dmaengine: move last completed cookie into generic dma_chan structure
[pandora-kernel.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/wait.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/module.h>
40
41 #include <asm/irq.h>
42 #include <mach/sdma.h>
43 #include <mach/dma.h>
44 #include <mach/hardware.h>
45
46 /* SDMA registers */
47 #define SDMA_H_C0PTR            0x000
48 #define SDMA_H_INTR             0x004
49 #define SDMA_H_STATSTOP         0x008
50 #define SDMA_H_START            0x00c
51 #define SDMA_H_EVTOVR           0x010
52 #define SDMA_H_DSPOVR           0x014
53 #define SDMA_H_HOSTOVR          0x018
54 #define SDMA_H_EVTPEND          0x01c
55 #define SDMA_H_DSPENBL          0x020
56 #define SDMA_H_RESET            0x024
57 #define SDMA_H_EVTERR           0x028
58 #define SDMA_H_INTRMSK          0x02c
59 #define SDMA_H_PSW              0x030
60 #define SDMA_H_EVTERRDBG        0x034
61 #define SDMA_H_CONFIG           0x038
62 #define SDMA_ONCE_ENB           0x040
63 #define SDMA_ONCE_DATA          0x044
64 #define SDMA_ONCE_INSTR         0x048
65 #define SDMA_ONCE_STAT          0x04c
66 #define SDMA_ONCE_CMD           0x050
67 #define SDMA_EVT_MIRROR         0x054
68 #define SDMA_ILLINSTADDR        0x058
69 #define SDMA_CHN0ADDR           0x05c
70 #define SDMA_ONCE_RTB           0x060
71 #define SDMA_XTRIG_CONF1        0x070
72 #define SDMA_XTRIG_CONF2        0x074
73 #define SDMA_CHNENBL0_IMX35     0x200
74 #define SDMA_CHNENBL0_IMX31     0x080
75 #define SDMA_CHNPRI_0           0x100
76
77 /*
78  * Buffer descriptor status values.
79  */
80 #define BD_DONE  0x01
81 #define BD_WRAP  0x02
82 #define BD_CONT  0x04
83 #define BD_INTR  0x08
84 #define BD_RROR  0x10
85 #define BD_LAST  0x20
86 #define BD_EXTD  0x80
87
88 /*
89  * Data Node descriptor status values.
90  */
91 #define DND_END_OF_FRAME  0x80
92 #define DND_END_OF_XFER   0x40
93 #define DND_DONE          0x20
94 #define DND_UNUSED        0x01
95
96 /*
97  * IPCV2 descriptor status values.
98  */
99 #define BD_IPCV2_END_OF_FRAME  0x40
100
101 #define IPCV2_MAX_NODES        50
102 /*
103  * Error bit set in the CCB status field by the SDMA,
104  * in setbd routine, in case of a transfer error
105  */
106 #define DATA_ERROR  0x10000000
107
108 /*
109  * Buffer descriptor commands.
110  */
111 #define C0_ADDR             0x01
112 #define C0_LOAD             0x02
113 #define C0_DUMP             0x03
114 #define C0_SETCTX           0x07
115 #define C0_GETCTX           0x03
116 #define C0_SETDM            0x01
117 #define C0_SETPM            0x04
118 #define C0_GETDM            0x02
119 #define C0_GETPM            0x08
120 /*
121  * Change endianness indicator in the BD command field
122  */
123 #define CHANGE_ENDIANNESS   0x80
124
125 /*
126  * Mode/Count of data node descriptors - IPCv2
127  */
128 struct sdma_mode_count {
129         u32 count   : 16; /* size of the buffer pointed by this BD */
130         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
131         u32 command :  8; /* command mostlky used for channel 0 */
132 };
133
134 /*
135  * Buffer descriptor
136  */
137 struct sdma_buffer_descriptor {
138         struct sdma_mode_count  mode;
139         u32 buffer_addr;        /* address of the buffer described */
140         u32 ext_buffer_addr;    /* extended buffer address */
141 } __attribute__ ((packed));
142
143 /**
144  * struct sdma_channel_control - Channel control Block
145  *
146  * @current_bd_ptr      current buffer descriptor processed
147  * @base_bd_ptr         first element of buffer descriptor array
148  * @unused              padding. The SDMA engine expects an array of 128 byte
149  *                      control blocks
150  */
151 struct sdma_channel_control {
152         u32 current_bd_ptr;
153         u32 base_bd_ptr;
154         u32 unused[2];
155 } __attribute__ ((packed));
156
157 /**
158  * struct sdma_state_registers - SDMA context for a channel
159  *
160  * @pc:         program counter
161  * @t:          test bit: status of arithmetic & test instruction
162  * @rpc:        return program counter
163  * @sf:         source fault while loading data
164  * @spc:        loop start program counter
165  * @df:         destination fault while storing data
166  * @epc:        loop end program counter
167  * @lm:         loop mode
168  */
169 struct sdma_state_registers {
170         u32 pc     :14;
171         u32 unused1: 1;
172         u32 t      : 1;
173         u32 rpc    :14;
174         u32 unused0: 1;
175         u32 sf     : 1;
176         u32 spc    :14;
177         u32 unused2: 1;
178         u32 df     : 1;
179         u32 epc    :14;
180         u32 lm     : 2;
181 } __attribute__ ((packed));
182
183 /**
184  * struct sdma_context_data - sdma context specific to a channel
185  *
186  * @channel_state:      channel state bits
187  * @gReg:               general registers
188  * @mda:                burst dma destination address register
189  * @msa:                burst dma source address register
190  * @ms:                 burst dma status register
191  * @md:                 burst dma data register
192  * @pda:                peripheral dma destination address register
193  * @psa:                peripheral dma source address register
194  * @ps:                 peripheral dma status register
195  * @pd:                 peripheral dma data register
196  * @ca:                 CRC polynomial register
197  * @cs:                 CRC accumulator register
198  * @dda:                dedicated core destination address register
199  * @dsa:                dedicated core source address register
200  * @ds:                 dedicated core status register
201  * @dd:                 dedicated core data register
202  */
203 struct sdma_context_data {
204         struct sdma_state_registers  channel_state;
205         u32  gReg[8];
206         u32  mda;
207         u32  msa;
208         u32  ms;
209         u32  md;
210         u32  pda;
211         u32  psa;
212         u32  ps;
213         u32  pd;
214         u32  ca;
215         u32  cs;
216         u32  dda;
217         u32  dsa;
218         u32  ds;
219         u32  dd;
220         u32  scratch0;
221         u32  scratch1;
222         u32  scratch2;
223         u32  scratch3;
224         u32  scratch4;
225         u32  scratch5;
226         u32  scratch6;
227         u32  scratch7;
228 } __attribute__ ((packed));
