firewire: ohci: reorder struct fw_ohci for better cache efficiency
[pandora-kernel.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172
173         bool old_uninorth;
174         bool bus_reset_packet_quirk;
175         bool iso_cycle_timer_quirk;
176
177         /*
178          * Spinlock for accessing fw_ohci data.  Never call out of
179          * this driver with this lock held.
180          */
181         spinlock_t lock;
182
183         struct ar_context ar_request_ctx;
184         struct ar_context ar_response_ctx;
185         struct context at_request_ctx;
186         struct context at_response_ctx;
187
188         u32 it_context_mask;
189         struct iso_context *it_context_list;
190         u64 ir_context_channels;
191         u32 ir_context_mask;
192         struct iso_context *ir_context_list;
193
194         __be32    *config_rom;
195         dma_addr_t config_rom_bus;
196         __be32    *next_config_rom;
197         dma_addr_t next_config_rom_bus;
198         __be32     next_header;
199
200         __le32    *self_id_cpu;
201         dma_addr_t self_id_bus;
202         struct tasklet_struct bus_reset_tasklet;
203
204         u32 self_id_buffer[512];
205 };
206
207 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
208 {
209         return container_of(card, struct fw_ohci, card);
210 }
211
212 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
213 #define IR_CONTEXT_BUFFER_FILL          0x80000000
214 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
215 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
216 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
217 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
218
219 #define CONTEXT_RUN     0x8000
220 #define CONTEXT_WAKE    0x1000
221 #define CONTEXT_DEAD    0x0800
222 #define CONTEXT_ACTIVE  0x0400
223
224 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
225 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
226 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
227
228 #define OHCI1394_REGISTER_SIZE          0x800
229 #define OHCI_LOOP_COUNT                 500
230 #define OHCI1394_PCI_HCI_Control        0x40
231 #define SELF_ID_BUF_SIZE                0x800
232 #define OHCI_TCODE_PHY_PACKET           0x0e
233 #define OHCI_VERSION_1_1                0x010010
234
235 static char ohci_driver_name[] = KBUILD_MODNAME;
236
237 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
238
239 #define OHCI_PARAM_DEBUG_AT_AR          1
240 #define OHCI_PARAM_DEBUG_SELFIDS        2
241 #define OHCI_PARAM_DEBUG_IRQS           4
242 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
243
244 static int param_debug;
245 module_param_named(debug, param_debug, int, 0644);
246 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
247         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
248         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
249         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
250         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
251         ", or a combination, or all = -1)");
252
253 static void log_irqs(u32 evt)
254 {
255         if (likely(!(param_debug &
256                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
257                 return;
258
259         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
260             !(evt & OHCI1394_busReset))
261                 return;
262
263         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
264             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
265             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
266             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
267             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
268             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
269             evt & OHCI1394_isochRx              ? " IR"                 : "",
270             evt & OHCI1394_isochTx              ? " IT"                 : "",
271             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
272             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
273             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
274             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
275             evt & OHCI1394_busReset             ? " busReset"           : "",
276             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
277                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
278                     OHCI1394_respTxComplete | OHCI1394_isochRx |
279                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
280                     OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
281                     OHCI1394_regAccessFail | OHCI1394_busReset)
282                                                 ? " ?"                  : "");
283 }
284
285 static const char *speed[] = {
286         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
287 };
288 static const char *power[] = {
289         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
290         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
291 };
292 static const char port[] = { '.', '-', 'p', 'c', };
293
294 static char _p(u32 *s, int shift)
295 {
296         return port[*s >> shift & 3];
297 }
298
299 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
300 {
301         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
302                 return;
303
304         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
305                   self_id_count, generation, node_id);
306
307         for (; self_id_count--; ++s)
308                 if ((*s & 1 << 23) == 0)
309                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
310                             "%s gc=%d %s %s%s%s\n",
311                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
312                             speed[*s >> 14 & 3], *s >> 16 & 63,
313                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
314                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
315                 else
316                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
317                             *s, *s >> 24 & 63,
318                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
319                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
320 }
321
322 static const char *evts[] = {
323         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
324         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
325         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
326         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
327         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
328         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
329         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
330         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
331         [0x10] = "-reserved-",          [0x11] = "ack_complete",
332         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
333         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
334         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
335         [0x18] = "-reserved-",          [0x19] = "-reserved-",
336         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
337         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
338         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
339         [0x20] = "pending/cancelled",
340 };
341 static const char *tcodes[] = {
342         [0x0] = "QW req",               [0x1] = "BW req",
343         [0x2] = "W resp",               [0x3] = "-reserved-",
344         [0x4] = "QR req",               [0x5] = "BR req",
345         [0x6] = "QR resp",              [0x7] = "BR resp",
346         [0x8] = "cycle start",          [0x9] = "Lk req",
347         [0xa] = "async stream packet",  [0xb] = "Lk resp",
348         [0xc] = "-reserved-",           [0xd] = "-reserved-",
349         [0xe] = "link internal",        [0xf] = "-reserved-",
350 };
351 static const char *phys[] = {
352         [0x0] = "phy config packet",    [0x1] = "link-on packet",
353         [0x2] = "self-id packet",       [0x3] = "-reserved-",
354 };
355
356 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
357 {
358         int tcode = header[0] >> 4 & 0xf;
359         char specific[12];
360
361         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
362                 return;
363
364         if (unlikely(evt >= ARRAY_SIZE(evts)))
365                         evt = 0x1f;
366
367         if (evt == OHCI1394_evt_bus_reset) {
368                 fw_notify("A%c evt_bus_reset, generation %d\n",
369                     dir, (header[2] >> 16) & 0xff);
370                 return;
371         }
372
373         if (header[0] == ~header[1]) {
374                 fw_notify("A%c %s, %s, %08x\n",
375                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
376                 return;
377         }
378
379         switch (tcode) {
380         case 0x0: case 0x6: case 0x8:
381                 snprintf(specific, sizeof(specific), " = %08x",
382                          be32_to_cpu((__force __be32)header[3]));
383                 break;
384         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
385                 snprintf(specific, sizeof(specific), " %x,%x",
386                          header[3] >> 16, header[3] & 0xffff);
387                 break;
388         default:
389                 specific[0] = '\0';
390         }
391
392         switch (tcode) {
393         case 0xe: case 0xa:
394                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
395                 break;
396         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
397                 fw_notify("A%c spd %x tl %02x, "
398                     "%04x -> %04x, %s, "
399                     "%s, %04x%08x%s\n",
400                     dir, speed, header[0] >> 10 & 0x3f,
401                     header[1] >> 16, header[0] >> 16, evts[evt],
402                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
403                 break;
404         default:
405                 fw_notify("A%c spd %x tl %02x, "
406                     "%04x -> %04x, %s, "
407                     "%s%s\n",
408                     dir, speed, header[0] >> 10 & 0x3f,
409                     header[1] >> 16, header[0] >> 16, evts[evt],
410                     tcodes[tcode], specific);
411         }
412 }
413
414 #else
415
416 #define log_irqs(evt)
417 #define log_selfids(node_id, generation, self_id_count, sid)
418 #define log_ar_at_event(dir, speed, header, evt)
419
420 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
421
422 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
423 {
424         writel(data, ohci->registers + offset);
425 }
426
427 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
428 {
429         return readl(ohci->registers + offset);
430 }
431
432 static inline void flush_writes(const struct fw_ohci *ohci)
433 {
434         /* Do a dummy read to flush writes. */
435         reg_read(ohci, OHCI1394_Version);
436 }
437
438 static int ohci_update_phy_reg(struct fw_card *card, int addr,
439                                int clear_bits, int set_bits)
440 {
441         struct fw_ohci *ohci = fw_ohci(card);
442         u32 val, old;
443
444         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
445         flush_writes(ohci);
446         msleep(2);
447         val = reg_read(ohci, OHCI1394_PhyControl);
448         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
449                 fw_error("failed to set phy reg bits.\n");
450                 return -EBUSY;
451         }
452
453         old = OHCI1394_PhyControl_ReadData(val);
454         old = (old & ~clear_bits) | set_bits;
455         reg_write(ohci, OHCI1394_PhyControl,
456                   OHCI1394_PhyControl_Write(addr, old));
457
458         return 0;
459 }
460
461 static int ar_context_add_page(struct ar_context *ctx)
462 {
463         struct device *dev = ctx->ohci->card.device;
464         struct ar_buffer *ab;
465         dma_addr_t uninitialized_var(ab_bus);
466         size_t offset;
467
468         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
469         if (ab == NULL)
470                 return -ENOMEM;
471
472         ab->next = NULL;
