Merge branch 'upstream' of git://git.infradead.org/users/pcmoore/audit
[pandora-kernel.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include "kfd_priv.h"
30 #include "kfd_device_queue_manager.h"
31 #include "kfd_mqd_manager.h"
32 #include "cik_regs.h"
33 #include "kfd_kernel_queue.h"
34 #include "../../radeon/cik_reg.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static bool is_mem_initialized;
41
42 static int init_memory(struct device_queue_manager *dqm);
43 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
44                                         unsigned int pasid, unsigned int vmid);
45
46 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
47                                         struct queue *q,
48                                         struct qcm_process_device *qpd);
49 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
50 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
51
52
53 static inline unsigned int get_pipes_num(struct device_queue_manager *dqm)
54 {
55         BUG_ON(!dqm || !dqm->dev);
56         return dqm->dev->shared_resources.compute_pipe_count;
57 }
58
59 static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
60 {
61         BUG_ON(!dqm);
62         return dqm->dev->shared_resources.first_compute_pipe;
63 }
64
65 static inline unsigned int get_pipes_num_cpsch(void)
66 {
67         return PIPE_PER_ME_CP_SCHEDULING;
68 }
69
70 static inline unsigned int
71 get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd)
72 {
73         uint32_t nybble;
74
75         nybble = (pdd->lds_base >> 60) & 0x0E;
76
77         return nybble;
78
79 }
80
81 static inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd)
82 {
83         unsigned int shared_base;
84
85         shared_base = (pdd->lds_base >> 16) & 0xFF;
86
87         return shared_base;
88 }
89
90 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble);
91 static void init_process_memory(struct device_queue_manager *dqm,
92                                 struct qcm_process_device *qpd)
93 {
94         struct kfd_process_device *pdd;
95         unsigned int temp;
96
97         BUG_ON(!dqm || !qpd);
98
99         pdd = qpd_to_pdd(qpd);
100
101         /* check if sh_mem_config register already configured */
102         if (qpd->sh_mem_config == 0) {
103                 qpd->sh_mem_config =
104                         ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) |
105                         DEFAULT_MTYPE(MTYPE_NONCACHED) |
106                         APE1_MTYPE(MTYPE_NONCACHED);
107                 qpd->sh_mem_ape1_limit = 0;
108                 qpd->sh_mem_ape1_base = 0;
109         }
110
111         if (qpd->pqm->process->is_32bit_user_mode) {
112                 temp = get_sh_mem_bases_32(pdd);
113                 qpd->sh_mem_bases = SHARED_BASE(temp);
114                 qpd->sh_mem_config |= PTR32;
115         } else {
116                 temp = get_sh_mem_bases_nybble_64(pdd);
117                 qpd->sh_mem_bases = compute_sh_mem_bases_64bit(temp);
118         }
119
120         pr_debug("kfd: is32bit process: %d sh_mem_bases nybble: 0x%X and register 0x%X\n",
121                 qpd->pqm->process->is_32bit_user_mode, temp, qpd->sh_mem_bases);
122 }
123
124 static void program_sh_mem_settings(struct device_queue_manager *dqm,
125                                         struct qcm_process_device *qpd)
126 {
127         return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
128                                                 qpd->sh_mem_config,
129                                                 qpd->sh_mem_ape1_base,
130                                                 qpd->sh_mem_ape1_limit,
131                                                 qpd->sh_mem_bases);
132 }
133
134 static int allocate_vmid(struct device_queue_manager *dqm,
135                         struct qcm_process_device *qpd,
136                         struct queue *q)
137 {
138         int bit, allocated_vmid;
139
140         if (dqm->vmid_bitmap == 0)
141                 return -ENOMEM;
142
143         bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
144         clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
145
146         /* Kaveri kfd vmid's starts from vmid 8 */
147         allocated_vmid = bit + KFD_VMID_START_OFFSET;
148         pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
149         qpd->vmid = allocated_vmid;
150         q->properties.vmid = allocated_vmid;
151
152         set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
153         program_sh_mem_settings(dqm, qpd);
154
155         return 0;
156 }
157
158 static void deallocate_vmid(struct device_queue_manager *dqm,
159                                 struct qcm_process_device *qpd,
160                                 struct queue *q)
161 {
162         int bit = qpd->vmid - KFD_VMID_START_OFFSET;
163
164         set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
165         qpd->vmid = 0;
166         q->properties.vmid = 0;
167 }
168
169 static int create_queue_nocpsch(struct device_queue_manager *dqm,
170                                 struct queue *q,
171                                 struct qcm_process_device *qpd,
