firewire: ohci: use an ID table for quirks detection
[pandora-kernel.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173
174         /*
175          * Spinlock for accessing fw_ohci data.  Never call out of
176          * this driver with this lock held.
177          */
178         spinlock_t lock;
179
180         struct ar_context ar_request_ctx;
181         struct ar_context ar_response_ctx;
182         struct context at_request_ctx;
183         struct context at_response_ctx;
184
185         u32 it_context_mask;
186         struct iso_context *it_context_list;
187         u64 ir_context_channels;
188         u32 ir_context_mask;
189         struct iso_context *ir_context_list;
190
191         __be32    *config_rom;
192         dma_addr_t config_rom_bus;
193         __be32    *next_config_rom;
194         dma_addr_t next_config_rom_bus;
195         __be32     next_header;
196
197         __le32    *self_id_cpu;
198         dma_addr_t self_id_bus;
199         struct tasklet_struct bus_reset_tasklet;
200
201         u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206         return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
210 #define IR_CONTEXT_BUFFER_FILL          0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
215
216 #define CONTEXT_RUN     0x8000
217 #define CONTEXT_WAKE    0x1000
218 #define CONTEXT_DEAD    0x0800
219 #define CONTEXT_ACTIVE  0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
224
225 #define OHCI1394_REGISTER_SIZE          0x800
226 #define OHCI_LOOP_COUNT                 500
227 #define OHCI1394_PCI_HCI_Control        0x40
228 #define SELF_ID_BUF_SIZE                0x800
229 #define OHCI_TCODE_PHY_PACKET           0x0e
230 #define OHCI_VERSION_1_1                0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define QUIRK_CYCLE_TIMER               1
235 #define QUIRK_RESET_PACKET              2
236 #define QUIRK_BE_HEADERS                4
237
238 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
239 static const struct {
240         unsigned short vendor, device, flags;
241 } ohci_quirks[] = {
242         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
243         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
244         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
245         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
246         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
247 };
248
249 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
250
251 #define OHCI_PARAM_DEBUG_AT_AR          1
252 #define OHCI_PARAM_DEBUG_SELFIDS        2
253 #define OHCI_PARAM_DEBUG_IRQS           4
254 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
255
256 static int param_debug;
257 module_param_named(debug, param_debug, int, 0644);
258 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
259         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
260         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
261         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
262         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
263         ", or a combination, or all = -1)");
264
265 static void log_irqs(u32 evt)
266 {
267         if (likely(!(param_debug &
268                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
269                 return;
270
271         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
272             !(evt & OHCI1394_busReset))
273                 return;
274
275         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
276             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
277             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
278             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
279             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
280             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
281             evt & OHCI1394_isochRx              ? " IR"                 : "",
282             evt & OHCI1394_isochTx              ? " IT"                 : "",
283             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
284             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
285             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
286             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
287             evt & OHCI1394_busReset             ? " busReset"           : "",
288             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
289                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
290                     OHCI1394_respTxComplete | OHCI1394_isochRx |
291                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
292                     OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
293                     OHCI1394_regAccessFail | OHCI1394_busReset)
294                                                 ? " ?"                  : "");
295 }
296
297 static const char *speed[] = {
298         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
299 };
300 static const char *power[] = {
301         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
302         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
303 };
304 static const char port[] = { '.', '-', 'p', 'c', };
305
306 static char _p(u32 *s, int shift)
307 {
308         return port[*s >> shift & 3];
309 }
310
311 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
312 {
313         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
314                 return;
315
316         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
317                   self_id_count, generation, node_id);
318
319         for (; self_id_count--; ++s)
320                 if ((*s & 1 << 23) == 0)
321                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
322                             "%s gc=%d %s %s%s%s\n",
323                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
324                             speed[*s >> 14 & 3], *s >> 16 & 63,
325                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
326                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
327                 else
328                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
329                             *s, *s >> 24 & 63,
330                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
331                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
332 }
333
334 static const char *evts[] = {
335         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
336         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
337         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
338         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
339         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
340         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
341         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
342         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
343         [0x10] = "-reserved-",          [0x11] = "ack_complete",
344         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
345         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
346         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
347         [0x18] = "-reserved-",          [0x19] = "-reserved-",
348         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
349         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
350         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
351         [0x20] = "pending/cancelled",
352 };
353 static const char *tcodes[] = {
354         [0x0] = "QW req",               [0x1] = "BW req",
355         [0x2] = "W resp",               [0x3] = "-reserved-",
356         [0x4] = "QR req",               [0x5] = "BR req",
357         [0x6] = "QR resp",              [0x7] = "BR resp",
358         [0x8] = "cycle start",          [0x9] = "Lk req",
359         [0xa] = "async stream packet",  [0xb] = "Lk resp",
360         [0xc] = "-reserved-",           [0xd] = "-reserved-",
361         [0xe] = "link internal",        [0xf] = "-reserved-",
362 };
363 static const char *phys[] = {
364         [0x0] = "phy config packet",    [0x1] = "link-on packet",
365         [0x2] = "self-id packet",       [0x3] = "-reserved-",
366 };
367
368 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
369 {
370         int tcode = header[0] >> 4 & 0xf;
371         char specific[12];
372
373         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
374                 return;
375
376         if (unlikely(evt >= ARRAY_SIZE(evts)))
377                         evt = 0x1f;
378
379         if (evt == OHCI1394_evt_bus_reset) {
380                 fw_notify("A%c evt_bus_reset, generation %d\n",
381                     dir, (header[2] >> 16) & 0xff);
382                 return;
383         }
384
385         if (header[0] == ~header[1]) {
386                 fw_notify("A%c %s, %s, %08x\n",
387                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
388                 return;
389         }
390
391         switch (tcode) {
392         case 0x0: case 0x6: case 0x8:
393                 snprintf(specific, sizeof(specific), " = %08x",
394                          be32_to_cpu((__force __be32)header[3]));
395                 break;
396         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
397                 snprintf(specific, sizeof(specific), " %x,%x",
398                          header[3] >> 16, header[3] & 0xffff);
399                 break;
400         default:
401                 specific[0] = '\0';
402         }
403
404         switch (tcode) {
405         case 0xe: case 0xa:
406                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
407                 break;
408         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
409                 fw_notify("A%c spd %x tl %02x, "
410                     "%04x -> %04x, %s, "
411                     "%s, %04x%08x%s\n",
412                     dir, speed, header[0] >> 10 & 0x3f,
413                     header[1] >> 16, header[0] >> 16, evts[evt],
414                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
415                 break;
416         default:
417                 fw_notify("A%c spd %x tl %02x, "
418                     "%04x -> %04x, %s, "
419                     "%s%s\n",
420                     dir, speed, header[0] >> 10 & 0x3f,
421                     header[1] >> 16, header[0] >> 16, evts[evt],
422                     tcodes[tcode], specific);
423         }
424 }
425
426 #else
427
428 #define log_irqs(evt)
429 #define log_selfids(node_id, generation, self_id_count, sid)
430 #define log_ar_at_event(dir, speed, header, evt)
431
432 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
433
434 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
435 {
436         writel(data, ohci->registers + offset);
437 }
438
439 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
440 {
441         return readl(ohci->registers + offset);
442 }
443
444 static inline void flush_writes(const struct fw_ohci *ohci)
445 {
446         /* Do a dummy read to flush writes. */
447         reg_read(ohci, OHCI1394_Version);
448 }
449
450 static int ohci_update_phy_reg(struct fw_card *card, int addr,
451                                int clear_bits, int set_bits)
452 {
453         struct fw_ohci *ohci = fw_ohci(card);
454         u32 val, old;
455
456         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
457         flush_writes(ohci);
458         msleep(2);
459         val = reg_read(ohci, OHCI1394_PhyControl);
460         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
461                 fw_error("failed to set phy reg bits.\n");
462                 return -EBUSY;
463         }
464
465         old = OHCI1394_PhyControl_ReadData(val);
466         old = (old & ~clear_bits) | set_bits;
467         reg_write(ohci, OHCI1394_PhyControl,
468                   OHCI1394_PhyControl_Write(addr, old));
469
470         return 0;
471 }
472
473 static int ar_context_add_page(struct ar_context *ctx)
474 {
475         struct device *dev = ctx->ohci->card.device;
476         struct ar_buffer *ab;
477         dma_addr_t uninitialized_var(ab_bus);
478         size_t offset;
479
480         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
481         if (ab == NULL)
482                 return -ENOMEM;
483
484         ab->next = NULL;
