Merge branches 'acorn', 'ebsa110' and 'sa11x0' into platforms
[pandora-kernel.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/clk.h>
26 #include <linux/wait.h>
27 #include <linux/sched.h>
28 #include <linux/semaphore.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/firmware.h>
33 #include <linux/slab.h>
34 #include <linux/platform_device.h>
35 #include <linux/dmaengine.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/module.h>
39
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44
45 /* SDMA registers */
46 #define SDMA_H_C0PTR            0x000
47 #define SDMA_H_INTR             0x004
48 #define SDMA_H_STATSTOP         0x008
49 #define SDMA_H_START            0x00c
50 #define SDMA_H_EVTOVR           0x010
51 #define SDMA_H_DSPOVR           0x014
52 #define SDMA_H_HOSTOVR          0x018
53 #define SDMA_H_EVTPEND          0x01c
54 #define SDMA_H_DSPENBL          0x020
55 #define SDMA_H_RESET            0x024
56 #define SDMA_H_EVTERR           0x028
57 #define SDMA_H_INTRMSK          0x02c
58 #define SDMA_H_PSW              0x030
59 #define SDMA_H_EVTERRDBG        0x034
60 #define SDMA_H_CONFIG           0x038
61 #define SDMA_ONCE_ENB           0x040
62 #define SDMA_ONCE_DATA          0x044
63 #define SDMA_ONCE_INSTR         0x048
64 #define SDMA_ONCE_STAT          0x04c
65 #define SDMA_ONCE_CMD           0x050
66 #define SDMA_EVT_MIRROR         0x054
67 #define SDMA_ILLINSTADDR        0x058
68 #define SDMA_CHN0ADDR           0x05c
69 #define SDMA_ONCE_RTB           0x060
70 #define SDMA_XTRIG_CONF1        0x070
71 #define SDMA_XTRIG_CONF2        0x074
72 #define SDMA_CHNENBL0_IMX35     0x200
73 #define SDMA_CHNENBL0_IMX31     0x080
74 #define SDMA_CHNPRI_0           0x100
75
76 /*
77  * Buffer descriptor status values.
78  */
79 #define BD_DONE  0x01
80 #define BD_WRAP  0x02
81 #define BD_CONT  0x04
82 #define BD_INTR  0x08
83 #define BD_RROR  0x10
84 #define BD_LAST  0x20
85 #define BD_EXTD  0x80
86
87 /*
88  * Data Node descriptor status values.
89  */
90 #define DND_END_OF_FRAME  0x80
91 #define DND_END_OF_XFER   0x40
92 #define DND_DONE          0x20
93 #define DND_UNUSED        0x01
94
95 /*
96  * IPCV2 descriptor status values.
97  */
98 #define BD_IPCV2_END_OF_FRAME  0x40
99
100 #define IPCV2_MAX_NODES        50
101 /*
102  * Error bit set in the CCB status field by the SDMA,
103  * in setbd routine, in case of a transfer error
104  */
105 #define DATA_ERROR  0x10000000
106
107 /*
108  * Buffer descriptor commands.
109  */
110 #define C0_ADDR             0x01
111 #define C0_LOAD             0x02
112 #define C0_DUMP             0x03
113 #define C0_SETCTX           0x07
114 #define C0_GETCTX           0x03
115 #define C0_SETDM            0x01
116 #define C0_SETPM            0x04
117 #define C0_GETDM            0x02
118 #define C0_GETPM            0x08
119 /*
120  * Change endianness indicator in the BD command field
121  */
122 #define CHANGE_ENDIANNESS   0x80
123
124 /*
125  * Mode/Count of data node descriptors - IPCv2
126  */
127 struct sdma_mode_count {
128         u32 count   : 16; /* size of the buffer pointed by this BD */
129         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
130         u32 command :  8; /* command mostlky used for channel 0 */
131 };
132
133 /*
134  * Buffer descriptor
135  */
136 struct sdma_buffer_descriptor {
137         struct sdma_mode_count  mode;
138         u32 buffer_addr;        /* address of the buffer described */
139         u32 ext_buffer_addr;    /* extended buffer address */
140 } __attribute__ ((packed));
141
142 /**
143  * struct sdma_channel_control - Channel control Block
144  *
145  * @current_bd_ptr      current buffer descriptor processed
146  * @base_bd_ptr         first element of buffer descriptor array
147  * @unused              padding. The SDMA engine expects an array of 128 byte
148  *                      control blocks
149  */
150 struct sdma_channel_control {
151         u32 current_bd_ptr;
152         u32 base_bd_ptr;
153         u32 unused[2];
154 } __attribute__ ((packed));
155
156 /**
157  * struct sdma_state_registers - SDMA context for a channel
158  *
159  * @pc:         program counter
160  * @t:          test bit: status of arithmetic & test instruction
161  * @rpc:        return program counter
162  * @sf:         source fault while loading data
163  * @spc:        loop start program counter
164  * @df:         destination fault while storing data
165  * @epc:        loop end program counter
166  * @lm:         loop mode
167  */
168 struct sdma_state_registers {
169         u32 pc     :14;
170         u32 unused1: 1;
171         u32 t      : 1;
172         u32 rpc    :14;
173         u32 unused0: 1;
174         u32 sf     : 1;
175         u32 spc    :14;
176         u32 unused2: 1;
177         u32 df     : 1;
178         u32 epc    :14;
179         u32 lm     : 2;
180 } __attribute__ ((packed));
181
182 /**
183  * struct sdma_context_data - sdma context specific to a channel
184  *
185  * @channel_state:      channel state bits
186  * @gReg:               general registers
187  * @mda:                burst dma destination address register
188  * @msa:                burst dma source address register
189  * @ms:                 burst dma status register
190  * @md:                 burst dma data register
191  * @pda:                peripheral dma destination address register
192  * @psa:                peripheral dma source address register
193  * @ps:                 peripheral dma status register
194  * @pd:                 peripheral dma data register
195  * @ca:                 CRC polynomial register
196  * @cs:                 CRC accumulator register
197  * @dda:                dedicated core destination address register
198  * @dsa:                dedicated core source address register
199  * @ds:                 dedicated core status register
200  * @dd:                 dedicated core data register
201  */
202 struct sdma_context_data {
203         struct sdma_state_registers  channel_state;
204         u32  gReg[8];
205         u32  mda;
206         u32  msa;
207         u32  ms;
208         u32  md;
209         u32  pda;
210         u32  psa;
211         u32  ps;
212         u32  pd;
213         u32  ca;
214         u32  cs;
215         u32  dda;
216         u32  dsa;
217         u32  ds;
218         u32  dd;
219         u32  scratch0;
220         u32  scratch1;
221         u32  scratch2;
222         u32  scratch3;
