Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[pandora-kernel.git] / drivers / crypto / picoxcell_crypto.c
1 /*
2  * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17  */
18 #include <crypto/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/platform_device.h>
38 #include <linux/pm.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/scatterlist.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/timer.h>
44
45 #include "picoxcell_crypto_regs.h"
46
47 /*
48  * The threshold for the number of entries in the CMD FIFO available before
49  * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
50  * number of interrupts raised to the CPU.
51  */
52 #define CMD0_IRQ_THRESHOLD   1
53
54 /*
55  * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
56  * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
57  * When there are packets in flight but lower than the threshold, we enable
58  * the timer and at expiry, attempt to remove any processed packets from the
59  * queue and if there are still packets left, schedule the timer again.
60  */
61 #define PACKET_TIMEOUT      1
62
63 /* The priority to register each algorithm with. */
64 #define SPACC_CRYPTO_ALG_PRIORITY       10000
65
66 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN  16
67 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
68 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ   64
69 #define SPACC_CRYPTO_IPSEC_MAX_CTXS     32
70 #define SPACC_CRYPTO_IPSEC_FIFO_SZ      32
71 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ    64
72 #define SPACC_CRYPTO_L2_HASH_PG_SZ      64
73 #define SPACC_CRYPTO_L2_MAX_CTXS        128
74 #define SPACC_CRYPTO_L2_FIFO_SZ         128
75
76 #define MAX_DDT_LEN                     16
77
78 /* DDT format. This must match the hardware DDT format exactly. */
79 struct spacc_ddt {
80         dma_addr_t      p;
81         u32             len;
82 };
83
84 /*
85  * Asynchronous crypto request structure.
86  *
87  * This structure defines a request that is either queued for processing or
88  * being processed.
89  */
90 struct spacc_req {
91         struct list_head                list;
92         struct spacc_engine             *engine;
93         struct crypto_async_request     *req;
94         int                             result;
95         bool                            is_encrypt;
96         unsigned                        ctx_id;
97         dma_addr_t                      src_addr, dst_addr;
98         struct spacc_ddt                *src_ddt, *dst_ddt;
99         void                            (*complete)(struct spacc_req *req);
100
101         /* AEAD specific bits. */
102         u8                              *giv;
103         size_t                          giv_len;
104         dma_addr_t                      giv_pa;
105 };
106
107 struct spacc_engine {
108         void __iomem                    *regs;
109         struct list_head                pending;
110         int                             next_ctx;
111         spinlock_t                      hw_lock;
112         int                             in_flight;
113         struct list_head                completed;
114         struct list_head                in_progress;
115         struct tasklet_struct           complete;
116         unsigned long                   fifo_sz;
117         void __iomem                    *cipher_ctx_base;
118         void __iomem                    *hash_key_base;
119         struct spacc_alg                *algs;
120         unsigned                        num_algs;
121         struct list_head                registered_algs;
122         size_t                          cipher_pg_sz;
123         size_t                          hash_pg_sz;
124         const char                      *name;
125         struct clk                      *clk;
126         struct device                   *dev;
127         unsigned                        max_ctxs;
128         struct timer_list               packet_timeout;
129         unsigned                        stat_irq_thresh;
130         struct dma_pool                 *req_pool;
131 };
132
133 /* Algorithm type mask. */
134 #define SPACC_CRYPTO_ALG_MASK           0x7
135
136 /* SPACC definition of a crypto algorithm. */
137 struct spacc_alg {
138         unsigned long                   ctrl_default;
139         unsigned long                   type;
140         struct crypto_alg               alg;
141         struct spacc_engine             *engine;
142         struct list_head                entry;
143         int                             key_offs;
144         int                             iv_offs;
145 };
146
147 /* Generic context structure for any algorithm type. */
148 struct spacc_generic_ctx {
149         struct spacc_engine             *engine;
150         int                             flags;
151         int                             key_offs;
152         int                             iv_offs;
153 };
154
155 /* Block cipher context. */
156 struct spacc_ablk_ctx {
157         struct spacc_generic_ctx        generic;
158         u8                              key[AES_MAX_KEY_SIZE];
159         u8                              key_len;
160         /*
161          * The fallback cipher. If the operation can't be done in hardware,
162          * fallback to a software version.
163          */
164         struct crypto_ablkcipher        *sw_cipher;
165 };
166
167 /* AEAD cipher context. */
168 struct spacc_aead_ctx {
169         struct spacc_generic_ctx        generic;
170         u8                              cipher_key[AES_MAX_KEY_SIZE];
171         u8                              hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
172         u8                              cipher_key_len;
173         u8                              hash_key_len;
174         struct crypto_aead              *sw_cipher;
175         size_t                          auth_size;
176         u8                              salt[AES_BLOCK_SIZE];
177 };
178
179 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
180 {
181         return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
182 }
183
184 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
185 {
186         u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
187
188         return fifo_stat & SPA_FIFO_CMD_FULL;
189 }
190
191 /*
192  * Given a cipher context, and a context number, get the base address of the
193  * context page.
194  *
195  * Returns the address of the context page where the key/context may
196  * be written.
197  */
198 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
199                                                 unsigned indx,
200                                                 bool is_cipher_ctx)
201 {
202         return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
203                         (indx * ctx->engine->cipher_pg_sz) :
204                 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
205 }
206
207 /* The context pages can only be written with 32-bit accesses. */
208 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
209                                  unsigned count)
210 {
211         const u32 *src32 = (const u32 *) src;
212
213         while (count--)
214                 writel(*src32++, dst++);
215 }
216
217 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
218                                    void __iomem *page_addr, const u8 *key,
219                                    size_t key_len, const u8 *iv, size_t iv_len)
220 {
221         void __iomem *key_ptr = page_addr + ctx->key_offs;
222         void __iomem *iv_ptr = page_addr + ctx->iv_offs;
223
224         memcpy_toio32(key_ptr, key, key_len / 4);
225         memcpy_toio32(iv_ptr, iv, iv_len / 4);
226 }
227
228 /*
229  * Load a context into the engines context memory.
230  *
231  * Returns the index of the context page where the context was loaded.
232  */
233 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
234                                const u8 *ciph_key, size_t ciph_len,
235                                const u8 *iv, size_t ivlen, const u8 *hash_key,
236                                size_t hash_len)
237 {
238         unsigned indx = ctx->engine->next_ctx++;
239         void __iomem *ciph_page_addr, *hash_page_addr;
240
241         ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
242         hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
243
244         ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
245         spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
246                                ivlen);
247         writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
248                (1 << SPA_KEY_SZ_CIPHER_OFFSET),
249                ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
250
251         if (hash_key) {
252                 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
253                 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
254                        ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
255         }
256
257         return indx;
258 }
259
260 /* Count the number of scatterlist entries in a scatterlist. */
261 static int sg_count(struct scatterlist *sg_list, int nbytes)
262 {
263         struct scatterlist *sg = sg_list;
264         int sg_nents = 0;
265
266         while (nbytes > 0) {
267                 ++sg_nents;
268                 nbytes -= sg->length;
269                 sg = sg_next(sg);
270         }
271
272         return sg_nents;
273 }
274
275 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
276 {
277         ddt->p = phys;
278         ddt->len = len;
279 }
280
281 /*
282  * Take a crypto request and scatterlists for the data and turn them into DDTs
283  * for passing to the crypto engines. This also DMA maps the data so that the
284  * crypto engines can DMA to/from them.