485         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
486         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
487                                                     DESCRIPTOR_STATUS |
488                                                     DESCRIPTOR_BRANCH_ALWAYS);
489         offset = offsetof(struct ar_buffer, data);
490         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
491         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
492         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
493         ab->descriptor.branch_address = 0;
494
495         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
496         ctx->last_buffer->next = ab;
497         ctx->last_buffer = ab;
498
499         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
500         flush_writes(ctx->ohci);
501
502         return 0;
503 }
504
505 static void ar_context_release(struct ar_context *ctx)
506 {
507         struct ar_buffer *ab, *ab_next;
508         size_t offset;
509         dma_addr_t ab_bus;
510
511         for (ab = ctx->current_buffer; ab; ab = ab_next) {
512                 ab_next = ab->next;
513                 offset = offsetof(struct ar_buffer, data);
514                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
515                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
516                                   ab, ab_bus);
517         }
518 }
519
520 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
521 #define cond_le32_to_cpu(v) \
522         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
523 #else
524 #define cond_le32_to_cpu(v) le32_to_cpu(v)
525 #endif
526
527 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
528 {
529         struct fw_ohci *ohci = ctx->ohci;
530         struct fw_packet p;
531         u32 status, length, tcode;
532         int evt;
533
534         p.header[0] = cond_le32_to_cpu(buffer[0]);
535         p.header[1] = cond_le32_to_cpu(buffer[1]);
536         p.header[2] = cond_le32_to_cpu(buffer[2]);
537
538         tcode = (p.header[0] >> 4) & 0x0f;
539         switch (tcode) {
540         case TCODE_WRITE_QUADLET_REQUEST:
541         case TCODE_READ_QUADLET_RESPONSE:
542                 p.header[3] = (__force __u32) buffer[3];
543                 p.header_length = 16;
544                 p.payload_length = 0;
545                 break;
546
547         case TCODE_READ_BLOCK_REQUEST :
548                 p.header[3] = cond_le32_to_cpu(buffer[3]);
549                 p.header_length = 16;
550                 p.payload_length = 0;
551                 break;
552
553         case TCODE_WRITE_BLOCK_REQUEST:
554         case TCODE_READ_BLOCK_RESPONSE:
555         case TCODE_LOCK_REQUEST:
556         case TCODE_LOCK_RESPONSE:
557                 p.header[3] = cond_le32_to_cpu(buffer[3]);
558                 p.header_length = 16;
559                 p.payload_length = p.header[3] >> 16;
560                 break;
561
562         case TCODE_WRITE_RESPONSE:
563         case TCODE_READ_QUADLET_REQUEST:
564         case OHCI_TCODE_PHY_PACKET:
565                 p.header_length = 12;
566                 p.payload_length = 0;
567                 break;
568
569         default:
570                 /* FIXME: Stop context, discard everything, and restart? */
571                 p.header_length = 0;
572                 p.payload_length = 0;
573         }
574
575         p.payload = (void *) buffer + p.header_length;
576
577         /* FIXME: What to do about evt_* errors? */
578         length = (p.header_length + p.payload_length + 3) / 4;
579         status = cond_le32_to_cpu(buffer[length]);
580         evt    = (status >> 16) & 0x1f;
581
582         p.ack        = evt - 16;
583         p.speed      = (status >> 21) & 0x7;
584         p.timestamp  = status & 0xffff;
585         p.generation = ohci->request_generation;
586
587         log_ar_at_event('R', p.speed, p.header, evt);
588
589         /*
590          * The OHCI bus reset handler synthesizes a phy packet with
591          * the new generation number when a bus reset happens (see
592          * section 8.4.2.3).  This helps us determine when a request
593          * was received and make sure we send the response in the same
594          * generation.  We only need this for requests; for responses
595          * we use the unique tlabel for finding the matching
596          * request.
597          *
598          * Alas some chips sometimes emit bus reset packets with a
599          * wrong generation.  We set the correct generation for these
600          * at a slightly incorrect time (in bus_reset_tasklet).
601          */
602         if (evt == OHCI1394_evt_bus_reset) {
603                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
604                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
605         } else if (ctx == &ohci->ar_request_ctx) {
606                 fw_core_handle_request(&ohci->card, &p);
607         } else {
608                 fw_core_handle_response(&ohci->card, &p);
609         }
610
611         return buffer + length + 1;
612 }
613
614 static void ar_context_tasklet(unsigned long data)
615 {
616         struct ar_context *ctx = (struct ar_context *)data;
617         struct fw_ohci *ohci = ctx->ohci;
618         struct ar_buffer *ab;
619         struct descriptor *d;
620         void *buffer, *end;
621
622         ab = ctx->current_buffer;
623         d = &ab->descriptor;
624
625         if (d->res_count == 0) {
626                 size_t size, rest, offset;
627                 dma_addr_t start_bus;
628                 void *start;
629
630                 /*
631                  * This descriptor is finished and we may have a
632                  * packet split across this and the next buffer. We
633                  * reuse the page for reassembling the split packet.
634                  */
635
636                 offset = offsetof(struct ar_buffer, data);
637                 start = buffer = ab;
638                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
639
640                 ab = ab->next;
641                 d = &ab->descriptor;
642                 size = buffer + PAGE_SIZE - ctx->pointer;
643                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
644                 memmove(buffer, ctx->pointer, size);
645                 memcpy(buffer + size, ab->data, rest);
646                 ctx->current_buffer = ab;
647                 ctx->pointer = (void *) ab->data + rest;
648                 end = buffer + size + rest;
649
650                 while (buffer < end)
651                         buffer = handle_ar_packet(ctx, buffer);
652
653                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
654                                   start, start_bus);
655                 ar_context_add_page(ctx);
656         } else {
657                 buffer = ctx->pointer;
658                 ctx->pointer = end =
659                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
660
661                 while (buffer < end)
662                         buffer = handle_ar_packet(ctx, buffer);
663         }
664 }
665
666 static int ar_context_init(struct ar_context *ctx,
667                            struct fw_ohci *ohci, u32 regs)
668 {
669         struct ar_buffer ab;
670
671         ctx->regs        = regs;
672         ctx->ohci        = ohci;
673         ctx->last_buffer = &ab;
674         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
675
676         ar_context_add_page(ctx);
677         ar_context_add_page(ctx);
678         ctx->current_buffer = ab.next;
679         ctx->pointer = ctx->current_buffer->data;
680
681         return 0;
682 }
683
684 static void ar_context_run(struct ar_context *ctx)
685 {
686         struct ar_buffer *ab = ctx->current_buffer;
687         dma_addr_t ab_bus;
688         size_t offset;
689
690         offset = offsetof(struct ar_buffer, data);
691         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
692
693         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
694         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
695         flush_writes(ctx->ohci);
696 }
697
698 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
699 {
700         int b, key;
701
702         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
703         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
704
705         /* figure out which descriptor the branch address goes in */
706         if (z == 2 && (b == 3 || key == 2))
707                 return d;
708         else
709                 return d + z - 1;
710 }
711
712 static void context_tasklet(unsigned long data)
713 {
714         struct context *ctx = (struct context *) data;
715         struct descriptor *d, *last;
716         u32 address;
717         int z;
718         struct descriptor_buffer *desc;
719
720         desc = list_entry(ctx->buffer_list.next,
721                         struct descriptor_buffer, list);
722         last = ctx->last;
723         while (last->branch_address != 0) {
724                 struct descriptor_buffer *old_desc = desc;
725                 address = le32_to_cpu(last->branch_address);
726                 z = address & 0xf;
727                 address &= ~0xf;
728
729                 /* If the branch address points to a buffer outside of the
730                  * current buffer, advance to the next buffer. */
731                 if (address < desc->buffer_bus ||
732                                 address >= desc->buffer_bus + desc->used)
733                         desc = list_entry(desc->list.next,
734                                         struct descriptor_buffer, list);
735                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
736                 last = find_branch_descriptor(d, z);
737
738                 if (!ctx->callback(ctx, d, last))
739                         break;
740
741                 if (old_desc != desc) {
742                         /* If we've advanced to the next buffer, move the
743                          * previous buffer to the free list. */
744                         unsigned long flags;
745                         old_desc->used = 0;
746                         spin_lock_irqsave(&ctx->ohci->lock, flags);
747                         list_move_tail(&old_desc->list, &ctx->buffer_list);
748                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
749                 }
750                 ctx->last = last;
751         }
752 }
753
754 /*
755  * Allocate a new buffer and add it to the list of free buffers for this
756  * context.  Must be called with ohci->lock held.
757  */
758 static int context_add_buffer(struct context *ctx)
759 {
760         struct descriptor_buffer *desc;
761         dma_addr_t uninitialized_var(bus_addr);
762         int offset;
763
764         /*
765          * 16MB of descriptors should be far more than enough for any DMA
766          * program.  This will catch run-away userspace or DoS attacks.
767          */
768         if (ctx->total_allocation >= 16*1024*1024)
769                 return -ENOMEM;
770
771         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
772                         &bus_addr, GFP_ATOMIC);
773         if (!desc)
774                 return -ENOMEM;
775
776         offset = (void *)&desc->buffer - (void *)desc;
777         desc->buffer_size = PAGE_SIZE - offset;
778         desc->buffer_bus = bus_addr + offset;
779         desc->used = 0;
780
781         list_add_tail(&desc->list, &ctx->buffer_list);
782         ctx->total_allocation += PAGE_SIZE;
783
784         return 0;
785 }
786
787 static int context_init(struct context *ctx, struct fw_ohci *ohci,
788                         u32 regs, descriptor_callback_t callback)
789 {
790         ctx->ohci = ohci;
791         ctx->regs = regs;
792         ctx->total_allocation = 0;
793
794         INIT_LIST_HEAD(&ctx->buffer_list);
795         if (context_add_buffer(ctx) < 0)
796                 return -ENOMEM;
797
798         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
799                         struct descriptor_buffer, list);
800
801         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
802         ctx->callback = callback;
803
804         /*
805          * We put a dummy descriptor in the buffer that has a NULL
806          * branch address and looks like it's been sent.  That way we
807          * have a descriptor to append DMA programs to.