473         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
474         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
475                                                     DESCRIPTOR_STATUS |
476                                                     DESCRIPTOR_BRANCH_ALWAYS);
477         offset = offsetof(struct ar_buffer, data);
478         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
479         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
480         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
481         ab->descriptor.branch_address = 0;
482
483         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
484         ctx->last_buffer->next = ab;
485         ctx->last_buffer = ab;
486
487         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
488         flush_writes(ctx->ohci);
489
490         return 0;
491 }
492
493 static void ar_context_release(struct ar_context *ctx)
494 {
495         struct ar_buffer *ab, *ab_next;
496         size_t offset;
497         dma_addr_t ab_bus;
498
499         for (ab = ctx->current_buffer; ab; ab = ab_next) {
500                 ab_next = ab->next;
501                 offset = offsetof(struct ar_buffer, data);
502                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
503                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
504                                   ab, ab_bus);
505         }
506 }
507
508 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
509 #define cond_le32_to_cpu(v) \
510         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
511 #else
512 #define cond_le32_to_cpu(v) le32_to_cpu(v)
513 #endif
514
515 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
516 {
517         struct fw_ohci *ohci = ctx->ohci;
518         struct fw_packet p;
519         u32 status, length, tcode;
520         int evt;
521
522         p.header[0] = cond_le32_to_cpu(buffer[0]);
523         p.header[1] = cond_le32_to_cpu(buffer[1]);
524         p.header[2] = cond_le32_to_cpu(buffer[2]);
525
526         tcode = (p.header[0] >> 4) & 0x0f;
527         switch (tcode) {
528         case TCODE_WRITE_QUADLET_REQUEST:
529         case TCODE_READ_QUADLET_RESPONSE:
530                 p.header[3] = (__force __u32) buffer[3];
531                 p.header_length = 16;
532                 p.payload_length = 0;
533                 break;
534
535         case TCODE_READ_BLOCK_REQUEST :
536                 p.header[3] = cond_le32_to_cpu(buffer[3]);
537                 p.header_length = 16;
538                 p.payload_length = 0;
539                 break;
540
541         case TCODE_WRITE_BLOCK_REQUEST:
542         case TCODE_READ_BLOCK_RESPONSE:
543         case TCODE_LOCK_REQUEST:
544         case TCODE_LOCK_RESPONSE:
545                 p.header[3] = cond_le32_to_cpu(buffer[3]);
546                 p.header_length = 16;
547                 p.payload_length = p.header[3] >> 16;
548                 break;
549
550         case TCODE_WRITE_RESPONSE:
551         case TCODE_READ_QUADLET_REQUEST:
552         case OHCI_TCODE_PHY_PACKET:
553                 p.header_length = 12;
554                 p.payload_length = 0;
555                 break;
556
557         default:
558                 /* FIXME: Stop context, discard everything, and restart? */
559                 p.header_length = 0;
560                 p.payload_length = 0;
561         }
562
563         p.payload = (void *) buffer + p.header_length;
564
565         /* FIXME: What to do about evt_* errors? */
566         length = (p.header_length + p.payload_length + 3) / 4;
567         status = cond_le32_to_cpu(buffer[length]);
568         evt    = (status >> 16) & 0x1f;
569
570         p.ack        = evt - 16;
571         p.speed      = (status >> 21) & 0x7;
572         p.timestamp  = status & 0xffff;
573         p.generation = ohci->request_generation;
574
575         log_ar_at_event('R', p.speed, p.header, evt);
576
577         /*
578          * The OHCI bus reset handler synthesizes a phy packet with
579          * the new generation number when a bus reset happens (see
580          * section 8.4.2.3).  This helps us determine when a request
581          * was received and make sure we send the response in the same
582          * generation.  We only need this for requests; for responses
583          * we use the unique tlabel for finding the matching
584          * request.
585          *
586          * Alas some chips sometimes emit bus reset packets with a
587          * wrong generation.  We set the correct generation for these
588          * at a slightly incorrect time (in bus_reset_tasklet).
589          */
590         if (evt == OHCI1394_evt_bus_reset) {
591                 if (!ohci->bus_reset_packet_quirk)
592                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
593         } else if (ctx == &ohci->ar_request_ctx) {
594                 fw_core_handle_request(&ohci->card, &p);
595         } else {
596                 fw_core_handle_response(&ohci->card, &p);
597         }
598
599         return buffer + length + 1;
600 }
601
602 static void ar_context_tasklet(unsigned long data)
603 {
604         struct ar_context *ctx = (struct ar_context *)data;
605         struct fw_ohci *ohci = ctx->ohci;
606         struct ar_buffer *ab;
607         struct descriptor *d;
608         void *buffer, *end;
609
610         ab = ctx->current_buffer;
611         d = &ab->descriptor;
612
613         if (d->res_count == 0) {
614                 size_t size, rest, offset;
615                 dma_addr_t start_bus;
616                 void *start;
617
618                 /*
619                  * This descriptor is finished and we may have a
620                  * packet split across this and the next buffer. We
621                  * reuse the page for reassembling the split packet.
622                  */
623
624                 offset = offsetof(struct ar_buffer, data);
625                 start = buffer = ab;
626                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
627
628                 ab = ab->next;
629                 d = &ab->descriptor;
630                 size = buffer + PAGE_SIZE - ctx->pointer;
631                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
632                 memmove(buffer, ctx->pointer, size);
633                 memcpy(buffer + size, ab->data, rest);
634                 ctx->current_buffer = ab;
635                 ctx->pointer = (void *) ab->data + rest;
636                 end = buffer + size + rest;
637
638                 while (buffer < end)
639                         buffer = handle_ar_packet(ctx, buffer);
640
641                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
642                                   start, start_bus);
643                 ar_context_add_page(ctx);
644         } else {
645                 buffer = ctx->pointer;
646                 ctx->pointer = end =
647                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
648
649                 while (buffer < end)
650                         buffer = handle_ar_packet(ctx, buffer);
651         }
652 }
653
654 static int ar_context_init(struct ar_context *ctx,
655                            struct fw_ohci *ohci, u32 regs)
656 {
657         struct ar_buffer ab;
658
659         ctx->regs        = regs;
660         ctx->ohci        = ohci;
661         ctx->last_buffer = &ab;
662         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
663
664         ar_context_add_page(ctx);
665         ar_context_add_page(ctx);
666         ctx->current_buffer = ab.next;
667         ctx->pointer = ctx->current_buffer->data;
668
669         return 0;
670 }
671
672 static void ar_context_run(struct ar_context *ctx)
673 {
674         struct ar_buffer *ab = ctx->current_buffer;
675         dma_addr_t ab_bus;
676         size_t offset;
677
678         offset = offsetof(struct ar_buffer, data);
679         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
680
681         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
682         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
683         flush_writes(ctx->ohci);
684 }
685
686 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
687 {
688         int b, key;
689
690         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
691         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
692
693         /* figure out which descriptor the branch address goes in */
694         if (z == 2 && (b == 3 || key == 2))
695                 return d;
696         else
697                 return d + z - 1;
698 }
699
700 static void context_tasklet(unsigned long data)
701 {
702         struct context *ctx = (struct context *) data;
703         struct descriptor *d, *last;
704         u32 address;
705         int z;
706         struct descriptor_buffer *desc;
707
708         desc = list_entry(ctx->buffer_list.next,
709                         struct descriptor_buffer, list);
710         last = ctx->last;
711         while (last->branch_address != 0) {
712                 struct descriptor_buffer *old_desc = desc;
713                 address = le32_to_cpu(last->branch_address);
714                 z = address & 0xf;
715                 address &= ~0xf;
716
717                 /* If the branch address points to a buffer outside of the
718                  * current buffer, advance to the next buffer. */
719                 if (address < desc->buffer_bus ||
720                                 address >= desc->buffer_bus + desc->used)
721                         desc = list_entry(desc->list.next,
722                                         struct descriptor_buffer, list);
723                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
724                 last = find_branch_descriptor(d, z);
725
726                 if (!ctx->callback(ctx, d, last))
727                         break;
728
729                 if (old_desc != desc) {
730                         /* If we've advanced to the next buffer, move the
731                          * previous buffer to the free list. */
732                         unsigned long flags;
733                         old_desc->used = 0;
734                         spin_lock_irqsave(&ctx->ohci->lock, flags);
735                         list_move_tail(&old_desc->list, &ctx->buffer_list);
736                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
737                 }
738                 ctx->last = last;
739         }
740 }
741
742 /*
743  * Allocate a new buffer and add it to the list of free buffers for this
744  * context.  Must be called with ohci->lock held.
745  */
746 static int context_add_buffer(struct context *ctx)
747 {
748         struct descriptor_buffer *desc;
749         dma_addr_t uninitialized_var(bus_addr);
750         int offset;
751
752         /*
753          * 16MB of descriptors should be far more than enough for any DMA
754          * program.  This will catch run-away userspace or DoS attacks.
755          */
756         if (ctx->total_allocation >= 16*1024*1024)
757                 return -ENOMEM;
758
759         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
760                         &bus_addr, GFP_ATOMIC);
761         if (!desc)
762                 return -ENOMEM;
763
764         offset = (void *)&desc->buffer - (void *)desc;
765         desc->buffer_size = PAGE_SIZE - offset;
766         desc->buffer_bus = bus_addr + offset;
767         desc->used = 0;
768
769         list_add_tail(&desc->list, &ctx->buffer_list);
770         ctx->total_allocation += PAGE_SIZE;
771
772         return 0;
773 }
774
775 static int context_init(struct context *ctx, struct fw_ohci *ohci,
776                         u32 regs, descriptor_callback_t callback)
777 {
778         ctx->ohci = ohci;
779         ctx->regs = regs;
780         ctx->total_allocation = 0;
781
782         INIT_LIST_HEAD(&ctx->buffer_list);
783         if (context_add_buffer(ctx) < 0)
784                 return -ENOMEM;
785
786         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
787                         struct descriptor_buffer, list);
788
789         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
790         ctx->callback = callback;
791
792         /*
793          * We put a dummy descriptor in the buffer that has a NULL
794          * branch address and looks like it's been sent.  That way we
795          * have a descriptor to append DMA programs to.
