Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include "kfd_priv.h"
30 #include "kfd_device_queue_manager.h"
31 #include "kfd_mqd_manager.h"
32 #include "cik_regs.h"
33 #include "kfd_kernel_queue.h"
34 #include "../../radeon/cik_reg.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static bool is_mem_initialized;
41
42 static int init_memory(struct device_queue_manager *dqm);
43 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
44                                         unsigned int pasid, unsigned int vmid);
45
46 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
47                                         struct queue *q,
48                                         struct qcm_process_device *qpd);
49 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
50 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
51
52
53 static inline unsigned int get_pipes_num(struct device_queue_manager *dqm)
54 {
55         BUG_ON(!dqm || !dqm->dev);
56         return dqm->dev->shared_resources.compute_pipe_count;
57 }
58
59 static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
60 {
61         BUG_ON(!dqm);
62         return dqm->dev->shared_resources.first_compute_pipe;
63 }
64
65 static inline unsigned int get_pipes_num_cpsch(void)
66 {
67         return PIPE_PER_ME_CP_SCHEDULING;
68 }
69
70 static inline unsigned int
71 get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd)
72 {
73         uint32_t nybble;
74
75         nybble = (pdd->lds_base >> 60) & 0x0E;
76
77         return nybble;
78
79 }
80
81 static inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd)
82 {
83         unsigned int shared_base;
84
85         shared_base = (pdd->lds_base >> 16) & 0xFF;
86
87         return shared_base;
88 }
89
90 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble);
91 static void init_process_memory(struct device_queue_manager *dqm,
92                                 struct qcm_process_device *qpd)
93 {
94         struct kfd_process_device *pdd;
95         unsigned int temp;
96
97         BUG_ON(!dqm || !qpd);
98
99         pdd = qpd_to_pdd(qpd);
100
101         /* check if sh_mem_config register already configured */
102         if (qpd->sh_mem_config == 0) {
103                 qpd->sh_mem_config =
104                         ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) |
105                         DEFAULT_MTYPE(MTYPE_NONCACHED) |
106                         APE1_MTYPE(MTYPE_NONCACHED);
107                 qpd->sh_mem_ape1_limit = 0;
108                 qpd->sh_mem_ape1_base = 0;
109         }
110
111         if (qpd->pqm->process->is_32bit_user_mode) {
112                 temp = get_sh_mem_bases_32(pdd);
113                 qpd->sh_mem_bases = SHARED_BASE(temp);
114                 qpd->sh_mem_config |= PTR32;
115         } else {
116                 temp = get_sh_mem_bases_nybble_64(pdd);
117                 qpd->sh_mem_bases = compute_sh_mem_bases_64bit(temp);
118         }
119
120         pr_debug("kfd: is32bit process: %d sh_mem_bases nybble: 0x%X and register 0x%X\n",
121                 qpd->pqm->process->is_32bit_user_mode, temp, qpd->sh_mem_bases);
122 }
123
124 static void program_sh_mem_settings(struct device_queue_manager *dqm,
125                                         struct qcm_process_device *qpd)
126 {
127         return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
128                                                 qpd->sh_mem_config,
129                                                 qpd->sh_mem_ape1_base,
130                                                 qpd->sh_mem_ape1_limit,
131                                                 qpd->sh_mem_bases);
132 }
133
134 static int allocate_vmid(struct device_queue_manager *dqm,
135                         struct qcm_process_device *qpd,
136                         struct queue *q)
137 {
138         int bit, allocated_vmid;
139
140         if (dqm->vmid_bitmap == 0)
141                 return -ENOMEM;
142
143         bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
144         clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
145
146         /* Kaveri kfd vmid's starts from vmid 8 */
147         allocated_vmid = bit + KFD_VMID_START_OFFSET;
148         pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
149         qpd->vmid = allocated_vmid;
150         q->properties.vmid = allocated_vmid;
151
152         set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
153         program_sh_mem_settings(dqm, qpd);
154
155         return 0;
156 }
157
158 static void deallocate_vmid(struct device_queue_manager *dqm,
159                                 struct qcm_process_device *qpd,
160                                 struct queue *q)
161 {
162         int bit = qpd->vmid - KFD_VMID_START_OFFSET;
163
164         /* Release the vmid mapping */
165         set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
166
167         set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
168         qpd->vmid = 0;
169         q->properties.vmid = 0;
170 }
171
172 static int create_queue_nocpsch(struct device_queue_manager *dqm,
