2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
75 __le32 branch_address;
77 __le16 transfer_status;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
96 struct page *pages[AR_BUFFERS];
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
101 unsigned int last_buffer_index;
103 struct tasklet_struct tasklet;
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
121 struct descriptor buffer[0];
125 struct fw_ohci *ohci;
127 int total_allocation;
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
137 struct list_head buffer_list;
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
143 struct descriptor_buffer *buffer_tail;
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
149 struct descriptor *last;
152 * The last descriptor in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
155 struct descriptor *prev;
157 descriptor_callback_t callback;
159 struct tasklet_struct tasklet;
162 #define IT_HEADER_SY(v) ((v) << 0)
163 #define IT_HEADER_TCODE(v) ((v) << 4)
164 #define IT_HEADER_CHANNEL(v) ((v) << 8)
165 #define IT_HEADER_TAG(v) ((v) << 14)
166 #define IT_HEADER_SPEED(v) ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
170 struct fw_iso_context base;
171 struct context context;
173 size_t header_length;
174 unsigned long flushing_completions;
182 #define CONFIG_ROM_SIZE 1024
187 __iomem char *registers;
190 int request_generation; /* for timestamping incoming requests */
192 unsigned int pri_req_max;
194 bool bus_time_running;
196 bool csr_state_setclear_abdicate;
200 * Spinlock for accessing fw_ohci data. Never call out of
201 * this driver with this lock held.
205 struct mutex phy_reg_mutex;
208 dma_addr_t misc_buffer_bus;
210 struct ar_context ar_request_ctx;
211 struct ar_context ar_response_ctx;
212 struct context at_request_ctx;
213 struct context at_response_ctx;
215 u32 it_context_support;
216 u32 it_context_mask; /* unoccupied IT contexts */
217 struct iso_context *it_context_list;
218 u64 ir_context_channels; /* unoccupied channels */
219 u32 ir_context_support;
220 u32 ir_context_mask; /* unoccupied IR contexts */
221 struct iso_context *ir_context_list;
222 u64 mc_channels; /* channels in use by the multichannel IR context */
226 dma_addr_t config_rom_bus;
227 __be32 *next_config_rom;
228 dma_addr_t next_config_rom_bus;
232 dma_addr_t self_id_bus;
233 struct work_struct bus_reset_work;
235 u32 self_id_buffer[512];
238 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
240 return container_of(card, struct fw_ohci, card);
243 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
244 #define IR_CONTEXT_BUFFER_FILL 0x80000000
245 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
246 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
247 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
248 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
250 #define CONTEXT_RUN 0x8000
251 #define CONTEXT_WAKE 0x1000
252 #define CONTEXT_DEAD 0x0800
253 #define CONTEXT_ACTIVE 0x0400
255 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
256 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
257 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
259 #define OHCI1394_REGISTER_SIZE 0x800
260 #define OHCI1394_PCI_HCI_Control 0x40
261 #define SELF_ID_BUF_SIZE 0x800
262 #define OHCI_TCODE_PHY_PACKET 0x0e
263 #define OHCI_VERSION_1_1 0x010010
265 static char ohci_driver_name[] = KBUILD_MODNAME;
267 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
268 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
269 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
270 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
271 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
272 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
273 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
275 #define QUIRK_CYCLE_TIMER 1
276 #define QUIRK_RESET_PACKET 2
277 #define QUIRK_BE_HEADERS 4
278 #define QUIRK_NO_1394A 8
279 #define QUIRK_NO_MSI 16
280 #define QUIRK_TI_SLLZ059 32
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284 unsigned short vendor, device, revision, flags;
286 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
289 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
292 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
295 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
298 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
301 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
304 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
307 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
308 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
310 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
311 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
313 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
314 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
316 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
317 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
319 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
322 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
323 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
326 /* This overrides anything that was found in ohci_quirks[]. */
327 static int param_quirks;
328 module_param_named(quirks, param_quirks, int, 0644);
329 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
330 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
331 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
332 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
333 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
334 ", disable MSI = " __stringify(QUIRK_NO_MSI)
335 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
338 #define OHCI_PARAM_DEBUG_AT_AR 1
339 #define OHCI_PARAM_DEBUG_SELFIDS 2
340 #define OHCI_PARAM_DEBUG_IRQS 4
341 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
343 static int param_debug;
344 module_param_named(debug, param_debug, int, 0644);
345 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
346 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
347 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
348 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
349 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
350 ", or a combination, or all = -1)");
352 static void log_irqs(struct fw_ohci *ohci, u32 evt)
354 if (likely(!(param_debug &
355 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
358 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
359 !(evt & OHCI1394_busReset))
362 dev_notice(ohci->card.device,
363 "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
364 evt & OHCI1394_selfIDComplete ? " selfID" : "",
365 evt & OHCI1394_RQPkt ? " AR_req" : "",
366 evt & OHCI1394_RSPkt ? " AR_resp" : "",
367 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
368 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
369 evt & OHCI1394_isochRx ? " IR" : "",
370 evt & OHCI1394_isochTx ? " IT" : "",
371 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
372 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
373 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
374 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
375 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
376 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
377 evt & OHCI1394_busReset ? " busReset" : "",
378 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
379 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
380 OHCI1394_respTxComplete | OHCI1394_isochRx |
381 OHCI1394_isochTx | OHCI1394_postedWriteErr |
382 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
383 OHCI1394_cycleInconsistent |
384 OHCI1394_regAccessFail | OHCI1394_busReset)
388 static const char *speed[] = {
389 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
391 static const char *power[] = {
392 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
393 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
395 static const char port[] = { '.', '-', 'p', 'c', };
397 static char _p(u32 *s, int shift)
399 return port[*s >> shift & 3];
402 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
406 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
409 dev_notice(ohci->card.device,
410 "%d selfIDs, generation %d, local node ID %04x\n",
411 self_id_count, generation, ohci->node_id);
413 for (s = ohci->self_id_buffer; self_id_count--; ++s)
414 if ((*s & 1 << 23) == 0)
415 dev_notice(ohci->card.device,
416 "selfID 0: %08x, phy %d [%c%c%c] "
417 "%s gc=%d %s %s%s%s\n",
418 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
419 speed[*s >> 14 & 3], *s >> 16 & 63,
420 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
421 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
423 dev_notice(ohci->card.device,
424 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
426 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
427 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
430 static const char *evts[] = {
431 [0x00] = "evt_no_status", [0x01] = "-reserved-",
432 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
433 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
434 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
435 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
436 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
437 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
438 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
439 [0x10] = "-reserved-", [0x11] = "ack_complete",
440 [0x12] = "ack_pending ", [0x13] = "-reserved-",
441 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
442 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
443 [0x18] = "-reserved-", [0x19] = "-reserved-",
444 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
445 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
446 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
447 [0x20] = "pending/cancelled",
449 static const char *tcodes[] = {
450 [0x0] = "QW req", [0x1] = "BW req",
451 [0x2] = "W resp", [0x3] = "-reserved-",
452 [0x4] = "QR req", [0x5] = "BR req",
453 [0x6] = "QR resp", [0x7] = "BR resp",
454 [0x8] = "cycle start", [0x9] = "Lk req",
455 [0xa] = "async stream packet", [0xb] = "Lk resp",
456 [0xc] = "-reserved-", [0xd] = "-reserved-",
457 [0xe] = "link internal", [0xf] = "-reserved-",
460 static void log_ar_at_event(struct fw_ohci *ohci,
461 char dir, int speed, u32 *header, int evt)
463 int tcode = header[0] >> 4 & 0xf;
466 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
469 if (unlikely(evt >= ARRAY_SIZE(evts)))
472 if (evt == OHCI1394_evt_bus_reset) {
473 dev_notice(ohci->card.device,
474 "A%c evt_bus_reset, generation %d\n",
475 dir, (header[2] >> 16) & 0xff);
480 case 0x0: case 0x6: case 0x8:
481 snprintf(specific, sizeof(specific), " = %08x",
482 be32_to_cpu((__force __be32)header[3]));
484 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
485 snprintf(specific, sizeof(specific), " %x,%x",
486 header[3] >> 16, header[3] & 0xffff);
494 dev_notice(ohci->card.device,
496 dir, evts[evt], tcodes[tcode]);
499 dev_notice(ohci->card.device,
500 "A%c %s, PHY %08x %08x\n",
501 dir, evts[evt], header[1], header[2]);
503 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
504 dev_notice(ohci->card.device,
505 "A%c spd %x tl %02x, "
508 dir, speed, header[0] >> 10 & 0x3f,
509 header[1] >> 16, header[0] >> 16, evts[evt],
510 tcodes[tcode], header[1] & 0xffff, header[2], specific);
513 dev_notice(ohci->card.device,
514 "A%c spd %x tl %02x, "
517 dir, speed, header[0] >> 10 & 0x3f,
518 header[1] >> 16, header[0] >> 16, evts[evt],
519 tcodes[tcode], specific);
523 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
525 writel(data, ohci->registers + offset);
528 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
530 return readl(ohci->registers + offset);
533 static inline void flush_writes(const struct fw_ohci *ohci)
535 /* Do a dummy read to flush writes. */
536 reg_read(ohci, OHCI1394_Version);
540 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
541 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
542 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
543 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
545 static int read_phy_reg(struct fw_ohci *ohci, int addr)
550 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
551 for (i = 0; i < 3 + 100; i++) {
552 val = reg_read(ohci, OHCI1394_PhyControl);
554 return -ENODEV; /* Card was ejected. */
556 if (val & OHCI1394_PhyControl_ReadDone)
557 return OHCI1394_PhyControl_ReadData(val);
560 * Try a few times without waiting. Sleeping is necessary
561 * only when the link/PHY interface is busy.
566 dev_err(ohci->card.device, "failed to read phy reg\n");
571 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
575 reg_write(ohci, OHCI1394_PhyControl,
576 OHCI1394_PhyControl_Write(addr, val));
577 for (i = 0; i < 3 + 100; i++) {
578 val = reg_read(ohci, OHCI1394_PhyControl);
580 return -ENODEV; /* Card was ejected. */
582 if (!(val & OHCI1394_PhyControl_WritePending))
588 dev_err(ohci->card.device, "failed to write phy reg\n");
593 static int update_phy_reg(struct fw_ohci *ohci, int addr,
594 int clear_bits, int set_bits)
596 int ret = read_phy_reg(ohci, addr);
601 * The interrupt status bits are cleared by writing a one bit.
602 * Avoid clearing them unless explicitly requested in set_bits.
