dmaengine: ensure all DMA engine drivers initialize their cookies
[pandora-kernel.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/wait.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/module.h>
40
41 #include <asm/irq.h>
42 #include <mach/sdma.h>
43 #include <mach/dma.h>
44 #include <mach/hardware.h>
45
46 #include "dmaengine.h"
47
48 /* SDMA registers */
49 #define SDMA_H_C0PTR            0x000
50 #define SDMA_H_INTR             0x004
51 #define SDMA_H_STATSTOP         0x008
52 #define SDMA_H_START            0x00c
53 #define SDMA_H_EVTOVR           0x010
54 #define SDMA_H_DSPOVR           0x014
55 #define SDMA_H_HOSTOVR          0x018
56 #define SDMA_H_EVTPEND          0x01c
57 #define SDMA_H_DSPENBL          0x020
58 #define SDMA_H_RESET            0x024
59 #define SDMA_H_EVTERR           0x028
60 #define SDMA_H_INTRMSK          0x02c
61 #define SDMA_H_PSW              0x030
62 #define SDMA_H_EVTERRDBG        0x034
63 #define SDMA_H_CONFIG           0x038
64 #define SDMA_ONCE_ENB           0x040
65 #define SDMA_ONCE_DATA          0x044
66 #define SDMA_ONCE_INSTR         0x048
67 #define SDMA_ONCE_STAT          0x04c
68 #define SDMA_ONCE_CMD           0x050
69 #define SDMA_EVT_MIRROR         0x054
70 #define SDMA_ILLINSTADDR        0x058
71 #define SDMA_CHN0ADDR           0x05c
72 #define SDMA_ONCE_RTB           0x060
73 #define SDMA_XTRIG_CONF1        0x070
74 #define SDMA_XTRIG_CONF2        0x074
75 #define SDMA_CHNENBL0_IMX35     0x200
76 #define SDMA_CHNENBL0_IMX31     0x080
77 #define SDMA_CHNPRI_0           0x100
78
79 /*
80  * Buffer descriptor status values.
81  */
82 #define BD_DONE  0x01
83 #define BD_WRAP  0x02
84 #define BD_CONT  0x04
85 #define BD_INTR  0x08
86 #define BD_RROR  0x10
87 #define BD_LAST  0x20
88 #define BD_EXTD  0x80
89
90 /*
91  * Data Node descriptor status values.
92  */
93 #define DND_END_OF_FRAME  0x80
94 #define DND_END_OF_XFER   0x40
95 #define DND_DONE          0x20
96 #define DND_UNUSED        0x01
97
98 /*
99  * IPCV2 descriptor status values.
100  */
101 #define BD_IPCV2_END_OF_FRAME  0x40
102
103 #define IPCV2_MAX_NODES        50
104 /*
105  * Error bit set in the CCB status field by the SDMA,
106  * in setbd routine, in case of a transfer error
107  */
108 #define DATA_ERROR  0x10000000
109
110 /*
111  * Buffer descriptor commands.
112  */
113 #define C0_ADDR             0x01
114 #define C0_LOAD             0x02
115 #define C0_DUMP             0x03
116 #define C0_SETCTX           0x07
117 #define C0_GETCTX           0x03
118 #define C0_SETDM            0x01
119 #define C0_SETPM            0x04
120 #define C0_GETDM            0x02
121 #define C0_GETPM            0x08
122 /*
123  * Change endianness indicator in the BD command field
124  */
125 #define CHANGE_ENDIANNESS   0x80
126
127 /*
128  * Mode/Count of data node descriptors - IPCv2
129  */
130 struct sdma_mode_count {
131         u32 count   : 16; /* size of the buffer pointed by this BD */
132         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
133         u32 command :  8; /* command mostlky used for channel 0 */
134 };
135
136 /*
137  * Buffer descriptor
138  */
139 struct sdma_buffer_descriptor {
140         struct sdma_mode_count  mode;
141         u32 buffer_addr;        /* address of the buffer described */
142         u32 ext_buffer_addr;    /* extended buffer address */
143 } __attribute__ ((packed));
144
145 /**
146  * struct sdma_channel_control - Channel control Block
147  *
148  * @current_bd_ptr      current buffer descriptor processed
149  * @base_bd_ptr         first element of buffer descriptor array
150  * @unused              padding. The SDMA engine expects an array of 128 byte
151  *                      control blocks
152  */
153 struct sdma_channel_control {
154         u32 current_bd_ptr;
155         u32 base_bd_ptr;
156         u32 unused[2];
157 } __attribute__ ((packed));
158
159 /**
160  * struct sdma_state_registers - SDMA context for a channel
161  *
162  * @pc:         program counter
163  * @t:          test bit: status of arithmetic & test instruction
164  * @rpc:        return program counter
165  * @sf:         source fault while loading data
166  * @spc:        loop start program counter
167  * @df:         destination fault while storing data
168  * @epc:        loop end program counter
169  * @lm:         loop mode
170  */
171 struct sdma_state_registers {
172         u32 pc     :14;
173         u32 unused1: 1;
174         u32 t      : 1;
175         u32 rpc    :14;
176         u32 unused0: 1;
177         u32 sf     : 1;