172                                 int *allocated_vmid)
173 {
174         int retval;
175
176         BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
177
178         pr_debug("kfd: In func %s\n", __func__);
179         print_queue(q);
180
181         mutex_lock(&dqm->lock);
182
183         if (list_empty(&qpd->queues_list)) {
184                 retval = allocate_vmid(dqm, qpd, q);
185                 if (retval != 0) {
186                         mutex_unlock(&dqm->lock);
187                         return retval;
188                 }
189         }
190         *allocated_vmid = qpd->vmid;
191         q->properties.vmid = qpd->vmid;
192
193         retval = create_compute_queue_nocpsch(dqm, q, qpd);
194
195         if (retval != 0) {
196                 if (list_empty(&qpd->queues_list)) {
197                         deallocate_vmid(dqm, qpd, q);
198                         *allocated_vmid = 0;
199                 }
200                 mutex_unlock(&dqm->lock);
201                 return retval;
202         }
203
204         list_add(&q->list, &qpd->queues_list);
205         dqm->queue_count++;
206
207         mutex_unlock(&dqm->lock);
208         return 0;
209 }
210
211 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
212 {
213         bool set;
214         int pipe, bit;
215
216         set = false;
217
218         for (pipe = dqm->next_pipe_to_allocate; pipe < get_pipes_num(dqm);
219                         pipe = (pipe + 1) % get_pipes_num(dqm)) {
220                 if (dqm->allocated_queues[pipe] != 0) {
221                         bit = find_first_bit(
222                                 (unsigned long *)&dqm->allocated_queues[pipe],
223                                 QUEUES_PER_PIPE);
224
225                         clear_bit(bit,
226                                 (unsigned long *)&dqm->allocated_queues[pipe]);
227                         q->pipe = pipe;
228                         q->queue = bit;
229                         set = true;
230                         break;
231                 }
232         }
233
234         if (set == false)
235                 return -EBUSY;
236
237         pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
238                                 __func__, q->pipe, q->queue);
239         /* horizontal hqd allocation */
240         dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
241
242         return 0;
243 }
244
245 static inline void deallocate_hqd(struct device_queue_manager *dqm,
246                                 struct queue *q)
247 {
248         set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
249 }
250
251 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
252                                         struct queue *q,
253                                         struct qcm_process_device *qpd)
254 {
255         int retval;
256         struct mqd_manager *mqd;
257
258         BUG_ON(!dqm || !q || !qpd);
259
260         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
261         if (mqd == NULL)
262                 return -ENOMEM;
263
264         retval = allocate_hqd(dqm, q);
265         if (retval != 0)
266                 return retval;
267
268         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
269                                 &q->gart_mqd_addr, &q->properties);
270         if (retval != 0) {
271                 deallocate_hqd(dqm, q);
272                 return retval;
273         }
274
275         return 0;
276 }
277
278 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
279                                 struct qcm_process_device *qpd,
280                                 struct queue *q)
281 {
282         int retval;
283         struct mqd_manager *mqd;
284
285         BUG_ON(!dqm || !q || !q->mqd || !qpd);
286
287         retval = 0;
288
289         pr_debug("kfd: In Func %s\n", __func__);
290
291         mutex_lock(&dqm->lock);
292         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
293         if (mqd == NULL) {
294                 retval = -ENOMEM;
295                 goto out;
296         }
297
298         retval = mqd->destroy_mqd(mqd, q->mqd,
299                                 KFD_PREEMPT_TYPE_WAVEFRONT,
300                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
301                                 q->pipe, q->queue);
302
303         if (retval != 0)
304                 goto out;
305
306         deallocate_hqd(dqm, q);
307
308         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
309
310         list_del(&q->list);
311         if (list_empty(&qpd->queues_list))
312                 deallocate_vmid(dqm, qpd, q);
313         dqm->queue_count--;
314 out:
315         mutex_unlock(&dqm->lock);
316         return retval;
317 }
318
319 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
320 {
321         int retval;
322         struct mqd_manager *mqd;
323
324         BUG_ON(!dqm || !q || !q->mqd);
325
326         mutex_lock(&dqm->lock);
327         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
328         if (mqd == NULL) {
329                 mutex_unlock(&dqm->lock);
330                 return -ENOMEM;
331         }
332
333         retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
