crypto: mv_cesa - use ablkcipher_request_cast instead of the manual container_of
[pandora-kernel.git] / drivers / crypto / mv_cesa.c
1 /*
2  * Support for Marvell's crypto engine which can be found on some Orion5X
3  * boards.
4  *
5  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6  * License: GPLv2
7  *
8  */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/sha.h>
20
21 #include "mv_cesa.h"
22
23 #define MV_CESA "MV-CESA:"
24 #define MAX_HW_HASH_SIZE        0xFFFF
25
26 /*
27  * STM:
28  *   /---------------------------------------\
29  *   |                                       | request complete
30  *  \./                                      |
31  * IDLE -> new request -> BUSY -> done -> DEQUEUE
32  *                         /°\               |
33  *                          |                | more scatter entries
34  *                          \________________/
35  */
36 enum engine_status {
37         ENGINE_IDLE,
38         ENGINE_BUSY,
39         ENGINE_W_DEQUEUE,
40 };
41
42 /**
43  * struct req_progress - used for every crypt request
44  * @src_sg_it:          sg iterator for src
45  * @dst_sg_it:          sg iterator for dst
46  * @sg_src_left:        bytes left in src to process (scatter list)
47  * @src_start:          offset to add to src start position (scatter list)
48  * @crypt_len:          length of current hw crypt/hash process
49  * @hw_nbytes:          total bytes to process in hw for this request
50  * @copy_back:          whether to copy data back (crypt) or not (hash)
51  * @sg_dst_left:        bytes left dst to process in this scatter list
52  * @dst_start:          offset to add to dst start position (scatter list)
53  * @hw_processed_bytes: number of bytes processed by hw (request).
54  *
55  * sg helper are used to iterate over the scatterlist. Since the size of the
56  * SRAM may be less than the scatter size, this struct struct is used to keep
57  * track of progress within current scatterlist.
58  */
59 struct req_progress {
60         struct sg_mapping_iter src_sg_it;
61         struct sg_mapping_iter dst_sg_it;
62         void (*complete) (void);
63         void (*process) (int is_first);
64
65         /* src mostly */
66         int sg_src_left;
67         int src_start;
68         int crypt_len;
69         int hw_nbytes;
70         /* dst mostly */
71         int copy_back;
72         int sg_dst_left;
73         int dst_start;
74         int hw_processed_bytes;
75 };
76
77 struct crypto_priv {
78         void __iomem *reg;
79         void __iomem *sram;
80         int irq;
81         struct task_struct *queue_th;
82
83         /* the lock protects queue and eng_st */
84         spinlock_t lock;
85         struct crypto_queue queue;
86         enum engine_status eng_st;
87         struct crypto_async_request *cur_req;
88         struct req_progress p;
89         int max_req_size;
90         int sram_size;
91         int has_sha1;
92         int has_hmac_sha1;
93 };
94
95 static struct crypto_priv *cpg;
96
97 struct mv_ctx {
98         u8 aes_enc_key[AES_KEY_LEN];
99         u32 aes_dec_key[8];
100         int key_len;
101         u32 need_calc_aes_dkey;
102 };
103
104 enum crypto_op {
105         COP_AES_ECB,
106         COP_AES_CBC,
107 };
108
109 struct mv_req_ctx {
110         enum crypto_op op;
111         int decrypt;
112 };
113
114 enum hash_op {
115         COP_SHA1,
116         COP_HMAC_SHA1
117 };
118
119 struct mv_tfm_hash_ctx {
120         struct crypto_shash *fallback;
121         struct crypto_shash *base_hash;
122         u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
123         int count_add;
124         enum hash_op op;
125 };
126
127 struct mv_req_hash_ctx {
128         u64 count;
129         u32 state[SHA1_DIGEST_SIZE / 4];
130         u8 buffer[SHA1_BLOCK_SIZE];
131         int first_hash;         /* marks that we don't have previous state */
132         int last_chunk;         /* marks that this is the 'final' request */
133         int extra_bytes;        /* unprocessed bytes in buffer */
134         enum hash_op op;
135         int count_add;
136         struct scatterlist dummysg;
137 };
138
139 static void compute_aes_dec_key(struct mv_ctx *ctx)
140 {
141         struct crypto_aes_ctx gen_aes_key;
142         int key_pos;
143
144         if (!ctx->need_calc_aes_dkey)
145                 return;
146
147         crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
148
149         key_pos = ctx->key_len + 24;
150         memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
151         switch (ctx->key_len) {
152         case AES_KEYSIZE_256:
153                 key_pos -= 2;
154                 /* fall */
155         case AES_KEYSIZE_192:
156                 key_pos -= 2;
157                 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
158                                 4 * 4);
159                 break;
160         }
161         ctx->need_calc_aes_dkey = 0;
162 }
163
164 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
165                 unsigned int len)
166 {
167         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
168         struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
169
