq_install(dev);
4528         if (ret)
4529                 goto cleanup_ringbuffer;
4530
4531         return 0;
4532
4533 cleanup_ringbuffer:
4534         mutex_lock(&dev->struct_mutex);
4535         i915_gem_cleanup_ringbuffer(dev);
4536         dev_priv->ums.mm_suspended = 1;
4537         mutex_unlock(&dev->struct_mutex);
4538
4539         return ret;
4540 }
4541
4542 int
4543 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4544                        struct drm_file *file_priv)
4545 {
4546         if (drm_core_check_feature(dev, DRIVER_MODESET))
4547                 return 0;
4548
4549         drm_irq_uninstall(dev);
4550
4551         return i915_gem_suspend(dev);
4552 }
4553
4554 void
4555 i915_gem_lastclose(struct drm_device *dev)
4556 {
4557         int ret;
4558
4559         if (drm_core_check_feature(dev, DRIVER_MODESET))
4560                 return;
4561
4562         ret = i915_gem_suspend(dev);
4563         if (ret)
4564                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4565 }
4566
4567 static void
4568 init_ring_lists(struct intel_ring_buffer *ring)
4569 {
4570         INIT_LIST_HEAD(&ring->active_list);
4571         INIT_LIST_HEAD(&ring->request_list);
4572 }
4573
4574 void i915_init_vm(struct drm_i915_private *dev_priv,
4575                   struct i915_address_space *vm)
4576 {
4577         if (!i915_is_ggtt(vm))
4578                 drm_mm_init(&vm->mm, vm->start, vm->total);
4579         vm->dev = dev_priv->dev;
4580         INIT_LIST_HEAD(&vm->active_list);
4581         INIT_LIST_HEAD(&vm->inactive_list);
4582         INIT_LIST_HEAD(&vm->global_link);
4583         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4584 }
4585
4586 void
4587 i915_gem_load(struct drm_device *dev)
4588 {
4589         struct drm_i915_private *dev_priv = dev->dev_private;
4590         int i;
4591
4592         dev_priv->slab =
4593                 kmem_cache_create("i915_gem_object",
4594                                   sizeof(struct drm_i915_gem_object), 0,
4595                                   SLAB_HWCACHE_ALIGN,
4596                                   NULL);
4597
4598         INIT_LIST_HEAD(&dev_priv->vm_list);
4599         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4600
4601         INIT_LIST_HEAD(&dev_priv->context_list);
4602         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4603         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4604         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4605         for (i = 0; i < I915_NUM_RINGS; i++)
4606                 init_ring_lists(&dev_priv->ring[i]);
4607         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4608                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4609         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4610                           i915_gem_retire_work_handler);
4611         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4612                           i915_gem_idle_work_handler);
4613         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4614
4615         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4616         if (IS_GEN3(dev)) {
4617                 I915_WRITE(MI_ARB_STATE,
4618                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4619         }
4620
4621         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4622
4623         /* Old X drivers will take 0-2 for front, back, depth buffers */
4624         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4625                 dev_priv->fence_reg_start = 3;
4626
4627         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4628                 dev_priv->num_fence_regs = 32;
4629         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4630                 dev_priv->num_fence_regs = 16;
4631         else
4632                 dev_priv->num_fence_regs = 8;
4633
4634         /* Initialize fence registers to zero */
4635         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4636         i915_gem_restore_fences(dev);
4637
4638         i915_gem_detect_bit_6_swizzle(dev);
4639         init_waitqueue_head(&dev_priv->pending_flip_queue);
4640
4641         dev_priv->mm.interruptible = true;
4642
4643         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4644         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4645         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4646         register_shrinker(&dev_priv->mm.inactive_shrinker);
4647 }
4648
4649 /*
4650  * Create a physically contiguous memory object for this object
4651  * e.g. for cursor + overlay regs
4652  */
4653 static int i915_gem_init_phys_object(struct drm_device *dev,
