Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012 - Mauro Carvalho Chehab <mchehab@redhat.com>
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         long l;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = strict_strtol(val, 0, &l);
62         if (ret == -EINVAL || ((int)l != l))
63                 return -EINVAL;
64         *((int *)kp->arg) = l;
65
66         /* notify edac_mc engine to reset the poll period */
67         edac_mc_reset_delay_period(l);
68
69         return 0;
70 }
71
72 /* Parameter declarations for above */
73 module_param(edac_mc_panic_on_ue, int, 0644);
74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
75 module_param(edac_mc_log_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_log_ue,
77                  "Log uncorrectable error to console: 0=off 1=on");
78 module_param(edac_mc_log_ce, int, 0644);
79 MODULE_PARM_DESC(edac_mc_log_ce,
80                  "Log correctable error to console: 0=off 1=on");
81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
82                   &edac_mc_poll_msec, 0644);
83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84
85 static struct device *mci_pdev;
86
87 /*
88  * various constants for Memory Controllers
89  */
90 static const char *mem_types[] = {
91         [MEM_EMPTY] = "Empty",
92         [MEM_RESERVED] = "Reserved",
93         [MEM_UNKNOWN] = "Unknown",
94         [MEM_FPM] = "FPM",
95         [MEM_EDO] = "EDO",
96         [MEM_BEDO] = "BEDO",
97         [MEM_SDR] = "Unbuffered-SDR",
98         [MEM_RDR] = "Registered-SDR",
99         [MEM_DDR] = "Unbuffered-DDR",
100         [MEM_RDDR] = "Registered-DDR",
101         [MEM_RMBS] = "RMBS",
102         [MEM_DDR2] = "Unbuffered-DDR2",
103         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
104         [MEM_RDDR2] = "Registered-DDR2",
105         [MEM_XDR] = "XDR",
106         [MEM_DDR3] = "Unbuffered-DDR3",
107         [MEM_RDDR3] = "Registered-DDR3"
108 };
109
110 static const char *dev_types[] = {
111         [DEV_UNKNOWN] = "Unknown",
112         [DEV_X1] = "x1",
113         [DEV_X2] = "x2",
114         [DEV_X4] = "x4",
115         [DEV_X8] = "x8",
116         [DEV_X16] = "x16",
117         [DEV_X32] = "x32",
118         [DEV_X64] = "x64"
119 };
120
121 static const char *edac_caps[] = {
122         [EDAC_UNKNOWN] = "Unknown",
123         [EDAC_NONE] = "None",
124         [EDAC_RESERVED] = "Reserved",
125         [EDAC_PARITY] = "PARITY",
126         [EDAC_EC] = "EC",
127         [EDAC_SECDED] = "SECDED",
128         [EDAC_S2ECD2ED] = "S2ECD2ED",
129         [EDAC_S4ECD4ED] = "S4ECD4ED",
130         [EDAC_S8ECD8ED] = "S8ECD8ED",
131         [EDAC_S16ECD16ED] = "S16ECD16ED"
132 };
133
134 #ifdef CONFIG_EDAC_LEGACY_SYSFS
135 /*
136  * EDAC sysfs CSROW data structures and methods
137  */
138
139 #define to_csrow(k) container_of(k, struct csrow_info, dev)
140
141 /*
142  * We need it to avoid namespace conflicts between the legacy API
143  * and the per-dimm/per-rank one
144  */
145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
146         struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
147
148 struct dev_ch_attribute {
149         struct device_attribute attr;
150         int channel;
151 };
152
153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
154         struct dev_ch_attribute dev_attr_legacy_##_name = \
155                 { __ATTR(_name, _mode, _show, _store), (_var) }
156
157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158
159 /* Set of more default csrow<id> attribute show/store functions */
160 static ssize_t csrow_ue_count_show(struct device *dev,
161                                    struct device_attribute *mattr, char *data)
162 {
163         struct csrow_info *csrow = to_csrow(dev);
164
165         return sprintf(data, "%u\n", csrow->ue_count);
166 }
167
168 static ssize_t csrow_ce_count_show(struct device *dev,
169                                    struct device_attribute *mattr, char *data)
170 {
171         struct csrow_info *csrow = to_csrow(dev);
172
173         return sprintf(data, "%u\n", csrow->ce_count);
174 }
175
176 static ssize_t csrow_size_show(struct device *dev,
177                                struct device_attribute *mattr, char *data)
178 {
179         struct csrow_info *csrow = to_csrow(dev);
180         int i;
181         u32 nr_pages = 0;
182
183         if (csrow->mci->csbased)
184                 return sprintf(data, "%u\n", PAGES_TO_MiB(csrow->nr_pages));
185
186         for (i = 0; i < csrow->nr_channels; i++)
187                 nr_pages += csrow->channels[i]->dimm->nr_pages;
188         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
189 }
190