808          */
809         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
810         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
811         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
812         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
813         ctx->last = ctx->buffer_tail->buffer;
814         ctx->prev = ctx->buffer_tail->buffer;
815
816         return 0;
817 }
818
819 static void context_release(struct context *ctx)
820 {
821         struct fw_card *card = &ctx->ohci->card;
822         struct descriptor_buffer *desc, *tmp;
823
824         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
825                 dma_free_coherent(card->device, PAGE_SIZE, desc,
826                         desc->buffer_bus -
827                         ((void *)&desc->buffer - (void *)desc));
828 }
829
830 /* Must be called with ohci->lock held */
831 static struct descriptor *context_get_descriptors(struct context *ctx,
832                                                   int z, dma_addr_t *d_bus)
833 {
834         struct descriptor *d = NULL;
835         struct descriptor_buffer *desc = ctx->buffer_tail;
836
837         if (z * sizeof(*d) > desc->buffer_size)
838                 return NULL;
839
840         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
841                 /* No room for the descriptor in this buffer, so advance to the
842                  * next one. */
843
844                 if (desc->list.next == &ctx->buffer_list) {
845                         /* If there is no free buffer next in the list,
846                          * allocate one. */
847                         if (context_add_buffer(ctx) < 0)
848                                 return NULL;
849                 }
850                 desc = list_entry(desc->list.next,
851                                 struct descriptor_buffer, list);
852                 ctx->buffer_tail = desc;
853         }
854
855         d = desc->buffer + desc->used / sizeof(*d);
856         memset(d, 0, z * sizeof(*d));
857         *d_bus = desc->buffer_bus + desc->used;
858
859         return d;
860 }
861
862 static void context_run(struct context *ctx, u32 extra)
863 {
864         struct fw_ohci *ohci = ctx->ohci;
865
866         reg_write(ohci, COMMAND_PTR(ctx->regs),
867                   le32_to_cpu(ctx->last->branch_address));
868         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
869         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
870         flush_writes(ohci);
871 }
872
873 static void context_append(struct context *ctx,
874                            struct descriptor *d, int z, int extra)
875 {
876         dma_addr_t d_bus;
877         struct descriptor_buffer *desc = ctx->buffer_tail;
878
879         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
880
881         desc->used += (z + extra) * sizeof(*d);
882         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
883         ctx->prev = find_branch_descriptor(d, z);
884
885         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
886         flush_writes(ctx->ohci);
887 }
888
889 static void context_stop(struct context *ctx)
890 {
891         u32 reg;
892         int i;
893
894         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
895         flush_writes(ctx->ohci);
896
897         for (i = 0; i < 10; i++) {
898                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
899                 if ((reg & CONTEXT_ACTIVE) == 0)
900                         return;
901
902                 mdelay(1);
903         }
904         fw_error("Error: DMA context still active (0x%08x)\n", reg);
905 }
906
907 struct driver_data {
908         struct fw_packet *packet;
909 };
910
911 /*
912  * This function apppends a packet to the DMA queue for transmission.
913  * Must always be called with the ochi->lock held to ensure proper
914  * generation handling and locking around packet queue manipulation.
915  */
916 static int at_context_queue_packet(struct context *ctx,
917                                    struct fw_packet *packet)
918 {
919         struct fw_ohci *ohci = ctx->ohci;
920         dma_addr_t d_bus, uninitialized_var(payload_bus);
921         struct driver_data *driver_data;
922         struct descriptor *d, *last;
923         __le32 *header;
924         int z, tcode;
925         u32 reg;
926
927         d = context_get_descriptors(ctx, 4, &d_bus);
928         if (d == NULL) {
929                 packet->ack = RCODE_SEND_ERROR;
930                 return -1;
931         }
932
933         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
934         d[0].res_count = cpu_to_le16(packet->timestamp);
935
936         /*
937          * The DMA format for asyncronous link packets is different
938          * from the IEEE1394 layout, so shift the fields around
939          * accordingly.  If header_length is 8, it's a PHY packet, to
940          * which we need to prepend an extra quadlet.
941          */
942
943         header = (__le32 *) &d[1];
944         switch (packet->header_length) {
945         case 16:
946         case 12:
947                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
948                                         (packet->speed << 16));
949                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
950                                         (packet->header[0] & 0xffff0000));
951                 header[2] = cpu_to_le32(packet->header[2]);
952
953                 tcode = (packet->header[0] >> 4) & 0x0f;
954                 if (TCODE_IS_BLOCK_PACKET(tcode))
955                         header[3] = cpu_to_le32(packet->header[3]);
956                 else
957                         header[3] = (__force __le32) packet->header[3];
958
959                 d[0].req_count = cpu_to_le16(packet->header_length);
960                 break;
961
962         case 8:
963                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
964                                         (packet->speed << 16));
965                 header[1] = cpu_to_le32(packet->header[0]);
966                 header[2] = cpu_to_le32(packet->header[1]);
967                 d[0].req_count = cpu_to_le16(12);
968                 break;
969
970         case 4:
971                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
972                                         (packet->speed << 16));
973                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
974                 d[0].req_count = cpu_to_le16(8);
975                 break;
976
977         default:
978                 /* BUG(); */
979                 packet->ack = RCODE_SEND_ERROR;
980                 return -1;
981         }
982
983         driver_data = (struct driver_data *) &d[3];
984         driver_data->packet = packet;
985         packet->driver_data = driver_data;
986
987         if (packet->payload_length > 0) {
988                 payload_bus =
989                         dma_map_single(ohci->card.device, packet->payload,
990                                        packet->payload_length, DMA_TO_DEVICE);
991                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
992                         packet->ack = RCODE_SEND_ERROR;
993                         return -1;
994                 }
995                 packet->payload_bus     = payload_bus;
996                 packet->payload_mapped  = true;
997
998                 d[2].req_count    = cpu_to_le16(packet->payload_length);
999                 d[2].data_address = cpu_to_le32(payload_bus);
1000                 last = &d[2];
1001                 z = 3;
1002         } else {
1003                 last = &d[0];
1004                 z = 2;
1005         }
1006
1007         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1008                                      DESCRIPTOR_IRQ_ALWAYS |
1009                                      DESCRIPTOR_BRANCH_ALWAYS);
1010
1011         /*
1012          * If the controller and packet generations don't match, we need to
1013          * bail out and try again.  If IntEvent.busReset is set, the AT context
1014          * is halted, so appending to the context and trying to run it is
1015          * futile.  Most controllers do the right thing and just flush the AT
1016          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1017          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1018          * up stalling out.  So we just bail out in software and try again
1019          * later, and everyone is happy.
1020          * FIXME: Document how the locking works.
1021          */
1022         if (ohci->generation != packet->generation ||
1023             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1024                 if (packet->payload_mapped)
1025                         dma_unmap_single(ohci->card.device, payload_bus,
1026                                          packet->payload_length, DMA_TO_DEVICE);
1027                 packet->ack = RCODE_GENERATION;
1028                 return -1;
1029         }
1030
1031         context_append(ctx, d, z, 4 - z);
1032
1033         /* If the context isn't already running, start it up. */
1034         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1035         if ((reg & CONTEXT_RUN) == 0)
1036                 context_run(ctx, 0);
1037
1038         return 0;
1039 }
1040
1041 static int handle_at_packet(struct context *context,
1042                             struct descriptor *d,
1043                             struct descriptor *last)
1044 {
1045         struct driver_data *driver_data;
1046         struct fw_packet *packet;
1047         struct fw_ohci *ohci = context->ohci;
1048         int evt;
1049
1050         if (last->transfer_status == 0)
1051                 /* This descriptor isn't done yet, stop iteration. */
1052                 return 0;
1053
1054         driver_data = (struct driver_data *) &d[3];
1055         packet = driver_data->packet;
1056         if (packet == NULL)
1057                 /* This packet was cancelled, just continue. */
1058                 return 1;
1059
1060         if (packet->payload_mapped)
1061                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1062                                  packet->payload_length, DMA_TO_DEVICE);
1063
1064         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1065         packet->timestamp = le16_to_cpu(last->res_count);
1066
1067         log_ar_at_event('T', packet->speed, packet->header, evt);
1068
1069         switch (evt) {
1070         case OHCI1394_evt_timeout:
1071                 /* Async response transmit timed out. */
1072                 packet->ack = RCODE_CANCELLED;
1073                 break;
1074
1075         case OHCI1394_evt_flushed:
1076                 /*
1077                  * The packet was flushed should give same error as
1078                  * when we try to use a stale generation count.
1079                  */
1080                 packet->ack = RCODE_GENERATION;
1081                 break;
1082
1083         case OHCI1394_evt_missing_ack:
1084                 /*
1085                  * Using a valid (current) generation count, but the
1086                  * node is not on the bus or not sending acks.