170         switch (len) {
171         case AES_KEYSIZE_128:
172         case AES_KEYSIZE_192:
173         case AES_KEYSIZE_256:
174                 break;
175         default:
176                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
177                 return -EINVAL;
178         }
179         ctx->key_len = len;
180         ctx->need_calc_aes_dkey = 1;
181
182         memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
183         return 0;
184 }
185
186 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
187 {
188         int ret;
189         void *sbuf;
190         int copied = 0;
191
192         while (1) {
193                 if (!p->sg_src_left) {
194                         ret = sg_miter_next(&p->src_sg_it);
195                         BUG_ON(!ret);
196                         p->sg_src_left = p->src_sg_it.length;
197                         p->src_start = 0;
198                 }
199
200                 sbuf = p->src_sg_it.addr + p->src_start;
201
202                 if (p->sg_src_left <= len - copied) {
203                         memcpy(dbuf + copied, sbuf, p->sg_src_left);
204                         copied += p->sg_src_left;
205                         p->sg_src_left = 0;
206                         if (copied >= len)
207                                 break;
208                 } else {
209                         int copy_len = len - copied;
210                         memcpy(dbuf + copied, sbuf, copy_len);
211                         p->src_start += copy_len;
212                         p->sg_src_left -= copy_len;
213                         break;
214                 }
215         }
216 }
217
218 static void setup_data_in(void)
219 {
220         struct req_progress *p = &cpg->p;
221         int data_in_sram =
222             min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
223         copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
224                         data_in_sram - p->crypt_len);
225         p->crypt_len = data_in_sram;
226 }
227
228 static void mv_process_current_q(int first_block)
229 {
230         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
231         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
232         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
233         struct sec_accel_config op;
234
235         switch (req_ctx->op) {
236         case COP_AES_ECB:
237                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
238                 break;
239         case COP_AES_CBC:
240         default:
241                 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
242                 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
243                         ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
244                 if (first_block)
245                         memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
246                 break;
247         }
248         if (req_ctx->decrypt) {
249                 op.config |= CFG_DIR_DEC;
250                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
251                                 AES_KEY_LEN);
252         } else {
253                 op.config |= CFG_DIR_ENC;
254                 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
255                                 AES_KEY_LEN);
256         }
257
258         switch (ctx->key_len) {
259         case AES_KEYSIZE_128:
260                 op.config |= CFG_AES_LEN_128;
261                 break;
262         case AES_KEYSIZE_192:
263                 op.config |= CFG_AES_LEN_192;
264                 break;
265         case AES_KEYSIZE_256:
266                 op.config |= CFG_AES_LEN_256;
267                 break;
268         }
269         op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
270                 ENC_P_DST(SRAM_DATA_OUT_START);
271         op.enc_key_p = SRAM_DATA_KEY_P;
272
273         setup_data_in();
274         op.enc_len = cpg->p.crypt_len;
275         memcpy(cpg->sram + SRAM_CONFIG, &op,
276                         sizeof(struct sec_accel_config));
277
278         writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
279         /* GO */
280         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
281
282         /*
283          * XXX: add timer if the interrupt does not occur for some mystery
284          * reason
285          */
286 }
287
288 static void mv_crypto_algo_completion(void)
289 {
290         struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
291         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
292
293         sg_miter_stop(&cpg->p.src_sg_it);
294         sg_miter_stop(&cpg->p.dst_sg_it);
295
296         if (req_ctx->op != COP_AES_CBC)
297                 return ;
298
299         memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
300 }
301
302 static void mv_process_hash_current(int first_block)
303 {
304         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
305         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
306         struct req_progress *p = &cpg->p;
307         struct sec_accel_config op = { 0 };
308         int is_last;
309
310         switch (req_ctx->op) {
