Merge remote-tracking branches 'regulator/fix/da9211', 'regulator/fix/ltc3589' and...
[pandora-kernel.git] / drivers / dma / mmp_pdma.c
1 /*
2  * Copyright 2012 Marvell International Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/interrupt.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/slab.h>
16 #include <linux/dmaengine.h>
17 #include <linux/platform_device.h>
18 #include <linux/device.h>
19 #include <linux/platform_data/mmp_dma.h>
20 #include <linux/dmapool.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/of.h>
24 #include <linux/dma/mmp-pdma.h>
25
26 #include "dmaengine.h"
27
28 #define DCSR            0x0000
29 #define DALGN           0x00a0
30 #define DINT            0x00f0
31 #define DDADR           0x0200
32 #define DSADR(n)        (0x0204 + ((n) << 4))
33 #define DTADR(n)        (0x0208 + ((n) << 4))
34 #define DCMD            0x020c
35
36 #define DCSR_RUN        BIT(31) /* Run Bit (read / write) */
37 #define DCSR_NODESC     BIT(30) /* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN  BIT(29) /* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND    BIT(8)  /* Request Pending (read-only) */
40 #define DCSR_STOPSTATE  BIT(3)  /* Stop State (read-only) */
41 #define DCSR_ENDINTR    BIT(2)  /* End Interrupt (read / write) */
42 #define DCSR_STARTINTR  BIT(1)  /* Start Interrupt (read / write) */
43 #define DCSR_BUSERR     BIT(0)  /* Bus Error Interrupt (read / write) */
44
45 #define DCSR_EORIRQEN   BIT(28) /* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN   BIT(27) /* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN  BIT(26) /* STOP on an EOR */
48 #define DCSR_SETCMPST   BIT(25) /* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST   BIT(24) /* Clear Descriptor Compare Status */
50 #define DCSR_CMPST      BIT(10) /* The Descriptor Compare Status */
51 #define DCSR_EORINTR    BIT(9)  /* The end of Receive */
52
53 #define DRCMR(n)        ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
54 #define DRCMR_MAPVLD    BIT(7)  /* Map Valid (read / write) */
55 #define DRCMR_CHLNUM    0x1f    /* mask for Channel Number (read / write) */
56
57 #define DDADR_DESCADDR  0xfffffff0      /* Address of next descriptor (mask) */
58 #define DDADR_STOP      BIT(0)  /* Stop (read / write) */
59
60 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */
61 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */
62 #define DCMD_FLOWSRC    BIT(29) /* Flow Control by the source. */
63 #define DCMD_FLOWTRG    BIT(28) /* Flow Control by the target. */
64 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */
65 #define DCMD_ENDIRQEN   BIT(21) /* End Interrupt Enable */
66 #define DCMD_ENDIAN     BIT(18) /* Device Endian-ness. */
67 #define DCMD_BURST8     (1 << 16)       /* 8 byte burst */
68 #define DCMD_BURST16    (2 << 16)       /* 16 byte burst */
69 #define DCMD_BURST32    (3 << 16)       /* 32 byte burst */
70 #define DCMD_WIDTH1     (1 << 14)       /* 1 byte width */
71 #define DCMD_WIDTH2     (2 << 14)       /* 2 byte width (HalfWord) */
72 #define DCMD_WIDTH4     (3 << 14)       /* 4 byte width (Word) */
73 #define DCMD_LENGTH     0x01fff         /* length mask (max = 8K - 1) */
74
75 #define PDMA_ALIGNMENT          3
76 #define PDMA_MAX_DESC_BYTES     DCMD_LENGTH
77
78 struct mmp_pdma_desc_hw {
79         u32 ddadr;      /* Points to the next descriptor + flags */
80         u32 dsadr;      /* DSADR value for the current transfer */
81         u32 dtadr;      /* DTADR value for the current transfer */
82         u32 dcmd;       /* DCMD value for the current transfer */
83 } __aligned(32);
84
85 struct mmp_pdma_desc_sw {
86         struct mmp_pdma_desc_hw desc;
87         struct list_head node;
88         struct list_head tx_list;
89         struct dma_async_tx_descriptor async_tx;
90 };
91
92 struct mmp_pdma_phy;
93
94 struct mmp_pdma_chan {
95         struct device *dev;
96         struct dma_chan chan;
97         struct dma_async_tx_descriptor desc;
98         struct mmp_pdma_phy *phy;
99         enum dma_transfer_direction dir;
100
101         struct mmp_pdma_desc_sw *cyclic_first;  /* first desc_sw if channel
102                                                  * is in cyclic mode */
103
104         /* channel's basic info */
105         struct tasklet_struct tasklet;
106         u32 dcmd;
107         u32 drcmr;
108         u32 dev_addr;
109
110         /* list for desc */
111         spinlock_t desc_lock;           /* Descriptor list lock */
112         struct list_head chain_pending; /* Link descriptors queue for pending */