796          */
797         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
798         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
799         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
800         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
801         ctx->last = ctx->buffer_tail->buffer;
802         ctx->prev = ctx->buffer_tail->buffer;
803
804         return 0;
805 }
806
807 static void context_release(struct context *ctx)
808 {
809         struct fw_card *card = &ctx->ohci->card;
810         struct descriptor_buffer *desc, *tmp;
811
812         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
813                 dma_free_coherent(card->device, PAGE_SIZE, desc,
814                         desc->buffer_bus -
815                         ((void *)&desc->buffer - (void *)desc));
816 }
817
818 /* Must be called with ohci->lock held */
819 static struct descriptor *context_get_descriptors(struct context *ctx,
820                                                   int z, dma_addr_t *d_bus)
821 {
822         struct descriptor *d = NULL;
823         struct descriptor_buffer *desc = ctx->buffer_tail;
824
825         if (z * sizeof(*d) > desc->buffer_size)
826                 return NULL;
827
828         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
829                 /* No room for the descriptor in this buffer, so advance to the
830                  * next one. */
831
832                 if (desc->list.next == &ctx->buffer_list) {
833                         /* If there is no free buffer next in the list,
834                          * allocate one. */
835                         if (context_add_buffer(ctx) < 0)
836                                 return NULL;
837                 }
838                 desc = list_entry(desc->list.next,
839                                 struct descriptor_buffer, list);
840                 ctx->buffer_tail = desc;
841         }
842
843         d = desc->buffer + desc->used / sizeof(*d);
844         memset(d, 0, z * sizeof(*d));
845         *d_bus = desc->buffer_bus + desc->used;
846
847         return d;
848 }
849
850 static void context_run(struct context *ctx, u32 extra)
851 {
852         struct fw_ohci *ohci = ctx->ohci;
853
854         reg_write(ohci, COMMAND_PTR(ctx->regs),
855                   le32_to_cpu(ctx->last->branch_address));
856         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
857         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
858         flush_writes(ohci);
859 }
860
861 static void context_append(struct context *ctx,
862                            struct descriptor *d, int z, int extra)
863 {
864         dma_addr_t d_bus;
865         struct descriptor_buffer *desc = ctx->buffer_tail;
866
867         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
868
869         desc->used += (z + extra) * sizeof(*d);
870         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
871         ctx->prev = find_branch_descriptor(d, z);
872
873         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
874         flush_writes(ctx->ohci);
875 }
876
877 static void context_stop(struct context *ctx)
878 {
879         u32 reg;
880         int i;
881
882         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
883         flush_writes(ctx->ohci);
884
885         for (i = 0; i < 10; i++) {
886                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
887                 if ((reg & CONTEXT_ACTIVE) == 0)
888                         return;
889
890                 mdelay(1);
891         }
892         fw_error("Error: DMA context still active (0x%08x)\n", reg);
893 }
894
895 struct driver_data {
896         struct fw_packet *packet;
897 };
898
899 /*
900  * This function apppends a packet to the DMA queue for transmission.
901  * Must always be called with the ochi->lock held to ensure proper
902  * generation handling and locking around packet queue manipulation.
903  */
904 static int at_context_queue_packet(struct context *ctx,
905                                    struct fw_packet *packet)
906 {
907         struct fw_ohci *ohci = ctx->ohci;
908         dma_addr_t d_bus, uninitialized_var(payload_bus);
909         struct driver_data *driver_data;
910         struct descriptor *d, *last;
911         __le32 *header;
912         int z, tcode;
913         u32 reg;
914
915         d = context_get_descriptors(ctx, 4, &d_bus);
916         if (d == NULL) {
917                 packet->ack = RCODE_SEND_ERROR;
918                 return -1;
919         }
920
921         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
922         d[0].res_count = cpu_to_le16(packet->timestamp);
923
924         /*
925          * The DMA format for asyncronous link packets is different
926          * from the IEEE1394 layout, so shift the fields around
927          * accordingly.  If header_length is 8, it's a PHY packet, to
928          * which we need to prepend an extra quadlet.
929          */
930
931         header = (__le32 *) &d[1];
932         switch (packet->header_length) {
933         case 16:
934         case 12:
935                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
936                                         (packet->speed << 16));
937                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
938                                         (packet->header[0] & 0xffff0000));
939                 header[2] = cpu_to_le32(packet->header[2]);
940
941                 tcode = (packet->header[0] >> 4) & 0x0f;
942                 if (TCODE_IS_BLOCK_PACKET(tcode))
943                         header[3] = cpu_to_le32(packet->header[3]);
944                 else
945                         header[3] = (__force __le32) packet->header[3];
946
947                 d[0].req_count = cpu_to_le16(packet->header_length);
948                 break;
949
950         case 8:
951                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
952                                         (packet->speed << 16));
953                 header[1] = cpu_to_le32(packet->header[0]);
954                 header[2] = cpu_to_le32(packet->header[1]);
955                 d[0].req_count = cpu_to_le16(12);
956                 break;
957
958         case 4:
959                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
960                                         (packet->speed << 16));
961                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
962                 d[0].req_count = cpu_to_le16(8);
963                 break;
964
965         default:
966                 /* BUG(); */
967                 packet->ack = RCODE_SEND_ERROR;
968                 return -1;
969         }
970
971         driver_data = (struct driver_data *) &d[3];
972         driver_data->packet = packet;
973         packet->driver_data = driver_data;
974
975         if (packet->payload_length > 0) {
976                 payload_bus =
977                         dma_map_single(ohci->card.device, packet->payload,
978                                        packet->payload_length, DMA_TO_DEVICE);
979                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
980                         packet->ack = RCODE_SEND_ERROR;
981                         return -1;
982                 }
983                 packet->payload_bus     = payload_bus;
984                 packet->payload_mapped  = true;
985
986                 d[2].req_count    = cpu_to_le16(packet->payload_length);
987                 d[2].data_address = cpu_to_le32(payload_bus);
988                 last = &d[2];
989                 z = 3;
990         } else {
991                 last = &d[0];
992                 z = 2;
993         }
994
995         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
996                                      DESCRIPTOR_IRQ_ALWAYS |
997                                      DESCRIPTOR_BRANCH_ALWAYS);
998
999         /*
1000          * If the controller and packet generations don't match, we need to
1001          * bail out and try again.  If IntEvent.busReset is set, the AT context
1002          * is halted, so appending to the context and trying to run it is
1003          * futile.  Most controllers do the right thing and just flush the AT
1004          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1005          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1006          * up stalling out.  So we just bail out in software and try again
1007          * later, and everyone is happy.
1008          * FIXME: Document how the locking works.
1009          */
1010         if (ohci->generation != packet->generation ||
1011             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1012                 if (packet->payload_mapped)
1013                         dma_unmap_single(ohci->card.device, payload_bus,
1014                                          packet->payload_length, DMA_TO_DEVICE);
1015                 packet->ack = RCODE_GENERATION;
1016                 return -1;
1017         }
1018
1019         context_append(ctx, d, z, 4 - z);
1020
1021         /* If the context isn't already running, start it up. */
1022         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1023         if ((reg & CONTEXT_RUN) == 0)
1024                 context_run(ctx, 0);
1025
1026         return 0;
1027 }
1028
1029 static int handle_at_packet(struct context *context,
1030                             struct descriptor *d,
1031                             struct descriptor *last)
1032 {
1033         struct driver_data *driver_data;
1034         struct fw_packet *packet;
1035         struct fw_ohci *ohci = context->ohci;
1036         int evt;
1037
1038         if (last->transfer_status == 0)
1039                 /* This descriptor isn't done yet, stop iteration. */
1040                 return 0;
1041
1042         driver_data = (struct driver_data *) &d[3];
1043         packet = driver_data->packet;
1044         if (packet == NULL)
1045                 /* This packet was cancelled, just continue. */
1046                 return 1;
1047
1048         if (packet->payload_mapped)
1049                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1050                                  packet->payload_length, DMA_TO_DEVICE);
1051
1052         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1053         packet->timestamp = le16_to_cpu(last->res_count);
1054
1055         log_ar_at_event('T', packet->speed, packet->header, evt);
1056
1057         switch (evt) {
1058         case OHCI1394_evt_timeout:
1059                 /* Async response transmit timed out. */
1060                 packet->ack = RCODE_CANCELLED;
1061                 break;
1062
1063         case OHCI1394_evt_flushed:
1064                 /*
1065                  * The packet was flushed should give same error as
1066                  * when we try to use a stale generation count.
1067                  */
1068                 packet->ack = RCODE_GENERATION;
1069                 break;
1070
1071         case OHCI1394_evt_missing_ack:
1072                 /*
1073                  * Using a valid (current) generation count, but the
1074                  * node is not on the bus or not sending acks.