229
230 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
231
232 struct sdma_engine;
233
234 /**
235  * struct sdma_channel - housekeeping for a SDMA channel
236  *
237  * @sdma                pointer to the SDMA engine for this channel
238  * @channel             the channel number, matches dmaengine chan_id + 1
239  * @direction           transfer type. Needed for setting SDMA script
240  * @peripheral_type     Peripheral type. Needed for setting SDMA script
241  * @event_id0           aka dma request line
242  * @event_id1           for channels that use 2 events
243  * @word_size           peripheral access size
244  * @buf_tail            ID of the buffer that was processed
245  * @done                channel completion
246  * @num_bd              max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249         struct sdma_engine              *sdma;
250         unsigned int                    channel;
251         enum dma_transfer_direction             direction;
252         enum sdma_peripheral_type       peripheral_type;
253         unsigned int                    event_id0;
254         unsigned int                    event_id1;
255         enum dma_slave_buswidth         word_size;
256         unsigned int                    buf_tail;
257         struct completion               done;
258         unsigned int                    num_bd;
259         struct sdma_buffer_descriptor   *bd;
260         dma_addr_t                      bd_phys;
261         unsigned int                    pc_from_device, pc_to_device;
262         unsigned long                   flags;
263         dma_addr_t                      per_address;
264         unsigned long                   event_mask[2];
265         unsigned long                   watermark_level;
266         u32                             shp_addr, per_addr;
267         struct dma_chan                 chan;
268         spinlock_t                      lock;
269         struct dma_async_tx_descriptor  desc;
270         enum dma_status                 status;
271         unsigned int                    chn_count;
272         unsigned int                    chn_real_count;
273 };
274
275 #define IMX_DMA_SG_LOOP         BIT(0)
276
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic               "SDMA"
288  * @version_major       increased whenever layout of struct sdma_script_start_addrs
289  *                      changes.
290  * @version_minor       firmware minor version (for binary compatible changes)
291  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs    Number of script addresses in this image
293  * @ram_code_start      offset of SDMA ram image in this firmware image
294  * @ram_code_size       size of SDMA ram image
295  * @script_addrs        Stores the start address of the SDMA scripts
296  *                      (in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299         u32     magic;
300         u32     version_major;
301         u32     version_minor;
302         u32     script_addrs_start;
303         u32     num_script_addrs;
304         u32     ram_code_start;
305         u32     ram_code_size;
306 };
307
308 enum sdma_devtype {
309         IMX31_SDMA,     /* runs on i.mx31 */
310         IMX35_SDMA,     /* runs on i.mx35 and later */
311 };
312
313 struct sdma_engine {
314         struct device                   *dev;
315         struct device_dma_parameters    dma_parms;
316         struct sdma_channel             channel[MAX_DMA_CHANNELS];
317         struct sdma_channel_control     *channel_control;
318         void __iomem                    *regs;
319         enum sdma_devtype               devtype;
320         unsigned int                    num_events;
321         struct sdma_context_data        *context;
322         dma_addr_t                      context_phys;
323         struct dma_device               dma_device;
324         struct clk                      *clk;
325         struct mutex                    channel_0_lock;
326         struct sdma_script_start_addrs  *script_addrs;
327 };
328
329 static struct platform_device_id sdma_devtypes[] = {
330         {
331                 .name = "imx31-sdma",
332                 .driver_data = IMX31_SDMA,
333         }, {
334                 .name = "imx35-sdma",
335                 .driver_data = IMX35_SDMA,
336         }, {
337                 /* sentinel */
338         }
339 };
340 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
341
342 static const struct of_device_id sdma_dt_ids[] = {
343         { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
344         { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
345         { /* sentinel */ }
346 };
347 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
348
349 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
350 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
351 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
352 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
353
354 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
355 {
356         u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
357                                                       SDMA_CHNENBL0_IMX35);
358         return chnenbl0 + event * 4;
359 }
360
361 static int sdma_config_ownership(struct sdma_channel *sdmac,
362                 bool event_override, bool mcu_override, bool dsp_override)
363 {
364         struct sdma_engine *sdma = sdmac->sdma;
365         int channel = sdmac->channel;
366         unsigned long evt, mcu, dsp;
367
368         if (event_override && mcu_override && dsp_override)
369                 return -EINVAL;
370
371         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
372         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
373         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
374
375         if (dsp_override)
376                 __clear_bit(channel, &dsp);
377         else
378                 __set_bit(channel, &dsp);
379
380         if (event_override)
381                 __clear_bit(channel, &evt);
382         else
383                 __set_bit(channel, &evt);
384
385         if (mcu_override)
386                 __clear_bit(channel, &mcu);
387         else
388                 __set_bit(channel, &mcu);
389
390         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
391         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