113         struct list_head chain_running; /* Link descriptors queue for running */
114         bool idle;                      /* channel statue machine */
115         bool byte_align;
116
117         struct dma_pool *desc_pool;     /* Descriptors pool */
118 };
119
120 struct mmp_pdma_phy {
121         int idx;
122         void __iomem *base;
123         struct mmp_pdma_chan *vchan;
124 };
125
126 struct mmp_pdma_device {
127         int                             dma_channels;
128         void __iomem                    *base;
129         struct device                   *dev;
130         struct dma_device               device;
131         struct mmp_pdma_phy             *phy;
132         spinlock_t phy_lock; /* protect alloc/free phy channels */
133 };
134
135 #define tx_to_mmp_pdma_desc(tx)                                 \
136         container_of(tx, struct mmp_pdma_desc_sw, async_tx)
137 #define to_mmp_pdma_desc(lh)                                    \
138         container_of(lh, struct mmp_pdma_desc_sw, node)
139 #define to_mmp_pdma_chan(dchan)                                 \
140         container_of(dchan, struct mmp_pdma_chan, chan)
141 #define to_mmp_pdma_dev(dmadev)                                 \
142         container_of(dmadev, struct mmp_pdma_device, device)
143
144 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
145 {
146         u32 reg = (phy->idx << 4) + DDADR;
147
148         writel(addr, phy->base + reg);
149 }
150
151 static void enable_chan(struct mmp_pdma_phy *phy)
152 {
153         u32 reg, dalgn;
154
155         if (!phy->vchan)
156                 return;
157
158         reg = DRCMR(phy->vchan->drcmr);
159         writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
160
161         dalgn = readl(phy->base + DALGN);
162         if (phy->vchan->byte_align)
163                 dalgn |= 1 << phy->idx;
164         else
165                 dalgn &= ~(1 << phy->idx);
166         writel(dalgn, phy->base + DALGN);
167
168         reg = (phy->idx << 2) + DCSR;
169         writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
170 }
171
172 static void disable_chan(struct mmp_pdma_phy *phy)
173 {
174         u32 reg;
175
176         if (!phy)
177                 return;
178
179         reg = (phy->idx << 2) + DCSR;
180         writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
181 }
182
183 static int clear_chan_irq(struct mmp_pdma_phy *phy)
184 {
185         u32 dcsr;
186         u32 dint = readl(phy->base + DINT);
187         u32 reg = (phy->idx << 2) + DCSR;
188
189         if (!(dint & BIT(phy->idx)))
190                 return -EAGAIN;
191
192         /* clear irq */
193         dcsr = readl(phy->base + reg);
194         writel(dcsr, phy->base + reg);
195         if ((dcsr & DCSR_BUSERR) && (phy->vchan))
196                 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
197
198         return 0;
199 }
200
201 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
202 {
203         struct mmp_pdma_phy *phy = dev_id;
204
205         if (clear_chan_irq(phy) != 0)
206                 return IRQ_NONE;
207
208         tasklet_schedule(&phy->vchan->tasklet);
209         return IRQ_HANDLED;
210 }
211
212 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
213 {
214         struct mmp_pdma_device *pdev = dev_id;
215         struct mmp_pdma_phy *phy;
216         u32 dint = readl(pdev->base + DINT);
217         int i, ret;
218         int irq_num = 0;
219
220         while (dint) {
221                 i = __ffs(dint);
222                 dint &= (dint - 1);
223                 phy = &pdev->phy[i];
224                 ret = mmp_pdma_chan_handler(irq, phy);
225                 if (ret == IRQ_HANDLED)
226                         irq_num++;
227         }
228
229         if (irq_num)
230                 return IRQ_HANDLED;
231
232         return IRQ_NONE;
233 }
234
235 /* lookup free phy channel as descending priority */
236 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
237 {
238         int prio, i;
239         struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
240         struct mmp_pdma_phy *phy, *found = NULL;
241         unsigned long flags;
242
243         /*
244          * dma channel priorities
245          * ch 0 - 3,  16 - 19  <--> (0)
246          * ch 4 - 7,  20 - 23  <--> (1)
247          * ch 8 - 11, 24 - 27  <--> (2)
248          * ch 12 - 15, 28 - 31  <--> (3)
249          */
250
251         spin_lock_irqsave(&pdev->phy_lock, flags);
252         for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