1087                  */
1088                 packet->ack = RCODE_NO_ACK;
1089                 break;
1090
1091         case ACK_COMPLETE + 0x10:
1092         case ACK_PENDING + 0x10:
1093         case ACK_BUSY_X + 0x10:
1094         case ACK_BUSY_A + 0x10:
1095         case ACK_BUSY_B + 0x10:
1096         case ACK_DATA_ERROR + 0x10:
1097         case ACK_TYPE_ERROR + 0x10:
1098                 packet->ack = evt - 0x10;
1099                 break;
1100
1101         default:
1102                 packet->ack = RCODE_SEND_ERROR;
1103                 break;
1104         }
1105
1106         packet->callback(packet, &ohci->card, packet->ack);
1107
1108         return 1;
1109 }
1110
1111 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1112 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1113 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1114 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1115 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1116
1117 static void handle_local_rom(struct fw_ohci *ohci,
1118                              struct fw_packet *packet, u32 csr)
1119 {
1120         struct fw_packet response;
1121         int tcode, length, i;
1122
1123         tcode = HEADER_GET_TCODE(packet->header[0]);
1124         if (TCODE_IS_BLOCK_PACKET(tcode))
1125                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1126         else
1127                 length = 4;
1128
1129         i = csr - CSR_CONFIG_ROM;
1130         if (i + length > CONFIG_ROM_SIZE) {
1131                 fw_fill_response(&response, packet->header,
1132                                  RCODE_ADDRESS_ERROR, NULL, 0);
1133         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1134                 fw_fill_response(&response, packet->header,
1135                                  RCODE_TYPE_ERROR, NULL, 0);
1136         } else {
1137                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1138                                  (void *) ohci->config_rom + i, length);
1139         }
1140
1141         fw_core_handle_response(&ohci->card, &response);
1142 }
1143
1144 static void handle_local_lock(struct fw_ohci *ohci,
1145                               struct fw_packet *packet, u32 csr)
1146 {
1147         struct fw_packet response;
1148         int tcode, length, ext_tcode, sel;
1149         __be32 *payload, lock_old;
1150         u32 lock_arg, lock_data;
1151
1152         tcode = HEADER_GET_TCODE(packet->header[0]);
1153         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1154         payload = packet->payload;
1155         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1156
1157         if (tcode == TCODE_LOCK_REQUEST &&
1158             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1159                 lock_arg = be32_to_cpu(payload[0]);
1160                 lock_data = be32_to_cpu(payload[1]);
1161         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1162                 lock_arg = 0;
1163                 lock_data = 0;
1164         } else {
1165                 fw_fill_response(&response, packet->header,
1166                                  RCODE_TYPE_ERROR, NULL, 0);
1167                 goto out;
1168         }
1169
1170         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1171         reg_write(ohci, OHCI1394_CSRData, lock_data);
1172         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1173         reg_write(ohci, OHCI1394_CSRControl, sel);
1174
1175         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1176                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1177         else
1178                 fw_notify("swap not done yet\n");
1179
1180         fw_fill_response(&response, packet->header,
1181                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1182  out:
1183         fw_core_handle_response(&ohci->card, &response);
1184 }
1185
1186 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1187 {
1188         u64 offset;
1189         u32 csr;
1190
1191         if (ctx == &ctx->ohci->at_request_ctx) {
1192                 packet->ack = ACK_PENDING;
1193                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1194         }
1195
1196         offset =
1197                 ((unsigned long long)
1198                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1199                 packet->header[2];
1200         csr = offset - CSR_REGISTER_BASE;
1201
1202         /* Handle config rom reads. */
1203         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1204                 handle_local_rom(ctx->ohci, packet, csr);
1205         else switch (csr) {
1206         case CSR_BUS_MANAGER_ID:
1207         case CSR_BANDWIDTH_AVAILABLE:
1208         case CSR_CHANNELS_AVAILABLE_HI:
1209         case CSR_CHANNELS_AVAILABLE_LO:
1210                 handle_local_lock(ctx->ohci, packet, csr);
1211                 break;
1212         default:
1213                 if (ctx == &ctx->ohci->at_request_ctx)
1214                         fw_core_handle_request(&ctx->ohci->card, packet);
1215                 else
1216                         fw_core_handle_response(&ctx->ohci->card, packet);
1217                 break;
1218         }
1219
1220         if (ctx == &ctx->ohci->at_response_ctx) {
1221                 packet->ack = ACK_COMPLETE;
1222                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1223         }
1224 }
1225
1226 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1227 {
1228         unsigned long flags;
1229         int ret;
1230
1231         spin_lock_irqsave(&ctx->ohci->lock, flags);
1232
1233         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1234             ctx->ohci->generation == packet->generation) {
1235                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1236                 handle_local_request(ctx, packet);
1237                 return;
1238         }
1239
1240         ret = at_context_queue_packet(ctx, packet);
1241         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1242
1243         if (ret < 0)
1244                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1245
1246 }
1247
1248 static void bus_reset_tasklet(unsigned long data)
1249 {
1250         struct fw_ohci *ohci = (struct fw_ohci *)data;
1251         int self_id_count, i, j, reg;
1252         int generation, new_generation;
1253         unsigned long flags;
1254         void *free_rom = NULL;
1255         dma_addr_t free_rom_bus = 0;
1256
1257         reg = reg_read(ohci, OHCI1394_NodeID);
1258         if (!(reg & OHCI1394_NodeID_idValid)) {
1259                 fw_notify("node ID not valid, new bus reset in progress\n");
1260                 return;
1261         }
1262         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1263                 fw_notify("malconfigured bus\n");
1264                 return;
1265         }
1266         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1267                                OHCI1394_NodeID_nodeNumber);
1268
1269         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1270         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1271                 fw_notify("inconsistent self IDs\n");
1272                 return;
1273         }
1274         /*
1275          * The count in the SelfIDCount register is the number of
1276          * bytes in the self ID receive buffer.  Since we also receive
1277          * the inverted quadlets and a header quadlet, we shift one
1278          * bit extra to get the actual number of self IDs.
1279          */
1280         self_id_count = (reg >> 3) & 0xff;
1281         if (self_id_count == 0 || self_id_count > 252) {
1282                 fw_notify("inconsistent self IDs\n");
1283                 return;
1284         }
1285         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1286         rmb();
1287
1288         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1289                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1290                         fw_notify("inconsistent self IDs\n");
1291                         return;
1292                 }
1293                 ohci->self_id_buffer[j] =
1294                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1295         }
1296         rmb();
1297
1298         /*
1299          * Check the consistency of the self IDs we just read.  The
1300          * problem we face is that a new bus reset can start while we
1301          * read out the self IDs from the DMA buffer. If this happens,
1302          * the DMA buffer will be overwritten with new self IDs and we
1303          * will read out inconsistent data.  The OHCI specification
1304          * (section 11.2) recommends a technique similar to
1305          * linux/seqlock.h, where we remember the generation of the
1306          * self IDs in the buffer before reading them out and compare
1307          * it to the current generation after reading them out.  If
1308          * the two generations match we know we have a consistent set
1309          * of self IDs.
1310          */
1311
1312         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1313         if (new_generation != generation) {
1314                 fw_notify("recursive bus reset detected, "
1315                           "discarding self ids\n");
1316                 return;
1317         }
1318
1319         /* FIXME: Document how the locking works. */
1320         spin_lock_irqsave(&ohci->lock, flags);
1321
1322         ohci->generation = generation;
1323         context_stop(&ohci->at_request_ctx);
1324         context_stop(&ohci->at_response_ctx);
1325         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1326
1327         if (ohci->quirks & QUIRK_RESET_PACKET)
1328                 ohci->request_generation = generation;
1329
1330         /*
1331          * This next bit is unrelated to the AT context stuff but we
1332          * have to do it under the spinlock also.  If a new config rom
1333          * was set up before this reset, the old one is now no longer
1334          * in use and we can free it. Update the config rom pointers
1335          * to point to the current config rom and clear the
1336          * next_config_rom pointer so a new udpate can take place.
1337          */
1338
1339         if (ohci->next_config_rom != NULL) {
1340                 if (ohci->next_config_rom != ohci->config_rom) {
1341                         free_rom      = ohci->config_rom;
1342                         free_rom_bus  = ohci->config_rom_bus;
1343                 }
1344                 ohci->config_rom      = ohci->next_config_rom;
1345                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1346                 ohci->next_config_rom = NULL;
1347
1348                 /*
1349                  * Restore config_rom image and manually update
1350                  * config_rom registers.  Writing the header quadlet
1351                  * will indicate that the config rom is ready, so we
1352                  * do that last.