392         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
393
394         return 0;
395 }
396
397 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
398 {
399         writel(BIT(channel), sdma->regs + SDMA_H_START);
400 }
401
402 /*
403  * sdma_run_channel - run a channel and wait till it's done
404  */
405 static int sdma_run_channel(struct sdma_channel *sdmac)
406 {
407         struct sdma_engine *sdma = sdmac->sdma;
408         int channel = sdmac->channel;
409         int ret;
410
411         init_completion(&sdmac->done);
412
413         sdma_enable_channel(sdma, channel);
414
415         ret = wait_for_completion_timeout(&sdmac->done, HZ);
416
417         return ret ? 0 : -ETIMEDOUT;
418 }
419
420 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
421                 u32 address)
422 {
423         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
424         void *buf_virt;
425         dma_addr_t buf_phys;
426         int ret;
427
428         mutex_lock(&sdma->channel_0_lock);
429
430         buf_virt = dma_alloc_coherent(NULL,
431                         size,
432                         &buf_phys, GFP_KERNEL);
433         if (!buf_virt) {
434                 ret = -ENOMEM;
435                 goto err_out;
436         }
437
438         bd0->mode.command = C0_SETPM;
439         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
440         bd0->mode.count = size / 2;
441         bd0->buffer_addr = buf_phys;
442         bd0->ext_buffer_addr = address;
443
444         memcpy(buf_virt, buf, size);
445
446         ret = sdma_run_channel(&sdma->channel[0]);
447
448         dma_free_coherent(NULL, size, buf_virt, buf_phys);
449
450 err_out:
451         mutex_unlock(&sdma->channel_0_lock);
452
453         return ret;
454 }
455
456 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
457 {
458         struct sdma_engine *sdma = sdmac->sdma;
459         int channel = sdmac->channel;
460         unsigned long val;
461         u32 chnenbl = chnenbl_ofs(sdma, event);
462
463         val = readl_relaxed(sdma->regs + chnenbl);
464         __set_bit(channel, &val);
465         writel_relaxed(val, sdma->regs + chnenbl);
466 }
467
468 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
469 {
470         struct sdma_engine *sdma = sdmac->sdma;
471         int channel = sdmac->channel;
472         u32 chnenbl = chnenbl_ofs(sdma, event);
473         unsigned long val;
474
475         val = readl_relaxed(sdma->regs + chnenbl);
476         __clear_bit(channel, &val);
477         writel_relaxed(val, sdma->regs + chnenbl);
478 }
479
480 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
481 {
482         struct sdma_buffer_descriptor *bd;
483
484         /*
485          * loop mode. Iterate over descriptors, re-setup them and
486          * call callback function.
487          */
488         while (1) {
489                 bd = &sdmac->bd[sdmac->buf_tail];
490
491                 if (bd->mode.status & BD_DONE)
492                         break;
493
494                 if (bd->mode.status & BD_RROR)
495                         sdmac->status = DMA_ERROR;
496                 else
497                         sdmac->status = DMA_IN_PROGRESS;
498
499                 bd->mode.status |= BD_DONE;
500                 sdmac->buf_tail++;
501                 sdmac->buf_tail %= sdmac->num_bd;
502
503                 if (sdmac->desc.callback)
504                         sdmac->desc.callback(sdmac->desc.callback_param);
505         }
506 }
507
508 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
509 {
510         struct sdma_buffer_descriptor *bd;
511         int i, error = 0;
512
513         sdmac->chn_real_count = 0;
514         /*
515          * non loop mode. Iterate over all descriptors, collect
516          * errors and call callback function
517          */
518         for (i = 0; i < sdmac->num_bd; i++) {
519                 bd = &sdmac->bd[i];
520
521                  if (bd->mode.status & (BD_DONE | BD_RROR))
522                         error = -EIO;
523                  sdmac->chn_real_count += bd->mode.count;
524         }
525
526         if (error)
527                 sdmac->status = DMA_ERROR;
528         else
529                 sdmac->status = DMA_SUCCESS;
530
531         sdmac->chan.completed_cookie = sdmac->desc.cookie;
532         if (sdmac->desc.callback)
533                 sdmac->desc.callback(sdmac->desc.callback_param);
534 }
535
536 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
537 {
538         complete(&sdmac->done);
539
540         /* not interested in channel 0 interrupts */
541         if (sdmac->channel == 0)
542                 return;
543
544         if (sdmac->flags & IMX_DMA_SG_LOOP)
545                 sdma_handle_channel_loop(sdmac);
546         else
547                 mxc_sdma_handle_channel_normal(sdmac);
548 }
549
550 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
551 {
552         struct sdma_engine *sdma = dev_id;
553         unsigned long stat;
554
555         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
556         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
557
558         while (stat) {
559                 int channel = fls(stat) - 1;
560                 struct sdma_channel *sdmac = &sdma->channel[channel];
561
562                 mxc_sdma_handle_channel(sdmac);
563
564                 __clear_bit(channel, &stat);
565         }
566
567         return IRQ_HANDLED;
568 }
569
570 /*
571  * sets the pc of SDMA script according to the peripheral type
572  */
573 static void sdma_get_pc(struct sdma_channel *sdmac,
574                 enum sdma_peripheral_type peripheral_type)
575 {
576         struct sdma_engine *sdma = sdmac->sdma;
577         int per_2_emi = 0, emi_2_per = 0;
578         /*
579          * These are needed once we start to support transfers between
580          * two peripherals or memory-to-memory transfers
581          */
582         int per_2_per = 0, emi_2_emi = 0;
583
584         sdmac->pc_from_device = 0;
585         sdmac->pc_to_device = 0;
586
587         switch (peripheral_type) {
588         case IMX_DMATYPE_MEMORY:
589                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
590                 break;
591         case IMX_DMATYPE_DSP:
592                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
593                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