253                 for (i = 0; i < pdev->dma_channels; i++) {
254                         if (prio != (i & 0xf) >> 2)
255                                 continue;
256                         phy = &pdev->phy[i];
257                         if (!phy->vchan) {
258                                 phy->vchan = pchan;
259                                 found = phy;
260                                 goto out_unlock;
261                         }
262                 }
263         }
264
265 out_unlock:
266         spin_unlock_irqrestore(&pdev->phy_lock, flags);
267         return found;
268 }
269
270 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
271 {
272         struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
273         unsigned long flags;
274         u32 reg;
275
276         if (!pchan->phy)
277                 return;
278
279         /* clear the channel mapping in DRCMR */
280         reg = DRCMR(pchan->drcmr);
281         writel(0, pchan->phy->base + reg);
282
283         spin_lock_irqsave(&pdev->phy_lock, flags);
284         pchan->phy->vchan = NULL;
285         pchan->phy = NULL;
286         spin_unlock_irqrestore(&pdev->phy_lock, flags);
287 }
288
289 /**
290  * start_pending_queue - transfer any pending transactions
291  * pending list ==> running list
292  */
293 static void start_pending_queue(struct mmp_pdma_chan *chan)
294 {
295         struct mmp_pdma_desc_sw *desc;
296
297         /* still in running, irq will start the pending list */
298         if (!chan->idle) {
299                 dev_dbg(chan->dev, "DMA controller still busy\n");
300                 return;
301         }
302
303         if (list_empty(&chan->chain_pending)) {
304                 /* chance to re-fetch phy channel with higher prio */
305                 mmp_pdma_free_phy(chan);
306                 dev_dbg(chan->dev, "no pending list\n");
307                 return;
308         }
309
310         if (!chan->phy) {
311                 chan->phy = lookup_phy(chan);
312                 if (!chan->phy) {
313                         dev_dbg(chan->dev, "no free dma channel\n");
314                         return;
315                 }
316         }
317
318         /*
319          * pending -> running
320          * reintilize pending list
321          */
322         desc = list_first_entry(&chan->chain_pending,
323                                 struct mmp_pdma_desc_sw, node);
324         list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
325
326         /*
327          * Program the descriptor's address into the DMA controller,
328          * then start the DMA transaction
329          */
330         set_desc(chan->phy, desc->async_tx.phys);
331         enable_chan(chan->phy);
332         chan->idle = false;
333 }
334
335
336 /* desc->tx_list ==> pending list */
337 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
338 {
339         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
340         struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
341         struct mmp_pdma_desc_sw *child;
342         unsigned long flags;
343         dma_cookie_t cookie = -EBUSY;
344
345         spin_lock_irqsave(&chan->desc_lock, flags);
346
347         list_for_each_entry(child, &desc->tx_list, node) {
348                 cookie = dma_cookie_assign(&child->async_tx);
349         }
350
351         /* softly link to pending list - desc->tx_list ==> pending list */
352         list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
353
354         spin_unlock_irqrestore(&chan->desc_lock, flags);
355
356         return cookie;
357 }
358
359 static struct mmp_pdma_desc_sw *
360 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
361 {
362         struct mmp_pdma_desc_sw *desc;
363         dma_addr_t pdesc;
364
365         desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
366         if (!desc) {
367                 dev_err(chan->dev, "out of memory for link descriptor\n");
368                 return NULL;
369         }
370
371         memset(desc, 0, sizeof(*desc));
372         INIT_LIST_HEAD(&desc->tx_list);
373         dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
374         /* each desc has submit */
375         desc->async_tx.tx_submit = mmp_pdma_tx_submit;
376         desc->async_tx.phys = pdesc;
377
378         return desc;
379 }
380
381 /**
382  * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
383  *
384  * This function will create a dma pool for descriptor allocation.
385  * Request irq only when channel is requested
386  * Return - The number of allocated descriptors.
