ipmi: Remove uses of return value of seq_printf
[pandora-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC    10000
85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88                                       short timeout */
89
90 enum si_intf_state {
91         SI_NORMAL,
92         SI_GETTING_FLAGS,
93         SI_GETTING_EVENTS,
94         SI_CLEARING_FLAGS,
95         SI_GETTING_MESSAGES,
96         SI_CHECKING_ENABLES,
97         SI_SETTING_ENABLES
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111 #define DEVICE_NAME "ipmi_si"
112
113 static struct platform_driver ipmi_driver;
114
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119         /*
120          * Number of times the driver requested a timer while an operation
121          * was in progress.
122          */
123         SI_STAT_short_timeouts = 0,
124
125         /*
126          * Number of times the driver requested a timer while nothing was in
127          * progress.
128          */
129         SI_STAT_long_timeouts,
130
131         /* Number of times the interface was idle while being polled. */
132         SI_STAT_idles,
133
134         /* Number of interrupts the driver handled. */
135         SI_STAT_interrupts,
136
137         /* Number of time the driver got an ATTN from the hardware. */
138         SI_STAT_attentions,
139
140         /* Number of times the driver requested flags from the hardware. */
141         SI_STAT_flag_fetches,
142
143         /* Number of times the hardware didn't follow the state machine. */
144         SI_STAT_hosed_count,
145
146         /* Number of completed messages. */
147         SI_STAT_complete_transactions,
148
149         /* Number of IPMI events received from the hardware. */
150         SI_STAT_events,
151
152         /* Number of watchdog pretimeouts. */
153         SI_STAT_watchdog_pretimeouts,
154
155         /* Number of asynchronous messages received. */
156         SI_STAT_incoming_messages,
157
158
159         /* This *must* remain last, add new values above this. */
160         SI_NUM_STATS
161 };
162
163 struct smi_info {
164         int                    intf_num;
165         ipmi_smi_t             intf;
166         struct si_sm_data      *si_sm;
167         struct si_sm_handlers  *handlers;
168         enum si_type           si_type;
169         spinlock_t             si_lock;
170         struct ipmi_smi_msg    *waiting_msg;
171         struct ipmi_smi_msg    *curr_msg;
172         enum si_intf_state     si_state;
173
174         /*
175          * Used to handle the various types of I/O that can occur with
176          * IPMI
177          */
178         struct si_sm_io io;
179         int (*io_setup)(struct smi_info *info);
180         void (*io_cleanup)(struct smi_info *info);
181         int (*irq_setup)(struct smi_info *info);
182         void (*irq_cleanup)(struct smi_info *info);
183         unsigned int io_size;
184         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185         void (*addr_source_cleanup)(struct smi_info *info);
186         void *addr_source_data;
187
188         /*
189          * Per-OEM handler, called from handle_flags().  Returns 1
190          * when handle_flags() needs to be re-run or 0 indicating it
191          * set si_state itself.
192          */
193         int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
195         /*
196          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197          * is set to hold the flags until we are done handling everything
198          * from the flags.
199          */
200 #define RECEIVE_MSG_AVAIL       0x01
201 #define EVENT_MSG_BUFFER_FULL   0x02
202 #define WDT_PRE_TIMEOUT_INT     0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207                              OEM1_DATA_AVAIL | \
208                              OEM2_DATA_AVAIL)
209         unsigned char       msg_flags;
210
211         /* Does the BMC have an event buffer? */
212         bool                has_event_buffer;
213
214         /*
215          * If set to true, this will request events the next time the
216          * state machine is idle.
217          */
218         atomic_t            req_events;
219
220         /*
221          * If true, run the state machine to completion on every send
222          * call.  Generally used after a panic to make sure stuff goes
223          * out.
224          */
225         bool                run_to_completion;
226
227         /* The I/O port of an SI interface. */
228         int                 port;
229
230         /*
231          * The space between start addresses of the two ports.  For
232          * instance, if the first port is 0xca2 and the spacing is 4, then
233          * the second port is 0xca6.
234          */
235         unsigned int        spacing;
236
237         /* zero if no irq; */
238         int                 irq;
239
240         /* The timer for this si. */
241         struct timer_list   si_timer;
242
243         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244         bool                timer_running;
245
246         /* The time (in jiffies) the last timeout occurred at. */
247         unsigned long       last_timeout_jiffies;
248
249         /* Are we waiting for the events, pretimeouts, received msgs? */
250         atomic_t            need_watch;
251
252         /*
253          * The driver will disable interrupts when it gets into a
254          * situation where it cannot handle messages due to lack of
255          * memory.  Once that situation clears up, it will re-enable
256          * interrupts.
257          */
258         bool interrupt_disabled;
259
260         /*
261          * Does the BMC support events?
262          */
263         bool supports_event_msg_buff;
264
265         /*
266          * Did we get an attention that we did not handle?
267          */
268         bool got_attn;
269
270         /* From the get device id response... */
271         struct ipmi_device_id device_id;
272
273         /* Driver model stuff. */
274         struct device *dev;
275         struct platform_device *pdev;
276
277         /*
278          * True if we allocated the device, false if it came from
279          * someplace else (like PCI).
280          */
281         bool dev_registered;
282
283         /* Slave address, could be reported from DMI. */
284         unsigned char slave_addr;
285
286         /* Counters and things for the proc filesystem. */
287         atomic_t stats[SI_NUM_STATS];
288
289         struct task_struct *thread;
290
291         struct list_head link;
292         union ipmi_smi_info_union addr_info;
293 };
294
295 #define smi_inc_stat(smi, stat) \
296         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
297 #define smi_get_stat(smi, stat) \
298         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
299
300 #define SI_MAX_PARMS 4
301
302 static int force_kipmid[SI_MAX_PARMS];
303 static int num_force_kipmid;
304 #ifdef CONFIG_PCI
305 static bool pci_registered;
306 #endif
307 #ifdef CONFIG_ACPI
308 static bool pnp_registered;
309 #endif
310 #ifdef CONFIG_PARISC
311 static bool parisc_registered;
312 #endif
313
314 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
315 static int num_max_busy_us;
316
317 static bool unload_when_empty = true;
318
319 static int add_smi(struct smi_info *smi);
320 static int try_smi_init(struct smi_info *smi);
321 static void cleanup_one_si(struct smi_info *to_clean);
322 static void cleanup_ipmi_si(void);
323
324 #ifdef DEBUG_TIMING
325 void debug_timestamp(char *msg)
326 {
327         struct timespec64 t;
328
329         getnstimeofday64(&t);
330         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
331 }
332 #else
333 #define debug_timestamp(x)
334 #endif
335
336 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
337 static int register_xaction_notifier(struct notifier_block *nb)
338 {
339         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
340 }
341
342 static void deliver_recv_msg(struct smi_info *smi_info,
343                              struct ipmi_smi_msg *msg)
344 {
345         /* Deliver the message to the upper layer. */
346         if (smi_info->intf)
347                 ipmi_smi_msg_received(smi_info->intf, msg);
348         else
349                 ipmi_free_smi_msg(msg);
350 }
351
352 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
353 {
354         struct ipmi_smi_msg *msg = smi_info->curr_msg;
355
356         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
357                 cCode = IPMI_ERR_UNSPECIFIED;
358         /* else use it as is */
359
360         /* Make it a response */
361         msg->rsp[0] = msg->data[0] | 4;
362         msg->rsp[1] = msg->data[1];
363         msg->rsp[2] = cCode;
364         msg->rsp_size = 3;
365
366         smi_info->curr_msg = NULL;
367         deliver_recv_msg(smi_info, msg);
368 }
369
370 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
371 {
372         int              rv;
373
374         if (!smi_info->waiting_msg) {
375                 smi_info->curr_msg = NULL;
376                 rv = SI_SM_IDLE;
377         } else {
378                 int err;
379
380                 smi_info->curr_msg = smi_info->waiting_msg;
381                 smi_info->waiting_msg = NULL;
382                 debug_timestamp("Start2");
383                 err = atomic_notifier_call_chain(&xaction_notifier_list,
384                                 0, smi_info);
385                 if (err & NOTIFY_STOP_MASK) {
386                         rv = SI_SM_CALL_WITHOUT_DELAY;
387                         goto out;
388                 }
389                 err = smi_info->handlers->start_transaction(
390                         smi_info->si_sm,
391                         smi_info->curr_msg->data,
392                         smi_info->curr_msg->data_size);
393                 if (err)
394                         return_hosed_msg(smi_info, err);
395
396                 rv = SI_SM_CALL_WITHOUT_DELAY;
397         }
398  out:
399         return rv;
400 }
401
402 static void start_check_enables(struct smi_info *smi_info)
403 {
404         unsigned char msg[2];
405
406         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
407         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
408
409         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
410         smi_info->si_state = SI_CHECKING_ENABLES;
411 }
412
413 static void start_clear_flags(struct smi_info *smi_info)
414 {
415         unsigned char msg[3];
416
417         /* Make sure the watchdog pre-timeout flag is not set at startup. */
418         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
420         msg[2] = WDT_PRE_TIMEOUT_INT;
421
422         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
423         smi_info->si_state = SI_CLEARING_FLAGS;
424 }
425
426 static void start_getting_msg_queue(struct smi_info *smi_info)
427 {
428         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
429         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
430         smi_info->curr_msg->data_size = 2;
431
432         smi_info->handlers->start_transaction(
433                 smi_info->si_sm,
434                 smi_info->curr_msg->data,
435                 smi_info->curr_msg->data_size);
436         smi_info->si_state = SI_GETTING_MESSAGES;
437 }
438
439 static void start_getting_events(struct smi_info *smi_info)
440 {
441         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
442         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
443         smi_info->curr_msg->data_size = 2;
444
445         smi_info->handlers->start_transaction(
446                 smi_info->si_sm,
447                 smi_info->curr_msg->data,
448                 smi_info->curr_msg->data_size);
449         smi_info->si_state = SI_GETTING_EVENTS;
450 }
451
452 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
453 {
454         smi_info->last_timeout_jiffies = jiffies;
455         mod_timer(&smi_info->si_timer, new_val);
456         smi_info->timer_running = true;
457 }
458
459 /*
460  * When we have a situtaion where we run out of memory and cannot
461  * allocate messages, we just leave them in the BMC and run the system
462  * polled until we can allocate some memory.  Once we have some
463  * memory, we will re-enable the interrupt.
