ISDN, hfcsusb: Don't leak in hfcsusb_ph_info()
[pandora-kernel.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/ethtool.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/highmem.h>
16 #include <linux/in.h>
17 #include <linux/ip.h>
18 #include <linux/jiffies.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mutex.h>
23 #include <linux/netdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #include <asm/unaligned.h>
29 #include <net/arp.h>
30
31 /* rx limits */
32 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
33 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
34
35 /* tx limits */
36 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
37 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
38 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
39
40 #define IEEE1394_BROADCAST_CHANNEL      31
41 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
42 #define IEEE1394_MAX_PAYLOAD_S100       512
43 #define FWNET_NO_FIFO_ADDR              (~0ULL)
44
45 #define IANA_SPECIFIER_ID               0x00005eU
46 #define RFC2734_SW_VERSION              0x000001U
47
48 #define IEEE1394_GASP_HDR_SIZE  8
49
50 #define RFC2374_UNFRAG_HDR_SIZE 4
51 #define RFC2374_FRAG_HDR_SIZE   8
52 #define RFC2374_FRAG_OVERHEAD   4
53
54 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
55 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
56 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
57 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
58
59 #define RFC2734_HW_ADDR_LEN     16
60
61 struct rfc2734_arp {
62         __be16 hw_type;         /* 0x0018       */
63         __be16 proto_type;      /* 0x0806       */
64         u8 hw_addr_len;         /* 16           */
65         u8 ip_addr_len;         /* 4            */
66         __be16 opcode;          /* ARP Opcode   */
67         /* Above is exactly the same format as struct arphdr */
68
69         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
70         u8 max_rec;             /* Sender's max packet size             */
71         u8 sspd;                /* Sender's max speed                   */
72         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
73         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
74         __be32 sip;             /* Sender's IP Address                  */
75         __be32 tip;             /* IP Address of requested hw addr      */
76 } __attribute__((packed));
77
78 /* This header format is specific to this driver implementation. */
79 #define FWNET_ALEN      8
80 #define FWNET_HLEN      10
81 struct fwnet_header {
82         u8 h_dest[FWNET_ALEN];  /* destination address */
83         __be16 h_proto;         /* packet type ID field */
84 } __attribute__((packed));
85
86 /* IPv4 and IPv6 encapsulation header */
87 struct rfc2734_header {
88         u32 w0;
89         u32 w1;
90 };
91
92 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
93 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
94 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
95 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
96 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
97
98 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
99 #define fwnet_set_hdr_ether_type(et)    (et)
100 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
101 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
102
103 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
104
105 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
106                 unsigned ether_type)
107 {
108         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
109                   | fwnet_set_hdr_ether_type(ether_type);
110 }
111
112 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
113                 unsigned ether_type, unsigned dg_size, unsigned dgl)
114 {
115         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
116                   | fwnet_set_hdr_dg_size(dg_size)
117                   | fwnet_set_hdr_ether_type(ether_type);
118         hdr->w1 = fwnet_set_hdr_dgl(dgl);
119 }
120
121 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
122                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
123 {
124         hdr->w0 = fwnet_set_hdr_lf(lf)
125                   | fwnet_set_hdr_dg_size(dg_size)
126                   | fwnet_set_hdr_fg_off(fg_off);
127         hdr->w1 = fwnet_set_hdr_dgl(dgl);
128 }
129
130 /* This list keeps track of what parts of the datagram have been filled in */
131 struct fwnet_fragment_info {
132         struct list_head fi_link;
133         u16 offset;
134         u16 len;
135 };
136
137 struct fwnet_partial_datagram {
138         struct list_head pd_link;
139         struct list_head fi_list;
140         struct sk_buff *skb;
141         /* FIXME Why not use skb->data? */
142         char *pbuf;
143         u16 datagram_label;
144         u16 ether_type;
145         u16 datagram_size;
146 };
147
148 static DEFINE_MUTEX(fwnet_device_mutex);
149 static LIST_HEAD(fwnet_device_list);
150
151 struct fwnet_device {
152         struct list_head dev_link;
153         spinlock_t lock;
154         enum {
155                 FWNET_BROADCAST_ERROR,
156                 FWNET_BROADCAST_RUNNING,
157                 FWNET_BROADCAST_STOPPED,
158         } broadcast_state;
159         struct fw_iso_context *broadcast_rcv_context;
160         struct fw_iso_buffer broadcast_rcv_buffer;
161         void **broadcast_rcv_buffer_ptrs;
162         unsigned broadcast_rcv_next_ptr;
163         unsigned num_broadcast_rcv_ptrs;
164         unsigned rcv_buffer_size;
165         /*
166          * This value is the maximum unfragmented datagram size that can be
167          * sent by the hardware.  It already has the GASP overhead and the
168          * unfragmented datagram header overhead calculated into it.
169          */
170         unsigned broadcast_xmt_max_payload;
171         u16 broadcast_xmt_datagramlabel;
172
173         /*
174          * The CSR address that remote nodes must send datagrams to for us to
175          * receive them.
176          */
177         struct fw_address_handler handler;
178         u64 local_fifo;
179
180         /* Number of tx datagrams that have been queued but not yet acked */
181         int queued_datagrams;
182
183         int peer_count;
184         struct list_head peer_list;
185         struct fw_card *card;
186         struct net_device *netdev;
187 };
188
189 struct fwnet_peer {
190         struct list_head peer_link;
191         struct fwnet_device *dev;
192         u64 guid;
193         u64 fifo;
194         __be32 ip;
195
196         /* guarded by dev->lock */
197         struct list_head pd_list; /* received partial datagrams */
198         unsigned pdg_size;        /* pd_list size */
199
200         u16 datagram_label;       /* outgoing datagram label */
201         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
202         int node_id;
203         int generation;
204         unsigned speed;
205 };
206
207 /* This is our task struct. It's used for the packet complete callback.  */
208 struct fwnet_packet_task {
209         struct fw_transaction transaction;
210         struct rfc2734_header hdr;
211         struct sk_buff *skb;
212         struct fwnet_device *dev;
213
214         int outstanding_pkts;
215         u64 fifo_addr;
216         u16 dest_node;
217         u16 max_payload;
218         u8 generation;
219         u8 speed;
220         u8 enqueued;
221 };
222
223 /*
224  * saddr == NULL means use device source address.
225  * daddr == NULL means leave destination address (eg unresolved arp).