387  */
388
389 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
390 {
391         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
392
393         if (chan->desc_pool)
394                 return 1;
395
396         chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
397                                           chan->dev,
398                                           sizeof(struct mmp_pdma_desc_sw),
399                                           __alignof__(struct mmp_pdma_desc_sw),
400                                           0);
401         if (!chan->desc_pool) {
402                 dev_err(chan->dev, "unable to allocate descriptor pool\n");
403                 return -ENOMEM;
404         }
405
406         mmp_pdma_free_phy(chan);
407         chan->idle = true;
408         chan->dev_addr = 0;
409         return 1;
410 }
411
412 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
413                                     struct list_head *list)
414 {
415         struct mmp_pdma_desc_sw *desc, *_desc;
416
417         list_for_each_entry_safe(desc, _desc, list, node) {
418                 list_del(&desc->node);
419                 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
420         }
421 }
422
423 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
424 {
425         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
426         unsigned long flags;
427
428         spin_lock_irqsave(&chan->desc_lock, flags);
429         mmp_pdma_free_desc_list(chan, &chan->chain_pending);
430         mmp_pdma_free_desc_list(chan, &chan->chain_running);
431         spin_unlock_irqrestore(&chan->desc_lock, flags);
432
433         dma_pool_destroy(chan->desc_pool);
434         chan->desc_pool = NULL;
435         chan->idle = true;
436         chan->dev_addr = 0;
437         mmp_pdma_free_phy(chan);
438         return;
439 }
440
441 static struct dma_async_tx_descriptor *
442 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
443                      dma_addr_t dma_dst, dma_addr_t dma_src,
444                      size_t len, unsigned long flags)
445 {
446         struct mmp_pdma_chan *chan;
447         struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
448         size_t copy = 0;
449
450         if (!dchan)
451                 return NULL;
452
453         if (!len)
454                 return NULL;
455
456         chan = to_mmp_pdma_chan(dchan);
457         chan->byte_align = false;
458
459         if (!chan->dir) {
460                 chan->dir = DMA_MEM_TO_MEM;
461                 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
462                 chan->dcmd |= DCMD_BURST32;
463         }
464
465         do {
466                 /* Allocate the link descriptor from DMA pool */
467                 new = mmp_pdma_alloc_descriptor(chan);
468                 if (!new) {
469                         dev_err(chan->dev, "no memory for desc\n");
470                         goto fail;
471                 }
472
473                 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
474                 if (dma_src & 0x7 || dma_dst & 0x7)
475                         chan->byte_align = true;
476
477                 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
478                 new->desc.dsadr = dma_src;
479                 new->desc.dtadr = dma_dst;
480
481                 if (!first)
482                         first = new;
483                 else
484                         prev->desc.ddadr = new->async_tx.phys;
485
486                 new->async_tx.cookie = 0;
487                 async_tx_ack(&new->async_tx);
488
489                 prev = new;
490                 len -= copy;
491
492                 if (chan->dir == DMA_MEM_TO_DEV) {
493                         dma_src += copy;
494                 } else if (chan->dir == DMA_DEV_TO_MEM) {
495                         dma_dst += copy;
496                 } else if (chan->dir == DMA_MEM_TO_MEM) {
497                         dma_src += copy;
498                         dma_dst += copy;
499                 }
500
501                 /* Insert the link descriptor to the LD ring */
502                 list_add_tail(&new->node, &first->tx_list);
503         } while (len);
504
505         first->async_tx.flags = flags; /* client is in control of this ack */
506         first->async_tx.cookie = -EBUSY;
507
508         /* last desc and fire IRQ */
509         new->desc.ddadr = DDADR_STOP;
510         new->desc.dcmd |= DCMD_ENDIRQEN;
511
512         chan->cyclic_first = NULL;
513
514         return &first->async_tx;
515
516 fail:
517         if (first)
518                 mmp_pdma_free_desc_list(chan, &first->tx_list);
519         return NULL;
520 }
521
522 static struct dma_async_tx_descriptor *
523 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
524                        unsigned int sg_len, enum dma_transfer_direction dir,
525                        unsigned long flags, void *context)
526 {
527         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
528         struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
529         size_t len, avail;
530         struct scatterlist *sg;
531         dma_addr_t addr;
532         int i;
533
534         if ((sgl == NULL) || (sg_len == 0))
535                 return NULL;
536
537         chan->byte_align = false;
538
539         for_each_sg(sgl, sg, sg_len, i) {