464  */
465 static inline bool disable_si_irq(struct smi_info *smi_info)
466 {
467         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
468                 smi_info->interrupt_disabled = true;
469                 start_check_enables(smi_info);
470                 return true;
471         }
472         return false;
473 }
474
475 static inline bool enable_si_irq(struct smi_info *smi_info)
476 {
477         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
478                 smi_info->interrupt_disabled = false;
479                 start_check_enables(smi_info);
480                 return true;
481         }
482         return false;
483 }
484
485 /*
486  * Allocate a message.  If unable to allocate, start the interrupt
487  * disable process and return NULL.  If able to allocate but
488  * interrupts are disabled, free the message and return NULL after
489  * starting the interrupt enable process.
490  */
491 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
492 {
493         struct ipmi_smi_msg *msg;
494
495         msg = ipmi_alloc_smi_msg();
496         if (!msg) {
497                 if (!disable_si_irq(smi_info))
498                         smi_info->si_state = SI_NORMAL;
499         } else if (enable_si_irq(smi_info)) {
500                 ipmi_free_smi_msg(msg);
501                 msg = NULL;
502         }
503         return msg;
504 }
505
506 static void handle_flags(struct smi_info *smi_info)
507 {
508  retry:
509         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
510                 /* Watchdog pre-timeout */
511                 smi_inc_stat(smi_info, watchdog_pretimeouts);
512
513                 start_clear_flags(smi_info);
514                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
515                 if (smi_info->intf)
516                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
517         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
518                 /* Messages available. */
519                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
520                 if (!smi_info->curr_msg)
521                         return;
522
523                 start_getting_msg_queue(smi_info);
524         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
525                 /* Events available. */
526                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
527                 if (!smi_info->curr_msg)
528                         return;
529
530                 start_getting_events(smi_info);
531         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
532                    smi_info->oem_data_avail_handler) {
533                 if (smi_info->oem_data_avail_handler(smi_info))
534                         goto retry;
535         } else
536                 smi_info->si_state = SI_NORMAL;
537 }
538
539 /*
540  * Global enables we care about.
541  */
542 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
543                              IPMI_BMC_EVT_MSG_INTR)
544
545 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
546                                  bool *irq_on)
547 {
548         u8 enables = 0;
549
550         if (smi_info->supports_event_msg_buff)
551                 enables |= IPMI_BMC_EVT_MSG_BUFF;
552         else
553                 enables &= ~IPMI_BMC_EVT_MSG_BUFF;
554
555         if (smi_info->irq && !smi_info->interrupt_disabled)
556                 enables |= IPMI_BMC_RCV_MSG_INTR;
557         else
558                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
559
560         if (smi_info->supports_event_msg_buff &&
561             smi_info->irq && !smi_info->interrupt_disabled)
562
563                 enables |= IPMI_BMC_EVT_MSG_INTR;
564         else
565                 enables &= ~IPMI_BMC_EVT_MSG_INTR;
566
567         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
568
569         return enables;
570 }
571
572 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
573 {
574         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
575
576         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
577
578         if ((bool)irqstate == irq_on)
579                 return;
580
581         if (irq_on)
582                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
583                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
584         else
585                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
586 }
587
588 static void handle_transaction_done(struct smi_info *smi_info)
589 {
590         struct ipmi_smi_msg *msg;
591
592         debug_timestamp("Done");
593         switch (smi_info->si_state) {
594         case SI_NORMAL:
595                 if (!smi_info->curr_msg)
596                         break;
597
598                 smi_info->curr_msg->rsp_size
599                         = smi_info->handlers->get_result(
600                                 smi_info->si_sm,
601                                 smi_info->curr_msg->rsp,
602                                 IPMI_MAX_MSG_LENGTH);
603
604                 /*
605                  * Do this here becase deliver_recv_msg() releases the
606                  * lock, and a new message can be put in during the
607                  * time the lock is released.
608                  */
609                 msg = smi_info->curr_msg;
610                 smi_info->curr_msg = NULL;
611                 deliver_recv_msg(smi_info, msg);
612                 break;
613
614         case SI_GETTING_FLAGS:
615         {
616                 unsigned char msg[4];
617                 unsigned int  len;
618
619                 /* We got the flags from the SMI, now handle them. */
620                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
621                 if (msg[2] != 0) {
622                         /* Error fetching flags, just give up for now. */
623                         smi_info->si_state = SI_NORMAL;
624                 } else if (len < 4) {
625                         /*
626                          * Hmm, no flags.  That's technically illegal, but
627                          * don't use uninitialized data.
628                          */
629                         smi_info->si_state = SI_NORMAL;
630                 } else {
631                         smi_info->msg_flags = msg[3];
632                         handle_flags(smi_info);
633                 }
634                 break;
635         }
636
637         case SI_CLEARING_FLAGS:
638         {
639                 unsigned char msg[3];
640
641                 /* We cleared the flags. */
642                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
643                 if (msg[2] != 0) {
644                         /* Error clearing flags */
645                         dev_warn(smi_info->dev,
646                                  "Error clearing flags: %2.2x\n", msg[2]);
647                 }
648                 smi_info->si_state = SI_NORMAL;
649                 break;
650         }
651
652         case SI_GETTING_EVENTS:
653         {
654                 smi_info->curr_msg->rsp_size
655                         = smi_info->handlers->get_result(
656                                 smi_info->si_sm,
657                                 smi_info->curr_msg->rsp,
658                                 IPMI_MAX_MSG_LENGTH);
659
660                 /*
661                  * Do this here becase deliver_recv_msg() releases the
662                  * lock, and a new message can be put in during the
663                  * time the lock is released.
664                  */
665                 msg = smi_info->curr_msg;
666                 smi_info->curr_msg = NULL;
667                 if (msg->rsp[2] != 0) {
668                         /* Error getting event, probably done. */
669                         msg->done(msg);
670
671                         /* Take off the event flag. */
672                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
673                         handle_flags(smi_info);
674                 } else {
675                         smi_inc_stat(smi_info, events);
676
677                         /*
678                          * Do this before we deliver the message
679                          * because delivering the message releases the
680                          * lock and something else can mess with the
681                          * state.
682                          */
683                         handle_flags(smi_info);
684
685                         deliver_recv_msg(smi_info, msg);
686                 }
687                 break;
688         }
689
690         case SI_GETTING_MESSAGES:
691         {
692                 smi_info->curr_msg->rsp_size
693                         = smi_info->handlers->get_result(
694                                 smi_info->si_sm,
695                                 smi_info->curr_msg->rsp,
696                                 IPMI_MAX_MSG_LENGTH);
697
698                 /*
699                  * Do this here becase deliver_recv_msg() releases the
700                  * lock, and a new message can be put in during the
701                  * time the lock is released.
702                  */
703                 msg = smi_info->curr_msg;
704                 smi_info->curr_msg = NULL;
705                 if (msg->rsp[2] != 0) {
706                         /* Error getting event, probably done. */
707                         msg->done(msg);
708
709                         /* Take off the msg flag. */
710                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
711                         handle_flags(smi_info);
712                 } else {
713                         smi_inc_stat(smi_info, incoming_messages);
714
715                         /*
716                          * Do this before we deliver the message
717                          * because delivering the message releases the
718                          * lock and something else can mess with the
719                          * state.
720                          */
721                         handle_flags(smi_info);
722
723                         deliver_recv_msg(smi_info, msg);
724                 }
725                 break;
726         }
727
728         case SI_CHECKING_ENABLES:
729         {
730                 unsigned char msg[4];
731                 u8 enables;
732                 bool irq_on;
733
734                 /* We got the flags from the SMI, now handle them. */
735                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736                 if (msg[2] != 0) {
737                         dev_warn(smi_info->dev,
738                                  "Couldn't get irq info: %x.\n", msg[2]);
739                         dev_warn(smi_info->dev,
740                                  "Maybe ok, but ipmi might run very slowly.\n");
741                         smi_info->si_state = SI_NORMAL;
742                         break;
743                 }
744                 enables = current_global_enables(smi_info, 0, &irq_on);
745                 if (smi_info->si_type == SI_BT)
746                         /* BT has its own interrupt enable bit. */
747                         check_bt_irq(smi_info, irq_on);
748                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
749                         /* Enables are not correct, fix them. */
750                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
751                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
752                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
753                         smi_info->handlers->start_transaction(
754                                 smi_info->si_sm, msg, 3);
755                         smi_info->si_state = SI_SETTING_ENABLES;
756                 } else if (smi_info->supports_event_msg_buff) {
757                         smi_info->curr_msg = ipmi_alloc_smi_msg();
758                         if (!smi_info->curr_msg) {
759                                 smi_info->si_state = SI_NORMAL;
760                                 break;
761                         }
762                         start_getting_msg_queue(smi_info);
763                 } else {
764                         smi_info->si_state = SI_NORMAL;
765                 }
766                 break;
767         }
768
769         case SI_SETTING_ENABLES:
770         {
771                 unsigned char msg[4];
772
773                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
774                 if (msg[2] != 0)
775                         dev_warn(smi_info->dev,
776                                  "Could not set the global enables: 0x%x.\n",
777                                  msg[2]);
778
779                 if (smi_info->supports_event_msg_buff) {
780                         smi_info->curr_msg = ipmi_alloc_smi_msg();
781                         if (!smi_info->curr_msg) {
782                                 smi_info->si_state = SI_NORMAL;
783                                 break;
784                         }
785                         start_getting_msg_queue(smi_info);
786                 } else {
787                         smi_info->si_state = SI_NORMAL;
788                 }
789                 break;
790         }
791         }
792 }
793
794 /*
795  * Called on timeouts and events.  Timeouts should pass the elapsed
796  * time, interrupts should pass in zero.  Must be called with
797  * si_lock held and interrupts disabled.
798  */
799 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
800                                            int time)
801 {
802         enum si_sm_result si_sm_result;
803
804  restart:
805         /*
806          * There used to be a loop here that waited a little while
807          * (around 25us) before giving up.  That turned out to be
808          * pointless, the minimum delays I was seeing were in the 300us
809          * range, which is far too long to wait in an interrupt.  So
810          * we just run until the state machine tells us something
811          * happened or it needs a delay.
