Merge branch 'sh/clkfwk' into sh-latest
[pandora-kernel.git] / drivers / dma / amba-pl08x.c
1 /*
2  * Copyright (c) 2006 ARM Ltd.
3  * Copyright (c) 2010 ST-Ericsson SA
4  *
5  * Author: Peter Pearse <peter.pearse@arm.com>
6  * Author: Linus Walleij <linus.walleij@stericsson.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59
20  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
21  *
22  * The full GNU General Public License is in this distribution in the file
23  * called COPYING.
24  *
25  * Documentation: ARM DDI 0196G == PL080
26  * Documentation: ARM DDI 0218E == PL081
27  *
28  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29  * channel.
30  *
31  * The PL080 has 8 channels available for simultaneous use, and the PL081
32  * has only two channels. So on these DMA controllers the number of channels
33  * and the number of incoming DMA signals are two totally different things.
34  * It is usually not possible to theoretically handle all physical signals,
35  * so a multiplexing scheme with possible denial of use is necessary.
36  *
37  * The PL080 has a dual bus master, PL081 has a single master.
38  *
39  * Memory to peripheral transfer may be visualized as
40  *      Get data from memory to DMAC
41  *      Until no data left
42  *              On burst request from peripheral
43  *                      Destination burst from DMAC to peripheral
44  *                      Clear burst request
45  *      Raise terminal count interrupt
46  *
47  * For peripherals with a FIFO:
48  * Source      burst size == half the depth of the peripheral FIFO
49  * Destination burst size == the depth of the peripheral FIFO
50  *
51  * (Bursts are irrelevant for mem to mem transfers - there are no burst
52  * signals, the DMA controller will simply facilitate its AHB master.)
53  *
54  * ASSUMES default (little) endianness for DMA transfers
55  *
56  * The PL08x has two flow control settings:
57  *  - DMAC flow control: the transfer size defines the number of transfers
58  *    which occur for the current LLI entry, and the DMAC raises TC at the
59  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
60  *    to both the BREQ and SREQ signals (contrary to documented),
61  *    transferring data if either is active.  The LBREQ and LSREQ signals
62  *    are ignored.
63  *
64  *  - Peripheral flow control: the transfer size is ignored (and should be
65  *    zero).  The data is transferred from the current LLI entry, until
66  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
67  *    will then move to the next LLI entry.
68  *
69  * Global TODO:
70  * - Break out common code from arch/arm/mach-s3c64xx and share
71  */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87
88 #include "dmaengine.h"
89
90 #define DRIVER_NAME     "pl08xdmac"
91
92 static struct amba_driver pl08x_amba_driver;
93
94 /**
95  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96  * @channels: the number of channels available in this variant
97  * @dualmaster: whether this version supports dual AHB masters or not.
98  * @nomadik: whether the channels have Nomadik security extension bits
99  *      that need to be checked for permission before use and some registers are
100  *      missing
101  */
102 struct vendor_data {
103         u8 channels;
104         bool dualmaster;
105         bool nomadik;
106 };
107
108 /*
109  * PL08X private data structures
110  * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
111  * start & end do not - their bus bit info is in cctl.  Also note that these
112  * are fixed 32-bit quantities.
113  */
114 struct pl08x_lli {
115         u32 src;
116         u32 dst;
117         u32 lli;
118         u32 cctl;
119 };
120
121 /**
122  * struct pl08x_driver_data - the local state holder for the PL08x
123  * @slave: slave engine for this instance
124  * @memcpy: memcpy engine for this instance
125  * @base: virtual memory base (remapped) for the PL08x
126  * @adev: the corresponding AMBA (PrimeCell) bus entry
127  * @vd: vendor data for this PL08x variant
128  * @pd: platform data passed in from the platform/machine
129  * @phy_chans: array of data for the physical channels
130  * @pool: a pool for the LLI descriptors
131  * @pool_ctr: counter of LLIs in the pool
132  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
133  * fetches
134  * @mem_buses: set to indicate memory transfers on AHB2.
135  * @lock: a spinlock for this struct
136  */
137 struct pl08x_driver_data {
138         struct dma_device slave;
139         struct dma_device memcpy;
140         void __iomem *base;
141         struct amba_device *adev;
142         const struct vendor_data *vd;
143         struct pl08x_platform_data *pd;
144         struct pl08x_phy_chan *phy_chans;
145         struct dma_pool *pool;
146         int pool_ctr;
147         u8 lli_buses;
148         u8 mem_buses;
149         spinlock_t lock;
150 };
151
152 /*
153  * PL08X specific defines
154  */
155
156 /* Size (bytes) of each LLI buffer allocated for one transfer */
157 # define PL08X_LLI_TSFR_SIZE    0x2000
158
159 /* Maximum times we call dma_pool_alloc on this pool without freeing */
160 #define MAX_NUM_TSFR_LLIS       (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
161 #define PL08X_ALIGN             8
162
163 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
164 {
165         return container_of(chan, struct pl08x_dma_chan, chan);
166 }
167
168 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
169 {
170         return container_of(tx, struct pl08x_txd, tx);
171 }
172
173 /*
174  * Physical channel handling
175  */
176
177 /* Whether a certain channel is busy or not */
178 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
179 {
180         unsigned int val;
181
182         val = readl(ch->base + PL080_CH_CONFIG);
183         return val & PL080_CONFIG_ACTIVE;
184 }
185
186 /*
187  * Set the initial DMA register values i.e. those for the first LLI
188  * The next LLI pointer and the configuration interrupt bit have
189  * been set when the LLIs were constructed.  Poke them into the hardware
190  * and start the transfer.
191  */
192 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
193         struct pl08x_txd *txd)
194 {
195         struct pl08x_driver_data *pl08x = plchan->host;
196         struct pl08x_phy_chan *phychan = plchan->phychan;
197         struct pl08x_lli *lli = &txd->llis_va[0];
198         u32 val;
199
200         plchan->at = txd;
201
202         /* Wait for channel inactive */
203         while (pl08x_phy_channel_busy(phychan))
204                 cpu_relax();
205
206         dev_vdbg(&pl08x->adev->dev,
207                 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
208                 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
209                 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
210                 txd->ccfg);
211
212         writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
213         writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
214         writel(lli->lli, phychan->base + PL080_CH_LLI);
215         writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
216         writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
217
218         /* Enable the DMA channel */
219         /* Do not access config register until channel shows as disabled */
220         while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
221                 cpu_relax();
222
223         /* Do not access config register until channel shows as inactive */
224         val = readl(phychan->base + PL080_CH_CONFIG);
225         while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
226                 val = readl(phychan->base + PL080_CH_CONFIG);
227
228         writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
229 }
230
231 /*
232  * Pause the channel by setting the HALT bit.
233  *
234  * For M->P transfers, pause the DMAC first and then stop the peripheral -
235  * the FIFO can only drain if the peripheral is still requesting data.
236  * (note: this can still timeout if the DMAC FIFO never drains of data.)
237  *
238  * For P->M transfers, disable the peripheral first to stop it filling
239  * the DMAC FIFO, and then pause the DMAC.
240  */
241 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
242 {
243         u32 val;
244         int timeout;
245
246         /* Set the HALT bit and wait for the FIFO to drain */
247         val = readl(ch->base + PL080_CH_CONFIG);
248         val |= PL080_CONFIG_HALT;
249         writel(val, ch->base + PL080_CH_CONFIG);
250
251         /* Wait for channel inactive */
252         for (timeout = 1000; timeout; timeout--) {
253                 if (!pl08x_phy_channel_busy(ch))
254                         break;
255                 udelay(1);
256         }
257         if (pl08x_phy_channel_busy(ch))
258                 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
259 }
260
261 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
262 {
263         u32 val;
264
265         /* Clear the HALT bit */
266         val = readl(ch->base + PL080_CH_CONFIG);
267         val &= ~PL080_CONFIG_HALT;
268         writel(val, ch->base + PL080_CH_CONFIG);
269 }
270
271 /*
272  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
273  * clears any pending interrupt status.  This should not be used for
274  * an on-going transfer, but as a method of shutting down a channel
275  * (eg, when it's no longer used) or terminating a transfer.