540                 addr = sg_dma_address(sg);
541                 avail = sg_dma_len(sgl);
542
543                 do {
544                         len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
545                         if (addr & 0x7)
546                                 chan->byte_align = true;
547
548                         /* allocate and populate the descriptor */
549                         new = mmp_pdma_alloc_descriptor(chan);
550                         if (!new) {
551                                 dev_err(chan->dev, "no memory for desc\n");
552                                 goto fail;
553                         }
554
555                         new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
556                         if (dir == DMA_MEM_TO_DEV) {
557                                 new->desc.dsadr = addr;
558                                 new->desc.dtadr = chan->dev_addr;
559                         } else {
560                                 new->desc.dsadr = chan->dev_addr;
561                                 new->desc.dtadr = addr;
562                         }
563
564                         if (!first)
565                                 first = new;
566                         else
567                                 prev->desc.ddadr = new->async_tx.phys;
568
569                         new->async_tx.cookie = 0;
570                         async_tx_ack(&new->async_tx);
571                         prev = new;
572
573                         /* Insert the link descriptor to the LD ring */
574                         list_add_tail(&new->node, &first->tx_list);
575
576                         /* update metadata */
577                         addr += len;
578                         avail -= len;
579                 } while (avail);
580         }
581
582         first->async_tx.cookie = -EBUSY;
583         first->async_tx.flags = flags;
584
585         /* last desc and fire IRQ */
586         new->desc.ddadr = DDADR_STOP;
587         new->desc.dcmd |= DCMD_ENDIRQEN;
588
589         chan->dir = dir;
590         chan->cyclic_first = NULL;
591
592         return &first->async_tx;
593
594 fail:
595         if (first)
596                 mmp_pdma_free_desc_list(chan, &first->tx_list);
597         return NULL;
598 }
599
600 static struct dma_async_tx_descriptor *
601 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
602                          dma_addr_t buf_addr, size_t len, size_t period_len,
603                          enum dma_transfer_direction direction,
604                          unsigned long flags)
605 {
606         struct mmp_pdma_chan *chan;
607         struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
608         dma_addr_t dma_src, dma_dst;
609
610         if (!dchan || !len || !period_len)
611                 return NULL;
612
613         /* the buffer length must be a multiple of period_len */
614         if (len % period_len != 0)
615                 return NULL;
616
617         if (period_len > PDMA_MAX_DESC_BYTES)
618                 return NULL;
619
620         chan = to_mmp_pdma_chan(dchan);
621
622         switch (direction) {
623         case DMA_MEM_TO_DEV:
624                 dma_src = buf_addr;
625                 dma_dst = chan->dev_addr;
626                 break;
627         case DMA_DEV_TO_MEM:
628                 dma_dst = buf_addr;
629                 dma_src = chan->dev_addr;
630                 break;
631         default:
632                 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
633                 return NULL;
634         }
635
636         chan->dir = direction;
637
638         do {
639                 /* Allocate the link descriptor from DMA pool */
640                 new = mmp_pdma_alloc_descriptor(chan);
641                 if (!new) {
642                         dev_err(chan->dev, "no memory for desc\n");
643                         goto fail;
644                 }
645
646                 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
647                                   (DCMD_LENGTH & period_len));
648                 new->desc.dsadr = dma_src;
649                 new->desc.dtadr = dma_dst;
650
651                 if (!first)
652                         first = new;
653                 else
654                         prev->desc.ddadr = new->async_tx.phys;
655
656                 new->async_tx.cookie = 0;
657                 async_tx_ack(&new->async_tx);
658
659                 prev = new;
660                 len -= period_len;
661
662                 if (chan->dir == DMA_MEM_TO_DEV)
663                         dma_src += period_len;
664                 else
665                         dma_dst += period_len;
666
667                 /* Insert the link descriptor to the LD ring */
668                 list_add_tail(&new->node, &first->tx_list);
669         } while (len);
670
671         first->async_tx.flags = flags; /* client is in control of this ack */
672         first->async_tx.cookie = -EBUSY;
673
674         /* make the cyclic link */
675         new->desc.ddadr = first->async_tx.phys;
676         chan->cyclic_first = first;
677
678         return &first->async_tx;
679
680 fail:
681         if (first)
682                 mmp_pdma_free_desc_list(chan, &first->tx_list);
683         return NULL;
684 }
685
686 static int mmp_pdma_control(struct dma_chan *dchan, enum dma_ctrl_cmd cmd,