605 clear_bits |= PHY_INT_STATUS_BITS;
607 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
610 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
614 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
618 return read_phy_reg(ohci, addr);
621 static int ohci_read_phy_reg(struct fw_card *card, int addr)
623 struct fw_ohci *ohci = fw_ohci(card);
626 mutex_lock(&ohci->phy_reg_mutex);
627 ret = read_phy_reg(ohci, addr);
628 mutex_unlock(&ohci->phy_reg_mutex);
633 static int ohci_update_phy_reg(struct fw_card *card, int addr,
634 int clear_bits, int set_bits)
636 struct fw_ohci *ohci = fw_ohci(card);
639 mutex_lock(&ohci->phy_reg_mutex);
640 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
641 mutex_unlock(&ohci->phy_reg_mutex);
646 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
648 return page_private(ctx->pages[i]);
651 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
653 struct descriptor *d;
655 d = &ctx->descriptors[index];
656 d->branch_address &= cpu_to_le32(~0xf);
657 d->res_count = cpu_to_le16(PAGE_SIZE);
658 d->transfer_status = 0;
660 wmb(); /* finish init of new descriptors before branch_address update */
661 d = &ctx->descriptors[ctx->last_buffer_index];
662 d->branch_address |= cpu_to_le32(1);
664 ctx->last_buffer_index = index;
666 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
669 static void ar_context_release(struct ar_context *ctx)
674 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
676 for (i = 0; i < AR_BUFFERS; i++)
678 dma_unmap_page(ctx->ohci->card.device,
679 ar_buffer_bus(ctx, i),
680 PAGE_SIZE, DMA_FROM_DEVICE);
681 __free_page(ctx->pages[i]);
685 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
687 struct fw_ohci *ohci = ctx->ohci;
689 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
690 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
693 dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
696 /* FIXME: restart? */
699 static inline unsigned int ar_next_buffer_index(unsigned int index)
701 return (index + 1) % AR_BUFFERS;
704 static inline unsigned int ar_prev_buffer_index(unsigned int index)
706 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
709 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
711 return ar_next_buffer_index(ctx->last_buffer_index);
715 * We search for the buffer that contains the last AR packet DMA data written
718 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
719 unsigned int *buffer_offset)
721 unsigned int i, next_i, last = ctx->last_buffer_index;
722 __le16 res_count, next_res_count;
724 i = ar_first_buffer_index(ctx);
725 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
727 /* A buffer that is not yet completely filled must be the last one. */
728 while (i != last && res_count == 0) {
730 /* Peek at the next descriptor. */
731 next_i = ar_next_buffer_index(i);
732 rmb(); /* read descriptors in order */
733 next_res_count = ACCESS_ONCE(
734 ctx->descriptors[next_i].res_count);
736 * If the next descriptor is still empty, we must stop at this
739 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
741 * The exception is when the DMA data for one packet is
742 * split over three buffers; in this case, the middle
743 * buffer's descriptor might be never updated by the
744 * controller and look still empty, and we have to peek
747 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
748 next_i = ar_next_buffer_index(next_i);
750 next_res_count = ACCESS_ONCE(
751 ctx->descriptors[next_i].res_count);
752 if (next_res_count != cpu_to_le16(PAGE_SIZE))
753 goto next_buffer_is_active;
759 next_buffer_is_active:
761 res_count = next_res_count;
764 rmb(); /* read res_count before the DMA data */
766 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
767 if (*buffer_offset > PAGE_SIZE) {
769 ar_context_abort(ctx, "corrupted descriptor");
775 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
776 unsigned int end_buffer_index,
777 unsigned int end_buffer_offset)
781 i = ar_first_buffer_index(ctx);
782 while (i != end_buffer_index) {
783 dma_sync_single_for_cpu(ctx->ohci->card.device,
784 ar_buffer_bus(ctx, i),
785 PAGE_SIZE, DMA_FROM_DEVICE);
786 i = ar_next_buffer_index(i);
788 if (end_buffer_offset > 0)
789 dma_sync_single_for_cpu(ctx->ohci->card.device,
790 ar_buffer_bus(ctx, i),
791 end_buffer_offset, DMA_FROM_DEVICE);
794 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
795 #define cond_le32_to_cpu(v) \
796 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
798 #define cond_le32_to_cpu(v) le32_to_cpu(v)
801 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
803 struct fw_ohci *ohci = ctx->ohci;
805 u32 status, length, tcode;
808 p.header[0] = cond_le32_to_cpu(buffer[0]);
809 p.header[1] = cond_le32_to_cpu(buffer[1]);
810 p.header[2] = cond_le32_to_cpu(buffer[2]);
812 tcode = (p.header[0] >> 4) & 0x0f;
814 case TCODE_WRITE_QUADLET_REQUEST:
815 case TCODE_READ_QUADLET_RESPONSE:
816 p.header[3] = (__force __u32) buffer[3];
817 p.header_length = 16;
818 p.payload_length = 0;
821 case TCODE_READ_BLOCK_REQUEST :
822 p.header[3] = cond_le32_to_cpu(buffer[3]);
823 p.header_length = 16;
824 p.payload_length = 0;
827 case TCODE_WRITE_BLOCK_REQUEST:
828 case TCODE_READ_BLOCK_RESPONSE:
829 case TCODE_LOCK_REQUEST:
830 case TCODE_LOCK_RESPONSE:
831 p.header[3] = cond_le32_to_cpu(buffer[3]);
832 p.header_length = 16;
833 p.payload_length = p.header[3] >> 16;
834 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
835 ar_context_abort(ctx, "invalid packet length");
840 case TCODE_WRITE_RESPONSE:
841 case TCODE_READ_QUADLET_REQUEST:
842 case OHCI_TCODE_PHY_PACKET:
843 p.header_length = 12;
844 p.payload_length = 0;
848 ar_context_abort(ctx, "invalid tcode");
852 p.payload = (void *) buffer + p.header_length;
854 /* FIXME: What to do about evt_* errors? */
855 length = (p.header_length + p.payload_length + 3) / 4;
856 status = cond_le32_to_cpu(buffer[length]);
857 evt = (status >> 16) & 0x1f;
860 p.speed = (status >> 21) & 0x7;
861 p.timestamp = status & 0xffff;
862 p.generation = ohci->request_generation;
864 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
867 * Several controllers, notably from NEC and VIA, forget to
868 * write ack_complete status at PHY packet reception.
870 if (evt == OHCI1394_evt_no_status &&
871 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
872 p.ack = ACK_COMPLETE;
875 * The OHCI bus reset handler synthesizes a PHY packet with
876 * the new generation number when a bus reset happens (see
877 * section 8.4.2.3). This helps us determine when a request
878 * was received and make sure we send the response in the same
879 * generation. We only need this for requests; for responses
880 * we use the unique tlabel for finding the matching
883 * Alas some chips sometimes emit bus reset packets with a
884 * wrong generation. We set the correct generation for these
885 * at a slightly incorrect time (in bus_reset_work).
887 if (evt == OHCI1394_evt_bus_reset) {
888 if (!(ohci->quirks & QUIRK_RESET_PACKET))
889 ohci->request_generation = (p.header[2] >> 16) & 0xff;
890 } else if (ctx == &ohci->ar_request_ctx) {
891 fw_core_handle_request(&ohci->card, &p);
893 fw_core_handle_response(&ohci->card, &p);
896 return buffer + length + 1;
899 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
904 next = handle_ar_packet(ctx, p);
913 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
917 i = ar_first_buffer_index(ctx);
918 while (i != end_buffer) {
919 dma_sync_single_for_device(ctx->ohci->card.device,
920 ar_buffer_bus(ctx, i),
921 PAGE_SIZE, DMA_FROM_DEVICE);
922 ar_context_link_page(ctx, i);
923 i = ar_next_buffer_index(i);
927 static void ar_context_tasklet(unsigned long data)
929 struct ar_context *ctx = (struct ar_context *)data;
930 unsigned int end_buffer_index, end_buffer_offset;
937 end_buffer_index = ar_search_last_active_buffer(ctx,
939 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
940 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
942 if (end_buffer_index < ar_first_buffer_index(ctx)) {
944 * The filled part of the overall buffer wraps around; handle
945 * all packets up to the buffer end here. If the last packet
946 * wraps around, its tail will be visible after the buffer end
947 * because the buffer start pages are mapped there again.
949 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
950 p = handle_ar_packets(ctx, p, buffer_end);
953 /* adjust p to point back into the actual buffer */
954 p -= AR_BUFFERS * PAGE_SIZE;
957 p = handle_ar_packets(ctx, p, end);
960 ar_context_abort(ctx, "inconsistent descriptor");
965 ar_recycle_buffers(ctx, end_buffer_index);
973 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
974 unsigned int descriptors_offset, u32 regs)
978 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
979 struct descriptor *d;
983 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
985 for (i = 0; i < AR_BUFFERS; i++) {
986 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
989 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
990 0, PAGE_SIZE, DMA_FROM_DEVICE);
991 if (dma_mapping_error(ohci->card.device, dma_addr)) {
992 __free_page(ctx->pages[i]);
993 ctx->pages[i] = NULL;
996 set_page_private(ctx->pages[i], dma_addr);
999 for (i = 0; i < AR_BUFFERS; i++)
1000 pages[i] = ctx->pages[i];
1001 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1002 pages[AR_BUFFERS + i] = ctx->pages[i];
1003 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1008 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1009 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1011 for (i = 0; i < AR_BUFFERS; i++) {
1012 d = &ctx->descriptors[i];
1013 d->req_count = cpu_to_le16(PAGE_SIZE);
1014 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1016 DESCRIPTOR_BRANCH_ALWAYS);
1017 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1018 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1019 ar_next_buffer_index(i) * sizeof(struct descriptor));
1025 ar_context_release(ctx);
1030 static void ar_context_run(struct ar_context *ctx)
1034 for (i = 0; i < AR_BUFFERS; i++)
1035 ar_context_link_page(ctx, i);
1037 ctx->pointer = ctx->buffer;
1039 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1040 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1043 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1047 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1049 /* figure out which descriptor the branch address goes in */
1050 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1056 static void context_tasklet(unsigned long data)
1058 struct context *ctx = (struct context *) data;
1059 struct descriptor *d, *last;
1062 struct descriptor_buffer *desc;
1064 desc = list_entry(ctx->buffer_list.next,
1065 struct descriptor_buffer, list);
1067 while (last->branch_address != 0) {
1068 struct descriptor_buffer *old_desc = desc;
1069 address = le32_to_cpu(last->branch_address);
1072 ctx->current_bus = address;
1074 /* If the branch address points to a buffer outside of the
1075 * current buffer, advance to the next buffer. */
1076 if (address < desc->buffer_bus ||
1077 address >= desc->buffer_bus + desc->used)
1078 desc = list_entry(desc->list.next,
1079 struct descriptor_buffer, list);
1080 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1081 last = find_branch_descriptor(d, z);
1083 if (!ctx->callback(ctx, d, last))
1086 if (old_desc != desc) {
1087 /* If we've advanced to the next buffer, move the
1088 * previous buffer to the free list. */
1089 unsigned long flags;
1091 spin_lock_irqsave(&ctx->ohci->lock, flags);
1092 list_move_tail(&old_desc->list, &ctx->buffer_list);
1093 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1100 * Allocate a new buffer and add it to the list of free buffers for this
1101 * context. Must be called with ohci->lock held.
1103 static int context_add_buffer(struct context *ctx)
1105 struct descriptor_buffer *desc;
1106 dma_addr_t uninitialized_var(bus_addr);
1110 * 16MB of descriptors should be far more than enough for any DMA
1111 * program. This will catch run-away userspace or DoS attacks.