311         case COP_SHA1:
312         default:
313                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
314                 break;
315         case COP_HMAC_SHA1:
316                 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
317                 break;
318         }
319
320         op.mac_src_p =
321                 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
322                 req_ctx->
323                 count);
324
325         setup_data_in();
326
327         op.mac_digest =
328                 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
329         op.mac_iv =
330                 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
331                 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
332
333         is_last = req_ctx->last_chunk
334                 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
335                 && (req_ctx->count <= MAX_HW_HASH_SIZE);
336         if (req_ctx->first_hash) {
337                 if (is_last)
338                         op.config |= CFG_NOT_FRAG;
339                 else
340                         op.config |= CFG_FIRST_FRAG;
341
342                 req_ctx->first_hash = 0;
343         } else {
344                 if (is_last)
345                         op.config |= CFG_LAST_FRAG;
346                 else
347                         op.config |= CFG_MID_FRAG;
348         }
349
350         memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
351
352         writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
353         /* GO */
354         writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
355
356         /*
357         * XXX: add timer if the interrupt does not occur for some mystery
358         * reason
359         */
360 }
361
362 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
363                                           struct shash_desc *desc)
364 {
365         int i;
366         struct sha1_state shash_state;
367
368         shash_state.count = ctx->count + ctx->count_add;
369         for (i = 0; i < 5; i++)
370                 shash_state.state[i] = ctx->state[i];
371         memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
372         return crypto_shash_import(desc, &shash_state);
373 }
374
375 static int mv_hash_final_fallback(struct ahash_request *req)
376 {
377         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
378         struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
379         struct {
380                 struct shash_desc shash;
381                 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
382         } desc;
383         int rc;
384
385         desc.shash.tfm = tfm_ctx->fallback;
386         desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
387         if (unlikely(req_ctx->first_hash)) {
388                 crypto_shash_init(&desc.shash);
389                 crypto_shash_update(&desc.shash, req_ctx->buffer,
390                                     req_ctx->extra_bytes);
391         } else {
392                 /* only SHA1 for now....
393                  */
394                 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
395                 if (rc)
396                         goto out;
397         }
398         rc = crypto_shash_final(&desc.shash, req->result);
399 out:
400         return rc;
401 }
402
403 static void mv_hash_algo_completion(void)
404 {
405         struct ahash_request *req = ahash_request_cast(cpg->cur_req);
406         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
407
408         if (ctx->extra_bytes)
409                 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
410         sg_miter_stop(&cpg->p.src_sg_it);
411
412         ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
413         ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
414         ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
415         ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
416         ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
417
418         if (likely(ctx->last_chunk)) {
419                 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
420                         memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
421                                crypto_ahash_digestsize(crypto_ahash_reqtfm
422                                                        (req)));
423                 } else
424                         mv_hash_final_fallback(req);
425         }
426 }
427
428 static void dequeue_complete_req(void)
429 {
430         struct crypto_async_request *req = cpg->cur_req;
431         void *buf;
432         int ret;
433         cpg->p.hw_processed_bytes += cpg->p.crypt_len;
434         if (cpg->p.copy_back) {
435                 int need_copy_len = cpg->p.crypt_len;
436                 int sram_offset = 0;
437                 do {
438                         int dst_copy;
439
440                         if (!cpg->p.sg_dst_left) {
441                                 ret = sg_miter_next(&cpg->p.dst_sg_it);
442                                 BUG_ON(!ret);
443                                 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