173                                 struct queue *q,
174                                 struct qcm_process_device *qpd,
175                                 int *allocated_vmid)
176 {
177         int retval;
178
179         BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
180
181         pr_debug("kfd: In func %s\n", __func__);
182         print_queue(q);
183
184         mutex_lock(&dqm->lock);
185
186         if (list_empty(&qpd->queues_list)) {
187                 retval = allocate_vmid(dqm, qpd, q);
188                 if (retval != 0) {
189                         mutex_unlock(&dqm->lock);
190                         return retval;
191                 }
192         }
193         *allocated_vmid = qpd->vmid;
194         q->properties.vmid = qpd->vmid;
195
196         retval = create_compute_queue_nocpsch(dqm, q, qpd);
197
198         if (retval != 0) {
199                 if (list_empty(&qpd->queues_list)) {
200                         deallocate_vmid(dqm, qpd, q);
201                         *allocated_vmid = 0;
202                 }
203                 mutex_unlock(&dqm->lock);
204                 return retval;
205         }
206
207         list_add(&q->list, &qpd->queues_list);
208         dqm->queue_count++;
209
210         mutex_unlock(&dqm->lock);
211         return 0;
212 }
213
214 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
215 {
216         bool set;
217         int pipe, bit;
218
219         set = false;
220
221         for (pipe = dqm->next_pipe_to_allocate; pipe < get_pipes_num(dqm);
222                         pipe = (pipe + 1) % get_pipes_num(dqm)) {
223                 if (dqm->allocated_queues[pipe] != 0) {
224                         bit = find_first_bit(
225                                 (unsigned long *)&dqm->allocated_queues[pipe],
226                                 QUEUES_PER_PIPE);
227
228                         clear_bit(bit,
229                                 (unsigned long *)&dqm->allocated_queues[pipe]);
230                         q->pipe = pipe;
231                         q->queue = bit;
232                         set = true;
233                         break;
234                 }
235         }
236
237         if (set == false)
238                 return -EBUSY;
239
240         pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
241                                 __func__, q->pipe, q->queue);
242         /* horizontal hqd allocation */
243         dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
244
245         return 0;
246 }
247
248 static inline void deallocate_hqd(struct device_queue_manager *dqm,
249                                 struct queue *q)
250 {
251         set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
252 }
253
254 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
255                                         struct queue *q,
256                                         struct qcm_process_device *qpd)
257 {
258         int retval;
259         struct mqd_manager *mqd;
260
261         BUG_ON(!dqm || !q || !qpd);
262
263         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
264         if (mqd == NULL)
265                 return -ENOMEM;
266
267         retval = allocate_hqd(dqm, q);
268         if (retval != 0)
269                 return retval;
270
271         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
272                                 &q->gart_mqd_addr, &q->properties);
273         if (retval != 0) {
274                 deallocate_hqd(dqm, q);
275                 return retval;
276         }
277
278         pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
279                         q->pipe,
280                         q->queue);
281
282         retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
283                         q->queue, q->properties.write_ptr);
284         if (retval != 0) {
285                 deallocate_hqd(dqm, q);
286                 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
287                 return retval;
288         }
289
290         return 0;
291 }
292
293 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
294                                 struct qcm_process_device *qpd,
295                                 struct queue *q)
296 {
297         int retval;
298         struct mqd_manager *mqd;
299
300         BUG_ON(!dqm || !q || !q->mqd || !qpd);
301
302         retval = 0;
303
304         pr_debug("kfd: In Func %s\n", __func__);
305
306         mutex_lock(&dqm->lock);
307         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
308         if (mqd == NULL) {
309                 retval = -ENOMEM;
310                 goto out;
311         }
312
313         retval = mqd->destroy_mqd(mqd, q->mqd,
314                                 KFD_PREEMPT_TYPE_WAVEFRONT,
315                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
316                                 q->pipe, q->queue);
317
318         if (retval != 0)
319                 goto out;
320
321         deallocate_hqd(dqm, q);
322
323         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
324
325         list_del(&q->list);