594                 break;
595         case IMX_DMATYPE_FIRI:
596                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
597                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
598                 break;
599         case IMX_DMATYPE_UART:
600                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
601                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
602                 break;
603         case IMX_DMATYPE_UART_SP:
604                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
605                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
606                 break;
607         case IMX_DMATYPE_ATA:
608                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
609                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
610                 break;
611         case IMX_DMATYPE_CSPI:
612         case IMX_DMATYPE_EXT:
613         case IMX_DMATYPE_SSI:
614                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
615                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
616                 break;
617         case IMX_DMATYPE_SSI_SP:
618         case IMX_DMATYPE_MMC:
619         case IMX_DMATYPE_SDHC:
620         case IMX_DMATYPE_CSPI_SP:
621         case IMX_DMATYPE_ESAI:
622         case IMX_DMATYPE_MSHC_SP:
623                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
624                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
625                 break;
626         case IMX_DMATYPE_ASRC:
627                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
628                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
629                 per_2_per = sdma->script_addrs->per_2_per_addr;
630                 break;
631         case IMX_DMATYPE_MSHC:
632                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
633                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
634                 break;
635         case IMX_DMATYPE_CCM:
636                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
637                 break;
638         case IMX_DMATYPE_SPDIF:
639                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
640                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
641                 break;
642         case IMX_DMATYPE_IPU_MEMORY:
643                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
644                 break;
645         default:
646                 break;
647         }
648
649         sdmac->pc_from_device = per_2_emi;
650         sdmac->pc_to_device = emi_2_per;
651 }
652
653 static int sdma_load_context(struct sdma_channel *sdmac)
654 {
655         struct sdma_engine *sdma = sdmac->sdma;
656         int channel = sdmac->channel;
657         int load_address;
658         struct sdma_context_data *context = sdma->context;
659         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
660         int ret;
661
662         if (sdmac->direction == DMA_DEV_TO_MEM) {
663                 load_address = sdmac->pc_from_device;
664         } else {
665                 load_address = sdmac->pc_to_device;
666         }
667
668         if (load_address < 0)
669                 return load_address;
670
671         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
672         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
673         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
674         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
675         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
676         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
677
678         mutex_lock(&sdma->channel_0_lock);
679
680         memset(context, 0, sizeof(*context));
681         context->channel_state.pc = load_address;
682
683         /* Send by context the event mask,base address for peripheral
684          * and watermark level
685          */
686         context->gReg[0] = sdmac->event_mask[1];
687         context->gReg[1] = sdmac->event_mask[0];
688         context->gReg[2] = sdmac->per_addr;
689         context->gReg[6] = sdmac->shp_addr;
690         context->gReg[7] = sdmac->watermark_level;
691
692         bd0->mode.command = C0_SETDM;
693         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
694         bd0->mode.count = sizeof(*context) / 4;
695         bd0->buffer_addr = sdma->context_phys;
696         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
697
698         ret = sdma_run_channel(&sdma->channel[0]);
699
700         mutex_unlock(&sdma->channel_0_lock);
701
702         return ret;
703 }
704
705 static void sdma_disable_channel(struct sdma_channel *sdmac)
706 {
707         struct sdma_engine *sdma = sdmac->sdma;
708         int channel = sdmac->channel;
709
710         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
711         sdmac->status = DMA_ERROR;
712 }
713
714 static int sdma_config_channel(struct sdma_channel *sdmac)
715 {
716         int ret;
717
718         sdma_disable_channel(sdmac);
719
720         sdmac->event_mask[0] = 0;
721         sdmac->event_mask[1] = 0;
722         sdmac->shp_addr = 0;
723         sdmac->per_addr = 0;
724
725         if (sdmac->event_id0) {
726                 if (sdmac->event_id0 >= sdmac->sdma->num_events)
727                         return -EINVAL;
728                 sdma_event_enable(sdmac, sdmac->event_id0);
729         }
730
731         switch (sdmac->peripheral_type) {
732         case IMX_DMATYPE_DSP:
733                 sdma_config_ownership(sdmac, false, true, true);
734                 break;
735         case IMX_DMATYPE_MEMORY:
736                 sdma_config_ownership(sdmac, false, true, false);
737                 break;
738         default:
739                 sdma_config_ownership(sdmac, true, true, false);
740                 break;
741         }
742
743         sdma_get_pc(sdmac, sdmac->peripheral_type);
744
745         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
746                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
747                 /* Handle multiple event channels differently */
748                 if (sdmac->event_id1) {
749                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
750                         if (sdmac->event_id1 > 31)
751                                 __set_bit(31, &sdmac->watermark_level);