334         if (q->properties.is_active == true)
335                 dqm->queue_count++;
336         else
337                 dqm->queue_count--;
338
339         if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
340                 retval = execute_queues_cpsch(dqm, false);
341
342         mutex_unlock(&dqm->lock);
343         return retval;
344 }
345
346 static struct mqd_manager *get_mqd_manager_nocpsch(
347                 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
348 {
349         struct mqd_manager *mqd;
350
351         BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
352
353         pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
354
355         mqd = dqm->mqds[type];
356         if (!mqd) {
357                 mqd = mqd_manager_init(type, dqm->dev);
358                 if (mqd == NULL)
359                         pr_err("kfd: mqd manager is NULL");
360                 dqm->mqds[type] = mqd;
361         }
362
363         return mqd;
364 }
365
366 static int register_process_nocpsch(struct device_queue_manager *dqm,
367                                         struct qcm_process_device *qpd)
368 {
369         struct device_process_node *n;
370
371         BUG_ON(!dqm || !qpd);
372
373         pr_debug("kfd: In func %s\n", __func__);
374
375         n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
376         if (!n)
377                 return -ENOMEM;
378
379         n->qpd = qpd;
380
381         mutex_lock(&dqm->lock);
382         list_add(&n->list, &dqm->queues);
383
384         init_process_memory(dqm, qpd);
385         dqm->processes_count++;
386
387         mutex_unlock(&dqm->lock);
388
389         return 0;
390 }
391
392 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
393                                         struct qcm_process_device *qpd)
394 {
395         int retval;
396         struct device_process_node *cur, *next;
397
398         BUG_ON(!dqm || !qpd);
399
400         BUG_ON(!list_empty(&qpd->queues_list));
401
402         pr_debug("kfd: In func %s\n", __func__);
403
404         retval = 0;
405         mutex_lock(&dqm->lock);
406
407         list_for_each_entry_safe(cur, next, &dqm->queues, list) {
408                 if (qpd == cur->qpd) {
409                         list_del(&cur->list);
410                         kfree(cur);
411                         dqm->processes_count--;
412                         goto out;
413                 }
414         }
415         /* qpd not found in dqm list */
416         retval = 1;
417 out:
418         mutex_unlock(&dqm->lock);
419         return retval;
420 }
421
422 static int
423 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
424                         unsigned int vmid)
425 {
426         uint32_t pasid_mapping;
427
428         pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
429                                                 ATC_VMID_PASID_MAPPING_VALID;
430         return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
431                                                 vmid);
432 }
433
434 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble)
435 {
436         /* In 64-bit mode, we can only control the top 3 bits of the LDS,
437          * scratch and GPUVM apertures.
438          * The hardware fills in the remaining 59 bits according to the
439          * following pattern:
440          * LDS:         X0000000'00000000 - X0000001'00000000 (4GB)
441          * Scratch:     X0000001'00000000 - X0000002'00000000 (4GB)
442          * GPUVM:       Y0010000'00000000 - Y0020000'00000000 (1TB)
443          *
444          * (where X/Y is the configurable nybble with the low-bit 0)
445          *
446          * LDS and scratch will have the same top nybble programmed in the
447          * top 3 bits of SH_MEM_BASES.PRIVATE_BASE.
448          * GPUVM can have a different top nybble programmed in the
449          * top 3 bits of SH_MEM_BASES.SHARED_BASE.
450          * We don't bother to support different top nybbles
451          * for LDS/Scratch and GPUVM.
452          */
453
454         BUG_ON((top_address_nybble & 1) || top_address_nybble > 0xE ||
455                 top_address_nybble == 0);
456
457         return PRIVATE_BASE(top_address_nybble << 12) |
458                         SHARED_BASE(top_address_nybble << 12);
459 }
460
461 static int init_memory(struct device_queue_manager *dqm)
462 {
463         int i, retval;
464
465         for (i = 8; i < 16; i++)
466                 set_pasid_vmid_mapping(dqm, 0, i);
467
468         retval = kfd2kgd->init_memory(dqm->dev->kgd);
469         if (retval == 0)
470                 is_mem_initialized = true;
471         return retval;
472 }
473
474
475 static int init_pipelines(struct device_queue_manager *dqm,
476                         unsigned int pipes_num, unsigned int first_pipe)
477 {
478         void *hpdptr;
479         struct mqd_manager *mqd;
480         unsigned int i, err, inx;
481         uint64_t pipe_hpd_addr;
482
483         BUG_ON(!dqm || !dqm->dev);
484
485         pr_debug("kfd: In func %s\n", __func__);
486
487         /*
488          * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
489          * The driver never accesses this memory after zeroing it.