191 static ssize_t csrow_mem_type_show(struct device *dev,
192                                    struct device_attribute *mattr, char *data)
193 {
194         struct csrow_info *csrow = to_csrow(dev);
195
196         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
197 }
198
199 static ssize_t csrow_dev_type_show(struct device *dev,
200                                    struct device_attribute *mattr, char *data)
201 {
202         struct csrow_info *csrow = to_csrow(dev);
203
204         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
205 }
206
207 static ssize_t csrow_edac_mode_show(struct device *dev,
208                                     struct device_attribute *mattr,
209                                     char *data)
210 {
211         struct csrow_info *csrow = to_csrow(dev);
212
213         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
214 }
215
216 /* show/store functions for DIMM Label attributes */
217 static ssize_t channel_dimm_label_show(struct device *dev,
218                                        struct device_attribute *mattr,
219                                        char *data)
220 {
221         struct csrow_info *csrow = to_csrow(dev);
222         unsigned chan = to_channel(mattr);
223         struct rank_info *rank = csrow->channels[chan];
224
225         /* if field has not been initialized, there is nothing to send */
226         if (!rank->dimm->label[0])
227                 return 0;
228
229         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
230                         rank->dimm->label);
231 }
232
233 static ssize_t channel_dimm_label_store(struct device *dev,
234                                         struct device_attribute *mattr,
235                                         const char *data, size_t count)
236 {
237         struct csrow_info *csrow = to_csrow(dev);
238         unsigned chan = to_channel(mattr);
239         struct rank_info *rank = csrow->channels[chan];
240
241         ssize_t max_size = 0;
242
243         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
244         strncpy(rank->dimm->label, data, max_size);
245         rank->dimm->label[max_size] = '\0';
246
247         return max_size;
248 }
249
250 /* show function for dynamic chX_ce_count attribute */
251 static ssize_t channel_ce_count_show(struct device *dev,
252                                      struct device_attribute *mattr, char *data)
253 {
254         struct csrow_info *csrow = to_csrow(dev);
255         unsigned chan = to_channel(mattr);
256         struct rank_info *rank = csrow->channels[chan];
257
258         return sprintf(data, "%u\n", rank->ce_count);
259 }
260
261 /* cwrow<id>/attribute files */
262 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
263 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
264 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
265 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
266 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
267 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
268
269 /* default attributes of the CSROW<id> object */
270 static struct attribute *csrow_attrs[] = {
271         &dev_attr_legacy_dev_type.attr,
272         &dev_attr_legacy_mem_type.attr,
273         &dev_attr_legacy_edac_mode.attr,
274         &dev_attr_legacy_size_mb.attr,
275         &dev_attr_legacy_ue_count.attr,
276         &dev_attr_legacy_ce_count.attr,
277         NULL,
278 };
279
280 static struct attribute_group csrow_attr_grp = {
281         .attrs  = csrow_attrs,
282 };
283
284 static const struct attribute_group *csrow_attr_groups[] = {
285         &csrow_attr_grp,
286         NULL
287 };
288
289 static void csrow_attr_release(struct device *dev)
290 {
291         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
292
293         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
294         kfree(csrow);
295 }
296
297 static struct device_type csrow_attr_type = {
298         .groups         = csrow_attr_groups,
299         .release        = csrow_attr_release,
300 };
301
302 /*
303  * possible dynamic channel DIMM Label attribute files
304  *
305  */
306
307 #define EDAC_NR_CHANNELS        6
308
309 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
310         channel_dimm_label_show, channel_dimm_label_store, 0);
311 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
312         channel_dimm_label_show, channel_dimm_label_store, 1);
313 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
314         channel_dimm_label_show, channel_dimm_label_store, 2);
315 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
316         channel_dimm_label_show, channel_dimm_label_store, 3);
317 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