326         if (list_empty(&qpd->queues_list))
327                 deallocate_vmid(dqm, qpd, q);
328         dqm->queue_count--;
329 out:
330         mutex_unlock(&dqm->lock);
331         return retval;
332 }
333
334 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
335 {
336         int retval;
337         struct mqd_manager *mqd;
338         bool prev_active = false;
339
340         BUG_ON(!dqm || !q || !q->mqd);
341
342         mutex_lock(&dqm->lock);
343         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
344         if (mqd == NULL) {
345                 mutex_unlock(&dqm->lock);
346                 return -ENOMEM;
347         }
348
349         if (q->properties.is_active == true)
350                 prev_active = true;
351
352         /*
353          *
354          * check active state vs. the previous state
355          * and modify counter accordingly
356          */
357         retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
358         if ((q->properties.is_active == true) && (prev_active == false))
359                 dqm->queue_count++;
360         else if ((q->properties.is_active == false) && (prev_active == true))
361                 dqm->queue_count--;
362
363         if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
364                 retval = execute_queues_cpsch(dqm, false);
365
366         mutex_unlock(&dqm->lock);
367         return retval;
368 }
369
370 static struct mqd_manager *get_mqd_manager_nocpsch(
371                 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
372 {
373         struct mqd_manager *mqd;
374
375         BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
376
377         pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
378
379         mqd = dqm->mqds[type];
380         if (!mqd) {
381                 mqd = mqd_manager_init(type, dqm->dev);
382                 if (mqd == NULL)
383                         pr_err("kfd: mqd manager is NULL");
384                 dqm->mqds[type] = mqd;
385         }
386
387         return mqd;
388 }
389
390 static int register_process_nocpsch(struct device_queue_manager *dqm,
391                                         struct qcm_process_device *qpd)
392 {
393         struct device_process_node *n;
394
395         BUG_ON(!dqm || !qpd);
396
397         pr_debug("kfd: In func %s\n", __func__);
398
399         n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
400         if (!n)
401                 return -ENOMEM;
402
403         n->qpd = qpd;
404
405         mutex_lock(&dqm->lock);
406         list_add(&n->list, &dqm->queues);
407
408         init_process_memory(dqm, qpd);
409         dqm->processes_count++;
410
411         mutex_unlock(&dqm->lock);
412
413         return 0;
414 }
415
416 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
417                                         struct qcm_process_device *qpd)
418 {
419         int retval;
420         struct device_process_node *cur, *next;
421
422         BUG_ON(!dqm || !qpd);
423
424         BUG_ON(!list_empty(&qpd->queues_list));
425
426         pr_debug("kfd: In func %s\n", __func__);
427
428         retval = 0;
429         mutex_lock(&dqm->lock);
430
431         list_for_each_entry_safe(cur, next, &dqm->queues, list) {
432                 if (qpd == cur->qpd) {
433                         list_del(&cur->list);
434                         kfree(cur);
435                         dqm->processes_count--;
436                         goto out;
437                 }
438         }
439         /* qpd not found in dqm list */
440         retval = 1;
441 out:
442         mutex_unlock(&dqm->lock);
443         return retval;
444 }
445
446 static int
447 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
448                         unsigned int vmid)
449 {
450         uint32_t pasid_mapping;
451
452         pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
453                                                 ATC_VMID_PASID_MAPPING_VALID;
454         return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
455                                                 vmid);
456 }
457
458 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble)
459 {
460         /* In 64-bit mode, we can only control the top 3 bits of the LDS,
461          * scratch and GPUVM apertures.
462          * The hardware fills in the remaining 59 bits according to the
463          * following pattern:
464          * LDS:         X0000000'00000000 - X0000001'00000000 (4GB)
465          * Scratch:     X0000001'00000000 - X0000002'00000000 (4GB)
466          * GPUVM:       Y0010000'00000000 - Y0020000'00000000 (1TB)
467          *
468          * (where X/Y is the configurable nybble with the low-bit 0)
469          *
470          * LDS and scratch will have the same top nybble programmed in the
471          * top 3 bits of SH_MEM_BASES.PRIVATE_BASE.
472          * GPUVM can have a different top nybble programmed in the
473          * top 3 bits of SH_MEM_BASES.SHARED_BASE.
474          * We don't bother to support different top nybbles
475          * for LDS/Scratch and GPUVM.