223         u32  scratch4;
224         u32  scratch5;
225         u32  scratch6;
226         u32  scratch7;
227 } __attribute__ ((packed));
228
229 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
230
231 struct sdma_engine;
232
233 /**
234  * struct sdma_channel - housekeeping for a SDMA channel
235  *
236  * @sdma                pointer to the SDMA engine for this channel
237  * @channel             the channel number, matches dmaengine chan_id + 1
238  * @direction           transfer type. Needed for setting SDMA script
239  * @peripheral_type     Peripheral type. Needed for setting SDMA script
240  * @event_id0           aka dma request line
241  * @event_id1           for channels that use 2 events
242  * @word_size           peripheral access size
243  * @buf_tail            ID of the buffer that was processed
244  * @done                channel completion
245  * @num_bd              max NUM_BD. number of descriptors currently handling
246  */
247 struct sdma_channel {
248         struct sdma_engine              *sdma;
249         unsigned int                    channel;
250         enum dma_transfer_direction             direction;
251         enum sdma_peripheral_type       peripheral_type;
252         unsigned int                    event_id0;
253         unsigned int                    event_id1;
254         enum dma_slave_buswidth         word_size;
255         unsigned int                    buf_tail;
256         struct completion               done;
257         unsigned int                    num_bd;
258         struct sdma_buffer_descriptor   *bd;
259         dma_addr_t                      bd_phys;
260         unsigned int                    pc_from_device, pc_to_device;
261         unsigned long                   flags;
262         dma_addr_t                      per_address;
263         u32                             event_mask0, event_mask1;
264         u32                             watermark_level;
265         u32                             shp_addr, per_addr;
266         struct dma_chan                 chan;
267         spinlock_t                      lock;
268         struct dma_async_tx_descriptor  desc;
269         dma_cookie_t                    last_completed;
270         enum dma_status                 status;
271         unsigned int                    chn_count;
272         unsigned int                    chn_real_count;
273 };
274
275 #define IMX_DMA_SG_LOOP         (1 << 0)
276
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic               "SDMA"
288  * @version_major       increased whenever layout of struct sdma_script_start_addrs
289  *                      changes.
290  * @version_minor       firmware minor version (for binary compatible changes)
291  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs    Number of script addresses in this image
293  * @ram_code_start      offset of SDMA ram image in this firmware image
294  * @ram_code_size       size of SDMA ram image
295  * @script_addrs        Stores the start address of the SDMA scripts
296  *                      (in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299         u32     magic;
300         u32     version_major;
301         u32     version_minor;
302         u32     script_addrs_start;
303         u32     num_script_addrs;
304         u32     ram_code_start;
305         u32     ram_code_size;
306 };
307
308 enum sdma_devtype {
309         IMX31_SDMA,     /* runs on i.mx31 */
310         IMX35_SDMA,     /* runs on i.mx35 and later */
311 };
312
313 struct sdma_engine {
314         struct device                   *dev;
315         struct device_dma_parameters    dma_parms;
316         struct sdma_channel             channel[MAX_DMA_CHANNELS];
317         struct sdma_channel_control     *channel_control;
318         void __iomem                    *regs;
319         enum sdma_devtype               devtype;
320         unsigned int                    num_events;
321         struct sdma_context_data        *context;
322         dma_addr_t                      context_phys;
323         struct dma_device               dma_device;
324         struct clk                      *clk;
325         struct mutex                    channel_0_lock;
326         struct sdma_script_start_addrs  *script_addrs;
327 };
328
329 static struct platform_device_id sdma_devtypes[] = {
330         {
331                 .name = "imx31-sdma",
332                 .driver_data = IMX31_SDMA,
333         }, {
334                 .name = "imx35-sdma",
335                 .driver_data = IMX35_SDMA,
336         }, {
337                 /* sentinel */
338         }
339 };
340 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
341
342 static const struct of_device_id sdma_dt_ids[] = {
343         { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
344         { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
345         { /* sentinel */ }
346 };
347 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
348
349 #define SDMA_H_CONFIG_DSPDMA    (1 << 12) /* indicates if the DSPDMA is used */
350 #define SDMA_H_CONFIG_RTD_PINS  (1 << 11) /* indicates if Real-Time Debug pins are enabled */
351 #define SDMA_H_CONFIG_ACR       (1 << 4)  /* indicates if AHB freq /core freq = 2 or 1 */
352 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
353
354 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
355 {
356         u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
357                                                       SDMA_CHNENBL0_IMX35);
358         return chnenbl0 + event * 4;
359 }
360
361 static int sdma_config_ownership(struct sdma_channel *sdmac,
362                 bool event_override, bool mcu_override, bool dsp_override)
363 {
364         struct sdma_engine *sdma = sdmac->sdma;
365         int channel = sdmac->channel;
366         u32 evt, mcu, dsp;
367
368         if (event_override && mcu_override && dsp_override)
369                 return -EINVAL;
370
371         evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
372         mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
373         dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
374
375         if (dsp_override)
376                 dsp &= ~(1 << channel);
377         else
378                 dsp |= (1 << channel);
379
380         if (event_override)
381                 evt &= ~(1 << channel);
382         else
383                 evt |= (1 << channel);
384