226  */
227 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
228                         unsigned short type, const void *daddr,
229                         const void *saddr, unsigned len)
230 {
231         struct fwnet_header *h;
232
233         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
234         put_unaligned_be16(type, &h->h_proto);
235
236         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
237                 memset(h->h_dest, 0, net->addr_len);
238
239                 return net->hard_header_len;
240         }
241
242         if (daddr) {
243                 memcpy(h->h_dest, daddr, net->addr_len);
244
245                 return net->hard_header_len;
246         }
247
248         return -net->hard_header_len;
249 }
250
251 static int fwnet_header_rebuild(struct sk_buff *skb)
252 {
253         struct fwnet_header *h = (struct fwnet_header *)skb->data;
254
255         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
256                 return arp_find((unsigned char *)&h->h_dest, skb);
257
258         fw_notify("%s: unable to resolve type %04x addresses\n",
259                   skb->dev->name, be16_to_cpu(h->h_proto));
260         return 0;
261 }
262
263 static int fwnet_header_cache(const struct neighbour *neigh,
264                               struct hh_cache *hh)
265 {
266         struct net_device *net;
267         struct fwnet_header *h;
268
269         if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
270                 return -1;
271         net = neigh->dev;
272         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
273         h->h_proto = hh->hh_type;
274         memcpy(h->h_dest, neigh->ha, net->addr_len);
275         hh->hh_len = FWNET_HLEN;
276
277         return 0;
278 }
279
280 /* Called by Address Resolution module to notify changes in address. */
281 static void fwnet_header_cache_update(struct hh_cache *hh,
282                 const struct net_device *net, const unsigned char *haddr)
283 {
284         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
285 }
286
287 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
288 {
289         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
290
291         return FWNET_ALEN;
292 }
293
294 static const struct header_ops fwnet_header_ops = {
295         .create         = fwnet_header_create,
296         .rebuild        = fwnet_header_rebuild,
297         .cache          = fwnet_header_cache,
298         .cache_update   = fwnet_header_cache_update,
299         .parse          = fwnet_header_parse,
300 };
301
302 /* FIXME: is this correct for all cases? */
303 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
304                                unsigned offset, unsigned len)
305 {
306         struct fwnet_fragment_info *fi;
307         unsigned end = offset + len;
308
309         list_for_each_entry(fi, &pd->fi_list, fi_link)
310                 if (offset < fi->offset + fi->len && end > fi->offset)
311                         return true;
312
313         return false;
314 }
315
316 /* Assumes that new fragment does not overlap any existing fragments */
317 static struct fwnet_fragment_info *fwnet_frag_new(
318         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
319 {
320         struct fwnet_fragment_info *fi, *fi2, *new;
321         struct list_head *list;
322
323         list = &pd->fi_list;
324         list_for_each_entry(fi, &pd->fi_list, fi_link) {
325                 if (fi->offset + fi->len == offset) {
326                         /* The new fragment can be tacked on to the end */
327                         /* Did the new fragment plug a hole? */
328                         fi2 = list_entry(fi->fi_link.next,
329                                          struct fwnet_fragment_info, fi_link);
330                         if (fi->offset + fi->len == fi2->offset) {
331                                 /* glue fragments together */
332                                 fi->len += len + fi2->len;
333                                 list_del(&fi2->fi_link);
334                                 kfree(fi2);
335                         } else {
336                                 fi->len += len;
337                         }
338
339                         return fi;
340                 }
341                 if (offset + len == fi->offset) {
342                         /* The new fragment can be tacked on to the beginning */
343                         /* Did the new fragment plug a hole? */
344                         fi2 = list_entry(fi->fi_link.prev,
345                                          struct fwnet_fragment_info, fi_link);
346                         if (fi2->offset + fi2->len == fi->offset) {
347                                 /* glue fragments together */
348                                 fi2->len += fi->len + len;
349                                 list_del(&fi->fi_link);
350                                 kfree(fi);
351
352                                 return fi2;
353                         }
354                         fi->offset = offset;
355                         fi->len += len;
356
357                         return fi;
358                 }
359                 if (offset > fi->offset + fi->len) {
360                         list = &fi->fi_link;
361                         break;
362                 }
363                 if (offset + len < fi->offset) {
364                         list = fi->fi_link.prev;
365                         break;
366                 }
367         }
368
369         new = kmalloc(sizeof(*new), GFP_ATOMIC);
370         if (!new) {
371                 fw_error("out of memory\n");
372                 return NULL;
373         }
374
375         new->offset = offset;
376         new->len = len;
377         list_add(&new->fi_link, list);
378
379         return new;
380 }
381
382 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
383                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
384                 void *frag_buf, unsigned frag_off, unsigned frag_len)
385 {
386         struct fwnet_partial_datagram *new;
387         struct fwnet_fragment_info *fi;
388
389         new = kmalloc(sizeof(*new), GFP_ATOMIC);
390         if (!new)
391                 goto fail;
392
393         INIT_LIST_HEAD(&new->fi_list);
394         fi = fwnet_frag_new(new, frag_off, frag_len);
395         if (fi == NULL)
396                 goto fail_w_new;
397
398         new->datagram_label = datagram_label;
399         new->datagram_size = dg_size;
400         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
401         if (new->skb == NULL)
402                 goto fail_w_fi;
403
404         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
405         new->pbuf = skb_put(new->skb, dg_size);
406         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
407         list_add_tail(&new->pd_link, &peer->pd_list);
408
409         return new;
410
411 fail_w_fi:
412         kfree(fi);
413 fail_w_new:
414         kfree(new);
415 fail:
416         fw_error("out of memory\n");
417
418         return NULL;
419 }
420
421 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
422                                                     u16 datagram_label)
423 {
424         struct fwnet_partial_datagram *pd;
425
426         list_for_each_entry(pd, &peer->pd_list, pd_link)
427                 if (pd->datagram_label == datagram_label)
428                         return pd;
429
430         return NULL;
431 }
432
433
434 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
435 {
436         struct fwnet_fragment_info *fi, *n;
437
438         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
439                 kfree(fi);
440
441         list_del(&old->pd_link);
442         dev_kfree_skb_any(old->skb);
443         kfree(old);
444 }
445
446 static bool fwnet_pd_update(struct fwnet_peer *peer,
447                 struct fwnet_partial_datagram *pd, void *frag_buf,
448                 unsigned frag_off, unsigned frag_len)
449 {
450         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
451                 return false;
452
453         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
454
455         /*
456          * Move list entry to beginning of list so that oldest partial
457          * datagrams percolate to the end of the list
458          */
459         list_move_tail(&pd->pd_link, &peer->pd_list);
460
461         return true;
462 }
463
464 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
465 {
466         struct fwnet_fragment_info *fi;
467
468         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
469
470         return fi->len == pd->datagram_size;
471 }
472
473 /* caller must hold dev->lock */
474 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
475                                                   u64 guid)
476 {
477         struct fwnet_peer *peer;
478
479         list_for_each_entry(peer, &dev->peer_list, peer_link)
480                 if (peer->guid == guid)
481                         return peer;
482
483         return NULL;
484 }
485
486 /* caller must hold dev->lock */
487 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
488                                                 int node_id, int generation)
489 {
490         struct fwnet_peer *peer;
491
492         list_for_each_entry(peer, &dev->peer_list, peer_link)
493                 if (peer->node_id    == node_id &&
494                     peer->generation == generation)
495                         return peer;
496
497         return NULL;
498 }
499
500 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
501 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
502 {
503         max_rec = min(max_rec, speed + 8);
504         max_rec = min(max_rec, 0xbU); /* <= 4096 */
505         if (max_rec < 8) {
506                 fw_notify("max_rec %x out of range\n", max_rec);
507                 max_rec = 8;
508         }
509
510         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
511 }
512
513
514 static int fwnet_finish_incoming_packet(struct net_device *net,
515                                         struct sk_buff *skb, u16 source_node_id,
516                                         bool is_broadcast, u16 ether_type)
517 {
518         struct fwnet_device *dev;
519         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
520         int status;
521         __be64 guid;
522
523         dev = netdev_priv(net);
524         /* Write metadata, and then pass to the receive level */
525         skb->dev = net;
526         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
527
528         /*
529          * Parse the encapsulation header. This actually does the job of
530          * converting to an ethernet frame header, as well as arp
531          * conversion if needed. ARP conversion is easier in this
532          * direction, since we are using ethernet as our backend.