276  */
277 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
278         struct pl08x_phy_chan *ch)
279 {
280         u32 val = readl(ch->base + PL080_CH_CONFIG);
281
282         val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
283                  PL080_CONFIG_TC_IRQ_MASK);
284
285         writel(val, ch->base + PL080_CH_CONFIG);
286
287         writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
288         writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
289 }
290
291 static inline u32 get_bytes_in_cctl(u32 cctl)
292 {
293         /* The source width defines the number of bytes */
294         u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
295
296         switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
297         case PL080_WIDTH_8BIT:
298                 break;
299         case PL080_WIDTH_16BIT:
300                 bytes *= 2;
301                 break;
302         case PL080_WIDTH_32BIT:
303                 bytes *= 4;
304                 break;
305         }
306         return bytes;
307 }
308
309 /* The channel should be paused when calling this */
310 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
311 {
312         struct pl08x_phy_chan *ch;
313         struct pl08x_txd *txd;
314         unsigned long flags;
315         size_t bytes = 0;
316
317         spin_lock_irqsave(&plchan->lock, flags);
318         ch = plchan->phychan;
319         txd = plchan->at;
320
321         /*
322          * Follow the LLIs to get the number of remaining
323          * bytes in the currently active transaction.
324          */
325         if (ch && txd) {
326                 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
327
328                 /* First get the remaining bytes in the active transfer */
329                 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
330
331                 if (clli) {
332                         struct pl08x_lli *llis_va = txd->llis_va;
333                         dma_addr_t llis_bus = txd->llis_bus;
334                         int index;
335
336                         BUG_ON(clli < llis_bus || clli >= llis_bus +
337                                 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
338
339                         /*
340                          * Locate the next LLI - as this is an array,
341                          * it's simple maths to find.
342                          */
343                         index = (clli - llis_bus) / sizeof(struct pl08x_lli);
344
345                         for (; index < MAX_NUM_TSFR_LLIS; index++) {
346                                 bytes += get_bytes_in_cctl(llis_va[index].cctl);
347
348                                 /*
349                                  * A LLI pointer of 0 terminates the LLI list
350                                  */
351                                 if (!llis_va[index].lli)
352                                         break;
353                         }
354                 }
355         }
356
357         /* Sum up all queued transactions */
358         if (!list_empty(&plchan->pend_list)) {
359                 struct pl08x_txd *txdi;
360                 list_for_each_entry(txdi, &plchan->pend_list, node) {
361                         struct pl08x_sg *dsg;
362                         list_for_each_entry(dsg, &txd->dsg_list, node)
363                                 bytes += dsg->len;
364                 }
365         }
366
367         spin_unlock_irqrestore(&plchan->lock, flags);
368
369         return bytes;
370 }
371
372 /*
373  * Allocate a physical channel for a virtual channel
374  *
375  * Try to locate a physical channel to be used for this transfer. If all
376  * are taken return NULL and the requester will have to cope by using
377  * some fallback PIO mode or retrying later.
378  */
379 static struct pl08x_phy_chan *
380 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
381                       struct pl08x_dma_chan *virt_chan)
382 {
383         struct pl08x_phy_chan *ch = NULL;
384         unsigned long flags;
385         int i;
386
387         for (i = 0; i < pl08x->vd->channels; i++) {
388                 ch = &pl08x->phy_chans[i];
389
390                 spin_lock_irqsave(&ch->lock, flags);
391
392                 if (!ch->locked && !ch->serving) {
393                         ch->serving = virt_chan;
394                         ch->signal = -1;
395                         spin_unlock_irqrestore(&ch->lock, flags);
396                         break;
397                 }
398
399                 spin_unlock_irqrestore(&ch->lock, flags);
400         }
401
402         if (i == pl08x->vd->channels) {
403                 /* No physical channel available, cope with it */
404                 return NULL;
405         }
406
407         pm_runtime_get_sync(&pl08x->adev->dev);
408         return ch;
409 }
410
411 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
412                                          struct pl08x_phy_chan *ch)
413 {
414         unsigned long flags;
415
416         spin_lock_irqsave(&ch->lock, flags);
417
418         /* Stop the channel and clear its interrupts */
419         pl08x_terminate_phy_chan(pl08x, ch);
420
421         pm_runtime_put(&pl08x->adev->dev);
422
423         /* Mark it as free */
424         ch->serving = NULL;
425         spin_unlock_irqrestore(&ch->lock, flags);
426 }
427
428 /*
429  * LLI handling
430  */
431
432 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
433 {
434         switch (coded) {
435         case PL080_WIDTH_8BIT:
436                 return 1;
437         case PL080_WIDTH_16BIT:
438                 return 2;
439         case PL080_WIDTH_32BIT:
440                 return 4;
441         default:
442                 break;
443         }
444         BUG();
445         return 0;
446 }
447
448 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
449                                   size_t tsize)
450 {
451         u32 retbits = cctl;
452
453         /* Remove all src, dst and transfer size bits */
454         retbits &= ~PL080_CONTROL_DWIDTH_MASK;
455         retbits &= ~PL080_CONTROL_SWIDTH_MASK;
456         retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
457
458         /* Then set the bits according to the parameters */
459         switch (srcwidth) {
460         case 1:
461                 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
462                 break;
463         case 2:
464                 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
465                 break;
466         case 4:
467                 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
468                 break;
469         default:
470                 BUG();
471                 break;
472         }
473
474         switch (dstwidth) {
475         case 1:
476                 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
477                 break;
478         case 2:
479                 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
480                 break;
481         case 4:
482                 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
483                 break;
484         default:
485                 BUG();
486                 break;
487         }
488
489         retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
490         return retbits;
491 }
492
493 struct pl08x_lli_build_data {
494         struct pl08x_txd *txd;
495         struct pl08x_bus_data srcbus;
496         struct pl08x_bus_data dstbus;
497         size_t remainder;
498         u32 lli_bus;
499 };
500
501 /*
502  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
503  * victim in case src & dest are not similarly aligned. i.e. If after aligning
504  * masters address with width requirements of transfer (by sending few byte by
505  * byte data), slave is still not aligned, then its width will be reduced to
506  * BYTE.
507  * - prefers the destination bus if both available
508  * - prefers bus with fixed address (i.e. peripheral)
509  */
510 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
511         struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
512 {
513         if (!(cctl & PL080_CONTROL_DST_INCR)) {
514                 *mbus = &bd->dstbus;
515                 *sbus = &bd->srcbus;
516         } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
517                 *mbus = &bd->srcbus;
518                 *sbus = &bd->dstbus;
519         } else {
520                 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
521                         *mbus = &bd->dstbus;
522                         *sbus = &bd->srcbus;
523                 } else {
524                         *mbus = &bd->srcbus;
525                         *sbus = &bd->dstbus;
526                 }
527         }
528 }
529
530 /*
531  * Fills in one LLI for a certain transfer descriptor and advance the counter
532  */
533 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
534         int num_llis, int len, u32 cctl)
535 {
536         struct pl08x_lli *llis_va = bd->txd->llis_va;
537         dma_addr_t llis_bus = bd->txd->llis_bus;
538
539         BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
540
541         llis_va[num_llis].cctl = cctl;
542         llis_va[num_llis].src = bd->srcbus.addr;
543         llis_va[num_llis].dst = bd->dstbus.addr;
544         llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
545                 sizeof(struct pl08x_lli);
546         llis_va[num_llis].lli |= bd->lli_bus;
547
548         if (cctl & PL080_CONTROL_SRC_INCR)
549                 bd->srcbus.addr += len;
550         if (cctl & PL080_CONTROL_DST_INCR)
551                 bd->dstbus.addr += len;
552
553         BUG_ON(bd->remainder < len);
554
555         bd->remainder -= len;
556 }
557
558 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
559                 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
560 {
561         *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
562         pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
563         (*total_bytes) += len;
564 }
565
566 /*
567  * This fills in the table of LLIs for the transfer descriptor
568  * Note that we assume we never have to change the burst sizes
569  * Return 0 for error
570  */
571 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
572                               struct pl08x_txd *txd)
573 {
574         struct pl08x_bus_data *mbus, *sbus;
575         struct pl08x_lli_build_data bd;
576         int num_llis = 0;
577         u32 cctl, early_bytes = 0;
578         size_t max_bytes_per_lli, total_bytes;
579         struct pl08x_lli *llis_va;
580         struct pl08x_sg *dsg;
581
582         txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
583         if (!txd->llis_va) {
584                 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
585                 return 0;
586         }
587
588         pl08x->pool_ctr++;
589
590         bd.txd = txd;
591         bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
592         cctl = txd->cctl;
593
594         /* Find maximum width of the source bus */
595         bd.srcbus.maxwidth =
596                 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
597                                        PL080_CONTROL_SWIDTH_SHIFT);
598
599         /* Find maximum width of the destination bus */
600         bd.dstbus.maxwidth =
601                 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
602                                        PL080_CONTROL_DWIDTH_SHIFT);
603
604         list_for_each_entry(dsg, &txd->dsg_list, node) {
605                 total_bytes = 0;
606                 cctl = txd->cctl;
607
608                 bd.srcbus.addr = dsg->src_addr;
609                 bd.dstbus.addr = dsg->dst_addr;
610                 bd.remainder = dsg->len;
611                 bd.srcbus.buswidth = bd.srcbus.maxwidth;
612                 bd.dstbus.buswidth = bd.dstbus.maxwidth;
613
614                 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
615
616                 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
617                         bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
618                         bd.srcbus.buswidth,
619                         bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
620                         bd.dstbus.buswidth,
621                         bd.remainder);
622                 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
623                         mbus == &bd.srcbus ? "src" : "dst",
624                         sbus == &bd.srcbus ? "src" : "dst");
625
626                 /*
627                  * Zero length is only allowed if all these requirements are
628                  * met:
629                  * - flow controller is peripheral.