444                                 cpg->p.dst_start = 0;
445                         }
446
447                         buf = cpg->p.dst_sg_it.addr;
448                         buf += cpg->p.dst_start;
449
450                         dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
451
452                         memcpy(buf,
453                                cpg->sram + SRAM_DATA_OUT_START + sram_offset,
454                                dst_copy);
455                         sram_offset += dst_copy;
456                         cpg->p.sg_dst_left -= dst_copy;
457                         need_copy_len -= dst_copy;
458                         cpg->p.dst_start += dst_copy;
459                 } while (need_copy_len > 0);
460         }
461
462         cpg->p.crypt_len = 0;
463
464         BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
465         if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
466                 /* process next scatter list entry */
467                 cpg->eng_st = ENGINE_BUSY;
468                 cpg->p.process(0);
469         } else {
470                 cpg->p.complete();
471                 cpg->eng_st = ENGINE_IDLE;
472                 local_bh_disable();
473                 req->complete(req, 0);
474                 local_bh_enable();
475         }
476 }
477
478 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
479 {
480         int i = 0;
481         size_t cur_len;
482
483         while (1) {
484                 cur_len = sl[i].length;
485                 ++i;
486                 if (total_bytes > cur_len)
487                         total_bytes -= cur_len;
488                 else
489                         break;
490         }
491
492         return i;
493 }
494
495 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
496 {
497         struct req_progress *p = &cpg->p;
498         int num_sgs;
499
500         cpg->cur_req = &req->base;
501         memset(p, 0, sizeof(struct req_progress));
502         p->hw_nbytes = req->nbytes;
503         p->complete = mv_crypto_algo_completion;
504         p->process = mv_process_current_q;
505         p->copy_back = 1;
506
507         num_sgs = count_sgs(req->src, req->nbytes);
508         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
509
510         num_sgs = count_sgs(req->dst, req->nbytes);
511         sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
512
513         mv_process_current_q(1);
514 }
515
516 static void mv_start_new_hash_req(struct ahash_request *req)
517 {
518         struct req_progress *p = &cpg->p;
519         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
520         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
521         int num_sgs, hw_bytes, old_extra_bytes, rc;
522         cpg->cur_req = &req->base;
523         memset(p, 0, sizeof(struct req_progress));
524         hw_bytes = req->nbytes + ctx->extra_bytes;
525         old_extra_bytes = ctx->extra_bytes;
526
527         if (unlikely(ctx->extra_bytes)) {
528                 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
529                        ctx->extra_bytes);
530                 p->crypt_len = ctx->extra_bytes;
531         }
532
533         memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
534
535         if (unlikely(!ctx->first_hash)) {
536                 writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
537                 writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
538                 writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
539                 writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
540                 writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
541         }
542
543         ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
544         if (ctx->extra_bytes != 0
545             && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
546                 hw_bytes -= ctx->extra_bytes;
547         else
548                 ctx->extra_bytes = 0;
549
550         num_sgs = count_sgs(req->src, req->nbytes);
551         sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
552
553         if (hw_bytes) {
554                 p->hw_nbytes = hw_bytes;
555                 p->complete = mv_hash_algo_completion;
556                 p->process = mv_process_hash_current;
557
558                 mv_process_hash_current(1);
559         } else {
560                 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
561                                 ctx->extra_bytes - old_extra_bytes);
562                 sg_miter_stop(&p->src_sg_it);
563                 if (ctx->last_chunk)
564                         rc = mv_hash_final_fallback(req);
565                 else
566                         rc = 0;
567                 cpg->eng_st = ENGINE_IDLE;
568                 local_bh_disable();
569                 req->base.complete(&req->base, rc);
570                 local_bh_enable();
571         }
572 }
573
574 static int queue_manag(void *data)
575 {
576         cpg->eng_st = ENGINE_IDLE;
577         do {
578                 struct crypto_async_request *async_req = NULL;
579                 struct crypto_async_request *backlog;