490          * It doesn't even have to be saved/restored on suspend/resume
491          * because it contains no data when there are no active queues.
492          */
493
494         err = kfd2kgd->allocate_mem(dqm->dev->kgd,
495                                 CIK_HPD_EOP_BYTES * pipes_num,
496                                 PAGE_SIZE,
497                                 KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
498                                 (struct kgd_mem **) &dqm->pipeline_mem);
499
500         if (err) {
501                 pr_err("kfd: error allocate vidmem num pipes: %d\n",
502                         pipes_num);
503                 return -ENOMEM;
504         }
505
506         hpdptr = dqm->pipeline_mem->cpu_ptr;
507         dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
508
509         memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
510
511         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
512         if (mqd == NULL) {
513                 kfd2kgd->free_mem(dqm->dev->kgd,
514                                 (struct kgd_mem *) dqm->pipeline_mem);
515                 return -ENOMEM;
516         }
517
518         for (i = 0; i < pipes_num; i++) {
519                 inx = i + first_pipe;
520                 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
521                 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
522                 /* = log2(bytes/4)-1 */
523                 kfd2kgd->init_pipeline(dqm->dev->kgd, i,
524                                 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
525         }
526
527         return 0;
528 }
529
530
531 static int init_scheduler(struct device_queue_manager *dqm)
532 {
533         int retval;
534
535         BUG_ON(!dqm);
536
537         pr_debug("kfd: In %s\n", __func__);
538
539         retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE);
540         if (retval != 0)
541                 return retval;
542
543         retval = init_memory(dqm);
544
545         return retval;
546 }
547
548 static int initialize_nocpsch(struct device_queue_manager *dqm)
549 {
550         int i;
551
552         BUG_ON(!dqm);
553
554         pr_debug("kfd: In func %s num of pipes: %d\n",
555                         __func__, get_pipes_num(dqm));
556
557         mutex_init(&dqm->lock);
558         INIT_LIST_HEAD(&dqm->queues);
559         dqm->queue_count = dqm->next_pipe_to_allocate = 0;
560         dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
561                                         sizeof(unsigned int), GFP_KERNEL);
562         if (!dqm->allocated_queues) {
563                 mutex_destroy(&dqm->lock);
564                 return -ENOMEM;
565         }
566
567         for (i = 0; i < get_pipes_num(dqm); i++)
568                 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
569
570         dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
571
572         init_scheduler(dqm);
573         return 0;
574 }
575
576 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
577 {
578         int i;
579
580         BUG_ON(!dqm);
581
582         BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
583
584         kfree(dqm->allocated_queues);
585         for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
586                 kfree(dqm->mqds[i]);
587         mutex_destroy(&dqm->lock);
588         kfd2kgd->free_mem(dqm->dev->kgd,
589                         (struct kgd_mem *) dqm->pipeline_mem);
590 }
591
592 static int start_nocpsch(struct device_queue_manager *dqm)
593 {
594         return 0;
595 }
596
597 static int stop_nocpsch(struct device_queue_manager *dqm)
598 {
599         return 0;
600 }
601
602 /*
603  * Device Queue Manager implementation for cp scheduler
604  */
605
606 static int set_sched_resources(struct device_queue_manager *dqm)
607 {
608         struct scheduling_resources res;
609         unsigned int queue_num, queue_mask;
610
611         BUG_ON(!dqm);
612
613         pr_debug("kfd: In func %s\n", __func__);
614
615         queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
616         queue_mask = (1 << queue_num) - 1;
617         res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
618         res.vmid_mask <<= KFD_VMID_START_OFFSET;
619         res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
620         res.gws_mask = res.oac_mask = res.gds_heap_base =
621                                                 res.gds_heap_size = 0;
622
623         pr_debug("kfd: scheduling resources:\n"
624                         "      vmid mask: 0x%8X\n"
625                         "      queue mask: 0x%8llX\n",
626                         res.vmid_mask, res.queue_mask);
627
628         return pm_send_set_resources(&dqm->packets, &res);
629 }
630
631 static int initialize_cpsch(struct device_queue_manager *dqm)
632 {
633         int retval;
634
635         BUG_ON(!dqm);
636
637         pr_debug("kfd: In func %s num of pipes: %d\n",
638                         __func__, get_pipes_num_cpsch());
639