630                  * - src.addr is aligned to src.width
631                  * - dst.addr is aligned to dst.width
632                  *
633                  * sg_len == 1 should be true, as there can be two cases here:
634                  *
635                  * - Memory addresses are contiguous and are not scattered.
636                  *   Here, Only one sg will be passed by user driver, with
637                  *   memory address and zero length. We pass this to controller
638                  *   and after the transfer it will receive the last burst
639                  *   request from peripheral and so transfer finishes.
640                  *
641                  * - Memory addresses are scattered and are not contiguous.
642                  *   Here, Obviously as DMA controller doesn't know when a lli's
643                  *   transfer gets over, it can't load next lli. So in this
644                  *   case, there has to be an assumption that only one lli is
645                  *   supported. Thus, we can't have scattered addresses.
646                  */
647                 if (!bd.remainder) {
648                         u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
649                                 PL080_CONFIG_FLOW_CONTROL_SHIFT;
650                         if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
651                                         (fc <= PL080_FLOW_SRC2DST_SRC))) {
652                                 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
653                                         __func__);
654                                 return 0;
655                         }
656
657                         if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
658                                         (bd.dstbus.addr % bd.dstbus.buswidth)) {
659                                 dev_err(&pl08x->adev->dev,
660                                         "%s src & dst address must be aligned to src"
661                                         " & dst width if peripheral is flow controller",
662                                         __func__);
663                                 return 0;
664                         }
665
666                         cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
667                                         bd.dstbus.buswidth, 0);
668                         pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
669                         break;
670                 }
671
672                 /*
673                  * Send byte by byte for following cases
674                  * - Less than a bus width available
675                  * - until master bus is aligned
676                  */
677                 if (bd.remainder < mbus->buswidth)
678                         early_bytes = bd.remainder;
679                 else if ((mbus->addr) % (mbus->buswidth)) {
680                         early_bytes = mbus->buswidth - (mbus->addr) %
681                                 (mbus->buswidth);
682                         if ((bd.remainder - early_bytes) < mbus->buswidth)
683                                 early_bytes = bd.remainder;
684                 }
685
686                 if (early_bytes) {
687                         dev_vdbg(&pl08x->adev->dev,
688                                 "%s byte width LLIs (remain 0x%08x)\n",
689                                 __func__, bd.remainder);
690                         prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
691                                 &total_bytes);
692                 }
693
694                 if (bd.remainder) {
695                         /*
696                          * Master now aligned
697                          * - if slave is not then we must set its width down
698                          */
699                         if (sbus->addr % sbus->buswidth) {
700                                 dev_dbg(&pl08x->adev->dev,
701                                         "%s set down bus width to one byte\n",
702                                         __func__);
703
704                                 sbus->buswidth = 1;
705                         }
706
707                         /*
708                          * Bytes transferred = tsize * src width, not
709                          * MIN(buswidths)
710                          */
711                         max_bytes_per_lli = bd.srcbus.buswidth *
712                                 PL080_CONTROL_TRANSFER_SIZE_MASK;
713                         dev_vdbg(&pl08x->adev->dev,
714                                 "%s max bytes per lli = %zu\n",
715                                 __func__, max_bytes_per_lli);
716
717                         /*
718                          * Make largest possible LLIs until less than one bus
719                          * width left
720                          */
721                         while (bd.remainder > (mbus->buswidth - 1)) {
722                                 size_t lli_len, tsize, width;
723
724                                 /*
725                                  * If enough left try to send max possible,
726                                  * otherwise try to send the remainder
727                                  */
728                                 lli_len = min(bd.remainder, max_bytes_per_lli);
729
730                                 /*
731                                  * Check against maximum bus alignment:
732                                  * Calculate actual transfer size in relation to
733                                  * bus width an get a maximum remainder of the
734                                  * highest bus width - 1
735                                  */
736                                 width = max(mbus->buswidth, sbus->buswidth);
737                                 lli_len = (lli_len / width) * width;
738                                 tsize = lli_len / bd.srcbus.buswidth;
739
740                                 dev_vdbg(&pl08x->adev->dev,
741                                         "%s fill lli with single lli chunk of "
742                                         "size 0x%08zx (remainder 0x%08zx)\n",
743                                         __func__, lli_len, bd.remainder);
744
745                                 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
746                                         bd.dstbus.buswidth, tsize);
747                                 pl08x_fill_lli_for_desc(&bd, num_llis++,
748                                                 lli_len, cctl);
749                                 total_bytes += lli_len;
750                         }
751
752                         /*
753                          * Send any odd bytes
754                          */
755                         if (bd.remainder) {
756                                 dev_vdbg(&pl08x->adev->dev,
757                                         "%s align with boundary, send odd bytes (remain %zu)\n",
758                                         __func__, bd.remainder);
759                                 prep_byte_width_lli(&bd, &cctl, bd.remainder,
760                                                 num_llis++, &total_bytes);
761                         }
762                 }
763
764                 if (total_bytes != dsg->len) {
765                         dev_err(&pl08x->adev->dev,
766                                 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
767                                 __func__, total_bytes, dsg->len);
768                         return 0;
769                 }
770
771                 if (num_llis >= MAX_NUM_TSFR_LLIS) {
772                         dev_err(&pl08x->adev->dev,
773                                 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
774                                 __func__, (u32) MAX_NUM_TSFR_LLIS);
775                         return 0;
776                 }
777         }
778
779         llis_va = txd->llis_va;
780         /* The final LLI terminates the LLI. */
781         llis_va[num_llis - 1].lli = 0;
782         /* The final LLI element shall also fire an interrupt. */
783         llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
784
785 #ifdef VERBOSE_DEBUG
786         {
787                 int i;
788
789                 dev_vdbg(&pl08x->adev->dev,
790                          "%-3s %-9s  %-10s %-10s %-10s %s\n",
791                          "lli", "", "csrc", "cdst", "clli", "cctl");
792                 for (i = 0; i < num_llis; i++) {
793                         dev_vdbg(&pl08x->adev->dev,
794                                  "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
795                                  i, &llis_va[i], llis_va[i].src,
796                                  llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
797                                 );
798                 }
799         }
800 #endif
801
802         return num_llis;
803 }
804
805 /* You should call this with the struct pl08x lock held */
806 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
807                            struct pl08x_txd *txd)
808 {
809         struct pl08x_sg *dsg, *_dsg;
810
811         /* Free the LLI */
812         if (txd->llis_va)
813                 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
814
815         pl08x->pool_ctr--;
816
817         list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
818                 list_del(&dsg->node);
819                 kfree(dsg);
820         }
821
822         kfree(txd);
823 }
824
825 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
826                                 struct pl08x_dma_chan *plchan)
827 {
828         struct pl08x_txd *txdi = NULL;
829         struct pl08x_txd *next;
830
831         if (!list_empty(&plchan->pend_list)) {
832                 list_for_each_entry_safe(txdi,
833                                          next, &plchan->pend_list, node) {
834                         list_del(&txdi->node);
835                         pl08x_free_txd(pl08x, txdi);
836                 }
837         }
838 }
839
840 /*
841  * The DMA ENGINE API
842  */
843 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
844 {
845         return 0;
846 }
847
848 static void pl08x_free_chan_resources(struct dma_chan *chan)
849 {
850 }
851
852 /*
853  * This should be called with the channel plchan->lock held
854  */
855 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
856                             struct pl08x_txd *txd)
857 {
858         struct pl08x_driver_data *pl08x = plchan->host;
859         struct pl08x_phy_chan *ch;
860         int ret;
861
862         /* Check if we already have a channel */
863         if (plchan->phychan) {
864                 ch = plchan->phychan;
865                 goto got_channel;
866         }
867
868         ch = pl08x_get_phy_channel(pl08x, plchan);
869         if (!ch) {
870                 /* No physical channel available, cope with it */
871                 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
872                 return -EBUSY;
873         }
874
875         /*
876          * OK we have a physical channel: for memcpy() this is all we
877          * need, but for slaves the physical signals may be muxed!