533          */
534         /*
535          * If this is an ARP packet, convert it. First, we want to make
536          * use of some of the fields, since they tell us a little bit
537          * about the sending machine.
538          */
539         if (ether_type == ETH_P_ARP) {
540                 struct rfc2734_arp *arp1394;
541                 struct arphdr *arp;
542                 unsigned char *arp_ptr;
543                 u64 fifo_addr;
544                 u64 peer_guid;
545                 unsigned sspd;
546                 u16 max_payload;
547                 struct fwnet_peer *peer;
548                 unsigned long flags;
549
550                 arp1394   = (struct rfc2734_arp *)skb->data;
551                 arp       = (struct arphdr *)skb->data;
552                 arp_ptr   = (unsigned char *)(arp + 1);
553                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
554                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
555                                 | get_unaligned_be32(&arp1394->fifo_lo);
556
557                 sspd = arp1394->sspd;
558                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
559                 if (sspd > SCODE_3200) {
560                         fw_notify("sspd %x out of range\n", sspd);
561                         sspd = SCODE_3200;
562                 }
563                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
564
565                 spin_lock_irqsave(&dev->lock, flags);
566                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
567                 if (peer) {
568                         peer->fifo = fifo_addr;
569
570                         if (peer->speed > sspd)
571                                 peer->speed = sspd;
572                         if (peer->max_payload > max_payload)
573                                 peer->max_payload = max_payload;
574
575                         peer->ip = arp1394->sip;
576                 }
577                 spin_unlock_irqrestore(&dev->lock, flags);
578
579                 if (!peer) {
580                         fw_notify("No peer for ARP packet from %016llx\n",
581                                   (unsigned long long)peer_guid);
582                         goto no_peer;
583                 }
584
585                 /*
586                  * Now that we're done with the 1394 specific stuff, we'll
587                  * need to alter some of the data.  Believe it or not, all
588                  * that needs to be done is sender_IP_address needs to be
589                  * moved, the destination hardware address get stuffed
590                  * in and the hardware address length set to 8.
591                  *
592                  * IMPORTANT: The code below overwrites 1394 specific data
593                  * needed above so keep the munging of the data for the
594                  * higher level IP stack last.
595                  */
596
597                 arp->ar_hln = 8;
598                 /* skip over sender unique id */
599                 arp_ptr += arp->ar_hln;
600                 /* move sender IP addr */
601                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
602                 /* skip over sender IP addr */
603                 arp_ptr += arp->ar_pln;
604
605                 if (arp->ar_op == htons(ARPOP_REQUEST))
606                         memset(arp_ptr, 0, sizeof(u64));
607                 else
608                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
609         }
610
611         /* Now add the ethernet header. */
612         guid = cpu_to_be64(dev->card->guid);
613         if (dev_hard_header(skb, net, ether_type,
614                            is_broadcast ? &broadcast_hw : &guid,
615                            NULL, skb->len) >= 0) {
616                 struct fwnet_header *eth;
617                 u16 *rawp;
618                 __be16 protocol;
619
620                 skb_reset_mac_header(skb);
621                 skb_pull(skb, sizeof(*eth));
622                 eth = (struct fwnet_header *)skb_mac_header(skb);
623                 if (*eth->h_dest & 1) {
624                         if (memcmp(eth->h_dest, net->broadcast,
625                                    net->addr_len) == 0)
626                                 skb->pkt_type = PACKET_BROADCAST;
627 #if 0
628                         else
629                                 skb->pkt_type = PACKET_MULTICAST;
630 #endif
631                 } else {
632                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
633                                 skb->pkt_type = PACKET_OTHERHOST;
634                 }
635                 if (ntohs(eth->h_proto) >= 1536) {
636                         protocol = eth->h_proto;
637                 } else {
638                         rawp = (u16 *)skb->data;
639                         if (*rawp == 0xffff)
640                                 protocol = htons(ETH_P_802_3);
641                         else
642                                 protocol = htons(ETH_P_802_2);
643                 }
644                 skb->protocol = protocol;
645         }
646         status = netif_rx(skb);
647         if (status == NET_RX_DROP) {
648                 net->stats.rx_errors++;
649                 net->stats.rx_dropped++;
650         } else {
651                 net->stats.rx_packets++;
652                 net->stats.rx_bytes += skb->len;
653         }
654
655         return 0;
656
657  no_peer:
658         net->stats.rx_errors++;
659         net->stats.rx_dropped++;
660
661         dev_kfree_skb_any(skb);
662
663         return -ENOENT;
664 }
665
666 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
667                                  int source_node_id, int generation,
668                                  bool is_broadcast)
669 {
670         struct sk_buff *skb;
671         struct net_device *net = dev->netdev;
672         struct rfc2734_header hdr;
673         unsigned lf;
674         unsigned long flags;
675         struct fwnet_peer *peer;
676         struct fwnet_partial_datagram *pd;
677         int fg_off;
678         int dg_size;
679         u16 datagram_label;
680         int retval;
681         u16 ether_type;
682
683         hdr.w0 = be32_to_cpu(buf[0]);
684         lf = fwnet_get_hdr_lf(&hdr);
685         if (lf == RFC2374_HDR_UNFRAG) {
686                 /*
687                  * An unfragmented datagram has been received by the ieee1394
688                  * bus. Build an skbuff around it so we can pass it to the
689                  * high level network layer.