640         mutex_init(&dqm->lock);
641         INIT_LIST_HEAD(&dqm->queues);
642         dqm->queue_count = dqm->processes_count = 0;
643         dqm->active_runlist = false;
644         retval = init_pipelines(dqm, get_pipes_num(dqm), 0);
645         if (retval != 0)
646                 goto fail_init_pipelines;
647
648         return 0;
649
650 fail_init_pipelines:
651         mutex_destroy(&dqm->lock);
652         return retval;
653 }
654
655 static int start_cpsch(struct device_queue_manager *dqm)
656 {
657         struct device_process_node *node;
658         int retval;
659
660         BUG_ON(!dqm);
661
662         retval = 0;
663
664         retval = pm_init(&dqm->packets, dqm);
665         if (retval != 0)
666                 goto fail_packet_manager_init;
667
668         retval = set_sched_resources(dqm);
669         if (retval != 0)
670                 goto fail_set_sched_resources;
671
672         pr_debug("kfd: allocating fence memory\n");
673
674         /* allocate fence memory on the gart */
675         retval = kfd2kgd->allocate_mem(dqm->dev->kgd,
676                                         sizeof(*dqm->fence_addr),
677                                         32,
678                                         KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
679                                         (struct kgd_mem **) &dqm->fence_mem);
680
681         if (retval != 0)
682                 goto fail_allocate_vidmem;
683
684         dqm->fence_addr = dqm->fence_mem->cpu_ptr;
685         dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
686
687         list_for_each_entry(node, &dqm->queues, list)
688                 if (node->qpd->pqm->process && dqm->dev)
689                         kfd_bind_process_to_device(dqm->dev,
690                                                 node->qpd->pqm->process);
691
692         execute_queues_cpsch(dqm, true);
693
694         return 0;
695 fail_allocate_vidmem:
696 fail_set_sched_resources:
697         pm_uninit(&dqm->packets);
698 fail_packet_manager_init:
699         return retval;
700 }
701
702 static int stop_cpsch(struct device_queue_manager *dqm)
703 {
704         struct device_process_node *node;
705         struct kfd_process_device *pdd;
706
707         BUG_ON(!dqm);
708
709         destroy_queues_cpsch(dqm, true);
710
711         list_for_each_entry(node, &dqm->queues, list) {
712                 pdd = qpd_to_pdd(node->qpd);
713                 pdd->bound = false;
714         }
715         kfd2kgd->free_mem(dqm->dev->kgd,
716                         (struct kgd_mem *) dqm->fence_mem);
717         pm_uninit(&dqm->packets);
718
719         return 0;
720 }
721
722 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
723                                         struct kernel_queue *kq,
724                                         struct qcm_process_device *qpd)
725 {
726         BUG_ON(!dqm || !kq || !qpd);
727
728         pr_debug("kfd: In func %s\n", __func__);
729
730         mutex_lock(&dqm->lock);
731         list_add(&kq->list, &qpd->priv_queue_list);
732         dqm->queue_count++;
733         qpd->is_debug = true;
734         execute_queues_cpsch(dqm, false);
735         mutex_unlock(&dqm->lock);
736
737         return 0;
738 }
739
740 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
741                                         struct kernel_queue *kq,
742                                         struct qcm_process_device *qpd)
743 {
744         BUG_ON(!dqm || !kq);
745
746         pr_debug("kfd: In %s\n", __func__);
747
748         mutex_lock(&dqm->lock);
749         destroy_queues_cpsch(dqm, false);
750         list_del(&kq->list);
751         dqm->queue_count--;
752         qpd->is_debug = false;
753         execute_queues_cpsch(dqm, false);
754         mutex_unlock(&dqm->lock);
755 }
756
757 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
758                         struct qcm_process_device *qpd, int *allocate_vmid)
759 {
760         int retval;
761         struct mqd_manager *mqd;
762
763         BUG_ON(!dqm || !q || !qpd);
764
765         retval = 0;
766
767         if (allocate_vmid)
768                 *allocate_vmid = 0;
769
770         mutex_lock(&dqm->lock);
771
772         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
773         if (mqd == NULL) {
774                 mutex_unlock(&dqm->lock);
775                 return -ENOMEM;
776         }
777
778         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
779                                 &q->gart_mqd_addr, &q->properties);
780         if (retval != 0)
781                 goto out;
782
783         list_add(&q->list, &qpd->queues_list);
784         if (q->properties.is_active) {
785                 dqm->queue_count++;
786                 retval = execute_queues_cpsch(dqm, false);
787         }
788
789 out:
790         mutex_unlock(&dqm->lock);
791         return retval;
792 }
793
794 static int fence_wait_timeout(unsigned int *fence_addr,
795                                 unsigned int fence_value,