752                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
753                         if (sdmac->event_id0 > 31)
754                                 __set_bit(30, &sdmac->watermark_level);
755                 } else {
756                         __set_bit(sdmac->event_id0, sdmac->event_mask);
757                 }
758                 /* Watermark Level */
759                 sdmac->watermark_level |= sdmac->watermark_level;
760                 /* Address */
761                 sdmac->shp_addr = sdmac->per_address;
762         } else {
763                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
764         }
765
766         ret = sdma_load_context(sdmac);
767
768         return ret;
769 }
770
771 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
772                 unsigned int priority)
773 {
774         struct sdma_engine *sdma = sdmac->sdma;
775         int channel = sdmac->channel;
776
777         if (priority < MXC_SDMA_MIN_PRIORITY
778             || priority > MXC_SDMA_MAX_PRIORITY) {
779                 return -EINVAL;
780         }
781
782         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
783
784         return 0;
785 }
786
787 static int sdma_request_channel(struct sdma_channel *sdmac)
788 {
789         struct sdma_engine *sdma = sdmac->sdma;
790         int channel = sdmac->channel;
791         int ret = -EBUSY;
792
793         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
794         if (!sdmac->bd) {
795                 ret = -ENOMEM;
796                 goto out;
797         }
798
799         memset(sdmac->bd, 0, PAGE_SIZE);
800
801         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
802         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
803
804         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
805
806         init_completion(&sdmac->done);
807
808         sdmac->buf_tail = 0;
809
810         return 0;
811 out:
812
813         return ret;
814 }
815
816 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
817 {
818         dma_cookie_t cookie = sdmac->chan.cookie;
819
820         if (++cookie < 0)
821                 cookie = 1;
822
823         sdmac->chan.cookie = cookie;
824         sdmac->desc.cookie = cookie;
825
826         return cookie;
827 }
828
829 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
830 {
831         return container_of(chan, struct sdma_channel, chan);
832 }
833
834 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
835 {
836         unsigned long flags;
837         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
838         dma_cookie_t cookie;
839
840         spin_lock_irqsave(&sdmac->lock, flags);
841
842         cookie = sdma_assign_cookie(sdmac);
843
844         spin_unlock_irqrestore(&sdmac->lock, flags);
845
846         return cookie;
847 }
848
849 static int sdma_alloc_chan_resources(struct dma_chan *chan)
850 {
851         struct sdma_channel *sdmac = to_sdma_chan(chan);
852         struct imx_dma_data *data = chan->private;
853         int prio, ret;
854
855         if (!data)
856                 return -EINVAL;
857
858         switch (data->priority) {
859         case DMA_PRIO_HIGH:
860                 prio = 3;
861                 break;
862         case DMA_PRIO_MEDIUM:
863                 prio = 2;
864                 break;
865         case DMA_PRIO_LOW:
866         default:
867                 prio = 1;
868                 break;
869         }
870
871         sdmac->peripheral_type = data->peripheral_type;
872         sdmac->event_id0 = data->dma_request;
873
874         clk_enable(sdmac->sdma->clk);
875
876         ret = sdma_request_channel(sdmac);
877         if (ret)
878                 return ret;
879
880         ret = sdma_set_channel_priority(sdmac, prio);
881         if (ret)
882                 return ret;
883
884         dma_async_tx_descriptor_init(&sdmac->desc, chan);
885         sdmac->desc.tx_submit = sdma_tx_submit;
886         /* txd.flags will be overwritten in prep funcs */
887         sdmac->desc.flags = DMA_CTRL_ACK;
888
889         return 0;
890 }
891
892 static void sdma_free_chan_resources(struct dma_chan *chan)
893 {
894         struct sdma_channel *sdmac = to_sdma_chan(chan);
895         struct sdma_engine *sdma = sdmac->sdma;
896
897         sdma_disable_channel(sdmac);
898
899         if (sdmac->event_id0)
900                 sdma_event_disable(sdmac, sdmac->event_id0);
901         if (sdmac->event_id1)
902                 sdma_event_disable(sdmac, sdmac->event_id1);
903
904         sdmac->event_id0 = 0;
905         sdmac->event_id1 = 0;
906
907         sdma_set_channel_priority(sdmac, 0);
908
909         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
910
911         clk_disable(sdma->clk);
912 }
913
914 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
915                 struct dma_chan *chan, struct scatterlist *sgl,
916                 unsigned int sg_len, enum dma_transfer_direction direction,
917                 unsigned long flags)
918 {
919         struct sdma_channel *sdmac = to_sdma_chan(chan);
920         struct sdma_engine *sdma = sdmac->sdma;
921         int ret, i, count;
922         int channel = sdmac->channel;
923         struct scatterlist *sg;
924
925         if (sdmac->status == DMA_IN_PROGRESS)
926                 return NULL;
927         sdmac->status = DMA_IN_PROGRESS;
928
929         sdmac->flags = 0;
930
931         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
932                         sg_len, channel);
933
934         sdmac->direction = direction;
935         ret = sdma_load_context(sdmac);
936         if (ret)
937                 goto err_out;
938
939         if (sg_len > NUM_BD) {
940                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
941                                 channel, sg_len, NUM_BD);
942                 ret = -EINVAL;
943                 goto err_out;
944         }
945
946         sdmac->chn_count = 0;
947         for_each_sg(sgl, sg, sg_len, i) {
948                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
949                 int param;
950
951                 bd->buffer_addr = sg->dma_address;
952
953                 count = sg->length;
954
955                 if (count > 0xffff) {
956                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