285  */
286 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
287                                          struct scatterlist *payload,
288                                          unsigned nbytes,
289                                          enum dma_data_direction dir,
290                                          dma_addr_t *ddt_phys)
291 {
292         unsigned nents, mapped_ents;
293         struct scatterlist *cur;
294         struct spacc_ddt *ddt;
295         int i;
296
297         nents = sg_count(payload, nbytes);
298         mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
299
300         if (mapped_ents + 1 > MAX_DDT_LEN)
301                 goto out;
302
303         ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
304         if (!ddt)
305                 goto out;
306
307         for_each_sg(payload, cur, mapped_ents, i)
308                 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
309         ddt_set(&ddt[mapped_ents], 0, 0);
310
311         return ddt;
312
313 out:
314         dma_unmap_sg(engine->dev, payload, nents, dir);
315         return NULL;
316 }
317
318 static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
319 {
320         struct aead_request *areq = container_of(req->req, struct aead_request,
321                                                  base);
322         struct spacc_engine *engine = req->engine;
323         struct spacc_ddt *src_ddt, *dst_ddt;
324         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
325         unsigned nents = sg_count(areq->src, areq->cryptlen);
326         dma_addr_t iv_addr;
327         struct scatterlist *cur;
328         int i, dst_ents, src_ents, assoc_ents;
329         u8 *iv = giv ? giv : areq->iv;
330
331         src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
332         if (!src_ddt)
333                 return -ENOMEM;
334
335         dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
336         if (!dst_ddt) {
337                 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
338                 return -ENOMEM;
339         }
340
341         req->src_ddt = src_ddt;
342         req->dst_ddt = dst_ddt;
343
344         assoc_ents = dma_map_sg(engine->dev, areq->assoc,
345                 sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
346         if (areq->src != areq->dst) {
347                 src_ents = dma_map_sg(engine->dev, areq->src, nents,
348                                       DMA_TO_DEVICE);
349                 dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
350                                       DMA_FROM_DEVICE);
351         } else {
352                 src_ents = dma_map_sg(engine->dev, areq->src, nents,
353                                       DMA_BIDIRECTIONAL);
354                 dst_ents = 0;
355         }
356
357         /*
358          * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
359          * formed by the crypto block and sent as the ESP IV for IPSEC.
360          */
361         iv_addr = dma_map_single(engine->dev, iv, ivsize,
362                                  giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
363         req->giv_pa = iv_addr;
364
365         /*
366          * Map the associated data. For decryption we don't copy the
367          * associated data.
368          */
369         for_each_sg(areq->assoc, cur, assoc_ents, i) {
370                 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
371                 if (req->is_encrypt)
372                         ddt_set(dst_ddt++, sg_dma_address(cur),
373                                 sg_dma_len(cur));
374         }
375         ddt_set(src_ddt++, iv_addr, ivsize);
376
377         if (giv || req->is_encrypt)
378                 ddt_set(dst_ddt++, iv_addr, ivsize);
379
380         /*
381          * Now map in the payload for the source and destination and terminate
382          * with the NULL pointers.
383          */
384         for_each_sg(areq->src, cur, src_ents, i) {
385                 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
386                 if (areq->src == areq->dst)
387                         ddt_set(dst_ddt++, sg_dma_address(cur),
388                                 sg_dma_len(cur));
389         }
390
391         for_each_sg(areq->dst, cur, dst_ents, i)
392                 ddt_set(dst_ddt++, sg_dma_address(cur),
393                         sg_dma_len(cur));
394
395         ddt_set(src_ddt, 0, 0);
396         ddt_set(dst_ddt, 0, 0);
397
398         return 0;
399 }
400
401 static void spacc_aead_free_ddts(struct spacc_req *req)
402 {
403         struct aead_request *areq = container_of(req->req, struct aead_request,
404                                                  base);
405         struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
406         struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
407         struct spacc_engine *engine = aead_ctx->generic.engine;
408         unsigned ivsize = alg->alg.cra_aead.ivsize;
409         unsigned nents = sg_count(areq->src, areq->cryptlen);
410
411         if (areq->src != areq->dst) {
412                 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
413                 dma_unmap_sg(engine->dev, areq->dst,
414                              sg_count(areq->dst, areq->cryptlen),
415                              DMA_FROM_DEVICE);
416         } else
417                 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
418
419         dma_unmap_sg(engine->dev, areq->assoc,
420                      sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
421
422         dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
423
424         dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
425         dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
426 }
427
428 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
429                            dma_addr_t ddt_addr, struct scatterlist *payload,
430                            unsigned nbytes, enum dma_data_direction dir)
431 {
432         unsigned nents = sg_count(payload, nbytes);
433
434         dma_unmap_sg(req->engine->dev, payload, nents, dir);
435         dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
436 }
437
438 /*
439  * Set key for a DES operation in an AEAD cipher. This also performs weak key
440  * checking if required.
441  */
442 static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
443                                  unsigned int len)
444 {
445         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
446         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
447         u32 tmp[DES_EXPKEY_WORDS];
448
449         if (unlikely(!des_ekey(tmp, key)) &&
450             (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
451                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
452                 return -EINVAL;
453         }
454
455         memcpy(ctx->cipher_key, key, len);
456         ctx->cipher_key_len = len;
457
458         return 0;
459 }
460
461 /* Set the key for the AES block cipher component of the AEAD transform. */
462 static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
463                                  unsigned int len)
464 {
465         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
466         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
467
468         /*
469          * IPSec engine only supports 128 and 256 bit AES keys. If we get a
470          * request for any other size (192 bits) then we need to do a software
471          * fallback.
472          */
473         if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
474                 /*
475                  * Set the fallback transform to use the same request flags as
476                  * the hardware transform.
477                  */
478                 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
479                 ctx->sw_cipher->base.crt_flags |=
480                         tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
481                 return crypto_aead_setkey(ctx->sw_cipher, key, len);
482         }
483
484         memcpy(ctx->cipher_key, key, len);
485         ctx->cipher_key_len = len;
486
487         return 0;
488 }
489
490 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
491                              unsigned int keylen)
492 {
493         struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
494         struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
495         struct rtattr *rta = (void *)key;
496         struct crypto_authenc_key_param *param;
497         unsigned int authkeylen, enckeylen;
498         int err = -EINVAL;
499
500         if (!RTA_OK(rta, keylen))
501                 goto badkey;
502
503         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
504                 goto badkey;
505
506         if (RTA_PAYLOAD(rta) < sizeof(*param))
507                 goto badkey;
508
509         param = RTA_DATA(rta);
510         enckeylen = be32_to_cpu(param->enckeylen);
511
512         key += RTA_ALIGN(rta->rta_len);
513         keylen -= RTA_ALIGN(rta->rta_len);
514
515         if (keylen < enckeylen)
516                 goto badkey;
517
518         authkeylen = keylen - enckeylen;
519
520         if (enckeylen > AES_MAX_KEY_SIZE)
521                 goto badkey;
522
523         if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
524             SPA_CTRL_CIPH_ALG_AES)
525                 err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen);
526         else
527                 err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen);
528
529         if (err)
530                 goto badkey;
531
532         memcpy(ctx->hash_ctx, key, authkeylen);
533         ctx->hash_key_len = authkeylen;
534
535         return 0;
536
537 badkey:
538         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
539         return -EINVAL;
540 }
541
542 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
543                                   unsigned int authsize)
544 {
545         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
546
547         ctx->auth_size = authsize;
548
549         return 0;
550 }
551
552 /*
553  * Check if an AEAD request requires a fallback operation. Some requests can't
554  * be completed in hardware because the hardware may not support certain key
555  * sizes. In these cases we need to complete the request in software.