385         if (mcu_override)
386                 mcu &= ~(1 << channel);
387         else
388                 mcu |= (1 << channel);
389
390         __raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
391         __raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
392         __raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
393
394         return 0;
395 }
396
397 /*
398  * sdma_run_channel - run a channel and wait till it's done
399  */
400 static int sdma_run_channel(struct sdma_channel *sdmac)
401 {
402         struct sdma_engine *sdma = sdmac->sdma;
403         int channel = sdmac->channel;
404         int ret;
405
406         init_completion(&sdmac->done);
407
408         __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
409
410         ret = wait_for_completion_timeout(&sdmac->done, HZ);
411
412         return ret ? 0 : -ETIMEDOUT;
413 }
414
415 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
416                 u32 address)
417 {
418         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
419         void *buf_virt;
420         dma_addr_t buf_phys;
421         int ret;
422
423         mutex_lock(&sdma->channel_0_lock);
424
425         buf_virt = dma_alloc_coherent(NULL,
426                         size,
427                         &buf_phys, GFP_KERNEL);
428         if (!buf_virt) {
429                 ret = -ENOMEM;
430                 goto err_out;
431         }
432
433         bd0->mode.command = C0_SETPM;
434         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
435         bd0->mode.count = size / 2;
436         bd0->buffer_addr = buf_phys;
437         bd0->ext_buffer_addr = address;
438
439         memcpy(buf_virt, buf, size);
440
441         ret = sdma_run_channel(&sdma->channel[0]);
442
443         dma_free_coherent(NULL, size, buf_virt, buf_phys);
444
445 err_out:
446         mutex_unlock(&sdma->channel_0_lock);
447
448         return ret;
449 }
450
451 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
452 {
453         struct sdma_engine *sdma = sdmac->sdma;
454         int channel = sdmac->channel;
455         u32 val;
456         u32 chnenbl = chnenbl_ofs(sdma, event);
457
458         val = __raw_readl(sdma->regs + chnenbl);
459         val |= (1 << channel);
460         __raw_writel(val, sdma->regs + chnenbl);
461 }
462
463 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
464 {
465         struct sdma_engine *sdma = sdmac->sdma;
466         int channel = sdmac->channel;
467         u32 chnenbl = chnenbl_ofs(sdma, event);
468         u32 val;
469
470         val = __raw_readl(sdma->regs + chnenbl);
471         val &= ~(1 << channel);
472         __raw_writel(val, sdma->regs + chnenbl);
473 }
474
475 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
476 {
477         struct sdma_buffer_descriptor *bd;
478
479         /*
480          * loop mode. Iterate over descriptors, re-setup them and
481          * call callback function.
482          */
483         while (1) {
484                 bd = &sdmac->bd[sdmac->buf_tail];
485
486                 if (bd->mode.status & BD_DONE)
487                         break;
488
489                 if (bd->mode.status & BD_RROR)
490                         sdmac->status = DMA_ERROR;
491                 else
492                         sdmac->status = DMA_IN_PROGRESS;
493
494                 bd->mode.status |= BD_DONE;
495                 sdmac->buf_tail++;
496                 sdmac->buf_tail %= sdmac->num_bd;
497
498                 if (sdmac->desc.callback)
499                         sdmac->desc.callback(sdmac->desc.callback_param);
500         }
501 }
502
503 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
504 {
505         struct sdma_buffer_descriptor *bd;
506         int i, error = 0;
507
508         sdmac->chn_real_count = 0;
509         /*
510          * non loop mode. Iterate over all descriptors, collect
511          * errors and call callback function
512          */
513         for (i = 0; i < sdmac->num_bd; i++) {
514                 bd = &sdmac->bd[i];
515
516                  if (bd->mode.status & (BD_DONE | BD_RROR))
517                         error = -EIO;
518                  sdmac->chn_real_count += bd->mode.count;
519         }
520
521         if (error)
522                 sdmac->status = DMA_ERROR;
523         else
524                 sdmac->status = DMA_SUCCESS;
525
526         sdmac->last_completed = sdmac->desc.cookie;
527         if (sdmac->desc.callback)
528                 sdmac->desc.callback(sdmac->desc.callback_param);
529 }
530
531 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
532 {
533         complete(&sdmac->done);
534
535         /* not interested in channel 0 interrupts */
536         if (sdmac->channel == 0)
537                 return;
538
539         if (sdmac->flags & IMX_DMA_SG_LOOP)
540                 sdma_handle_channel_loop(sdmac);
541         else
542                 mxc_sdma_handle_channel_normal(sdmac);
543 }
544
545 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
546 {
547         struct sdma_engine *sdma = dev_id;
548         u32 stat;
549
550         stat = __raw_readl(sdma->regs + SDMA_H_INTR);
551         __raw_writel(stat, sdma->regs + SDMA_H_INTR);
552
553         while (stat) {
554                 int channel = fls(stat) - 1;
555                 struct sdma_channel *sdmac = &sdma->channel[channel];
556
557                 mxc_sdma_handle_channel(sdmac);
558
559                 stat &= ~(1 << channel);
560         }
561
562         return IRQ_HANDLED;
563 }
564
565 /*
566  * sets the pc of SDMA script according to the peripheral type
567  */
568 static void sdma_get_pc(struct sdma_channel *sdmac,
569                 enum sdma_peripheral_type peripheral_type)
570 {
571         struct sdma_engine *sdma = sdmac->sdma;
572         int per_2_emi = 0, emi_2_per = 0;
573         /*
574          * These are needed once we start to support transfers between
575          * two peripherals or memory-to-memory transfers
576          */
577         int per_2_per = 0, emi_2_emi = 0;
578
579         sdmac->pc_from_device = 0;
580         sdmac->pc_to_device = 0;
581
582         switch (peripheral_type) {
583         case IMX_DMATYPE_MEMORY:
584                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
585                 break;
586         case IMX_DMATYPE_DSP:
587                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