318         channel_dimm_label_show, channel_dimm_label_store, 4);
319 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
320         channel_dimm_label_show, channel_dimm_label_store, 5);
321
322 /* Total possible dynamic DIMM Label attribute file table */
323 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
324         &dev_attr_legacy_ch0_dimm_label.attr,
325         &dev_attr_legacy_ch1_dimm_label.attr,
326         &dev_attr_legacy_ch2_dimm_label.attr,
327         &dev_attr_legacy_ch3_dimm_label.attr,
328         &dev_attr_legacy_ch4_dimm_label.attr,
329         &dev_attr_legacy_ch5_dimm_label.attr
330 };
331
332 /* possible dynamic channel ce_count attribute files */
333 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
334                    channel_ce_count_show, NULL, 0);
335 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
336                    channel_ce_count_show, NULL, 1);
337 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
338                    channel_ce_count_show, NULL, 2);
339 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
340                    channel_ce_count_show, NULL, 3);
341 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
342                    channel_ce_count_show, NULL, 4);
343 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
344                    channel_ce_count_show, NULL, 5);
345
346 /* Total possible dynamic ce_count attribute file table */
347 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
348         &dev_attr_legacy_ch0_ce_count.attr,
349         &dev_attr_legacy_ch1_ce_count.attr,
350         &dev_attr_legacy_ch2_ce_count.attr,
351         &dev_attr_legacy_ch3_ce_count.attr,
352         &dev_attr_legacy_ch4_ce_count.attr,
353         &dev_attr_legacy_ch5_ce_count.attr
354 };
355
356 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
357 {
358         int chan, nr_pages = 0;
359
360         for (chan = 0; chan < csrow->nr_channels; chan++)
361                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
362
363         return nr_pages;
364 }
365
366 /* Create a CSROW object under specifed edac_mc_device */
367 static int edac_create_csrow_object(struct mem_ctl_info *mci,
368                                     struct csrow_info *csrow, int index)
369 {
370         int err, chan;
371
372         if (csrow->nr_channels >= EDAC_NR_CHANNELS)
373                 return -ENODEV;
374
375         csrow->dev.type = &csrow_attr_type;
376         csrow->dev.bus = &mci->bus;
377         device_initialize(&csrow->dev);
378         csrow->dev.parent = &mci->dev;
379         csrow->mci = mci;
380         dev_set_name(&csrow->dev, "csrow%d", index);
381         dev_set_drvdata(&csrow->dev, csrow);
382
383         edac_dbg(0, "creating (virtual) csrow node %s\n",
384                  dev_name(&csrow->dev));
385
386         err = device_add(&csrow->dev);
387         if (err < 0)
388                 return err;
389
390         for (chan = 0; chan < csrow->nr_channels; chan++) {
391                 /* Only expose populated DIMMs */
392                 if (!csrow->channels[chan]->dimm->nr_pages)
393                         continue;
394                 err = device_create_file(&csrow->dev,
395                                          dynamic_csrow_dimm_attr[chan]);
396                 if (err < 0)
397                         goto error;
398                 err = device_create_file(&csrow->dev,
399                                          dynamic_csrow_ce_count_attr[chan]);
400                 if (err < 0) {
401                         device_remove_file(&csrow->dev,
402                                            dynamic_csrow_dimm_attr[chan]);
403                         goto error;
404                 }
405         }
406
407         return 0;
408
409 error:
410         for (--chan; chan >= 0; chan--) {
411                 device_remove_file(&csrow->dev,
412                                         dynamic_csrow_dimm_attr[chan]);
413                 device_remove_file(&csrow->dev,
414                                            dynamic_csrow_ce_count_attr[chan]);
415         }
416         put_device(&csrow->dev);
417
418         return err;
419 }
420
421 /* Create a CSROW object under specifed edac_mc_device */
422 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
423 {
424         int err, i, chan;
425         struct csrow_info *csrow;
426
427         for (i = 0; i < mci->nr_csrows; i++) {
428                 csrow = mci->csrows[i];
429                 if (!nr_pages_per_csrow(csrow))
430                         continue;
431                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
432                 if (err < 0)