1075                  */
1076                 packet->ack = RCODE_NO_ACK;
1077                 break;
1078
1079         case ACK_COMPLETE + 0x10:
1080         case ACK_PENDING + 0x10:
1081         case ACK_BUSY_X + 0x10:
1082         case ACK_BUSY_A + 0x10:
1083         case ACK_BUSY_B + 0x10:
1084         case ACK_DATA_ERROR + 0x10:
1085         case ACK_TYPE_ERROR + 0x10:
1086                 packet->ack = evt - 0x10;
1087                 break;
1088
1089         default:
1090                 packet->ack = RCODE_SEND_ERROR;
1091                 break;
1092         }
1093
1094         packet->callback(packet, &ohci->card, packet->ack);
1095
1096         return 1;
1097 }
1098
1099 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1100 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1101 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1102 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1103 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1104
1105 static void handle_local_rom(struct fw_ohci *ohci,
1106                              struct fw_packet *packet, u32 csr)
1107 {
1108         struct fw_packet response;
1109         int tcode, length, i;
1110
1111         tcode = HEADER_GET_TCODE(packet->header[0]);
1112         if (TCODE_IS_BLOCK_PACKET(tcode))
1113                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1114         else
1115                 length = 4;
1116
1117         i = csr - CSR_CONFIG_ROM;
1118         if (i + length > CONFIG_ROM_SIZE) {
1119                 fw_fill_response(&response, packet->header,
1120                                  RCODE_ADDRESS_ERROR, NULL, 0);
1121         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1122                 fw_fill_response(&response, packet->header,
1123                                  RCODE_TYPE_ERROR, NULL, 0);
1124         } else {
1125                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1126                                  (void *) ohci->config_rom + i, length);
1127         }
1128
1129         fw_core_handle_response(&ohci->card, &response);
1130 }
1131
1132 static void handle_local_lock(struct fw_ohci *ohci,
1133                               struct fw_packet *packet, u32 csr)
1134 {
1135         struct fw_packet response;
1136         int tcode, length, ext_tcode, sel;
1137         __be32 *payload, lock_old;
1138         u32 lock_arg, lock_data;
1139
1140         tcode = HEADER_GET_TCODE(packet->header[0]);
1141         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1142         payload = packet->payload;
1143         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1144
1145         if (tcode == TCODE_LOCK_REQUEST &&
1146             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1147                 lock_arg = be32_to_cpu(payload[0]);
1148                 lock_data = be32_to_cpu(payload[1]);
1149         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1150                 lock_arg = 0;
1151                 lock_data = 0;
1152         } else {
1153                 fw_fill_response(&response, packet->header,
1154                                  RCODE_TYPE_ERROR, NULL, 0);
1155                 goto out;
1156         }
1157
1158         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1159         reg_write(ohci, OHCI1394_CSRData, lock_data);
1160         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1161         reg_write(ohci, OHCI1394_CSRControl, sel);
1162
1163         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1164                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1165         else
1166                 fw_notify("swap not done yet\n");
1167
1168         fw_fill_response(&response, packet->header,
1169                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1170  out:
1171         fw_core_handle_response(&ohci->card, &response);
1172 }
1173
1174 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1175 {
1176         u64 offset;
1177         u32 csr;
1178
1179         if (ctx == &ctx->ohci->at_request_ctx) {
1180                 packet->ack = ACK_PENDING;
1181                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1182         }
1183
1184         offset =
1185                 ((unsigned long long)
1186                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1187                 packet->header[2];
1188         csr = offset - CSR_REGISTER_BASE;
1189
1190         /* Handle config rom reads. */
1191         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1192                 handle_local_rom(ctx->ohci, packet, csr);
1193         else switch (csr) {
1194         case CSR_BUS_MANAGER_ID:
1195         case CSR_BANDWIDTH_AVAILABLE:
1196         case CSR_CHANNELS_AVAILABLE_HI:
1197         case CSR_CHANNELS_AVAILABLE_LO:
1198                 handle_local_lock(ctx->ohci, packet, csr);
1199                 break;
1200         default:
1201                 if (ctx == &ctx->ohci->at_request_ctx)
1202                         fw_core_handle_request(&ctx->ohci->card, packet);
1203                 else
1204                         fw_core_handle_response(&ctx->ohci->card, packet);
1205                 break;
1206         }
1207
1208         if (ctx == &ctx->ohci->at_response_ctx) {
1209                 packet->ack = ACK_COMPLETE;
1210                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1211         }
1212 }
1213
1214 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1215 {
1216         unsigned long flags;
1217         int ret;
1218
1219         spin_lock_irqsave(&ctx->ohci->lock, flags);
1220
1221         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1222             ctx->ohci->generation == packet->generation) {
1223                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1224                 handle_local_request(ctx, packet);
1225                 return;
1226         }
1227
1228         ret = at_context_queue_packet(ctx, packet);
1229         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1230
1231         if (ret < 0)
1232                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1233
1234 }
1235
1236 static void bus_reset_tasklet(unsigned long data)
1237 {
1238         struct fw_ohci *ohci = (struct fw_ohci *)data;
1239         int self_id_count, i, j, reg;
1240         int generation, new_generation;
1241         unsigned long flags;
1242         void *free_rom = NULL;
1243         dma_addr_t free_rom_bus = 0;
1244
1245         reg = reg_read(ohci, OHCI1394_NodeID);
1246         if (!(reg & OHCI1394_NodeID_idValid)) {
1247                 fw_notify("node ID not valid, new bus reset in progress\n");
1248                 return;
1249         }
1250         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1251                 fw_notify("malconfigured bus\n");
1252                 return;
1253         }
1254         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1255                                OHCI1394_NodeID_nodeNumber);
1256
1257         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1258         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1259                 fw_notify("inconsistent self IDs\n");
1260                 return;
1261         }
1262         /*
1263          * The count in the SelfIDCount register is the number of
1264          * bytes in the self ID receive buffer.  Since we also receive
1265          * the inverted quadlets and a header quadlet, we shift one
1266          * bit extra to get the actual number of self IDs.
1267          */
1268         self_id_count = (reg >> 3) & 0xff;
1269         if (self_id_count == 0 || self_id_count > 252) {
1270                 fw_notify("inconsistent self IDs\n");
1271                 return;
1272         }
1273         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1274         rmb();
1275
1276         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1277                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1278                         fw_notify("inconsistent self IDs\n");
1279                         return;
1280                 }
1281                 ohci->self_id_buffer[j] =
1282                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1283         }
1284         rmb();
1285
1286         /*
1287          * Check the consistency of the self IDs we just read.  The
1288          * problem we face is that a new bus reset can start while we
1289          * read out the self IDs from the DMA buffer. If this happens,
1290          * the DMA buffer will be overwritten with new self IDs and we
1291          * will read out inconsistent data.  The OHCI specification
1292          * (section 11.2) recommends a technique similar to
1293          * linux/seqlock.h, where we remember the generation of the
1294          * self IDs in the buffer before reading them out and compare
1295          * it to the current generation after reading them out.  If
1296          * the two generations match we know we have a consistent set
1297          * of self IDs.
1298          */
1299
1300         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1301         if (new_generation != generation) {
1302                 fw_notify("recursive bus reset detected, "
1303                           "discarding self ids\n");
1304                 return;
1305         }
1306
1307         /* FIXME: Document how the locking works. */
1308         spin_lock_irqsave(&ohci->lock, flags);
1309
1310         ohci->generation = generation;
1311         context_stop(&ohci->at_request_ctx);
1312         context_stop(&ohci->at_response_ctx);
1313         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1314
1315         if (ohci->bus_reset_packet_quirk)
1316                 ohci->request_generation = generation;
1317
1318         /*
1319          * This next bit is unrelated to the AT context stuff but we
1320          * have to do it under the spinlock also.  If a new config rom
1321          * was set up before this reset, the old one is now no longer
1322          * in use and we can free it. Update the config rom pointers
1323          * to point to the current config rom and clear the
1324          * next_config_rom pointer so a new udpate can take place.
1325          */
1326
1327         if (ohci->next_config_rom != NULL) {
1328                 if (ohci->next_config_rom != ohci->config_rom) {
1329                         free_rom      = ohci->config_rom;
1330                         free_rom_bus  = ohci->config_rom_bus;
1331                 }
1332                 ohci->config_rom      = ohci->next_config_rom;
1333                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1334                 ohci->next_config_rom = NULL;
1335
1336                 /*
1337                  * Restore config_rom image and manually update
1338                  * config_rom registers.  Writing the header quadlet
1339                  * will indicate that the config rom is ready, so we
1340                  * do that last.