878          * Can the platform allow us to use this channel?
879          */
880         if (plchan->slave && pl08x->pd->get_signal) {
881                 ret = pl08x->pd->get_signal(plchan);
882                 if (ret < 0) {
883                         dev_dbg(&pl08x->adev->dev,
884                                 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
885                                 ch->id, plchan->name);
886                         /* Release physical channel & return */
887                         pl08x_put_phy_channel(pl08x, ch);
888                         return -EBUSY;
889                 }
890                 ch->signal = ret;
891         }
892
893         plchan->phychan = ch;
894         dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
895                  ch->id,
896                  ch->signal,
897                  plchan->name);
898
899 got_channel:
900         /* Assign the flow control signal to this channel */
901         if (txd->direction == DMA_MEM_TO_DEV)
902                 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
903         else if (txd->direction == DMA_DEV_TO_MEM)
904                 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
905
906         plchan->phychan_hold++;
907
908         return 0;
909 }
910
911 static void release_phy_channel(struct pl08x_dma_chan *plchan)
912 {
913         struct pl08x_driver_data *pl08x = plchan->host;
914
915         if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
916                 pl08x->pd->put_signal(plchan);
917                 plchan->phychan->signal = -1;
918         }
919         pl08x_put_phy_channel(pl08x, plchan->phychan);
920         plchan->phychan = NULL;
921 }
922
923 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
924 {
925         struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
926         struct pl08x_txd *txd = to_pl08x_txd(tx);
927         unsigned long flags;
928         dma_cookie_t cookie;
929
930         spin_lock_irqsave(&plchan->lock, flags);
931         cookie = dma_cookie_assign(tx);
932
933         /* Put this onto the pending list */
934         list_add_tail(&txd->node, &plchan->pend_list);
935
936         /*
937          * If there was no physical channel available for this memcpy,
938          * stack the request up and indicate that the channel is waiting
939          * for a free physical channel.
940          */
941         if (!plchan->slave && !plchan->phychan) {
942                 /* Do this memcpy whenever there is a channel ready */
943                 plchan->state = PL08X_CHAN_WAITING;
944                 plchan->waiting = txd;
945         } else {
946                 plchan->phychan_hold--;
947         }
948
949         spin_unlock_irqrestore(&plchan->lock, flags);
950
951         return cookie;
952 }
953
954 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
955                 struct dma_chan *chan, unsigned long flags)
956 {
957         struct dma_async_tx_descriptor *retval = NULL;
958
959         return retval;
960 }
961
962 /*
963  * Code accessing dma_async_is_complete() in a tight loop may give problems.
964  * If slaves are relying on interrupts to signal completion this function
965  * must not be called with interrupts disabled.
966  */
967 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
968                 dma_cookie_t cookie, struct dma_tx_state *txstate)
969 {
970         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
971         enum dma_status ret;
972
973         ret = dma_cookie_status(chan, cookie, txstate);
974         if (ret == DMA_SUCCESS)
975                 return ret;
976
977         /*
978          * This cookie not complete yet
979          * Get number of bytes left in the active transactions and queue
980          */
981         dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
982
983         if (plchan->state == PL08X_CHAN_PAUSED)
984                 return DMA_PAUSED;
985
986         /* Whether waiting or running, we're in progress */
987         return DMA_IN_PROGRESS;
988 }
989
990 /* PrimeCell DMA extension */
991 struct burst_table {
992         u32 burstwords;
993         u32 reg;
994 };
995
996 static const struct burst_table burst_sizes[] = {
997         {
998                 .burstwords = 256,
999                 .reg = PL080_BSIZE_256,
1000         },
1001         {
1002                 .burstwords = 128,
1003                 .reg = PL080_BSIZE_128,
1004         },
1005         {
1006                 .burstwords = 64,
1007                 .reg = PL080_BSIZE_64,
1008         },
1009         {
1010                 .burstwords = 32,
1011                 .reg = PL080_BSIZE_32,
1012         },
1013         {
1014                 .burstwords = 16,
1015                 .reg = PL080_BSIZE_16,
1016         },
1017         {
1018                 .burstwords = 8,
1019                 .reg = PL080_BSIZE_8,
1020         },
1021         {
1022                 .burstwords = 4,
1023                 .reg = PL080_BSIZE_4,
1024         },
1025         {
1026                 .burstwords = 0,
1027                 .reg = PL080_BSIZE_1,
1028         },
1029 };
1030
1031 /*
1032  * Given the source and destination available bus masks, select which
1033  * will be routed to each port.  We try to have source and destination
1034  * on separate ports, but always respect the allowable settings.
1035  */
1036 static u32 pl08x_select_bus(u8 src, u8 dst)
1037 {
1038         u32 cctl = 0;
1039
1040         if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1041                 cctl |= PL080_CONTROL_DST_AHB2;
1042         if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1043                 cctl |= PL080_CONTROL_SRC_AHB2;
1044
1045         return cctl;
1046 }
1047
1048 static u32 pl08x_cctl(u32 cctl)
1049 {
1050         cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1051                   PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1052                   PL080_CONTROL_PROT_MASK);
1053
1054         /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1055         return cctl | PL080_CONTROL_PROT_SYS;
1056 }
1057
1058 static u32 pl08x_width(enum dma_slave_buswidth width)
1059 {
1060         switch (width) {
1061         case DMA_SLAVE_BUSWIDTH_1_BYTE:
1062                 return PL080_WIDTH_8BIT;
1063         case DMA_SLAVE_BUSWIDTH_2_BYTES:
1064                 return PL080_WIDTH_16BIT;
1065         case DMA_SLAVE_BUSWIDTH_4_BYTES:
1066                 return PL080_WIDTH_32BIT;
1067         default:
1068                 return ~0;
1069         }
1070 }
1071
1072 static u32 pl08x_burst(u32 maxburst)
1073 {
1074         int i;
1075
1076         for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1077                 if (burst_sizes[i].burstwords <= maxburst)
1078                         break;
1079
1080         return burst_sizes[i].reg;
1081 }
1082
1083 static int dma_set_runtime_config(struct dma_chan *chan,
1084                                   struct dma_slave_config *config)
1085 {
1086         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1087         struct pl08x_driver_data *pl08x = plchan->host;
1088         enum dma_slave_buswidth addr_width;
1089         u32 width, burst, maxburst;
1090         u32 cctl = 0;
1091
1092         if (!plchan->slave)
1093                 return -EINVAL;
1094
1095         /* Transfer direction */
1096         plchan->runtime_direction = config->direction;
1097         if (config->direction == DMA_MEM_TO_DEV) {
1098                 addr_width = config->dst_addr_width;
1099                 maxburst = config->dst_maxburst;
1100         } else if (config->direction == DMA_DEV_TO_MEM) {
1101                 addr_width = config->src_addr_width;
1102                 maxburst = config->src_maxburst;
1103         } else {
1104                 dev_err(&pl08x->adev->dev,
1105                         "bad runtime_config: alien transfer direction\n");
1106                 return -EINVAL;
1107         }
1108
1109         width = pl08x_width(addr_width);
1110         if (width == ~0) {
1111                 dev_err(&pl08x->adev->dev,
1112                         "bad runtime_config: alien address width\n");
1113                 return -EINVAL;
1114         }
1115
1116         cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1117         cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1118
1119         /*
1120          * If this channel will only request single transfers, set this
1121          * down to ONE element.  Also select one element if no maxburst
1122          * is specified.