1113 if (ctx->total_allocation >= 16*1024*1024)
1116 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1117 &bus_addr, GFP_ATOMIC);
1121 offset = (void *)&desc->buffer - (void *)desc;
1122 desc->buffer_size = PAGE_SIZE - offset;
1123 desc->buffer_bus = bus_addr + offset;
1126 list_add_tail(&desc->list, &ctx->buffer_list);
1127 ctx->total_allocation += PAGE_SIZE;
1132 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1133 u32 regs, descriptor_callback_t callback)
1137 ctx->total_allocation = 0;
1139 INIT_LIST_HEAD(&ctx->buffer_list);
1140 if (context_add_buffer(ctx) < 0)
1143 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1144 struct descriptor_buffer, list);
1146 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1147 ctx->callback = callback;
1150 * We put a dummy descriptor in the buffer that has a NULL
1151 * branch address and looks like it's been sent. That way we
1152 * have a descriptor to append DMA programs to.
1154 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1155 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1156 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1157 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1158 ctx->last = ctx->buffer_tail->buffer;
1159 ctx->prev = ctx->buffer_tail->buffer;
1164 static void context_release(struct context *ctx)
1166 struct fw_card *card = &ctx->ohci->card;
1167 struct descriptor_buffer *desc, *tmp;
1169 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1170 dma_free_coherent(card->device, PAGE_SIZE, desc,
1172 ((void *)&desc->buffer - (void *)desc));
1175 /* Must be called with ohci->lock held */
1176 static struct descriptor *context_get_descriptors(struct context *ctx,
1177 int z, dma_addr_t *d_bus)
1179 struct descriptor *d = NULL;
1180 struct descriptor_buffer *desc = ctx->buffer_tail;
1182 if (z * sizeof(*d) > desc->buffer_size)
1185 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1186 /* No room for the descriptor in this buffer, so advance to the
1189 if (desc->list.next == &ctx->buffer_list) {
1190 /* If there is no free buffer next in the list,
1192 if (context_add_buffer(ctx) < 0)
1195 desc = list_entry(desc->list.next,
1196 struct descriptor_buffer, list);
1197 ctx->buffer_tail = desc;
1200 d = desc->buffer + desc->used / sizeof(*d);
1201 memset(d, 0, z * sizeof(*d));
1202 *d_bus = desc->buffer_bus + desc->used;
1207 static void context_run(struct context *ctx, u32 extra)
1209 struct fw_ohci *ohci = ctx->ohci;
1211 reg_write(ohci, COMMAND_PTR(ctx->regs),
1212 le32_to_cpu(ctx->last->branch_address));
1213 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1214 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1215 ctx->running = true;
1219 static void context_append(struct context *ctx,
1220 struct descriptor *d, int z, int extra)
1223 struct descriptor_buffer *desc = ctx->buffer_tail;
1225 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1227 desc->used += (z + extra) * sizeof(*d);
1229 wmb(); /* finish init of new descriptors before branch_address update */
1230 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1231 ctx->prev = find_branch_descriptor(d, z);
1234 static void context_stop(struct context *ctx)
1236 struct fw_ohci *ohci = ctx->ohci;
1240 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1241 ctx->running = false;
1243 for (i = 0; i < 1000; i++) {
1244 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1245 if ((reg & CONTEXT_ACTIVE) == 0)
1251 dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1254 struct driver_data {
1256 struct fw_packet *packet;
1260 * This function apppends a packet to the DMA queue for transmission.
1261 * Must always be called with the ochi->lock held to ensure proper
1262 * generation handling and locking around packet queue manipulation.
1264 static int at_context_queue_packet(struct context *ctx,
1265 struct fw_packet *packet)
1267 struct fw_ohci *ohci = ctx->ohci;
1268 dma_addr_t d_bus, uninitialized_var(payload_bus);
1269 struct driver_data *driver_data;
1270 struct descriptor *d, *last;
1274 d = context_get_descriptors(ctx, 4, &d_bus);
1276 packet->ack = RCODE_SEND_ERROR;
1280 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1281 d[0].res_count = cpu_to_le16(packet->timestamp);
1284 * The DMA format for asyncronous link packets is different
1285 * from the IEEE1394 layout, so shift the fields around
1289 tcode = (packet->header[0] >> 4) & 0x0f;
1290 header = (__le32 *) &d[1];
1292 case TCODE_WRITE_QUADLET_REQUEST:
1293 case TCODE_WRITE_BLOCK_REQUEST:
1294 case TCODE_WRITE_RESPONSE:
1295 case TCODE_READ_QUADLET_REQUEST:
1296 case TCODE_READ_BLOCK_REQUEST:
1297 case TCODE_READ_QUADLET_RESPONSE:
1298 case TCODE_READ_BLOCK_RESPONSE:
1299 case TCODE_LOCK_REQUEST:
1300 case TCODE_LOCK_RESPONSE:
1301 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1302 (packet->speed << 16));
1303 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1304 (packet->header[0] & 0xffff0000));
1305 header[2] = cpu_to_le32(packet->header[2]);
1307 if (TCODE_IS_BLOCK_PACKET(tcode))
1308 header[3] = cpu_to_le32(packet->header[3]);
1310 header[3] = (__force __le32) packet->header[3];
1312 d[0].req_count = cpu_to_le16(packet->header_length);
1315 case TCODE_LINK_INTERNAL:
1316 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1317 (packet->speed << 16));
1318 header[1] = cpu_to_le32(packet->header[1]);
1319 header[2] = cpu_to_le32(packet->header[2]);
1320 d[0].req_count = cpu_to_le16(12);
1322 if (is_ping_packet(&packet->header[1]))
1323 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1326 case TCODE_STREAM_DATA:
1327 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1328 (packet->speed << 16));
1329 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1330 d[0].req_count = cpu_to_le16(8);
1335 packet->ack = RCODE_SEND_ERROR;
1339 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1340 driver_data = (struct driver_data *) &d[3];
1341 driver_data->packet = packet;
1342 packet->driver_data = driver_data;
1344 if (packet->payload_length > 0) {
1345 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1346 payload_bus = dma_map_single(ohci->card.device,
1348 packet->payload_length,
1350 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1351 packet->ack = RCODE_SEND_ERROR;
1354 packet->payload_bus = payload_bus;
1355 packet->payload_mapped = true;
1357 memcpy(driver_data->inline_data, packet->payload,
1358 packet->payload_length);
1359 payload_bus = d_bus + 3 * sizeof(*d);
1362 d[2].req_count = cpu_to_le16(packet->payload_length);
1363 d[2].data_address = cpu_to_le32(payload_bus);
1371 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1372 DESCRIPTOR_IRQ_ALWAYS |
1373 DESCRIPTOR_BRANCH_ALWAYS);
1375 /* FIXME: Document how the locking works. */
1376 if (ohci->generation != packet->generation) {
1377 if (packet->payload_mapped)
1378 dma_unmap_single(ohci->card.device, payload_bus,
1379 packet->payload_length, DMA_TO_DEVICE);
1380 packet->ack = RCODE_GENERATION;
1384 context_append(ctx, d, z, 4 - z);
1387 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1389 context_run(ctx, 0);
1394 static void at_context_flush(struct context *ctx)
1396 tasklet_disable(&ctx->tasklet);
1398 ctx->flushing = true;
1399 context_tasklet((unsigned long)ctx);
1400 ctx->flushing = false;
1402 tasklet_enable(&ctx->tasklet);
1405 static int handle_at_packet(struct context *context,
1406 struct descriptor *d,
1407 struct descriptor *last)
1409 struct driver_data *driver_data;
1410 struct fw_packet *packet;
1411 struct fw_ohci *ohci = context->ohci;
1414 if (last->transfer_status == 0 && !context->flushing)
1415 /* This descriptor isn't done yet, stop iteration. */
1418 driver_data = (struct driver_data *) &d[3];
1419 packet = driver_data->packet;
1421 /* This packet was cancelled, just continue. */
1424 if (packet->payload_mapped)
1425 dma_unmap_single(ohci->card.device, packet->payload_bus,
1426 packet->payload_length, DMA_TO_DEVICE);
1428 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1429 packet->timestamp = le16_to_cpu(last->res_count);
1431 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1434 case OHCI1394_evt_timeout:
1435 /* Async response transmit timed out. */
1436 packet->ack = RCODE_CANCELLED;
1439 case OHCI1394_evt_flushed:
1441 * The packet was flushed should give same error as
1442 * when we try to use a stale generation count.
1444 packet->ack = RCODE_GENERATION;
1447 case OHCI1394_evt_missing_ack:
1448 if (context->flushing)
1449 packet->ack = RCODE_GENERATION;
1452 * Using a valid (current) generation count, but the
1453 * node is not on the bus or not sending acks.