556  */
557 static int spacc_aead_need_fallback(struct spacc_req *req)
558 {
559         struct aead_request *aead_req;
560         struct crypto_tfm *tfm = req->req->tfm;
561         struct crypto_alg *alg = req->req->tfm->__crt_alg;
562         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
563         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
564
565         aead_req = container_of(req->req, struct aead_request, base);
566         /*
567          * If we have a non-supported key-length, then we need to do a
568          * software fallback.
569          */
570         if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
571             SPA_CTRL_CIPH_ALG_AES &&
572             ctx->cipher_key_len != AES_KEYSIZE_128 &&
573             ctx->cipher_key_len != AES_KEYSIZE_256)
574                 return 1;
575
576         return 0;
577 }
578
579 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
580                                   bool is_encrypt)
581 {
582         struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
583         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
584         int err;
585
586         if (ctx->sw_cipher) {
587                 /*
588                  * Change the request to use the software fallback transform,
589                  * and once the ciphering has completed, put the old transform
590                  * back into the request.
591                  */
592                 aead_request_set_tfm(req, ctx->sw_cipher);
593                 err = is_encrypt ? crypto_aead_encrypt(req) :
594                     crypto_aead_decrypt(req);
595                 aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
596         } else
597                 err = -EINVAL;
598
599         return err;
600 }
601
602 static void spacc_aead_complete(struct spacc_req *req)
603 {
604         spacc_aead_free_ddts(req);
605         req->req->complete(req->req, req->result);
606 }
607
608 static int spacc_aead_submit(struct spacc_req *req)
609 {
610         struct crypto_tfm *tfm = req->req->tfm;
611         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
612         struct crypto_alg *alg = req->req->tfm->__crt_alg;
613         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
614         struct spacc_engine *engine = ctx->generic.engine;
615         u32 ctrl, proc_len, assoc_len;
616         struct aead_request *aead_req =
617                 container_of(req->req, struct aead_request, base);
618
619         req->result = -EINPROGRESS;
620         req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
621                 ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
622                 ctx->hash_ctx, ctx->hash_key_len);
623
624         /* Set the source and destination DDT pointers. */
625         writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
626         writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
627         writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
628
629         assoc_len = aead_req->assoclen;
630         proc_len = aead_req->cryptlen + assoc_len;
631
632         /*
633          * If we aren't generating an IV, then we need to include the IV in the
634          * associated data so that it is included in the hash.
635          */
636         if (!req->giv) {
637                 assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
638                 proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
639         } else
640                 proc_len += req->giv_len;
641
642         /*
643          * If we are decrypting, we need to take the length of the ICV out of
644          * the processing length.
645          */
646         if (!req->is_encrypt)
647                 proc_len -= ctx->auth_size;
648
649         writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
650         writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
651         writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
652         writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
653         writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
654
655         ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
656                 (1 << SPA_CTRL_ICV_APPEND);
657         if (req->is_encrypt)
658                 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
659         else
660                 ctrl |= (1 << SPA_CTRL_KEY_EXP);
661
662         mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
663
664         writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
665
666         return -EINPROGRESS;
667 }
668
669 /*
670  * Setup an AEAD request for processing. This will configure the engine, load
671  * the context and then start the packet processing.
672  *
673  * @giv Pointer to destination address for a generated IV. If the
674  *      request does not need to generate an IV then this should be set to NULL.
675  */
676 static int spacc_aead_setup(struct aead_request *req, u8 *giv,
677                             unsigned alg_type, bool is_encrypt)
678 {
679         struct crypto_alg *alg = req->base.tfm->__crt_alg;
680         struct spacc_engine *engine = to_spacc_alg(alg)->engine;
681         struct spacc_req *dev_req = aead_request_ctx(req);
682         int err = -EINPROGRESS;
683         unsigned long flags;
684         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
685
686         dev_req->giv            = giv;
687         dev_req->giv_len        = ivsize;
688         dev_req->req            = &req->base;
689         dev_req->is_encrypt     = is_encrypt;
690         dev_req->result         = -EBUSY;
691         dev_req->engine         = engine;
692         dev_req->complete       = spacc_aead_complete;
693
694         if (unlikely(spacc_aead_need_fallback(dev_req)))
695                 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
696
697         spacc_aead_make_ddts(dev_req, dev_req->giv);
698
699         err = -EINPROGRESS;
700         spin_lock_irqsave(&engine->hw_lock, flags);
701         if (unlikely(spacc_fifo_cmd_full(engine))) {
702                 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
703                         err = -EBUSY;
704                         spin_unlock_irqrestore(&engine->hw_lock, flags);
705                         goto out_free_ddts;
706                 }
707                 list_add_tail(&dev_req->list, &engine->pending);
708         } else {
709                 ++engine->in_flight;
710                 list_add_tail(&dev_req->list, &engine->in_progress);
711                 spacc_aead_submit(dev_req);
712         }
713         spin_unlock_irqrestore(&engine->hw_lock, flags);
714
715         goto out;
716
717 out_free_ddts:
718         spacc_aead_free_ddts(dev_req);
719 out:
720         return err;
721 }
722
723 static int spacc_aead_encrypt(struct aead_request *req)
724 {
725         struct crypto_aead *aead = crypto_aead_reqtfm(req);
726         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
727         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
728
729         return spacc_aead_setup(req, NULL, alg->type, 1);
730 }
731
732 static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
733 {
734         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
735         struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
736         size_t ivsize = crypto_aead_ivsize(tfm);
737         struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
738         unsigned len;
739         __be64 seq;
740
741         memcpy(req->areq.iv, ctx->salt, ivsize);
742         len = ivsize;
743         if (ivsize > sizeof(u64)) {
744                 memset(req->giv, 0, ivsize - sizeof(u64));
745                 len = sizeof(u64);
746         }
747         seq = cpu_to_be64(req->seq);
748         memcpy(req->giv + ivsize - len, &seq, len);
749
750         return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
751 }
752
753 static int spacc_aead_decrypt(struct aead_request *req)
754 {
755         struct crypto_aead *aead = crypto_aead_reqtfm(req);
756         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
757         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
758
759         return spacc_aead_setup(req, NULL, alg->type, 0);
760 }
761
762 /*
763  * Initialise a new AEAD context. This is responsible for allocating the
764  * fallback cipher and initialising the context.