1123          */
1124         if (plchan->cd->single)
1125                 maxburst = 1;
1126
1127         burst = pl08x_burst(maxburst);
1128         cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1129         cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1130
1131         plchan->device_fc = config->device_fc;
1132
1133         if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1134                 plchan->src_addr = config->src_addr;
1135                 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1136                         pl08x_select_bus(plchan->cd->periph_buses,
1137                                          pl08x->mem_buses);
1138         } else {
1139                 plchan->dst_addr = config->dst_addr;
1140                 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1141                         pl08x_select_bus(pl08x->mem_buses,
1142                                          plchan->cd->periph_buses);
1143         }
1144
1145         dev_dbg(&pl08x->adev->dev,
1146                 "configured channel %s (%s) for %s, data width %d, "
1147                 "maxburst %d words, LE, CCTL=0x%08x\n",
1148                 dma_chan_name(chan), plchan->name,
1149                 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1150                 addr_width,
1151                 maxburst,
1152                 cctl);
1153
1154         return 0;
1155 }
1156
1157 /*
1158  * Slave transactions callback to the slave device to allow
1159  * synchronization of slave DMA signals with the DMAC enable
1160  */
1161 static void pl08x_issue_pending(struct dma_chan *chan)
1162 {
1163         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1164         unsigned long flags;
1165
1166         spin_lock_irqsave(&plchan->lock, flags);
1167         /* Something is already active, or we're waiting for a channel... */
1168         if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1169                 spin_unlock_irqrestore(&plchan->lock, flags);
1170                 return;
1171         }
1172
1173         /* Take the first element in the queue and execute it */
1174         if (!list_empty(&plchan->pend_list)) {
1175                 struct pl08x_txd *next;
1176
1177                 next = list_first_entry(&plchan->pend_list,
1178                                         struct pl08x_txd,
1179                                         node);
1180                 list_del(&next->node);
1181                 plchan->state = PL08X_CHAN_RUNNING;
1182
1183                 pl08x_start_txd(plchan, next);
1184         }
1185
1186         spin_unlock_irqrestore(&plchan->lock, flags);
1187 }
1188
1189 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1190                                         struct pl08x_txd *txd)
1191 {
1192         struct pl08x_driver_data *pl08x = plchan->host;
1193         unsigned long flags;
1194         int num_llis, ret;
1195
1196         num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1197         if (!num_llis) {
1198                 spin_lock_irqsave(&plchan->lock, flags);
1199                 pl08x_free_txd(pl08x, txd);
1200                 spin_unlock_irqrestore(&plchan->lock, flags);
1201                 return -EINVAL;
1202         }
1203
1204         spin_lock_irqsave(&plchan->lock, flags);
1205
1206         /*
1207          * See if we already have a physical channel allocated,
1208          * else this is the time to try to get one.
1209          */
1210         ret = prep_phy_channel(plchan, txd);
1211         if (ret) {
1212                 /*
1213                  * No physical channel was available.
1214                  *
1215                  * memcpy transfers can be sorted out at submission time.
1216                  *
1217                  * Slave transfers may have been denied due to platform
1218                  * channel muxing restrictions.  Since there is no guarantee
1219                  * that this will ever be resolved, and the signal must be
1220                  * acquired AFTER acquiring the physical channel, we will let
1221                  * them be NACK:ed with -EBUSY here. The drivers can retry
1222                  * the prep() call if they are eager on doing this using DMA.
1223                  */
1224                 if (plchan->slave) {
1225                         pl08x_free_txd_list(pl08x, plchan);
1226                         pl08x_free_txd(pl08x, txd);
1227                         spin_unlock_irqrestore(&plchan->lock, flags);
1228                         return -EBUSY;
1229                 }
1230         } else
1231                 /*
1232                  * Else we're all set, paused and ready to roll, status
1233                  * will switch to PL08X_CHAN_RUNNING when we call
1234                  * issue_pending(). If there is something running on the
1235                  * channel already we don't change its state.
1236                  */
1237                 if (plchan->state == PL08X_CHAN_IDLE)
1238                         plchan->state = PL08X_CHAN_PAUSED;
1239
1240         spin_unlock_irqrestore(&plchan->lock, flags);
1241
1242         return 0;
1243 }
1244
1245 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1246         unsigned long flags)
1247 {
1248         struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1249
1250         if (txd) {
1251                 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1252                 txd->tx.flags = flags;
1253                 txd->tx.tx_submit = pl08x_tx_submit;
1254                 INIT_LIST_HEAD(&txd->node);
1255                 INIT_LIST_HEAD(&txd->dsg_list);
1256
1257                 /* Always enable error and terminal interrupts */
1258                 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1259                             PL080_CONFIG_TC_IRQ_MASK;
1260         }
1261         return txd;
1262 }
1263
1264 /*
1265  * Initialize a descriptor to be used by memcpy submit
1266  */
1267 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1268                 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1269                 size_t len, unsigned long flags)
1270 {
1271         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1272         struct pl08x_driver_data *pl08x = plchan->host;
1273         struct pl08x_txd *txd;
1274         struct pl08x_sg *dsg;
1275         int ret;
1276
1277         txd = pl08x_get_txd(plchan, flags);
1278         if (!txd) {
1279                 dev_err(&pl08x->adev->dev,
1280                         "%s no memory for descriptor\n", __func__);
1281                 return NULL;
1282         }
1283
1284         dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1285         if (!dsg) {
1286                 pl08x_free_txd(pl08x, txd);
1287                 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1288                                 __func__);
1289                 return NULL;
1290         }
1291         list_add_tail(&dsg->node, &txd->dsg_list);
1292
1293         txd->direction = DMA_NONE;
1294         dsg->src_addr = src;
1295         dsg->dst_addr = dest;
1296         dsg->len = len;
1297
1298         /* Set platform data for m2m */
1299         txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1300         txd->cctl = pl08x->pd->memcpy_channel.cctl &
1301                         ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1302
1303         /* Both to be incremented or the code will break */
1304         txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1305
1306         if (pl08x->vd->dualmaster)
1307                 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1308                                               pl08x->mem_buses);
1309
1310         ret = pl08x_prep_channel_resources(plchan, txd);
1311         if (ret)
1312                 return NULL;
1313
1314         return &txd->tx;
1315 }
1316
1317 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1318                 struct dma_chan *chan, struct scatterlist *sgl,
1319                 unsigned int sg_len, enum dma_transfer_direction direction,
1320                 unsigned long flags, void *context)
1321 {
1322         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1323         struct pl08x_driver_data *pl08x = plchan->host;
1324         struct pl08x_txd *txd;
1325         struct pl08x_sg *dsg;
1326         struct scatterlist *sg;
1327         dma_addr_t slave_addr;
1328         int ret, tmp;
1329
1330         dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1331                         __func__, sg_dma_len(sgl), plchan->name);
1332
1333         txd = pl08x_get_txd(plchan, flags);
1334         if (!txd) {
1335                 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1336                 return NULL;
1337         }
1338
1339         if (direction != plchan->runtime_direction)
1340                 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1341                         "the direction configured for the PrimeCell\n",
1342                         __func__);
1343
1344         /*
1345          * Set up addresses, the PrimeCell configured address
1346          * will take precedence since this may configure the
1347          * channel target address dynamically at runtime.