588                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
589                 break;
590         case IMX_DMATYPE_FIRI:
591                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
592                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
593                 break;
594         case IMX_DMATYPE_UART:
595                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
596                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
597                 break;
598         case IMX_DMATYPE_UART_SP:
599                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
600                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
601                 break;
602         case IMX_DMATYPE_ATA:
603                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
604                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
605                 break;
606         case IMX_DMATYPE_CSPI:
607         case IMX_DMATYPE_EXT:
608         case IMX_DMATYPE_SSI:
609                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
610                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
611                 break;
612         case IMX_DMATYPE_SSI_SP:
613         case IMX_DMATYPE_MMC:
614         case IMX_DMATYPE_SDHC:
615         case IMX_DMATYPE_CSPI_SP:
616         case IMX_DMATYPE_ESAI:
617         case IMX_DMATYPE_MSHC_SP:
618                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
619                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
620                 break;
621         case IMX_DMATYPE_ASRC:
622                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
623                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
624                 per_2_per = sdma->script_addrs->per_2_per_addr;
625                 break;
626         case IMX_DMATYPE_MSHC:
627                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
628                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
629                 break;
630         case IMX_DMATYPE_CCM:
631                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
632                 break;
633         case IMX_DMATYPE_SPDIF:
634                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
635                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
636                 break;
637         case IMX_DMATYPE_IPU_MEMORY:
638                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
639                 break;
640         default:
641                 break;
642         }
643
644         sdmac->pc_from_device = per_2_emi;
645         sdmac->pc_to_device = emi_2_per;
646 }
647
648 static int sdma_load_context(struct sdma_channel *sdmac)
649 {
650         struct sdma_engine *sdma = sdmac->sdma;
651         int channel = sdmac->channel;
652         int load_address;
653         struct sdma_context_data *context = sdma->context;
654         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
655         int ret;
656
657         if (sdmac->direction == DMA_DEV_TO_MEM) {
658                 load_address = sdmac->pc_from_device;
659         } else {
660                 load_address = sdmac->pc_to_device;
661         }
662
663         if (load_address < 0)
664                 return load_address;
665
666         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
667         dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
668         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
669         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
670         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
671         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
672
673         mutex_lock(&sdma->channel_0_lock);
674
675         memset(context, 0, sizeof(*context));
676         context->channel_state.pc = load_address;
677
678         /* Send by context the event mask,base address for peripheral
679          * and watermark level
680          */
681         context->gReg[0] = sdmac->event_mask1;
682         context->gReg[1] = sdmac->event_mask0;
683         context->gReg[2] = sdmac->per_addr;
684         context->gReg[6] = sdmac->shp_addr;
685         context->gReg[7] = sdmac->watermark_level;
686
687         bd0->mode.command = C0_SETDM;
688         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
689         bd0->mode.count = sizeof(*context) / 4;
690         bd0->buffer_addr = sdma->context_phys;
691         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
692
693         ret = sdma_run_channel(&sdma->channel[0]);
694
695         mutex_unlock(&sdma->channel_0_lock);
696
697         return ret;
698 }
699
700 static void sdma_disable_channel(struct sdma_channel *sdmac)
701 {
702         struct sdma_engine *sdma = sdmac->sdma;
703         int channel = sdmac->channel;
704
705         __raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
706         sdmac->status = DMA_ERROR;
707 }
708
709 static int sdma_config_channel(struct sdma_channel *sdmac)
710 {
711         int ret;
712
713         sdma_disable_channel(sdmac);
714
715         sdmac->event_mask0 = 0;
716         sdmac->event_mask1 = 0;
717         sdmac->shp_addr = 0;
718         sdmac->per_addr = 0;
719
720         if (sdmac->event_id0) {
721                 if (sdmac->event_id0 > 32)
722                         return -EINVAL;
723                 sdma_event_enable(sdmac, sdmac->event_id0);
724         }
725
726         switch (sdmac->peripheral_type) {
727         case IMX_DMATYPE_DSP:
728                 sdma_config_ownership(sdmac, false, true, true);
729                 break;
730         case IMX_DMATYPE_MEMORY:
731                 sdma_config_ownership(sdmac, false, true, false);
732                 break;
733         default:
734                 sdma_config_ownership(sdmac, true, true, false);
735                 break;
736         }
737
738         sdma_get_pc(sdmac, sdmac->peripheral_type);
739
740         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
741                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
742                 /* Handle multiple event channels differently */
743                 if (sdmac->event_id1) {
744                         sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
745                         if (sdmac->event_id1 > 31)
746                                 sdmac->watermark_level |= 1 << 31;