433                         goto error;
434         }
435         return 0;
436
437 error:
438         for (--i; i >= 0; i--) {
439                 csrow = mci->csrows[i];
440                 if (!nr_pages_per_csrow(csrow))
441                         continue;
442                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
443                         if (!csrow->channels[chan]->dimm->nr_pages)
444                                 continue;
445                         device_remove_file(&csrow->dev,
446                                                 dynamic_csrow_dimm_attr[chan]);
447                         device_remove_file(&csrow->dev,
448                                                 dynamic_csrow_ce_count_attr[chan]);
449                 }
450                 put_device(&mci->csrows[i]->dev);
451         }
452
453         return err;
454 }
455
456 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
457 {
458         int i, chan;
459         struct csrow_info *csrow;
460
461         for (i = mci->nr_csrows - 1; i >= 0; i--) {
462                 csrow = mci->csrows[i];
463                 if (!nr_pages_per_csrow(csrow))
464                         continue;
465                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
466                         if (!csrow->channels[chan]->dimm->nr_pages)
467                                 continue;
468                         edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
469                                  i, chan);
470                         device_remove_file(&csrow->dev,
471                                                 dynamic_csrow_dimm_attr[chan]);
472                         device_remove_file(&csrow->dev,
473                                                 dynamic_csrow_ce_count_attr[chan]);
474                 }
475                 device_unregister(&mci->csrows[i]->dev);
476         }
477 }
478 #endif
479
480 /*
481  * Per-dimm (or per-rank) devices
482  */
483
484 #define to_dimm(k) container_of(k, struct dimm_info, dev)
485
486 /* show/store functions for DIMM Label attributes */
487 static ssize_t dimmdev_location_show(struct device *dev,
488                                      struct device_attribute *mattr, char *data)
489 {
490         struct dimm_info *dimm = to_dimm(dev);
491
492         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
493 }
494
495 static ssize_t dimmdev_label_show(struct device *dev,
496                                   struct device_attribute *mattr, char *data)
497 {
498         struct dimm_info *dimm = to_dimm(dev);
499
500         /* if field has not been initialized, there is nothing to send */
501         if (!dimm->label[0])
502                 return 0;
503
504         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
505 }
506
507 static ssize_t dimmdev_label_store(struct device *dev,
508                                    struct device_attribute *mattr,
509                                    const char *data,
510                                    size_t count)
511 {
512         struct dimm_info *dimm = to_dimm(dev);
513
514         ssize_t max_size = 0;
515
516         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
517         strncpy(dimm->label, data, max_size);
518         dimm->label[max_size] = '\0';
519
520         return max_size;
521 }
522
523 static ssize_t dimmdev_size_show(struct device *dev,
524                                  struct device_attribute *mattr, char *data)
525 {
526         struct dimm_info *dimm = to_dimm(dev);
527
528         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
529 }
530
531 static ssize_t dimmdev_mem_type_show(struct device *dev,
532                                      struct device_attribute *mattr, char *data)
533 {
534         struct dimm_info *dimm = to_dimm(dev);
535
536         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
537 }
538
539 static ssize_t dimmdev_dev_type_show(struct device *dev,
540                                      struct device_attribute *mattr, char *data)
541 {
542         struct dimm_info *dimm = to_dimm(dev);
543
544         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
545 }
546
547 static ssize_t dimmdev_edac_mode_show(struct device *dev,
548                                       struct device_attribute *mattr,
549                                       char *data)
550 {
551         struct dimm_info *dimm = to_dimm(dev);
552
553         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
554 }
555
556 /* dimm/rank attribute files */
557 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
558                    dimmdev_label_show, dimmdev_label_store);