957                                         channel, count, 0xffff);
958                         ret = -EINVAL;
959                         goto err_out;
960                 }
961
962                 bd->mode.count = count;
963                 sdmac->chn_count += count;
964
965                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
966                         ret =  -EINVAL;
967                         goto err_out;
968                 }
969
970                 switch (sdmac->word_size) {
971                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
972                         bd->mode.command = 0;
973                         if (count & 3 || sg->dma_address & 3)
974                                 return NULL;
975                         break;
976                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
977                         bd->mode.command = 2;
978                         if (count & 1 || sg->dma_address & 1)
979                                 return NULL;
980                         break;
981                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
982                         bd->mode.command = 1;
983                         break;
984                 default:
985                         return NULL;
986                 }
987
988                 param = BD_DONE | BD_EXTD | BD_CONT;
989
990                 if (i + 1 == sg_len) {
991                         param |= BD_INTR;
992                         param |= BD_LAST;
993                         param &= ~BD_CONT;
994                 }
995
996                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
997                                 i, count, sg->dma_address,
998                                 param & BD_WRAP ? "wrap" : "",
999                                 param & BD_INTR ? " intr" : "");
1000
1001                 bd->mode.status = param;
1002         }
1003
1004         sdmac->num_bd = sg_len;
1005         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1006
1007         return &sdmac->desc;
1008 err_out:
1009         sdmac->status = DMA_ERROR;
1010         return NULL;
1011 }
1012
1013 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1014                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1015                 size_t period_len, enum dma_transfer_direction direction)
1016 {
1017         struct sdma_channel *sdmac = to_sdma_chan(chan);
1018         struct sdma_engine *sdma = sdmac->sdma;
1019         int num_periods = buf_len / period_len;
1020         int channel = sdmac->channel;
1021         int ret, i = 0, buf = 0;
1022
1023         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1024
1025         if (sdmac->status == DMA_IN_PROGRESS)
1026                 return NULL;
1027
1028         sdmac->status = DMA_IN_PROGRESS;
1029
1030         sdmac->flags |= IMX_DMA_SG_LOOP;
1031         sdmac->direction = direction;
1032         ret = sdma_load_context(sdmac);
1033         if (ret)
1034                 goto err_out;
1035
1036         if (num_periods > NUM_BD) {
1037                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1038                                 channel, num_periods, NUM_BD);
1039                 goto err_out;
1040         }
1041
1042         if (period_len > 0xffff) {
1043                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1044                                 channel, period_len, 0xffff);
1045                 goto err_out;
1046         }
1047
1048         while (buf < buf_len) {
1049                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1050                 int param;
1051
1052                 bd->buffer_addr = dma_addr;
1053
1054                 bd->mode.count = period_len;
1055
1056                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1057                         goto err_out;
1058                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1059                         bd->mode.command = 0;
1060                 else
1061                         bd->mode.command = sdmac->word_size;
1062
1063                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1064                 if (i + 1 == num_periods)
1065                         param |= BD_WRAP;
1066
1067                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1068                                 i, period_len, dma_addr,
1069                                 param & BD_WRAP ? "wrap" : "",
1070                                 param & BD_INTR ? " intr" : "");
1071
1072                 bd->mode.status = param;
1073
1074                 dma_addr += period_len;
1075                 buf += period_len;
1076
1077                 i++;
1078         }
1079
1080         sdmac->num_bd = num_periods;
1081         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1082
1083         return &sdmac->desc;
1084 err_out:
1085         sdmac->status = DMA_ERROR;
1086         return NULL;
1087 }
1088
1089 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1090                 unsigned long arg)
1091 {
1092         struct sdma_channel *sdmac = to_sdma_chan(chan);
1093         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1094
1095         switch (cmd) {
1096         case DMA_TERMINATE_ALL:
1097                 sdma_disable_channel(sdmac);
1098                 return 0;
1099         case DMA_SLAVE_CONFIG:
1100                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1101                         sdmac->per_address = dmaengine_cfg->src_addr;
1102                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1103                                                 dmaengine_cfg->src_addr_width;
1104                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1105                 } else {
1106                         sdmac->per_address = dmaengine_cfg->dst_addr;
1107                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1108                                                 dmaengine_cfg->dst_addr_width;
1109                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1110                 }
1111                 sdmac->direction = dmaengine_cfg->direction;
1112                 return sdma_config_channel(sdmac);
1113         default:
1114                 return -ENOSYS;
1115         }
1116
1117         return -EINVAL;
1118 }
1119
1120 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1121                                             dma_cookie_t cookie,