178         u32 spc    :14;
179         u32 unused2: 1;
180         u32 df     : 1;
181         u32 epc    :14;
182         u32 lm     : 2;
183 } __attribute__ ((packed));
184
185 /**
186  * struct sdma_context_data - sdma context specific to a channel
187  *
188  * @channel_state:      channel state bits
189  * @gReg:               general registers
190  * @mda:                burst dma destination address register
191  * @msa:                burst dma source address register
192  * @ms:                 burst dma status register
193  * @md:                 burst dma data register
194  * @pda:                peripheral dma destination address register
195  * @psa:                peripheral dma source address register
196  * @ps:                 peripheral dma status register
197  * @pd:                 peripheral dma data register
198  * @ca:                 CRC polynomial register
199  * @cs:                 CRC accumulator register
200  * @dda:                dedicated core destination address register
201  * @dsa:                dedicated core source address register
202  * @ds:                 dedicated core status register
203  * @dd:                 dedicated core data register
204  */
205 struct sdma_context_data {
206         struct sdma_state_registers  channel_state;
207         u32  gReg[8];
208         u32  mda;
209         u32  msa;
210         u32  ms;
211         u32  md;
212         u32  pda;
213         u32  psa;
214         u32  ps;
215         u32  pd;
216         u32  ca;
217         u32  cs;
218         u32  dda;
219         u32  dsa;
220         u32  ds;
221         u32  dd;
222         u32  scratch0;
223         u32  scratch1;
224         u32  scratch2;
225         u32  scratch3;
226         u32  scratch4;
227         u32  scratch5;
228         u32  scratch6;
229         u32  scratch7;
230 } __attribute__ ((packed));
231
232 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
233
234 struct sdma_engine;
235
236 /**
237  * struct sdma_channel - housekeeping for a SDMA channel
238  *
239  * @sdma                pointer to the SDMA engine for this channel
240  * @channel             the channel number, matches dmaengine chan_id + 1
241  * @direction           transfer type. Needed for setting SDMA script
242  * @peripheral_type     Peripheral type. Needed for setting SDMA script
243  * @event_id0           aka dma request line
244  * @event_id1           for channels that use 2 events
245  * @word_size           peripheral access size
246  * @buf_tail            ID of the buffer that was processed
247  * @done                channel completion
248  * @num_bd              max NUM_BD. number of descriptors currently handling
249  */
250 struct sdma_channel {
251         struct sdma_engine              *sdma;
252         unsigned int                    channel;
253         enum dma_transfer_direction             direction;
254         enum sdma_peripheral_type       peripheral_type;
255         unsigned int                    event_id0;
256         unsigned int                    event_id1;
257         enum dma_slave_buswidth         word_size;
258         unsigned int                    buf_tail;
259         struct completion               done;
260         unsigned int                    num_bd;
261         struct sdma_buffer_descriptor   *bd;
262         dma_addr_t                      bd_phys;
263         unsigned int                    pc_from_device, pc_to_device;
264         unsigned long                   flags;
265         dma_addr_t                      per_address;
266         unsigned long                   event_mask[2];
267         unsigned long                   watermark_level;
268         u32                             shp_addr, per_addr;
269         struct dma_chan                 chan;
270         spinlock_t                      lock;
271         struct dma_async_tx_descriptor  desc;
272         enum dma_status                 status;
273         unsigned int                    chn_count;
274         unsigned int                    chn_real_count;
275 };
276
277 #define IMX_DMA_SG_LOOP         BIT(0)
278
279 #define MAX_DMA_CHANNELS 32
280 #define MXC_SDMA_DEFAULT_PRIORITY 1
281 #define MXC_SDMA_MIN_PRIORITY 1
282 #define MXC_SDMA_MAX_PRIORITY 7
283
284 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285
286 /**
287  * struct sdma_firmware_header - Layout of the firmware image
288  *
289  * @magic               "SDMA"
290  * @version_major       increased whenever layout of struct sdma_script_start_addrs
291  *                      changes.