687                             unsigned long arg)
688 {
689         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
690         struct dma_slave_config *cfg = (void *)arg;
691         unsigned long flags;
692         u32 maxburst = 0, addr = 0;
693         enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
694
695         if (!dchan)
696                 return -EINVAL;
697
698         switch (cmd) {
699         case DMA_TERMINATE_ALL:
700                 disable_chan(chan->phy);
701                 mmp_pdma_free_phy(chan);
702                 spin_lock_irqsave(&chan->desc_lock, flags);
703                 mmp_pdma_free_desc_list(chan, &chan->chain_pending);
704                 mmp_pdma_free_desc_list(chan, &chan->chain_running);
705                 spin_unlock_irqrestore(&chan->desc_lock, flags);
706                 chan->idle = true;
707                 break;
708         case DMA_SLAVE_CONFIG:
709                 if (cfg->direction == DMA_DEV_TO_MEM) {
710                         chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
711                         maxburst = cfg->src_maxburst;
712                         width = cfg->src_addr_width;
713                         addr = cfg->src_addr;
714                 } else if (cfg->direction == DMA_MEM_TO_DEV) {
715                         chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
716                         maxburst = cfg->dst_maxburst;
717                         width = cfg->dst_addr_width;
718                         addr = cfg->dst_addr;
719                 }
720
721                 if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
722                         chan->dcmd |= DCMD_WIDTH1;
723                 else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
724                         chan->dcmd |= DCMD_WIDTH2;
725                 else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
726                         chan->dcmd |= DCMD_WIDTH4;
727
728                 if (maxburst == 8)
729                         chan->dcmd |= DCMD_BURST8;
730                 else if (maxburst == 16)
731                         chan->dcmd |= DCMD_BURST16;
732                 else if (maxburst == 32)
733                         chan->dcmd |= DCMD_BURST32;
734
735                 chan->dir = cfg->direction;
736                 chan->dev_addr = addr;
737                 /* FIXME: drivers should be ported over to use the filter
738                  * function. Once that's done, the following two lines can
739                  * be removed.
740                  */
741                 if (cfg->slave_id)
742                         chan->drcmr = cfg->slave_id;
743                 break;
744         default:
745                 return -ENOSYS;
746         }
747
748         return 0;
749 }
750
751 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
752                                      dma_cookie_t cookie)
753 {
754         struct mmp_pdma_desc_sw *sw;
755         u32 curr, residue = 0;
756         bool passed = false;
757         bool cyclic = chan->cyclic_first != NULL;
758
759         /*
760          * If the channel does not have a phy pointer anymore, it has already
761          * been completed. Therefore, its residue is 0.
762          */
763         if (!chan->phy)
764                 return 0;
765
766         if (chan->dir == DMA_DEV_TO_MEM)
767                 curr = readl(chan->phy->base + DTADR(chan->phy->idx));
768         else
769                 curr = readl(chan->phy->base + DSADR(chan->phy->idx));
770
771         list_for_each_entry(sw, &chan->chain_running, node) {
772                 u32 start, end, len;
773
774                 if (chan->dir == DMA_DEV_TO_MEM)
775                         start = sw->desc.dtadr;
776                 else
777                         start = sw->desc.dsadr;
778
779                 len = sw->desc.dcmd & DCMD_LENGTH;
780                 end = start + len;
781
782                 /*
783                  * 'passed' will be latched once we found the descriptor which
784                  * lies inside the boundaries of the curr pointer. All
785                  * descriptors that occur in the list _after_ we found that
786                  * partially handled descriptor are still to be processed and
787                  * are hence added to the residual bytes counter.
788                  */
789
790                 if (passed) {
791                         residue += len;
792                 } else if (curr >= start && curr <= end) {
793                         residue += end - curr;
794                         passed = true;
795                 }
796
797                 /*
798                  * Descriptors that have the ENDIRQEN bit set mark the end of a
799                  * transaction chain, and the cookie assigned with it has been
800                  * returned previously from mmp_pdma_tx_submit().
801                  *
802                  * In case we have multiple transactions in the running chain,
803                  * and the cookie does not match the one the user asked us
804                  * about, reset the state variables and start over.
805                  *
806                  * This logic does not apply to cyclic transactions, where all
807                  * descriptors have the ENDIRQEN bit set, and for which we
808                  * can't have multiple transactions on one channel anyway.