747                         sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
748                         if (sdmac->event_id0 > 31)
749                                 sdmac->watermark_level |= 1 << 30;
750                 } else {
751                         sdmac->event_mask0 = 1 << sdmac->event_id0;
752                         sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
753                 }
754                 /* Watermark Level */
755                 sdmac->watermark_level |= sdmac->watermark_level;
756                 /* Address */
757                 sdmac->shp_addr = sdmac->per_address;
758         } else {
759                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
760         }
761
762         ret = sdma_load_context(sdmac);
763
764         return ret;
765 }
766
767 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
768                 unsigned int priority)
769 {
770         struct sdma_engine *sdma = sdmac->sdma;
771         int channel = sdmac->channel;
772
773         if (priority < MXC_SDMA_MIN_PRIORITY
774             || priority > MXC_SDMA_MAX_PRIORITY) {
775                 return -EINVAL;
776         }
777
778         __raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
779
780         return 0;
781 }
782
783 static int sdma_request_channel(struct sdma_channel *sdmac)
784 {
785         struct sdma_engine *sdma = sdmac->sdma;
786         int channel = sdmac->channel;
787         int ret = -EBUSY;
788
789         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
790         if (!sdmac->bd) {
791                 ret = -ENOMEM;
792                 goto out;
793         }
794
795         memset(sdmac->bd, 0, PAGE_SIZE);
796
797         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
798         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
799
800         clk_enable(sdma->clk);
801
802         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
803
804         init_completion(&sdmac->done);
805
806         sdmac->buf_tail = 0;
807
808         return 0;
809 out:
810
811         return ret;
812 }
813
814 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
815 {
816         __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
817 }
818
819 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
820 {
821         dma_cookie_t cookie = sdmac->chan.cookie;
822
823         if (++cookie < 0)
824                 cookie = 1;
825
826         sdmac->chan.cookie = cookie;
827         sdmac->desc.cookie = cookie;
828
829         return cookie;
830 }
831
832 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
833 {
834         return container_of(chan, struct sdma_channel, chan);
835 }
836
837 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
838 {
839         unsigned long flags;
840         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
841         struct sdma_engine *sdma = sdmac->sdma;
842         dma_cookie_t cookie;
843
844         spin_lock_irqsave(&sdmac->lock, flags);
845
846         cookie = sdma_assign_cookie(sdmac);
847
848         sdma_enable_channel(sdma, sdmac->channel);
849
850         spin_unlock_irqrestore(&sdmac->lock, flags);
851
852         return cookie;
853 }
854
855 static int sdma_alloc_chan_resources(struct dma_chan *chan)
856 {
857         struct sdma_channel *sdmac = to_sdma_chan(chan);
858         struct imx_dma_data *data = chan->private;
859         int prio, ret;
860
861         if (!data)
862                 return -EINVAL;
863
864         switch (data->priority) {
865         case DMA_PRIO_HIGH:
866                 prio = 3;
867                 break;
868         case DMA_PRIO_MEDIUM:
869                 prio = 2;
870                 break;
871         case DMA_PRIO_LOW:
872         default:
873                 prio = 1;
874                 break;
875         }
876
877         sdmac->peripheral_type = data->peripheral_type;
878         sdmac->event_id0 = data->dma_request;
879         ret = sdma_set_channel_priority(sdmac, prio);
880         if (ret)
881                 return ret;
882
883         ret = sdma_request_channel(sdmac);
884         if (ret)
885                 return ret;
886
887         dma_async_tx_descriptor_init(&sdmac->desc, chan);
888         sdmac->desc.tx_submit = sdma_tx_submit;
889         /* txd.flags will be overwritten in prep funcs */
890         sdmac->desc.flags = DMA_CTRL_ACK;
891
892         return 0;
893 }
894
895 static void sdma_free_chan_resources(struct dma_chan *chan)
896 {
897         struct sdma_channel *sdmac = to_sdma_chan(chan);
898         struct sdma_engine *sdma = sdmac->sdma;
899
900         sdma_disable_channel(sdmac);
901
902         if (sdmac->event_id0)
903                 sdma_event_disable(sdmac, sdmac->event_id0);
904         if (sdmac->event_id1)
905                 sdma_event_disable(sdmac, sdmac->event_id1);
906
907         sdmac->event_id0 = 0;
908         sdmac->event_id1 = 0;
909
910         sdma_set_channel_priority(sdmac, 0);
911
912         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
913
914         clk_disable(sdma->clk);
915 }
916
917 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
918                 struct dma_chan *chan, struct scatterlist *sgl,
919                 unsigned int sg_len, enum dma_transfer_direction direction,
920                 unsigned long flags)
921 {
922         struct sdma_channel *sdmac = to_sdma_chan(chan);
923         struct sdma_engine *sdma = sdmac->sdma;
924         int ret, i, count;
925         int channel = sdmac->channel;
926         struct scatterlist *sg;
927
928         if (sdmac->status == DMA_IN_PROGRESS)
929                 return NULL;
930         sdmac->status = DMA_IN_PROGRESS;
931
932         sdmac->flags = 0;
933
934         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
935                         sg_len, channel);
936
937         sdmac->direction = direction;
938         ret = sdma_load_context(sdmac);
939         if (ret)
940                 goto err_out;
941
942         if (sg_len > NUM_BD) {
943                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
944                                 channel, sg_len, NUM_BD);
945                 ret = -EINVAL;
946                 goto err_out;
947         }
948
949         sdmac->chn_count = 0;
950         for_each_sg(sgl, sg, sg_len, i) {
951                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
952                 int param;
953