812          */
813         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
814         time = 0;
815         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
816                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
817
818         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
819                 smi_inc_stat(smi_info, complete_transactions);
820
821                 handle_transaction_done(smi_info);
822                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
823         } else if (si_sm_result == SI_SM_HOSED) {
824                 smi_inc_stat(smi_info, hosed_count);
825
826                 /*
827                  * Do the before return_hosed_msg, because that
828                  * releases the lock.
829                  */
830                 smi_info->si_state = SI_NORMAL;
831                 if (smi_info->curr_msg != NULL) {
832                         /*
833                          * If we were handling a user message, format
834                          * a response to send to the upper layer to
835                          * tell it about the error.
836                          */
837                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
838                 }
839                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
840         }
841
842         /*
843          * We prefer handling attn over new messages.  But don't do
844          * this if there is not yet an upper layer to handle anything.
845          */
846         if (likely(smi_info->intf) &&
847             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
848                 unsigned char msg[2];
849
850                 if (smi_info->si_state != SI_NORMAL) {
851                         /*
852                          * We got an ATTN, but we are doing something else.
853                          * Handle the ATTN later.
854                          */
855                         smi_info->got_attn = true;
856                 } else {
857                         smi_info->got_attn = false;
858                         smi_inc_stat(smi_info, attentions);
859
860                         /*
861                          * Got a attn, send down a get message flags to see
862                          * what's causing it.  It would be better to handle
863                          * this in the upper layer, but due to the way
864                          * interrupts work with the SMI, that's not really
865                          * possible.
866                          */
867                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
868                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
869
870                         smi_info->handlers->start_transaction(
871                                 smi_info->si_sm, msg, 2);
872                         smi_info->si_state = SI_GETTING_FLAGS;
873                         goto restart;
874                 }
875         }
876
877         /* If we are currently idle, try to start the next message. */
878         if (si_sm_result == SI_SM_IDLE) {
879                 smi_inc_stat(smi_info, idles);
880
881                 si_sm_result = start_next_msg(smi_info);
882                 if (si_sm_result != SI_SM_IDLE)
883                         goto restart;
884         }
885
886         if ((si_sm_result == SI_SM_IDLE)
887             && (atomic_read(&smi_info->req_events))) {
888                 /*
889                  * We are idle and the upper layer requested that I fetch
890                  * events, so do so.
891                  */
892                 atomic_set(&smi_info->req_events, 0);
893
894                 /*
895                  * Take this opportunity to check the interrupt and
896                  * message enable state for the BMC.  The BMC can be
897                  * asynchronously reset, and may thus get interrupts
898                  * disable and messages disabled.
899                  */
900                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
901                         start_check_enables(smi_info);
902                 } else {
903                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
904                         if (!smi_info->curr_msg)
905                                 goto out;
906
907                         start_getting_events(smi_info);
908                 }
909                 goto restart;
910         }
911  out:
912         return si_sm_result;
913 }
914
915 static void check_start_timer_thread(struct smi_info *smi_info)
916 {
917         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
918                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
919
920                 if (smi_info->thread)
921                         wake_up_process(smi_info->thread);
922
923                 start_next_msg(smi_info);
924                 smi_event_handler(smi_info, 0);
925         }
926 }
927
928 static void sender(void                *send_info,
929                    struct ipmi_smi_msg *msg)
930 {
931         struct smi_info   *smi_info = send_info;
932         enum si_sm_result result;
933         unsigned long     flags;
934
935         BUG_ON(smi_info->waiting_msg);
936         smi_info->waiting_msg = msg;
937
938         debug_timestamp("Enqueue");
939
940         if (smi_info->run_to_completion) {
941                 /*
942                  * If we are running to completion, start it and run
943                  * transactions until everything is clear.
944                  */
945                 smi_info->curr_msg = smi_info->waiting_msg;
946                 smi_info->waiting_msg = NULL;
947
948                 /*
949                  * Run to completion means we are single-threaded, no
950                  * need for locks.
951                  */
952
953                 result = smi_event_handler(smi_info, 0);
954                 while (result != SI_SM_IDLE) {
955                         udelay(SI_SHORT_TIMEOUT_USEC);
956                         result = smi_event_handler(smi_info,
957                                                    SI_SHORT_TIMEOUT_USEC);
958                 }
959                 return;
960         }
961
962         spin_lock_irqsave(&smi_info->si_lock, flags);
963         check_start_timer_thread(smi_info);
964         spin_unlock_irqrestore(&smi_info->si_lock, flags);
965 }
966
967 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
968 {
969         struct smi_info   *smi_info = send_info;
970         enum si_sm_result result;
971
972         smi_info->run_to_completion = i_run_to_completion;
973         if (i_run_to_completion) {
974                 result = smi_event_handler(smi_info, 0);
975                 while (result != SI_SM_IDLE) {
976                         udelay(SI_SHORT_TIMEOUT_USEC);
977                         result = smi_event_handler(smi_info,
978                                                    SI_SHORT_TIMEOUT_USEC);
979                 }
980         }
981 }
982
983 /*
984  * Use -1 in the nsec value of the busy waiting timespec to tell that
985  * we are spinning in kipmid looking for something and not delaying
986  * between checks
987  */
988 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
989 {
990         ts->tv_nsec = -1;
991 }
992 static inline int ipmi_si_is_busy(struct timespec64 *ts)
993 {
994         return ts->tv_nsec != -1;
995 }
996
997 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
998                                         const struct smi_info *smi_info,
999                                         struct timespec64 *busy_until)
1000 {
1001         unsigned int max_busy_us = 0;
1002
1003         if (smi_info->intf_num < num_max_busy_us)
1004                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1005         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1006                 ipmi_si_set_not_busy(busy_until);
1007         else if (!ipmi_si_is_busy(busy_until)) {
1008                 getnstimeofday64(busy_until);
1009                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1010         } else {
1011                 struct timespec64 now;
1012
1013                 getnstimeofday64(&now);
1014                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1015                         ipmi_si_set_not_busy(busy_until);
1016                         return 0;
1017                 }
1018         }
1019         return 1;
1020 }
1021
1022
1023 /*
1024  * A busy-waiting loop for speeding up IPMI operation.
1025  *
1026  * Lousy hardware makes this hard.  This is only enabled for systems
1027  * that are not BT and do not have interrupts.  It starts spinning
1028  * when an operation is complete or until max_busy tells it to stop
1029  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1030  * Documentation/IPMI.txt for details.
1031  */
1032 static int ipmi_thread(void *data)
1033 {
1034         struct smi_info *smi_info = data;
1035         unsigned long flags;
1036         enum si_sm_result smi_result;
1037         struct timespec64 busy_until;
1038
1039         ipmi_si_set_not_busy(&busy_until);
1040         set_user_nice(current, MAX_NICE);
1041         while (!kthread_should_stop()) {
1042                 int busy_wait;
1043
1044                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1045                 smi_result = smi_event_handler(smi_info, 0);
1046
1047                 /*
1048                  * If the driver is doing something, there is a possible
1049                  * race with the timer.  If the timer handler see idle,
1050                  * and the thread here sees something else, the timer
1051                  * handler won't restart the timer even though it is
1052                  * required.  So start it here if necessary.
1053                  */
1054                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1055                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1056
1057                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1058                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1059                                                   &busy_until);
1060                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1061                         ; /* do nothing */
1062                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1063                         schedule();
1064                 else if (smi_result == SI_SM_IDLE) {
1065                         if (atomic_read(&smi_info->need_watch)) {
1066                                 schedule_timeout_interruptible(100);
1067                         } else {
1068                                 /* Wait to be woken up when we are needed. */
1069                                 __set_current_state(TASK_INTERRUPTIBLE);
1070                                 schedule();
1071                         }
1072                 } else
1073                         schedule_timeout_interruptible(1);
1074         }
1075         return 0;
1076 }
1077
1078
1079 static void poll(void *send_info)
1080 {
1081         struct smi_info *smi_info = send_info;
1082         unsigned long flags = 0;
1083         bool run_to_completion = smi_info->run_to_completion;
1084
1085         /*
1086          * Make sure there is some delay in the poll loop so we can
1087          * drive time forward and timeout things.
1088          */
1089         udelay(10);
1090         if (!run_to_completion)
1091                 spin_lock_irqsave(&smi_info->si_lock, flags);
1092         smi_event_handler(smi_info, 10);
1093         if (!run_to_completion)
1094                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1095 }
1096
1097 static void request_events(void *send_info)
1098 {
1099         struct smi_info *smi_info = send_info;
1100
1101         if (!smi_info->has_event_buffer)
1102                 return;
1103
1104         atomic_set(&smi_info->req_events, 1);
1105 }
1106
1107 static void set_need_watch(void *send_info, bool enable)
1108 {
1109         struct smi_info *smi_info = send_info;
1110         unsigned long flags;
1111
1112         atomic_set(&smi_info->need_watch, enable);
1113         spin_lock_irqsave(&smi_info->si_lock, flags);
1114         check_start_timer_thread(smi_info);
1115         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1116 }
1117
1118 static int initialized;
1119
1120 static void smi_timeout(unsigned long data)
1121 {
1122         struct smi_info   *smi_info = (struct smi_info *) data;
1123         enum si_sm_result smi_result;
1124         unsigned long     flags;
1125         unsigned long     jiffies_now;
1126         long              time_diff;
1127         long              timeout;
1128
1129         spin_lock_irqsave(&(smi_info->si_lock), flags);
1130         debug_timestamp("Timer");
1131
1132         jiffies_now = jiffies;
1133         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1134                      * SI_USEC_PER_JIFFY);
1135         smi_result = smi_event_handler(smi_info, time_diff);
1136
1137         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1138                 /* Running with interrupts, only do long timeouts. */
1139                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1140                 smi_inc_stat(smi_info, long_timeouts);
1141                 goto do_mod_timer;
1142         }
1143
1144         /*
1145          * If the state machine asks for a short delay, then shorten
1146          * the timer timeout.