1122                                             struct dma_tx_state *txstate)
1123 {
1124         struct sdma_channel *sdmac = to_sdma_chan(chan);
1125         dma_cookie_t last_used;
1126
1127         last_used = chan->cookie;
1128
1129         dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1130                         sdmac->chn_count - sdmac->chn_real_count);
1131
1132         return sdmac->status;
1133 }
1134
1135 static void sdma_issue_pending(struct dma_chan *chan)
1136 {
1137         struct sdma_channel *sdmac = to_sdma_chan(chan);
1138         struct sdma_engine *sdma = sdmac->sdma;
1139
1140         if (sdmac->status == DMA_IN_PROGRESS)
1141                 sdma_enable_channel(sdma, sdmac->channel);
1142 }
1143
1144 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1145
1146 static void sdma_add_scripts(struct sdma_engine *sdma,
1147                 const struct sdma_script_start_addrs *addr)
1148 {
1149         s32 *addr_arr = (u32 *)addr;
1150         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1151         int i;
1152
1153         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1154                 if (addr_arr[i] > 0)
1155                         saddr_arr[i] = addr_arr[i];
1156 }
1157
1158 static void sdma_load_firmware(const struct firmware *fw, void *context)
1159 {
1160         struct sdma_engine *sdma = context;
1161         const struct sdma_firmware_header *header;
1162         const struct sdma_script_start_addrs *addr;
1163         unsigned short *ram_code;
1164
1165         if (!fw) {
1166                 dev_err(sdma->dev, "firmware not found\n");
1167                 return;
1168         }
1169
1170         if (fw->size < sizeof(*header))
1171                 goto err_firmware;
1172
1173         header = (struct sdma_firmware_header *)fw->data;
1174
1175         if (header->magic != SDMA_FIRMWARE_MAGIC)
1176                 goto err_firmware;
1177         if (header->ram_code_start + header->ram_code_size > fw->size)
1178                 goto err_firmware;
1179
1180         addr = (void *)header + header->script_addrs_start;
1181         ram_code = (void *)header + header->ram_code_start;
1182
1183         clk_enable(sdma->clk);
1184         /* download the RAM image for SDMA */
1185         sdma_load_script(sdma, ram_code,
1186                         header->ram_code_size,
1187                         addr->ram_code_start_addr);
1188         clk_disable(sdma->clk);
1189
1190         sdma_add_scripts(sdma, addr);
1191
1192         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1193                         header->version_major,
1194                         header->version_minor);
1195
1196 err_firmware:
1197         release_firmware(fw);
1198 }
1199
1200 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1201                 const char *fw_name)
1202 {
1203         int ret;
1204
1205         ret = request_firmware_nowait(THIS_MODULE,
1206                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1207                         GFP_KERNEL, sdma, sdma_load_firmware);
1208
1209         return ret;
1210 }
1211
1212 static int __init sdma_init(struct sdma_engine *sdma)
1213 {
1214         int i, ret;
1215         dma_addr_t ccb_phys;
1216
1217         switch (sdma->devtype) {
1218         case IMX31_SDMA:
1219                 sdma->num_events = 32;
1220                 break;
1221         case IMX35_SDMA:
1222                 sdma->num_events = 48;
1223                 break;
1224         default:
1225                 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1226                         sdma->devtype);
1227                 return -ENODEV;
1228         }
1229
1230         clk_enable(sdma->clk);
1231
1232         /* Be sure SDMA has not started yet */
1233         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1234
1235         sdma->channel_control = dma_alloc_coherent(NULL,
1236                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1237                         sizeof(struct sdma_context_data),
1238                         &ccb_phys, GFP_KERNEL);
1239
1240         if (!sdma->channel_control) {
1241                 ret = -ENOMEM;
1242                 goto err_dma_alloc;
1243         }
1244
1245         sdma->context = (void *)sdma->channel_control +
1246                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1247         sdma->context_phys = ccb_phys +
1248                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1249
1250         /* Zero-out the CCB structures array just allocated */
1251         memset(sdma->channel_control, 0,
1252                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1253
1254         /* disable all channels */
1255         for (i = 0; i < sdma->num_events; i++)
1256                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1257
1258         /* All channels have priority 0 */
1259         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1260                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1261
1262         ret = sdma_request_channel(&sdma->channel[0]);
1263         if (ret)
1264                 goto err_dma_alloc;
1265
1266         sdma_config_ownership(&sdma->channel[0], false, true, false);
1267
1268         /* Set Command Channel (Channel Zero) */
1269         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1270
1271         /* Set bits of CONFIG register but with static context switching */
1272         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1273         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1274
1275         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1276
1277         /* Set bits of CONFIG register with given context switching mode */
1278         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1279
1280         /* Initializes channel's priorities */
1281         sdma_set_channel_priority(&sdma->channel[0], 7);
1282
1283         clk_disable(sdma->clk);
1284
1285         return 0;
1286
1287 err_dma_alloc:
1288         clk_disable(sdma->clk);
1289         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1290         return ret;
1291 }
1292
1293 static int __init sdma_probe(struct platform_device *pdev)
1294 {
1295         const struct of_device_id *of_id =
1296                         of_match_device(sdma_dt_ids, &pdev->dev);