4654                                      int id, int size, int align)
4655 {
4656         struct drm_i915_private *dev_priv = dev->dev_private;
4657         struct drm_i915_gem_phys_object *phys_obj;
4658         int ret;
4659
4660         if (dev_priv->mm.phys_objs[id - 1] || !size)
4661                 return 0;
4662
4663         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4664         if (!phys_obj)
4665                 return -ENOMEM;
4666
4667         phys_obj->id = id;
4668
4669         phys_obj->handle = drm_pci_alloc(dev, size, align);
4670         if (!phys_obj->handle) {
4671                 ret = -ENOMEM;
4672                 goto kfree_obj;
4673         }
4674 #ifdef CONFIG_X86
4675         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4676 #endif
4677
4678         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4679
4680         return 0;
4681 kfree_obj:
4682         kfree(phys_obj);
4683         return ret;
4684 }
4685
4686 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4687 {
4688         struct drm_i915_private *dev_priv = dev->dev_private;
4689         struct drm_i915_gem_phys_object *phys_obj;
4690
4691         if (!dev_priv->mm.phys_objs[id - 1])
4692                 return;
4693
4694         phys_obj = dev_priv->mm.phys_objs[id - 1];
4695         if (phys_obj->cur_obj) {
4696                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4697         }
4698
4699 #ifdef CONFIG_X86
4700         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4701 #endif
4702         drm_pci_free(dev, phys_obj->handle);
4703         kfree(phys_obj);
4704         dev_priv->mm.phys_objs[id - 1] = NULL;
4705 }
4706
4707 void i915_gem_free_all_phys_object(struct drm_device *dev)
4708 {
4709         int i;
4710
4711         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4712                 i915_gem_free_phys_object(dev, i);
4713 }
4714
4715 void i915_gem_detach_phys_object(struct drm_device *dev,
4716                                  struct drm_i915_gem_object *obj)
4717 {
4718         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4719         char *vaddr;
4720         int i;
4721         int page_count;
4722
4723         if (!obj->phys_obj)
4724                 return;
4725         vaddr = obj->phys_obj->handle->vaddr;
4726
4727         page_count = obj->base.size / PAGE_SIZE;
4728         for (i = 0; i < page_count; i++) {
4729                 struct page *page = shmem_read_mapping_page(mapping, i);
4730                 if (!IS_ERR(page)) {
4731                         char *dst = kmap_atomic(page);
4732                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4733                         kunmap_atomic(dst);
4734
4735                         drm_clflush_pages(&page, 1);
4736
4737                         set_page_dirty(page);
4738                         mark_page_accessed(page);
4739                         page_cache_release(page);
4740                 }
4741         }
4742         i915_gem_chipset_flush(dev);
4743
4744         obj->phys_obj->cur_obj = NULL;
4745         obj->phys_obj = NULL;
4746 }
4747
4748 int
4749 i915_gem_attach_phys_object(struct drm_device *dev,
4750                             struct drm_i915_gem_object *obj,
4751                             int id,
4752                             int align)
4753 {
4754         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4755         struct drm_i915_private *dev_priv = dev->dev_private;
4756         int ret = 0;
4757         int page_count;
4758         int i;
4759
4760         if (id > I915_MAX_PHYS_OBJECT)
4761                 return -EINVAL;
4762
4763         if (obj->phys_obj) {
4764                 if (obj->phys_obj->id == id)
4765                         return 0;
4766                 i915_gem_detach_phys_object(dev, obj);
4767         }
4768
4769         /* create a new object */
4770         if (!dev_priv->mm.phys_objs[id - 1]) {
4771                 ret = i915_gem_init_phys_object(dev, id,
4772                                                 obj->base.size, align);
4773                 if (ret) {
4774                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4775                                   id, obj->base.size);
4776                         return ret;
4777                 }
4778         }
4779
4780         /* bind to the object */
4781         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4782         obj->phys_obj->cur_obj = obj;
4783
4784         page_count = obj->base.size / PAGE_SIZE;
4785
4786         for (i = 0; i < page_count; i++) {
4787                 struct page *page;