559 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
560 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
561 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
562 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
563 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
564
565 /* attributes of the dimm<id>/rank<id> object */
566 static struct attribute *dimm_attrs[] = {
567         &dev_attr_dimm_label.attr,
568         &dev_attr_dimm_location.attr,
569         &dev_attr_size.attr,
570         &dev_attr_dimm_mem_type.attr,
571         &dev_attr_dimm_dev_type.attr,
572         &dev_attr_dimm_edac_mode.attr,
573         NULL,
574 };
575
576 static struct attribute_group dimm_attr_grp = {
577         .attrs  = dimm_attrs,
578 };
579
580 static const struct attribute_group *dimm_attr_groups[] = {
581         &dimm_attr_grp,
582         NULL
583 };
584
585 static void dimm_attr_release(struct device *dev)
586 {
587         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
588
589         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
590         kfree(dimm);
591 }
592
593 static struct device_type dimm_attr_type = {
594         .groups         = dimm_attr_groups,
595         .release        = dimm_attr_release,
596 };
597
598 /* Create a DIMM object under specifed memory controller device */
599 static int edac_create_dimm_object(struct mem_ctl_info *mci,
600                                    struct dimm_info *dimm,
601                                    int index)
602 {
603         int err;
604         dimm->mci = mci;
605
606         dimm->dev.type = &dimm_attr_type;
607         dimm->dev.bus = &mci->bus;
608         device_initialize(&dimm->dev);
609
610         dimm->dev.parent = &mci->dev;
611         if (mci->mem_is_per_rank)
612                 dev_set_name(&dimm->dev, "rank%d", index);
613         else
614                 dev_set_name(&dimm->dev, "dimm%d", index);
615         dev_set_drvdata(&dimm->dev, dimm);
616         pm_runtime_forbid(&mci->dev);
617
618         err =  device_add(&dimm->dev);
619
620         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
621
622         return err;
623 }
624
625 /*
626  * Memory controller device
627  */
628
629 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
630
631 static ssize_t mci_reset_counters_store(struct device *dev,
632                                         struct device_attribute *mattr,
633                                         const char *data, size_t count)
634 {
635         struct mem_ctl_info *mci = to_mci(dev);
636         int cnt, row, chan, i;
637         mci->ue_mc = 0;
638         mci->ce_mc = 0;
639         mci->ue_noinfo_count = 0;
640         mci->ce_noinfo_count = 0;
641
642         for (row = 0; row < mci->nr_csrows; row++) {
643                 struct csrow_info *ri = mci->csrows[row];
644
645                 ri->ue_count = 0;
646                 ri->ce_count = 0;
647
648                 for (chan = 0; chan < ri->nr_channels; chan++)
649                         ri->channels[chan]->ce_count = 0;
650         }
651
652         cnt = 1;
653         for (i = 0; i < mci->n_layers; i++) {
654                 cnt *= mci->layers[i].size;
655                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
656                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
657         }
658
659         mci->start_time = jiffies;
660         return count;
661 }
662
663 /* Memory scrubbing interface:
664  *
665  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
666  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
667  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
668  *
669  * Negative value still means that an error has occurred while setting
670  * the scrub rate.
671  */
672 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
673                                           struct device_attribute *mattr,
674                                           const char *data, size_t count)
675 {
676         struct mem_ctl_info *mci = to_mci(dev);
677         unsigned long bandwidth = 0;
678         int new_bw = 0;
679
680         if (!mci->set_sdram_scrub_rate)
681                 return -ENODEV;
682
683         if (strict_strtoul(data, 10, &bandwidth) < 0)
684                 return -EINVAL;
685
686         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
687         if (new_bw < 0) {
688                 edac_printk(KERN_WARNING, EDAC_MC,
689                             "Error setting scrub rate to: %lu\n", bandwidth);
690                 return -EINVAL;
691         }
692
693         return count;
694 }
695
696 /*
697  * ->get_sdram_scrub_rate() return value semantics same as above.