580
581                 __set_current_state(TASK_INTERRUPTIBLE);
582
583                 if (cpg->eng_st == ENGINE_W_DEQUEUE)
584                         dequeue_complete_req();
585
586                 spin_lock_irq(&cpg->lock);
587                 if (cpg->eng_st == ENGINE_IDLE) {
588                         backlog = crypto_get_backlog(&cpg->queue);
589                         async_req = crypto_dequeue_request(&cpg->queue);
590                         if (async_req) {
591                                 BUG_ON(cpg->eng_st != ENGINE_IDLE);
592                                 cpg->eng_st = ENGINE_BUSY;
593                         }
594                 }
595                 spin_unlock_irq(&cpg->lock);
596
597                 if (backlog) {
598                         backlog->complete(backlog, -EINPROGRESS);
599                         backlog = NULL;
600                 }
601
602                 if (async_req) {
603                         if (async_req->tfm->__crt_alg->cra_type !=
604                             &crypto_ahash_type) {
605                                 struct ablkcipher_request *req =
606                                     ablkcipher_request_cast(async_req);
607                                 mv_start_new_crypt_req(req);
608                         } else {
609                                 struct ahash_request *req =
610                                     ahash_request_cast(async_req);
611                                 mv_start_new_hash_req(req);
612                         }
613                         async_req = NULL;
614                 }
615
616                 schedule();
617
618         } while (!kthread_should_stop());
619         return 0;
620 }
621
622 static int mv_handle_req(struct crypto_async_request *req)
623 {
624         unsigned long flags;
625         int ret;
626
627         spin_lock_irqsave(&cpg->lock, flags);
628         ret = crypto_enqueue_request(&cpg->queue, req);
629         spin_unlock_irqrestore(&cpg->lock, flags);
630         wake_up_process(cpg->queue_th);
631         return ret;
632 }
633
634 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
635 {
636         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
637
638         req_ctx->op = COP_AES_ECB;
639         req_ctx->decrypt = 0;
640
641         return mv_handle_req(&req->base);
642 }
643
644 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
645 {
646         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
647         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
648
649         req_ctx->op = COP_AES_ECB;
650         req_ctx->decrypt = 1;
651
652         compute_aes_dec_key(ctx);
653         return mv_handle_req(&req->base);
654 }
655
656 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
657 {
658         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
659
660         req_ctx->op = COP_AES_CBC;
661         req_ctx->decrypt = 0;
662
663         return mv_handle_req(&req->base);
664 }
665
666 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
667 {
668         struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
669         struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
670
671         req_ctx->op = COP_AES_CBC;
672         req_ctx->decrypt = 1;
673
674         compute_aes_dec_key(ctx);
675         return mv_handle_req(&req->base);
676 }
677
678 static int mv_cra_init(struct crypto_tfm *tfm)
679 {
680         tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
681         return 0;
682 }
683
684 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
685                                  int is_last, unsigned int req_len,
686                                  int count_add)
687 {
688         memset(ctx, 0, sizeof(*ctx));
689         ctx->op = op;
690         ctx->count = req_len;
691         ctx->first_hash = 1;
692         ctx->last_chunk = is_last;
693         ctx->count_add = count_add;
694 }
695
696 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
697                                    unsigned req_len)
698 {
699         ctx->last_chunk = is_last;
700         ctx->count += req_len;
701 }
702
703 static int mv_hash_init(struct ahash_request *req)
704 {
705         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
706         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
707                              tfm_ctx->count_add);
708         return 0;
709 }
710
711 static int mv_hash_update(struct ahash_request *req)
712 {
713         if (!req->nbytes)
714                 return 0;
715
716         mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
717         return mv_handle_req(&req->base);
718 }
719
720 static int mv_hash_final(struct ahash_request *req)
721 {
722         struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
723         /* dummy buffer of 4 bytes */
724         sg_init_one(&ctx->dummysg, ctx->buffer, 4);
725         /* I think I'm allowed to do that... */
726         ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
727         mv_update_hash_req_ctx(ctx, 1, 0);
728         return mv_handle_req(&req->base);
729 }
730
731 static int mv_hash_finup(struct ahash_request *req)