1341                  */
1342                 reg_write(ohci, OHCI1394_BusOptions,
1343                           be32_to_cpu(ohci->config_rom[2]));
1344                 ohci->config_rom[0] = ohci->next_header;
1345                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1346                           be32_to_cpu(ohci->next_header));
1347         }
1348
1349 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1350         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1351         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1352 #endif
1353
1354         spin_unlock_irqrestore(&ohci->lock, flags);
1355
1356         if (free_rom)
1357                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1358                                   free_rom, free_rom_bus);
1359
1360         log_selfids(ohci->node_id, generation,
1361                     self_id_count, ohci->self_id_buffer);
1362
1363         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1364                                  self_id_count, ohci->self_id_buffer);
1365 }
1366
1367 static irqreturn_t irq_handler(int irq, void *data)
1368 {
1369         struct fw_ohci *ohci = data;
1370         u32 event, iso_event;
1371         int i;
1372
1373         event = reg_read(ohci, OHCI1394_IntEventClear);
1374
1375         if (!event || !~event)
1376                 return IRQ_NONE;
1377
1378         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1379         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1380         log_irqs(event);
1381
1382         if (event & OHCI1394_selfIDComplete)
1383                 tasklet_schedule(&ohci->bus_reset_tasklet);
1384
1385         if (event & OHCI1394_RQPkt)
1386                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1387
1388         if (event & OHCI1394_RSPkt)
1389                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1390
1391         if (event & OHCI1394_reqTxComplete)
1392                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1393
1394         if (event & OHCI1394_respTxComplete)
1395                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1396
1397         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1398         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1399
1400         while (iso_event) {
1401                 i = ffs(iso_event) - 1;
1402                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1403                 iso_event &= ~(1 << i);
1404         }
1405
1406         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1407         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1408
1409         while (iso_event) {
1410                 i = ffs(iso_event) - 1;
1411                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1412                 iso_event &= ~(1 << i);
1413         }
1414
1415         if (unlikely(event & OHCI1394_regAccessFail))
1416                 fw_error("Register access failure - "
1417                          "please notify linux1394-devel@lists.sf.net\n");
1418
1419         if (unlikely(event & OHCI1394_postedWriteErr))
1420                 fw_error("PCI posted write error\n");
1421
1422         if (unlikely(event & OHCI1394_cycleTooLong)) {
1423                 if (printk_ratelimit())
1424                         fw_notify("isochronous cycle too long\n");
1425                 reg_write(ohci, OHCI1394_LinkControlSet,
1426                           OHCI1394_LinkControl_cycleMaster);
1427         }
1428
1429         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1430                 /*
1431                  * We need to clear this event bit in order to make
1432                  * cycleMatch isochronous I/O work.  In theory we should
1433                  * stop active cycleMatch iso contexts now and restart
1434                  * them at least two cycles later.  (FIXME?)
1435                  */
1436                 if (printk_ratelimit())
1437                         fw_notify("isochronous cycle inconsistent\n");
1438         }
1439
1440         return IRQ_HANDLED;
1441 }
1442
1443 static int software_reset(struct fw_ohci *ohci)
1444 {
1445         int i;
1446
1447         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1448
1449         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1450                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1451                      OHCI1394_HCControl_softReset) == 0)
1452                         return 0;
1453                 msleep(1);
1454         }
1455
1456         return -EBUSY;
1457 }
1458
1459 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1460 {
1461         size_t size = length * 4;
1462
1463         memcpy(dest, src, size);
1464         if (size < CONFIG_ROM_SIZE)
1465                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1466 }
1467
1468 static int ohci_enable(struct fw_card *card,
1469                        const __be32 *config_rom, size_t length)
1470 {
1471         struct fw_ohci *ohci = fw_ohci(card);
1472         struct pci_dev *dev = to_pci_dev(card->device);
1473         u32 lps;
1474         int i;
1475
1476         if (software_reset(ohci)) {
1477                 fw_error("Failed to reset ohci card.\n");
1478                 return -EBUSY;
1479         }
1480
1481         /*
1482          * Now enable LPS, which we need in order to start accessing
1483          * most of the registers.  In fact, on some cards (ALI M5251),
1484          * accessing registers in the SClk domain without LPS enabled
1485          * will lock up the machine.  Wait 50msec to make sure we have
1486          * full link enabled.  However, with some cards (well, at least
1487          * a JMicron PCIe card), we have to try again sometimes.
1488          */
1489         reg_write(ohci, OHCI1394_HCControlSet,
1490                   OHCI1394_HCControl_LPS |
1491                   OHCI1394_HCControl_postedWriteEnable);
1492         flush_writes(ohci);
1493
1494         for (lps = 0, i = 0; !lps && i < 3; i++) {
1495                 msleep(50);
1496                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1497                       OHCI1394_HCControl_LPS;
1498         }
1499
1500         if (!lps) {
1501                 fw_error("Failed to set Link Power Status\n");
1502                 return -EIO;
1503         }
1504
1505         reg_write(ohci, OHCI1394_HCControlClear,
1506                   OHCI1394_HCControl_noByteSwapData);
1507
1508         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1509         reg_write(ohci, OHCI1394_LinkControlClear,
1510                   OHCI1394_LinkControl_rcvPhyPkt);
1511         reg_write(ohci, OHCI1394_LinkControlSet,
1512                   OHCI1394_LinkControl_rcvSelfID |
1513                   OHCI1394_LinkControl_cycleTimerEnable |
1514                   OHCI1394_LinkControl_cycleMaster);
1515
1516         reg_write(ohci, OHCI1394_ATRetries,
1517                   OHCI1394_MAX_AT_REQ_RETRIES |
1518                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1519                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1520
1521         ar_context_run(&ohci->ar_request_ctx);
1522         ar_context_run(&ohci->ar_response_ctx);
1523
1524         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1525         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1526         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1527         reg_write(ohci, OHCI1394_IntMaskSet,
1528                   OHCI1394_selfIDComplete |
1529                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1530                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1531                   OHCI1394_isochRx | OHCI1394_isochTx |
1532                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1533                   OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1534                   OHCI1394_masterIntEnable);
1535         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1536                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1537
1538         /* Activate link_on bit and contender bit in our self ID packets.*/
1539         if (ohci_update_phy_reg(card, 4, 0,
1540                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1541                 return -EIO;
1542
1543         /*
1544          * When the link is not yet enabled, the atomic config rom
1545          * update mechanism described below in ohci_set_config_rom()
1546          * is not active.  We have to update ConfigRomHeader and
1547          * BusOptions manually, and the write to ConfigROMmap takes
1548          * effect immediately.  We tie this to the enabling of the
1549          * link, so we have a valid config rom before enabling - the
1550          * OHCI requires that ConfigROMhdr and BusOptions have valid
1551          * values before enabling.
1552          *
1553          * However, when the ConfigROMmap is written, some controllers
1554          * always read back quadlets 0 and 2 from the config rom to
1555          * the ConfigRomHeader and BusOptions registers on bus reset.
1556          * They shouldn't do that in this initial case where the link
1557          * isn't enabled.  This means we have to use the same
1558          * workaround here, setting the bus header to 0 and then write
1559          * the right values in the bus reset tasklet.
1560          */
1561
1562         if (config_rom) {
1563                 ohci->next_config_rom =
1564                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1565                                            &ohci->next_config_rom_bus,
1566                                            GFP_KERNEL);
1567                 if (ohci->next_config_rom == NULL)
1568                         return -ENOMEM;
1569
1570                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1571         } else {
1572                 /*
1573                  * In the suspend case, config_rom is NULL, which
1574                  * means that we just reuse the old config rom.
1575                  */
1576                 ohci->next_config_rom = ohci->config_rom;
1577                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1578         }
1579
1580         ohci->next_header = ohci->next_config_rom[0];
1581         ohci->next_config_rom[0] = 0;
1582         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1583         reg_write(ohci, OHCI1394_BusOptions,
1584                   be32_to_cpu(ohci->next_config_rom[2]));
1585         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1586
1587         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1588
1589         if (request_irq(dev->irq, irq_handler,
1590                         IRQF_SHARED, ohci_driver_name, ohci)) {
1591                 fw_error("Failed to allocate shared interrupt %d.\n",
1592                          dev->irq);
1593                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1594                                   ohci->config_rom, ohci->config_rom_bus);
1595                 return -EIO;
1596         }
1597
1598         reg_write(ohci, OHCI1394_HCControlSet,
1599                   OHCI1394_HCControl_linkEnable |
1600                   OHCI1394_HCControl_BIBimageValid);
1601         flush_writes(ohci);
1602
1603         /*
1604          * We are ready to go, initiate bus reset to finish the
1605          * initialization.
1606          */
1607
1608         fw_core_initiate_bus_reset(&ohci->card, 1);
1609
1610         return 0;
1611 }
1612
1613 static int ohci_set_config_rom(struct fw_card *card,
1614                                const __be32 *config_rom, size_t length)
1615 {
1616         struct fw_ohci *ohci;
1617         unsigned long flags;
1618         int ret = -EBUSY;
1619         __be32 *next_config_rom;
1620         dma_addr_t uninitialized_var(next_config_rom_bus);
1621
1622         ohci = fw_ohci(card);
1623
1624         /*
1625          * When the OHCI controller is enabled, the config rom update
1626          * mechanism is a bit tricky, but easy enough to use.  See
1627          * section 5.5.6 in the OHCI specification.
1628          *
1629          * The OHCI controller caches the new config rom address in a
1630          * shadow register (ConfigROMmapNext) and needs a bus reset
1631          * for the changes to take place.  When the bus reset is
1632          * detected, the controller loads the new values for the
1633          * ConfigRomHeader and BusOptions registers from the specified
1634          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1635          * shadow register. All automatically and atomically.
1636          *
1637          * Now, there's a twist to this story.  The automatic load of
1638          * ConfigRomHeader and BusOptions doesn't honor the
1639          * noByteSwapData bit, so with a be32 config rom, the
1640          * controller will load be32 values in to these registers
1641          * during the atomic update, even on litte endian
1642          * architectures.  The workaround we use is to put a 0 in the
1643          * header quadlet; 0 is endian agnostic and means that the
1644          * config rom isn't ready yet.  In the bus reset tasklet we
1645          * then set up the real values for the two registers.