796                                 unsigned long timeout)
797 {
798         BUG_ON(!fence_addr);
799         timeout += jiffies;
800
801         while (*fence_addr != fence_value) {
802                 if (time_after(jiffies, timeout)) {
803                         pr_err("kfd: qcm fence wait loop timeout expired\n");
804                         return -ETIME;
805                 }
806                 cpu_relax();
807         }
808
809         return 0;
810 }
811
812 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
813 {
814         int retval;
815
816         BUG_ON(!dqm);
817
818         retval = 0;
819
820         if (lock)
821                 mutex_lock(&dqm->lock);
822         if (dqm->active_runlist == false)
823                 goto out;
824         retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
825                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
826         if (retval != 0)
827                 goto out;
828
829         *dqm->fence_addr = KFD_FENCE_INIT;
830         pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
831                                 KFD_FENCE_COMPLETED);
832         /* should be timed out */
833         fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
834                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
835         pm_release_ib(&dqm->packets);
836         dqm->active_runlist = false;
837
838 out:
839         if (lock)
840                 mutex_unlock(&dqm->lock);
841         return retval;
842 }
843
844 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
845 {
846         int retval;
847
848         BUG_ON(!dqm);
849
850         if (lock)
851                 mutex_lock(&dqm->lock);
852
853         retval = destroy_queues_cpsch(dqm, false);
854         if (retval != 0) {
855                 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
856                 goto out;
857         }
858
859         if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
860                 retval = 0;
861                 goto out;
862         }
863
864         if (dqm->active_runlist) {
865                 retval = 0;
866                 goto out;
867         }
868
869         retval = pm_send_runlist(&dqm->packets, &dqm->queues);
870         if (retval != 0) {
871                 pr_err("kfd: failed to execute runlist");
872                 goto out;
873         }
874         dqm->active_runlist = true;
875
876 out:
877         if (lock)
878                 mutex_unlock(&dqm->lock);
879         return retval;
880 }
881
882 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
883                                 struct qcm_process_device *qpd,
884                                 struct queue *q)
885 {
886         int retval;
887         struct mqd_manager *mqd;
888
889         BUG_ON(!dqm || !qpd || !q);
890
891         retval = 0;
892
893         /* remove queue from list to prevent rescheduling after preemption */
894         mutex_lock(&dqm->lock);
895
896         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
897         if (!mqd) {
898                 retval = -ENOMEM;
899                 goto failed;
900         }
901
902         list_del(&q->list);
903         dqm->queue_count--;
904
905         execute_queues_cpsch(dqm, false);
906
907         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
908
909         mutex_unlock(&dqm->lock);
910
911         return 0;
912
913 failed:
914         mutex_unlock(&dqm->lock);
915         return retval;
916 }
917
918 /*
919  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
920  * stay in user mode.
921  */
922 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
923 /* APE1 limit is inclusive and 64K aligned. */
924 #define APE1_LIMIT_ALIGNMENT 0xFFFF
925
926 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
927                                    struct qcm_process_device *qpd,
928                                    enum cache_policy default_policy,
929                                    enum cache_policy alternate_policy,
930                                    void __user *alternate_aperture_base,
931                                    uint64_t alternate_aperture_size)
932 {
933         uint32_t default_mtype;
934         uint32_t ape1_mtype;
935
936         pr_debug("kfd: In func %s\n", __func__);
937
938         mutex_lock(&dqm->lock);
939
940         if (alternate_aperture_size == 0) {
941                 /* base > limit disables APE1 */
942                 qpd->sh_mem_ape1_base = 1;
943                 qpd->sh_mem_ape1_limit = 0;
944         } else {
945                 /*
946                  * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
947                  *                      SH_MEM_APE1_BASE[31:0], 0x0000 }
948                  * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
949                  *                      SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
950                  * Verify that the base and size parameters can be
951                  * represented in this format and convert them.