765  */
766 static int spacc_aead_cra_init(struct crypto_tfm *tfm)
767 {
768         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
769         struct crypto_alg *alg = tfm->__crt_alg;
770         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
771         struct spacc_engine *engine = spacc_alg->engine;
772
773         ctx->generic.flags = spacc_alg->type;
774         ctx->generic.engine = engine;
775         ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
776                                            CRYPTO_ALG_ASYNC |
777                                            CRYPTO_ALG_NEED_FALLBACK);
778         if (IS_ERR(ctx->sw_cipher)) {
779                 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
780                          alg->cra_name);
781                 ctx->sw_cipher = NULL;
782         }
783         ctx->generic.key_offs = spacc_alg->key_offs;
784         ctx->generic.iv_offs = spacc_alg->iv_offs;
785
786         get_random_bytes(ctx->salt, sizeof(ctx->salt));
787
788         tfm->crt_aead.reqsize = sizeof(struct spacc_req);
789
790         return 0;
791 }
792
793 /*
794  * Destructor for an AEAD context. This is called when the transform is freed
795  * and must free the fallback cipher.
796  */
797 static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
798 {
799         struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
800
801         if (ctx->sw_cipher)
802                 crypto_free_aead(ctx->sw_cipher);
803         ctx->sw_cipher = NULL;
804 }
805
806 /*
807  * Set the DES key for a block cipher transform. This also performs weak key
808  * checking if the transform has requested it.
809  */
810 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
811                             unsigned int len)
812 {
813         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
814         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
815         u32 tmp[DES_EXPKEY_WORDS];
816
817         if (len > DES3_EDE_KEY_SIZE) {
818                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
819                 return -EINVAL;
820         }
821
822         if (unlikely(!des_ekey(tmp, key)) &&
823             (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
824                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
825                 return -EINVAL;
826         }
827
828         memcpy(ctx->key, key, len);
829         ctx->key_len = len;
830
831         return 0;
832 }
833
834 /*
835  * Set the key for an AES block cipher. Some key lengths are not supported in
836  * hardware so this must also check whether a fallback is needed.
837  */
838 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
839                             unsigned int len)
840 {
841         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
842         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
843         int err = 0;
844
845         if (len > AES_MAX_KEY_SIZE) {
846                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
847                 return -EINVAL;
848         }
849
850         /*
851          * IPSec engine only supports 128 and 256 bit AES keys. If we get a
852          * request for any other size (192 bits) then we need to do a software
853          * fallback.
854          */
855         if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) &&
856             ctx->sw_cipher) {
857                 /*
858                  * Set the fallback transform to use the same request flags as
859                  * the hardware transform.
860                  */
861                 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
862                 ctx->sw_cipher->base.crt_flags |=
863                         cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
864
865                 err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
866                 if (err)
867                         goto sw_setkey_failed;
868         } else if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) &&
869                    !ctx->sw_cipher)
870                 err = -EINVAL;
871
872         memcpy(ctx->key, key, len);
873         ctx->key_len = len;
874
875 sw_setkey_failed:
876         if (err && ctx->sw_cipher) {
877                 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
878                 tfm->crt_flags |=
879                         ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
880         }
881
882         return err;
883 }
884
885 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
886                                   const u8 *key, unsigned int len)
887 {
888         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
889         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
890         int err = 0;
891
892         if (len > AES_MAX_KEY_SIZE) {
893                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
894                 err = -EINVAL;
895                 goto out;
896         }
897
898         memcpy(ctx->key, key, len);
899         ctx->key_len = len;
900
901 out:
902         return err;
903 }
904
905 static int spacc_ablk_need_fallback(struct spacc_req *req)
906 {
907         struct spacc_ablk_ctx *ctx;
908         struct crypto_tfm *tfm = req->req->tfm;
909         struct crypto_alg *alg = req->req->tfm->__crt_alg;
910         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
911
912         ctx = crypto_tfm_ctx(tfm);
913
914         return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
915                         SPA_CTRL_CIPH_ALG_AES &&
916                         ctx->key_len != AES_KEYSIZE_128 &&
917                         ctx->key_len != AES_KEYSIZE_256;
918 }
919
920 static void spacc_ablk_complete(struct spacc_req *req)
921 {
922         struct ablkcipher_request *ablk_req =
923                 container_of(req->req, struct ablkcipher_request, base);
924
925         if (ablk_req->src != ablk_req->dst) {
926                 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
927                                ablk_req->nbytes, DMA_TO_DEVICE);
928                 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
929                                ablk_req->nbytes, DMA_FROM_DEVICE);
930         } else
931                 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
932                                ablk_req->nbytes, DMA_BIDIRECTIONAL);
933
934         req->req->complete(req->req, req->result);
935 }
936
937 static int spacc_ablk_submit(struct spacc_req *req)
938 {
939         struct crypto_tfm *tfm = req->req->tfm;
940         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
941         struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
942         struct crypto_alg *alg = req->req->tfm->__crt_alg;
943         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
944         struct spacc_engine *engine = ctx->generic.engine;
945         u32 ctrl;
946
947         req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
948                 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
949                 NULL, 0);
950
951         writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
952         writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
953         writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
954
955         writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
956         writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
957         writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
958         writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
959
960         ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
961                 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
962                  (1 << SPA_CTRL_KEY_EXP));
963
964         mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
965
966         writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
967
968         return -EINPROGRESS;
969 }
970
971 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
972                                   unsigned alg_type, bool is_encrypt)
973 {
974         struct crypto_tfm *old_tfm =
975             crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
976         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
977         int err;
978
979         if (!ctx->sw_cipher)
980                 return -EINVAL;
981
982         /*
983          * Change the request to use the software fallback transform, and once
984          * the ciphering has completed, put the old transform back into the
985          * request.
986          */
987         ablkcipher_request_set_tfm(req, ctx->sw_cipher);
988         err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
989                 crypto_ablkcipher_decrypt(req);
990         ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
991
992         return err;
993 }
994
995 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
996                             bool is_encrypt)
997 {
998         struct crypto_alg *alg = req->base.tfm->__crt_alg;
999         struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1000         struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1001         unsigned long flags;
1002         int err = -ENOMEM;
1003
1004         dev_req->req            = &req->base;
1005         dev_req->is_encrypt     = is_encrypt;
1006         dev_req->engine         = engine;
1007         dev_req->complete       = spacc_ablk_complete;
1008         dev_req->result         = -EINPROGRESS;
1009
1010         if (unlikely(spacc_ablk_need_fallback(dev_req)))
1011                 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1012
1013         /*
1014          * Create the DDT's for the engine. If we share the same source and
1015          * destination then we can optimize by reusing the DDT's.
1016          */
1017         if (req->src != req->dst) {
1018                 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1019                         req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1020                 if (!dev_req->src_ddt)
1021                         goto out;
1022
1023                 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1024                         req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1025                 if (!dev_req->dst_ddt)
1026                         goto out_free_src;
1027         } else {
1028                 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1029                         req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1030                 if (!dev_req->dst_ddt)
1031                         goto out;
1032
1033                 dev_req->src_ddt = NULL;
1034                 dev_req->src_addr = dev_req->dst_addr;
1035         }
1036
1037         err = -EINPROGRESS;
1038         spin_lock_irqsave(&engine->hw_lock, flags);
1039         /*
1040          * Check if the engine will accept the operation now. If it won't then
1041          * we either stick it on the end of a pending list if we can backlog,
1042          * or bailout with an error if not.