1646          *
1647          * We use ohci->lock to avoid racing with the code that sets
1648          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1649          */
1650
1651         next_config_rom =
1652                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1653                                    &next_config_rom_bus, GFP_KERNEL);
1654         if (next_config_rom == NULL)
1655                 return -ENOMEM;
1656
1657         spin_lock_irqsave(&ohci->lock, flags);
1658
1659         if (ohci->next_config_rom == NULL) {
1660                 ohci->next_config_rom = next_config_rom;
1661                 ohci->next_config_rom_bus = next_config_rom_bus;
1662
1663                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1664
1665                 ohci->next_header = config_rom[0];
1666                 ohci->next_config_rom[0] = 0;
1667
1668                 reg_write(ohci, OHCI1394_ConfigROMmap,
1669                           ohci->next_config_rom_bus);
1670                 ret = 0;
1671         }
1672
1673         spin_unlock_irqrestore(&ohci->lock, flags);
1674
1675         /*
1676          * Now initiate a bus reset to have the changes take
1677          * effect. We clean up the old config rom memory and DMA
1678          * mappings in the bus reset tasklet, since the OHCI
1679          * controller could need to access it before the bus reset
1680          * takes effect.
1681          */
1682         if (ret == 0)
1683                 fw_core_initiate_bus_reset(&ohci->card, 1);
1684         else
1685                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1686                                   next_config_rom, next_config_rom_bus);
1687
1688         return ret;
1689 }
1690
1691 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1692 {
1693         struct fw_ohci *ohci = fw_ohci(card);
1694
1695         at_context_transmit(&ohci->at_request_ctx, packet);
1696 }
1697
1698 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1699 {
1700         struct fw_ohci *ohci = fw_ohci(card);
1701
1702         at_context_transmit(&ohci->at_response_ctx, packet);
1703 }
1704
1705 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1706 {
1707         struct fw_ohci *ohci = fw_ohci(card);
1708         struct context *ctx = &ohci->at_request_ctx;
1709         struct driver_data *driver_data = packet->driver_data;
1710         int ret = -ENOENT;
1711
1712         tasklet_disable(&ctx->tasklet);
1713
1714         if (packet->ack != 0)
1715                 goto out;
1716
1717         if (packet->payload_mapped)
1718                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1719                                  packet->payload_length, DMA_TO_DEVICE);
1720
1721         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1722         driver_data->packet = NULL;
1723         packet->ack = RCODE_CANCELLED;
1724         packet->callback(packet, &ohci->card, packet->ack);
1725         ret = 0;
1726  out:
1727         tasklet_enable(&ctx->tasklet);
1728
1729         return ret;
1730 }
1731
1732 static int ohci_enable_phys_dma(struct fw_card *card,
1733                                 int node_id, int generation)
1734 {
1735 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1736         return 0;
1737 #else
1738         struct fw_ohci *ohci = fw_ohci(card);
1739         unsigned long flags;
1740         int n, ret = 0;
1741
1742         /*
1743          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1744          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1745          */
1746
1747         spin_lock_irqsave(&ohci->lock, flags);
1748
1749         if (ohci->generation != generation) {
1750                 ret = -ESTALE;
1751                 goto out;
1752         }
1753
1754         /*
1755          * Note, if the node ID contains a non-local bus ID, physical DMA is
1756          * enabled for _all_ nodes on remote buses.
1757          */
1758
1759         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1760         if (n < 32)
1761                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1762         else
1763                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1764
1765         flush_writes(ohci);
1766  out:
1767         spin_unlock_irqrestore(&ohci->lock, flags);
1768
1769         return ret;
1770 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1771 }
1772
1773 static u32 cycle_timer_ticks(u32 cycle_timer)
1774 {
1775         u32 ticks;
1776
1777         ticks = cycle_timer & 0xfff;
1778         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1779         ticks += (3072 * 8000) * (cycle_timer >> 25);
1780
1781         return ticks;
1782 }
1783
1784 /*
1785  * Some controllers exhibit one or more of the following bugs when updating the
1786  * iso cycle timer register:
1787  *  - When the lowest six bits are wrapping around to zero, a read that happens
1788  *    at the same time will return garbage in the lowest ten bits.
1789  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1790  *    not incremented for about 60 ns.
1791  *  - Occasionally, the entire register reads zero.
1792  *
1793  * To catch these, we read the register three times and ensure that the
1794  * difference between each two consecutive reads is approximately the same, i.e.
1795  * less than twice the other.  Furthermore, any negative difference indicates an
1796  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1797  * execute, so we have enough precision to compute the ratio of the differences.)
1798  */
1799 static u32 ohci_get_cycle_time(struct fw_card *card)
1800 {
1801         struct fw_ohci *ohci = fw_ohci(card);
1802         u32 c0, c1, c2;
1803         u32 t0, t1, t2;
1804         s32 diff01, diff12;
1805         int i;
1806
1807         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1808
1809         if (ohci->iso_cycle_timer_quirk) {
1810                 i = 0;
1811                 c1 = c2;
1812                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1813                 do {
1814                         c0 = c1;
1815                         c1 = c2;
1816                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1817                         t0 = cycle_timer_ticks(c0);
1818                         t1 = cycle_timer_ticks(c1);
1819                         t2 = cycle_timer_ticks(c2);
1820                         diff01 = t1 - t0;
1821                         diff12 = t2 - t1;
1822                 } while ((diff01 <= 0 || diff12 <= 0 ||
1823                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1824                          && i++ < 20);
1825         }
1826
1827         return c2;
1828 }
1829
1830 static void copy_iso_headers(struct iso_context *ctx, void *p)
1831 {
1832         int i = ctx->header_length;
1833
1834         if (i + ctx->base.header_size > PAGE_SIZE)
1835                 return;
1836
1837         /*
1838          * The iso header is byteswapped to little endian by
1839          * the controller, but the remaining header quadlets
1840          * are big endian.  We want to present all the headers
1841          * as big endian, so we have to swap the first quadlet.
1842          */
1843         if (ctx->base.header_size > 0)
1844                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1845         if (ctx->base.header_size > 4)
1846                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1847         if (ctx->base.header_size > 8)
1848                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1849         ctx->header_length += ctx->base.header_size;
1850 }
1851
1852 static int handle_ir_packet_per_buffer(struct context *context,
1853                                        struct descriptor *d,
1854                                        struct descriptor *last)
1855 {
1856         struct iso_context *ctx =
1857                 container_of(context, struct iso_context, context);
1858         struct descriptor *pd;
1859         __le32 *ir_header;
1860         void *p;
1861
1862         for (pd = d; pd <= last; pd++) {
1863                 if (pd->transfer_status)
1864                         break;
1865         }
1866         if (pd > last)
1867                 /* Descriptor(s) not done yet, stop iteration */
1868                 return 0;
1869
1870         p = last + 1;
1871         copy_iso_headers(ctx, p);
1872
1873         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1874                 ir_header = (__le32 *) p;
1875                 ctx->base.callback(&ctx->base,
1876                                    le32_to_cpu(ir_header[0]) & 0xffff,
1877                                    ctx->header_length, ctx->header,
1878                                    ctx->base.callback_data);
1879                 ctx->header_length = 0;
1880         }
1881
1882         return 1;
1883 }
1884
1885 static int handle_it_packet(struct context *context,
1886                             struct descriptor *d,
1887                             struct descriptor *last)
1888 {
1889         struct iso_context *ctx =
1890                 container_of(context, struct iso_context, context);
1891         int i;
1892         struct descriptor *pd;
1893
1894         for (pd = d; pd <= last; pd++)
1895                 if (pd->transfer_status)
1896                         break;
1897         if (pd > last)
1898                 /* Descriptor(s) not done yet, stop iteration */
1899                 return 0;
1900
1901         i = ctx->header_length;
1902         if (i + 4 < PAGE_SIZE) {
1903                 /* Present this value as big-endian to match the receive code */
1904                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1905                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1906                                 le16_to_cpu(pd->res_count));
1907                 ctx->header_length += 4;
1908         }
1909         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1910                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1911                                    ctx->header_length, ctx->header,
1912                                    ctx->base.callback_data);
1913                 ctx->header_length = 0;
1914         }
1915         return 1;
1916 }
1917
1918 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1919                                 int type, int channel, size_t header_size)
1920 {
1921         struct fw_ohci *ohci = fw_ohci(card);
1922         struct iso_context *ctx, *list;