1348          */
1349         txd->direction = direction;
1350
1351         if (direction == DMA_MEM_TO_DEV) {
1352                 txd->cctl = plchan->dst_cctl;
1353                 slave_addr = plchan->dst_addr;
1354         } else if (direction == DMA_DEV_TO_MEM) {
1355                 txd->cctl = plchan->src_cctl;
1356                 slave_addr = plchan->src_addr;
1357         } else {
1358                 pl08x_free_txd(pl08x, txd);
1359                 dev_err(&pl08x->adev->dev,
1360                         "%s direction unsupported\n", __func__);
1361                 return NULL;
1362         }
1363
1364         if (plchan->device_fc)
1365                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1366                         PL080_FLOW_PER2MEM_PER;
1367         else
1368                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1369                         PL080_FLOW_PER2MEM;
1370
1371         txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1372
1373         for_each_sg(sgl, sg, sg_len, tmp) {
1374                 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1375                 if (!dsg) {
1376                         pl08x_free_txd(pl08x, txd);
1377                         dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1378                                         __func__);
1379                         return NULL;
1380                 }
1381                 list_add_tail(&dsg->node, &txd->dsg_list);
1382
1383                 dsg->len = sg_dma_len(sg);
1384                 if (direction == DMA_MEM_TO_DEV) {
1385                         dsg->src_addr = sg_dma_address(sg);
1386                         dsg->dst_addr = slave_addr;
1387                 } else {
1388                         dsg->src_addr = slave_addr;
1389                         dsg->dst_addr = sg_dma_address(sg);
1390                 }
1391         }
1392
1393         ret = pl08x_prep_channel_resources(plchan, txd);
1394         if (ret)
1395                 return NULL;
1396
1397         return &txd->tx;
1398 }
1399
1400 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1401                          unsigned long arg)
1402 {
1403         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1404         struct pl08x_driver_data *pl08x = plchan->host;
1405         unsigned long flags;
1406         int ret = 0;
1407
1408         /* Controls applicable to inactive channels */
1409         if (cmd == DMA_SLAVE_CONFIG) {
1410                 return dma_set_runtime_config(chan,
1411                                               (struct dma_slave_config *)arg);
1412         }
1413
1414         /*
1415          * Anything succeeds on channels with no physical allocation and
1416          * no queued transfers.
1417          */
1418         spin_lock_irqsave(&plchan->lock, flags);
1419         if (!plchan->phychan && !plchan->at) {
1420                 spin_unlock_irqrestore(&plchan->lock, flags);
1421                 return 0;
1422         }
1423
1424         switch (cmd) {
1425         case DMA_TERMINATE_ALL:
1426                 plchan->state = PL08X_CHAN_IDLE;
1427
1428                 if (plchan->phychan) {
1429                         pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1430
1431                         /*
1432                          * Mark physical channel as free and free any slave
1433                          * signal
1434                          */
1435                         release_phy_channel(plchan);
1436                         plchan->phychan_hold = 0;
1437                 }
1438                 /* Dequeue jobs and free LLIs */
1439                 if (plchan->at) {
1440                         pl08x_free_txd(pl08x, plchan->at);
1441                         plchan->at = NULL;
1442                 }
1443                 /* Dequeue jobs not yet fired as well */
1444                 pl08x_free_txd_list(pl08x, plchan);
1445                 break;
1446         case DMA_PAUSE:
1447                 pl08x_pause_phy_chan(plchan->phychan);
1448                 plchan->state = PL08X_CHAN_PAUSED;
1449                 break;
1450         case DMA_RESUME:
1451                 pl08x_resume_phy_chan(plchan->phychan);
1452                 plchan->state = PL08X_CHAN_RUNNING;
1453                 break;
1454         default:
1455                 /* Unknown command */
1456                 ret = -ENXIO;
1457                 break;
1458         }
1459
1460         spin_unlock_irqrestore(&plchan->lock, flags);
1461
1462         return ret;
1463 }
1464
1465 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1466 {
1467         struct pl08x_dma_chan *plchan;
1468         char *name = chan_id;
1469
1470         /* Reject channels for devices not bound to this driver */
1471         if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1472                 return false;
1473
1474         plchan = to_pl08x_chan(chan);
1475
1476         /* Check that the channel is not taken! */
1477         if (!strcmp(plchan->name, name))
1478                 return true;
1479
1480         return false;
1481 }
1482
1483 /*
1484  * Just check that the device is there and active
1485  * TODO: turn this bit on/off depending on the number of physical channels
1486  * actually used, if it is zero... well shut it off. That will save some
1487  * power. Cut the clock at the same time.
1488  */
1489 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1490 {
1491         /* The Nomadik variant does not have the config register */
1492         if (pl08x->vd->nomadik)
1493                 return;
1494         writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1495 }
1496
1497 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1498 {
1499         struct device *dev = txd->tx.chan->device->dev;
1500         struct pl08x_sg *dsg;
1501
1502         if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1503                 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1504                         list_for_each_entry(dsg, &txd->dsg_list, node)
1505                                 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1506                                                 DMA_TO_DEVICE);
1507                 else {
1508                         list_for_each_entry(dsg, &txd->dsg_list, node)
1509                                 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1510                                                 DMA_TO_DEVICE);
1511                 }
1512         }
1513         if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1514                 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1515                         list_for_each_entry(dsg, &txd->dsg_list, node)
1516                                 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1517                                                 DMA_FROM_DEVICE);
1518                 else
1519                         list_for_each_entry(dsg, &txd->dsg_list, node)
1520                                 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1521                                                 DMA_FROM_DEVICE);
1522         }
1523 }
1524
1525 static void pl08x_tasklet(unsigned long data)
1526 {
1527         struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1528         struct pl08x_driver_data *pl08x = plchan->host;
1529         struct pl08x_txd *txd;
1530         unsigned long flags;
1531
1532         spin_lock_irqsave(&plchan->lock, flags);
1533
1534         txd = plchan->at;
1535         plchan->at = NULL;
1536
1537         if (txd) {
1538                 /* Update last completed */
1539                 dma_cookie_complete(&txd->tx);
1540         }
1541
1542         /* If a new descriptor is queued, set it up plchan->at is NULL here */
1543         if (!list_empty(&plchan->pend_list)) {
1544                 struct pl08x_txd *next;
1545
1546                 next = list_first_entry(&plchan->pend_list,
1547                                         struct pl08x_txd,
1548                                         node);
1549                 list_del(&next->node);
1550
1551                 pl08x_start_txd(plchan, next);
1552         } else if (plchan->phychan_hold) {
1553                 /*
1554                  * This channel is still in use - we have a new txd being
1555                  * prepared and will soon be queued.  Don't give up the
1556                  * physical channel.
1557                  */
1558         } else {
1559                 struct pl08x_dma_chan *waiting = NULL;
1560
1561                 /*
1562                  * No more jobs, so free up the physical channel
1563                  * Free any allocated signal on slave transfers too
1564                  */
1565                 release_phy_channel(plchan);
1566                 plchan->state = PL08X_CHAN_IDLE;
1567
1568                 /*
1569                  * And NOW before anyone else can grab that free:d up
1570                  * physical channel, see if there is some memcpy pending
1571                  * that seriously needs to start because of being stacked
1572                  * up while we were choking the physical channels with data.