690                  */
691                 ether_type = fwnet_get_hdr_ether_type(&hdr);
692                 buf++;
693                 len -= RFC2374_UNFRAG_HDR_SIZE;
694
695                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
696                 if (unlikely(!skb)) {
697                         fw_error("out of memory\n");
698                         net->stats.rx_dropped++;
699
700                         return -ENOMEM;
701                 }
702                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
703                 memcpy(skb_put(skb, len), buf, len);
704
705                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
706                                                     is_broadcast, ether_type);
707         }
708         /* A datagram fragment has been received, now the fun begins. */
709         hdr.w1 = ntohl(buf[1]);
710         buf += 2;
711         len -= RFC2374_FRAG_HDR_SIZE;
712         if (lf == RFC2374_HDR_FIRSTFRAG) {
713                 ether_type = fwnet_get_hdr_ether_type(&hdr);
714                 fg_off = 0;
715         } else {
716                 ether_type = 0;
717                 fg_off = fwnet_get_hdr_fg_off(&hdr);
718         }
719         datagram_label = fwnet_get_hdr_dgl(&hdr);
720         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
721
722         spin_lock_irqsave(&dev->lock, flags);
723
724         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
725         if (!peer) {
726                 retval = -ENOENT;
727                 goto fail;
728         }
729
730         pd = fwnet_pd_find(peer, datagram_label);
731         if (pd == NULL) {
732                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
733                         /* remove the oldest */
734                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
735                                 struct fwnet_partial_datagram, pd_link));
736                         peer->pdg_size--;
737                 }
738                 pd = fwnet_pd_new(net, peer, datagram_label,
739                                   dg_size, buf, fg_off, len);
740                 if (pd == NULL) {
741                         retval = -ENOMEM;
742                         goto fail;
743                 }
744                 peer->pdg_size++;
745         } else {
746                 if (fwnet_frag_overlap(pd, fg_off, len) ||
747                     pd->datagram_size != dg_size) {
748                         /*
749                          * Differing datagram sizes or overlapping fragments,
750                          * discard old datagram and start a new one.
751                          */
752                         fwnet_pd_delete(pd);
753                         pd = fwnet_pd_new(net, peer, datagram_label,
754                                           dg_size, buf, fg_off, len);
755                         if (pd == NULL) {
756                                 peer->pdg_size--;
757                                 retval = -ENOMEM;
758                                 goto fail;
759                         }
760                 } else {
761                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
762                                 /*
763                                  * Couldn't save off fragment anyway
764                                  * so might as well obliterate the
765                                  * datagram now.
766                                  */
767                                 fwnet_pd_delete(pd);
768                                 peer->pdg_size--;
769                                 retval = -ENOMEM;
770                                 goto fail;
771                         }
772                 }
773         } /* new datagram or add to existing one */
774
775         if (lf == RFC2374_HDR_FIRSTFRAG)
776                 pd->ether_type = ether_type;
777
778         if (fwnet_pd_is_complete(pd)) {
779                 ether_type = pd->ether_type;
780                 peer->pdg_size--;
781                 skb = skb_get(pd->skb);
782                 fwnet_pd_delete(pd);
783
784                 spin_unlock_irqrestore(&dev->lock, flags);
785
786                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
787                                                     false, ether_type);
788         }
789         /*
790          * Datagram is not complete, we're done for the
791          * moment.
792          */
793         retval = 0;
794  fail:
795         spin_unlock_irqrestore(&dev->lock, flags);
796
797         return retval;
798 }
799
800 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
801                 int tcode, int destination, int source, int generation,
802                 unsigned long long offset, void *payload, size_t length,
803                 void *callback_data)
804 {
805         struct fwnet_device *dev = callback_data;
806         int rcode;
807
808         if (destination == IEEE1394_ALL_NODES) {
809                 kfree(r);
810
811                 return;
812         }
813
814         if (offset != dev->handler.offset)
815                 rcode = RCODE_ADDRESS_ERROR;
816         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
817                 rcode = RCODE_TYPE_ERROR;
818         else if (fwnet_incoming_packet(dev, payload, length,
819                                        source, generation, false) != 0) {
820                 fw_error("Incoming packet failure\n");
821                 rcode = RCODE_CONFLICT_ERROR;
822         } else
823                 rcode = RCODE_COMPLETE;
824
825         fw_send_response(card, r, rcode);
826 }
827
828 static void fwnet_receive_broadcast(struct fw_iso_context *context,
829                 u32 cycle, size_t header_length, void *header, void *data)
830 {
831         struct fwnet_device *dev;
832         struct fw_iso_packet packet;
833         struct fw_card *card;
834         __be16 *hdr_ptr;
835         __be32 *buf_ptr;
836         int retval;
837         u32 length;
838         u16 source_node_id;
839         u32 specifier_id;
840         u32 ver;
841         unsigned long offset;
842         unsigned long flags;
843
844         dev = data;
845         card = dev->card;
846         hdr_ptr = header;
847         length = be16_to_cpup(hdr_ptr);
848
849         spin_lock_irqsave(&dev->lock, flags);
850
851         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
852         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
853         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
854                 dev->broadcast_rcv_next_ptr = 0;
855
856         spin_unlock_irqrestore(&dev->lock, flags);
857
858         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
859                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
860         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
861         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
862
863         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
864                 buf_ptr += 2;
865                 length -= IEEE1394_GASP_HDR_SIZE;
866                 fwnet_incoming_packet(dev, buf_ptr, length,
867                                       source_node_id, -1, true);
868         }
869
870         packet.payload_length = dev->rcv_buffer_size;
871         packet.interrupt = 1;
872         packet.skip = 0;
873         packet.tag = 3;
874         packet.sy = 0;
875         packet.header_length = IEEE1394_GASP_HDR_SIZE;
876
877         spin_lock_irqsave(&dev->lock, flags);
878
879         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
880                                       &dev->broadcast_rcv_buffer, offset);
881
882         spin_unlock_irqrestore(&dev->lock, flags);
883
884         if (retval >= 0)
885                 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
886         else
887                 fw_error("requeue failed\n");
888 }
889
890 static struct kmem_cache *fwnet_packet_task_cache;
891