1353                  */
1354                 reg_write(ohci, OHCI1394_BusOptions,
1355                           be32_to_cpu(ohci->config_rom[2]));
1356                 ohci->config_rom[0] = ohci->next_header;
1357                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1358                           be32_to_cpu(ohci->next_header));
1359         }
1360
1361 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1362         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1363         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1364 #endif
1365
1366         spin_unlock_irqrestore(&ohci->lock, flags);
1367
1368         if (free_rom)
1369                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1370                                   free_rom, free_rom_bus);
1371
1372         log_selfids(ohci->node_id, generation,
1373                     self_id_count, ohci->self_id_buffer);
1374
1375         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1376                                  self_id_count, ohci->self_id_buffer);
1377 }
1378
1379 static irqreturn_t irq_handler(int irq, void *data)
1380 {
1381         struct fw_ohci *ohci = data;
1382         u32 event, iso_event;
1383         int i;
1384
1385         event = reg_read(ohci, OHCI1394_IntEventClear);
1386
1387         if (!event || !~event)
1388                 return IRQ_NONE;
1389
1390         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1391         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1392         log_irqs(event);
1393
1394         if (event & OHCI1394_selfIDComplete)
1395                 tasklet_schedule(&ohci->bus_reset_tasklet);
1396
1397         if (event & OHCI1394_RQPkt)
1398                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1399
1400         if (event & OHCI1394_RSPkt)
1401                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1402
1403         if (event & OHCI1394_reqTxComplete)
1404                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1405
1406         if (event & OHCI1394_respTxComplete)
1407                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1408
1409         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1410         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1411
1412         while (iso_event) {
1413                 i = ffs(iso_event) - 1;
1414                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1415                 iso_event &= ~(1 << i);
1416         }
1417
1418         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1419         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1420
1421         while (iso_event) {
1422                 i = ffs(iso_event) - 1;
1423                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1424                 iso_event &= ~(1 << i);
1425         }
1426
1427         if (unlikely(event & OHCI1394_regAccessFail))
1428                 fw_error("Register access failure - "
1429                          "please notify linux1394-devel@lists.sf.net\n");
1430
1431         if (unlikely(event & OHCI1394_postedWriteErr))
1432                 fw_error("PCI posted write error\n");
1433
1434         if (unlikely(event & OHCI1394_cycleTooLong)) {
1435                 if (printk_ratelimit())
1436                         fw_notify("isochronous cycle too long\n");
1437                 reg_write(ohci, OHCI1394_LinkControlSet,
1438                           OHCI1394_LinkControl_cycleMaster);
1439         }
1440
1441         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1442                 /*
1443                  * We need to clear this event bit in order to make
1444                  * cycleMatch isochronous I/O work.  In theory we should
1445                  * stop active cycleMatch iso contexts now and restart
1446                  * them at least two cycles later.  (FIXME?)
1447                  */
1448                 if (printk_ratelimit())
1449                         fw_notify("isochronous cycle inconsistent\n");
1450         }
1451
1452         return IRQ_HANDLED;
1453 }
1454
1455 static int software_reset(struct fw_ohci *ohci)
1456 {
1457         int i;
1458
1459         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1460
1461         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1462                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1463                      OHCI1394_HCControl_softReset) == 0)
1464                         return 0;
1465                 msleep(1);
1466         }
1467
1468         return -EBUSY;
1469 }
1470
1471 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1472 {
1473         size_t size = length * 4;
1474
1475         memcpy(dest, src, size);
1476         if (size < CONFIG_ROM_SIZE)
1477                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1478 }
1479
1480 static int ohci_enable(struct fw_card *card,
1481                        const __be32 *config_rom, size_t length)
1482 {
1483         struct fw_ohci *ohci = fw_ohci(card);
1484         struct pci_dev *dev = to_pci_dev(card->device);
1485         u32 lps;
1486         int i;
1487
1488         if (software_reset(ohci)) {
1489                 fw_error("Failed to reset ohci card.\n");
1490                 return -EBUSY;
1491         }
1492
1493         /*
1494          * Now enable LPS, which we need in order to start accessing
1495          * most of the registers.  In fact, on some cards (ALI M5251),
1496          * accessing registers in the SClk domain without LPS enabled
1497          * will lock up the machine.  Wait 50msec to make sure we have
1498          * full link enabled.  However, with some cards (well, at least
1499          * a JMicron PCIe card), we have to try again sometimes.
1500          */
1501         reg_write(ohci, OHCI1394_HCControlSet,
1502                   OHCI1394_HCControl_LPS |
1503                   OHCI1394_HCControl_postedWriteEnable);
1504         flush_writes(ohci);
1505
1506         for (lps = 0, i = 0; !lps && i < 3; i++) {
1507                 msleep(50);
1508                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1509                       OHCI1394_HCControl_LPS;
1510         }
1511
1512         if (!lps) {
1513                 fw_error("Failed to set Link Power Status\n");
1514                 return -EIO;
1515         }
1516
1517         reg_write(ohci, OHCI1394_HCControlClear,
1518                   OHCI1394_HCControl_noByteSwapData);
1519
1520         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1521         reg_write(ohci, OHCI1394_LinkControlClear,
1522                   OHCI1394_LinkControl_rcvPhyPkt);
1523         reg_write(ohci, OHCI1394_LinkControlSet,
1524                   OHCI1394_LinkControl_rcvSelfID |
1525                   OHCI1394_LinkControl_cycleTimerEnable |
1526                   OHCI1394_LinkControl_cycleMaster);
1527
1528         reg_write(ohci, OHCI1394_ATRetries,
1529                   OHCI1394_MAX_AT_REQ_RETRIES |
1530                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1531                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1532
1533         ar_context_run(&ohci->ar_request_ctx);
1534         ar_context_run(&ohci->ar_response_ctx);
1535
1536         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1537         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1538         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1539         reg_write(ohci, OHCI1394_IntMaskSet,
1540                   OHCI1394_selfIDComplete |
1541                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1542                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1543                   OHCI1394_isochRx | OHCI1394_isochTx |
1544                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1545                   OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1546                   OHCI1394_masterIntEnable);
1547         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1548                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1549
1550         /* Activate link_on bit and contender bit in our self ID packets.*/
1551         if (ohci_update_phy_reg(card, 4, 0,
1552                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1553                 return -EIO;
1554
1555         /*
1556          * When the link is not yet enabled, the atomic config rom
1557          * update mechanism described below in ohci_set_config_rom()
1558          * is not active.  We have to update ConfigRomHeader and
1559          * BusOptions manually, and the write to ConfigROMmap takes
1560          * effect immediately.  We tie this to the enabling of the
1561          * link, so we have a valid config rom before enabling - the
1562          * OHCI requires that ConfigROMhdr and BusOptions have valid
1563          * values before enabling.
1564          *
1565          * However, when the ConfigROMmap is written, some controllers
1566          * always read back quadlets 0 and 2 from the config rom to
1567          * the ConfigRomHeader and BusOptions registers on bus reset.
1568          * They shouldn't do that in this initial case where the link
1569          * isn't enabled.  This means we have to use the same
1570          * workaround here, setting the bus header to 0 and then write
1571          * the right values in the bus reset tasklet.
1572          */
1573
1574         if (config_rom) {
1575                 ohci->next_config_rom =
1576                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1577                                            &ohci->next_config_rom_bus,
1578                                            GFP_KERNEL);
1579                 if (ohci->next_config_rom == NULL)
1580                         return -ENOMEM;
1581
1582                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1583         } else {
1584                 /*
1585                  * In the suspend case, config_rom is NULL, which
1586                  * means that we just reuse the old config rom.
1587                  */
1588                 ohci->next_config_rom = ohci->config_rom;
1589                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1590         }
1591
1592         ohci->next_header = ohci->next_config_rom[0];
1593         ohci->next_config_rom[0] = 0;
1594         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1595         reg_write(ohci, OHCI1394_BusOptions,
1596                   be32_to_cpu(ohci->next_config_rom[2]));
1597         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1598
1599         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1600
1601         if (request_irq(dev->irq, irq_handler,
1602                         IRQF_SHARED, ohci_driver_name, ohci)) {
1603                 fw_error("Failed to allocate shared interrupt %d.\n",
1604                          dev->irq);
1605                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1606                                   ohci->config_rom, ohci->config_rom_bus);
1607                 return -EIO;
1608         }
1609
1610         reg_write(ohci, OHCI1394_HCControlSet,
1611                   OHCI1394_HCControl_linkEnable |
1612                   OHCI1394_HCControl_BIBimageValid);
1613         flush_writes(ohci);
1614
1615         /*
1616          * We are ready to go, initiate bus reset to finish the
1617          * initialization.
1618          */
1619
1620         fw_core_initiate_bus_reset(&ohci->card, 1);
1621
1622         return 0;
1623 }
1624
1625 static int ohci_set_config_rom(struct fw_card *card,
1626                                const __be32 *config_rom, size_t length)
1627 {
1628         struct fw_ohci *ohci;
1629         unsigned long flags;
1630         int ret = -EBUSY;
1631         __be32 *next_config_rom;
1632         dma_addr_t uninitialized_var(next_config_rom_bus);
1633
1634         ohci = fw_ohci(card);
1635
1636         /*
1637          * When the OHCI controller is enabled, the config rom update
1638          * mechanism is a bit tricky, but easy enough to use.  See
1639          * section 5.5.6 in the OHCI specification.
1640          *
1641          * The OHCI controller caches the new config rom address in a
1642          * shadow register (ConfigROMmapNext) and needs a bus reset
1643          * for the changes to take place.  When the bus reset is
1644          * detected, the controller loads the new values for the
1645          * ConfigRomHeader and BusOptions registers from the specified
1646          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1647          * shadow register. All automatically and atomically.
1648          *
1649          * Now, there's a twist to this story.  The automatic load of
1650          * ConfigRomHeader and BusOptions doesn't honor the
1651          * noByteSwapData bit, so with a be32 config rom, the
1652          * controller will load be32 values in to these registers
1653          * during the atomic update, even on litte endian
1654          * architectures.  The workaround we use is to put a 0 in the
1655          * header quadlet; 0 is endian agnostic and means that the
1656          * config rom isn't ready yet.  In the bus reset tasklet we
1657          * then set up the real values for the two registers.