1043          */
1044         if (unlikely(spacc_fifo_cmd_full(engine))) {
1045                 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1046                         err = -EBUSY;
1047                         spin_unlock_irqrestore(&engine->hw_lock, flags);
1048                         goto out_free_ddts;
1049                 }
1050                 list_add_tail(&dev_req->list, &engine->pending);
1051         } else {
1052                 ++engine->in_flight;
1053                 list_add_tail(&dev_req->list, &engine->in_progress);
1054                 spacc_ablk_submit(dev_req);
1055         }
1056         spin_unlock_irqrestore(&engine->hw_lock, flags);
1057
1058         goto out;
1059
1060 out_free_ddts:
1061         spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1062                        req->nbytes, req->src == req->dst ?
1063                        DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1064 out_free_src:
1065         if (req->src != req->dst)
1066                 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1067                                req->src, req->nbytes, DMA_TO_DEVICE);
1068 out:
1069         return err;
1070 }
1071
1072 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1073 {
1074         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1075         struct crypto_alg *alg = tfm->__crt_alg;
1076         struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1077         struct spacc_engine *engine = spacc_alg->engine;
1078
1079         ctx->generic.flags = spacc_alg->type;
1080         ctx->generic.engine = engine;
1081         if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1082                 ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1083                                 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1084                 if (IS_ERR(ctx->sw_cipher)) {
1085                         dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1086                                  alg->cra_name);
1087                         ctx->sw_cipher = NULL;
1088                 }
1089         }
1090         ctx->generic.key_offs = spacc_alg->key_offs;
1091         ctx->generic.iv_offs = spacc_alg->iv_offs;
1092
1093         tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1094
1095         return 0;
1096 }
1097
1098 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1099 {
1100         struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1101
1102         if (ctx->sw_cipher)
1103                 crypto_free_ablkcipher(ctx->sw_cipher);
1104         ctx->sw_cipher = NULL;
1105 }
1106
1107 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1108 {
1109         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1110         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1111         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1112
1113         return spacc_ablk_setup(req, alg->type, 1);
1114 }
1115
1116 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1117 {
1118         struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1119         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1120         struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1121
1122         return spacc_ablk_setup(req, alg->type, 0);
1123 }
1124
1125 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1126 {
1127         return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1128                 SPA_FIFO_STAT_EMPTY;
1129 }
1130
1131 static void spacc_process_done(struct spacc_engine *engine)
1132 {
1133         struct spacc_req *req;
1134         unsigned long flags;
1135
1136         spin_lock_irqsave(&engine->hw_lock, flags);
1137
1138         while (!spacc_fifo_stat_empty(engine)) {
1139                 req = list_first_entry(&engine->in_progress, struct spacc_req,
1140                                        list);
1141                 list_move_tail(&req->list, &engine->completed);
1142
1143                 /* POP the status register. */
1144                 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1145                 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1146                      SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1147
1148                 /*
1149                  * Convert the SPAcc error status into the standard POSIX error
1150                  * codes.
1151                  */
1152                 if (unlikely(req->result)) {
1153                         switch (req->result) {
1154                         case SPA_STATUS_ICV_FAIL:
1155                                 req->result = -EBADMSG;
1156                                 break;
1157
1158                         case SPA_STATUS_MEMORY_ERROR:
1159                                 dev_warn(engine->dev,
1160                                          "memory error triggered\n");
1161                                 req->result = -EFAULT;
1162                                 break;
1163
1164                         case SPA_STATUS_BLOCK_ERROR:
1165                                 dev_warn(engine->dev,
1166                                          "block error triggered\n");
1167                                 req->result = -EIO;
1168                                 break;
1169                         }
1170                 }
1171         }
1172
1173         tasklet_schedule(&engine->complete);
1174
1175         spin_unlock_irqrestore(&engine->hw_lock, flags);
1176 }
1177
1178 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1179 {
1180         struct spacc_engine *engine = (struct spacc_engine *)dev;
1181         u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1182
1183         writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1184         spacc_process_done(engine);
1185
1186         return IRQ_HANDLED;
1187 }
1188
1189 static void spacc_packet_timeout(unsigned long data)
1190 {
1191         struct spacc_engine *engine = (struct spacc_engine *)data;
1192
1193         spacc_process_done(engine);
1194 }
1195
1196 static int spacc_req_submit(struct spacc_req *req)
1197 {
1198         struct crypto_alg *alg = req->req->tfm->__crt_alg;
1199
1200         if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1201                 return spacc_aead_submit(req);
1202         else
1203                 return spacc_ablk_submit(req);
1204 }
1205
1206 static void spacc_spacc_complete(unsigned long data)
1207 {
1208         struct spacc_engine *engine = (struct spacc_engine *)data;
1209         struct spacc_req *req, *tmp;
1210         unsigned long flags;
1211         int num_removed = 0;
1212         LIST_HEAD(completed);
1213
1214         spin_lock_irqsave(&engine->hw_lock, flags);
1215         list_splice_init(&engine->completed, &completed);
1216         spin_unlock_irqrestore(&engine->hw_lock, flags);
1217
1218         list_for_each_entry_safe(req, tmp, &completed, list) {
1219                 ++num_removed;
1220                 req->complete(req);
1221         }
1222
1223         /* Try and fill the engine back up again. */
1224         spin_lock_irqsave(&engine->hw_lock, flags);
1225
1226         engine->in_flight -= num_removed;
1227
1228         list_for_each_entry_safe(req, tmp, &engine->pending, list) {
1229                 if (spacc_fifo_cmd_full(engine))
1230                         break;
1231
1232                 list_move_tail(&req->list, &engine->in_progress);
1233                 ++engine->in_flight;
1234                 req->result = spacc_req_submit(req);
1235         }
1236
1237         if (engine->in_flight)
1238                 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1239
1240         spin_unlock_irqrestore(&engine->hw_lock, flags);
1241 }
1242
1243 #ifdef CONFIG_PM
1244 static int spacc_suspend(struct device *dev)
1245 {
1246         struct platform_device *pdev = to_platform_device(dev);
1247         struct spacc_engine *engine = platform_get_drvdata(pdev);
1248
1249         /*
1250          * We only support standby mode. All we have to do is gate the clock to
1251          * the spacc. The hardware will preserve state until we turn it back
1252          * on again.