292  * @version_minor       firmware minor version (for binary compatible changes)
293  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
294  * @num_script_addrs    Number of script addresses in this image
295  * @ram_code_start      offset of SDMA ram image in this firmware image
296  * @ram_code_size       size of SDMA ram image
297  * @script_addrs        Stores the start address of the SDMA scripts
298  *                      (in SDMA memory space)
299  */
300 struct sdma_firmware_header {
301         u32     magic;
302         u32     version_major;
303         u32     version_minor;
304         u32     script_addrs_start;
305         u32     num_script_addrs;
306         u32     ram_code_start;
307         u32     ram_code_size;
308 };
309
310 enum sdma_devtype {
311         IMX31_SDMA,     /* runs on i.mx31 */
312         IMX35_SDMA,     /* runs on i.mx35 and later */
313 };
314
315 struct sdma_engine {
316         struct device                   *dev;
317         struct device_dma_parameters    dma_parms;
318         struct sdma_channel             channel[MAX_DMA_CHANNELS];
319         struct sdma_channel_control     *channel_control;
320         void __iomem                    *regs;
321         enum sdma_devtype               devtype;
322         unsigned int                    num_events;
323         struct sdma_context_data        *context;
324         dma_addr_t                      context_phys;
325         struct dma_device               dma_device;
326         struct clk                      *clk;
327         struct mutex                    channel_0_lock;
328         struct sdma_script_start_addrs  *script_addrs;
329 };
330
331 static struct platform_device_id sdma_devtypes[] = {
332         {
333                 .name = "imx31-sdma",
334                 .driver_data = IMX31_SDMA,
335         }, {
336                 .name = "imx35-sdma",
337                 .driver_data = IMX35_SDMA,
338         }, {
339                 /* sentinel */
340         }
341 };
342 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
343
344 static const struct of_device_id sdma_dt_ids[] = {
345         { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
346         { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
347         { /* sentinel */ }
348 };
349 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
350
351 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
352 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
353 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
354 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
355
356 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
357 {
358         u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
359                                                       SDMA_CHNENBL0_IMX35);
360         return chnenbl0 + event * 4;
361 }
362
363 static int sdma_config_ownership(struct sdma_channel *sdmac,
364                 bool event_override, bool mcu_override, bool dsp_override)
365 {
366         struct sdma_engine *sdma = sdmac->sdma;
367         int channel = sdmac->channel;
368         unsigned long evt, mcu, dsp;
369
370         if (event_override && mcu_override && dsp_override)
371                 return -EINVAL;
372
373         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
374         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
375         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
376
377         if (dsp_override)
378                 __clear_bit(channel, &dsp);
379         else
380                 __set_bit(channel, &dsp);
381
382         if (event_override)
383                 __clear_bit(channel, &evt);
384         else
385                 __set_bit(channel, &evt);
386
387         if (mcu_override)
388                 __clear_bit(channel, &mcu);
389         else
390                 __set_bit(channel, &mcu);
391
392         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
393         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
394         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
395
396         return 0;
397 }
398
399 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
400 {
401         writel(BIT(channel), sdma->regs + SDMA_H_START);
402 }
403
404 /*
405  * sdma_run_channel - run a channel and wait till it's done
406  */
407 static int sdma_run_channel(struct sdma_channel *sdmac)
408 {
409         struct sdma_engine *sdma = sdmac->sdma;
410         int channel = sdmac->channel;
411         int ret;
412
413         init_completion(&sdmac->done);
414
415         sdma_enable_channel(sdma, channel);
416
417         ret = wait_for_completion_timeout(&sdmac->done, HZ);
418
419         return ret ? 0 : -ETIMEDOUT;
420 }
421
422 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
423                 u32 address)
424 {
425         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
426         void *buf_virt;
427         dma_addr_t buf_phys;
428         int ret;
429
430         mutex_lock(&sdma->channel_0_lock);
431
432         buf_virt = dma_alloc_coherent(NULL,
433                         size,
434                         &buf_phys, GFP_KERNEL);
435         if (!buf_virt) {
436                 ret = -ENOMEM;
437                 goto err_out;
438         }
439
440         bd0->mode.command = C0_SETPM;
441         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
442         bd0->mode.count = size / 2;
443         bd0->buffer_addr = buf_phys;
444         bd0->ext_buffer_addr = address;
445
446         memcpy(buf_virt, buf, size);
447
448         ret = sdma_run_channel(&sdma->channel[0]);
449
450         dma_free_coherent(NULL, size, buf_virt, buf_phys);
451
452 err_out:
453         mutex_unlock(&sdma->channel_0_lock);
454
455         return ret;
456 }
457
458 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
459 {
460         struct sdma_engine *sdma = sdmac->sdma;
461         int channel = sdmac->channel;
462         unsigned long val;
463         u32 chnenbl = chnenbl_ofs(sdma, event);
464
465         val = readl_relaxed(sdma->regs + chnenbl);
466         __set_bit(channel, &val);
467         writel_relaxed(val, sdma->regs + chnenbl);
468 }
469
470 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
471 {
472         struct sdma_engine *sdma = sdmac->sdma;
473         int channel = sdmac->channel;
474         u32 chnenbl = chnenbl_ofs(sdma, event);
475         unsigned long val;
476
477         val = readl_relaxed(sdma->regs + chnenbl);
478         __clear_bit(channel, &val);
479         writel_relaxed(val, sdma->regs + chnenbl);
480 }
481
482 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
483 {
484         struct sdma_buffer_descriptor *bd;
485
486         /*
487          * loop mode. Iterate over descriptors, re-setup them and
488          * call callback function.