1923         descriptor_callback_t callback;
1924         u64 *channels, dont_care = ~0ULL;
1925         u32 *mask, regs;
1926         unsigned long flags;
1927         int index, ret = -ENOMEM;
1928
1929         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1930                 channels = &dont_care;
1931                 mask = &ohci->it_context_mask;
1932                 list = ohci->it_context_list;
1933                 callback = handle_it_packet;
1934         } else {
1935                 channels = &ohci->ir_context_channels;
1936                 mask = &ohci->ir_context_mask;
1937                 list = ohci->ir_context_list;
1938                 callback = handle_ir_packet_per_buffer;
1939         }
1940
1941         spin_lock_irqsave(&ohci->lock, flags);
1942         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1943         if (index >= 0) {
1944                 *channels &= ~(1ULL << channel);
1945                 *mask &= ~(1 << index);
1946         }
1947         spin_unlock_irqrestore(&ohci->lock, flags);
1948
1949         if (index < 0)
1950                 return ERR_PTR(-EBUSY);
1951
1952         if (type == FW_ISO_CONTEXT_TRANSMIT)
1953                 regs = OHCI1394_IsoXmitContextBase(index);
1954         else
1955                 regs = OHCI1394_IsoRcvContextBase(index);
1956
1957         ctx = &list[index];
1958         memset(ctx, 0, sizeof(*ctx));
1959         ctx->header_length = 0;
1960         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1961         if (ctx->header == NULL)
1962                 goto out;
1963
1964         ret = context_init(&ctx->context, ohci, regs, callback);
1965         if (ret < 0)
1966                 goto out_with_header;
1967
1968         return &ctx->base;
1969
1970  out_with_header:
1971         free_page((unsigned long)ctx->header);
1972  out:
1973         spin_lock_irqsave(&ohci->lock, flags);
1974         *mask |= 1 << index;
1975         spin_unlock_irqrestore(&ohci->lock, flags);
1976
1977         return ERR_PTR(ret);
1978 }
1979
1980 static int ohci_start_iso(struct fw_iso_context *base,
1981                           s32 cycle, u32 sync, u32 tags)
1982 {
1983         struct iso_context *ctx = container_of(base, struct iso_context, base);
1984         struct fw_ohci *ohci = ctx->context.ohci;
1985         u32 control, match;
1986         int index;
1987
1988         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1989                 index = ctx - ohci->it_context_list;
1990                 match = 0;
1991                 if (cycle >= 0)
1992                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1993                                 (cycle & 0x7fff) << 16;
1994
1995                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1996                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1997                 context_run(&ctx->context, match);
1998         } else {
1999                 index = ctx - ohci->ir_context_list;
2000                 control = IR_CONTEXT_ISOCH_HEADER;
2001                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2002                 if (cycle >= 0) {
2003                         match |= (cycle & 0x07fff) << 12;
2004                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2005                 }
2006
2007                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2008                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2009                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2010                 context_run(&ctx->context, control);
2011         }
2012
2013         return 0;
2014 }
2015
2016 static int ohci_stop_iso(struct fw_iso_context *base)
2017 {
2018         struct fw_ohci *ohci = fw_ohci(base->card);
2019         struct iso_context *ctx = container_of(base, struct iso_context, base);
2020         int index;
2021
2022         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2023                 index = ctx - ohci->it_context_list;
2024                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2025         } else {
2026                 index = ctx - ohci->ir_context_list;
2027                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2028         }
2029         flush_writes(ohci);
2030         context_stop(&ctx->context);
2031
2032         return 0;
2033 }
2034
2035 static void ohci_free_iso_context(struct fw_iso_context *base)
2036 {
2037         struct fw_ohci *ohci = fw_ohci(base->card);
2038         struct iso_context *ctx = container_of(base, struct iso_context, base);
2039         unsigned long flags;
2040         int index;
2041
2042         ohci_stop_iso(base);
2043         context_release(&ctx->context);
2044         free_page((unsigned long)ctx->header);
2045
2046         spin_lock_irqsave(&ohci->lock, flags);
2047
2048         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2049                 index = ctx - ohci->it_context_list;
2050                 ohci->it_context_mask |= 1 << index;
2051         } else {
2052                 index = ctx - ohci->ir_context_list;
2053                 ohci->ir_context_mask |= 1 << index;
2054                 ohci->ir_context_channels |= 1ULL << base->channel;
2055         }
2056
2057         spin_unlock_irqrestore(&ohci->lock, flags);
2058 }
2059
2060 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2061                                    struct fw_iso_packet *packet,
2062                                    struct fw_iso_buffer *buffer,
2063                                    unsigned long payload)
2064 {
2065         struct iso_context *ctx = container_of(base, struct iso_context, base);
2066         struct descriptor *d, *last, *pd;
2067         struct fw_iso_packet *p;
2068         __le32 *header;
2069         dma_addr_t d_bus, page_bus;
2070         u32 z, header_z, payload_z, irq;
2071         u32 payload_index, payload_end_index, next_page_index;
2072         int page, end_page, i, length, offset;
2073
2074         p = packet;
2075         payload_index = payload;
2076
2077         if (p->skip)
2078                 z = 1;
2079         else
2080                 z = 2;
2081         if (p->header_length > 0)
2082                 z++;
2083
2084         /* Determine the first page the payload isn't contained in. */
2085         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2086         if (p->payload_length > 0)
2087                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2088         else
2089                 payload_z = 0;
2090
2091         z += payload_z;
2092
2093         /* Get header size in number of descriptors. */
2094         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2095
2096         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2097         if (d == NULL)
2098                 return -ENOMEM;
2099
2100         if (!p->skip) {
2101                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2102                 d[0].req_count = cpu_to_le16(8);
2103                 /*
2104                  * Link the skip address to this descriptor itself.  This causes
2105                  * a context to skip a cycle whenever lost cycles or FIFO
2106                  * overruns occur, without dropping the data.  The application
2107                  * should then decide whether this is an error condition or not.
2108                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2109                  */
2110                 d[0].branch_address = cpu_to_le32(d_bus | z);
2111
2112                 header = (__le32 *) &d[1];
2113                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2114                                         IT_HEADER_TAG(p->tag) |
2115                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2116                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2117                                         IT_HEADER_SPEED(ctx->base.speed));
2118                 header[1] =
2119                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2120                                                           p->payload_length));
2121         }
2122
2123         if (p->header_length > 0) {
2124                 d[2].req_count    = cpu_to_le16(p->header_length);
2125                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2126                 memcpy(&d[z], p->header, p->header_length);
2127         }
2128
2129         pd = d + z - payload_z;
2130         payload_end_index = payload_index + p->payload_length;
2131         for (i = 0; i < payload_z; i++) {
2132                 page               = payload_index >> PAGE_SHIFT;
2133                 offset             = payload_index & ~PAGE_MASK;
2134                 next_page_index    = (page + 1) << PAGE_SHIFT;
2135                 length             =
2136                         min(next_page_index, payload_end_index) - payload_index;
2137                 pd[i].req_count    = cpu_to_le16(length);
2138
2139                 page_bus = page_private(buffer->pages[page]);
2140                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2141
2142                 payload_index += length;
2143         }
2144
2145         if (p->interrupt)
2146                 irq = DESCRIPTOR_IRQ_ALWAYS;
2147         else
2148                 irq = DESCRIPTOR_NO_IRQ;
2149
2150         last = z == 2 ? d : d + z - 1;
2151         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2152                                      DESCRIPTOR_STATUS |
2153                                      DESCRIPTOR_BRANCH_ALWAYS |
2154                                      irq);
2155
2156         context_append(&ctx->context, d, z, header_z);
2157
2158         return 0;
2159 }
2160
2161 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2162                                         struct fw_iso_packet *packet,
2163                                         struct fw_iso_buffer *buffer,
2164                                         unsigned long payload)
2165 {
2166         struct iso_context *ctx = container_of(base, struct iso_context, base);
2167         struct descriptor *d, *pd;
2168         struct fw_iso_packet *p = packet;
2169         dma_addr_t d_bus, page_bus;
2170         u32 z, header_z, rest;
2171         int i, j, length;
2172         int page, offset, packet_count, header_size, payload_per_buffer;
2173
2174         /*
2175          * The OHCI controller puts the isochronous header and trailer in the
2176          * buffer, so we need at least 8 bytes.