1147          */
1148         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1149                 smi_inc_stat(smi_info, short_timeouts);
1150                 timeout = jiffies + 1;
1151         } else {
1152                 smi_inc_stat(smi_info, long_timeouts);
1153                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1154         }
1155
1156  do_mod_timer:
1157         if (smi_result != SI_SM_IDLE)
1158                 smi_mod_timer(smi_info, timeout);
1159         else
1160                 smi_info->timer_running = false;
1161         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1162 }
1163
1164 static irqreturn_t si_irq_handler(int irq, void *data)
1165 {
1166         struct smi_info *smi_info = data;
1167         unsigned long   flags;
1168
1169         spin_lock_irqsave(&(smi_info->si_lock), flags);
1170
1171         smi_inc_stat(smi_info, interrupts);
1172
1173         debug_timestamp("Interrupt");
1174
1175         smi_event_handler(smi_info, 0);
1176         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1177         return IRQ_HANDLED;
1178 }
1179
1180 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1181 {
1182         struct smi_info *smi_info = data;
1183         /* We need to clear the IRQ flag for the BT interface. */
1184         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1185                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1186                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1187         return si_irq_handler(irq, data);
1188 }
1189
1190 static int smi_start_processing(void       *send_info,
1191                                 ipmi_smi_t intf)
1192 {
1193         struct smi_info *new_smi = send_info;
1194         int             enable = 0;
1195
1196         new_smi->intf = intf;
1197
1198         /* Try to claim any interrupts. */
1199         if (new_smi->irq_setup)
1200                 new_smi->irq_setup(new_smi);
1201
1202         /* Set up the timer that drives the interface. */
1203         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1204         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1205
1206         /*
1207          * Check if the user forcefully enabled the daemon.
1208          */
1209         if (new_smi->intf_num < num_force_kipmid)
1210                 enable = force_kipmid[new_smi->intf_num];
1211         /*
1212          * The BT interface is efficient enough to not need a thread,
1213          * and there is no need for a thread if we have interrupts.
1214          */
1215         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1216                 enable = 1;
1217
1218         if (enable) {
1219                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1220                                               "kipmi%d", new_smi->intf_num);
1221                 if (IS_ERR(new_smi->thread)) {
1222                         dev_notice(new_smi->dev, "Could not start"
1223                                    " kernel thread due to error %ld, only using"
1224                                    " timers to drive the interface\n",
1225                                    PTR_ERR(new_smi->thread));
1226                         new_smi->thread = NULL;
1227                 }
1228         }
1229
1230         return 0;
1231 }
1232
1233 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1234 {
1235         struct smi_info *smi = send_info;
1236
1237         data->addr_src = smi->addr_source;
1238         data->dev = smi->dev;
1239         data->addr_info = smi->addr_info;
1240         get_device(smi->dev);
1241
1242         return 0;
1243 }
1244
1245 static void set_maintenance_mode(void *send_info, bool enable)
1246 {
1247         struct smi_info   *smi_info = send_info;
1248
1249         if (!enable)
1250                 atomic_set(&smi_info->req_events, 0);
1251 }
1252
1253 static struct ipmi_smi_handlers handlers = {
1254         .owner                  = THIS_MODULE,
1255         .start_processing       = smi_start_processing,
1256         .get_smi_info           = get_smi_info,
1257         .sender                 = sender,
1258         .request_events         = request_events,
1259         .set_need_watch         = set_need_watch,
1260         .set_maintenance_mode   = set_maintenance_mode,
1261         .set_run_to_completion  = set_run_to_completion,
1262         .poll                   = poll,
1263 };
1264
1265 /*
1266  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1267  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1268  */
1269
1270 static LIST_HEAD(smi_infos);
1271 static DEFINE_MUTEX(smi_infos_lock);
1272 static int smi_num; /* Used to sequence the SMIs */
1273
1274 #define DEFAULT_REGSPACING      1
1275 #define DEFAULT_REGSIZE         1
1276
1277 #ifdef CONFIG_ACPI
1278 static bool          si_tryacpi = 1;
1279 #endif
1280 #ifdef CONFIG_DMI
1281 static bool          si_trydmi = 1;
1282 #endif
1283 static bool          si_tryplatform = 1;
1284 #ifdef CONFIG_PCI
1285 static bool          si_trypci = 1;
1286 #endif
1287 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1288 static char          *si_type[SI_MAX_PARMS];
1289 #define MAX_SI_TYPE_STR 30
1290 static char          si_type_str[MAX_SI_TYPE_STR];
1291 static unsigned long addrs[SI_MAX_PARMS];
1292 static unsigned int num_addrs;
1293 static unsigned int  ports[SI_MAX_PARMS];
1294 static unsigned int num_ports;
1295 static int           irqs[SI_MAX_PARMS];
1296 static unsigned int num_irqs;
1297 static int           regspacings[SI_MAX_PARMS];
1298 static unsigned int num_regspacings;
1299 static int           regsizes[SI_MAX_PARMS];
1300 static unsigned int num_regsizes;
1301 static int           regshifts[SI_MAX_PARMS];
1302 static unsigned int num_regshifts;
1303 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1304 static unsigned int num_slave_addrs;
1305
1306 #define IPMI_IO_ADDR_SPACE  0
1307 #define IPMI_MEM_ADDR_SPACE 1
1308 static char *addr_space_to_str[] = { "i/o", "mem" };
1309
1310 static int hotmod_handler(const char *val, struct kernel_param *kp);
1311
1312 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1313 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1314                  " Documentation/IPMI.txt in the kernel sources for the"
1315                  " gory details.");
1316
1317 #ifdef CONFIG_ACPI
1318 module_param_named(tryacpi, si_tryacpi, bool, 0);
1319 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1320                  " default scan of the interfaces identified via ACPI");
1321 #endif
1322 #ifdef CONFIG_DMI
1323 module_param_named(trydmi, si_trydmi, bool, 0);
1324 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1325                  " default scan of the interfaces identified via DMI");
1326 #endif
1327 module_param_named(tryplatform, si_tryplatform, bool, 0);
1328 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1329                  " default scan of the interfaces identified via platform"
1330                  " interfaces like openfirmware");
1331 #ifdef CONFIG_PCI
1332 module_param_named(trypci, si_trypci, bool, 0);
1333 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1334                  " default scan of the interfaces identified via pci");
1335 #endif
1336 module_param_named(trydefaults, si_trydefaults, bool, 0);
1337 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1338                  " default scan of the KCS and SMIC interface at the standard"
1339                  " address");
1340 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1341 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1342                  " interface separated by commas.  The types are 'kcs',"
1343                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1344                  " the first interface to kcs and the second to bt");
1345 module_param_array(addrs, ulong, &num_addrs, 0);
1346 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1347                  " addresses separated by commas.  Only use if an interface"
1348                  " is in memory.  Otherwise, set it to zero or leave"
1349                  " it blank.");
1350 module_param_array(ports, uint, &num_ports, 0);
1351 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1352                  " addresses separated by commas.  Only use if an interface"
1353                  " is a port.  Otherwise, set it to zero or leave"
1354                  " it blank.");
1355 module_param_array(irqs, int, &num_irqs, 0);
1356 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1357                  " addresses separated by commas.  Only use if an interface"
1358                  " has an interrupt.  Otherwise, set it to zero or leave"
1359                  " it blank.");
1360 module_param_array(regspacings, int, &num_regspacings, 0);
1361 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1362                  " and each successive register used by the interface.  For"
1363                  " instance, if the start address is 0xca2 and the spacing"
1364                  " is 2, then the second address is at 0xca4.  Defaults"
1365                  " to 1.");
1366 module_param_array(regsizes, int, &num_regsizes, 0);
1367 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1368                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1369                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1370                  " the 8-bit IPMI register has to be read from a larger"
1371                  " register.");
1372 module_param_array(regshifts, int, &num_regshifts, 0);
1373 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1374                  " IPMI register, in bits.  For instance, if the data"
1375                  " is read from a 32-bit word and the IPMI data is in"
1376                  " bit 8-15, then the shift would be 8");
1377 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1378 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1379                  " the controller.  Normally this is 0x20, but can be"
1380                  " overridden by this parm.  This is an array indexed"
1381                  " by interface number.");
1382 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1383 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1384                  " disabled(0).  Normally the IPMI driver auto-detects"
1385                  " this, but the value may be overridden by this parm.");
1386 module_param(unload_when_empty, bool, 0);
1387 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1388                  " specified or found, default is 1.  Setting to 0"
1389                  " is useful for hot add of devices using hotmod.");
1390 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1391 MODULE_PARM_DESC(kipmid_max_busy_us,
1392                  "Max time (in microseconds) to busy-wait for IPMI data before"
1393                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1394                  " if kipmid is using up a lot of CPU time.");
1395
1396
1397 static void std_irq_cleanup(struct smi_info *info)
1398 {
1399         if (info->si_type == SI_BT)
1400                 /* Disable the interrupt in the BT interface. */
1401                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1402         free_irq(info->irq, info);
1403 }
1404
1405 static int std_irq_setup(struct smi_info *info)
1406 {
1407         int rv;
1408
1409         if (!info->irq)
1410                 return 0;
1411
1412         if (info->si_type == SI_BT) {
1413                 rv = request_irq(info->irq,
1414                                  si_bt_irq_handler,
1415                                  IRQF_SHARED,
1416                                  DEVICE_NAME,
1417                                  info);
1418                 if (!rv)
1419                         /* Enable the interrupt in the BT interface. */
1420                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1421                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1422         } else
1423                 rv = request_irq(info->irq,
1424                                  si_irq_handler,
1425                                  IRQF_SHARED,
1426                                  DEVICE_NAME,
1427                                  info);
1428         if (rv) {
1429                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1430                          " running polled\n",
1431                          DEVICE_NAME, info->irq);
1432                 info->irq = 0;
1433         } else {
1434                 info->irq_cleanup = std_irq_cleanup;
1435                 dev_info(info->dev, "Using irq %d\n", info->irq);
1436         }
1437
1438         return rv;
1439 }
1440
1441 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1442 {
1443         unsigned int addr = io->addr_data;
1444
1445         return inb(addr + (offset * io->regspacing));
1446 }
1447
1448 static void port_outb(struct si_sm_io *io, unsigned int offset,
1449                       unsigned char b)
1450 {
1451         unsigned int addr = io->addr_data;
1452
1453         outb(b, addr + (offset * io->regspacing));
1454 }
1455
1456 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1457 {
1458         unsigned int addr = io->addr_data;
1459
1460         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1461 }
1462
1463 static void port_outw(struct si_sm_io *io, unsigned int offset,
1464                       unsigned char b)
1465 {
1466         unsigned int addr = io->addr_data;
1467
1468         outw(b << io->regshift, addr + (offset * io->regspacing));
1469 }
1470
1471 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1472 {
1473         unsigned int addr = io->addr_data;
1474
1475         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1476 }
1477
1478 static void port_outl(struct si_sm_io *io, unsigned int offset,
1479                       unsigned char b)
1480 {
1481         unsigned int addr = io->addr_data;
1482
1483         outl(b << io->regshift, addr+(offset * io->regspacing));
1484 }
1485
1486 static void port_cleanup(struct smi_info *info)
1487 {
1488         unsigned int addr = info->io.addr_data;
1489         int          idx;
1490
1491         if (addr) {
1492                 for (idx = 0; idx < info->io_size; idx++)
1493                         release_region(addr + idx * info->io.regspacing,
1494                                        info->io.regsize);
1495         }
1496 }
1497
1498 static int port_setup(struct smi_info *info)
1499 {
1500         unsigned int addr = info->io.addr_data;
1501         int          idx;
1502
1503         if (!addr)
1504                 return -ENODEV;
1505
1506         info->io_cleanup = port_cleanup;
1507
1508         /*
1509          * Figure out the actual inb/inw/inl/etc routine to use based
1510          * upon the register size.