489          */
490         while (1) {
491                 bd = &sdmac->bd[sdmac->buf_tail];
492
493                 if (bd->mode.status & BD_DONE)
494                         break;
495
496                 if (bd->mode.status & BD_RROR)
497                         sdmac->status = DMA_ERROR;
498                 else
499                         sdmac->status = DMA_IN_PROGRESS;
500
501                 bd->mode.status |= BD_DONE;
502                 sdmac->buf_tail++;
503                 sdmac->buf_tail %= sdmac->num_bd;
504
505                 if (sdmac->desc.callback)
506                         sdmac->desc.callback(sdmac->desc.callback_param);
507         }
508 }
509
510 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
511 {
512         struct sdma_buffer_descriptor *bd;
513         int i, error = 0;
514
515         sdmac->chn_real_count = 0;
516         /*
517          * non loop mode. Iterate over all descriptors, collect
518          * errors and call callback function
519          */
520         for (i = 0; i < sdmac->num_bd; i++) {
521                 bd = &sdmac->bd[i];
522
523                  if (bd->mode.status & (BD_DONE | BD_RROR))
524                         error = -EIO;
525                  sdmac->chn_real_count += bd->mode.count;
526         }
527
528         if (error)
529                 sdmac->status = DMA_ERROR;
530         else
531                 sdmac->status = DMA_SUCCESS;
532
533         dma_cookie_complete(&sdmac->desc);
534         if (sdmac->desc.callback)
535                 sdmac->desc.callback(sdmac->desc.callback_param);
536 }
537
538 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
539 {
540         complete(&sdmac->done);
541
542         /* not interested in channel 0 interrupts */
543         if (sdmac->channel == 0)
544                 return;
545
546         if (sdmac->flags & IMX_DMA_SG_LOOP)
547                 sdma_handle_channel_loop(sdmac);
548         else
549                 mxc_sdma_handle_channel_normal(sdmac);
550 }
551
552 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
553 {
554         struct sdma_engine *sdma = dev_id;
555         unsigned long stat;
556
557         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
558         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
559
560         while (stat) {
561                 int channel = fls(stat) - 1;
562                 struct sdma_channel *sdmac = &sdma->channel[channel];
563
564                 mxc_sdma_handle_channel(sdmac);
565
566                 __clear_bit(channel, &stat);
567         }
568
569         return IRQ_HANDLED;
570 }
571
572 /*
573  * sets the pc of SDMA script according to the peripheral type
574  */
575 static void sdma_get_pc(struct sdma_channel *sdmac,
576                 enum sdma_peripheral_type peripheral_type)
577 {
578         struct sdma_engine *sdma = sdmac->sdma;
579         int per_2_emi = 0, emi_2_per = 0;
580         /*
581          * These are needed once we start to support transfers between
582          * two peripherals or memory-to-memory transfers
583          */
584         int per_2_per = 0, emi_2_emi = 0;
585
586         sdmac->pc_from_device = 0;
587         sdmac->pc_to_device = 0;
588
589         switch (peripheral_type) {
590         case IMX_DMATYPE_MEMORY:
591                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
592                 break;
593         case IMX_DMATYPE_DSP:
594                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
595                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
596                 break;
597         case IMX_DMATYPE_FIRI:
598                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
599                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
600                 break;
601         case IMX_DMATYPE_UART:
602                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
603                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
604                 break;
605         case IMX_DMATYPE_UART_SP:
606                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
607                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
608                 break;
609         case IMX_DMATYPE_ATA:
610                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
611                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
612                 break;
613         case IMX_DMATYPE_CSPI:
614         case IMX_DMATYPE_EXT:
615         case IMX_DMATYPE_SSI:
616                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
617                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
618                 break;
619         case IMX_DMATYPE_SSI_SP:
620         case IMX_DMATYPE_MMC:
621         case IMX_DMATYPE_SDHC:
622         case IMX_DMATYPE_CSPI_SP:
623         case IMX_DMATYPE_ESAI:
624         case IMX_DMATYPE_MSHC_SP:
625                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
626                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
627                 break;
628         case IMX_DMATYPE_ASRC:
629                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
630                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
631                 per_2_per = sdma->script_addrs->per_2_per_addr;
632                 break;
633         case IMX_DMATYPE_MSHC:
634                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
635                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
636                 break;
637         case IMX_DMATYPE_CCM:
638                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
639                 break;
640         case IMX_DMATYPE_SPDIF:
641                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
642                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
643                 break;
644         case IMX_DMATYPE_IPU_MEMORY:
645                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
646                 break;
647         default:
648                 break;
649         }
650
651         sdmac->pc_from_device = per_2_emi;
652         sdmac->pc_to_device = emi_2_per;
653 }
654
655 static int sdma_load_context(struct sdma_channel *sdmac)
656 {
657         struct sdma_engine *sdma = sdmac->sdma;
658         int channel = sdmac->channel;
659         int load_address;
660         struct sdma_context_data *context = sdma->context;
661         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
662         int ret;
663
664         if (sdmac->direction == DMA_DEV_TO_MEM) {
665                 load_address = sdmac->pc_from_device;
666         } else {
667                 load_address = sdmac->pc_to_device;
668         }
669
670         if (load_address < 0)
671                 return load_address;
672
673         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
674         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
675         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