954                 bd->buffer_addr = sg->dma_address;
955
956                 count = sg->length;
957
958                 if (count > 0xffff) {
959                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
960                                         channel, count, 0xffff);
961                         ret = -EINVAL;
962                         goto err_out;
963                 }
964
965                 bd->mode.count = count;
966                 sdmac->chn_count += count;
967
968                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
969                         ret =  -EINVAL;
970                         goto err_out;
971                 }
972
973                 switch (sdmac->word_size) {
974                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
975                         bd->mode.command = 0;
976                         if (count & 3 || sg->dma_address & 3)
977                                 return NULL;
978                         break;
979                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
980                         bd->mode.command = 2;
981                         if (count & 1 || sg->dma_address & 1)
982                                 return NULL;
983                         break;
984                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
985                         bd->mode.command = 1;
986                         break;
987                 default:
988                         return NULL;
989                 }
990
991                 param = BD_DONE | BD_EXTD | BD_CONT;
992
993                 if (i + 1 == sg_len) {
994                         param |= BD_INTR;
995                         param |= BD_LAST;
996                         param &= ~BD_CONT;
997                 }
998
999                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1000                                 i, count, sg->dma_address,
1001                                 param & BD_WRAP ? "wrap" : "",
1002                                 param & BD_INTR ? " intr" : "");
1003
1004                 bd->mode.status = param;
1005         }
1006
1007         sdmac->num_bd = sg_len;
1008         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1009
1010         return &sdmac->desc;
1011 err_out:
1012         sdmac->status = DMA_ERROR;
1013         return NULL;
1014 }
1015
1016 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1017                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1018                 size_t period_len, enum dma_transfer_direction direction)
1019 {
1020         struct sdma_channel *sdmac = to_sdma_chan(chan);
1021         struct sdma_engine *sdma = sdmac->sdma;
1022         int num_periods = buf_len / period_len;
1023         int channel = sdmac->channel;
1024         int ret, i = 0, buf = 0;
1025
1026         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1027
1028         if (sdmac->status == DMA_IN_PROGRESS)
1029                 return NULL;
1030
1031         sdmac->status = DMA_IN_PROGRESS;
1032
1033         sdmac->flags |= IMX_DMA_SG_LOOP;
1034         sdmac->direction = direction;
1035         ret = sdma_load_context(sdmac);
1036         if (ret)
1037                 goto err_out;
1038
1039         if (num_periods > NUM_BD) {
1040                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1041                                 channel, num_periods, NUM_BD);
1042                 goto err_out;
1043         }
1044
1045         if (period_len > 0xffff) {
1046                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1047                                 channel, period_len, 0xffff);
1048                 goto err_out;
1049         }
1050
1051         while (buf < buf_len) {
1052                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1053                 int param;
1054
1055                 bd->buffer_addr = dma_addr;
1056
1057                 bd->mode.count = period_len;
1058
1059                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1060                         goto err_out;
1061                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1062                         bd->mode.command = 0;
1063                 else
1064                         bd->mode.command = sdmac->word_size;
1065
1066                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1067                 if (i + 1 == num_periods)
1068                         param |= BD_WRAP;
1069
1070                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1071                                 i, period_len, dma_addr,
1072                                 param & BD_WRAP ? "wrap" : "",
1073                                 param & BD_INTR ? " intr" : "");
1074
1075                 bd->mode.status = param;
1076
1077                 dma_addr += period_len;
1078                 buf += period_len;
1079
1080                 i++;
1081         }
1082
1083         sdmac->num_bd = num_periods;
1084         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1085
1086         return &sdmac->desc;
1087 err_out:
1088         sdmac->status = DMA_ERROR;
1089         return NULL;
1090 }
1091
1092 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1093                 unsigned long arg)
1094 {
1095         struct sdma_channel *sdmac = to_sdma_chan(chan);
1096         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1097
1098         switch (cmd) {
1099         case DMA_TERMINATE_ALL:
1100                 sdma_disable_channel(sdmac);
1101                 return 0;
1102         case DMA_SLAVE_CONFIG:
1103                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1104                         sdmac->per_address = dmaengine_cfg->src_addr;
1105                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1106                                                 dmaengine_cfg->src_addr_width;
1107                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1108                 } else {
1109                         sdmac->per_address = dmaengine_cfg->dst_addr;
1110                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1111                                                 dmaengine_cfg->dst_addr_width;
1112                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1113                 }
1114                 sdmac->direction = dmaengine_cfg->direction;
1115                 return sdma_config_channel(sdmac);