2177          */
2178         packet_count = p->header_length / ctx->base.header_size;
2179         header_size  = max(ctx->base.header_size, (size_t)8);
2180
2181         /* Get header size in number of descriptors. */
2182         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2183         page     = payload >> PAGE_SHIFT;
2184         offset   = payload & ~PAGE_MASK;
2185         payload_per_buffer = p->payload_length / packet_count;
2186
2187         for (i = 0; i < packet_count; i++) {
2188                 /* d points to the header descriptor */
2189                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2190                 d = context_get_descriptors(&ctx->context,
2191                                 z + header_z, &d_bus);
2192                 if (d == NULL)
2193                         return -ENOMEM;
2194
2195                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2196                                               DESCRIPTOR_INPUT_MORE);
2197                 if (p->skip && i == 0)
2198                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2199                 d->req_count    = cpu_to_le16(header_size);
2200                 d->res_count    = d->req_count;
2201                 d->transfer_status = 0;
2202                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2203
2204                 rest = payload_per_buffer;
2205                 pd = d;
2206                 for (j = 1; j < z; j++) {
2207                         pd++;
2208                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2209                                                   DESCRIPTOR_INPUT_MORE);
2210
2211                         if (offset + rest < PAGE_SIZE)
2212                                 length = rest;
2213                         else
2214                                 length = PAGE_SIZE - offset;
2215                         pd->req_count = cpu_to_le16(length);
2216                         pd->res_count = pd->req_count;
2217                         pd->transfer_status = 0;
2218
2219                         page_bus = page_private(buffer->pages[page]);
2220                         pd->data_address = cpu_to_le32(page_bus + offset);
2221
2222                         offset = (offset + length) & ~PAGE_MASK;
2223                         rest -= length;
2224                         if (offset == 0)
2225                                 page++;
2226                 }
2227                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2228                                           DESCRIPTOR_INPUT_LAST |
2229                                           DESCRIPTOR_BRANCH_ALWAYS);
2230                 if (p->interrupt && i == packet_count - 1)
2231                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2232
2233                 context_append(&ctx->context, d, z, header_z);
2234         }
2235
2236         return 0;
2237 }
2238
2239 static int ohci_queue_iso(struct fw_iso_context *base,
2240                           struct fw_iso_packet *packet,
2241                           struct fw_iso_buffer *buffer,
2242                           unsigned long payload)
2243 {
2244         struct iso_context *ctx = container_of(base, struct iso_context, base);
2245         unsigned long flags;
2246         int ret;
2247
2248         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2249         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2250                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2251         else
2252                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2253                                                         buffer, payload);
2254         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2255
2256         return ret;
2257 }
2258
2259 static const struct fw_card_driver ohci_driver = {
2260         .enable                 = ohci_enable,
2261         .update_phy_reg         = ohci_update_phy_reg,
2262         .set_config_rom         = ohci_set_config_rom,
2263         .send_request           = ohci_send_request,
2264         .send_response          = ohci_send_response,
2265         .cancel_packet          = ohci_cancel_packet,
2266         .enable_phys_dma        = ohci_enable_phys_dma,
2267         .get_cycle_time         = ohci_get_cycle_time,
2268
2269         .allocate_iso_context   = ohci_allocate_iso_context,
2270         .free_iso_context       = ohci_free_iso_context,
2271         .queue_iso              = ohci_queue_iso,
2272         .start_iso              = ohci_start_iso,
2273         .stop_iso               = ohci_stop_iso,
2274 };
2275
2276 #ifdef CONFIG_PPC_PMAC
2277 static void ohci_pmac_on(struct pci_dev *dev)
2278 {
2279         if (machine_is(powermac)) {
2280                 struct device_node *ofn = pci_device_to_OF_node(dev);
2281
2282                 if (ofn) {
2283                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2284                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2285                 }
2286         }
2287 }
2288
2289 static void ohci_pmac_off(struct pci_dev *dev)
2290 {
2291         if (machine_is(powermac)) {
2292                 struct device_node *ofn = pci_device_to_OF_node(dev);
2293
2294                 if (ofn) {
2295                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2296                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2297                 }
2298         }
2299 }
2300 #else
2301 #define ohci_pmac_on(dev)
2302 #define ohci_pmac_off(dev)
2303 #endif /* CONFIG_PPC_PMAC */
2304
2305 static int __devinit pci_probe(struct pci_dev *dev,
2306                                const struct pci_device_id *ent)
2307 {
2308         struct fw_ohci *ohci;
2309         u32 bus_options, max_receive, link_speed, version;
2310         u64 guid;
2311         int err;
2312         size_t size;
2313
2314         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2315         if (ohci == NULL) {
2316                 err = -ENOMEM;
2317                 goto fail;
2318         }
2319
2320         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2321
2322         ohci_pmac_on(dev);
2323
2324         err = pci_enable_device(dev);
2325         if (err) {
2326                 fw_error("Failed to enable OHCI hardware\n");
2327                 goto fail_free;
2328         }
2329
2330         pci_set_master(dev);
2331         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2332         pci_set_drvdata(dev, ohci);
2333
2334         spin_lock_init(&ohci->lock);
2335
2336         tasklet_init(&ohci->bus_reset_tasklet,
2337                      bus_reset_tasklet, (unsigned long)ohci);
2338
2339         err = pci_request_region(dev, 0, ohci_driver_name);
2340         if (err) {
2341                 fw_error("MMIO resource unavailable\n");
2342                 goto fail_disable;
2343         }
2344
2345         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2346         if (ohci->registers == NULL) {
2347                 fw_error("Failed to remap registers\n");
2348                 err = -ENXIO;
2349                 goto fail_iomem;
2350         }
2351
2352         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2353
2354 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2355         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2356                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2357 #endif
2358         ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2359
2360         ohci->iso_cycle_timer_quirk = dev->vendor == PCI_VENDOR_ID_AL   ||
2361                                       dev->vendor == PCI_VENDOR_ID_NEC  ||
2362                                       dev->vendor == PCI_VENDOR_ID_VIA;
2363
2364         ar_context_init(&ohci->ar_request_ctx, ohci,
2365                         OHCI1394_AsReqRcvContextControlSet);
2366
2367         ar_context_init(&ohci->ar_response_ctx, ohci,
2368                         OHCI1394_AsRspRcvContextControlSet);
2369
2370         context_init(&ohci->at_request_ctx, ohci,
2371                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2372
2373         context_init(&ohci->at_response_ctx, ohci,
2374                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2375
2376         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2377         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2378         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2379         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2380         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2381
2382         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2383         ohci->ir_context_channels = ~0ULL;
2384         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2385         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2386         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2387         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2388
2389         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2390                 err = -ENOMEM;
2391                 goto fail_contexts;
2392         }
2393
2394         /* self-id dma buffer allocation */
2395         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2396                                                SELF_ID_BUF_SIZE,
2397                                                &ohci->self_id_bus,
2398                                                GFP_KERNEL);
2399         if (ohci->self_id_cpu == NULL) {
2400                 err = -ENOMEM;
2401                 goto fail_contexts;
2402         }
2403
2404         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2405         max_receive = (bus_options >> 12) & 0xf;
2406         link_speed = bus_options & 0x7;
2407         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2408                 reg_read(ohci, OHCI1394_GUIDLo);
2409
2410         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2411         if (err)
2412                 goto fail_self_id;
2413
2414         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2415                   dev_name(&dev->dev), version >> 16, version & 0xff);
2416
2417         return 0;
2418
2419  fail_self_id:
2420         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2421                           ohci->self_id_cpu, ohci->self_id_bus);
2422  fail_contexts:
2423         kfree(ohci->ir_context_list);
2424         kfree(ohci->it_context_list);
2425         context_release(&ohci->at_response_ctx);
2426         context_release(&ohci->at_request_ctx);
2427         ar_context_release(&ohci->ar_response_ctx);
2428         ar_context_release(&ohci->ar_request_ctx);
2429         pci_iounmap(dev, ohci->registers);
2430  fail_iomem:
2431         pci_release_region(dev, 0);
2432  fail_disable:
2433         pci_disable_device(dev);
2434  fail_free:
2435         kfree(&ohci->card);
2436         ohci_pmac_off(dev);
2437  fail:
2438         if (err == -ENOMEM)
2439                 fw_error("Out of memory\n");
2440
2441         return err;
2442 }
2443
2444 static void pci_remove(struct pci_dev *dev)
2445 {
2446         struct fw_ohci *ohci;
2447
2448         ohci = pci_get_drvdata(dev);
2449         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2450         flush_writes(ohci);
2451         fw_core_remove_card(&ohci->card);
2452
2453         /*
2454          * FIXME: Fail all pending packets here, now that the upper
2455          * layers can't queue any more.
2456          */
2457
2458         software_reset(ohci);
2459         free_irq(dev->irq, ohci);
2460
2461         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2462                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2463                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2464         if (ohci->config_rom)
2465                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2466                                   ohci->config_rom, ohci->config_rom_bus);
2467         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2468                           ohci->self_id_cpu, ohci->self_id_bus);
2469         ar_context_release(&ohci->ar_request_ctx);
2470         ar_context_release(&ohci->ar_response_ctx);
2471         context_release(&ohci->at_request_ctx);
2472         context_release(&ohci->at_response_ctx);
2473         kfree(ohci->it_context_list);
2474         kfree(ohci->ir_context_list);
2475         pci_iounmap(dev, ohci->registers);
2476         pci_release_region(dev, 0);
2477         pci_disable_device(dev);
2478         kfree(&ohci->card);
2479         ohci_pmac_off(dev);
2480
2481         fw_notify("Removed fw-ohci device.\n");
2482 }
2483
2484 #ifdef CONFIG_PM
2485 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2486 {
2487         struct fw_ohci *ohci = pci_get_drvdata(dev);
2488         int err;
2489
2490         software_reset(ohci);
2491         free_irq(dev->irq, ohci);
2492         err = pci_save_state(dev);
2493         if (err) {
2494                 fw_error("pci_save_state failed\n");
2495                 return err;
2496         }
2497         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2498         if (err)
2499                 fw_error("pci_set_power_state failed with %d\n", err);
2500         ohci_pmac_off(dev);
2501
2502         return 0;
2503 }
2504
2505 static int pci_resume(struct pci_dev *dev)
2506 {
2507         struct fw_ohci *ohci = pci_get_drvdata(dev);
2508         int err;
2509
2510         ohci_pmac_on(dev);
2511         pci_set_power_state(dev, PCI_D0);
2512         pci_restore_state(dev);
2513         err = pci_enable_device(dev);
2514         if (err) {
2515                 fw_error("pci_enable_device failed\n");
2516                 return err;
2517         }
2518
2519         return ohci_enable(&ohci->card, NULL, 0);
2520 }
2521 #endif
2522
2523 static const struct pci_device_id pci_table[] = {
2524         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2525         { }
2526 };
2527
2528 MODULE_DEVICE_TABLE(pci, pci_table);
2529
2530 static struct pci_driver fw_ohci_pci_driver = {
2531         .name           = ohci_driver_name,
2532         .id_table       = pci_table,
2533         .probe          = pci_probe,
2534         .remove         = pci_remove,
2535 #ifdef CONFIG_PM
2536         .resume         = pci_resume,
2537         .suspend        = pci_suspend,
2538 #endif
2539 };
2540
2541 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2542 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2543 MODULE_LICENSE("GPL");
2544
2545 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2546 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2547 MODULE_ALIAS("ohci1394");
2548 #endif
2549
2550 static int __init fw_ohci_init(void)
2551 {
2552         return pci_register_driver(&fw_ohci_pci_driver);
2553 }
2554
2555 static void __exit fw_ohci_cleanup(void)
2556 {
2557         pci_unregister_driver(&fw_ohci_pci_driver);
2558 }
2559
2560 module_init(fw_ohci_init);
2561 module_exit(fw_ohci_cleanup);