809                  */
810                 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
811                         continue;
812
813                 if (sw->async_tx.cookie == cookie) {
814                         return residue;
815                 } else {
816                         residue = 0;
817                         passed = false;
818                 }
819         }
820
821         /* We should only get here in case of cyclic transactions */
822         return residue;
823 }
824
825 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
826                                           dma_cookie_t cookie,
827                                           struct dma_tx_state *txstate)
828 {
829         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
830         enum dma_status ret;
831
832         ret = dma_cookie_status(dchan, cookie, txstate);
833         if (likely(ret != DMA_ERROR))
834                 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
835
836         return ret;
837 }
838
839 /**
840  * mmp_pdma_issue_pending - Issue the DMA start command
841  * pending list ==> running list
842  */
843 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
844 {
845         struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
846         unsigned long flags;
847
848         spin_lock_irqsave(&chan->desc_lock, flags);
849         start_pending_queue(chan);
850         spin_unlock_irqrestore(&chan->desc_lock, flags);
851 }
852
853 /*
854  * dma_do_tasklet
855  * Do call back
856  * Start pending list
857  */
858 static void dma_do_tasklet(unsigned long data)
859 {
860         struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data;
861         struct mmp_pdma_desc_sw *desc, *_desc;
862         LIST_HEAD(chain_cleanup);
863         unsigned long flags;
864
865         if (chan->cyclic_first) {
866                 dma_async_tx_callback cb = NULL;
867                 void *cb_data = NULL;
868
869                 spin_lock_irqsave(&chan->desc_lock, flags);
870                 desc = chan->cyclic_first;
871                 cb = desc->async_tx.callback;
872                 cb_data = desc->async_tx.callback_param;
873                 spin_unlock_irqrestore(&chan->desc_lock, flags);
874
875                 if (cb)
876                         cb(cb_data);
877
878                 return;
879         }
880
881         /* submit pending list; callback for each desc; free desc */
882         spin_lock_irqsave(&chan->desc_lock, flags);
883
884         list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
885                 /*
886                  * move the descriptors to a temporary list so we can drop
887                  * the lock during the entire cleanup operation
888                  */
889                 list_move(&desc->node, &chain_cleanup);
890
891                 /*
892                  * Look for the first list entry which has the ENDIRQEN flag
893                  * set. That is the descriptor we got an interrupt for, so
894                  * complete that transaction and its cookie.
895                  */
896                 if (desc->desc.dcmd & DCMD_ENDIRQEN) {
897                         dma_cookie_t cookie = desc->async_tx.cookie;
898                         dma_cookie_complete(&desc->async_tx);
899                         dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
900                         break;
901                 }
902         }
903
904         /*
905          * The hardware is idle and ready for more when the
906          * chain_running list is empty.
907          */
908         chan->idle = list_empty(&chan->chain_running);
909
910         /* Start any pending transactions automatically */
911         start_pending_queue(chan);
912         spin_unlock_irqrestore(&chan->desc_lock, flags);
913
914         /* Run the callback for each descriptor, in order */
915         list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
916                 struct dma_async_tx_descriptor *txd = &desc->async_tx;
917
918                 /* Remove from the list of transactions */
919                 list_del(&desc->node);
920                 /* Run the link descriptor callback function */
921                 if (txd->callback)
922                         txd->callback(txd->callback_param);
923
924                 dma_pool_free(chan->desc_pool, desc, txd->phys);
925         }
926 }
927
928 static int mmp_pdma_remove(struct platform_device *op)
929 {
930         struct mmp_pdma_device *pdev = platform_get_drvdata(op);
931
932         dma_async_device_unregister(&pdev->device);
933         return 0;
934 }
935
936 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
937 {
938         struct mmp_pdma_phy *phy  = &pdev->phy[idx];
939         struct mmp_pdma_chan *chan;
940         int ret;
941
942         chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
943         if (chan == NULL)
944                 return -ENOMEM;
945
946         phy->idx = idx;
947         phy->base = pdev->base;
948
949         if (irq) {
950                 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
951                                        IRQF_SHARED, "pdma", phy);
952                 if (ret) {
953                         dev_err(pdev->dev, "channel request irq fail!\n");
954                         return ret;
955                 }
956         }
957
958         spin_lock_init(&chan->desc_lock);
959         chan->dev = pdev->dev;
960         chan->chan.device = &pdev->device;
961         tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
962         INIT_LIST_HEAD(&chan->chain_pending);
963         INIT_LIST_HEAD(&chan->chain_running);
964
965         /* register virt channel to dma engine */
966         list_add_tail(&chan->chan.device_node, &pdev->device.channels);
967
968         return 0;
969 }
970
971 static struct of_device_id mmp_pdma_dt_ids[] = {
972         { .compatible = "marvell,pdma-1.0", },