1116         default:
1117                 return -ENOSYS;
1118         }
1119
1120         return -EINVAL;
1121 }
1122
1123 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1124                                             dma_cookie_t cookie,
1125                                             struct dma_tx_state *txstate)
1126 {
1127         struct sdma_channel *sdmac = to_sdma_chan(chan);
1128         dma_cookie_t last_used;
1129
1130         last_used = chan->cookie;
1131
1132         dma_set_tx_state(txstate, sdmac->last_completed, last_used,
1133                         sdmac->chn_count - sdmac->chn_real_count);
1134
1135         return sdmac->status;
1136 }
1137
1138 static void sdma_issue_pending(struct dma_chan *chan)
1139 {
1140         /*
1141          * Nothing to do. We only have a single descriptor
1142          */
1143 }
1144
1145 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1146
1147 static void sdma_add_scripts(struct sdma_engine *sdma,
1148                 const struct sdma_script_start_addrs *addr)
1149 {
1150         s32 *addr_arr = (u32 *)addr;
1151         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1152         int i;
1153
1154         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1155                 if (addr_arr[i] > 0)
1156                         saddr_arr[i] = addr_arr[i];
1157 }
1158
1159 static void sdma_load_firmware(const struct firmware *fw, void *context)
1160 {
1161         struct sdma_engine *sdma = context;
1162         const struct sdma_firmware_header *header;
1163         const struct sdma_script_start_addrs *addr;
1164         unsigned short *ram_code;
1165
1166         if (!fw) {
1167                 dev_err(sdma->dev, "firmware not found\n");
1168                 return;
1169         }
1170
1171         if (fw->size < sizeof(*header))
1172                 goto err_firmware;
1173
1174         header = (struct sdma_firmware_header *)fw->data;
1175
1176         if (header->magic != SDMA_FIRMWARE_MAGIC)
1177                 goto err_firmware;
1178         if (header->ram_code_start + header->ram_code_size > fw->size)
1179                 goto err_firmware;
1180
1181         addr = (void *)header + header->script_addrs_start;
1182         ram_code = (void *)header + header->ram_code_start;
1183
1184         clk_enable(sdma->clk);
1185         /* download the RAM image for SDMA */
1186         sdma_load_script(sdma, ram_code,
1187                         header->ram_code_size,
1188                         addr->ram_code_start_addr);
1189         clk_disable(sdma->clk);
1190
1191         sdma_add_scripts(sdma, addr);
1192
1193         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1194                         header->version_major,
1195                         header->version_minor);
1196
1197 err_firmware:
1198         release_firmware(fw);
1199 }
1200
1201 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1202                 const char *fw_name)
1203 {
1204         int ret;
1205
1206         ret = request_firmware_nowait(THIS_MODULE,
1207                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1208                         GFP_KERNEL, sdma, sdma_load_firmware);
1209
1210         return ret;
1211 }
1212
1213 static int __init sdma_init(struct sdma_engine *sdma)
1214 {
1215         int i, ret;
1216         dma_addr_t ccb_phys;
1217
1218         switch (sdma->devtype) {
1219         case IMX31_SDMA:
1220                 sdma->num_events = 32;
1221                 break;
1222         case IMX35_SDMA:
1223                 sdma->num_events = 48;
1224                 break;
1225         default:
1226                 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1227                         sdma->devtype);
1228                 return -ENODEV;
1229         }
1230
1231         clk_enable(sdma->clk);
1232
1233         /* Be sure SDMA has not started yet */
1234         __raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1235
1236         sdma->channel_control = dma_alloc_coherent(NULL,
1237                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1238                         sizeof(struct sdma_context_data),
1239                         &ccb_phys, GFP_KERNEL);
1240
1241         if (!sdma->channel_control) {
1242                 ret = -ENOMEM;
1243                 goto err_dma_alloc;
1244         }
1245
1246         sdma->context = (void *)sdma->channel_control +
1247                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1248         sdma->context_phys = ccb_phys +
1249                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1250
1251         /* Zero-out the CCB structures array just allocated */
1252         memset(sdma->channel_control, 0,
1253                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1254
1255         /* disable all channels */
1256         for (i = 0; i < sdma->num_events; i++)
1257                 __raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1258
1259         /* All channels have priority 0 */
1260         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1261                 __raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1262
1263         ret = sdma_request_channel(&sdma->channel[0]);
1264         if (ret)
1265                 goto err_dma_alloc;
1266
1267         sdma_config_ownership(&sdma->channel[0], false, true, false);
1268
1269         /* Set Command Channel (Channel Zero) */
1270         __raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1271
1272         /* Set bits of CONFIG register but with static context switching */
1273         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1274         __raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1275
1276         __raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1277
1278         /* Set bits of CONFIG register with given context switching mode */
1279         __raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1280
1281         /* Initializes channel's priorities */
1282         sdma_set_channel_priority(&sdma->channel[0], 7);
1283
1284         clk_disable(sdma->clk);
1285
1286         return 0;
1287
1288 err_dma_alloc:
1289         clk_disable(sdma->clk);
1290         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1291         return ret;
1292 }
1293
1294 static int __init sdma_probe(struct platform_device *pdev)
1295 {
1296         const struct of_device_id *of_id =