1573                  */
1574                 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1575                                     chan.device_node) {
1576                         if (waiting->state == PL08X_CHAN_WAITING &&
1577                                 waiting->waiting != NULL) {
1578                                 int ret;
1579
1580                                 /* This should REALLY not fail now */
1581                                 ret = prep_phy_channel(waiting,
1582                                                        waiting->waiting);
1583                                 BUG_ON(ret);
1584                                 waiting->phychan_hold--;
1585                                 waiting->state = PL08X_CHAN_RUNNING;
1586                                 waiting->waiting = NULL;
1587                                 pl08x_issue_pending(&waiting->chan);
1588                                 break;
1589                         }
1590                 }
1591         }
1592
1593         spin_unlock_irqrestore(&plchan->lock, flags);
1594
1595         if (txd) {
1596                 dma_async_tx_callback callback = txd->tx.callback;
1597                 void *callback_param = txd->tx.callback_param;
1598
1599                 /* Don't try to unmap buffers on slave channels */
1600                 if (!plchan->slave)
1601                         pl08x_unmap_buffers(txd);
1602
1603                 /* Free the descriptor */
1604                 spin_lock_irqsave(&plchan->lock, flags);
1605                 pl08x_free_txd(pl08x, txd);
1606                 spin_unlock_irqrestore(&plchan->lock, flags);
1607
1608                 /* Callback to signal completion */
1609                 if (callback)
1610                         callback(callback_param);
1611         }
1612 }
1613
1614 static irqreturn_t pl08x_irq(int irq, void *dev)
1615 {
1616         struct pl08x_driver_data *pl08x = dev;
1617         u32 mask = 0, err, tc, i;
1618
1619         /* check & clear - ERR & TC interrupts */
1620         err = readl(pl08x->base + PL080_ERR_STATUS);
1621         if (err) {
1622                 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1623                         __func__, err);
1624                 writel(err, pl08x->base + PL080_ERR_CLEAR);
1625         }
1626         tc = readl(pl08x->base + PL080_TC_STATUS);
1627         if (tc)
1628                 writel(tc, pl08x->base + PL080_TC_CLEAR);
1629
1630         if (!err && !tc)
1631                 return IRQ_NONE;
1632
1633         for (i = 0; i < pl08x->vd->channels; i++) {
1634                 if (((1 << i) & err) || ((1 << i) & tc)) {
1635                         /* Locate physical channel */
1636                         struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1637                         struct pl08x_dma_chan *plchan = phychan->serving;
1638
1639                         if (!plchan) {
1640                                 dev_err(&pl08x->adev->dev,
1641                                         "%s Error TC interrupt on unused channel: 0x%08x\n",
1642                                         __func__, i);
1643                                 continue;
1644                         }
1645
1646                         /* Schedule tasklet on this channel */
1647                         tasklet_schedule(&plchan->tasklet);
1648                         mask |= (1 << i);
1649                 }
1650         }
1651
1652         return mask ? IRQ_HANDLED : IRQ_NONE;
1653 }
1654
1655 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1656 {
1657         u32 cctl = pl08x_cctl(chan->cd->cctl);
1658
1659         chan->slave = true;
1660         chan->name = chan->cd->bus_id;
1661         chan->src_addr = chan->cd->addr;
1662         chan->dst_addr = chan->cd->addr;
1663         chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1664                 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1665         chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1666                 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1667 }
1668
1669 /*
1670  * Initialise the DMAC memcpy/slave channels.
1671  * Make a local wrapper to hold required data
1672  */
1673 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1674                 struct dma_device *dmadev, unsigned int channels, bool slave)
1675 {
1676         struct pl08x_dma_chan *chan;
1677         int i;
1678
1679         INIT_LIST_HEAD(&dmadev->channels);
1680
1681         /*
1682          * Register as many many memcpy as we have physical channels,
1683          * we won't always be able to use all but the code will have
1684          * to cope with that situation.
1685          */
1686         for (i = 0; i < channels; i++) {
1687                 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1688                 if (!chan) {
1689                         dev_err(&pl08x->adev->dev,
1690                                 "%s no memory for channel\n", __func__);
1691                         return -ENOMEM;
1692                 }
1693
1694                 chan->host = pl08x;
1695                 chan->state = PL08X_CHAN_IDLE;
1696
1697                 if (slave) {
1698                         chan->cd = &pl08x->pd->slave_channels[i];
1699                         pl08x_dma_slave_init(chan);
1700                 } else {
1701                         chan->cd = &pl08x->pd->memcpy_channel;
1702                         chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1703                         if (!chan->name) {
1704                                 kfree(chan);
1705                                 return -ENOMEM;
1706                         }
1707                 }
1708                 if (chan->cd->circular_buffer) {
1709                         dev_err(&pl08x->adev->dev,
1710                                 "channel %s: circular buffers not supported\n",
1711                                 chan->name);
1712                         kfree(chan);
1713                         continue;
1714                 }
1715                 dev_dbg(&pl08x->adev->dev,
1716                          "initialize virtual channel \"%s\"\n",
1717                          chan->name);
1718
1719                 chan->chan.device = dmadev;
1720                 dma_cookie_init(&chan->chan);
1721
1722                 spin_lock_init(&chan->lock);
1723                 INIT_LIST_HEAD(&chan->pend_list);
1724                 tasklet_init(&chan->tasklet, pl08x_tasklet,
1725                              (unsigned long) chan);
1726
1727                 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1728         }
1729         dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1730                  i, slave ? "slave" : "memcpy");
1731         return i;
1732 }
1733
1734 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1735 {
1736         struct pl08x_dma_chan *chan = NULL;
1737         struct pl08x_dma_chan *next;
1738
1739         list_for_each_entry_safe(chan,
1740                                  next, &dmadev->channels, chan.device_node) {
1741                 list_del(&chan->chan.device_node);
1742                 kfree(chan);
1743         }
1744 }
1745
1746 #ifdef CONFIG_DEBUG_FS
1747 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1748 {
1749         switch (state) {
1750         case PL08X_CHAN_IDLE:
1751                 return "idle";
1752         case PL08X_CHAN_RUNNING:
1753                 return "running";
1754         case PL08X_CHAN_PAUSED:
1755                 return "paused";
1756         case PL08X_CHAN_WAITING:
1757                 return "waiting";
1758         default:
1759                 break;
1760         }
1761         return "UNKNOWN STATE";
1762 }
1763
1764 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1765 {
1766         struct pl08x_driver_data *pl08x = s->private;
1767         struct pl08x_dma_chan *chan;
1768         struct pl08x_phy_chan *ch;
1769         unsigned long flags;
1770         int i;
1771
1772         seq_printf(s, "PL08x physical channels:\n");
1773         seq_printf(s, "CHANNEL:\tUSER:\n");
1774         seq_printf(s, "--------\t-----\n");
1775         for (i = 0; i < pl08x->vd->channels; i++) {
1776                 struct pl08x_dma_chan *virt_chan;
1777
1778                 ch = &pl08x->phy_chans[i];
1779
1780                 spin_lock_irqsave(&ch->lock, flags);
1781                 virt_chan = ch->serving;
1782
1783                 seq_printf(s, "%d\t\t%s%s\n",
1784                            ch->id,
1785                            virt_chan ? virt_chan->name : "(none)",
1786                            ch->locked ? " LOCKED" : "");
1787
1788                 spin_unlock_irqrestore(&ch->lock, flags);
1789         }
1790
1791         seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1792         seq_printf(s, "CHANNEL:\tSTATE:\n");
1793         seq_printf(s, "--------\t------\n");
1794         list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1795                 seq_printf(s, "%s\t\t%s\n", chan->name,
1796                            pl08x_state_str(chan->state));
1797         }
1798
1799         seq_printf(s, "\nPL08x virtual slave channels:\n");
1800         seq_printf(s, "CHANNEL:\tSTATE:\n");
1801         seq_printf(s, "--------\t------\n");
1802         list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1803                 seq_printf(s, "%s\t\t%s\n", chan->name,
1804                            pl08x_state_str(chan->state));
1805         }
1806
1807         return 0;
1808 }
1809
1810 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1811 {
1812         return single_open(file, pl08x_debugfs_show, inode->i_private);
1813 }
1814
1815 static const struct file_operations pl08x_debugfs_operations = {
1816         .open           = pl08x_debugfs_open,
1817         .read           = seq_read,
1818         .llseek         = seq_lseek,
1819         .release        = single_release,
1820 };
1821
1822 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1823 {
1824         /* Expose a simple debugfs interface to view all clocks */
1825         (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1826                         S_IFREG | S_IRUGO, NULL, pl08x,