892 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
893 {
894         dev_kfree_skb_any(ptask->skb);
895         kmem_cache_free(fwnet_packet_task_cache, ptask);
896 }
897
898 /* Caller must hold dev->lock. */
899 static void dec_queued_datagrams(struct fwnet_device *dev)
900 {
901         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
902                 netif_wake_queue(dev->netdev);
903 }
904
905 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
906
907 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
908 {
909         struct fwnet_device *dev = ptask->dev;
910         struct sk_buff *skb = ptask->skb;
911         unsigned long flags;
912         bool free;
913
914         spin_lock_irqsave(&dev->lock, flags);
915
916         ptask->outstanding_pkts--;
917
918         /* Check whether we or the networking TX soft-IRQ is last user. */
919         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
920         if (free)
921                 dec_queued_datagrams(dev);
922
923         if (ptask->outstanding_pkts == 0) {
924                 dev->netdev->stats.tx_packets++;
925                 dev->netdev->stats.tx_bytes += skb->len;
926         }
927
928         spin_unlock_irqrestore(&dev->lock, flags);
929
930         if (ptask->outstanding_pkts > 0) {
931                 u16 dg_size;
932                 u16 fg_off;
933                 u16 datagram_label;
934                 u16 lf;
935
936                 /* Update the ptask to point to the next fragment and send it */
937                 lf = fwnet_get_hdr_lf(&ptask->hdr);
938                 switch (lf) {
939                 case RFC2374_HDR_LASTFRAG:
940                 case RFC2374_HDR_UNFRAG:
941                 default:
942                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
943                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
944                                  ptask->hdr.w1);
945                         BUG();
946
947                 case RFC2374_HDR_FIRSTFRAG:
948                         /* Set frag type here for future interior fragments */
949                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
950                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
951                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
952                         break;
953
954                 case RFC2374_HDR_INTFRAG:
955                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
956                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
957                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
958                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
959                         break;
960                 }
961
962                 skb_pull(skb, ptask->max_payload);
963                 if (ptask->outstanding_pkts > 1) {
964                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
965                                           dg_size, fg_off, datagram_label);
966                 } else {
967                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
968                                           dg_size, fg_off, datagram_label);
969                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
970                 }
971                 fwnet_send_packet(ptask);
972         }
973
974         if (free)
975                 fwnet_free_ptask(ptask);
976 }
977
978 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
979 {
980         struct fwnet_device *dev = ptask->dev;
981         unsigned long flags;
982         bool free;
983
984         spin_lock_irqsave(&dev->lock, flags);
985
986         /* One fragment failed; don't try to send remaining fragments. */
987         ptask->outstanding_pkts = 0;
988
989         /* Check whether we or the networking TX soft-IRQ is last user. */
990         free = ptask->enqueued;
991         if (free)
992                 dec_queued_datagrams(dev);
993
994         dev->netdev->stats.tx_dropped++;
995         dev->netdev->stats.tx_errors++;
996
997         spin_unlock_irqrestore(&dev->lock, flags);
998
999         if (free)
1000                 fwnet_free_ptask(ptask);
1001 }
1002
1003 static void fwnet_write_complete(struct fw_card *card, int rcode,
1004                                  void *payload, size_t length, void *data)
1005 {
1006         struct fwnet_packet_task *ptask = data;
1007         static unsigned long j;
1008         static int last_rcode, errors_skipped;
1009
1010         if (rcode == RCODE_COMPLETE) {
1011                 fwnet_transmit_packet_done(ptask);
1012         } else {
1013                 fwnet_transmit_packet_failed(ptask);
1014
1015                 if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1016                         fw_error("fwnet_write_complete: "
1017                                 "failed: %x (skipped %d)\n", rcode, errors_skipped);
1018
1019                         errors_skipped = 0;
1020                         last_rcode = rcode;
1021                 } else
1022                         errors_skipped++;
1023         }
1024 }
1025
1026 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1027 {
1028         struct fwnet_device *dev;
1029         unsigned tx_len;
1030         struct rfc2734_header *bufhdr;
1031         unsigned long flags;
1032         bool free;
1033
1034         dev = ptask->dev;
1035         tx_len = ptask->max_payload;
1036         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1037         case RFC2374_HDR_UNFRAG:
1038                 bufhdr = (struct rfc2734_header *)
1039                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1040                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1041                 break;
1042
1043         case RFC2374_HDR_FIRSTFRAG:
1044         case RFC2374_HDR_INTFRAG:
1045         case RFC2374_HDR_LASTFRAG:
1046                 bufhdr = (struct rfc2734_header *)
1047                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1048                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1049                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1050                 break;
1051
1052         default:
1053                 BUG();
1054         }
1055         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1056                 u8 *p;
1057                 int generation;
1058                 int node_id;
1059
1060                 /* ptask->generation may not have been set yet */
1061                 generation = dev->card->generation;
1062                 smp_rmb();
1063                 node_id = dev->card->node_id;
1064
1065                 p = skb_push(ptask->skb, 8);
1066                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1067                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1068                                                 | RFC2734_SW_VERSION, &p[4]);
1069
1070                 /* We should not transmit if broadcast_channel.valid == 0. */
1071                 fw_send_request(dev->card, &ptask->transaction,
1072                                 TCODE_STREAM_DATA,
1073                                 fw_stream_packet_destination_id(3,
1074                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1075                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1076                                 tx_len + 8, fwnet_write_complete, ptask);
1077
1078                 spin_lock_irqsave(&dev->lock, flags);
1079
1080                 /* If the AT tasklet already ran, we may be last user. */
1081                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1082                 if (!free)
1083                         ptask->enqueued = true;
1084                 else
1085                         dec_queued_datagrams(dev);
1086
1087                 spin_unlock_irqrestore(&dev->lock, flags);
1088
1089                 goto out;
1090         }
1091
1092         fw_send_request(dev->card, &ptask->transaction,