676         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
677         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
678         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
679
680         mutex_lock(&sdma->channel_0_lock);
681
682         memset(context, 0, sizeof(*context));
683         context->channel_state.pc = load_address;
684
685         /* Send by context the event mask,base address for peripheral
686          * and watermark level
687          */
688         context->gReg[0] = sdmac->event_mask[1];
689         context->gReg[1] = sdmac->event_mask[0];
690         context->gReg[2] = sdmac->per_addr;
691         context->gReg[6] = sdmac->shp_addr;
692         context->gReg[7] = sdmac->watermark_level;
693
694         bd0->mode.command = C0_SETDM;
695         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
696         bd0->mode.count = sizeof(*context) / 4;
697         bd0->buffer_addr = sdma->context_phys;
698         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
699
700         ret = sdma_run_channel(&sdma->channel[0]);
701
702         mutex_unlock(&sdma->channel_0_lock);
703
704         return ret;
705 }
706
707 static void sdma_disable_channel(struct sdma_channel *sdmac)
708 {
709         struct sdma_engine *sdma = sdmac->sdma;
710         int channel = sdmac->channel;
711
712         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
713         sdmac->status = DMA_ERROR;
714 }
715
716 static int sdma_config_channel(struct sdma_channel *sdmac)
717 {
718         int ret;
719
720         sdma_disable_channel(sdmac);
721
722         sdmac->event_mask[0] = 0;
723         sdmac->event_mask[1] = 0;
724         sdmac->shp_addr = 0;
725         sdmac->per_addr = 0;
726
727         if (sdmac->event_id0) {
728                 if (sdmac->event_id0 >= sdmac->sdma->num_events)
729                         return -EINVAL;
730                 sdma_event_enable(sdmac, sdmac->event_id0);
731         }
732
733         switch (sdmac->peripheral_type) {
734         case IMX_DMATYPE_DSP:
735                 sdma_config_ownership(sdmac, false, true, true);
736                 break;
737         case IMX_DMATYPE_MEMORY:
738                 sdma_config_ownership(sdmac, false, true, false);
739                 break;
740         default:
741                 sdma_config_ownership(sdmac, true, true, false);
742                 break;
743         }
744
745         sdma_get_pc(sdmac, sdmac->peripheral_type);
746
747         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
748                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
749                 /* Handle multiple event channels differently */
750                 if (sdmac->event_id1) {
751                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
752                         if (sdmac->event_id1 > 31)
753                                 __set_bit(31, &sdmac->watermark_level);
754                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
755                         if (sdmac->event_id0 > 31)
756                                 __set_bit(30, &sdmac->watermark_level);
757                 } else {
758                         __set_bit(sdmac->event_id0, sdmac->event_mask);
759                 }
760                 /* Watermark Level */
761                 sdmac->watermark_level |= sdmac->watermark_level;
762                 /* Address */
763                 sdmac->shp_addr = sdmac->per_address;
764         } else {
765                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
766         }
767
768         ret = sdma_load_context(sdmac);
769
770         return ret;
771 }
772
773 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
774                 unsigned int priority)
775 {
776         struct sdma_engine *sdma = sdmac->sdma;
777         int channel = sdmac->channel;
778
779         if (priority < MXC_SDMA_MIN_PRIORITY
780             || priority > MXC_SDMA_MAX_PRIORITY) {
781                 return -EINVAL;
782         }
783
784         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
785
786         return 0;
787 }
788
789 static int sdma_request_channel(struct sdma_channel *sdmac)
790 {
791         struct sdma_engine *sdma = sdmac->sdma;
792         int channel = sdmac->channel;
793         int ret = -EBUSY;
794
795         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
796         if (!sdmac->bd) {
797                 ret = -ENOMEM;
798                 goto out;
799         }
800
801         memset(sdmac->bd, 0, PAGE_SIZE);
802
803         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
804         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
805
806         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
807
808         init_completion(&sdmac->done);
809
810         sdmac->buf_tail = 0;
811
812         return 0;
813 out:
814
815         return ret;
816 }
817
818 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
819 {
820         return container_of(chan, struct sdma_channel, chan);
821 }
822
823 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
824 {
825         unsigned long flags;
826         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
827         dma_cookie_t cookie;
828
829         spin_lock_irqsave(&sdmac->lock, flags);
830
831         cookie = dma_cookie_assign(tx);
832
833         spin_unlock_irqrestore(&sdmac->lock, flags);
834
835         return cookie;
836 }
837
838 static int sdma_alloc_chan_resources(struct dma_chan *chan)
839 {
840         struct sdma_channel *sdmac = to_sdma_chan(chan);
841         struct imx_dma_data *data = chan->private;
842         int prio, ret;
843
844         if (!data)
845                 return -EINVAL;
846
847         switch (data->priority) {
848         case DMA_PRIO_HIGH:
849                 prio = 3;
850                 break;
851         case DMA_PRIO_MEDIUM:
852                 prio = 2;
853                 break;
854         case DMA_PRIO_LOW:
855         default:
856                 prio = 1;
857                 break;
858         }
859
860         sdmac->peripheral_type = data->peripheral_type;
861         sdmac->event_id0 = data->dma_request;
862
863         clk_enable(sdmac->sdma->clk);
864
865         ret = sdma_request_channel(sdmac);
866         if (ret)
867                 return ret;
868
869         ret = sdma_set_channel_priority(sdmac, prio);
870         if (ret)
871                 return ret;
872
873         dma_async_tx_descriptor_init(&sdmac->desc, chan);
874         sdmac->desc.tx_submit = sdma_tx_submit;
875         /* txd.flags will be overwritten in prep funcs */
876         sdmac->desc.flags = DMA_CTRL_ACK;
877
878         return 0;
879 }
880
881 static void sdma_free_chan_resources(struct dma_chan *chan)
882 {
883         struct sdma_channel *sdmac = to_sdma_chan(chan);
884         struct sdma_engine *sdma = sdmac->sdma;
885
886         sdma_disable_channel(sdmac);
887
888         if (sdmac->event_id0)
889                 sdma_event_disable(sdmac, sdmac->event_id0);