1297                         of_match_device(sdma_dt_ids, &pdev->dev);
1298         struct device_node *np = pdev->dev.of_node;
1299         const char *fw_name;
1300         int ret;
1301         int irq;
1302         struct resource *iores;
1303         struct sdma_platform_data *pdata = pdev->dev.platform_data;
1304         int i;
1305         struct sdma_engine *sdma;
1306         s32 *saddr_arr;
1307
1308         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1309         if (!sdma)
1310                 return -ENOMEM;
1311
1312         mutex_init(&sdma->channel_0_lock);
1313
1314         sdma->dev = &pdev->dev;
1315
1316         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1317         irq = platform_get_irq(pdev, 0);
1318         if (!iores || irq < 0) {
1319                 ret = -EINVAL;
1320                 goto err_irq;
1321         }
1322
1323         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1324                 ret = -EBUSY;
1325                 goto err_request_region;
1326         }
1327
1328         sdma->clk = clk_get(&pdev->dev, NULL);
1329         if (IS_ERR(sdma->clk)) {
1330                 ret = PTR_ERR(sdma->clk);
1331                 goto err_clk;
1332         }
1333
1334         sdma->regs = ioremap(iores->start, resource_size(iores));
1335         if (!sdma->regs) {
1336                 ret = -ENOMEM;
1337                 goto err_ioremap;
1338         }
1339
1340         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1341         if (ret)
1342                 goto err_request_irq;
1343
1344         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1345         if (!sdma->script_addrs) {
1346                 ret = -ENOMEM;
1347                 goto err_alloc;
1348         }
1349
1350         /* initially no scripts available */
1351         saddr_arr = (s32 *)sdma->script_addrs;
1352         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1353                 saddr_arr[i] = -EINVAL;
1354
1355         if (of_id)
1356                 pdev->id_entry = of_id->data;
1357         sdma->devtype = pdev->id_entry->driver_data;
1358
1359         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1360         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1361
1362         INIT_LIST_HEAD(&sdma->dma_device.channels);
1363         /* Initialize channel parameters */
1364         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1365                 struct sdma_channel *sdmac = &sdma->channel[i];
1366
1367                 sdmac->sdma = sdma;
1368                 spin_lock_init(&sdmac->lock);
1369
1370                 sdmac->chan.device = &sdma->dma_device;
1371                 sdmac->channel = i;
1372
1373                 /*
1374                  * Add the channel to the DMAC list. Do not add channel 0 though
1375                  * because we need it internally in the SDMA driver. This also means
1376                  * that channel 0 in dmaengine counting matches sdma channel 1.
1377                  */
1378                 if (i)
1379                         list_add_tail(&sdmac->chan.device_node,
1380                                         &sdma->dma_device.channels);
1381         }
1382
1383         ret = sdma_init(sdma);
1384         if (ret)
1385                 goto err_init;
1386
1387         if (pdata && pdata->script_addrs)
1388                 sdma_add_scripts(sdma, pdata->script_addrs);
1389
1390         if (pdata) {
1391                 sdma_get_firmware(sdma, pdata->fw_name);
1392         } else {
1393                 /*
1394                  * Because that device tree does not encode ROM script address,
1395                  * the RAM script in firmware is mandatory for device tree
1396                  * probe, otherwise it fails.
1397                  */
1398                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1399                                               &fw_name);
1400                 if (ret) {
1401                         dev_err(&pdev->dev, "failed to get firmware name\n");
1402                         goto err_init;
1403                 }
1404
1405                 ret = sdma_get_firmware(sdma, fw_name);
1406                 if (ret) {
1407                         dev_err(&pdev->dev, "failed to get firmware\n");
1408                         goto err_init;
1409                 }
1410         }
1411
1412         sdma->dma_device.dev = &pdev->dev;
1413
1414         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1415         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1416         sdma->dma_device.device_tx_status = sdma_tx_status;
1417         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1418         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1419         sdma->dma_device.device_control = sdma_control;
1420         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1421         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1422         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1423
1424         ret = dma_async_device_register(&sdma->dma_device);
1425         if (ret) {
1426                 dev_err(&pdev->dev, "unable to register\n");
1427                 goto err_init;
1428         }
1429
1430         dev_info(sdma->dev, "initialized\n");
1431
1432         return 0;
1433
1434 err_init:
1435         kfree(sdma->script_addrs);
1436 err_alloc:
1437         free_irq(irq, sdma);
1438 err_request_irq:
1439         iounmap(sdma->regs);
1440 err_ioremap:
1441         clk_put(sdma->clk);
1442 err_clk:
1443         release_mem_region(iores->start, resource_size(iores));
1444 err_request_region:
1445 err_irq:
1446         kfree(sdma);
1447         return ret;
1448 }
1449
1450 static int __exit sdma_remove(struct platform_device *pdev)
1451 {
1452         return -EBUSY;
1453 }
1454
1455 static struct platform_driver sdma_driver = {
1456         .driver         = {
1457                 .name   = "imx-sdma",
1458                 .of_match_table = sdma_dt_ids,
1459         },
1460         .id_table       = sdma_devtypes,
1461         .remove         = __exit_p(sdma_remove),
1462 };
1463
1464 static int __init sdma_module_init(void)
1465 {
1466         return platform_driver_probe(&sdma_driver, sdma_probe);
1467 }
1468 module_init(sdma_module_init);
1469
1470 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1471 MODULE_DESCRIPTION("i.MX SDMA driver");
1472 MODULE_LICENSE("GPL");