1511          */
1512         switch (info->io.regsize) {
1513         case 1:
1514                 info->io.inputb = port_inb;
1515                 info->io.outputb = port_outb;
1516                 break;
1517         case 2:
1518                 info->io.inputb = port_inw;
1519                 info->io.outputb = port_outw;
1520                 break;
1521         case 4:
1522                 info->io.inputb = port_inl;
1523                 info->io.outputb = port_outl;
1524                 break;
1525         default:
1526                 dev_warn(info->dev, "Invalid register size: %d\n",
1527                          info->io.regsize);
1528                 return -EINVAL;
1529         }
1530
1531         /*
1532          * Some BIOSes reserve disjoint I/O regions in their ACPI
1533          * tables.  This causes problems when trying to register the
1534          * entire I/O region.  Therefore we must register each I/O
1535          * port separately.
1536          */
1537         for (idx = 0; idx < info->io_size; idx++) {
1538                 if (request_region(addr + idx * info->io.regspacing,
1539                                    info->io.regsize, DEVICE_NAME) == NULL) {
1540                         /* Undo allocations */
1541                         while (idx--) {
1542                                 release_region(addr + idx * info->io.regspacing,
1543                                                info->io.regsize);
1544                         }
1545                         return -EIO;
1546                 }
1547         }
1548         return 0;
1549 }
1550
1551 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1552 {
1553         return readb((io->addr)+(offset * io->regspacing));
1554 }
1555
1556 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1557                      unsigned char b)
1558 {
1559         writeb(b, (io->addr)+(offset * io->regspacing));
1560 }
1561
1562 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1563 {
1564         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1565                 & 0xff;
1566 }
1567
1568 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1569                      unsigned char b)
1570 {
1571         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1572 }
1573
1574 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1575 {
1576         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1577                 & 0xff;
1578 }
1579
1580 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1581                      unsigned char b)
1582 {
1583         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1584 }
1585
1586 #ifdef readq
1587 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1588 {
1589         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1590                 & 0xff;
1591 }
1592
1593 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1594                      unsigned char b)
1595 {
1596         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1597 }
1598 #endif
1599
1600 static void mem_cleanup(struct smi_info *info)
1601 {
1602         unsigned long addr = info->io.addr_data;
1603         int           mapsize;
1604
1605         if (info->io.addr) {
1606                 iounmap(info->io.addr);
1607
1608                 mapsize = ((info->io_size * info->io.regspacing)
1609                            - (info->io.regspacing - info->io.regsize));
1610
1611                 release_mem_region(addr, mapsize);
1612         }
1613 }
1614
1615 static int mem_setup(struct smi_info *info)
1616 {
1617         unsigned long addr = info->io.addr_data;
1618         int           mapsize;
1619
1620         if (!addr)
1621                 return -ENODEV;
1622
1623         info->io_cleanup = mem_cleanup;
1624
1625         /*
1626          * Figure out the actual readb/readw/readl/etc routine to use based
1627          * upon the register size.
1628          */
1629         switch (info->io.regsize) {
1630         case 1:
1631                 info->io.inputb = intf_mem_inb;
1632                 info->io.outputb = intf_mem_outb;
1633                 break;
1634         case 2:
1635                 info->io.inputb = intf_mem_inw;
1636                 info->io.outputb = intf_mem_outw;
1637                 break;
1638         case 4:
1639                 info->io.inputb = intf_mem_inl;
1640                 info->io.outputb = intf_mem_outl;
1641                 break;
1642 #ifdef readq
1643         case 8:
1644                 info->io.inputb = mem_inq;
1645                 info->io.outputb = mem_outq;
1646                 break;
1647 #endif
1648         default:
1649                 dev_warn(info->dev, "Invalid register size: %d\n",
1650                          info->io.regsize);
1651                 return -EINVAL;
1652         }
1653
1654         /*
1655          * Calculate the total amount of memory to claim.  This is an
1656          * unusual looking calculation, but it avoids claiming any
1657          * more memory than it has to.  It will claim everything
1658          * between the first address to the end of the last full
1659          * register.
1660          */
1661         mapsize = ((info->io_size * info->io.regspacing)
1662                    - (info->io.regspacing - info->io.regsize));
1663
1664         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1665                 return -EIO;
1666
1667         info->io.addr = ioremap(addr, mapsize);
1668         if (info->io.addr == NULL) {
1669                 release_mem_region(addr, mapsize);
1670                 return -EIO;
1671         }
1672         return 0;
1673 }
1674
1675 /*
1676  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1677  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1678  * Options are:
1679  *   rsp=<regspacing>
1680  *   rsi=<regsize>
1681  *   rsh=<regshift>
1682  *   irq=<irq>
1683  *   ipmb=<ipmb addr>
1684  */
1685 enum hotmod_op { HM_ADD, HM_REMOVE };
1686 struct hotmod_vals {
1687         char *name;
1688         int  val;
1689 };
1690 static struct hotmod_vals hotmod_ops[] = {
1691         { "add",        HM_ADD },
1692         { "remove",     HM_REMOVE },
1693         { NULL }
1694 };
1695 static struct hotmod_vals hotmod_si[] = {
1696         { "kcs",        SI_KCS },
1697         { "smic",       SI_SMIC },
1698         { "bt",         SI_BT },
1699         { NULL }
1700 };
1701 static struct hotmod_vals hotmod_as[] = {
1702         { "mem",        IPMI_MEM_ADDR_SPACE },
1703         { "i/o",        IPMI_IO_ADDR_SPACE },
1704         { NULL }
1705 };
1706
1707 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1708 {
1709         char *s;
1710         int  i;
1711
1712         s = strchr(*curr, ',');
1713         if (!s) {
1714                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1715                 return -EINVAL;
1716         }
1717         *s = '\0';
1718         s++;
1719         for (i = 0; v[i].name; i++) {
1720                 if (strcmp(*curr, v[i].name) == 0) {
1721                         *val = v[i].val;
1722                         *curr = s;
1723                         return 0;
1724                 }
1725         }
1726
1727         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1728         return -EINVAL;
1729 }
1730
1731 static int check_hotmod_int_op(const char *curr, const char *option,
1732                                const char *name, int *val)
1733 {
1734         char *n;
1735
1736         if (strcmp(curr, name) == 0) {
1737                 if (!option) {
1738                         printk(KERN_WARNING PFX
1739                                "No option given for '%s'\n",
1740                                curr);
1741                         return -EINVAL;
1742                 }
1743                 *val = simple_strtoul(option, &n, 0);
1744                 if ((*n != '\0') || (*option == '\0')) {
1745                         printk(KERN_WARNING PFX
1746                                "Bad option given for '%s'\n",
1747                                curr);
1748                         return -EINVAL;
1749                 }
1750                 return 1;
1751         }
1752         return 0;
1753 }
1754
1755 static struct smi_info *smi_info_alloc(void)
1756 {
1757         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1758
1759         if (info)
1760                 spin_lock_init(&info->si_lock);
1761         return info;
1762 }
1763
1764 static int hotmod_handler(const char *val, struct kernel_param *kp)
1765 {
1766         char *str = kstrdup(val, GFP_KERNEL);
1767         int  rv;
1768         char *next, *curr, *s, *n, *o;
1769         enum hotmod_op op;
1770         enum si_type si_type;
1771         int  addr_space;
1772         unsigned long addr;
1773         int regspacing;
1774         int regsize;
1775         int regshift;
1776         int irq;
1777         int ipmb;
1778         int ival;
1779         int len;
1780         struct smi_info *info;
1781
1782         if (!str)
1783                 return -ENOMEM;
1784
1785         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1786         len = strlen(str);
1787         ival = len - 1;
1788         while ((ival >= 0) && isspace(str[ival])) {
1789                 str[ival] = '\0';
1790                 ival--;
1791         }
1792
1793         for (curr = str; curr; curr = next) {
1794                 regspacing = 1;
1795                 regsize = 1;
1796                 regshift = 0;
1797                 irq = 0;
1798                 ipmb = 0; /* Choose the default if not specified */
1799
1800                 next = strchr(curr, ':');
1801                 if (next) {
1802                         *next = '\0';
1803                         next++;
1804                 }
1805
1806                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1807                 if (rv)
1808                         break;
1809                 op = ival;
1810
1811                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1812                 if (rv)
1813                         break;
1814                 si_type = ival;
1815
1816                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1817                 if (rv)
1818                         break;
1819
1820                 s = strchr(curr, ',');
1821                 if (s) {
1822                         *s = '\0';
1823                         s++;
1824                 }
1825                 addr = simple_strtoul(curr, &n, 0);
1826                 if ((*n != '\0') || (*curr == '\0')) {
1827                         printk(KERN_WARNING PFX "Invalid hotmod address"
1828                                " '%s'\n", curr);
1829                         break;
1830                 }
1831
1832                 while (s) {
1833                         curr = s;
1834                         s = strchr(curr, ',');