890         if (sdmac->event_id1)
891                 sdma_event_disable(sdmac, sdmac->event_id1);
892
893         sdmac->event_id0 = 0;
894         sdmac->event_id1 = 0;
895
896         sdma_set_channel_priority(sdmac, 0);
897
898         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
899
900         clk_disable(sdma->clk);
901 }
902
903 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
904                 struct dma_chan *chan, struct scatterlist *sgl,
905                 unsigned int sg_len, enum dma_transfer_direction direction,
906                 unsigned long flags)
907 {
908         struct sdma_channel *sdmac = to_sdma_chan(chan);
909         struct sdma_engine *sdma = sdmac->sdma;
910         int ret, i, count;
911         int channel = sdmac->channel;
912         struct scatterlist *sg;
913
914         if (sdmac->status == DMA_IN_PROGRESS)
915                 return NULL;
916         sdmac->status = DMA_IN_PROGRESS;
917
918         sdmac->flags = 0;
919
920         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
921                         sg_len, channel);
922
923         sdmac->direction = direction;
924         ret = sdma_load_context(sdmac);
925         if (ret)
926                 goto err_out;
927
928         if (sg_len > NUM_BD) {
929                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
930                                 channel, sg_len, NUM_BD);
931                 ret = -EINVAL;
932                 goto err_out;
933         }
934
935         sdmac->chn_count = 0;
936         for_each_sg(sgl, sg, sg_len, i) {
937                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
938                 int param;
939
940                 bd->buffer_addr = sg->dma_address;
941
942                 count = sg->length;
943
944                 if (count > 0xffff) {
945                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
946                                         channel, count, 0xffff);
947                         ret = -EINVAL;
948                         goto err_out;
949                 }
950
951                 bd->mode.count = count;
952                 sdmac->chn_count += count;
953
954                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
955                         ret =  -EINVAL;
956                         goto err_out;
957                 }
958
959                 switch (sdmac->word_size) {
960                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
961                         bd->mode.command = 0;
962                         if (count & 3 || sg->dma_address & 3)
963                                 return NULL;
964                         break;
965                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
966                         bd->mode.command = 2;
967                         if (count & 1 || sg->dma_address & 1)
968                                 return NULL;
969                         break;
970                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
971                         bd->mode.command = 1;
972                         break;
973                 default:
974                         return NULL;
975                 }
976
977                 param = BD_DONE | BD_EXTD | BD_CONT;
978
979                 if (i + 1 == sg_len) {
980                         param |= BD_INTR;
981                         param |= BD_LAST;
982                         param &= ~BD_CONT;
983                 }
984
985                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
986                                 i, count, sg->dma_address,
987                                 param & BD_WRAP ? "wrap" : "",
988                                 param & BD_INTR ? " intr" : "");
989
990                 bd->mode.status = param;
991         }
992
993         sdmac->num_bd = sg_len;
994         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
995
996         return &sdmac->desc;
997 err_out:
998         sdmac->status = DMA_ERROR;
999         return NULL;
1000 }
1001
1002 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1003                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1004                 size_t period_len, enum dma_transfer_direction direction)
1005 {
1006         struct sdma_channel *sdmac = to_sdma_chan(chan);
1007         struct sdma_engine *sdma = sdmac->sdma;
1008         int num_periods = buf_len / period_len;
1009         int channel = sdmac->channel;
1010         int ret, i = 0, buf = 0;
1011
1012         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1013
1014         if (sdmac->status == DMA_IN_PROGRESS)
1015                 return NULL;
1016
1017         sdmac->status = DMA_IN_PROGRESS;
1018
1019         sdmac->flags |= IMX_DMA_SG_LOOP;
1020         sdmac->direction = direction;
1021         ret = sdma_load_context(sdmac);
1022         if (ret)
1023                 goto err_out;
1024
1025         if (num_periods > NUM_BD) {
1026                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1027                                 channel, num_periods, NUM_BD);
1028                 goto err_out;
1029         }
1030
1031         if (period_len > 0xffff) {
1032                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1033                                 channel, period_len, 0xffff);
1034                 goto err_out;
1035         }
1036
1037         while (buf < buf_len) {
1038                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1039                 int param;
1040
1041                 bd->buffer_addr = dma_addr;
1042
1043                 bd->mode.count = period_len;
1044
1045                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1046                         goto err_out;
1047                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1048                         bd->mode.command = 0;
1049                 else
1050                         bd->mode.command = sdmac->word_size;
1051
1052                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1053                 if (i + 1 == num_periods)
1054                         param |= BD_WRAP;
1055
1056                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1057                                 i, period_len, dma_addr,
1058                                 param & BD_WRAP ? "wrap" : "",
1059                                 param & BD_INTR ? " intr" : "");
1060
1061                 bd->mode.status = param;
1062
1063                 dma_addr += period_len;
1064                 buf += period_len;
1065
1066                 i++;
1067         }
1068
1069         sdmac->num_bd = num_periods;
1070         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1071
1072         return &sdmac->desc;
1073 err_out:
1074         sdmac->status = DMA_ERROR;
1075         return NULL;
1076 }
1077
1078 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1079                 unsigned long arg)
1080 {
1081         struct sdma_channel *sdmac = to_sdma_chan(chan);