476          */
477
478         BUG_ON((top_address_nybble & 1) || top_address_nybble > 0xE ||
479                 top_address_nybble == 0);
480
481         return PRIVATE_BASE(top_address_nybble << 12) |
482                         SHARED_BASE(top_address_nybble << 12);
483 }
484
485 static int init_memory(struct device_queue_manager *dqm)
486 {
487         int i, retval;
488
489         for (i = 8; i < 16; i++)
490                 set_pasid_vmid_mapping(dqm, 0, i);
491
492         retval = kfd2kgd->init_memory(dqm->dev->kgd);
493         if (retval == 0)
494                 is_mem_initialized = true;
495         return retval;
496 }
497
498
499 static int init_pipelines(struct device_queue_manager *dqm,
500                         unsigned int pipes_num, unsigned int first_pipe)
501 {
502         void *hpdptr;
503         struct mqd_manager *mqd;
504         unsigned int i, err, inx;
505         uint64_t pipe_hpd_addr;
506
507         BUG_ON(!dqm || !dqm->dev);
508
509         pr_debug("kfd: In func %s\n", __func__);
510
511         /*
512          * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
513          * The driver never accesses this memory after zeroing it.
514          * It doesn't even have to be saved/restored on suspend/resume
515          * because it contains no data when there are no active queues.
516          */
517
518         err = kfd2kgd->allocate_mem(dqm->dev->kgd,
519                                 CIK_HPD_EOP_BYTES * pipes_num,
520                                 PAGE_SIZE,
521                                 KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
522                                 (struct kgd_mem **) &dqm->pipeline_mem);
523
524         if (err) {
525                 pr_err("kfd: error allocate vidmem num pipes: %d\n",
526                         pipes_num);
527                 return -ENOMEM;
528         }
529
530         hpdptr = dqm->pipeline_mem->cpu_ptr;
531         dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
532
533         memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
534
535         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
536         if (mqd == NULL) {
537                 kfd2kgd->free_mem(dqm->dev->kgd,
538                                 (struct kgd_mem *) dqm->pipeline_mem);
539                 return -ENOMEM;
540         }
541
542         for (i = 0; i < pipes_num; i++) {
543                 inx = i + first_pipe;
544                 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
545                 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
546                 /* = log2(bytes/4)-1 */
547                 kfd2kgd->init_pipeline(dqm->dev->kgd, i,
548                                 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
549         }
550
551         return 0;
552 }
553
554
555 static int init_scheduler(struct device_queue_manager *dqm)
556 {
557         int retval;
558
559         BUG_ON(!dqm);
560
561         pr_debug("kfd: In %s\n", __func__);
562
563         retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE);
564         if (retval != 0)
565                 return retval;
566
567         retval = init_memory(dqm);
568
569         return retval;
570 }
571
572 static int initialize_nocpsch(struct device_queue_manager *dqm)
573 {
574         int i;
575
576         BUG_ON(!dqm);
577
578         pr_debug("kfd: In func %s num of pipes: %d\n",
579                         __func__, get_pipes_num(dqm));
580
581         mutex_init(&dqm->lock);
582         INIT_LIST_HEAD(&dqm->queues);
583         dqm->queue_count = dqm->next_pipe_to_allocate = 0;
584         dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
585                                         sizeof(unsigned int), GFP_KERNEL);
586         if (!dqm->allocated_queues) {
587                 mutex_destroy(&dqm->lock);
588                 return -ENOMEM;
589         }
590
591         for (i = 0; i < get_pipes_num(dqm); i++)
592                 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
593
594         dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
595
596         init_scheduler(dqm);
597         return 0;
598 }
599
600 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
601 {
602         int i;
603
604         BUG_ON(!dqm);
605
606         BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
607
608         kfree(dqm->allocated_queues);
609         for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
610                 kfree(dqm->mqds[i]);
611         mutex_destroy(&dqm->lock);
612         kfd2kgd->free_mem(dqm->dev->kgd,
613                         (struct kgd_mem *) dqm->pipeline_mem);
614 }
615
616 static int start_nocpsch(struct device_queue_manager *dqm)
617 {
618         return 0;
619 }
620
621 static int stop_nocpsch(struct device_queue_manager *dqm)
622 {
623         return 0;
624 }
625
626 /*
627  * Device Queue Manager implementation for cp scheduler
628  */
629
630 static int set_sched_resources(struct device_queue_manager *dqm)
631 {
632         struct scheduling_resources res;
633         unsigned int queue_num, queue_mask;
634
635         BUG_ON(!dqm);
636
637         pr_debug("kfd: In func %s\n", __func__);
638
639         queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
640         queue_mask = (1 << queue_num) - 1;
641         res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
642         res.vmid_mask <<= KFD_VMID_START_OFFSET;