1835                         if (s) {
1836                                 *s = '\0';
1837                                 s++;
1838                         }
1839                         o = strchr(curr, '=');
1840                         if (o) {
1841                                 *o = '\0';
1842                                 o++;
1843                         }
1844                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1845                         if (rv < 0)
1846                                 goto out;
1847                         else if (rv)
1848                                 continue;
1849                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1850                         if (rv < 0)
1851                                 goto out;
1852                         else if (rv)
1853                                 continue;
1854                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1855                         if (rv < 0)
1856                                 goto out;
1857                         else if (rv)
1858                                 continue;
1859                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1860                         if (rv < 0)
1861                                 goto out;
1862                         else if (rv)
1863                                 continue;
1864                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1865                         if (rv < 0)
1866                                 goto out;
1867                         else if (rv)
1868                                 continue;
1869
1870                         rv = -EINVAL;
1871                         printk(KERN_WARNING PFX
1872                                "Invalid hotmod option '%s'\n",
1873                                curr);
1874                         goto out;
1875                 }
1876
1877                 if (op == HM_ADD) {
1878                         info = smi_info_alloc();
1879                         if (!info) {
1880                                 rv = -ENOMEM;
1881                                 goto out;
1882                         }
1883
1884                         info->addr_source = SI_HOTMOD;
1885                         info->si_type = si_type;
1886                         info->io.addr_data = addr;
1887                         info->io.addr_type = addr_space;
1888                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1889                                 info->io_setup = mem_setup;
1890                         else
1891                                 info->io_setup = port_setup;
1892
1893                         info->io.addr = NULL;
1894                         info->io.regspacing = regspacing;
1895                         if (!info->io.regspacing)
1896                                 info->io.regspacing = DEFAULT_REGSPACING;
1897                         info->io.regsize = regsize;
1898                         if (!info->io.regsize)
1899                                 info->io.regsize = DEFAULT_REGSPACING;
1900                         info->io.regshift = regshift;
1901                         info->irq = irq;
1902                         if (info->irq)
1903                                 info->irq_setup = std_irq_setup;
1904                         info->slave_addr = ipmb;
1905
1906                         rv = add_smi(info);
1907                         if (rv) {
1908                                 kfree(info);
1909                                 goto out;
1910                         }
1911                         rv = try_smi_init(info);
1912                         if (rv) {
1913                                 cleanup_one_si(info);
1914                                 goto out;
1915                         }
1916                 } else {
1917                         /* remove */
1918                         struct smi_info *e, *tmp_e;
1919
1920                         mutex_lock(&smi_infos_lock);
1921                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1922                                 if (e->io.addr_type != addr_space)
1923                                         continue;
1924                                 if (e->si_type != si_type)
1925                                         continue;
1926                                 if (e->io.addr_data == addr)
1927                                         cleanup_one_si(e);
1928                         }
1929                         mutex_unlock(&smi_infos_lock);
1930                 }
1931         }
1932         rv = len;
1933  out:
1934         kfree(str);
1935         return rv;
1936 }
1937
1938 static int hardcode_find_bmc(void)
1939 {
1940         int ret = -ENODEV;
1941         int             i;
1942         struct smi_info *info;
1943
1944         for (i = 0; i < SI_MAX_PARMS; i++) {
1945                 if (!ports[i] && !addrs[i])
1946                         continue;
1947
1948                 info = smi_info_alloc();
1949                 if (!info)
1950                         return -ENOMEM;
1951
1952                 info->addr_source = SI_HARDCODED;
1953                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1954
1955                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1956                         info->si_type = SI_KCS;
1957                 } else if (strcmp(si_type[i], "smic") == 0) {
1958                         info->si_type = SI_SMIC;
1959                 } else if (strcmp(si_type[i], "bt") == 0) {
1960                         info->si_type = SI_BT;
1961                 } else {
1962                         printk(KERN_WARNING PFX "Interface type specified "
1963                                "for interface %d, was invalid: %s\n",
1964                                i, si_type[i]);
1965                         kfree(info);
1966                         continue;
1967                 }
1968
1969                 if (ports[i]) {
1970                         /* An I/O port */
1971                         info->io_setup = port_setup;
1972                         info->io.addr_data = ports[i];
1973                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1974                 } else if (addrs[i]) {
1975                         /* A memory port */
1976                         info->io_setup = mem_setup;
1977                         info->io.addr_data = addrs[i];
1978                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1979                 } else {
1980                         printk(KERN_WARNING PFX "Interface type specified "
1981                                "for interface %d, but port and address were "
1982                                "not set or set to zero.\n", i);
1983                         kfree(info);
1984                         continue;
1985                 }
1986
1987                 info->io.addr = NULL;
1988                 info->io.regspacing = regspacings[i];
1989                 if (!info->io.regspacing)
1990                         info->io.regspacing = DEFAULT_REGSPACING;
1991                 info->io.regsize = regsizes[i];
1992                 if (!info->io.regsize)
1993                         info->io.regsize = DEFAULT_REGSPACING;
1994                 info->io.regshift = regshifts[i];
1995                 info->irq = irqs[i];
1996                 if (info->irq)
1997                         info->irq_setup = std_irq_setup;
1998                 info->slave_addr = slave_addrs[i];
1999
2000                 if (!add_smi(info)) {
2001                         if (try_smi_init(info))
2002                                 cleanup_one_si(info);
2003                         ret = 0;
2004                 } else {
2005                         kfree(info);
2006                 }
2007         }
2008         return ret;
2009 }
2010
2011 #ifdef CONFIG_ACPI
2012
2013 #include <linux/acpi.h>
2014
2015 /*
2016  * Once we get an ACPI failure, we don't try any more, because we go
2017  * through the tables sequentially.  Once we don't find a table, there
2018  * are no more.
2019  */
2020 static int acpi_failure;
2021
2022 /* For GPE-type interrupts. */
2023 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2024         u32 gpe_number, void *context)
2025 {
2026         struct smi_info *smi_info = context;
2027         unsigned long   flags;
2028
2029         spin_lock_irqsave(&(smi_info->si_lock), flags);
2030
2031         smi_inc_stat(smi_info, interrupts);
2032
2033         debug_timestamp("ACPI_GPE");
2034
2035         smi_event_handler(smi_info, 0);
2036         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2037
2038         return ACPI_INTERRUPT_HANDLED;
2039 }
2040
2041 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2042 {
2043         if (!info->irq)
2044                 return;
2045
2046         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2047 }
2048
2049 static int acpi_gpe_irq_setup(struct smi_info *info)
2050 {
2051         acpi_status status;
2052
2053         if (!info->irq)
2054                 return 0;
2055
2056         status = acpi_install_gpe_handler(NULL,
2057                                           info->irq,
2058                                           ACPI_GPE_LEVEL_TRIGGERED,
2059                                           &ipmi_acpi_gpe,
2060                                           info);
2061         if (status != AE_OK) {
2062                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2063                          " running polled\n", DEVICE_NAME, info->irq);
2064                 info->irq = 0;
2065                 return -EINVAL;
2066         } else {
2067                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2068                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2069                 return 0;
2070         }
2071 }
2072
2073 /*
2074  * Defined at
2075  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2076  */
2077 struct SPMITable {
2078         s8      Signature[4];
2079         u32     Length;
2080         u8      Revision;
2081         u8      Checksum;
2082         s8      OEMID[6];
2083         s8      OEMTableID[8];
2084         s8      OEMRevision[4];
2085         s8      CreatorID[4];
2086         s8      CreatorRevision[4];
2087         u8      InterfaceType;
2088         u8      IPMIlegacy;
2089         s16     SpecificationRevision;
2090
2091         /*
2092          * Bit 0 - SCI interrupt supported
2093          * Bit 1 - I/O APIC/SAPIC
2094          */
2095         u8      InterruptType;
2096
2097         /*
2098          * If bit 0 of InterruptType is set, then this is the SCI
2099          * interrupt in the GPEx_STS register.
2100          */
2101         u8      GPE;
2102
2103         s16     Reserved;
2104
2105         /*
2106          * If bit 1 of InterruptType is set, then this is the I/O
2107          * APIC/SAPIC interrupt.