1082         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1083
1084         switch (cmd) {
1085         case DMA_TERMINATE_ALL:
1086                 sdma_disable_channel(sdmac);
1087                 return 0;
1088         case DMA_SLAVE_CONFIG:
1089                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1090                         sdmac->per_address = dmaengine_cfg->src_addr;
1091                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1092                                                 dmaengine_cfg->src_addr_width;
1093                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1094                 } else {
1095                         sdmac->per_address = dmaengine_cfg->dst_addr;
1096                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1097                                                 dmaengine_cfg->dst_addr_width;
1098                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1099                 }
1100                 sdmac->direction = dmaengine_cfg->direction;
1101                 return sdma_config_channel(sdmac);
1102         default:
1103                 return -ENOSYS;
1104         }
1105
1106         return -EINVAL;
1107 }
1108
1109 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1110                                             dma_cookie_t cookie,
1111                                             struct dma_tx_state *txstate)
1112 {
1113         struct sdma_channel *sdmac = to_sdma_chan(chan);
1114         dma_cookie_t last_used;
1115
1116         last_used = chan->cookie;
1117
1118         dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1119                         sdmac->chn_count - sdmac->chn_real_count);
1120
1121         return sdmac->status;
1122 }
1123
1124 static void sdma_issue_pending(struct dma_chan *chan)
1125 {
1126         struct sdma_channel *sdmac = to_sdma_chan(chan);
1127         struct sdma_engine *sdma = sdmac->sdma;
1128
1129         if (sdmac->status == DMA_IN_PROGRESS)
1130 }
1131
1132 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1133
1134 static void sdma_add_scripts(struct sdma_engine *sdma,
1135                 const struct sdma_script_start_addrs *addr)
1136 {
1137         s32 *addr_arr = (u32 *)addr;
1138         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1139         int i;
1140
1141         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1142                 if (addr_arr[i] > 0)
1143                         saddr_arr[i] = addr_arr[i];
1144 }
1145
1146 static void sdma_load_firmware(const struct firmware *fw, void *context)
1147 {
1148         struct sdma_engine *sdma = context;
1149         const struct sdma_firmware_header *header;
1150         const struct sdma_script_start_addrs *addr;
1151         unsigned short *ram_code;
1152
1153         if (!fw) {
1154                 dev_err(sdma->dev, "firmware not found\n");
1155                 return;
1156         }
1157
1158         if (fw->size < sizeof(*header))
1159                 goto err_firmware;
1160
1161         header = (struct sdma_firmware_header *)fw->data;
1162
1163         if (header->magic != SDMA_FIRMWARE_MAGIC)
1164                 goto err_firmware;
1165         if (header->ram_code_start + header->ram_code_size > fw->size)
1166                 goto err_firmware;
1167
1168         addr = (void *)header + header->script_addrs_start;
1169         ram_code = (void *)header + header->ram_code_start;
1170
1171         clk_enable(sdma->clk);
1172         /* download the RAM image for SDMA */
1173         sdma_load_script(sdma, ram_code,
1174                         header->ram_code_size,
1175                         addr->ram_code_start_addr);
1176         clk_disable(sdma->clk);
1177
1178         sdma_add_scripts(sdma, addr);
1179
1180         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1181                         header->version_major,
1182                         header->version_minor);
1183
1184 err_firmware:
1185         release_firmware(fw);
1186 }
1187
1188 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1189                 const char *fw_name)
1190 {
1191         int ret;
1192
1193         ret = request_firmware_nowait(THIS_MODULE,
1194                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1195                         GFP_KERNEL, sdma, sdma_load_firmware);
1196
1197         return ret;
1198 }
1199
1200 static int __init sdma_init(struct sdma_engine *sdma)
1201 {
1202         int i, ret;
1203         dma_addr_t ccb_phys;
1204
1205         switch (sdma->devtype) {
1206         case IMX31_SDMA:
1207                 sdma->num_events = 32;
1208                 break;
1209         case IMX35_SDMA:
1210                 sdma->num_events = 48;
1211                 break;
1212         default:
1213                 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1214                         sdma->devtype);
1215                 return -ENODEV;
1216         }
1217
1218         clk_enable(sdma->clk);
1219
1220         /* Be sure SDMA has not started yet */
1221         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1222
1223         sdma->channel_control = dma_alloc_coherent(NULL,
1224                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1225                         sizeof(struct sdma_context_data),
1226                         &ccb_phys, GFP_KERNEL);
1227
1228         if (!sdma->channel_control) {
1229                 ret = -ENOMEM;
1230                 goto err_dma_alloc;
1231         }
1232
1233         sdma->context = (void *)sdma->channel_control +
1234                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1235         sdma->context_phys = ccb_phys +
1236                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1237
1238         /* Zero-out the CCB structures array just allocated */
1239         memset(sdma->channel_control, 0,
1240                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1241
1242         /* disable all channels */
1243         for (i = 0; i < sdma->num_events; i++)
1244                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1245
1246         /* All channels have priority 0 */
1247         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1248                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1249
1250         ret = sdma_request_channel(&sdma->channel[0]);
1251         if (ret)
1252                 goto err_dma_alloc;
1253
1254         sdma_config_ownership(&sdma->channel[0], false, true, false);
1255
1256         /* Set Command Channel (Channel Zero) */
1257         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1258
1259         /* Set bits of CONFIG register but with static context switching */
1260         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1261         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1262
1263         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1264
1265         /* Set bits of CONFIG register with given context switching mode */