1297         struct device_node *np = pdev->dev.of_node;
1298         const char *fw_name;
1299         int ret;
1300         int irq;
1301         struct resource *iores;
1302         struct sdma_platform_data *pdata = pdev->dev.platform_data;
1303         int i;
1304         struct sdma_engine *sdma;
1305         s32 *saddr_arr;
1306
1307         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1308         if (!sdma)
1309                 return -ENOMEM;
1310
1311         mutex_init(&sdma->channel_0_lock);
1312
1313         sdma->dev = &pdev->dev;
1314
1315         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1316         irq = platform_get_irq(pdev, 0);
1317         if (!iores || irq < 0) {
1318                 ret = -EINVAL;
1319                 goto err_irq;
1320         }
1321
1322         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1323                 ret = -EBUSY;
1324                 goto err_request_region;
1325         }
1326
1327         sdma->clk = clk_get(&pdev->dev, NULL);
1328         if (IS_ERR(sdma->clk)) {
1329                 ret = PTR_ERR(sdma->clk);
1330                 goto err_clk;
1331         }
1332
1333         sdma->regs = ioremap(iores->start, resource_size(iores));
1334         if (!sdma->regs) {
1335                 ret = -ENOMEM;
1336                 goto err_ioremap;
1337         }
1338
1339         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1340         if (ret)
1341                 goto err_request_irq;
1342
1343         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1344         if (!sdma->script_addrs) {
1345                 ret = -ENOMEM;
1346                 goto err_alloc;
1347         }
1348
1349         /* initially no scripts available */
1350         saddr_arr = (s32 *)sdma->script_addrs;
1351         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1352                 saddr_arr[i] = -EINVAL;
1353
1354         if (of_id)
1355                 pdev->id_entry = of_id->data;
1356         sdma->devtype = pdev->id_entry->driver_data;
1357
1358         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1359         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1360
1361         INIT_LIST_HEAD(&sdma->dma_device.channels);
1362         /* Initialize channel parameters */
1363         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1364                 struct sdma_channel *sdmac = &sdma->channel[i];
1365
1366                 sdmac->sdma = sdma;
1367                 spin_lock_init(&sdmac->lock);
1368
1369                 sdmac->chan.device = &sdma->dma_device;
1370                 sdmac->channel = i;
1371
1372                 /*
1373                  * Add the channel to the DMAC list. Do not add channel 0 though
1374                  * because we need it internally in the SDMA driver. This also means
1375                  * that channel 0 in dmaengine counting matches sdma channel 1.
1376                  */
1377                 if (i)
1378                         list_add_tail(&sdmac->chan.device_node,
1379                                         &sdma->dma_device.channels);
1380         }
1381
1382         ret = sdma_init(sdma);
1383         if (ret)
1384                 goto err_init;
1385
1386         if (pdata && pdata->script_addrs)
1387                 sdma_add_scripts(sdma, pdata->script_addrs);
1388
1389         if (pdata) {
1390                 sdma_get_firmware(sdma, pdata->fw_name);
1391         } else {
1392                 /*
1393                  * Because that device tree does not encode ROM script address,
1394                  * the RAM script in firmware is mandatory for device tree
1395                  * probe, otherwise it fails.
1396                  */
1397                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1398                                               &fw_name);
1399                 if (ret) {
1400                         dev_err(&pdev->dev, "failed to get firmware name\n");
1401                         goto err_init;
1402                 }
1403
1404                 ret = sdma_get_firmware(sdma, fw_name);
1405                 if (ret) {
1406                         dev_err(&pdev->dev, "failed to get firmware\n");
1407                         goto err_init;
1408                 }
1409         }
1410
1411         sdma->dma_device.dev = &pdev->dev;
1412
1413         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1414         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1415         sdma->dma_device.device_tx_status = sdma_tx_status;
1416         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1417         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1418         sdma->dma_device.device_control = sdma_control;
1419         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1420         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1421         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1422
1423         ret = dma_async_device_register(&sdma->dma_device);
1424         if (ret) {
1425                 dev_err(&pdev->dev, "unable to register\n");
1426                 goto err_init;
1427         }
1428
1429         dev_info(sdma->dev, "initialized\n");
1430
1431         return 0;
1432
1433 err_init:
1434         kfree(sdma->script_addrs);
1435 err_alloc:
1436         free_irq(irq, sdma);
1437 err_request_irq:
1438         iounmap(sdma->regs);
1439 err_ioremap:
1440         clk_put(sdma->clk);
1441 err_clk:
1442         release_mem_region(iores->start, resource_size(iores));
1443 err_request_region:
1444 err_irq:
1445         kfree(sdma);
1446         return ret;
1447 }
1448
1449 static int __exit sdma_remove(struct platform_device *pdev)
1450 {
1451         return -EBUSY;
1452 }
1453
1454 static struct platform_driver sdma_driver = {
1455         .driver         = {
1456                 .name   = "imx-sdma",
1457                 .of_match_table = sdma_dt_ids,
1458         },
1459         .id_table       = sdma_devtypes,
1460         .remove         = __exit_p(sdma_remove),
1461 };
1462
1463 static int __init sdma_module_init(void)
1464 {
1465         return platform_driver_probe(&sdma_driver, sdma_probe);
1466 }
1467 module_init(sdma_module_init);
1468
1469 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1470 MODULE_DESCRIPTION("i.MX SDMA driver");
1471 MODULE_LICENSE("GPL");