2108          */
2109         u32     GlobalSystemInterrupt;
2110
2111         /* The actual register address. */
2112         struct acpi_generic_address addr;
2113
2114         u8      UID[4];
2115
2116         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2117 };
2118
2119 static int try_init_spmi(struct SPMITable *spmi)
2120 {
2121         struct smi_info  *info;
2122         int rv;
2123
2124         if (spmi->IPMIlegacy != 1) {
2125                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2126                 return -ENODEV;
2127         }
2128
2129         info = smi_info_alloc();
2130         if (!info) {
2131                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2132                 return -ENOMEM;
2133         }
2134
2135         info->addr_source = SI_SPMI;
2136         printk(KERN_INFO PFX "probing via SPMI\n");
2137
2138         /* Figure out the interface type. */
2139         switch (spmi->InterfaceType) {
2140         case 1: /* KCS */
2141                 info->si_type = SI_KCS;
2142                 break;
2143         case 2: /* SMIC */
2144                 info->si_type = SI_SMIC;
2145                 break;
2146         case 3: /* BT */
2147                 info->si_type = SI_BT;
2148                 break;
2149         case 4: /* SSIF, just ignore */
2150                 kfree(info);
2151                 return -EIO;
2152         default:
2153                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2154                        spmi->InterfaceType);
2155                 kfree(info);
2156                 return -EIO;
2157         }
2158
2159         if (spmi->InterruptType & 1) {
2160                 /* We've got a GPE interrupt. */
2161                 info->irq = spmi->GPE;
2162                 info->irq_setup = acpi_gpe_irq_setup;
2163         } else if (spmi->InterruptType & 2) {
2164                 /* We've got an APIC/SAPIC interrupt. */
2165                 info->irq = spmi->GlobalSystemInterrupt;
2166                 info->irq_setup = std_irq_setup;
2167         } else {
2168                 /* Use the default interrupt setting. */
2169                 info->irq = 0;
2170                 info->irq_setup = NULL;
2171         }
2172
2173         if (spmi->addr.bit_width) {
2174                 /* A (hopefully) properly formed register bit width. */
2175                 info->io.regspacing = spmi->addr.bit_width / 8;
2176         } else {
2177                 info->io.regspacing = DEFAULT_REGSPACING;
2178         }
2179         info->io.regsize = info->io.regspacing;
2180         info->io.regshift = spmi->addr.bit_offset;
2181
2182         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2183                 info->io_setup = mem_setup;
2184                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2185         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2186                 info->io_setup = port_setup;
2187                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2188         } else {
2189                 kfree(info);
2190                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2191                 return -EIO;
2192         }
2193         info->io.addr_data = spmi->addr.address;
2194
2195         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2196                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2197                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2198                  info->irq);
2199
2200         rv = add_smi(info);
2201         if (rv)
2202                 kfree(info);
2203
2204         return rv;
2205 }
2206
2207 static void spmi_find_bmc(void)
2208 {
2209         acpi_status      status;
2210         struct SPMITable *spmi;
2211         int              i;
2212
2213         if (acpi_disabled)
2214                 return;
2215
2216         if (acpi_failure)
2217                 return;
2218
2219         for (i = 0; ; i++) {
2220                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2221                                         (struct acpi_table_header **)&spmi);
2222                 if (status != AE_OK)
2223                         return;
2224
2225                 try_init_spmi(spmi);
2226         }
2227 }
2228
2229 static int ipmi_pnp_probe(struct pnp_dev *dev,
2230                                     const struct pnp_device_id *dev_id)
2231 {
2232         struct acpi_device *acpi_dev;
2233         struct smi_info *info;
2234         struct resource *res, *res_second;
2235         acpi_handle handle;
2236         acpi_status status;
2237         unsigned long long tmp;
2238         int rv;
2239
2240         acpi_dev = pnp_acpi_device(dev);
2241         if (!acpi_dev)
2242                 return -ENODEV;
2243
2244         info = smi_info_alloc();
2245         if (!info)
2246                 return -ENOMEM;
2247
2248         info->addr_source = SI_ACPI;
2249         printk(KERN_INFO PFX "probing via ACPI\n");
2250
2251         handle = acpi_dev->handle;
2252         info->addr_info.acpi_info.acpi_handle = handle;
2253
2254         /* _IFT tells us the interface type: KCS, BT, etc */
2255         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2256         if (ACPI_FAILURE(status))
2257                 goto err_free;
2258
2259         switch (tmp) {
2260         case 1:
2261                 info->si_type = SI_KCS;
2262                 break;
2263         case 2:
2264                 info->si_type = SI_SMIC;
2265                 break;
2266         case 3:
2267                 info->si_type = SI_BT;
2268                 break;
2269         case 4: /* SSIF, just ignore */
2270                 goto err_free;
2271         default:
2272                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2273                 goto err_free;
2274         }
2275
2276         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2277         if (res) {
2278                 info->io_setup = port_setup;
2279                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2280         } else {
2281                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2282                 if (res) {
2283                         info->io_setup = mem_setup;
2284                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2285                 }
2286         }
2287         if (!res) {
2288                 dev_err(&dev->dev, "no I/O or memory address\n");
2289                 goto err_free;
2290         }
2291         info->io.addr_data = res->start;
2292
2293         info->io.regspacing = DEFAULT_REGSPACING;
2294         res_second = pnp_get_resource(dev,
2295                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2296                                         IORESOURCE_IO : IORESOURCE_MEM,
2297                                1);
2298         if (res_second) {
2299                 if (res_second->start > info->io.addr_data)
2300                         info->io.regspacing = res_second->start - info->io.addr_data;
2301         }
2302         info->io.regsize = DEFAULT_REGSPACING;
2303         info->io.regshift = 0;
2304
2305         /* If _GPE exists, use it; otherwise use standard interrupts */
2306         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2307         if (ACPI_SUCCESS(status)) {
2308                 info->irq = tmp;
2309                 info->irq_setup = acpi_gpe_irq_setup;
2310         } else if (pnp_irq_valid(dev, 0)) {
2311                 info->irq = pnp_irq(dev, 0);
2312                 info->irq_setup = std_irq_setup;
2313         }
2314
2315         info->dev = &dev->dev;
2316         pnp_set_drvdata(dev, info);
2317
2318         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2319                  res, info->io.regsize, info->io.regspacing,
2320                  info->irq);
2321
2322         rv = add_smi(info);
2323         if (rv)
2324                 kfree(info);
2325
2326         return rv;
2327
2328 err_free:
2329         kfree(info);
2330         return -EINVAL;
2331 }
2332
2333 static void ipmi_pnp_remove(struct pnp_dev *dev)
2334 {
2335         struct smi_info *info = pnp_get_drvdata(dev);
2336
2337         cleanup_one_si(info);
2338 }
2339
2340 static const struct pnp_device_id pnp_dev_table[] = {
2341         {"IPI0001", 0},
2342         {"", 0},
2343 };
2344
2345 static struct pnp_driver ipmi_pnp_driver = {
2346         .name           = DEVICE_NAME,
2347         .probe          = ipmi_pnp_probe,
2348         .remove         = ipmi_pnp_remove,
2349         .id_table       = pnp_dev_table,
2350 };
2351
2352 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2353 #endif
2354
2355 #ifdef CONFIG_DMI
2356 struct dmi_ipmi_data {
2357         u8              type;
2358         u8              addr_space;
2359         unsigned long   base_addr;
2360         u8              irq;
2361         u8              offset;
2362         u8              slave_addr;
2363 };
2364
2365 static int decode_dmi(const struct dmi_header *dm,
2366                                 struct dmi_ipmi_data *dmi)
2367 {
2368         const u8        *data = (const u8 *)dm;
2369         unsigned long   base_addr;
2370         u8              reg_spacing;
2371         u8              len = dm->length;
2372
2373         dmi->type = data[4];
2374
2375         memcpy(&base_addr, data+8, sizeof(unsigned long));
2376         if (len >= 0x11) {
2377                 if (base_addr & 1) {
2378                         /* I/O */
2379                         base_addr &= 0xFFFE;
2380                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2381                 } else
2382                         /* Memory */
2383                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2384
2385                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2386                    is odd. */
2387                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2388
2389                 dmi->irq = data[0x11];
2390
2391                 /* The top two bits of byte 0x10 hold the register spacing. */
2392                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2393                 switch (reg_spacing) {
2394                 case 0x00: /* Byte boundaries */
2395                     dmi->offset = 1;
2396                     break;
2397                 case 0x01: /* 32-bit boundaries */
2398                     dmi->offset = 4;
2399                     break;
2400                 case 0x02: /* 16-byte boundaries */
2401                     dmi->offset = 16;
2402                     break;
2403                 default:
2404                     /* Some other interface, just ignore it. */
2405                     return -EIO;
2406                 }
2407         } else {
2408                 /* Old DMI spec. */
2409                 /*
2410                  * Note that technically, the lower bit of the base
2411                  * address should be 1 if the address is I/O and 0 if
2412                  * the address is in memory.  So many systems get that
2413                  * wrong (and all that I have seen are I/O) so we just
2414                  * ignore that bit and assume I/O.  Systems that use
2415                  * memory should use the newer spec, anyway.
2416                  */
2417                 dmi->base_addr = base_addr & 0xfffe;
2418                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2419                 dmi->offset = 1;
2420         }
2421
2422         dmi->slave_addr = data[6];
2423
2424         return 0;
2425 }
2426
2427 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2428 {
2429         struct smi_info *info;
2430
2431         info = smi_info_alloc();
2432         if (!info) {
2433                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2434                 return;
2435         }
2436
2437         info->addr_source = SI_SMBIOS;
2438         printk(KERN_INFO PFX "probing via SMBIOS\n");
2439
2440         switch (ipmi_data->type) {
2441         case 0x01: /* KCS */
2442                 info->si_type = SI_KCS;
2443                 break;
2444         case 0x02: /* SMIC */
2445                 info->si_type = SI_SMIC;
2446                 break;
2447         case 0x03: /* BT */
2448                 info->si_type = SI_BT;
2449                 break;
2450         default:
2451                 kfree(info);
2452                 return;
2453         }
2454
2455         switch (ipmi_data->addr_space) {
2456         case IPMI_MEM_ADDR_SPACE:
2457                 info->io_setup = mem_setup;
2458                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2459                 break;
2460
2461         case IPMI_IO_ADDR_SPACE:
2462                 info->io_setup = port_setup;
2463                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2464                 break;
2465
2466         default:
2467                 kfree(info);
2468                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2469                        ipmi_data->addr_space);
2470                 return;
2471         }
2472         info->io.addr_data = ipmi_data->base_addr;
2473
2474         info->io.regspacing = ipmi_data->offset;
2475         if (!info->io.regspacing)
2476                 info->io.regspacing = DEFAULT_REGSPACING;
2477         info->io.regsize = DEFAULT_REGSPACING;
2478         info->io.regshift = 0;
2479
2480         info->slave_addr = ipmi_data->slave_addr;
2481
2482         info->irq = ipmi_data->irq;
2483         if (info->irq)
2484                 info->irq_setup = std_irq_setup;
2485
2486         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2487                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2488                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2489                  info->irq);
2490
2491         if (add_smi(info))
2492                 kfree(info);
2493 }
2494
2495 static void dmi_find_bmc(void)
2496 {
2497         const struct dmi_device *dev = NULL;
2498         struct dmi_ipmi_data data;
2499         int                  rv;
2500
2501         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2502                 memset(&data, 0, sizeof(data));