643         res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
644         res.gws_mask = res.oac_mask = res.gds_heap_base =
645                                                 res.gds_heap_size = 0;
646
647         pr_debug("kfd: scheduling resources:\n"
648                         "      vmid mask: 0x%8X\n"
649                         "      queue mask: 0x%8llX\n",
650                         res.vmid_mask, res.queue_mask);
651
652         return pm_send_set_resources(&dqm->packets, &res);
653 }
654
655 static int initialize_cpsch(struct device_queue_manager *dqm)
656 {
657         int retval;
658
659         BUG_ON(!dqm);
660
661         pr_debug("kfd: In func %s num of pipes: %d\n",
662                         __func__, get_pipes_num_cpsch());
663
664         mutex_init(&dqm->lock);
665         INIT_LIST_HEAD(&dqm->queues);
666         dqm->queue_count = dqm->processes_count = 0;
667         dqm->active_runlist = false;
668         retval = init_pipelines(dqm, get_pipes_num(dqm), 0);
669         if (retval != 0)
670                 goto fail_init_pipelines;
671
672         return 0;
673
674 fail_init_pipelines:
675         mutex_destroy(&dqm->lock);
676         return retval;
677 }
678
679 static int start_cpsch(struct device_queue_manager *dqm)
680 {
681         struct device_process_node *node;
682         int retval;
683
684         BUG_ON(!dqm);
685
686         retval = 0;
687
688         retval = pm_init(&dqm->packets, dqm);
689         if (retval != 0)
690                 goto fail_packet_manager_init;
691
692         retval = set_sched_resources(dqm);
693         if (retval != 0)
694                 goto fail_set_sched_resources;
695
696         pr_debug("kfd: allocating fence memory\n");
697
698         /* allocate fence memory on the gart */
699         retval = kfd2kgd->allocate_mem(dqm->dev->kgd,
700                                         sizeof(*dqm->fence_addr),
701                                         32,
702                                         KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
703                                         (struct kgd_mem **) &dqm->fence_mem);
704
705         if (retval != 0)
706                 goto fail_allocate_vidmem;
707
708         dqm->fence_addr = dqm->fence_mem->cpu_ptr;
709         dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
710
711         list_for_each_entry(node, &dqm->queues, list)
712                 if (node->qpd->pqm->process && dqm->dev)
713                         kfd_bind_process_to_device(dqm->dev,
714                                                 node->qpd->pqm->process);
715
716         execute_queues_cpsch(dqm, true);
717
718         return 0;
719 fail_allocate_vidmem:
720 fail_set_sched_resources:
721         pm_uninit(&dqm->packets);
722 fail_packet_manager_init:
723         return retval;
724 }
725
726 static int stop_cpsch(struct device_queue_manager *dqm)
727 {
728         struct device_process_node *node;
729         struct kfd_process_device *pdd;
730
731         BUG_ON(!dqm);
732
733         destroy_queues_cpsch(dqm, true);
734
735         list_for_each_entry(node, &dqm->queues, list) {
736                 pdd = qpd_to_pdd(node->qpd);
737                 pdd->bound = false;
738         }
739         kfd2kgd->free_mem(dqm->dev->kgd,
740                         (struct kgd_mem *) dqm->fence_mem);
741         pm_uninit(&dqm->packets);
742
743         return 0;
744 }
745
746 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
747                                         struct kernel_queue *kq,
748                                         struct qcm_process_device *qpd)
749 {
750         BUG_ON(!dqm || !kq || !qpd);
751
752         pr_debug("kfd: In func %s\n", __func__);
753
754         mutex_lock(&dqm->lock);
755         list_add(&kq->list, &qpd->priv_queue_list);
756         dqm->queue_count++;
757         qpd->is_debug = true;
758         execute_queues_cpsch(dqm, false);
759         mutex_unlock(&dqm->lock);
760
761         return 0;
762 }
763
764 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
765                                         struct kernel_queue *kq,
766                                         struct qcm_process_device *qpd)
767 {
768         BUG_ON(!dqm || !kq);
769
770         pr_debug("kfd: In %s\n", __func__);
771
772         mutex_lock(&dqm->lock);
773         destroy_queues_cpsch(dqm, false);
774         list_del(&kq->list);
775         dqm->queue_count--;
776         qpd->is_debug = false;
777         execute_queues_cpsch(dqm, false);
778         mutex_unlock(&dqm->lock);
779 }
780
781 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
782                         struct qcm_process_device *qpd, int *allocate_vmid)
783 {
784         int retval;
785         struct mqd_manager *mqd;
786
787         BUG_ON(!dqm || !q || !qpd);
788
789         retval = 0;
790
791         if (allocate_vmid)
792                 *allocate_vmid = 0;
793
794         mutex_lock(&dqm->lock);
795
796         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
797         if (mqd == NULL) {
798                 mutex_unlock(&dqm->lock);
799                 return -ENOMEM;
800         }
801
802         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
803                                 &q->gart_mqd_addr, &q->properties);
804         if (retval != 0)
805                 goto out;
806
807         list_add(&q->list, &qpd->queues_list);