1253          */
1254         clk_disable(engine->clk);
1255
1256         return 0;
1257 }
1258
1259 static int spacc_resume(struct device *dev)
1260 {
1261         struct platform_device *pdev = to_platform_device(dev);
1262         struct spacc_engine *engine = platform_get_drvdata(pdev);
1263
1264         return clk_enable(engine->clk);
1265 }
1266
1267 static const struct dev_pm_ops spacc_pm_ops = {
1268         .suspend        = spacc_suspend,
1269         .resume         = spacc_resume,
1270 };
1271 #endif /* CONFIG_PM */
1272
1273 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1274 {
1275         return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1276 }
1277
1278 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1279                                           struct device_attribute *attr,
1280                                           char *buf)
1281 {
1282         struct spacc_engine *engine = spacc_dev_to_engine(dev);
1283
1284         return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1285 }
1286
1287 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1288                                            struct device_attribute *attr,
1289                                            const char *buf, size_t len)
1290 {
1291         struct spacc_engine *engine = spacc_dev_to_engine(dev);
1292         unsigned long thresh;
1293
1294         if (strict_strtoul(buf, 0, &thresh))
1295                 return -EINVAL;
1296
1297         thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1298
1299         engine->stat_irq_thresh = thresh;
1300         writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1301                engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1302
1303         return len;
1304 }
1305 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1306                    spacc_stat_irq_thresh_store);
1307
1308 static struct spacc_alg ipsec_engine_algs[] = {
1309         {
1310                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1311                 .key_offs = 0,
1312                 .iv_offs = AES_MAX_KEY_SIZE,
1313                 .alg = {
1314                         .cra_name = "cbc(aes)",
1315                         .cra_driver_name = "cbc-aes-picoxcell",
1316                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1317                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1318                                      CRYPTO_ALG_ASYNC |
1319                                      CRYPTO_ALG_NEED_FALLBACK,
1320                         .cra_blocksize = AES_BLOCK_SIZE,
1321                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1322                         .cra_type = &crypto_ablkcipher_type,
1323                         .cra_module = THIS_MODULE,
1324                         .cra_ablkcipher = {
1325                                 .setkey = spacc_aes_setkey,
1326                                 .encrypt = spacc_ablk_encrypt,
1327                                 .decrypt = spacc_ablk_decrypt,
1328                                 .min_keysize = AES_MIN_KEY_SIZE,
1329                                 .max_keysize = AES_MAX_KEY_SIZE,
1330                                 .ivsize = AES_BLOCK_SIZE,
1331                         },
1332                         .cra_init = spacc_ablk_cra_init,
1333                         .cra_exit = spacc_ablk_cra_exit,
1334                 },
1335         },
1336         {
1337                 .key_offs = 0,
1338                 .iv_offs = AES_MAX_KEY_SIZE,
1339                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1340                 .alg = {
1341                         .cra_name = "ecb(aes)",
1342                         .cra_driver_name = "ecb-aes-picoxcell",
1343                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1344                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1345                                 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1346                         .cra_blocksize = AES_BLOCK_SIZE,
1347                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1348                         .cra_type = &crypto_ablkcipher_type,
1349                         .cra_module = THIS_MODULE,
1350                         .cra_ablkcipher = {
1351                                 .setkey = spacc_aes_setkey,
1352                                 .encrypt = spacc_ablk_encrypt,
1353                                 .decrypt = spacc_ablk_decrypt,
1354                                 .min_keysize = AES_MIN_KEY_SIZE,
1355                                 .max_keysize = AES_MAX_KEY_SIZE,
1356                         },
1357                         .cra_init = spacc_ablk_cra_init,
1358                         .cra_exit = spacc_ablk_cra_exit,
1359                 },
1360         },
1361         {
1362                 .key_offs = DES_BLOCK_SIZE,
1363                 .iv_offs = 0,
1364                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1365                 .alg = {
1366                         .cra_name = "cbc(des)",
1367                         .cra_driver_name = "cbc-des-picoxcell",
1368                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1369                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1370                         .cra_blocksize = DES_BLOCK_SIZE,
1371                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1372                         .cra_type = &crypto_ablkcipher_type,
1373                         .cra_module = THIS_MODULE,
1374                         .cra_ablkcipher = {
1375                                 .setkey = spacc_des_setkey,
1376                                 .encrypt = spacc_ablk_encrypt,
1377                                 .decrypt = spacc_ablk_decrypt,
1378                                 .min_keysize = DES_KEY_SIZE,
1379                                 .max_keysize = DES_KEY_SIZE,
1380                                 .ivsize = DES_BLOCK_SIZE,
1381                         },
1382                         .cra_init = spacc_ablk_cra_init,
1383                         .cra_exit = spacc_ablk_cra_exit,
1384                 },
1385         },
1386         {
1387                 .key_offs = DES_BLOCK_SIZE,
1388                 .iv_offs = 0,
1389                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1390                 .alg = {
1391                         .cra_name = "ecb(des)",
1392                         .cra_driver_name = "ecb-des-picoxcell",
1393                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1394                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1395                         .cra_blocksize = DES_BLOCK_SIZE,
1396                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1397                         .cra_type = &crypto_ablkcipher_type,
1398                         .cra_module = THIS_MODULE,
1399                         .cra_ablkcipher = {
1400                                 .setkey = spacc_des_setkey,
1401                                 .encrypt = spacc_ablk_encrypt,
1402                                 .decrypt = spacc_ablk_decrypt,
1403                                 .min_keysize = DES_KEY_SIZE,
1404                                 .max_keysize = DES_KEY_SIZE,
1405                         },
1406                         .cra_init = spacc_ablk_cra_init,
1407                         .cra_exit = spacc_ablk_cra_exit,
1408                 },
1409         },
1410         {
1411                 .key_offs = DES_BLOCK_SIZE,
1412                 .iv_offs = 0,
1413                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1414                 .alg = {
1415                         .cra_name = "cbc(des3_ede)",
1416                         .cra_driver_name = "cbc-des3-ede-picoxcell",
1417                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1418                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1419                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1420                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1421                         .cra_type = &crypto_ablkcipher_type,
1422                         .cra_module = THIS_MODULE,
1423                         .cra_ablkcipher = {
1424                                 .setkey = spacc_des_setkey,
1425                                 .encrypt = spacc_ablk_encrypt,
1426                                 .decrypt = spacc_ablk_decrypt,
1427                                 .min_keysize = DES3_EDE_KEY_SIZE,
1428                                 .max_keysize = DES3_EDE_KEY_SIZE,
1429                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1430                         },
1431                         .cra_init = spacc_ablk_cra_init,
1432                         .cra_exit = spacc_ablk_cra_exit,
1433                 },
1434         },
1435         {
1436                 .key_offs = DES_BLOCK_SIZE,
1437                 .iv_offs = 0,
1438                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1439                 .alg = {
1440                         .cra_name = "ecb(des3_ede)",
1441                         .cra_driver_name = "ecb-des3-ede-picoxcell",
1442                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1443                         .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1444                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1445                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1446                         .cra_type = &crypto_ablkcipher_type,
1447                         .cra_module = THIS_MODULE,
1448                         .cra_ablkcipher = {
1449                                 .setkey = spacc_des_setkey,
1450                                 .encrypt = spacc_ablk_encrypt,
1451                                 .decrypt = spacc_ablk_decrypt,