1093                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1094                         ptask->generation, ptask->speed, ptask->fifo_addr,
1095                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1096
1097         spin_lock_irqsave(&dev->lock, flags);
1098
1099         /* If the AT tasklet already ran, we may be last user. */
1100         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1101         if (!free)
1102                 ptask->enqueued = true;
1103         else
1104                 dec_queued_datagrams(dev);
1105
1106         spin_unlock_irqrestore(&dev->lock, flags);
1107
1108         dev->netdev->trans_start = jiffies;
1109  out:
1110         if (free)
1111                 fwnet_free_ptask(ptask);
1112
1113         return 0;
1114 }
1115
1116 static int fwnet_broadcast_start(struct fwnet_device *dev)
1117 {
1118         struct fw_iso_context *context;
1119         int retval;
1120         unsigned num_packets;
1121         unsigned max_receive;
1122         struct fw_iso_packet packet;
1123         unsigned long offset;
1124         unsigned u;
1125
1126         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1127                 /* outside OHCI posted write area? */
1128                 static const struct fw_address_region region = {
1129                         .start = 0xffff00000000ULL,
1130                         .end   = CSR_REGISTER_BASE,
1131                 };
1132
1133                 dev->handler.length = 4096;
1134                 dev->handler.address_callback = fwnet_receive_packet;
1135                 dev->handler.callback_data = dev;
1136
1137                 retval = fw_core_add_address_handler(&dev->handler, &region);
1138                 if (retval < 0)
1139                         goto failed_initial;
1140
1141                 dev->local_fifo = dev->handler.offset;
1142         }
1143
1144         max_receive = 1U << (dev->card->max_receive + 1);
1145         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1146
1147         if (!dev->broadcast_rcv_context) {
1148                 void **ptrptr;
1149
1150                 context = fw_iso_context_create(dev->card,
1151                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1152                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1153                 if (IS_ERR(context)) {
1154                         retval = PTR_ERR(context);
1155                         goto failed_context_create;
1156                 }
1157
1158                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1159                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1160                 if (retval < 0)
1161                         goto failed_buffer_init;
1162
1163                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1164                 if (!ptrptr) {
1165                         retval = -ENOMEM;
1166                         goto failed_ptrs_alloc;
1167                 }
1168
1169                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1170                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1171                         void *ptr;
1172                         unsigned v;
1173
1174                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1175                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1176                                 *ptrptr++ = (void *)
1177                                                 ((char *)ptr + v * max_receive);
1178                 }
1179                 dev->broadcast_rcv_context = context;
1180         } else {
1181                 context = dev->broadcast_rcv_context;
1182         }
1183
1184         packet.payload_length = max_receive;
1185         packet.interrupt = 1;
1186         packet.skip = 0;
1187         packet.tag = 3;
1188         packet.sy = 0;
1189         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1190         offset = 0;
1191
1192         for (u = 0; u < num_packets; u++) {
1193                 retval = fw_iso_context_queue(context, &packet,
1194                                 &dev->broadcast_rcv_buffer, offset);
1195                 if (retval < 0)
1196                         goto failed_rcv_queue;
1197
1198                 offset += max_receive;
1199         }
1200         dev->num_broadcast_rcv_ptrs = num_packets;
1201         dev->rcv_buffer_size = max_receive;
1202         dev->broadcast_rcv_next_ptr = 0U;
1203         retval = fw_iso_context_start(context, -1, 0,
1204                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1205         if (retval < 0)
1206                 goto failed_rcv_queue;
1207
1208         /* FIXME: adjust it according to the min. speed of all known peers? */
1209         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1210                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1211         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1212
1213         return 0;
1214
1215  failed_rcv_queue:
1216         kfree(dev->broadcast_rcv_buffer_ptrs);
1217         dev->broadcast_rcv_buffer_ptrs = NULL;
1218  failed_ptrs_alloc:
1219         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1220  failed_buffer_init:
1221         fw_iso_context_destroy(context);
1222         dev->broadcast_rcv_context = NULL;
1223  failed_context_create:
1224         fw_core_remove_address_handler(&dev->handler);
1225  failed_initial:
1226         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1227
1228         return retval;
1229 }
1230
1231 static void set_carrier_state(struct fwnet_device *dev)
1232 {
1233         if (dev->peer_count > 1)
1234                 netif_carrier_on(dev->netdev);
1235         else
1236                 netif_carrier_off(dev->netdev);
1237 }
1238
1239 /* ifup */
1240 static int fwnet_open(struct net_device *net)
1241 {
1242         struct fwnet_device *dev = netdev_priv(net);
1243         int ret;
1244
1245         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1246                 ret = fwnet_broadcast_start(dev);
1247                 if (ret)
1248                         return ret;
1249         }
1250         netif_start_queue(net);
1251
1252         spin_lock_irq(&dev->lock);
1253         set_carrier_state(dev);
1254         spin_unlock_irq(&dev->lock);
1255
1256         return 0;
1257 }
1258
1259 /* ifdown */
1260 static int fwnet_stop(struct net_device *net)
1261 {
1262         netif_stop_queue(net);
1263
1264         /* Deallocate iso context for use by other applications? */
1265
1266         return 0;
1267 }
1268
1269 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1270 {
1271         struct fwnet_header hdr_buf;
1272         struct fwnet_device *dev = netdev_priv(net);
1273         __be16 proto;
1274         u16 dest_node;
1275         unsigned max_payload;
1276         u16 dg_size;
1277         u16 *datagram_label_ptr;
1278         struct fwnet_packet_task *ptask;
1279         struct fwnet_peer *peer;
1280         unsigned long flags;
1281
1282         spin_lock_irqsave(&dev->lock, flags);
1283
1284         /* Can this happen? */
1285         if (netif_queue_stopped(dev->netdev)) {
1286                 spin_unlock_irqrestore(&dev->lock, flags);
1287
1288                 return NETDEV_TX_BUSY;
1289         }
1290
1291         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1292         if (ptask == NULL)
1293                 goto fail;
1294
1295         skb = skb_share_check(skb, GFP_ATOMIC);
1296         if (!skb)
1297                 goto fail;
1298
1299         /*
1300          * Make a copy of the driver-specific header.
1301          * We might need to rebuild the header on tx failure.
1302          */
1303         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1304         skb_pull(skb, sizeof(hdr_buf));
1305
1306         proto = hdr_buf.h_proto;
1307         dg_size = skb->len;
1308
1309         /*
1310          * Set the transmission type for the packet.  ARP packets and IP
1311          * broadcast packets are sent via GASP.