4788                 char *dst, *src;
4789
4790                 page = shmem_read_mapping_page(mapping, i);
4791                 if (IS_ERR(page))
4792                         return PTR_ERR(page);
4793
4794                 src = kmap_atomic(page);
4795                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4796                 memcpy(dst, src, PAGE_SIZE);
4797                 kunmap_atomic(src);
4798
4799                 mark_page_accessed(page);
4800                 page_cache_release(page);
4801         }
4802
4803         return 0;
4804 }
4805
4806 static int
4807 i915_gem_phys_pwrite(struct drm_device *dev,
4808                      struct drm_i915_gem_object *obj,
4809                      struct drm_i915_gem_pwrite *args,
4810                      struct drm_file *file_priv)
4811 {
4812         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4813         char __user *user_data = to_user_ptr(args->data_ptr);
4814
4815         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4816                 unsigned long unwritten;
4817
4818                 /* The physical object once assigned is fixed for the lifetime
4819                  * of the obj, so we can safely drop the lock and continue
4820                  * to access vaddr.
4821                  */
4822                 mutex_unlock(&dev->struct_mutex);
4823                 unwritten = copy_from_user(vaddr, user_data, args->size);
4824                 mutex_lock(&dev->struct_mutex);
4825                 if (unwritten)
4826                         return -EFAULT;
4827         }
4828
4829         i915_gem_chipset_flush(dev);
4830         return 0;
4831 }
4832
4833 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4834 {
4835         struct drm_i915_file_private *file_priv = file->driver_priv;
4836
4837         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4838
4839         /* Clean up our request list when the client is going away, so that
4840          * later retire_requests won't dereference our soon-to-be-gone
4841          * file_priv.
4842          */
4843         spin_lock(&file_priv->mm.lock);
4844         while (!list_empty(&file_priv->mm.request_list)) {
4845                 struct drm_i915_gem_request *request;
4846
4847                 request = list_first_entry(&file_priv->mm.request_list,
4848                                            struct drm_i915_gem_request,
4849                                            client_list);
4850                 list_del(&request->client_list);
4851                 request->file_priv = NULL;
4852         }
4853         spin_unlock(&file_priv->mm.lock);
4854 }
4855
4856 static void
4857 i915_gem_file_idle_work_handler(struct work_struct *work)
4858 {
4859         struct drm_i915_file_private *file_priv =
4860                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4861
4862         atomic_set(&file_priv->rps_wait_boost, false);
4863 }
4864
4865 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4866 {
4867         struct drm_i915_file_private *file_priv;
4868         int ret;
4869
4870         DRM_DEBUG_DRIVER("\n");
4871
4872         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4873         if (!file_priv)
4874                 return -ENOMEM;
4875
4876         file->driver_priv = file_priv;
4877         file_priv->dev_priv = dev->dev_private;
4878         file_priv->file = file;
4879
4880         spin_lock_init(&file_priv->mm.lock);
4881         INIT_LIST_HEAD(&file_priv->mm.request_list);
4882         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4883                           i915_gem_file_idle_work_handler);
4884
4885         ret = i915_gem_context_open(dev, file);
4886         if (ret)
4887                 kfree(file_priv);
4888
4889         return ret;
4890 }
4891
4892 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4893 {
4894         if (!mutex_is_locked(mutex))
4895                 return false;
4896
4897 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4898         return mutex->owner == task;
4899 #else
4900         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4901         return false;
4902 #endif
4903 }
4904
4905 static unsigned long
4906 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4907 {
4908         struct drm_i915_private *dev_priv =
4909                 container_of(shrinker,
4910                              struct drm_i915_private,
4911                              mm.inactive_shrinker);
4912         struct drm_device *dev = dev_priv->dev;
4913         struct drm_i915_gem_object *obj;
4914         bool unlock = true;
4915         unsigned long count;
4916
4917         if (!mutex_trylock(&dev->struct_mutex)) {