1452                                 .min_keysize = DES3_EDE_KEY_SIZE,
1453                                 .max_keysize = DES3_EDE_KEY_SIZE,
1454                         },
1455                         .cra_init = spacc_ablk_cra_init,
1456                         .cra_exit = spacc_ablk_cra_exit,
1457                 },
1458         },
1459         {
1460                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1461                                 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1462                 .key_offs = 0,
1463                 .iv_offs = AES_MAX_KEY_SIZE,
1464                 .alg = {
1465                         .cra_name = "authenc(hmac(sha1),cbc(aes))",
1466                         .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1467                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1468                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1469                         .cra_blocksize = AES_BLOCK_SIZE,
1470                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1471                         .cra_type = &crypto_aead_type,
1472                         .cra_module = THIS_MODULE,
1473                         .cra_aead = {
1474                                 .setkey = spacc_aead_setkey,
1475                                 .setauthsize = spacc_aead_setauthsize,
1476                                 .encrypt = spacc_aead_encrypt,
1477                                 .decrypt = spacc_aead_decrypt,
1478                                 .givencrypt = spacc_aead_givencrypt,
1479                                 .ivsize = AES_BLOCK_SIZE,
1480                                 .maxauthsize = SHA1_DIGEST_SIZE,
1481                         },
1482                         .cra_init = spacc_aead_cra_init,
1483                         .cra_exit = spacc_aead_cra_exit,
1484                 },
1485         },
1486         {
1487                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1488                                 SPA_CTRL_HASH_ALG_SHA256 |
1489                                 SPA_CTRL_HASH_MODE_HMAC,
1490                 .key_offs = 0,
1491                 .iv_offs = AES_MAX_KEY_SIZE,
1492                 .alg = {
1493                         .cra_name = "authenc(hmac(sha256),cbc(aes))",
1494                         .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1495                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1496                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1497                         .cra_blocksize = AES_BLOCK_SIZE,
1498                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1499                         .cra_type = &crypto_aead_type,
1500                         .cra_module = THIS_MODULE,
1501                         .cra_aead = {
1502                                 .setkey = spacc_aead_setkey,
1503                                 .setauthsize = spacc_aead_setauthsize,
1504                                 .encrypt = spacc_aead_encrypt,
1505                                 .decrypt = spacc_aead_decrypt,
1506                                 .givencrypt = spacc_aead_givencrypt,
1507                                 .ivsize = AES_BLOCK_SIZE,
1508                                 .maxauthsize = SHA256_DIGEST_SIZE,
1509                         },
1510                         .cra_init = spacc_aead_cra_init,
1511                         .cra_exit = spacc_aead_cra_exit,
1512                 },
1513         },
1514         {
1515                 .key_offs = 0,
1516                 .iv_offs = AES_MAX_KEY_SIZE,
1517                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1518                                 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1519                 .alg = {
1520                         .cra_name = "authenc(hmac(md5),cbc(aes))",
1521                         .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1522                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1523                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1524                         .cra_blocksize = AES_BLOCK_SIZE,
1525                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1526                         .cra_type = &crypto_aead_type,
1527                         .cra_module = THIS_MODULE,
1528                         .cra_aead = {
1529                                 .setkey = spacc_aead_setkey,
1530                                 .setauthsize = spacc_aead_setauthsize,
1531                                 .encrypt = spacc_aead_encrypt,
1532                                 .decrypt = spacc_aead_decrypt,
1533                                 .givencrypt = spacc_aead_givencrypt,
1534                                 .ivsize = AES_BLOCK_SIZE,
1535                                 .maxauthsize = MD5_DIGEST_SIZE,
1536                         },
1537                         .cra_init = spacc_aead_cra_init,
1538                         .cra_exit = spacc_aead_cra_exit,
1539                 },
1540         },
1541         {
1542                 .key_offs = DES_BLOCK_SIZE,
1543                 .iv_offs = 0,
1544                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1545                                 SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1546                 .alg = {
1547                         .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1548                         .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1549                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1550                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1551                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1552                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1553                         .cra_type = &crypto_aead_type,
1554                         .cra_module = THIS_MODULE,
1555                         .cra_aead = {
1556                                 .setkey = spacc_aead_setkey,
1557                                 .setauthsize = spacc_aead_setauthsize,
1558                                 .encrypt = spacc_aead_encrypt,
1559                                 .decrypt = spacc_aead_decrypt,
1560                                 .givencrypt = spacc_aead_givencrypt,
1561                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1562                                 .maxauthsize = SHA1_DIGEST_SIZE,
1563                         },
1564                         .cra_init = spacc_aead_cra_init,
1565                         .cra_exit = spacc_aead_cra_exit,
1566                 },
1567         },
1568         {
1569                 .key_offs = DES_BLOCK_SIZE,
1570                 .iv_offs = 0,
1571                 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1572                                 SPA_CTRL_HASH_ALG_SHA256 |
1573                                 SPA_CTRL_HASH_MODE_HMAC,
1574                 .alg = {
1575                         .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1576                         .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1577                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1578                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1579                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1580                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1581                         .cra_type = &crypto_aead_type,
1582                         .cra_module = THIS_MODULE,
1583                         .cra_aead = {
1584                                 .setkey = spacc_aead_setkey,
1585                                 .setauthsize = spacc_aead_setauthsize,
1586                                 .encrypt = spacc_aead_encrypt,
1587                                 .decrypt = spacc_aead_decrypt,
1588                                 .givencrypt = spacc_aead_givencrypt,
1589                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1590                                 .maxauthsize = SHA256_DIGEST_SIZE,
1591                         },
1592                         .cra_init = spacc_aead_cra_init,
1593                         .cra_exit = spacc_aead_cra_exit,
1594                 },
1595         },
1596         {
1597                 .key_offs = DES_BLOCK_SIZE,
1598                 .iv_offs = 0,
1599                 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1600                                 SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1601                 .alg = {
1602                         .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1603                         .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1604                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1605                         .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1606                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1607                         .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1608                         .cra_type = &crypto_aead_type,
1609                         .cra_module = THIS_MODULE,
1610                         .cra_aead = {
1611                                 .setkey = spacc_aead_setkey,
1612                                 .setauthsize = spacc_aead_setauthsize,
1613                                 .encrypt = spacc_aead_encrypt,
1614                                 .decrypt = spacc_aead_decrypt,
1615                                 .givencrypt = spacc_aead_givencrypt,
1616                                 .ivsize = DES3_EDE_BLOCK_SIZE,
1617                                 .maxauthsize = MD5_DIGEST_SIZE,
1618                         },
1619                         .cra_init = spacc_aead_cra_init,
1620                         .cra_exit = spacc_aead_cra_exit,
1621                 },
1622         },
1623 };