808         if (q->properties.is_active) {
809                 dqm->queue_count++;
810                 retval = execute_queues_cpsch(dqm, false);
811         }
812
813 out:
814         mutex_unlock(&dqm->lock);
815         return retval;
816 }
817
818 static int fence_wait_timeout(unsigned int *fence_addr,
819                                 unsigned int fence_value,
820                                 unsigned long timeout)
821 {
822         BUG_ON(!fence_addr);
823         timeout += jiffies;
824
825         while (*fence_addr != fence_value) {
826                 if (time_after(jiffies, timeout)) {
827                         pr_err("kfd: qcm fence wait loop timeout expired\n");
828                         return -ETIME;
829                 }
830                 cpu_relax();
831         }
832
833         return 0;
834 }
835
836 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
837 {
838         int retval;
839
840         BUG_ON(!dqm);
841
842         retval = 0;
843
844         if (lock)
845                 mutex_lock(&dqm->lock);
846         if (dqm->active_runlist == false)
847                 goto out;
848         retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
849                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
850         if (retval != 0)
851                 goto out;
852
853         *dqm->fence_addr = KFD_FENCE_INIT;
854         pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
855                                 KFD_FENCE_COMPLETED);
856         /* should be timed out */
857         fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
858                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
859         pm_release_ib(&dqm->packets);
860         dqm->active_runlist = false;
861
862 out:
863         if (lock)
864                 mutex_unlock(&dqm->lock);
865         return retval;
866 }
867
868 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
869 {
870         int retval;
871
872         BUG_ON(!dqm);
873
874         if (lock)
875                 mutex_lock(&dqm->lock);
876
877         retval = destroy_queues_cpsch(dqm, false);
878         if (retval != 0) {
879                 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
880                 goto out;
881         }
882
883         if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
884                 retval = 0;
885                 goto out;
886         }
887
888         if (dqm->active_runlist) {
889                 retval = 0;
890                 goto out;
891         }
892
893         retval = pm_send_runlist(&dqm->packets, &dqm->queues);
894         if (retval != 0) {
895                 pr_err("kfd: failed to execute runlist");
896                 goto out;
897         }
898         dqm->active_runlist = true;
899
900 out:
901         if (lock)
902                 mutex_unlock(&dqm->lock);
903         return retval;
904 }
905
906 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
907                                 struct qcm_process_device *qpd,
908                                 struct queue *q)
909 {
910         int retval;
911         struct mqd_manager *mqd;
912
913         BUG_ON(!dqm || !qpd || !q);
914
915         retval = 0;
916
917         /* remove queue from list to prevent rescheduling after preemption */
918         mutex_lock(&dqm->lock);
919
920         mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
921         if (!mqd) {
922                 retval = -ENOMEM;
923                 goto failed;
924         }
925
926         list_del(&q->list);
927         dqm->queue_count--;
928
929         execute_queues_cpsch(dqm, false);
930
931         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
932
933         mutex_unlock(&dqm->lock);
934
935         return 0;
936
937 failed:
938         mutex_unlock(&dqm->lock);
939         return retval;
940 }
941
942 /*
943  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
944  * stay in user mode.
945  */
946 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
947 /* APE1 limit is inclusive and 64K aligned. */
948 #define APE1_LIMIT_ALIGNMENT 0xFFFF
949
950 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
951                                    struct qcm_process_device *qpd,
952                                    enum cache_policy default_policy,
953                                    enum cache_policy alternate_policy,
954                                    void __user *alternate_aperture_base,
955                                    uint64_t alternate_aperture_size)
956 {
957         uint32_t default_mtype;
958         uint32_t ape1_mtype;
959
960         pr_debug("kfd: In func %s\n", __func__);
961
962         mutex_lock(&dqm->lock);
963
964         if (alternate_aperture_size == 0) {
965                 /* base > limit disables APE1 */
966                 qpd->sh_mem_ape1_base = 1;
967                 qpd->sh_mem_ape1_limit = 0;
968         } else {
969                 /*
970                  * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
971                  *                      SH_MEM_APE1_BASE[31:0], 0x0000 }
972                  * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
973                  *                      SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
974                  * Verify that the base and size parameters can be
975                  * represented in this format and convert them.