973         {}
974 };
975 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
976
977 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
978                                            struct of_dma *ofdma)
979 {
980         struct mmp_pdma_device *d = ofdma->of_dma_data;
981         struct dma_chan *chan;
982
983         chan = dma_get_any_slave_channel(&d->device);
984         if (!chan)
985                 return NULL;
986
987         to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
988
989         return chan;
990 }
991
992 static int mmp_pdma_probe(struct platform_device *op)
993 {
994         struct mmp_pdma_device *pdev;
995         const struct of_device_id *of_id;
996         struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
997         struct resource *iores;
998         int i, ret, irq = 0;
999         int dma_channels = 0, irq_num = 0;
1000
1001         pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1002         if (!pdev)
1003                 return -ENOMEM;
1004
1005         pdev->dev = &op->dev;
1006
1007         spin_lock_init(&pdev->phy_lock);
1008
1009         iores = platform_get_resource(op, IORESOURCE_MEM, 0);
1010         pdev->base = devm_ioremap_resource(pdev->dev, iores);
1011         if (IS_ERR(pdev->base))
1012                 return PTR_ERR(pdev->base);
1013
1014         of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
1015         if (of_id)
1016                 of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1017                                      &dma_channels);
1018         else if (pdata && pdata->dma_channels)
1019                 dma_channels = pdata->dma_channels;
1020         else
1021                 dma_channels = 32;      /* default 32 channel */
1022         pdev->dma_channels = dma_channels;
1023
1024         for (i = 0; i < dma_channels; i++) {
1025                 if (platform_get_irq(op, i) > 0)
1026                         irq_num++;
1027         }
1028
1029         pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1030                                  GFP_KERNEL);
1031         if (pdev->phy == NULL)
1032                 return -ENOMEM;
1033
1034         INIT_LIST_HEAD(&pdev->device.channels);
1035
1036         if (irq_num != dma_channels) {
1037                 /* all chan share one irq, demux inside */
1038                 irq = platform_get_irq(op, 0);
1039                 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1040                                        IRQF_SHARED, "pdma", pdev);
1041                 if (ret)
1042                         return ret;
1043         }
1044
1045         for (i = 0; i < dma_channels; i++) {
1046                 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1047                 ret = mmp_pdma_chan_init(pdev, i, irq);
1048                 if (ret)
1049                         return ret;
1050         }
1051
1052         dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1053         dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1054         dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1055         dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1056         pdev->device.dev = &op->dev;
1057         pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1058         pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1059         pdev->device.device_tx_status = mmp_pdma_tx_status;
1060         pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1061         pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1062         pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1063         pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1064         pdev->device.device_control = mmp_pdma_control;
1065         pdev->device.copy_align = PDMA_ALIGNMENT;
1066
1067         if (pdev->dev->coherent_dma_mask)
1068                 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1069         else
1070                 dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1071
1072         ret = dma_async_device_register(&pdev->device);
1073         if (ret) {
1074                 dev_err(pdev->device.dev, "unable to register\n");
1075                 return ret;
1076         }
1077
1078         if (op->dev.of_node) {
1079                 /* Device-tree DMA controller registration */
1080                 ret = of_dma_controller_register(op->dev.of_node,
1081                                                  mmp_pdma_dma_xlate, pdev);
1082                 if (ret < 0) {
1083                         dev_err(&op->dev, "of_dma_controller_register failed\n");
1084                         return ret;
1085                 }
1086         }
1087
1088         platform_set_drvdata(op, pdev);
1089         dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1090         return 0;
1091 }
1092
1093 static const struct platform_device_id mmp_pdma_id_table[] = {
1094         { "mmp-pdma", },
1095         { },
1096 };
1097
1098 static struct platform_driver mmp_pdma_driver = {
1099         .driver         = {
1100                 .name   = "mmp-pdma",
1101                 .owner  = THIS_MODULE,
1102                 .of_match_table = mmp_pdma_dt_ids,
1103         },
1104         .id_table       = mmp_pdma_id_table,
1105         .probe          = mmp_pdma_probe,
1106         .remove         = mmp_pdma_remove,
1107 };
1108
1109 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param)
1110 {
1111         struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan);
1112
1113         if (chan->device->dev->driver != &mmp_pdma_driver.driver)
1114                 return false;
1115
1116         c->drcmr = *(unsigned int *)param;
1117
1118         return true;
1119 }
1120 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn);
1121
1122 module_platform_driver(mmp_pdma_driver);
1123
1124 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1125 MODULE_AUTHOR("Marvell International Ltd.");
1126 MODULE_LICENSE("GPL v2");