1624
1625 static struct spacc_alg l2_engine_algs[] = {
1626         {
1627                 .key_offs = 0,
1628                 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1629                 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1630                                 SPA_CTRL_CIPH_MODE_F8,
1631                 .alg = {
1632                         .cra_name = "f8(kasumi)",
1633                         .cra_driver_name = "f8-kasumi-picoxcell",
1634                         .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1635                         .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_ASYNC,
1636                         .cra_blocksize = 8,
1637                         .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1638                         .cra_type = &crypto_ablkcipher_type,
1639                         .cra_module = THIS_MODULE,
1640                         .cra_ablkcipher = {
1641                                 .setkey = spacc_kasumi_f8_setkey,
1642                                 .encrypt = spacc_ablk_encrypt,
1643                                 .decrypt = spacc_ablk_decrypt,
1644                                 .min_keysize = 16,
1645                                 .max_keysize = 16,
1646                                 .ivsize = 8,
1647                         },
1648                         .cra_init = spacc_ablk_cra_init,
1649                         .cra_exit = spacc_ablk_cra_exit,
1650                 },
1651         },
1652 };
1653
1654 static int __devinit spacc_probe(struct platform_device *pdev,
1655                                  unsigned max_ctxs, size_t cipher_pg_sz,
1656                                  size_t hash_pg_sz, size_t fifo_sz,
1657                                  struct spacc_alg *algs, size_t num_algs)
1658 {
1659         int i, err, ret = -EINVAL;
1660         struct resource *mem, *irq;
1661         struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1662                                                    GFP_KERNEL);
1663         if (!engine)
1664                 return -ENOMEM;
1665
1666         engine->max_ctxs        = max_ctxs;
1667         engine->cipher_pg_sz    = cipher_pg_sz;
1668         engine->hash_pg_sz      = hash_pg_sz;
1669         engine->fifo_sz         = fifo_sz;
1670         engine->algs            = algs;
1671         engine->num_algs        = num_algs;
1672         engine->name            = dev_name(&pdev->dev);
1673
1674         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1675         irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1676         if (!mem || !irq) {
1677                 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1678                 return -ENXIO;
1679         }
1680
1681         if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem),
1682                                      engine->name))
1683                 return -ENOMEM;
1684
1685         engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem));
1686         if (!engine->regs) {
1687                 dev_err(&pdev->dev, "memory map failed\n");
1688                 return -ENOMEM;
1689         }
1690
1691         if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1692                              engine->name, engine)) {
1693                 dev_err(engine->dev, "failed to request IRQ\n");
1694                 return -EBUSY;
1695         }
1696
1697         engine->dev             = &pdev->dev;
1698         engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1699         engine->hash_key_base   = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1700
1701         engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1702                 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1703         if (!engine->req_pool)
1704                 return -ENOMEM;
1705
1706         spin_lock_init(&engine->hw_lock);
1707
1708         engine->clk = clk_get(&pdev->dev, NULL);
1709         if (IS_ERR(engine->clk)) {
1710                 dev_info(&pdev->dev, "clk unavailable\n");
1711                 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1712                 return PTR_ERR(engine->clk);
1713         }
1714
1715         if (clk_enable(engine->clk)) {
1716                 dev_info(&pdev->dev, "unable to enable clk\n");
1717                 clk_put(engine->clk);
1718                 return -EIO;
1719         }
1720
1721         err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1722         if (err) {
1723                 clk_disable(engine->clk);
1724                 clk_put(engine->clk);
1725                 return err;
1726         }
1727
1728
1729         /*
1730          * Use an IRQ threshold of 50% as a default. This seems to be a
1731          * reasonable trade off of latency against throughput but can be
1732          * changed at runtime.
1733          */
1734         engine->stat_irq_thresh = (engine->fifo_sz / 2);
1735
1736         /*
1737          * Configure the interrupts. We only use the STAT_CNT interrupt as we
1738          * only submit a new packet for processing when we complete another in
1739          * the queue. This minimizes time spent in the interrupt handler.
1740          */
1741         writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1742                engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1743         writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1744                engine->regs + SPA_IRQ_EN_REG_OFFSET);
1745
1746         setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1747                     (unsigned long)engine);
1748
1749         INIT_LIST_HEAD(&engine->pending);
1750         INIT_LIST_HEAD(&engine->completed);
1751         INIT_LIST_HEAD(&engine->in_progress);
1752         engine->in_flight = 0;
1753         tasklet_init(&engine->complete, spacc_spacc_complete,
1754                      (unsigned long)engine);
1755
1756         platform_set_drvdata(pdev, engine);
1757
1758         INIT_LIST_HEAD(&engine->registered_algs);
1759         for (i = 0; i < engine->num_algs; ++i) {
1760                 engine->algs[i].engine = engine;
1761                 err = crypto_register_alg(&engine->algs[i].alg);
1762                 if (!err) {
1763                         list_add_tail(&engine->algs[i].entry,
1764                                       &engine->registered_algs);
1765                         ret = 0;
1766                 }
1767                 if (err)
1768                         dev_err(engine->dev, "failed to register alg \"%s\"\n",
1769                                 engine->algs[i].alg.cra_name);
1770                 else
1771                         dev_dbg(engine->dev, "registered alg \"%s\"\n",
1772                                 engine->algs[i].alg.cra_name);
1773         }
1774
1775         return ret;
1776 }
1777
1778 static int __devexit spacc_remove(struct platform_device *pdev)
1779 {
1780         struct spacc_alg *alg, *next;
1781         struct spacc_engine *engine = platform_get_drvdata(pdev);
1782
1783         del_timer_sync(&engine->packet_timeout);
1784         device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1785
1786         list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1787                 list_del(&alg->entry);
1788                 crypto_unregister_alg(&alg->alg);
1789         }
1790
1791         clk_disable(engine->clk);
1792         clk_put(engine->clk);
1793
1794         return 0;
1795 }
1796
1797 static int __devinit ipsec_probe(struct platform_device *pdev)
1798 {
1799         return spacc_probe(pdev, SPACC_CRYPTO_IPSEC_MAX_CTXS,
1800                            SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ,
1801                            SPACC_CRYPTO_IPSEC_HASH_PG_SZ,
1802                            SPACC_CRYPTO_IPSEC_FIFO_SZ, ipsec_engine_algs,
1803                            ARRAY_SIZE(ipsec_engine_algs));
1804 }
1805
1806 static struct platform_driver ipsec_driver = {
1807         .probe          = ipsec_probe,
1808         .remove         = __devexit_p(spacc_remove),
1809         .driver         = {
1810                 .name   = "picoxcell-ipsec",
1811 #ifdef CONFIG_PM
1812                 .pm     = &spacc_pm_ops,
1813 #endif /* CONFIG_PM */
1814         },
1815 };
1816
1817 static int __devinit l2_probe(struct platform_device *pdev)
1818 {
1819         return spacc_probe(pdev, SPACC_CRYPTO_L2_MAX_CTXS,
1820                            SPACC_CRYPTO_L2_CIPHER_PG_SZ,
1821                            SPACC_CRYPTO_L2_HASH_PG_SZ, SPACC_CRYPTO_L2_FIFO_SZ,
1822                            l2_engine_algs, ARRAY_SIZE(l2_engine_algs));
1823 }
1824
1825 static struct platform_driver l2_driver = {
1826         .probe          = l2_probe,
1827         .remove         = __devexit_p(spacc_remove),
1828         .driver         = {
1829                 .name   = "picoxcell-l2",
1830 #ifdef CONFIG_PM
1831                 .pm     = &spacc_pm_ops,
1832 #endif /* CONFIG_PM */
1833         },
1834 };
1835
1836 static int __init spacc_init(void)
1837 {
1838         int ret = platform_driver_register(&ipsec_driver);
1839         if (ret) {
1840                 pr_err("failed to register ipsec spacc driver");
1841                 goto out;
1842         }
1843
1844         ret = platform_driver_register(&l2_driver);
1845         if (ret) {
1846                 pr_err("failed to register l2 spacc driver");
1847                 goto l2_failed;
1848         }
1849
1850         return 0;
1851
1852 l2_failed:
1853         platform_driver_unregister(&ipsec_driver);
1854 out:
1855         return ret;
1856 }
1857 module_init(spacc_init);
1858
1859 static void __exit spacc_exit(void)
1860 {
1861         platform_driver_unregister(&ipsec_driver);
1862         platform_driver_unregister(&l2_driver);
1863 }
1864 module_exit(spacc_exit);
1865
1866 MODULE_LICENSE("GPL");
1867 MODULE_AUTHOR("Jamie Iles");