698  */
699 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
700                                          struct device_attribute *mattr,
701                                          char *data)
702 {
703         struct mem_ctl_info *mci = to_mci(dev);
704         int bandwidth = 0;
705
706         if (!mci->get_sdram_scrub_rate)
707                 return -ENODEV;
708
709         bandwidth = mci->get_sdram_scrub_rate(mci);
710         if (bandwidth < 0) {
711                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
712                 return bandwidth;
713         }
714
715         return sprintf(data, "%d\n", bandwidth);
716 }
717
718 /* default attribute files for the MCI object */
719 static ssize_t mci_ue_count_show(struct device *dev,
720                                  struct device_attribute *mattr,
721                                  char *data)
722 {
723         struct mem_ctl_info *mci = to_mci(dev);
724
725         return sprintf(data, "%d\n", mci->ue_mc);
726 }
727
728 static ssize_t mci_ce_count_show(struct device *dev,
729                                  struct device_attribute *mattr,
730                                  char *data)
731 {
732         struct mem_ctl_info *mci = to_mci(dev);
733
734         return sprintf(data, "%d\n", mci->ce_mc);
735 }
736
737 static ssize_t mci_ce_noinfo_show(struct device *dev,
738                                   struct device_attribute *mattr,
739                                   char *data)
740 {
741         struct mem_ctl_info *mci = to_mci(dev);
742
743         return sprintf(data, "%d\n", mci->ce_noinfo_count);
744 }
745
746 static ssize_t mci_ue_noinfo_show(struct device *dev,
747                                   struct device_attribute *mattr,
748                                   char *data)
749 {
750         struct mem_ctl_info *mci = to_mci(dev);
751
752         return sprintf(data, "%d\n", mci->ue_noinfo_count);
753 }
754
755 static ssize_t mci_seconds_show(struct device *dev,
756                                 struct device_attribute *mattr,
757                                 char *data)
758 {
759         struct mem_ctl_info *mci = to_mci(dev);
760
761         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
762 }
763
764 static ssize_t mci_ctl_name_show(struct device *dev,
765                                  struct device_attribute *mattr,
766                                  char *data)
767 {
768         struct mem_ctl_info *mci = to_mci(dev);
769
770         return sprintf(data, "%s\n", mci->ctl_name);
771 }
772
773 static ssize_t mci_size_mb_show(struct device *dev,
774                                 struct device_attribute *mattr,
775                                 char *data)
776 {
777         struct mem_ctl_info *mci = to_mci(dev);
778         int total_pages = 0, csrow_idx, j;
779
780         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
781                 struct csrow_info *csrow = mci->csrows[csrow_idx];
782
783                 if (csrow->mci->csbased) {
784                         total_pages += csrow->nr_pages;
785                 } else {
786                         for (j = 0; j < csrow->nr_channels; j++) {
787                                 struct dimm_info *dimm = csrow->channels[j]->dimm;
788
789                                 total_pages += dimm->nr_pages;
790                         }
791                 }
792         }
793
794         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
795 }
796
797 static ssize_t mci_max_location_show(struct device *dev,
798                                      struct device_attribute *mattr,
799                                      char *data)
800 {
801         struct mem_ctl_info *mci = to_mci(dev);
802         int i;
803         char *p = data;
804
805         for (i = 0; i < mci->n_layers; i++) {
806                 p += sprintf(p, "%s %d ",
807                              edac_layer_name[mci->layers[i].type],
808                              mci->layers[i].size - 1);
809         }
810
811         return p - data;
812 }
813
814 #ifdef CONFIG_EDAC_DEBUG
815 static ssize_t edac_fake_inject_write(struct file *file,
816                                       const char __user *data,
817                                       size_t count, loff_t *ppos)
818 {
819         struct device *dev = file->private_data;
820         struct mem_ctl_info *mci = to_mci(dev);
821         static enum hw_event_mc_err_type type;
822         u16 errcount = mci->fake_inject_count;
823
824         if (!errcount)
825                 errcount = 1;
826
827         type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
828                                    : HW_EVENT_ERR_CORRECTED;
829
830         printk(KERN_DEBUG
831                "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
832                 errcount,
833                 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
834                 errcount > 1 ? "s" : "",