1658          *
1659          * We use ohci->lock to avoid racing with the code that sets
1660          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1661          */
1662
1663         next_config_rom =
1664                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1665                                    &next_config_rom_bus, GFP_KERNEL);
1666         if (next_config_rom == NULL)
1667                 return -ENOMEM;
1668
1669         spin_lock_irqsave(&ohci->lock, flags);
1670
1671         if (ohci->next_config_rom == NULL) {
1672                 ohci->next_config_rom = next_config_rom;
1673                 ohci->next_config_rom_bus = next_config_rom_bus;
1674
1675                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1676
1677                 ohci->next_header = config_rom[0];
1678                 ohci->next_config_rom[0] = 0;
1679
1680                 reg_write(ohci, OHCI1394_ConfigROMmap,
1681                           ohci->next_config_rom_bus);
1682                 ret = 0;
1683         }
1684
1685         spin_unlock_irqrestore(&ohci->lock, flags);
1686
1687         /*
1688          * Now initiate a bus reset to have the changes take
1689          * effect. We clean up the old config rom memory and DMA
1690          * mappings in the bus reset tasklet, since the OHCI
1691          * controller could need to access it before the bus reset
1692          * takes effect.
1693          */
1694         if (ret == 0)
1695                 fw_core_initiate_bus_reset(&ohci->card, 1);
1696         else
1697                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1698                                   next_config_rom, next_config_rom_bus);
1699
1700         return ret;
1701 }
1702
1703 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1704 {
1705         struct fw_ohci *ohci = fw_ohci(card);
1706
1707         at_context_transmit(&ohci->at_request_ctx, packet);
1708 }
1709
1710 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1711 {
1712         struct fw_ohci *ohci = fw_ohci(card);
1713
1714         at_context_transmit(&ohci->at_response_ctx, packet);
1715 }
1716
1717 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1718 {
1719         struct fw_ohci *ohci = fw_ohci(card);
1720         struct context *ctx = &ohci->at_request_ctx;
1721         struct driver_data *driver_data = packet->driver_data;
1722         int ret = -ENOENT;
1723
1724         tasklet_disable(&ctx->tasklet);
1725
1726         if (packet->ack != 0)
1727                 goto out;
1728
1729         if (packet->payload_mapped)
1730                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1731                                  packet->payload_length, DMA_TO_DEVICE);
1732
1733         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1734         driver_data->packet = NULL;
1735         packet->ack = RCODE_CANCELLED;
1736         packet->callback(packet, &ohci->card, packet->ack);
1737         ret = 0;
1738  out:
1739         tasklet_enable(&ctx->tasklet);
1740
1741         return ret;
1742 }
1743
1744 static int ohci_enable_phys_dma(struct fw_card *card,
1745                                 int node_id, int generation)
1746 {
1747 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1748         return 0;
1749 #else
1750         struct fw_ohci *ohci = fw_ohci(card);
1751         unsigned long flags;
1752         int n, ret = 0;
1753
1754         /*
1755          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1756          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1757          */
1758
1759         spin_lock_irqsave(&ohci->lock, flags);
1760
1761         if (ohci->generation != generation) {
1762                 ret = -ESTALE;
1763                 goto out;
1764         }
1765
1766         /*
1767          * Note, if the node ID contains a non-local bus ID, physical DMA is
1768          * enabled for _all_ nodes on remote buses.
1769          */
1770
1771         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1772         if (n < 32)
1773                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1774         else
1775                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1776
1777         flush_writes(ohci);
1778  out:
1779         spin_unlock_irqrestore(&ohci->lock, flags);
1780
1781         return ret;
1782 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1783 }
1784
1785 static u32 cycle_timer_ticks(u32 cycle_timer)
1786 {
1787         u32 ticks;
1788
1789         ticks = cycle_timer & 0xfff;
1790         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1791         ticks += (3072 * 8000) * (cycle_timer >> 25);
1792
1793         return ticks;
1794 }
1795
1796 /*
1797  * Some controllers exhibit one or more of the following bugs when updating the
1798  * iso cycle timer register:
1799  *  - When the lowest six bits are wrapping around to zero, a read that happens
1800  *    at the same time will return garbage in the lowest ten bits.
1801  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1802  *    not incremented for about 60 ns.
1803  *  - Occasionally, the entire register reads zero.
1804  *
1805  * To catch these, we read the register three times and ensure that the
1806  * difference between each two consecutive reads is approximately the same, i.e.
1807  * less than twice the other.  Furthermore, any negative difference indicates an
1808  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1809  * execute, so we have enough precision to compute the ratio of the differences.)
1810  */
1811 static u32 ohci_get_cycle_time(struct fw_card *card)
1812 {
1813         struct fw_ohci *ohci = fw_ohci(card);
1814         u32 c0, c1, c2;
1815         u32 t0, t1, t2;
1816         s32 diff01, diff12;
1817         int i;
1818
1819         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1820
1821         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1822                 i = 0;
1823                 c1 = c2;
1824                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1825                 do {
1826                         c0 = c1;
1827                         c1 = c2;
1828                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1829                         t0 = cycle_timer_ticks(c0);
1830                         t1 = cycle_timer_ticks(c1);
1831                         t2 = cycle_timer_ticks(c2);
1832                         diff01 = t1 - t0;
1833                         diff12 = t2 - t1;
1834                 } while ((diff01 <= 0 || diff12 <= 0 ||
1835                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1836                          && i++ < 20);
1837         }
1838
1839         return c2;
1840 }
1841
1842 static void copy_iso_headers(struct iso_context *ctx, void *p)
1843 {
1844         int i = ctx->header_length;
1845
1846         if (i + ctx->base.header_size > PAGE_SIZE)
1847                 return;
1848
1849         /*
1850          * The iso header is byteswapped to little endian by
1851          * the controller, but the remaining header quadlets
1852          * are big endian.  We want to present all the headers
1853          * as big endian, so we have to swap the first quadlet.
1854          */
1855         if (ctx->base.header_size > 0)
1856                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1857         if (ctx->base.header_size > 4)
1858                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1859         if (ctx->base.header_size > 8)
1860                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1861         ctx->header_length += ctx->base.header_size;
1862 }
1863
1864 static int handle_ir_packet_per_buffer(struct context *context,
1865                                        struct descriptor *d,
1866                                        struct descriptor *last)
1867 {
1868         struct iso_context *ctx =
1869                 container_of(context, struct iso_context, context);
1870         struct descriptor *pd;
1871         __le32 *ir_header;
1872         void *p;
1873
1874         for (pd = d; pd <= last; pd++) {
1875                 if (pd->transfer_status)
1876                         break;
1877         }
1878         if (pd > last)
1879                 /* Descriptor(s) not done yet, stop iteration */
1880                 return 0;
1881
1882         p = last + 1;
1883         copy_iso_headers(ctx, p);
1884
1885         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1886                 ir_header = (__le32 *) p;
1887                 ctx->base.callback(&ctx->base,
1888                                    le32_to_cpu(ir_header[0]) & 0xffff,
1889                                    ctx->header_length, ctx->header,
1890                                    ctx->base.callback_data);
1891                 ctx->header_length = 0;
1892         }
1893
1894         return 1;
1895 }
1896
1897 static int handle_it_packet(struct context *context,
1898                             struct descriptor *d,
1899                             struct descriptor *last)
1900 {
1901         struct iso_context *ctx =
1902                 container_of(context, struct iso_context, context);
1903         int i;
1904         struct descriptor *pd;
1905
1906         for (pd = d; pd <= last; pd++)
1907                 if (pd->transfer_status)
1908                         break;
1909         if (pd > last)
1910                 /* Descriptor(s) not done yet, stop iteration */
1911                 return 0;
1912
1913         i = ctx->header_length;
1914         if (i + 4 < PAGE_SIZE) {
1915                 /* Present this value as big-endian to match the receive code */
1916                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1917                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1918                                 le16_to_cpu(pd->res_count));
1919                 ctx->header_length += 4;
1920         }
1921         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1922                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1923                                    ctx->header_length, ctx->header,
1924                                    ctx->base.callback_data);
1925                 ctx->header_length = 0;
1926         }
1927         return 1;
1928 }
1929
1930 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1931                                 int type, int channel, size_t header_size)
1932 {
1933         struct fw_ohci *ohci = fw_ohci(card);
1934         struct iso_context *ctx, *list;