732 {
733         if (!req->nbytes)
734                 return mv_hash_final(req);
735
736         mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
737         return mv_handle_req(&req->base);
738 }
739
740 static int mv_hash_digest(struct ahash_request *req)
741 {
742         const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
743         mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
744                              req->nbytes, tfm_ctx->count_add);
745         return mv_handle_req(&req->base);
746 }
747
748 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
749                              const void *ostate)
750 {
751         const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
752         int i;
753         for (i = 0; i < 5; i++) {
754                 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
755                 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
756         }
757 }
758
759 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
760                           unsigned int keylen)
761 {
762         int rc;
763         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
764         int bs, ds, ss;
765
766         if (!ctx->base_hash)
767                 return 0;
768
769         rc = crypto_shash_setkey(ctx->fallback, key, keylen);
770         if (rc)
771                 return rc;
772
773         /* Can't see a way to extract the ipad/opad from the fallback tfm
774            so I'm basically copying code from the hmac module */
775         bs = crypto_shash_blocksize(ctx->base_hash);
776         ds = crypto_shash_digestsize(ctx->base_hash);
777         ss = crypto_shash_statesize(ctx->base_hash);
778
779         {
780                 struct {
781                         struct shash_desc shash;
782                         char ctx[crypto_shash_descsize(ctx->base_hash)];
783                 } desc;
784                 unsigned int i;
785                 char ipad[ss];
786                 char opad[ss];
787
788                 desc.shash.tfm = ctx->base_hash;
789                 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
790                     CRYPTO_TFM_REQ_MAY_SLEEP;
791
792                 if (keylen > bs) {
793                         int err;
794
795                         err =
796                             crypto_shash_digest(&desc.shash, key, keylen, ipad);
797                         if (err)
798                                 return err;
799
800                         keylen = ds;
801                 } else
802                         memcpy(ipad, key, keylen);
803
804                 memset(ipad + keylen, 0, bs - keylen);
805                 memcpy(opad, ipad, bs);
806
807                 for (i = 0; i < bs; i++) {
808                         ipad[i] ^= 0x36;
809                         opad[i] ^= 0x5c;
810                 }
811
812                 rc = crypto_shash_init(&desc.shash) ? :
813                     crypto_shash_update(&desc.shash, ipad, bs) ? :
814                     crypto_shash_export(&desc.shash, ipad) ? :
815                     crypto_shash_init(&desc.shash) ? :
816                     crypto_shash_update(&desc.shash, opad, bs) ? :
817                     crypto_shash_export(&desc.shash, opad);
818
819                 if (rc == 0)
820                         mv_hash_init_ivs(ctx, ipad, opad);
821
822                 return rc;
823         }
824 }
825
826 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
827                             enum hash_op op, int count_add)
828 {
829         const char *fallback_driver_name = tfm->__crt_alg->cra_name;
830         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
831         struct crypto_shash *fallback_tfm = NULL;
832         struct crypto_shash *base_hash = NULL;
833         int err = -ENOMEM;
834
835         ctx->op = op;
836         ctx->count_add = count_add;
837
838         /* Allocate a fallback and abort if it failed. */
839         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
840                                           CRYPTO_ALG_NEED_FALLBACK);
841         if (IS_ERR(fallback_tfm)) {
842                 printk(KERN_WARNING MV_CESA
843                        "Fallback driver '%s' could not be loaded!\n",
844                        fallback_driver_name);
845                 err = PTR_ERR(fallback_tfm);
846                 goto out;
847         }
848         ctx->fallback = fallback_tfm;
849
850         if (base_hash_name) {
851                 /* Allocate a hash to compute the ipad/opad of hmac. */
852                 base_hash = crypto_alloc_shash(base_hash_name, 0,
853                                                CRYPTO_ALG_NEED_FALLBACK);
854                 if (IS_ERR(base_hash)) {
855                         printk(KERN_WARNING MV_CESA
856                                "Base driver '%s' could not be loaded!\n",
857                                base_hash_name);
858                         err = PTR_ERR(base_hash);
859                         goto err_bad_base;
860                 }
861         }
862         ctx->base_hash = base_hash;
863
864         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