952                  * Additionally restrict APE1 to user-mode addresses.
953                  */
954
955                 uint64_t base = (uintptr_t)alternate_aperture_base;
956                 uint64_t limit = base + alternate_aperture_size - 1;
957
958                 if (limit <= base)
959                         goto out;
960
961                 if ((base & APE1_FIXED_BITS_MASK) != 0)
962                         goto out;
963
964                 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
965                         goto out;
966
967                 qpd->sh_mem_ape1_base = base >> 16;
968                 qpd->sh_mem_ape1_limit = limit >> 16;
969         }
970
971         default_mtype = (default_policy == cache_policy_coherent) ?
972                         MTYPE_NONCACHED :
973                         MTYPE_CACHED;
974
975         ape1_mtype = (alternate_policy == cache_policy_coherent) ?
976                         MTYPE_NONCACHED :
977                         MTYPE_CACHED;
978
979         qpd->sh_mem_config = (qpd->sh_mem_config & PTR32)
980                         | ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED)
981                         | DEFAULT_MTYPE(default_mtype)
982                         | APE1_MTYPE(ape1_mtype);
983
984         if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
985                 program_sh_mem_settings(dqm, qpd);
986
987         pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
988                 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
989                 qpd->sh_mem_ape1_limit);
990
991         mutex_unlock(&dqm->lock);
992         return true;
993
994 out:
995         mutex_unlock(&dqm->lock);
996         return false;
997 }
998
999 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1000 {
1001         struct device_queue_manager *dqm;
1002
1003         BUG_ON(!dev);
1004
1005         dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1006         if (!dqm)
1007                 return NULL;
1008
1009         dqm->dev = dev;
1010         switch (sched_policy) {
1011         case KFD_SCHED_POLICY_HWS:
1012         case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1013                 /* initialize dqm for cp scheduling */
1014                 dqm->create_queue = create_queue_cpsch;
1015                 dqm->initialize = initialize_cpsch;
1016                 dqm->start = start_cpsch;
1017                 dqm->stop = stop_cpsch;
1018                 dqm->destroy_queue = destroy_queue_cpsch;
1019                 dqm->update_queue = update_queue;
1020                 dqm->get_mqd_manager = get_mqd_manager_nocpsch;
1021                 dqm->register_process = register_process_nocpsch;
1022                 dqm->unregister_process = unregister_process_nocpsch;
1023                 dqm->uninitialize = uninitialize_nocpsch;
1024                 dqm->create_kernel_queue = create_kernel_queue_cpsch;
1025                 dqm->destroy_kernel_queue = destroy_kernel_queue_cpsch;
1026                 dqm->set_cache_memory_policy = set_cache_memory_policy;
1027                 break;
1028         case KFD_SCHED_POLICY_NO_HWS:
1029                 /* initialize dqm for no cp scheduling */
1030                 dqm->start = start_nocpsch;
1031                 dqm->stop = stop_nocpsch;
1032                 dqm->create_queue = create_queue_nocpsch;
1033                 dqm->destroy_queue = destroy_queue_nocpsch;
1034                 dqm->update_queue = update_queue;
1035                 dqm->get_mqd_manager = get_mqd_manager_nocpsch;
1036                 dqm->register_process = register_process_nocpsch;
1037                 dqm->unregister_process = unregister_process_nocpsch;
1038                 dqm->initialize = initialize_nocpsch;
1039                 dqm->uninitialize = uninitialize_nocpsch;
1040                 dqm->set_cache_memory_policy = set_cache_memory_policy;
1041                 break;
1042         default:
1043                 BUG();
1044                 break;
1045         }
1046
1047         if (dqm->initialize(dqm) != 0) {
1048                 kfree(dqm);
1049                 return NULL;
1050         }
1051
1052         return dqm;
1053 }
1054
1055 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1056 {
1057         BUG_ON(!dqm);
1058
1059         dqm->uninitialize(dqm);
1060         kfree(dqm);
1061 }
1062