1935         descriptor_callback_t callback;
1936         u64 *channels, dont_care = ~0ULL;
1937         u32 *mask, regs;
1938         unsigned long flags;
1939         int index, ret = -ENOMEM;
1940
1941         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1942                 channels = &dont_care;
1943                 mask = &ohci->it_context_mask;
1944                 list = ohci->it_context_list;
1945                 callback = handle_it_packet;
1946         } else {
1947                 channels = &ohci->ir_context_channels;
1948                 mask = &ohci->ir_context_mask;
1949                 list = ohci->ir_context_list;
1950                 callback = handle_ir_packet_per_buffer;
1951         }
1952
1953         spin_lock_irqsave(&ohci->lock, flags);
1954         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1955         if (index >= 0) {
1956                 *channels &= ~(1ULL << channel);
1957                 *mask &= ~(1 << index);
1958         }
1959         spin_unlock_irqrestore(&ohci->lock, flags);
1960
1961         if (index < 0)
1962                 return ERR_PTR(-EBUSY);
1963
1964         if (type == FW_ISO_CONTEXT_TRANSMIT)
1965                 regs = OHCI1394_IsoXmitContextBase(index);
1966         else
1967                 regs = OHCI1394_IsoRcvContextBase(index);
1968
1969         ctx = &list[index];
1970         memset(ctx, 0, sizeof(*ctx));
1971         ctx->header_length = 0;
1972         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1973         if (ctx->header == NULL)
1974                 goto out;
1975
1976         ret = context_init(&ctx->context, ohci, regs, callback);
1977         if (ret < 0)
1978                 goto out_with_header;
1979
1980         return &ctx->base;
1981
1982  out_with_header:
1983         free_page((unsigned long)ctx->header);
1984  out:
1985         spin_lock_irqsave(&ohci->lock, flags);
1986         *mask |= 1 << index;
1987         spin_unlock_irqrestore(&ohci->lock, flags);
1988
1989         return ERR_PTR(ret);
1990 }
1991
1992 static int ohci_start_iso(struct fw_iso_context *base,
1993                           s32 cycle, u32 sync, u32 tags)
1994 {
1995         struct iso_context *ctx = container_of(base, struct iso_context, base);
1996         struct fw_ohci *ohci = ctx->context.ohci;
1997         u32 control, match;
1998         int index;
1999
2000         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2001                 index = ctx - ohci->it_context_list;
2002                 match = 0;
2003                 if (cycle >= 0)
2004                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2005                                 (cycle & 0x7fff) << 16;
2006
2007                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2008                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2009                 context_run(&ctx->context, match);
2010         } else {
2011                 index = ctx - ohci->ir_context_list;
2012                 control = IR_CONTEXT_ISOCH_HEADER;
2013                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2014                 if (cycle >= 0) {
2015                         match |= (cycle & 0x07fff) << 12;
2016                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2017                 }
2018
2019                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2020                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2021                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2022                 context_run(&ctx->context, control);
2023         }
2024
2025         return 0;
2026 }
2027
2028 static int ohci_stop_iso(struct fw_iso_context *base)
2029 {
2030         struct fw_ohci *ohci = fw_ohci(base->card);
2031         struct iso_context *ctx = container_of(base, struct iso_context, base);
2032         int index;
2033
2034         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2035                 index = ctx - ohci->it_context_list;
2036                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2037         } else {
2038                 index = ctx - ohci->ir_context_list;
2039                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2040         }
2041         flush_writes(ohci);
2042         context_stop(&ctx->context);
2043
2044         return 0;
2045 }
2046
2047 static void ohci_free_iso_context(struct fw_iso_context *base)
2048 {
2049         struct fw_ohci *ohci = fw_ohci(base->card);
2050         struct iso_context *ctx = container_of(base, struct iso_context, base);
2051         unsigned long flags;
2052         int index;
2053
2054         ohci_stop_iso(base);
2055         context_release(&ctx->context);
2056         free_page((unsigned long)ctx->header);
2057
2058         spin_lock_irqsave(&ohci->lock, flags);
2059
2060         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2061                 index = ctx - ohci->it_context_list;
2062                 ohci->it_context_mask |= 1 << index;
2063         } else {
2064                 index = ctx - ohci->ir_context_list;
2065                 ohci->ir_context_mask |= 1 << index;
2066                 ohci->ir_context_channels |= 1ULL << base->channel;
2067         }
2068
2069         spin_unlock_irqrestore(&ohci->lock, flags);
2070 }
2071
2072 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2073                                    struct fw_iso_packet *packet,
2074                                    struct fw_iso_buffer *buffer,
2075                                    unsigned long payload)
2076 {
2077         struct iso_context *ctx = container_of(base, struct iso_context, base);
2078         struct descriptor *d, *last, *pd;
2079         struct fw_iso_packet *p;
2080         __le32 *header;
2081         dma_addr_t d_bus, page_bus;
2082         u32 z, header_z, payload_z, irq;
2083         u32 payload_index, payload_end_index, next_page_index;
2084         int page, end_page, i, length, offset;
2085
2086         p = packet;
2087         payload_index = payload;
2088
2089         if (p->skip)
2090                 z = 1;
2091         else
2092                 z = 2;
2093         if (p->header_length > 0)
2094                 z++;
2095
2096         /* Determine the first page the payload isn't contained in. */
2097         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2098         if (p->payload_length > 0)
2099                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2100         else
2101                 payload_z = 0;
2102
2103         z += payload_z;
2104
2105         /* Get header size in number of descriptors. */
2106         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2107
2108         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2109         if (d == NULL)
2110                 return -ENOMEM;
2111
2112         if (!p->skip) {
2113                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2114                 d[0].req_count = cpu_to_le16(8);
2115                 /*
2116                  * Link the skip address to this descriptor itself.  This causes
2117                  * a context to skip a cycle whenever lost cycles or FIFO
2118                  * overruns occur, without dropping the data.  The application
2119                  * should then decide whether this is an error condition or not.
2120                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2121                  */
2122                 d[0].branch_address = cpu_to_le32(d_bus | z);
2123
2124                 header = (__le32 *) &d[1];
2125                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2126                                         IT_HEADER_TAG(p->tag) |
2127                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2128                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2129                                         IT_HEADER_SPEED(ctx->base.speed));
2130                 header[1] =
2131                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2132                                                           p->payload_length));
2133         }
2134
2135         if (p->header_length > 0) {
2136                 d[2].req_count    = cpu_to_le16(p->header_length);
2137                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2138                 memcpy(&d[z], p->header, p->header_length);
2139         }
2140
2141         pd = d + z - payload_z;
2142         payload_end_index = payload_index + p->payload_length;
2143         for (i = 0; i < payload_z; i++) {
2144                 page               = payload_index >> PAGE_SHIFT;
2145                 offset             = payload_index & ~PAGE_MASK;
2146                 next_page_index    = (page + 1) << PAGE_SHIFT;
2147                 length             =
2148                         min(next_page_index, payload_end_index) - payload_index;
2149                 pd[i].req_count    = cpu_to_le16(length);
2150
2151                 page_bus = page_private(buffer->pages[page]);
2152                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2153
2154                 payload_index += length;
2155         }
2156
2157         if (p->interrupt)
2158                 irq = DESCRIPTOR_IRQ_ALWAYS;
2159         else
2160                 irq = DESCRIPTOR_NO_IRQ;
2161
2162         last = z == 2 ? d : d + z - 1;
2163         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2164                                      DESCRIPTOR_STATUS |
2165                                      DESCRIPTOR_BRANCH_ALWAYS |
2166                                      irq);
2167
2168         context_append(&ctx->context, d, z, header_z);
2169
2170         return 0;
2171 }
2172
2173 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2174                                         struct fw_iso_packet *packet,
2175                                         struct fw_iso_buffer *buffer,
2176                                         unsigned long payload)
2177 {
2178         struct iso_context *ctx = container_of(base, struct iso_context, base);
2179         struct descriptor *d, *pd;
2180         struct fw_iso_packet *p = packet;
2181         dma_addr_t d_bus, page_bus;
2182         u32 z, header_z, rest;
2183         int i, j, length;
2184         int page, offset, packet_count, header_size, payload_per_buffer;
2185
2186         /*
2187          * The OHCI controller puts the isochronous header and trailer in the
2188          * buffer, so we need at least 8 bytes.