1455 packet->ack = RCODE_NO_ACK;
1459 case ACK_COMPLETE + 0x10:
1460 case ACK_PENDING + 0x10:
1461 case ACK_BUSY_X + 0x10:
1462 case ACK_BUSY_A + 0x10:
1463 case ACK_BUSY_B + 0x10:
1464 case ACK_DATA_ERROR + 0x10:
1465 case ACK_TYPE_ERROR + 0x10:
1466 packet->ack = evt - 0x10;
1469 case OHCI1394_evt_no_status:
1470 if (context->flushing) {
1471 packet->ack = RCODE_GENERATION;
1477 packet->ack = RCODE_SEND_ERROR;
1481 packet->callback(packet, &ohci->card, packet->ack);
1486 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1487 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1488 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1489 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1490 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1492 static void handle_local_rom(struct fw_ohci *ohci,
1493 struct fw_packet *packet, u32 csr)
1495 struct fw_packet response;
1496 int tcode, length, i;
1498 tcode = HEADER_GET_TCODE(packet->header[0]);
1499 if (TCODE_IS_BLOCK_PACKET(tcode))
1500 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1504 i = csr - CSR_CONFIG_ROM;
1505 if (i + length > CONFIG_ROM_SIZE) {
1506 fw_fill_response(&response, packet->header,
1507 RCODE_ADDRESS_ERROR, NULL, 0);
1508 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1509 fw_fill_response(&response, packet->header,
1510 RCODE_TYPE_ERROR, NULL, 0);
1512 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1513 (void *) ohci->config_rom + i, length);
1516 fw_core_handle_response(&ohci->card, &response);
1519 static void handle_local_lock(struct fw_ohci *ohci,
1520 struct fw_packet *packet, u32 csr)
1522 struct fw_packet response;
1523 int tcode, length, ext_tcode, sel, try;
1524 __be32 *payload, lock_old;
1525 u32 lock_arg, lock_data;
1527 tcode = HEADER_GET_TCODE(packet->header[0]);
1528 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1529 payload = packet->payload;
1530 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1532 if (tcode == TCODE_LOCK_REQUEST &&
1533 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1534 lock_arg = be32_to_cpu(payload[0]);
1535 lock_data = be32_to_cpu(payload[1]);
1536 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1540 fw_fill_response(&response, packet->header,
1541 RCODE_TYPE_ERROR, NULL, 0);
1545 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1546 reg_write(ohci, OHCI1394_CSRData, lock_data);
1547 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1548 reg_write(ohci, OHCI1394_CSRControl, sel);
1550 for (try = 0; try < 20; try++)
1551 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1552 lock_old = cpu_to_be32(reg_read(ohci,
1554 fw_fill_response(&response, packet->header,
1556 &lock_old, sizeof(lock_old));
1560 dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1561 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1564 fw_core_handle_response(&ohci->card, &response);
1567 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1571 if (ctx == &ctx->ohci->at_request_ctx) {
1572 packet->ack = ACK_PENDING;
1573 packet->callback(packet, &ctx->ohci->card, packet->ack);
1577 ((unsigned long long)
1578 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1580 csr = offset - CSR_REGISTER_BASE;
1582 /* Handle config rom reads. */
1583 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1584 handle_local_rom(ctx->ohci, packet, csr);
1586 case CSR_BUS_MANAGER_ID:
1587 case CSR_BANDWIDTH_AVAILABLE:
1588 case CSR_CHANNELS_AVAILABLE_HI:
1589 case CSR_CHANNELS_AVAILABLE_LO:
1590 handle_local_lock(ctx->ohci, packet, csr);
1593 if (ctx == &ctx->ohci->at_request_ctx)
1594 fw_core_handle_request(&ctx->ohci->card, packet);
1596 fw_core_handle_response(&ctx->ohci->card, packet);
1600 if (ctx == &ctx->ohci->at_response_ctx) {
1601 packet->ack = ACK_COMPLETE;
1602 packet->callback(packet, &ctx->ohci->card, packet->ack);
1606 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1608 unsigned long flags;
1611 spin_lock_irqsave(&ctx->ohci->lock, flags);
1613 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1614 ctx->ohci->generation == packet->generation) {
1615 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1616 handle_local_request(ctx, packet);
1620 ret = at_context_queue_packet(ctx, packet);
1621 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1624 packet->callback(packet, &ctx->ohci->card, packet->ack);
1628 static void detect_dead_context(struct fw_ohci *ohci,
1629 const char *name, unsigned int regs)
1633 ctl = reg_read(ohci, CONTROL_SET(regs));
1634 if (ctl & CONTEXT_DEAD)
1635 dev_err(ohci->card.device,
1636 "DMA context %s has stopped, error code: %s\n",
1637 name, evts[ctl & 0x1f]);
1640 static void handle_dead_contexts(struct fw_ohci *ohci)
1645 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1646 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1647 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1648 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1649 for (i = 0; i < 32; ++i) {
1650 if (!(ohci->it_context_support & (1 << i)))
1652 sprintf(name, "IT%u", i);
1653 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1655 for (i = 0; i < 32; ++i) {
1656 if (!(ohci->ir_context_support & (1 << i)))
1658 sprintf(name, "IR%u", i);
1659 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1661 /* TODO: maybe try to flush and restart the dead contexts */
1664 static u32 cycle_timer_ticks(u32 cycle_timer)
1668 ticks = cycle_timer & 0xfff;
1669 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1670 ticks += (3072 * 8000) * (cycle_timer >> 25);
1676 * Some controllers exhibit one or more of the following bugs when updating the
1677 * iso cycle timer register:
1678 * - When the lowest six bits are wrapping around to zero, a read that happens
1679 * at the same time will return garbage in the lowest ten bits.
1680 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1681 * not incremented for about 60 ns.
1682 * - Occasionally, the entire register reads zero.
1684 * To catch these, we read the register three times and ensure that the
1685 * difference between each two consecutive reads is approximately the same, i.e.
1686 * less than twice the other. Furthermore, any negative difference indicates an
1687 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1688 * execute, so we have enough precision to compute the ratio of the differences.)
1690 static u32 get_cycle_time(struct fw_ohci *ohci)
1697 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1699 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1702 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1706 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1707 t0 = cycle_timer_ticks(c0);
1708 t1 = cycle_timer_ticks(c1);
1709 t2 = cycle_timer_ticks(c2);
1712 } while ((diff01 <= 0 || diff12 <= 0 ||
1713 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1721 * This function has to be called at least every 64 seconds. The bus_time
1722 * field stores not only the upper 25 bits of the BUS_TIME register but also
1723 * the most significant bit of the cycle timer in bit 6 so that we can detect
1724 * changes in this bit.
1726 static u32 update_bus_time(struct fw_ohci *ohci)
1728 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1730 if (unlikely(!ohci->bus_time_running)) {
1731 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1732 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1733 (cycle_time_seconds & 0x40);
1734 ohci->bus_time_running = true;
1737 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1738 ohci->bus_time += 0x40;
1740 return ohci->bus_time | cycle_time_seconds;
1743 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1747 mutex_lock(&ohci->phy_reg_mutex);
1748 reg = write_phy_reg(ohci, 7, port_index);
1750 reg = read_phy_reg(ohci, 8);
1751 mutex_unlock(&ohci->phy_reg_mutex);
1755 switch (reg & 0x0f) {
1757 return 2; /* is child node (connected to parent node) */
1759 return 3; /* is parent node (connected to child node) */
1761 return 1; /* not connected */
1764 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1770 for (i = 0; i < self_id_count; i++) {
1771 entry = ohci->self_id_buffer[i];
1772 if ((self_id & 0xff000000) == (entry & 0xff000000))
1774 if ((self_id & 0xff000000) < (entry & 0xff000000))
1781 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1782 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1783 * Construct the selfID from phy register contents.
1784 * FIXME: How to determine the selfID.i flag?
1786 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1788 int reg, i, pos, status;
1789 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1790 u32 self_id = 0x8040c800;
1792 reg = reg_read(ohci, OHCI1394_NodeID);
1793 if (!(reg & OHCI1394_NodeID_idValid)) {
1794 dev_notice(ohci->card.device,
1795 "node ID not valid, new bus reset in progress\n");
1798 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1800 reg = ohci_read_phy_reg(&ohci->card, 4);
1803 self_id |= ((reg & 0x07) << 8); /* power class */
1805 reg = ohci_read_phy_reg(&ohci->card, 1);
1808 self_id |= ((reg & 0x3f) << 16); /* gap count */
1810 for (i = 0; i < 3; i++) {
1811 status = get_status_for_port(ohci, i);
1814 self_id |= ((status & 0x3) << (6 - (i * 2)));
1817 pos = get_self_id_pos(ohci, self_id, self_id_count);
1819 memmove(&(ohci->self_id_buffer[pos+1]),
1820 &(ohci->self_id_buffer[pos]),
1821 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1822 ohci->self_id_buffer[pos] = self_id;
1825 return self_id_count;
1828 static void bus_reset_work(struct work_struct *work)
1830 struct fw_ohci *ohci =
1831 container_of(work, struct fw_ohci, bus_reset_work);
1832 int self_id_count, generation, new_generation, i, j;
1834 void *free_rom = NULL;
1835 dma_addr_t free_rom_bus = 0;
1838 reg = reg_read(ohci, OHCI1394_NodeID);
1839 if (!(reg & OHCI1394_NodeID_idValid)) {
1840 dev_notice(ohci->card.device,
1841 "node ID not valid, new bus reset in progress\n");
1844 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1845 dev_notice(ohci->card.device, "malconfigured bus\n");
1848 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1849 OHCI1394_NodeID_nodeNumber);
1851 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1852 if (!(ohci->is_root && is_new_root))
1853 reg_write(ohci, OHCI1394_LinkControlSet,
1854 OHCI1394_LinkControl_cycleMaster);
1855 ohci->is_root = is_new_root;
1857 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1858 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1859 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1863 * The count in the SelfIDCount register is the number of
1864 * bytes in the self ID receive buffer. Since we also receive
1865 * the inverted quadlets and a header quadlet, we shift one
1866 * bit extra to get the actual number of self IDs.
1868 self_id_count = (reg >> 3) & 0xff;
1870 if (self_id_count > 252) {
1871 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1875 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1878 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1879 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1881 * If the invalid data looks like a cycle start packet,
1882 * it's likely to be the result of the cycle master
1883 * having a wrong gap count. In this case, the self IDs
1884 * so far are valid and should be processed so that the
1885 * bus manager can then correct the gap count.
1887 if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1889 dev_notice(ohci->card.device,
1890 "ignoring spurious self IDs\n");
1894 dev_notice(ohci->card.device,
1895 "inconsistent self IDs\n");
1899 ohci->self_id_buffer[j] =
1900 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1903 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1904 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1905 if (self_id_count < 0) {
1906 dev_notice(ohci->card.device,
1907 "could not construct local self ID\n");
1912 if (self_id_count == 0) {
1913 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1919 * Check the consistency of the self IDs we just read. The
1920 * problem we face is that a new bus reset can start while we
1921 * read out the self IDs from the DMA buffer. If this happens,
1922 * the DMA buffer will be overwritten with new self IDs and we
1923 * will read out inconsistent data. The OHCI specification
1924 * (section 11.2) recommends a technique similar to
1925 * linux/seqlock.h, where we remember the generation of the
1926 * self IDs in the buffer before reading them out and compare
1927 * it to the current generation after reading them out. If
1928 * the two generations match we know we have a consistent set
1932 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1933 if (new_generation != generation) {
1934 dev_notice(ohci->card.device,
1935 "new bus reset, discarding self ids\n");
1939 /* FIXME: Document how the locking works. */
1940 spin_lock_irq(&ohci->lock);
1942 ohci->generation = -1; /* prevent AT packet queueing */
1943 context_stop(&ohci->at_request_ctx);
1944 context_stop(&ohci->at_response_ctx);
1946 spin_unlock_irq(&ohci->lock);
1949 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1950 * packets in the AT queues and software needs to drain them.
1951 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1953 at_context_flush(&ohci->at_request_ctx);
1954 at_context_flush(&ohci->at_response_ctx);
1956 spin_lock_irq(&ohci->lock);
1958 ohci->generation = generation;
1959 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1961 if (ohci->quirks & QUIRK_RESET_PACKET)
1962 ohci->request_generation = generation;
1965 * This next bit is unrelated to the AT context stuff but we
1966 * have to do it under the spinlock also. If a new config rom
1967 * was set up before this reset, the old one is now no longer
1968 * in use and we can free it. Update the config rom pointers
1969 * to point to the current config rom and clear the
1970 * next_config_rom pointer so a new update can take place.