865                                  sizeof(struct mv_req_hash_ctx) +
866                                  crypto_shash_descsize(ctx->fallback));
867         return 0;
868 err_bad_base:
869         crypto_free_shash(fallback_tfm);
870 out:
871         return err;
872 }
873
874 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
875 {
876         struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
877
878         crypto_free_shash(ctx->fallback);
879         if (ctx->base_hash)
880                 crypto_free_shash(ctx->base_hash);
881 }
882
883 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
884 {
885         return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
886 }
887
888 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
889 {
890         return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
891 }
892
893 irqreturn_t crypto_int(int irq, void *priv)
894 {
895         u32 val;
896
897         val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
898         if (!(val & SEC_INT_ACCEL0_DONE))
899                 return IRQ_NONE;
900
901         val &= ~SEC_INT_ACCEL0_DONE;
902         writel(val, cpg->reg + FPGA_INT_STATUS);
903         writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
904         BUG_ON(cpg->eng_st != ENGINE_BUSY);
905         cpg->eng_st = ENGINE_W_DEQUEUE;
906         wake_up_process(cpg->queue_th);
907         return IRQ_HANDLED;
908 }
909
910 struct crypto_alg mv_aes_alg_ecb = {
911         .cra_name               = "ecb(aes)",
912         .cra_driver_name        = "mv-ecb-aes",
913         .cra_priority   = 300,
914         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
915         .cra_blocksize  = 16,
916         .cra_ctxsize    = sizeof(struct mv_ctx),
917         .cra_alignmask  = 0,
918         .cra_type       = &crypto_ablkcipher_type,
919         .cra_module     = THIS_MODULE,
920         .cra_init       = mv_cra_init,
921         .cra_u          = {
922                 .ablkcipher = {
923                         .min_keysize    =       AES_MIN_KEY_SIZE,
924                         .max_keysize    =       AES_MAX_KEY_SIZE,
925                         .setkey         =       mv_setkey_aes,
926                         .encrypt        =       mv_enc_aes_ecb,
927                         .decrypt        =       mv_dec_aes_ecb,
928                 },
929         },
930 };
931
932 struct crypto_alg mv_aes_alg_cbc = {
933         .cra_name               = "cbc(aes)",
934         .cra_driver_name        = "mv-cbc-aes",
935         .cra_priority   = 300,
936         .cra_flags      = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
937         .cra_blocksize  = AES_BLOCK_SIZE,
938         .cra_ctxsize    = sizeof(struct mv_ctx),
939         .cra_alignmask  = 0,
940         .cra_type       = &crypto_ablkcipher_type,
941         .cra_module     = THIS_MODULE,
942         .cra_init       = mv_cra_init,
943         .cra_u          = {
944                 .ablkcipher = {
945                         .ivsize         =       AES_BLOCK_SIZE,
946                         .min_keysize    =       AES_MIN_KEY_SIZE,
947                         .max_keysize    =       AES_MAX_KEY_SIZE,
948                         .setkey         =       mv_setkey_aes,
949                         .encrypt        =       mv_enc_aes_cbc,
950                         .decrypt        =       mv_dec_aes_cbc,
951                 },
952         },
953 };
954
955 struct ahash_alg mv_sha1_alg = {
956         .init = mv_hash_init,
957         .update = mv_hash_update,
958         .final = mv_hash_final,
959         .finup = mv_hash_finup,
960         .digest = mv_hash_digest,
961         .halg = {
962                  .digestsize = SHA1_DIGEST_SIZE,
963                  .base = {
964                           .cra_name = "sha1",
965                           .cra_driver_name = "mv-sha1",
966                           .cra_priority = 300,
967                           .cra_flags =
968                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
969                           .cra_blocksize = SHA1_BLOCK_SIZE,
970                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
971                           .cra_init = mv_cra_hash_sha1_init,
972                           .cra_exit = mv_cra_hash_exit,
973                           .cra_module = THIS_MODULE,
974                           }
975                  }
976 };
977
978 struct ahash_alg mv_hmac_sha1_alg = {
979         .init = mv_hash_init,
980         .update = mv_hash_update,
981         .final = mv_hash_final,
982         .finup = mv_hash_finup,
983         .digest = mv_hash_digest,
984         .setkey = mv_hash_setkey,
985         .halg = {
986                  .digestsize = SHA1_DIGEST_SIZE,
987                  .base = {
988                           .cra_name = "hmac(sha1)",
989                           .cra_driver_name = "mv-hmac-sha1",
990                           .cra_priority = 300,
991                           .cra_flags =
992                           CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
993                           .cra_blocksize = SHA1_BLOCK_SIZE,