976                  * Additionally restrict APE1 to user-mode addresses.
977                  */
978
979                 uint64_t base = (uintptr_t)alternate_aperture_base;
980                 uint64_t limit = base + alternate_aperture_size - 1;
981
982                 if (limit <= base)
983                         goto out;
984
985                 if ((base & APE1_FIXED_BITS_MASK) != 0)
986                         goto out;
987
988                 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
989                         goto out;
990
991                 qpd->sh_mem_ape1_base = base >> 16;
992                 qpd->sh_mem_ape1_limit = limit >> 16;
993         }
994
995         default_mtype = (default_policy == cache_policy_coherent) ?
996                         MTYPE_NONCACHED :
997                         MTYPE_CACHED;
998
999         ape1_mtype = (alternate_policy == cache_policy_coherent) ?
1000                         MTYPE_NONCACHED :
1001                         MTYPE_CACHED;
1002
1003         qpd->sh_mem_config = (qpd->sh_mem_config & PTR32)
1004                         | ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED)
1005                         | DEFAULT_MTYPE(default_mtype)
1006                         | APE1_MTYPE(ape1_mtype);
1007
1008         if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1009                 program_sh_mem_settings(dqm, qpd);
1010
1011         pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1012                 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1013                 qpd->sh_mem_ape1_limit);
1014
1015         mutex_unlock(&dqm->lock);
1016         return true;
1017
1018 out:
1019         mutex_unlock(&dqm->lock);
1020         return false;
1021 }
1022
1023 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1024 {
1025         struct device_queue_manager *dqm;
1026
1027         BUG_ON(!dev);
1028
1029         dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1030         if (!dqm)
1031                 return NULL;
1032
1033         dqm->dev = dev;
1034         switch (sched_policy) {
1035         case KFD_SCHED_POLICY_HWS:
1036         case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1037                 /* initialize dqm for cp scheduling */
1038                 dqm->create_queue = create_queue_cpsch;
1039                 dqm->initialize = initialize_cpsch;
1040                 dqm->start = start_cpsch;
1041                 dqm->stop = stop_cpsch;
1042                 dqm->destroy_queue = destroy_queue_cpsch;
1043                 dqm->update_queue = update_queue;
1044                 dqm->get_mqd_manager = get_mqd_manager_nocpsch;
1045                 dqm->register_process = register_process_nocpsch;
1046                 dqm->unregister_process = unregister_process_nocpsch;
1047                 dqm->uninitialize = uninitialize_nocpsch;
1048                 dqm->create_kernel_queue = create_kernel_queue_cpsch;
1049                 dqm->destroy_kernel_queue = destroy_kernel_queue_cpsch;
1050                 dqm->set_cache_memory_policy = set_cache_memory_policy;
1051                 break;
1052         case KFD_SCHED_POLICY_NO_HWS:
1053                 /* initialize dqm for no cp scheduling */
1054                 dqm->start = start_nocpsch;
1055                 dqm->stop = stop_nocpsch;
1056                 dqm->create_queue = create_queue_nocpsch;
1057                 dqm->destroy_queue = destroy_queue_nocpsch;
1058                 dqm->update_queue = update_queue;
1059                 dqm->get_mqd_manager = get_mqd_manager_nocpsch;
1060                 dqm->register_process = register_process_nocpsch;
1061                 dqm->unregister_process = unregister_process_nocpsch;
1062                 dqm->initialize = initialize_nocpsch;
1063                 dqm->uninitialize = uninitialize_nocpsch;
1064                 dqm->set_cache_memory_policy = set_cache_memory_policy;
1065                 break;
1066         default:
1067                 BUG();
1068                 break;
1069         }
1070
1071         if (dqm->initialize(dqm) != 0) {
1072                 kfree(dqm);
1073                 return NULL;
1074         }
1075
1076         return dqm;
1077 }
1078
1079 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1080 {
1081         BUG_ON(!dqm);
1082
1083         dqm->uninitialize(dqm);
1084         kfree(dqm);
1085 }
1086