1973 if (ohci->next_config_rom != NULL) {
1974 if (ohci->next_config_rom != ohci->config_rom) {
1975 free_rom = ohci->config_rom;
1976 free_rom_bus = ohci->config_rom_bus;
1978 ohci->config_rom = ohci->next_config_rom;
1979 ohci->config_rom_bus = ohci->next_config_rom_bus;
1980 ohci->next_config_rom = NULL;
1983 * Restore config_rom image and manually update
1984 * config_rom registers. Writing the header quadlet
1985 * will indicate that the config rom is ready, so we
1988 reg_write(ohci, OHCI1394_BusOptions,
1989 be32_to_cpu(ohci->config_rom[2]));
1990 ohci->config_rom[0] = ohci->next_header;
1991 reg_write(ohci, OHCI1394_ConfigROMhdr,
1992 be32_to_cpu(ohci->next_header));
1995 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1996 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1997 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2000 spin_unlock_irq(&ohci->lock);
2003 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2004 free_rom, free_rom_bus);
2006 log_selfids(ohci, generation, self_id_count);
2008 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2009 self_id_count, ohci->self_id_buffer,
2010 ohci->csr_state_setclear_abdicate);
2011 ohci->csr_state_setclear_abdicate = false;
2014 static irqreturn_t irq_handler(int irq, void *data)
2016 struct fw_ohci *ohci = data;
2017 u32 event, iso_event;
2020 event = reg_read(ohci, OHCI1394_IntEventClear);
2022 if (!event || !~event)
2026 * busReset and postedWriteErr must not be cleared yet
2027 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2029 reg_write(ohci, OHCI1394_IntEventClear,
2030 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2031 log_irqs(ohci, event);
2033 if (event & OHCI1394_selfIDComplete)
2034 queue_work(fw_workqueue, &ohci->bus_reset_work);
2036 if (event & OHCI1394_RQPkt)
2037 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2039 if (event & OHCI1394_RSPkt)
2040 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2042 if (event & OHCI1394_reqTxComplete)
2043 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2045 if (event & OHCI1394_respTxComplete)
2046 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2048 if (event & OHCI1394_isochRx) {
2049 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2050 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2053 i = ffs(iso_event) - 1;
2055 &ohci->ir_context_list[i].context.tasklet);
2056 iso_event &= ~(1 << i);
2060 if (event & OHCI1394_isochTx) {
2061 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2062 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2065 i = ffs(iso_event) - 1;
2067 &ohci->it_context_list[i].context.tasklet);
2068 iso_event &= ~(1 << i);
2072 if (unlikely(event & OHCI1394_regAccessFail))
2073 dev_err(ohci->card.device, "register access failure\n");
2075 if (unlikely(event & OHCI1394_postedWriteErr)) {
2076 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2077 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2078 reg_write(ohci, OHCI1394_IntEventClear,
2079 OHCI1394_postedWriteErr);
2080 if (printk_ratelimit())
2081 dev_err(ohci->card.device, "PCI posted write error\n");
2084 if (unlikely(event & OHCI1394_cycleTooLong)) {
2085 if (printk_ratelimit())
2086 dev_notice(ohci->card.device,
2087 "isochronous cycle too long\n");
2088 reg_write(ohci, OHCI1394_LinkControlSet,
2089 OHCI1394_LinkControl_cycleMaster);
2092 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2094 * We need to clear this event bit in order to make
2095 * cycleMatch isochronous I/O work. In theory we should
2096 * stop active cycleMatch iso contexts now and restart
2097 * them at least two cycles later. (FIXME?)
2099 if (printk_ratelimit())
2100 dev_notice(ohci->card.device,
2101 "isochronous cycle inconsistent\n");
2104 if (unlikely(event & OHCI1394_unrecoverableError))
2105 handle_dead_contexts(ohci);
2107 if (event & OHCI1394_cycle64Seconds) {
2108 spin_lock(&ohci->lock);
2109 update_bus_time(ohci);
2110 spin_unlock(&ohci->lock);
2117 static int software_reset(struct fw_ohci *ohci)
2122 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2123 for (i = 0; i < 500; i++) {
2124 val = reg_read(ohci, OHCI1394_HCControlSet);
2126 return -ENODEV; /* Card was ejected. */
2128 if (!(val & OHCI1394_HCControl_softReset))
2137 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2139 size_t size = length * 4;
2141 memcpy(dest, src, size);
2142 if (size < CONFIG_ROM_SIZE)
2143 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2146 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2149 int ret, clear, set, offset;
2151 /* Check if the driver should configure link and PHY. */
2152 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2153 OHCI1394_HCControl_programPhyEnable))
2156 /* Paranoia: check whether the PHY supports 1394a, too. */
2157 enable_1394a = false;
2158 ret = read_phy_reg(ohci, 2);
2161 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2162 ret = read_paged_phy_reg(ohci, 1, 8);
2166 enable_1394a = true;
2169 if (ohci->quirks & QUIRK_NO_1394A)
2170 enable_1394a = false;
2172 /* Configure PHY and link consistently. */
2175 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2177 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2180 ret = update_phy_reg(ohci, 5, clear, set);
2185 offset = OHCI1394_HCControlSet;
2187 offset = OHCI1394_HCControlClear;
2188 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2190 /* Clean up: configuration has been taken care of. */
2191 reg_write(ohci, OHCI1394_HCControlClear,
2192 OHCI1394_HCControl_programPhyEnable);
2197 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2199 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2200 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2203 reg = read_phy_reg(ohci, 2);
2206 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2209 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2210 reg = read_paged_phy_reg(ohci, 1, i + 10);
2219 static int ohci_enable(struct fw_card *card,
2220 const __be32 *config_rom, size_t length)
2222 struct fw_ohci *ohci = fw_ohci(card);
2223 struct pci_dev *dev = to_pci_dev(card->device);
2224 u32 lps, version, irqs;
2227 if (software_reset(ohci)) {
2228 dev_err(card->device, "failed to reset ohci card\n");
2233 * Now enable LPS, which we need in order to start accessing
2234 * most of the registers. In fact, on some cards (ALI M5251),
2235 * accessing registers in the SClk domain without LPS enabled
2236 * will lock up the machine. Wait 50msec to make sure we have
2237 * full link enabled. However, with some cards (well, at least
2238 * a JMicron PCIe card), we have to try again sometimes.
2240 reg_write(ohci, OHCI1394_HCControlSet,
2241 OHCI1394_HCControl_LPS |
2242 OHCI1394_HCControl_postedWriteEnable);
2245 for (lps = 0, i = 0; !lps && i < 3; i++) {
2247 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2248 OHCI1394_HCControl_LPS;
2252 dev_err(card->device, "failed to set Link Power Status\n");
2256 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2257 ret = probe_tsb41ba3d(ohci);
2261 dev_notice(card->device, "local TSB41BA3D phy\n");
2263 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2266 reg_write(ohci, OHCI1394_HCControlClear,
2267 OHCI1394_HCControl_noByteSwapData);
2269 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2270 reg_write(ohci, OHCI1394_LinkControlSet,
2271 OHCI1394_LinkControl_cycleTimerEnable |
2272 OHCI1394_LinkControl_cycleMaster);
2274 reg_write(ohci, OHCI1394_ATRetries,
2275 OHCI1394_MAX_AT_REQ_RETRIES |
2276 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2277 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2280 ohci->bus_time_running = false;
2282 for (i = 0; i < 32; i++)
2283 if (ohci->ir_context_support & (1 << i))
2284 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2285 IR_CONTEXT_MULTI_CHANNEL_MODE);
2287 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2288 if (version >= OHCI_VERSION_1_1) {
2289 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2291 card->broadcast_channel_auto_allocated = true;
2294 /* Get implemented bits of the priority arbitration request counter. */
2295 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2296 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2297 reg_write(ohci, OHCI1394_FairnessControl, 0);
2298 card->priority_budget_implemented = ohci->pri_req_max != 0;
2300 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2301 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2302 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2304 ret = configure_1394a_enhancements(ohci);
2308 /* Activate link_on bit and contender bit in our self ID packets.*/
2309 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2314 * When the link is not yet enabled, the atomic config rom
2315 * update mechanism described below in ohci_set_config_rom()
2316 * is not active. We have to update ConfigRomHeader and
2317 * BusOptions manually, and the write to ConfigROMmap takes
2318 * effect immediately. We tie this to the enabling of the
2319 * link, so we have a valid config rom before enabling - the
2320 * OHCI requires that ConfigROMhdr and BusOptions have valid
2321 * values before enabling.
2323 * However, when the ConfigROMmap is written, some controllers
2324 * always read back quadlets 0 and 2 from the config rom to
2325 * the ConfigRomHeader and BusOptions registers on bus reset.
2326 * They shouldn't do that in this initial case where the link
2327 * isn't enabled. This means we have to use the same
2328 * workaround here, setting the bus header to 0 and then write
2329 * the right values in the bus reset tasklet.
2333 ohci->next_config_rom =
2334 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2335 &ohci->next_config_rom_bus,
2337 if (ohci->next_config_rom == NULL)
2340 copy_config_rom(ohci->next_config_rom, config_rom, length);
2343 * In the suspend case, config_rom is NULL, which
2344 * means that we just reuse the old config rom.
2346 ohci->next_config_rom = ohci->config_rom;
2347 ohci->next_config_rom_bus = ohci->config_rom_bus;
2350 ohci->next_header = ohci->next_config_rom[0];
2351 ohci->next_config_rom[0] = 0;
2352 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2353 reg_write(ohci, OHCI1394_BusOptions,
2354 be32_to_cpu(ohci->next_config_rom[2]));
2355 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2357 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2359 if (!(ohci->quirks & QUIRK_NO_MSI))
2360 pci_enable_msi(dev);
2361 if (request_irq(dev->irq, irq_handler,
2362 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2363 ohci_driver_name, ohci)) {
2364 dev_err(card->device, "failed to allocate interrupt %d\n",
2366 pci_disable_msi(dev);
2369 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2370 ohci->next_config_rom,
2371 ohci->next_config_rom_bus);
2372 ohci->next_config_rom = NULL;
2377 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2378 OHCI1394_RQPkt | OHCI1394_RSPkt |
2379 OHCI1394_isochTx | OHCI1394_isochRx |
2380 OHCI1394_postedWriteErr |
2381 OHCI1394_selfIDComplete |
2382 OHCI1394_regAccessFail |
2383 OHCI1394_cycleInconsistent |
2384 OHCI1394_unrecoverableError |
2385 OHCI1394_cycleTooLong |
2386 OHCI1394_masterIntEnable;
2387 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2388 irqs |= OHCI1394_busReset;
2389 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2391 reg_write(ohci, OHCI1394_HCControlSet,
2392 OHCI1394_HCControl_linkEnable |
2393 OHCI1394_HCControl_BIBimageValid);
2395 reg_write(ohci, OHCI1394_LinkControlSet,
2396 OHCI1394_LinkControl_rcvSelfID |
2397 OHCI1394_LinkControl_rcvPhyPkt);
2399 ar_context_run(&ohci->ar_request_ctx);
2400 ar_context_run(&ohci->ar_response_ctx);
2404 /* We are ready to go, reset bus to finish initialization. */
2405 fw_schedule_bus_reset(&ohci->card, false, true);
2410 static int ohci_set_config_rom(struct fw_card *card,
2411 const __be32 *config_rom, size_t length)
2413 struct fw_ohci *ohci;
2414 __be32 *next_config_rom;
2415 dma_addr_t uninitialized_var(next_config_rom_bus);
2417 ohci = fw_ohci(card);
2420 * When the OHCI controller is enabled, the config rom update
2421 * mechanism is a bit tricky, but easy enough to use. See
2422 * section 5.5.6 in the OHCI specification.