2189          */
2190         packet_count = p->header_length / ctx->base.header_size;
2191         header_size  = max(ctx->base.header_size, (size_t)8);
2192
2193         /* Get header size in number of descriptors. */
2194         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2195         page     = payload >> PAGE_SHIFT;
2196         offset   = payload & ~PAGE_MASK;
2197         payload_per_buffer = p->payload_length / packet_count;
2198
2199         for (i = 0; i < packet_count; i++) {
2200                 /* d points to the header descriptor */
2201                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2202                 d = context_get_descriptors(&ctx->context,
2203                                 z + header_z, &d_bus);
2204                 if (d == NULL)
2205                         return -ENOMEM;
2206
2207                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2208                                               DESCRIPTOR_INPUT_MORE);
2209                 if (p->skip && i == 0)
2210                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2211                 d->req_count    = cpu_to_le16(header_size);
2212                 d->res_count    = d->req_count;
2213                 d->transfer_status = 0;
2214                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2215
2216                 rest = payload_per_buffer;
2217                 pd = d;
2218                 for (j = 1; j < z; j++) {
2219                         pd++;
2220                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2221                                                   DESCRIPTOR_INPUT_MORE);
2222
2223                         if (offset + rest < PAGE_SIZE)
2224                                 length = rest;
2225                         else
2226                                 length = PAGE_SIZE - offset;
2227                         pd->req_count = cpu_to_le16(length);
2228                         pd->res_count = pd->req_count;
2229                         pd->transfer_status = 0;
2230
2231                         page_bus = page_private(buffer->pages[page]);
2232                         pd->data_address = cpu_to_le32(page_bus + offset);
2233
2234                         offset = (offset + length) & ~PAGE_MASK;
2235                         rest -= length;
2236                         if (offset == 0)
2237                                 page++;
2238                 }
2239                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2240                                           DESCRIPTOR_INPUT_LAST |
2241                                           DESCRIPTOR_BRANCH_ALWAYS);
2242                 if (p->interrupt && i == packet_count - 1)
2243                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2244
2245                 context_append(&ctx->context, d, z, header_z);
2246         }
2247
2248         return 0;
2249 }
2250
2251 static int ohci_queue_iso(struct fw_iso_context *base,
2252                           struct fw_iso_packet *packet,
2253                           struct fw_iso_buffer *buffer,
2254                           unsigned long payload)
2255 {
2256         struct iso_context *ctx = container_of(base, struct iso_context, base);
2257         unsigned long flags;
2258         int ret;
2259
2260         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2261         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2262                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2263         else
2264                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2265                                                         buffer, payload);
2266         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2267
2268         return ret;
2269 }
2270
2271 static const struct fw_card_driver ohci_driver = {
2272         .enable                 = ohci_enable,
2273         .update_phy_reg         = ohci_update_phy_reg,
2274         .set_config_rom         = ohci_set_config_rom,
2275         .send_request           = ohci_send_request,
2276         .send_response          = ohci_send_response,
2277         .cancel_packet          = ohci_cancel_packet,
2278         .enable_phys_dma        = ohci_enable_phys_dma,
2279         .get_cycle_time         = ohci_get_cycle_time,
2280
2281         .allocate_iso_context   = ohci_allocate_iso_context,
2282         .free_iso_context       = ohci_free_iso_context,
2283         .queue_iso              = ohci_queue_iso,
2284         .start_iso              = ohci_start_iso,
2285         .stop_iso               = ohci_stop_iso,
2286 };
2287
2288 #ifdef CONFIG_PPC_PMAC
2289 static void ohci_pmac_on(struct pci_dev *dev)
2290 {
2291         if (machine_is(powermac)) {
2292                 struct device_node *ofn = pci_device_to_OF_node(dev);
2293
2294                 if (ofn) {
2295                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2296                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2297                 }
2298         }
2299 }
2300
2301 static void ohci_pmac_off(struct pci_dev *dev)
2302 {
2303         if (machine_is(powermac)) {
2304                 struct device_node *ofn = pci_device_to_OF_node(dev);
2305
2306                 if (ofn) {
2307                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2308                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2309                 }
2310         }
2311 }
2312 #else
2313 #define ohci_pmac_on(dev)
2314 #define ohci_pmac_off(dev)
2315 #endif /* CONFIG_PPC_PMAC */
2316
2317 static int __devinit pci_probe(struct pci_dev *dev,
2318                                const struct pci_device_id *ent)
2319 {
2320         struct fw_ohci *ohci;
2321         u32 bus_options, max_receive, link_speed, version;
2322         u64 guid;
2323         int i, err;
2324         size_t size;
2325
2326         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2327         if (ohci == NULL) {
2328                 err = -ENOMEM;
2329                 goto fail;
2330         }
2331
2332         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2333
2334         ohci_pmac_on(dev);
2335
2336         err = pci_enable_device(dev);
2337         if (err) {
2338                 fw_error("Failed to enable OHCI hardware\n");
2339                 goto fail_free;
2340         }
2341
2342         pci_set_master(dev);
2343         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2344         pci_set_drvdata(dev, ohci);
2345
2346         spin_lock_init(&ohci->lock);
2347
2348         tasklet_init(&ohci->bus_reset_tasklet,
2349                      bus_reset_tasklet, (unsigned long)ohci);
2350
2351         err = pci_request_region(dev, 0, ohci_driver_name);
2352         if (err) {
2353                 fw_error("MMIO resource unavailable\n");
2354                 goto fail_disable;
2355         }
2356
2357         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2358         if (ohci->registers == NULL) {
2359                 fw_error("Failed to remap registers\n");
2360                 err = -ENXIO;
2361                 goto fail_iomem;
2362         }
2363
2364         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2365
2366         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2367                 if (ohci_quirks[i].vendor == dev->vendor &&
2368                     (ohci_quirks[i].device == dev->device ||
2369                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2370                         ohci->quirks = ohci_quirks[i].flags;
2371                         break;
2372                 }
2373
2374         ar_context_init(&ohci->ar_request_ctx, ohci,
2375                         OHCI1394_AsReqRcvContextControlSet);
2376
2377         ar_context_init(&ohci->ar_response_ctx, ohci,
2378                         OHCI1394_AsRspRcvContextControlSet);
2379
2380         context_init(&ohci->at_request_ctx, ohci,
2381                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2382
2383         context_init(&ohci->at_response_ctx, ohci,
2384                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2385
2386         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2387         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2388         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2389         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2390         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2391
2392         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2393         ohci->ir_context_channels = ~0ULL;
2394         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2395         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2396         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2397         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2398
2399         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2400                 err = -ENOMEM;
2401                 goto fail_contexts;
2402         }
2403
2404         /* self-id dma buffer allocation */
2405         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2406                                                SELF_ID_BUF_SIZE,
2407                                                &ohci->self_id_bus,
2408                                                GFP_KERNEL);
2409         if (ohci->self_id_cpu == NULL) {
2410                 err = -ENOMEM;
2411                 goto fail_contexts;
2412         }
2413
2414         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2415         max_receive = (bus_options >> 12) & 0xf;
2416         link_speed = bus_options & 0x7;
2417         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2418                 reg_read(ohci, OHCI1394_GUIDLo);
2419
2420         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2421         if (err)
2422                 goto fail_self_id;
2423
2424         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2425                   dev_name(&dev->dev), version >> 16, version & 0xff);
2426
2427         return 0;
2428
2429  fail_self_id:
2430         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2431                           ohci->self_id_cpu, ohci->self_id_bus);
2432  fail_contexts:
2433         kfree(ohci->ir_context_list);
2434         kfree(ohci->it_context_list);
2435         context_release(&ohci->at_response_ctx);
2436         context_release(&ohci->at_request_ctx);
2437         ar_context_release(&ohci->ar_response_ctx);
2438         ar_context_release(&ohci->ar_request_ctx);
2439         pci_iounmap(dev, ohci->registers);
2440  fail_iomem:
2441         pci_release_region(dev, 0);
2442  fail_disable:
2443         pci_disable_device(dev);
2444  fail_free:
2445         kfree(&ohci->card);
2446         ohci_pmac_off(dev);
2447  fail:
2448         if (err == -ENOMEM)
2449                 fw_error("Out of memory\n");
2450
2451         return err;
2452 }
2453
2454 static void pci_remove(struct pci_dev *dev)
2455 {
2456         struct fw_ohci *ohci;
2457
2458         ohci = pci_get_drvdata(dev);
2459         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2460         flush_writes(ohci);
2461         fw_core_remove_card(&ohci->card);
2462
2463         /*
2464          * FIXME: Fail all pending packets here, now that the upper
2465          * layers can't queue any more.
2466          */
2467
2468         software_reset(ohci);
2469         free_irq(dev->irq, ohci);
2470
2471         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2472                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2473                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2474         if (ohci->config_rom)
2475                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2476                                   ohci->config_rom, ohci->config_rom_bus);
2477         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2478                           ohci->self_id_cpu, ohci->self_id_bus);
2479         ar_context_release(&ohci->ar_request_ctx);
2480         ar_context_release(&ohci->ar_response_ctx);
2481         context_release(&ohci->at_request_ctx);
2482         context_release(&ohci->at_response_ctx);
2483         kfree(ohci->it_context_list);
2484         kfree(ohci->ir_context_list);
2485         pci_iounmap(dev, ohci->registers);
2486         pci_release_region(dev, 0);
2487         pci_disable_device(dev);
2488         kfree(&ohci->card);
2489         ohci_pmac_off(dev);
2490
2491         fw_notify("Removed fw-ohci device.\n");
2492 }
2493
2494 #ifdef CONFIG_PM
2495 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2496 {
2497         struct fw_ohci *ohci = pci_get_drvdata(dev);
2498         int err;
2499
2500         software_reset(ohci);
2501         free_irq(dev->irq, ohci);
2502         err = pci_save_state(dev);
2503         if (err) {
2504                 fw_error("pci_save_state failed\n");
2505                 return err;
2506         }
2507         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2508         if (err)
2509                 fw_error("pci_set_power_state failed with %d\n", err);
2510         ohci_pmac_off(dev);
2511
2512         return 0;
2513 }
2514
2515 static int pci_resume(struct pci_dev *dev)
2516 {
2517         struct fw_ohci *ohci = pci_get_drvdata(dev);
2518         int err;
2519
2520         ohci_pmac_on(dev);
2521         pci_set_power_state(dev, PCI_D0);
2522         pci_restore_state(dev);
2523         err = pci_enable_device(dev);
2524         if (err) {
2525                 fw_error("pci_enable_device failed\n");
2526                 return err;
2527         }
2528
2529         return ohci_enable(&ohci->card, NULL, 0);
2530 }
2531 #endif
2532
2533 static const struct pci_device_id pci_table[] = {
2534         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2535         { }
2536 };
2537
2538 MODULE_DEVICE_TABLE(pci, pci_table);
2539
2540 static struct pci_driver fw_ohci_pci_driver = {
2541         .name           = ohci_driver_name,
2542         .id_table       = pci_table,
2543         .probe          = pci_probe,
2544         .remove         = pci_remove,
2545 #ifdef CONFIG_PM
2546         .resume         = pci_resume,
2547         .suspend        = pci_suspend,
2548 #endif
2549 };
2550
2551 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2552 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2553 MODULE_LICENSE("GPL");
2554
2555 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2556 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2557 MODULE_ALIAS("ohci1394");
2558 #endif
2559
2560 static int __init fw_ohci_init(void)
2561 {
2562         return pci_register_driver(&fw_ohci_pci_driver);
2563 }
2564
2565 static void __exit fw_ohci_cleanup(void)
2566 {
2567         pci_unregister_driver(&fw_ohci_pci_driver);
2568 }
2569
2570 module_init(fw_ohci_init);
2571 module_exit(fw_ohci_cleanup);