835                 mci->fake_inject_layer[0],
836                 mci->fake_inject_layer[1],
837                 mci->fake_inject_layer[2]
838                );
839         edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
840                              mci->fake_inject_layer[0],
841                              mci->fake_inject_layer[1],
842                              mci->fake_inject_layer[2],
843                              "FAKE ERROR", "for EDAC testing only");
844
845         return count;
846 }
847
848 static const struct file_operations debug_fake_inject_fops = {
849         .open = simple_open,
850         .write = edac_fake_inject_write,
851         .llseek = generic_file_llseek,
852 };
853 #endif
854
855 /* default Control file */
856 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
857
858 /* default Attribute files */
859 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
860 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
861 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
862 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
863 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
864 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
865 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
866 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
867
868 /* memory scrubber attribute file */
869 DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
870         mci_sdram_scrub_rate_store);
871
872 static struct attribute *mci_attrs[] = {
873         &dev_attr_reset_counters.attr,
874         &dev_attr_mc_name.attr,
875         &dev_attr_size_mb.attr,
876         &dev_attr_seconds_since_reset.attr,
877         &dev_attr_ue_noinfo_count.attr,
878         &dev_attr_ce_noinfo_count.attr,
879         &dev_attr_ue_count.attr,
880         &dev_attr_ce_count.attr,
881         &dev_attr_sdram_scrub_rate.attr,
882         &dev_attr_max_location.attr,
883         NULL
884 };
885
886 static struct attribute_group mci_attr_grp = {
887         .attrs  = mci_attrs,
888 };
889
890 static const struct attribute_group *mci_attr_groups[] = {
891         &mci_attr_grp,
892         NULL
893 };
894
895 static void mci_attr_release(struct device *dev)
896 {
897         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
898
899         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
900         kfree(mci);
901 }
902
903 static struct device_type mci_attr_type = {
904         .groups         = mci_attr_groups,
905         .release        = mci_attr_release,
906 };
907
908 #ifdef CONFIG_EDAC_DEBUG
909 static struct dentry *edac_debugfs;
910
911 int __init edac_debugfs_init(void)
912 {
913         edac_debugfs = debugfs_create_dir("edac", NULL);
914         if (IS_ERR(edac_debugfs)) {
915                 edac_debugfs = NULL;
916                 return -ENOMEM;
917         }
918         return 0;
919 }
920
921 void __exit edac_debugfs_exit(void)
922 {
923         debugfs_remove(edac_debugfs);
924 }
925
926 int edac_create_debug_nodes(struct mem_ctl_info *mci)
927 {
928         struct dentry *d, *parent;
929         char name[80];
930         int i;
931
932         if (!edac_debugfs)
933                 return -ENODEV;
934
935         d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
936         if (!d)
937                 return -ENOMEM;
938         parent = d;
939
940         for (i = 0; i < mci->n_layers; i++) {
941                 sprintf(name, "fake_inject_%s",
942                              edac_layer_name[mci->layers[i].type]);
943                 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
944                                       &mci->fake_inject_layer[i]);
945                 if (!d)
946                         goto nomem;
947         }
948
949         d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
950                                 &mci->fake_inject_ue);
951         if (!d)
952                 goto nomem;
953
954         d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
955                                 &mci->fake_inject_count);
956         if (!d)
957                 goto nomem;
958
959         d = debugfs_create_file("fake_inject", S_IWUSR, parent,
960                                 &mci->dev,
961                                 &debug_fake_inject_fops);
962         if (!d)
963                 goto nomem;
964
965         mci->debugfs = parent;
966         return 0;
967 nomem:
968         debugfs_remove(mci->debugfs);
969         return -ENOMEM;
970 }
971 #endif
972
973 /*
974  * Create a new Memory Controller kobject instance,
975  *      mc<id> under the 'mc' directory
976  *
977  * Return:
978  *      0       Success
979  *      !0      Failure
980  */
981 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
982 {
983         int i, err;
984
985         /*
986          * The memory controller needs its own bus, in order to avoid
987          * namespace conflicts at /sys/bus/edac.