2424 * The OHCI controller caches the new config rom address in a
2425 * shadow register (ConfigROMmapNext) and needs a bus reset
2426 * for the changes to take place. When the bus reset is
2427 * detected, the controller loads the new values for the
2428 * ConfigRomHeader and BusOptions registers from the specified
2429 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2430 * shadow register. All automatically and atomically.
2432 * Now, there's a twist to this story. The automatic load of
2433 * ConfigRomHeader and BusOptions doesn't honor the
2434 * noByteSwapData bit, so with a be32 config rom, the
2435 * controller will load be32 values in to these registers
2436 * during the atomic update, even on litte endian
2437 * architectures. The workaround we use is to put a 0 in the
2438 * header quadlet; 0 is endian agnostic and means that the
2439 * config rom isn't ready yet. In the bus reset tasklet we
2440 * then set up the real values for the two registers.
2442 * We use ohci->lock to avoid racing with the code that sets
2443 * ohci->next_config_rom to NULL (see bus_reset_work).
2447 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2448 &next_config_rom_bus, GFP_KERNEL);
2449 if (next_config_rom == NULL)
2452 spin_lock_irq(&ohci->lock);
2455 * If there is not an already pending config_rom update,
2456 * push our new allocation into the ohci->next_config_rom
2457 * and then mark the local variable as null so that we
2458 * won't deallocate the new buffer.
2460 * OTOH, if there is a pending config_rom update, just
2461 * use that buffer with the new config_rom data, and
2462 * let this routine free the unused DMA allocation.
2465 if (ohci->next_config_rom == NULL) {
2466 ohci->next_config_rom = next_config_rom;
2467 ohci->next_config_rom_bus = next_config_rom_bus;
2468 next_config_rom = NULL;
2471 copy_config_rom(ohci->next_config_rom, config_rom, length);
2473 ohci->next_header = config_rom[0];
2474 ohci->next_config_rom[0] = 0;
2476 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2478 spin_unlock_irq(&ohci->lock);
2480 /* If we didn't use the DMA allocation, delete it. */
2481 if (next_config_rom != NULL)
2482 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2483 next_config_rom, next_config_rom_bus);
2486 * Now initiate a bus reset to have the changes take
2487 * effect. We clean up the old config rom memory and DMA
2488 * mappings in the bus reset tasklet, since the OHCI
2489 * controller could need to access it before the bus reset
2493 fw_schedule_bus_reset(&ohci->card, true, true);
2498 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2500 struct fw_ohci *ohci = fw_ohci(card);
2502 at_context_transmit(&ohci->at_request_ctx, packet);
2505 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2507 struct fw_ohci *ohci = fw_ohci(card);
2509 at_context_transmit(&ohci->at_response_ctx, packet);
2512 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2514 struct fw_ohci *ohci = fw_ohci(card);
2515 struct context *ctx = &ohci->at_request_ctx;
2516 struct driver_data *driver_data = packet->driver_data;
2519 tasklet_disable(&ctx->tasklet);
2521 if (packet->ack != 0)
2524 if (packet->payload_mapped)
2525 dma_unmap_single(ohci->card.device, packet->payload_bus,
2526 packet->payload_length, DMA_TO_DEVICE);
2528 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2529 driver_data->packet = NULL;
2530 packet->ack = RCODE_CANCELLED;
2531 packet->callback(packet, &ohci->card, packet->ack);
2534 tasklet_enable(&ctx->tasklet);
2539 static int ohci_enable_phys_dma(struct fw_card *card,
2540 int node_id, int generation)
2542 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2545 struct fw_ohci *ohci = fw_ohci(card);
2546 unsigned long flags;
2550 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2551 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2554 spin_lock_irqsave(&ohci->lock, flags);
2556 if (ohci->generation != generation) {
2562 * Note, if the node ID contains a non-local bus ID, physical DMA is
2563 * enabled for _all_ nodes on remote buses.
2566 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2568 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2570 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2574 spin_unlock_irqrestore(&ohci->lock, flags);
2577 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2580 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2582 struct fw_ohci *ohci = fw_ohci(card);
2583 unsigned long flags;
2586 switch (csr_offset) {
2587 case CSR_STATE_CLEAR:
2589 if (ohci->is_root &&
2590 (reg_read(ohci, OHCI1394_LinkControlSet) &
2591 OHCI1394_LinkControl_cycleMaster))
2592 value = CSR_STATE_BIT_CMSTR;
2595 if (ohci->csr_state_setclear_abdicate)
2596 value |= CSR_STATE_BIT_ABDICATE;
2601 return reg_read(ohci, OHCI1394_NodeID) << 16;
2603 case CSR_CYCLE_TIME:
2604 return get_cycle_time(ohci);
2608 * We might be called just after the cycle timer has wrapped
2609 * around but just before the cycle64Seconds handler, so we
2610 * better check here, too, if the bus time needs to be updated.
2612 spin_lock_irqsave(&ohci->lock, flags);
2613 value = update_bus_time(ohci);
2614 spin_unlock_irqrestore(&ohci->lock, flags);
2617 case CSR_BUSY_TIMEOUT:
2618 value = reg_read(ohci, OHCI1394_ATRetries);
2619 return (value >> 4) & 0x0ffff00f;
2621 case CSR_PRIORITY_BUDGET:
2622 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2623 (ohci->pri_req_max << 8);
2631 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2633 struct fw_ohci *ohci = fw_ohci(card);
2634 unsigned long flags;
2636 switch (csr_offset) {
2637 case CSR_STATE_CLEAR:
2638 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2639 reg_write(ohci, OHCI1394_LinkControlClear,
2640 OHCI1394_LinkControl_cycleMaster);
2643 if (value & CSR_STATE_BIT_ABDICATE)
2644 ohci->csr_state_setclear_abdicate = false;
2648 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2649 reg_write(ohci, OHCI1394_LinkControlSet,
2650 OHCI1394_LinkControl_cycleMaster);
2653 if (value & CSR_STATE_BIT_ABDICATE)
2654 ohci->csr_state_setclear_abdicate = true;
2658 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2662 case CSR_CYCLE_TIME:
2663 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2664 reg_write(ohci, OHCI1394_IntEventSet,
2665 OHCI1394_cycleInconsistent);
2670 spin_lock_irqsave(&ohci->lock, flags);
2671 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2673 spin_unlock_irqrestore(&ohci->lock, flags);
2676 case CSR_BUSY_TIMEOUT:
2677 value = (value & 0xf) | ((value & 0xf) << 4) |
2678 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2679 reg_write(ohci, OHCI1394_ATRetries, value);
2683 case CSR_PRIORITY_BUDGET:
2684 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2694 static void flush_iso_completions(struct iso_context *ctx)
2696 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2697 ctx->header_length, ctx->header,
2698 ctx->base.callback_data);
2699 ctx->header_length = 0;
2702 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2706 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
2707 flush_iso_completions(ctx);
2709 ctx_hdr = ctx->header + ctx->header_length;
2710 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2713 * The two iso header quadlets are byteswapped to little
2714 * endian by the controller, but we want to present them
2715 * as big endian for consistency with the bus endianness.
2717 if (ctx->base.header_size > 0)
2718 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2719 if (ctx->base.header_size > 4)
2720 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2721 if (ctx->base.header_size > 8)
2722 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2723 ctx->header_length += ctx->base.header_size;
2726 static int handle_ir_packet_per_buffer(struct context *context,
2727 struct descriptor *d,
2728 struct descriptor *last)
2730 struct iso_context *ctx =
2731 container_of(context, struct iso_context, context);
2732 struct descriptor *pd;
2735 for (pd = d; pd <= last; pd++)
2736 if (pd->transfer_status)
2739 /* Descriptor(s) not done yet, stop iteration */
2742 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2744 buffer_dma = le32_to_cpu(d->data_address);
2745 dma_sync_single_range_for_cpu(context->ohci->card.device,
2746 buffer_dma & PAGE_MASK,
2747 buffer_dma & ~PAGE_MASK,
2748 le16_to_cpu(d->req_count),
2752 copy_iso_headers(ctx, (u32 *) (last + 1));
2754 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2755 flush_iso_completions(ctx);
2760 /* d == last because each descriptor block is only a single descriptor. */
2761 static int handle_ir_buffer_fill(struct context *context,
2762 struct descriptor *d,
2763 struct descriptor *last)
2765 struct iso_context *ctx =
2766 container_of(context, struct iso_context, context);
2767 unsigned int req_count, res_count, completed;
2770 req_count = le16_to_cpu(last->req_count);
2771 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2772 completed = req_count - res_count;
2773 buffer_dma = le32_to_cpu(last->data_address);
2775 if (completed > 0) {
2776 ctx->mc_buffer_bus = buffer_dma;
2777 ctx->mc_completed = completed;
2781 /* Descriptor(s) not done yet, stop iteration */
2784 dma_sync_single_range_for_cpu(context->ohci->card.device,
2785 buffer_dma & PAGE_MASK,
2786 buffer_dma & ~PAGE_MASK,
2787 completed, DMA_FROM_DEVICE);
2789 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2790 ctx->base.callback.mc(&ctx->base,
2791 buffer_dma + completed,
2792 ctx->base.callback_data);
2793 ctx->mc_completed = 0;
2799 static void flush_ir_buffer_fill(struct iso_context *ctx)
2801 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2802 ctx->mc_buffer_bus & PAGE_MASK,
2803 ctx->mc_buffer_bus & ~PAGE_MASK,
2804 ctx->mc_completed, DMA_FROM_DEVICE);
2806 ctx->base.callback.mc(&ctx->base,
2807 ctx->mc_buffer_bus + ctx->mc_completed,
2808 ctx->base.callback_data);
2809 ctx->mc_completed = 0;
2812 static inline void sync_it_packet_for_cpu(struct context *context,
2813 struct descriptor *pd)
2818 /* only packets beginning with OUTPUT_MORE* have data buffers */
2819 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2822 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2826 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2827 * data buffer is in the context program's coherent page and must not
2830 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2831 (context->current_bus & PAGE_MASK)) {
2832 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2838 buffer_dma = le32_to_cpu(pd->data_address);
2839 dma_sync_single_range_for_cpu(context->ohci->card.device,
2840 buffer_dma & PAGE_MASK,