994                           .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
995                           .cra_init = mv_cra_hash_hmac_sha1_init,
996                           .cra_exit = mv_cra_hash_exit,
997                           .cra_module = THIS_MODULE,
998                           }
999                  }
1000 };
1001
1002 static int mv_probe(struct platform_device *pdev)
1003 {
1004         struct crypto_priv *cp;
1005         struct resource *res;
1006         int irq;
1007         int ret;
1008
1009         if (cpg) {
1010                 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1011                 return -EEXIST;
1012         }
1013
1014         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1015         if (!res)
1016                 return -ENXIO;
1017
1018         cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1019         if (!cp)
1020                 return -ENOMEM;
1021
1022         spin_lock_init(&cp->lock);
1023         crypto_init_queue(&cp->queue, 50);
1024         cp->reg = ioremap(res->start, resource_size(res));
1025         if (!cp->reg) {
1026                 ret = -ENOMEM;
1027                 goto err;
1028         }
1029
1030         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1031         if (!res) {
1032                 ret = -ENXIO;
1033                 goto err_unmap_reg;
1034         }
1035         cp->sram_size = resource_size(res);
1036         cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1037         cp->sram = ioremap(res->start, cp->sram_size);
1038         if (!cp->sram) {
1039                 ret = -ENOMEM;
1040                 goto err_unmap_reg;
1041         }
1042
1043         irq = platform_get_irq(pdev, 0);
1044         if (irq < 0 || irq == NO_IRQ) {
1045                 ret = irq;
1046                 goto err_unmap_sram;
1047         }
1048         cp->irq = irq;
1049
1050         platform_set_drvdata(pdev, cp);
1051         cpg = cp;
1052
1053         cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1054         if (IS_ERR(cp->queue_th)) {
1055                 ret = PTR_ERR(cp->queue_th);
1056                 goto err_unmap_sram;
1057         }
1058
1059         ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1060                         cp);
1061         if (ret)
1062                 goto err_thread;
1063
1064         writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1065         writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1066
1067         ret = crypto_register_alg(&mv_aes_alg_ecb);
1068         if (ret)
1069                 goto err_irq;
1070
1071         ret = crypto_register_alg(&mv_aes_alg_cbc);
1072         if (ret)
1073                 goto err_unreg_ecb;
1074
1075         ret = crypto_register_ahash(&mv_sha1_alg);
1076         if (ret == 0)
1077                 cpg->has_sha1 = 1;
1078         else
1079                 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1080
1081         ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1082         if (ret == 0) {
1083                 cpg->has_hmac_sha1 = 1;
1084         } else {
1085                 printk(KERN_WARNING MV_CESA
1086                        "Could not register hmac-sha1 driver\n");
1087         }
1088
1089         return 0;
1090 err_unreg_ecb:
1091         crypto_unregister_alg(&mv_aes_alg_ecb);
1092 err_irq:
1093         free_irq(irq, cp);
1094 err_thread:
1095         kthread_stop(cp->queue_th);
1096 err_unmap_sram:
1097         iounmap(cp->sram);
1098 err_unmap_reg:
1099         iounmap(cp->reg);
1100 err:
1101         kfree(cp);
1102         cpg = NULL;
1103         platform_set_drvdata(pdev, NULL);
1104         return ret;
1105 }
1106
1107 static int mv_remove(struct platform_device *pdev)
1108 {
1109         struct crypto_priv *cp = platform_get_drvdata(pdev);
1110
1111         crypto_unregister_alg(&mv_aes_alg_ecb);
1112         crypto_unregister_alg(&mv_aes_alg_cbc);
1113         if (cp->has_sha1)
1114                 crypto_unregister_ahash(&mv_sha1_alg);
1115         if (cp->has_hmac_sha1)
1116                 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1117         kthread_stop(cp->queue_th);
1118         free_irq(cp->irq, cp);
1119         memset(cp->sram, 0, cp->sram_size);
1120         iounmap(cp->sram);
1121         iounmap(cp->reg);
1122         kfree(cp);
1123         cpg = NULL;
1124         return 0;
1125 }
1126
1127 static struct platform_driver marvell_crypto = {
1128         .probe          = mv_probe,
1129         .remove         = mv_remove,
1130         .driver         = {
1131                 .owner  = THIS_MODULE,
1132                 .name   = "mv_crypto",
1133         },
1134 };
1135 MODULE_ALIAS("platform:mv_crypto");
1136
1137 static int __init mv_crypto_init(void)
1138 {
1139         return platform_driver_register(&marvell_crypto);
1140 }
1141 module_init(mv_crypto_init);
1142
1143 static void __exit mv_crypto_exit(void)
1144 {
1145         platform_driver_unregister(&marvell_crypto);
1146 }
1147 module_exit(mv_crypto_exit);
1148
1149 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1150 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1151 MODULE_LICENSE("GPL");