1827                         &pl08x_debugfs_operations);
1828 }
1829
1830 #else
1831 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1832 {
1833 }
1834 #endif
1835
1836 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1837 {
1838         struct pl08x_driver_data *pl08x;
1839         const struct vendor_data *vd = id->data;
1840         int ret = 0;
1841         int i;
1842
1843         ret = amba_request_regions(adev, NULL);
1844         if (ret)
1845                 return ret;
1846
1847         /* Create the driver state holder */
1848         pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1849         if (!pl08x) {
1850                 ret = -ENOMEM;
1851                 goto out_no_pl08x;
1852         }
1853
1854         pm_runtime_set_active(&adev->dev);
1855         pm_runtime_enable(&adev->dev);
1856
1857         /* Initialize memcpy engine */
1858         dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1859         pl08x->memcpy.dev = &adev->dev;
1860         pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1861         pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1862         pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1863         pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1864         pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1865         pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1866         pl08x->memcpy.device_control = pl08x_control;
1867
1868         /* Initialize slave engine */
1869         dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1870         pl08x->slave.dev = &adev->dev;
1871         pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1872         pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1873         pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1874         pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1875         pl08x->slave.device_issue_pending = pl08x_issue_pending;
1876         pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1877         pl08x->slave.device_control = pl08x_control;
1878
1879         /* Get the platform data */
1880         pl08x->pd = dev_get_platdata(&adev->dev);
1881         if (!pl08x->pd) {
1882                 dev_err(&adev->dev, "no platform data supplied\n");
1883                 goto out_no_platdata;
1884         }
1885
1886         /* Assign useful pointers to the driver state */
1887         pl08x->adev = adev;
1888         pl08x->vd = vd;
1889
1890         /* By default, AHB1 only.  If dualmaster, from platform */
1891         pl08x->lli_buses = PL08X_AHB1;
1892         pl08x->mem_buses = PL08X_AHB1;
1893         if (pl08x->vd->dualmaster) {
1894                 pl08x->lli_buses = pl08x->pd->lli_buses;
1895                 pl08x->mem_buses = pl08x->pd->mem_buses;
1896         }
1897
1898         /* A DMA memory pool for LLIs, align on 1-byte boundary */
1899         pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1900                         PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1901         if (!pl08x->pool) {
1902                 ret = -ENOMEM;
1903                 goto out_no_lli_pool;
1904         }
1905
1906         spin_lock_init(&pl08x->lock);
1907
1908         pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1909         if (!pl08x->base) {
1910                 ret = -ENOMEM;
1911                 goto out_no_ioremap;
1912         }
1913
1914         /* Turn on the PL08x */
1915         pl08x_ensure_on(pl08x);
1916
1917         /* Attach the interrupt handler */
1918         writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1919         writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1920
1921         ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1922                           DRIVER_NAME, pl08x);
1923         if (ret) {
1924                 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1925                         __func__, adev->irq[0]);
1926                 goto out_no_irq;
1927         }
1928
1929         /* Initialize physical channels */
1930         pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1931                         GFP_KERNEL);
1932         if (!pl08x->phy_chans) {
1933                 dev_err(&adev->dev, "%s failed to allocate "
1934                         "physical channel holders\n",
1935                         __func__);
1936                 goto out_no_phychans;
1937         }
1938
1939         for (i = 0; i < vd->channels; i++) {
1940                 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1941
1942                 ch->id = i;
1943                 ch->base = pl08x->base + PL080_Cx_BASE(i);
1944                 spin_lock_init(&ch->lock);
1945                 ch->signal = -1;
1946
1947                 /*
1948                  * Nomadik variants can have channels that are locked
1949                  * down for the secure world only. Lock up these channels
1950                  * by perpetually serving a dummy virtual channel.
1951                  */
1952                 if (vd->nomadik) {
1953                         u32 val;
1954
1955                         val = readl(ch->base + PL080_CH_CONFIG);
1956                         if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
1957                                 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
1958                                 ch->locked = true;
1959                         }
1960                 }
1961
1962                 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1963                         i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1964         }
1965
1966         /* Register as many memcpy channels as there are physical channels */
1967         ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1968                                               pl08x->vd->channels, false);
1969         if (ret <= 0) {
1970                 dev_warn(&pl08x->adev->dev,
1971                          "%s failed to enumerate memcpy channels - %d\n",
1972                          __func__, ret);
1973                 goto out_no_memcpy;
1974         }
1975         pl08x->memcpy.chancnt = ret;
1976
1977         /* Register slave channels */
1978         ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1979                         pl08x->pd->num_slave_channels, true);
1980         if (ret <= 0) {
1981                 dev_warn(&pl08x->adev->dev,
1982                         "%s failed to enumerate slave channels - %d\n",
1983                                 __func__, ret);
1984                 goto out_no_slave;
1985         }
1986         pl08x->slave.chancnt = ret;
1987
1988         ret = dma_async_device_register(&pl08x->memcpy);
1989         if (ret) {
1990                 dev_warn(&pl08x->adev->dev,
1991                         "%s failed to register memcpy as an async device - %d\n",
1992                         __func__, ret);
1993                 goto out_no_memcpy_reg;
1994         }
1995
1996         ret = dma_async_device_register(&pl08x->slave);
1997         if (ret) {
1998                 dev_warn(&pl08x->adev->dev,
1999                         "%s failed to register slave as an async device - %d\n",
2000                         __func__, ret);
2001                 goto out_no_slave_reg;
2002         }
2003
2004         amba_set_drvdata(adev, pl08x);
2005         init_pl08x_debugfs(pl08x);
2006         dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2007                  amba_part(adev), amba_rev(adev),
2008                  (unsigned long long)adev->res.start, adev->irq[0]);
2009
2010         pm_runtime_put(&adev->dev);
2011         return 0;
2012
2013 out_no_slave_reg:
2014         dma_async_device_unregister(&pl08x->memcpy);
2015 out_no_memcpy_reg:
2016         pl08x_free_virtual_channels(&pl08x->slave);
2017 out_no_slave:
2018         pl08x_free_virtual_channels(&pl08x->memcpy);
2019 out_no_memcpy:
2020         kfree(pl08x->phy_chans);
2021 out_no_phychans:
2022         free_irq(adev->irq[0], pl08x);
2023 out_no_irq:
2024         iounmap(pl08x->base);
2025 out_no_ioremap:
2026         dma_pool_destroy(pl08x->pool);
2027 out_no_lli_pool:
2028 out_no_platdata:
2029         pm_runtime_put(&adev->dev);
2030         pm_runtime_disable(&adev->dev);
2031
2032         kfree(pl08x);
2033 out_no_pl08x:
2034         amba_release_regions(adev);
2035         return ret;
2036 }
2037
2038 /* PL080 has 8 channels and the PL080 have just 2 */
2039 static struct vendor_data vendor_pl080 = {
2040         .channels = 8,
2041         .dualmaster = true,
2042 };
2043
2044 static struct vendor_data vendor_nomadik = {
2045         .channels = 8,
2046         .dualmaster = true,
2047         .nomadik = true,
2048 };
2049
2050 static struct vendor_data vendor_pl081 = {
2051         .channels = 2,
2052         .dualmaster = false,
2053 };
2054
2055 static struct amba_id pl08x_ids[] = {
2056         /* PL080 */
2057         {
2058                 .id     = 0x00041080,
2059                 .mask   = 0x000fffff,
2060                 .data   = &vendor_pl080,
2061         },
2062         /* PL081 */
2063         {
2064                 .id     = 0x00041081,
2065                 .mask   = 0x000fffff,
2066                 .data   = &vendor_pl081,
2067         },
2068         /* Nomadik 8815 PL080 variant */
2069         {
2070                 .id     = 0x00280080,
2071                 .mask   = 0x00ffffff,
2072                 .data   = &vendor_nomadik,
2073         },
2074         { 0, 0 },
2075 };
2076
2077 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2078
2079 static struct amba_driver pl08x_amba_driver = {
2080         .drv.name       = DRIVER_NAME,
2081         .id_table       = pl08x_ids,
2082         .probe          = pl08x_probe,
2083 };
2084
2085 static int __init pl08x_init(void)
2086 {
2087         int retval;
2088         retval = amba_driver_register(&pl08x_amba_driver);
2089         if (retval)
2090                 printk(KERN_WARNING DRIVER_NAME
2091                        "failed to register as an AMBA device (%d)\n",
2092                        retval);
2093         return retval;
2094 }
2095 subsys_initcall(pl08x_init);