2841 buffer_dma & ~PAGE_MASK,
2842 le16_to_cpu(pd->req_count),
2844 control = pd->control;
2846 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2849 static int handle_it_packet(struct context *context,
2850 struct descriptor *d,
2851 struct descriptor *last)
2853 struct iso_context *ctx =
2854 container_of(context, struct iso_context, context);
2855 struct descriptor *pd;
2858 for (pd = d; pd <= last; pd++)
2859 if (pd->transfer_status)
2862 /* Descriptor(s) not done yet, stop iteration */
2865 sync_it_packet_for_cpu(context, d);
2867 if (ctx->header_length + 4 > PAGE_SIZE)
2868 flush_iso_completions(ctx);
2870 ctx_hdr = ctx->header + ctx->header_length;
2871 ctx->last_timestamp = le16_to_cpu(last->res_count);
2872 /* Present this value as big-endian to match the receive code */
2873 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2874 le16_to_cpu(pd->res_count));
2875 ctx->header_length += 4;
2877 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2878 flush_iso_completions(ctx);
2883 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2885 u32 hi = channels >> 32, lo = channels;
2887 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2888 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2889 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2890 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2892 ohci->mc_channels = channels;
2895 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2896 int type, int channel, size_t header_size)
2898 struct fw_ohci *ohci = fw_ohci(card);
2899 struct iso_context *uninitialized_var(ctx);
2900 descriptor_callback_t uninitialized_var(callback);
2901 u64 *uninitialized_var(channels);
2902 u32 *uninitialized_var(mask), uninitialized_var(regs);
2903 int index, ret = -EBUSY;
2905 spin_lock_irq(&ohci->lock);
2908 case FW_ISO_CONTEXT_TRANSMIT:
2909 mask = &ohci->it_context_mask;
2910 callback = handle_it_packet;
2911 index = ffs(*mask) - 1;
2913 *mask &= ~(1 << index);
2914 regs = OHCI1394_IsoXmitContextBase(index);
2915 ctx = &ohci->it_context_list[index];
2919 case FW_ISO_CONTEXT_RECEIVE:
2920 channels = &ohci->ir_context_channels;
2921 mask = &ohci->ir_context_mask;
2922 callback = handle_ir_packet_per_buffer;
2923 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2925 *channels &= ~(1ULL << channel);
2926 *mask &= ~(1 << index);
2927 regs = OHCI1394_IsoRcvContextBase(index);
2928 ctx = &ohci->ir_context_list[index];
2932 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2933 mask = &ohci->ir_context_mask;
2934 callback = handle_ir_buffer_fill;
2935 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2937 ohci->mc_allocated = true;
2938 *mask &= ~(1 << index);
2939 regs = OHCI1394_IsoRcvContextBase(index);
2940 ctx = &ohci->ir_context_list[index];
2949 spin_unlock_irq(&ohci->lock);
2952 return ERR_PTR(ret);
2954 memset(ctx, 0, sizeof(*ctx));
2955 ctx->header_length = 0;
2956 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2957 if (ctx->header == NULL) {
2961 ret = context_init(&ctx->context, ohci, regs, callback);
2963 goto out_with_header;
2965 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2966 set_multichannel_mask(ohci, 0);
2967 ctx->mc_completed = 0;
2973 free_page((unsigned long)ctx->header);
2975 spin_lock_irq(&ohci->lock);
2978 case FW_ISO_CONTEXT_RECEIVE:
2979 *channels |= 1ULL << channel;
2982 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2983 ohci->mc_allocated = false;
2986 *mask |= 1 << index;
2988 spin_unlock_irq(&ohci->lock);
2990 return ERR_PTR(ret);
2993 static int ohci_start_iso(struct fw_iso_context *base,
2994 s32 cycle, u32 sync, u32 tags)
2996 struct iso_context *ctx = container_of(base, struct iso_context, base);
2997 struct fw_ohci *ohci = ctx->context.ohci;
2998 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3001 /* the controller cannot start without any queued packets */
3002 if (ctx->context.last->branch_address == 0)
3005 switch (ctx->base.type) {
3006 case FW_ISO_CONTEXT_TRANSMIT:
3007 index = ctx - ohci->it_context_list;
3010 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3011 (cycle & 0x7fff) << 16;
3013 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3014 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3015 context_run(&ctx->context, match);
3018 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3019 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3021 case FW_ISO_CONTEXT_RECEIVE:
3022 index = ctx - ohci->ir_context_list;
3023 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3025 match |= (cycle & 0x07fff) << 12;
3026 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3029 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3030 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3031 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3032 context_run(&ctx->context, control);
3043 static int ohci_stop_iso(struct fw_iso_context *base)
3045 struct fw_ohci *ohci = fw_ohci(base->card);
3046 struct iso_context *ctx = container_of(base, struct iso_context, base);
3049 switch (ctx->base.type) {
3050 case FW_ISO_CONTEXT_TRANSMIT:
3051 index = ctx - ohci->it_context_list;
3052 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3055 case FW_ISO_CONTEXT_RECEIVE:
3056 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3057 index = ctx - ohci->ir_context_list;
3058 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3062 context_stop(&ctx->context);
3063 tasklet_kill(&ctx->context.tasklet);
3068 static void ohci_free_iso_context(struct fw_iso_context *base)
3070 struct fw_ohci *ohci = fw_ohci(base->card);
3071 struct iso_context *ctx = container_of(base, struct iso_context, base);
3072 unsigned long flags;
3075 ohci_stop_iso(base);
3076 context_release(&ctx->context);
3077 free_page((unsigned long)ctx->header);
3079 spin_lock_irqsave(&ohci->lock, flags);
3081 switch (base->type) {
3082 case FW_ISO_CONTEXT_TRANSMIT:
3083 index = ctx - ohci->it_context_list;
3084 ohci->it_context_mask |= 1 << index;
3087 case FW_ISO_CONTEXT_RECEIVE:
3088 index = ctx - ohci->ir_context_list;
3089 ohci->ir_context_mask |= 1 << index;
3090 ohci->ir_context_channels |= 1ULL << base->channel;
3093 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3094 index = ctx - ohci->ir_context_list;
3095 ohci->ir_context_mask |= 1 << index;
3096 ohci->ir_context_channels |= ohci->mc_channels;
3097 ohci->mc_channels = 0;
3098 ohci->mc_allocated = false;
3102 spin_unlock_irqrestore(&ohci->lock, flags);
3105 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3107 struct fw_ohci *ohci = fw_ohci(base->card);
3108 unsigned long flags;
3111 switch (base->type) {
3112 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3114 spin_lock_irqsave(&ohci->lock, flags);
3116 /* Don't allow multichannel to grab other contexts' channels. */
3117 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3118 *channels = ohci->ir_context_channels;
3121 set_multichannel_mask(ohci, *channels);
3125 spin_unlock_irqrestore(&ohci->lock, flags);
3136 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3139 struct iso_context *ctx;
3141 for (i = 0 ; i < ohci->n_ir ; i++) {
3142 ctx = &ohci->ir_context_list[i];
3143 if (ctx->context.running)
3144 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3147 for (i = 0 ; i < ohci->n_it ; i++) {
3148 ctx = &ohci->it_context_list[i];
3149 if (ctx->context.running)
3150 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3155 static int queue_iso_transmit(struct iso_context *ctx,
3156 struct fw_iso_packet *packet,
3157 struct fw_iso_buffer *buffer,
3158 unsigned long payload)
3160 struct descriptor *d, *last, *pd;
3161 struct fw_iso_packet *p;
3163 dma_addr_t d_bus, page_bus;
3164 u32 z, header_z, payload_z, irq;
3165 u32 payload_index, payload_end_index, next_page_index;
3166 int page, end_page, i, length, offset;
3169 payload_index = payload;
3175 if (p->header_length > 0)
3178 /* Determine the first page the payload isn't contained in. */
3179 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3180 if (p->payload_length > 0)
3181 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3187 /* Get header size in number of descriptors. */
3188 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3190 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3195 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3196 d[0].req_count = cpu_to_le16(8);
3198 * Link the skip address to this descriptor itself. This causes
3199 * a context to skip a cycle whenever lost cycles or FIFO
3200 * overruns occur, without dropping the data. The application
3201 * should then decide whether this is an error condition or not.
3202 * FIXME: Make the context's cycle-lost behaviour configurable?
3204 d[0].branch_address = cpu_to_le32(d_bus | z);
3206 header = (__le32 *) &d[1];
3207 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3208 IT_HEADER_TAG(p->tag) |
3209 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3210 IT_HEADER_CHANNEL(ctx->base.channel) |
3211 IT_HEADER_SPEED(ctx->base.speed));
3213 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3214 p->payload_length));
3217 if (p->header_length > 0) {
3218 d[2].req_count = cpu_to_le16(p->header_length);
3219 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3220 memcpy(&d[z], p->header, p->header_length);
3223 pd = d + z - payload_z;
3224 payload_end_index = payload_index + p->payload_length;
3225 for (i = 0; i < payload_z; i++) {
3226 page = payload_index >> PAGE_SHIFT;
3227 offset = payload_index & ~PAGE_MASK;
3228 next_page_index = (page + 1) << PAGE_SHIFT;
3230 min(next_page_index, payload_end_index) - payload_index;
3231 pd[i].req_count = cpu_to_le16(length);
3233 page_bus = page_private(buffer->pages[page]);
3234 pd[i].data_address = cpu_to_le32(page_bus + offset);
3236 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3237 page_bus, offset, length,
3240 payload_index += length;
3244 irq = DESCRIPTOR_IRQ_ALWAYS;
3246 irq = DESCRIPTOR_NO_IRQ;
3248 last = z == 2 ? d : d + z - 1;
3249 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3251 DESCRIPTOR_BRANCH_ALWAYS |
3254 context_append(&ctx->context, d, z, header_z);
3259 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3260 struct fw_iso_packet *packet,
3261 struct fw_iso_buffer *buffer,
3262 unsigned long payload)
3264 struct device *device = ctx->context.ohci->card.device;
3265 struct descriptor *d, *pd;
3266 dma_addr_t d_bus, page_bus;
3267 u32 z, header_z, rest;
3269 int page, offset, packet_count, header_size, payload_per_buffer;
3272 * The OHCI controller puts the isochronous header and trailer in the
3273 * buffer, so we need at least 8 bytes.