1266         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1267
1268         /* Initializes channel's priorities */
1269         sdma_set_channel_priority(&sdma->channel[0], 7);
1270
1271         clk_disable(sdma->clk);
1272
1273         return 0;
1274
1275 err_dma_alloc:
1276         clk_disable(sdma->clk);
1277         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1278         return ret;
1279 }
1280
1281 static int __init sdma_probe(struct platform_device *pdev)
1282 {
1283         const struct of_device_id *of_id =
1284                         of_match_device(sdma_dt_ids, &pdev->dev);
1285         struct device_node *np = pdev->dev.of_node;
1286         const char *fw_name;
1287         int ret;
1288         int irq;
1289         struct resource *iores;
1290         struct sdma_platform_data *pdata = pdev->dev.platform_data;
1291         int i;
1292         struct sdma_engine *sdma;
1293         s32 *saddr_arr;
1294
1295         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1296         if (!sdma)
1297                 return -ENOMEM;
1298
1299         mutex_init(&sdma->channel_0_lock);
1300
1301         sdma->dev = &pdev->dev;
1302
1303         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1304         irq = platform_get_irq(pdev, 0);
1305         if (!iores || irq < 0) {
1306                 ret = -EINVAL;
1307                 goto err_irq;
1308         }
1309
1310         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1311                 ret = -EBUSY;
1312                 goto err_request_region;
1313         }
1314
1315         sdma->clk = clk_get(&pdev->dev, NULL);
1316         if (IS_ERR(sdma->clk)) {
1317                 ret = PTR_ERR(sdma->clk);
1318                 goto err_clk;
1319         }
1320
1321         sdma->regs = ioremap(iores->start, resource_size(iores));
1322         if (!sdma->regs) {
1323                 ret = -ENOMEM;
1324                 goto err_ioremap;
1325         }
1326
1327         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1328         if (ret)
1329                 goto err_request_irq;
1330
1331         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1332         if (!sdma->script_addrs) {
1333                 ret = -ENOMEM;
1334                 goto err_alloc;
1335         }
1336
1337         /* initially no scripts available */
1338         saddr_arr = (s32 *)sdma->script_addrs;
1339         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1340                 saddr_arr[i] = -EINVAL;
1341
1342         if (of_id)
1343                 pdev->id_entry = of_id->data;
1344         sdma->devtype = pdev->id_entry->driver_data;
1345
1346         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1347         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1348
1349         INIT_LIST_HEAD(&sdma->dma_device.channels);
1350         /* Initialize channel parameters */
1351         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1352                 struct sdma_channel *sdmac = &sdma->channel[i];
1353
1354                 sdmac->sdma = sdma;
1355                 spin_lock_init(&sdmac->lock);
1356
1357                 sdmac->chan.device = &sdma->dma_device;
1358                 dma_cookie_init(&sdmac->chan);
1359                 sdmac->channel = i;
1360
1361                 /*
1362                  * Add the channel to the DMAC list. Do not add channel 0 though
1363                  * because we need it internally in the SDMA driver. This also means
1364                  * that channel 0 in dmaengine counting matches sdma channel 1.
1365                  */
1366                 if (i)
1367                         list_add_tail(&sdmac->chan.device_node,
1368                                         &sdma->dma_device.channels);
1369         }
1370
1371         ret = sdma_init(sdma);
1372         if (ret)
1373                 goto err_init;
1374
1375         if (pdata && pdata->script_addrs)
1376                 sdma_add_scripts(sdma, pdata->script_addrs);
1377
1378         if (pdata) {
1379                 sdma_get_firmware(sdma, pdata->fw_name);
1380         } else {
1381                 /*
1382                  * Because that device tree does not encode ROM script address,
1383                  * the RAM script in firmware is mandatory for device tree
1384                  * probe, otherwise it fails.
1385                  */
1386                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1387                                               &fw_name);
1388                 if (ret) {
1389                         dev_err(&pdev->dev, "failed to get firmware name\n");
1390                         goto err_init;
1391                 }
1392
1393                 ret = sdma_get_firmware(sdma, fw_name);
1394                 if (ret) {
1395                         dev_err(&pdev->dev, "failed to get firmware\n");
1396                         goto err_init;
1397                 }
1398         }
1399
1400         sdma->dma_device.dev = &pdev->dev;
1401
1402         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1403         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1404         sdma->dma_device.device_tx_status = sdma_tx_status;
1405         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1406         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1407         sdma->dma_device.device_control = sdma_control;
1408         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1409         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1410         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1411
1412         ret = dma_async_device_register(&sdma->dma_device);
1413         if (ret) {
1414                 dev_err(&pdev->dev, "unable to register\n");
1415                 goto err_init;
1416         }
1417
1418         dev_info(sdma->dev, "initialized\n");
1419
1420         return 0;
1421
1422 err_init:
1423         kfree(sdma->script_addrs);
1424 err_alloc:
1425         free_irq(irq, sdma);
1426 err_request_irq:
1427         iounmap(sdma->regs);
1428 err_ioremap:
1429         clk_put(sdma->clk);
1430 err_clk:
1431         release_mem_region(iores->start, resource_size(iores));
1432 err_request_region:
1433 err_irq:
1434         kfree(sdma);
1435         return ret;
1436 }
1437
1438 static int __exit sdma_remove(struct platform_device *pdev)
1439 {
1440         return -EBUSY;
1441 }
1442
1443 static struct platform_driver sdma_driver = {
1444         .driver         = {
1445                 .name   = "imx-sdma",
1446                 .of_match_table = sdma_dt_ids,
1447         },
1448         .id_table       = sdma_devtypes,
1449         .remove         = __exit_p(sdma_remove),
1450 };
1451
1452 static int __init sdma_module_init(void)
1453 {
1454         return platform_driver_probe(&sdma_driver, sdma_probe);
1455 }
1456 module_init(sdma_module_init);
1457
1458 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1459 MODULE_DESCRIPTION("i.MX SDMA driver");
1460 MODULE_LICENSE("GPL");