988          */
989         mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
990         if (!mci->bus.name)
991                 return -ENOMEM;
992         edac_dbg(0, "creating bus %s\n", mci->bus.name);
993         err = bus_register(&mci->bus);
994         if (err < 0)
995                 return err;
996
997         /* get the /sys/devices/system/edac subsys reference */
998         mci->dev.type = &mci_attr_type;
999         device_initialize(&mci->dev);
1000
1001         mci->dev.parent = mci_pdev;
1002         mci->dev.bus = &mci->bus;
1003         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1004         dev_set_drvdata(&mci->dev, mci);
1005         pm_runtime_forbid(&mci->dev);
1006
1007         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1008         err = device_add(&mci->dev);
1009         if (err < 0) {
1010                 bus_unregister(&mci->bus);
1011                 kfree(mci->bus.name);
1012                 return err;
1013         }
1014
1015         /*
1016          * Create the dimm/rank devices
1017          */
1018         for (i = 0; i < mci->tot_dimms; i++) {
1019                 struct dimm_info *dimm = mci->dimms[i];
1020                 /* Only expose populated DIMMs */
1021                 if (dimm->nr_pages == 0)
1022                         continue;
1023 #ifdef CONFIG_EDAC_DEBUG
1024                 edac_dbg(1, "creating dimm%d, located at ", i);
1025                 if (edac_debug_level >= 1) {
1026                         int lay;
1027                         for (lay = 0; lay < mci->n_layers; lay++)
1028                                 printk(KERN_CONT "%s %d ",
1029                                         edac_layer_name[mci->layers[lay].type],
1030                                         dimm->location[lay]);
1031                         printk(KERN_CONT "\n");
1032                 }
1033 #endif
1034                 err = edac_create_dimm_object(mci, dimm, i);
1035                 if (err) {
1036                         edac_dbg(1, "failure: create dimm %d obj\n", i);
1037                         goto fail;
1038                 }
1039         }
1040
1041 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1042         err = edac_create_csrow_objects(mci);
1043         if (err < 0)
1044                 goto fail;
1045 #endif
1046
1047 #ifdef CONFIG_EDAC_DEBUG
1048         edac_create_debug_nodes(mci);
1049 #endif
1050         return 0;
1051
1052 fail:
1053         for (i--; i >= 0; i--) {
1054                 struct dimm_info *dimm = mci->dimms[i];
1055                 if (dimm->nr_pages == 0)
1056                         continue;
1057                 device_unregister(&dimm->dev);
1058         }
1059         device_unregister(&mci->dev);
1060         bus_unregister(&mci->bus);
1061         kfree(mci->bus.name);
1062         return err;
1063 }
1064
1065 /*
1066  * remove a Memory Controller instance
1067  */
1068 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1069 {
1070         int i;
1071
1072         edac_dbg(0, "\n");
1073
1074 #ifdef CONFIG_EDAC_DEBUG
1075         debugfs_remove(mci->debugfs);
1076 #endif
1077 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1078         edac_delete_csrow_objects(mci);
1079 #endif
1080
1081         for (i = 0; i < mci->tot_dimms; i++) {
1082                 struct dimm_info *dimm = mci->dimms[i];
1083                 if (dimm->nr_pages == 0)
1084                         continue;
1085                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1086                 device_unregister(&dimm->dev);
1087         }
1088 }
1089
1090 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1091 {
1092         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1093         device_unregister(&mci->dev);
1094         bus_unregister(&mci->bus);
1095         kfree(mci->bus.name);
1096 }
1097
1098 static void mc_attr_release(struct device *dev)
1099 {
1100         /*
1101          * There's no container structure here, as this is just the mci
1102          * parent device, used to create the /sys/devices/mc sysfs node.
1103          * So, there are no attributes on it.
1104          */
1105         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1106         kfree(dev);
1107 }
1108
1109 static struct device_type mc_attr_type = {
1110         .release        = mc_attr_release,
1111 };
1112 /*
1113  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1114  */
1115 int __init edac_mc_sysfs_init(void)
1116 {
1117         struct bus_type *edac_subsys;
1118         int err;
1119
1120         /* get the /sys/devices/system/edac subsys reference */
1121         edac_subsys = edac_get_sysfs_subsys();
1122         if (edac_subsys == NULL) {
1123                 edac_dbg(1, "no edac_subsys\n");
1124                 err = -EINVAL;
1125                 goto out;
1126         }
1127
1128         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1129         if (!mci_pdev) {
1130                 err = -ENOMEM;
1131                 goto out_put_sysfs;
1132         }
1133
1134         mci_pdev->bus = edac_subsys;
1135         mci_pdev->type = &mc_attr_type;
1136         device_initialize(mci_pdev);
1137         dev_set_name(mci_pdev, "mc");
1138
1139         err = device_add(mci_pdev);
1140         if (err < 0)
1141                 goto out_dev_free;
1142
1143         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1144
1145         return 0;
1146
1147  out_dev_free:
1148         kfree(mci_pdev);
1149  out_put_sysfs:
1150         edac_put_sysfs_subsys();
1151  out:
1152         return err;
1153 }
1154
1155 void __exit edac_mc_sysfs_exit(void)
1156 {
1157         device_unregister(mci_pdev);
1158         edac_put_sysfs_subsys();
1159 }