1312          */
1313         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1314             || proto == htons(ETH_P_ARP)
1315             || (proto == htons(ETH_P_IP)
1316                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1317                 max_payload        = dev->broadcast_xmt_max_payload;
1318                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1319
1320                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1321                 ptask->generation  = 0;
1322                 ptask->dest_node   = IEEE1394_ALL_NODES;
1323                 ptask->speed       = SCODE_100;
1324         } else {
1325                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1326                 u8 generation;
1327
1328                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1329                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1330                         goto fail;
1331
1332                 generation         = peer->generation;
1333                 dest_node          = peer->node_id;
1334                 max_payload        = peer->max_payload;
1335                 datagram_label_ptr = &peer->datagram_label;
1336
1337                 ptask->fifo_addr   = peer->fifo;
1338                 ptask->generation  = generation;
1339                 ptask->dest_node   = dest_node;
1340                 ptask->speed       = peer->speed;
1341         }
1342
1343         /* If this is an ARP packet, convert it */
1344         if (proto == htons(ETH_P_ARP)) {
1345                 struct arphdr *arp = (struct arphdr *)skb->data;
1346                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1347                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1348                 __be32 ipaddr;
1349
1350                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1351
1352                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1353                 arp1394->max_rec        = dev->card->max_receive;
1354                 arp1394->sspd           = dev->card->link_speed;
1355
1356                 put_unaligned_be16(dev->local_fifo >> 32,
1357                                    &arp1394->fifo_hi);
1358                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1359                                    &arp1394->fifo_lo);
1360                 put_unaligned(ipaddr, &arp1394->sip);
1361         }
1362
1363         ptask->hdr.w0 = 0;
1364         ptask->hdr.w1 = 0;
1365         ptask->skb = skb;
1366         ptask->dev = dev;
1367
1368         /* Does it all fit in one packet? */
1369         if (dg_size <= max_payload) {
1370                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1371                 ptask->outstanding_pkts = 1;
1372                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1373         } else {
1374                 u16 datagram_label;
1375
1376                 max_payload -= RFC2374_FRAG_OVERHEAD;
1377                 datagram_label = (*datagram_label_ptr)++;
1378                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1379                                   datagram_label);
1380                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1381                 max_payload += RFC2374_FRAG_HDR_SIZE;
1382         }
1383
1384         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1385                 netif_stop_queue(dev->netdev);
1386
1387         spin_unlock_irqrestore(&dev->lock, flags);
1388
1389         ptask->max_payload = max_payload;
1390         ptask->enqueued    = 0;
1391
1392         fwnet_send_packet(ptask);
1393
1394         return NETDEV_TX_OK;
1395
1396  fail:
1397         spin_unlock_irqrestore(&dev->lock, flags);
1398
1399         if (ptask)
1400                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1401
1402         if (skb != NULL)
1403                 dev_kfree_skb(skb);
1404
1405         net->stats.tx_dropped++;
1406         net->stats.tx_errors++;
1407
1408         /*
1409          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1410          * causes serious problems" here, allegedly.  Before that patch,
1411          * -ERRNO was returned which is not appropriate under Linux 2.6.
1412          * Perhaps more needs to be done?  Stop the queue in serious
1413          * conditions and restart it elsewhere?
1414          */
1415         return NETDEV_TX_OK;
1416 }
1417
1418 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1419 {
1420         if (new_mtu < 68)
1421                 return -EINVAL;
1422
1423         net->mtu = new_mtu;
1424         return 0;
1425 }
1426
1427 static const struct ethtool_ops fwnet_ethtool_ops = {
1428         .get_link       = ethtool_op_get_link,
1429 };
1430
1431 static const struct net_device_ops fwnet_netdev_ops = {
1432         .ndo_open       = fwnet_open,
1433         .ndo_stop       = fwnet_stop,
1434         .ndo_start_xmit = fwnet_tx,
1435         .ndo_change_mtu = fwnet_change_mtu,
1436 };
1437
1438 static void fwnet_init_dev(struct net_device *net)
1439 {
1440         net->header_ops         = &fwnet_header_ops;
1441         net->netdev_ops         = &fwnet_netdev_ops;
1442         net->watchdog_timeo     = 2 * HZ;
1443         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1444         net->features           = NETIF_F_HIGHDMA;
1445         net->addr_len           = FWNET_ALEN;
1446         net->hard_header_len    = FWNET_HLEN;
1447         net->type               = ARPHRD_IEEE1394;
1448         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1449         net->ethtool_ops        = &fwnet_ethtool_ops;
1450 }
1451
1452 /* caller must hold fwnet_device_mutex */
1453 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1454 {
1455         struct fwnet_device *dev;
1456
1457         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1458                 if (dev->card == card)
1459                         return dev;
1460
1461         return NULL;
1462 }
1463
1464 static int fwnet_add_peer(struct fwnet_device *dev,
1465                           struct fw_unit *unit, struct fw_device *device)
1466 {
1467         struct fwnet_peer *peer;
1468
1469         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1470         if (!peer)
1471                 return -ENOMEM;
1472
1473         dev_set_drvdata(&unit->device, peer);
1474
1475         peer->dev = dev;
1476         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1477         peer->fifo = FWNET_NO_FIFO_ADDR;
1478         peer->ip = 0;
1479         INIT_LIST_HEAD(&peer->pd_list);
1480         peer->pdg_size = 0;
1481         peer->datagram_label = 0;
1482         peer->speed = device->max_speed;
1483         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1484
1485         peer->generation = device->generation;
1486         smp_rmb();
1487         peer->node_id = device->node_id;
1488
1489         spin_lock_irq(&dev->lock);
1490         list_add_tail(&peer->peer_link, &dev->peer_list);
1491         dev->peer_count++;
1492         set_carrier_state(dev);
1493         spin_unlock_irq(&dev->lock);
1494
1495         return 0;
1496 }
1497
1498 static int fwnet_probe(struct device *_dev)
1499 {
1500         struct fw_unit *unit = fw_unit(_dev);
1501         struct fw_device *device = fw_parent_device(unit);
1502         struct fw_card *card = device->card;
1503         struct net_device *net;
1504         bool allocated_netdev = false;
1505         struct fwnet_device *dev;
1506         unsigned max_mtu;
1507         int ret;
1508
1509         mutex_lock(&fwnet_device_mutex);
1510
1511         dev = fwnet_dev_find(card);
1512         if (dev) {
1513                 net = dev->netdev;
1514                 goto have_dev;
1515         }