4918                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4919                         return 0;
4920
4921                 if (dev_priv->mm.shrinker_no_lock_stealing)
4922                         return 0;
4923
4924                 unlock = false;
4925         }
4926
4927         count = 0;
4928         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4929                 if (obj->pages_pin_count == 0)
4930                         count += obj->base.size >> PAGE_SHIFT;
4931
4932         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4933                 if (obj->active)
4934                         continue;
4935
4936                 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4937                         count += obj->base.size >> PAGE_SHIFT;
4938         }
4939
4940         if (unlock)
4941                 mutex_unlock(&dev->struct_mutex);
4942
4943         return count;
4944 }
4945
4946 /* All the new VM stuff */
4947 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4948                                   struct i915_address_space *vm)
4949 {
4950         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4951         struct i915_vma *vma;
4952
4953         if (!dev_priv->mm.aliasing_ppgtt ||
4954             vm == &dev_priv->mm.aliasing_ppgtt->base)
4955                 vm = &dev_priv->gtt.base;
4956
4957         BUG_ON(list_empty(&o->vma_list));
4958         list_for_each_entry(vma, &o->vma_list, vma_link) {
4959                 if (vma->vm == vm)
4960                         return vma->node.start;
4961
4962         }
4963         return -1;
4964 }
4965
4966 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4967                         struct i915_address_space *vm)
4968 {
4969         struct i915_vma *vma;
4970
4971         list_for_each_entry(vma, &o->vma_list, vma_link)
4972                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4973                         return true;
4974
4975         return false;
4976 }
4977
4978 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4979 {
4980         struct i915_vma *vma;
4981
4982         list_for_each_entry(vma, &o->vma_list, vma_link)
4983                 if (drm_mm_node_allocated(&vma->node))
4984                         return true;
4985
4986         return false;
4987 }
4988
4989 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4990                                 struct i915_address_space *vm)
4991 {
4992         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4993         struct i915_vma *vma;
4994
4995         if (!dev_priv->mm.aliasing_ppgtt ||
4996             vm == &dev_priv->mm.aliasing_ppgtt->base)
4997                 vm = &dev_priv->gtt.base;
4998
4999         BUG_ON(list_empty(&o->vma_list));
5000
5001         list_for_each_entry(vma, &o->vma_list, vma_link)
5002                 if (vma->vm == vm)
5003                         return vma->node.size;
5004
5005         return 0;
5006 }
5007
5008 static unsigned long
5009 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5010 {
5011         struct drm_i915_private *dev_priv =
5012                 container_of(shrinker,
5013                              struct drm_i915_private,
5014                              mm.inactive_shrinker);
5015         struct drm_device *dev = dev_priv->dev;
5016         unsigned long freed;
5017         bool unlock = true;
5018
5019         if (!mutex_trylock(&dev->struct_mutex)) {
5020                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5021                         return SHRINK_STOP;
5022
5023                 if (dev_priv->mm.shrinker_no_lock_stealing)
5024                         return SHRINK_STOP;
5025
5026                 unlock = false;
5027         }
5028
5029         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5030         if (freed < sc->nr_to_scan)
5031                 freed += __i915_gem_shrink(dev_priv,
5032                                            sc->nr_to_scan - freed,
5033                                            false);
5034         if (freed < sc->nr_to_scan)
5035                 freed += i915_gem_shrink_all(dev_priv);
5036
5037         if (unlock)
5038                 mutex_unlock(&dev->struct_mutex);
5039
5040         return freed;
5041 }
5042
5043 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5044 {
5045         struct i915_vma *vma;
5046
5047         if (WARN_ON(list_empty(&obj->vma_list)))
5048                 return NULL;
5049
5050         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5051         if (vma->vm != obj_to_ggtt(obj))
5052                 return NULL;
5053
5054         return vma;
5055 }