3275 packet_count = packet->header_length / ctx->base.header_size;
3276 header_size = max(ctx->base.header_size, (size_t)8);
3278 /* Get header size in number of descriptors. */
3279 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3280 page = payload >> PAGE_SHIFT;
3281 offset = payload & ~PAGE_MASK;
3282 payload_per_buffer = packet->payload_length / packet_count;
3284 for (i = 0; i < packet_count; i++) {
3285 /* d points to the header descriptor */
3286 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3287 d = context_get_descriptors(&ctx->context,
3288 z + header_z, &d_bus);
3292 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3293 DESCRIPTOR_INPUT_MORE);
3294 if (packet->skip && i == 0)
3295 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3296 d->req_count = cpu_to_le16(header_size);
3297 d->res_count = d->req_count;
3298 d->transfer_status = 0;
3299 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3301 rest = payload_per_buffer;
3303 for (j = 1; j < z; j++) {
3305 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3306 DESCRIPTOR_INPUT_MORE);
3308 if (offset + rest < PAGE_SIZE)
3311 length = PAGE_SIZE - offset;
3312 pd->req_count = cpu_to_le16(length);
3313 pd->res_count = pd->req_count;
3314 pd->transfer_status = 0;
3316 page_bus = page_private(buffer->pages[page]);
3317 pd->data_address = cpu_to_le32(page_bus + offset);
3319 dma_sync_single_range_for_device(device, page_bus,
3323 offset = (offset + length) & ~PAGE_MASK;
3328 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3329 DESCRIPTOR_INPUT_LAST |
3330 DESCRIPTOR_BRANCH_ALWAYS);
3331 if (packet->interrupt && i == packet_count - 1)
3332 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3334 context_append(&ctx->context, d, z, header_z);
3340 static int queue_iso_buffer_fill(struct iso_context *ctx,
3341 struct fw_iso_packet *packet,
3342 struct fw_iso_buffer *buffer,
3343 unsigned long payload)
3345 struct descriptor *d;
3346 dma_addr_t d_bus, page_bus;
3347 int page, offset, rest, z, i, length;
3349 page = payload >> PAGE_SHIFT;
3350 offset = payload & ~PAGE_MASK;
3351 rest = packet->payload_length;
3353 /* We need one descriptor for each page in the buffer. */
3354 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3356 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3359 for (i = 0; i < z; i++) {
3360 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3364 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3365 DESCRIPTOR_BRANCH_ALWAYS);
3366 if (packet->skip && i == 0)
3367 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3368 if (packet->interrupt && i == z - 1)
3369 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3371 if (offset + rest < PAGE_SIZE)
3374 length = PAGE_SIZE - offset;
3375 d->req_count = cpu_to_le16(length);
3376 d->res_count = d->req_count;
3377 d->transfer_status = 0;
3379 page_bus = page_private(buffer->pages[page]);
3380 d->data_address = cpu_to_le32(page_bus + offset);
3382 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3383 page_bus, offset, length,
3390 context_append(&ctx->context, d, 1, 0);
3396 static int ohci_queue_iso(struct fw_iso_context *base,
3397 struct fw_iso_packet *packet,
3398 struct fw_iso_buffer *buffer,
3399 unsigned long payload)
3401 struct iso_context *ctx = container_of(base, struct iso_context, base);
3402 unsigned long flags;
3405 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3406 switch (base->type) {
3407 case FW_ISO_CONTEXT_TRANSMIT:
3408 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3410 case FW_ISO_CONTEXT_RECEIVE:
3411 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3413 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3414 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3417 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3422 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3424 struct context *ctx =
3425 &container_of(base, struct iso_context, base)->context;
3427 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3430 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3432 struct iso_context *ctx = container_of(base, struct iso_context, base);
3435 tasklet_disable(&ctx->context.tasklet);
3437 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3438 context_tasklet((unsigned long)&ctx->context);
3440 switch (base->type) {
3441 case FW_ISO_CONTEXT_TRANSMIT:
3442 case FW_ISO_CONTEXT_RECEIVE:
3443 if (ctx->header_length != 0)
3444 flush_iso_completions(ctx);
3446 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3447 if (ctx->mc_completed != 0)
3448 flush_ir_buffer_fill(ctx);
3454 clear_bit_unlock(0, &ctx->flushing_completions);
3455 smp_mb__after_clear_bit();
3458 tasklet_enable(&ctx->context.tasklet);
3463 static const struct fw_card_driver ohci_driver = {
3464 .enable = ohci_enable,
3465 .read_phy_reg = ohci_read_phy_reg,
3466 .update_phy_reg = ohci_update_phy_reg,
3467 .set_config_rom = ohci_set_config_rom,
3468 .send_request = ohci_send_request,
3469 .send_response = ohci_send_response,
3470 .cancel_packet = ohci_cancel_packet,
3471 .enable_phys_dma = ohci_enable_phys_dma,
3472 .read_csr = ohci_read_csr,
3473 .write_csr = ohci_write_csr,
3475 .allocate_iso_context = ohci_allocate_iso_context,
3476 .free_iso_context = ohci_free_iso_context,
3477 .set_iso_channels = ohci_set_iso_channels,
3478 .queue_iso = ohci_queue_iso,
3479 .flush_queue_iso = ohci_flush_queue_iso,
3480 .flush_iso_completions = ohci_flush_iso_completions,
3481 .start_iso = ohci_start_iso,
3482 .stop_iso = ohci_stop_iso,
3485 #ifdef CONFIG_PPC_PMAC
3486 static void pmac_ohci_on(struct pci_dev *dev)
3488 if (machine_is(powermac)) {
3489 struct device_node *ofn = pci_device_to_OF_node(dev);
3492 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3493 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3498 static void pmac_ohci_off(struct pci_dev *dev)
3500 if (machine_is(powermac)) {
3501 struct device_node *ofn = pci_device_to_OF_node(dev);
3504 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3505 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3510 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3511 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3512 #endif /* CONFIG_PPC_PMAC */
3514 static int __devinit pci_probe(struct pci_dev *dev,
3515 const struct pci_device_id *ent)
3517 struct fw_ohci *ohci;
3518 u32 bus_options, max_receive, link_speed, version;
3523 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3524 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3528 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3534 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3538 err = pci_enable_device(dev);
3540 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3544 pci_set_master(dev);
3545 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3546 pci_set_drvdata(dev, ohci);
3548 spin_lock_init(&ohci->lock);
3549 mutex_init(&ohci->phy_reg_mutex);
3551 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3553 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3554 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3555 dev_err(&dev->dev, "invalid MMIO resource\n");
3560 err = pci_request_region(dev, 0, ohci_driver_name);
3562 dev_err(&dev->dev, "MMIO resource unavailable\n");
3566 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3567 if (ohci->registers == NULL) {
3568 dev_err(&dev->dev, "failed to remap registers\n");
3573 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3574 if ((ohci_quirks[i].vendor == dev->vendor) &&
3575 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3576 ohci_quirks[i].device == dev->device) &&
3577 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3578 ohci_quirks[i].revision >= dev->revision)) {
3579 ohci->quirks = ohci_quirks[i].flags;
3583 ohci->quirks = param_quirks;
3586 * Because dma_alloc_coherent() allocates at least one page,
3587 * we save space by using a common buffer for the AR request/
3588 * response descriptors and the self IDs buffer.
3590 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3591 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3592 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3594 &ohci->misc_buffer_bus,
3596 if (!ohci->misc_buffer) {
3601 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3602 OHCI1394_AsReqRcvContextControlSet);
3606 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3607 OHCI1394_AsRspRcvContextControlSet);
3609 goto fail_arreq_ctx;
3611 err = context_init(&ohci->at_request_ctx, ohci,
3612 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3614 goto fail_arrsp_ctx;
3616 err = context_init(&ohci->at_response_ctx, ohci,
3617 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3619 goto fail_atreq_ctx;
3621 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3622 ohci->ir_context_channels = ~0ULL;
3623 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3624 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3625 ohci->ir_context_mask = ohci->ir_context_support;
3626 ohci->n_ir = hweight32(ohci->ir_context_mask);
3627 size = sizeof(struct iso_context) * ohci->n_ir;
3628 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3630 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3631 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3632 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3633 ohci->it_context_mask = ohci->it_context_support;
3634 ohci->n_it = hweight32(ohci->it_context_mask);
3635 size = sizeof(struct iso_context) * ohci->n_it;
3636 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3638 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3643 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3644 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3646 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3647 max_receive = (bus_options >> 12) & 0xf;
3648 link_speed = bus_options & 0x7;
3649 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3650 reg_read(ohci, OHCI1394_GUIDLo);
3652 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3656 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3657 dev_notice(&dev->dev,
3658 "added OHCI v%x.%x device as card %d, "
3659 "%d IR + %d IT contexts, quirks 0x%x\n",
3660 version >> 16, version & 0xff, ohci->card.index,
3661 ohci->n_ir, ohci->n_it, ohci->quirks);
3666 kfree(ohci->ir_context_list);
3667 kfree(ohci->it_context_list);
3668 context_release(&ohci->at_response_ctx);
3670 context_release(&ohci->at_request_ctx);
3672 ar_context_release(&ohci->ar_response_ctx);
3674 ar_context_release(&ohci->ar_request_ctx);
3676 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3677 ohci->misc_buffer, ohci->misc_buffer_bus);
3679 pci_iounmap(dev, ohci->registers);
3681 pci_release_region(dev, 0);
3683 pci_disable_device(dev);
3689 dev_err(&dev->dev, "out of memory\n");
3694 static void pci_remove(struct pci_dev *dev)
3696 struct fw_ohci *ohci;
3698 ohci = pci_get_drvdata(dev);
3699 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3701 cancel_work_sync(&ohci->bus_reset_work);
3702 fw_core_remove_card(&ohci->card);
3705 * FIXME: Fail all pending packets here, now that the upper
3706 * layers can't queue any more.
3709 software_reset(ohci);
3710 free_irq(dev->irq, ohci);
3712 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3713 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3714 ohci->next_config_rom, ohci->next_config_rom_bus);
3715 if (ohci->config_rom)
3716 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3717 ohci->config_rom, ohci->config_rom_bus);
3718 ar_context_release(&ohci->ar_request_ctx);
3719 ar_context_release(&ohci->ar_response_ctx);
3720 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3721 ohci->misc_buffer, ohci->misc_buffer_bus);
3722 context_release(&ohci->at_request_ctx);
3723 context_release(&ohci->at_response_ctx);
3724 kfree(ohci->it_context_list);
3725 kfree(ohci->ir_context_list);
3726 pci_disable_msi(dev);
3727 pci_iounmap(dev, ohci->registers);
3728 pci_release_region(dev, 0);
3729 pci_disable_device(dev);
3733 dev_notice(&dev->dev, "removed fw-ohci device\n");
3737 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3739 struct fw_ohci *ohci = pci_get_drvdata(dev);
3742 software_reset(ohci);
3743 free_irq(dev->irq, ohci);
3744 pci_disable_msi(dev);
3745 err = pci_save_state(dev);
3747 dev_err(&dev->dev, "pci_save_state failed\n");
3750 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3752 dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3758 static int pci_resume(struct pci_dev *dev)
3760 struct fw_ohci *ohci = pci_get_drvdata(dev);
3764 pci_set_power_state(dev, PCI_D0);
3765 pci_restore_state(dev);
3766 err = pci_enable_device(dev);
3768 dev_err(&dev->dev, "pci_enable_device failed\n");
3772 /* Some systems don't setup GUID register on resume from ram */
3773 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3774 !reg_read(ohci, OHCI1394_GUIDHi)) {
3775 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3776 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3779 err = ohci_enable(&ohci->card, NULL, 0);
3783 ohci_resume_iso_dma(ohci);
3789 static const struct pci_device_id pci_table[] = {
3790 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3794 MODULE_DEVICE_TABLE(pci, pci_table);
3796 static struct pci_driver fw_ohci_pci_driver = {
3797 .name = ohci_driver_name,
3798 .id_table = pci_table,
3800 .remove = pci_remove,
3802 .resume = pci_resume,
3803 .suspend = pci_suspend,
3807 module_pci_driver(fw_ohci_pci_driver);
3809 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3810 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3811 MODULE_LICENSE("GPL");
3813 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3814 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3815 MODULE_ALIAS("ohci1394");