1516
1517         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1518         if (net == NULL) {
1519                 ret = -ENOMEM;
1520                 goto out;
1521         }
1522
1523         allocated_netdev = true;
1524         SET_NETDEV_DEV(net, card->device);
1525         dev = netdev_priv(net);
1526
1527         spin_lock_init(&dev->lock);
1528         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1529         dev->broadcast_rcv_context = NULL;
1530         dev->broadcast_xmt_max_payload = 0;
1531         dev->broadcast_xmt_datagramlabel = 0;
1532         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1533         dev->queued_datagrams = 0;
1534         INIT_LIST_HEAD(&dev->peer_list);
1535         dev->card = card;
1536         dev->netdev = net;
1537
1538         /*
1539          * Use the RFC 2734 default 1500 octets or the maximum payload
1540          * as initial MTU
1541          */
1542         max_mtu = (1 << (card->max_receive + 1))
1543                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1544         net->mtu = min(1500U, max_mtu);
1545
1546         /* Set our hardware address while we're at it */
1547         put_unaligned_be64(card->guid, net->dev_addr);
1548         put_unaligned_be64(~0ULL, net->broadcast);
1549         ret = register_netdev(net);
1550         if (ret) {
1551                 fw_error("Cannot register the driver\n");
1552                 goto out;
1553         }
1554
1555         list_add_tail(&dev->dev_link, &fwnet_device_list);
1556         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1557                   net->name, (unsigned long long)card->guid);
1558  have_dev:
1559         ret = fwnet_add_peer(dev, unit, device);
1560         if (ret && allocated_netdev) {
1561                 unregister_netdev(net);
1562                 list_del(&dev->dev_link);
1563         }
1564  out:
1565         if (ret && allocated_netdev)
1566                 free_netdev(net);
1567
1568         mutex_unlock(&fwnet_device_mutex);
1569
1570         return ret;
1571 }
1572
1573 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1574 {
1575         struct fwnet_partial_datagram *pd, *pd_next;
1576
1577         spin_lock_irq(&dev->lock);
1578         list_del(&peer->peer_link);
1579         dev->peer_count--;
1580         set_carrier_state(dev);
1581         spin_unlock_irq(&dev->lock);
1582
1583         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1584                 fwnet_pd_delete(pd);
1585
1586         kfree(peer);
1587 }
1588
1589 static int fwnet_remove(struct device *_dev)
1590 {
1591         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1592         struct fwnet_device *dev = peer->dev;
1593         struct net_device *net;
1594         int i;
1595
1596         mutex_lock(&fwnet_device_mutex);
1597
1598         net = dev->netdev;
1599         if (net && peer->ip)
1600                 arp_invalidate(net, peer->ip);
1601
1602         fwnet_remove_peer(peer, dev);
1603
1604         if (list_empty(&dev->peer_list)) {
1605                 unregister_netdev(net);
1606
1607                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1608                         fw_core_remove_address_handler(&dev->handler);
1609                 if (dev->broadcast_rcv_context) {
1610                         fw_iso_context_stop(dev->broadcast_rcv_context);
1611                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1612                                               dev->card);
1613                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1614                 }
1615                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1616                         ssleep(1);
1617                 WARN_ON(dev->queued_datagrams);
1618                 list_del(&dev->dev_link);
1619
1620                 free_netdev(net);
1621         }
1622
1623         mutex_unlock(&fwnet_device_mutex);
1624
1625         return 0;
1626 }
1627
1628 /*
1629  * FIXME abort partially sent fragmented datagrams,
1630  * discard partially received fragmented datagrams
1631  */
1632 static void fwnet_update(struct fw_unit *unit)
1633 {
1634         struct fw_device *device = fw_parent_device(unit);
1635         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1636         int generation;
1637
1638         generation = device->generation;
1639
1640         spin_lock_irq(&peer->dev->lock);
1641         peer->node_id    = device->node_id;
1642         peer->generation = generation;
1643         spin_unlock_irq(&peer->dev->lock);
1644 }
1645
1646 static const struct ieee1394_device_id fwnet_id_table[] = {
1647         {
1648                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1649                                 IEEE1394_MATCH_VERSION,
1650                 .specifier_id = IANA_SPECIFIER_ID,
1651                 .version      = RFC2734_SW_VERSION,
1652         },
1653         { }
1654 };
1655
1656 static struct fw_driver fwnet_driver = {
1657         .driver = {
1658                 .owner  = THIS_MODULE,
1659                 .name   = "net",
1660                 .bus    = &fw_bus_type,
1661                 .probe  = fwnet_probe,
1662                 .remove = fwnet_remove,
1663         },
1664         .update   = fwnet_update,
1665         .id_table = fwnet_id_table,
1666 };
1667
1668 static const u32 rfc2374_unit_directory_data[] = {
1669         0x00040000,     /* directory_length             */
1670         0x1200005e,     /* unit_specifier_id: IANA      */
1671         0x81000003,     /* textual descriptor offset    */
1672         0x13000001,     /* unit_sw_version: RFC 2734    */
1673         0x81000005,     /* textual descriptor offset    */
1674         0x00030000,     /* descriptor_length            */
1675         0x00000000,     /* text                         */
1676         0x00000000,     /* minimal ASCII, en            */
1677         0x49414e41,     /* I A N A                      */
1678         0x00030000,     /* descriptor_length            */
1679         0x00000000,     /* text                         */
1680         0x00000000,     /* minimal ASCII, en            */
1681         0x49507634,     /* I P v 4                      */
1682 };
1683
1684 static struct fw_descriptor rfc2374_unit_directory = {
1685         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1686         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1687         .data   = rfc2374_unit_directory_data
1688 };
1689
1690 static int __init fwnet_init(void)
1691 {
1692         int err;
1693
1694         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1695         if (err)
1696                 return err;
1697
1698         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1699                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1700         if (!fwnet_packet_task_cache) {
1701                 err = -ENOMEM;
1702                 goto out;
1703         }
1704
1705         err = driver_register(&fwnet_driver.driver);
1706         if (!err)
1707                 return 0;
1708
1709         kmem_cache_destroy(fwnet_packet_task_cache);
1710 out:
1711         fw_core_remove_descriptor(&rfc2374_unit_directory);
1712
1713         return err;
1714 }
1715 module_init(fwnet_init);
1716
1717 static void __exit fwnet_cleanup(void)
1718 {
1719         driver_unregister(&fwnet_driver.driver);
1720         kmem_cache_destroy(fwnet_packet_task_cache);
1721         fw_core_remove_descriptor(&rfc2374_unit_directory);
1722 }
1723 module_exit(fwnet_cleanup);
1724
1725 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1726 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1727 MODULE_LICENSE("GPL");
1728 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);