2503                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2504                                 &data);
2505                 if (!rv)
2506                         try_init_dmi(&data);
2507         }
2508 }
2509 #endif /* CONFIG_DMI */
2510
2511 #ifdef CONFIG_PCI
2512
2513 #define PCI_ERMC_CLASSCODE              0x0C0700
2514 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2515 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2516 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2517 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2518 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2519
2520 #define PCI_HP_VENDOR_ID    0x103C
2521 #define PCI_MMC_DEVICE_ID   0x121A
2522 #define PCI_MMC_ADDR_CW     0x10
2523
2524 static void ipmi_pci_cleanup(struct smi_info *info)
2525 {
2526         struct pci_dev *pdev = info->addr_source_data;
2527
2528         pci_disable_device(pdev);
2529 }
2530
2531 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2532 {
2533         if (info->si_type == SI_KCS) {
2534                 unsigned char   status;
2535                 int             regspacing;
2536
2537                 info->io.regsize = DEFAULT_REGSIZE;
2538                 info->io.regshift = 0;
2539                 info->io_size = 2;
2540                 info->handlers = &kcs_smi_handlers;
2541
2542                 /* detect 1, 4, 16byte spacing */
2543                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2544                         info->io.regspacing = regspacing;
2545                         if (info->io_setup(info)) {
2546                                 dev_err(info->dev,
2547                                         "Could not setup I/O space\n");
2548                                 return DEFAULT_REGSPACING;
2549                         }
2550                         /* write invalid cmd */
2551                         info->io.outputb(&info->io, 1, 0x10);
2552                         /* read status back */
2553                         status = info->io.inputb(&info->io, 1);
2554                         info->io_cleanup(info);
2555                         if (status)
2556                                 return regspacing;
2557                         regspacing *= 4;
2558                 }
2559         }
2560         return DEFAULT_REGSPACING;
2561 }
2562
2563 static int ipmi_pci_probe(struct pci_dev *pdev,
2564                                     const struct pci_device_id *ent)
2565 {
2566         int rv;
2567         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2568         struct smi_info *info;
2569
2570         info = smi_info_alloc();
2571         if (!info)
2572                 return -ENOMEM;
2573
2574         info->addr_source = SI_PCI;
2575         dev_info(&pdev->dev, "probing via PCI");
2576
2577         switch (class_type) {
2578         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2579                 info->si_type = SI_SMIC;
2580                 break;
2581
2582         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2583                 info->si_type = SI_KCS;
2584                 break;
2585
2586         case PCI_ERMC_CLASSCODE_TYPE_BT:
2587                 info->si_type = SI_BT;
2588                 break;
2589
2590         default:
2591                 kfree(info);
2592                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2593                 return -ENOMEM;
2594         }
2595
2596         rv = pci_enable_device(pdev);
2597         if (rv) {
2598                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2599                 kfree(info);
2600                 return rv;
2601         }
2602
2603         info->addr_source_cleanup = ipmi_pci_cleanup;
2604         info->addr_source_data = pdev;
2605
2606         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2607                 info->io_setup = port_setup;
2608                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2609         } else {
2610                 info->io_setup = mem_setup;
2611                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2612         }
2613         info->io.addr_data = pci_resource_start(pdev, 0);
2614
2615         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2616         info->io.regsize = DEFAULT_REGSIZE;
2617         info->io.regshift = 0;
2618
2619         info->irq = pdev->irq;
2620         if (info->irq)
2621                 info->irq_setup = std_irq_setup;
2622
2623         info->dev = &pdev->dev;
2624         pci_set_drvdata(pdev, info);
2625
2626         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2627                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2628                 info->irq);
2629
2630         rv = add_smi(info);
2631         if (rv) {
2632                 kfree(info);
2633                 pci_disable_device(pdev);
2634         }
2635
2636         return rv;
2637 }
2638
2639 static void ipmi_pci_remove(struct pci_dev *pdev)
2640 {
2641         struct smi_info *info = pci_get_drvdata(pdev);
2642         cleanup_one_si(info);
2643         pci_disable_device(pdev);
2644 }
2645
2646 static struct pci_device_id ipmi_pci_devices[] = {
2647         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2648         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2649         { 0, }
2650 };
2651 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2652
2653 static struct pci_driver ipmi_pci_driver = {
2654         .name =         DEVICE_NAME,
2655         .id_table =     ipmi_pci_devices,
2656         .probe =        ipmi_pci_probe,
2657         .remove =       ipmi_pci_remove,
2658 };
2659 #endif /* CONFIG_PCI */
2660
2661 static struct of_device_id ipmi_match[];
2662 static int ipmi_probe(struct platform_device *dev)
2663 {
2664 #ifdef CONFIG_OF
2665         const struct of_device_id *match;
2666         struct smi_info *info;
2667         struct resource resource;
2668         const __be32 *regsize, *regspacing, *regshift;
2669         struct device_node *np = dev->dev.of_node;
2670         int ret;
2671         int proplen;
2672
2673         dev_info(&dev->dev, "probing via device tree\n");
2674
2675         match = of_match_device(ipmi_match, &dev->dev);
2676         if (!match)
2677                 return -EINVAL;
2678
2679         if (!of_device_is_available(np))
2680                 return -EINVAL;
2681
2682         ret = of_address_to_resource(np, 0, &resource);
2683         if (ret) {
2684                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2685                 return ret;
2686         }
2687
2688         regsize = of_get_property(np, "reg-size", &proplen);
2689         if (regsize && proplen != 4) {
2690                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2691                 return -EINVAL;
2692         }
2693
2694         regspacing = of_get_property(np, "reg-spacing", &proplen);
2695         if (regspacing && proplen != 4) {
2696                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2697                 return -EINVAL;
2698         }
2699
2700         regshift = of_get_property(np, "reg-shift", &proplen);
2701         if (regshift && proplen != 4) {
2702                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2703                 return -EINVAL;
2704         }
2705
2706         info = smi_info_alloc();
2707
2708         if (!info) {
2709                 dev_err(&dev->dev,
2710                         "could not allocate memory for OF probe\n");
2711                 return -ENOMEM;
2712         }
2713
2714         info->si_type           = (enum si_type) match->data;
2715         info->addr_source       = SI_DEVICETREE;
2716         info->irq_setup         = std_irq_setup;
2717
2718         if (resource.flags & IORESOURCE_IO) {
2719                 info->io_setup          = port_setup;
2720                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2721         } else {
2722                 info->io_setup          = mem_setup;
2723                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2724         }
2725
2726         info->io.addr_data      = resource.start;
2727
2728         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2729         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2730         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2731
2732         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2733         info->dev               = &dev->dev;
2734
2735         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2736                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2737                 info->irq);
2738
2739         dev_set_drvdata(&dev->dev, info);
2740
2741         ret = add_smi(info);
2742         if (ret) {
2743                 kfree(info);
2744                 return ret;
2745         }
2746 #endif
2747         return 0;
2748 }
2749
2750 static int ipmi_remove(struct platform_device *dev)
2751 {
2752 #ifdef CONFIG_OF
2753         cleanup_one_si(dev_get_drvdata(&dev->dev));
2754 #endif
2755         return 0;
2756 }
2757
2758 static struct of_device_id ipmi_match[] =
2759 {
2760         { .type = "ipmi", .compatible = "ipmi-kcs",
2761           .data = (void *)(unsigned long) SI_KCS },
2762         { .type = "ipmi", .compatible = "ipmi-smic",
2763           .data = (void *)(unsigned long) SI_SMIC },
2764         { .type = "ipmi", .compatible = "ipmi-bt",
2765           .data = (void *)(unsigned long) SI_BT },
2766         {},
2767 };
2768
2769 static struct platform_driver ipmi_driver = {
2770         .driver = {
2771                 .name = DEVICE_NAME,
2772                 .of_match_table = ipmi_match,
2773         },
2774         .probe          = ipmi_probe,
2775         .remove         = ipmi_remove,
2776 };
2777
2778 #ifdef CONFIG_PARISC
2779 static int ipmi_parisc_probe(struct parisc_device *dev)
2780 {
2781         struct smi_info *info;
2782         int rv;
2783
2784         info = smi_info_alloc();
2785
2786         if (!info) {
2787                 dev_err(&dev->dev,
2788                         "could not allocate memory for PARISC probe\n");
2789                 return -ENOMEM;
2790         }
2791
2792         info->si_type           = SI_KCS;
2793         info->addr_source       = SI_DEVICETREE;
2794         info->io_setup          = mem_setup;
2795         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2796         info->io.addr_data      = dev->hpa.start;
2797         info->io.regsize        = 1;
2798         info->io.regspacing     = 1;
2799         info->io.regshift       = 0;
2800         info->irq               = 0; /* no interrupt */
2801         info->irq_setup         = NULL;
2802         info->dev               = &dev->dev;
2803
2804         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2805
2806         dev_set_drvdata(&dev->dev, info);
2807
2808         rv = add_smi(info);
2809         if (rv) {
2810                 kfree(info);
2811                 return rv;
2812         }
2813
2814         return 0;
2815 }
2816
2817 static int ipmi_parisc_remove(struct parisc_device *dev)
2818 {
2819         cleanup_one_si(dev_get_drvdata(&dev->dev));
2820         return 0;
2821 }
2822
2823 static struct parisc_device_id ipmi_parisc_tbl[] = {
2824         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2825         { 0, }
2826 };
2827
2828 static struct parisc_driver ipmi_parisc_driver = {
2829         .name =         "ipmi",
2830         .id_table =     ipmi_parisc_tbl,
2831         .probe =        ipmi_parisc_probe,
2832         .remove =       ipmi_parisc_remove,
2833 };
2834 #endif /* CONFIG_PARISC */
2835
2836 static int wait_for_msg_done(struct smi_info *smi_info)
2837 {
2838         enum si_sm_result     smi_result;
2839
2840         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2841         for (;;) {
2842                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2843                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2844                         schedule_timeout_uninterruptible(1);
2845                         smi_result = smi_info->handlers->event(
2846                                 smi_info->si_sm, jiffies_to_usecs(1));
2847                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2848                         smi_result = smi_info->handlers->event(
2849                                 smi_info->si_sm, 0);
2850                 } else
2851                         break;
2852         }
2853         if (smi_result == SI_SM_HOSED)
2854                 /*
2855                  * We couldn't get the state machine to run, so whatever's at
2856                  * the port is probably not an IPMI SMI interface.
2857                  */
2858                 return -ENODEV;
2859
2860         return 0;
2861 }
2862
2863 static int try_get_dev_id(struct smi_info *smi_info)
2864 {
2865         unsigned char         msg[2];
2866         unsigned char         *resp;
2867         unsigned long         resp_len;
2868         int                   rv = 0;
2869
2870         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2871         if (!resp)
2872                 return -ENOMEM;
2873
2874         /*
2875          * Do a Get Device ID command, since it comes back with some
2876          * useful info.
2877          */
2878         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2879         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2880         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2881
2882         rv = wait_for_msg_done(smi_info);
2883         if (rv)
2884                 goto out;
2885
2886         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2887                                                   resp, IPMI_MAX_MSG_LENGTH);
2888
2889         /* Check and record info from the get device id, in case we need it. */
2890         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2891
2892  out:
2893         kfree(resp);
2894         return rv;
2895 }
2896
2897 static int try_enable_event_buffer(struct smi_info *smi_info)
2898 {
2899         unsigned char         msg[3];
2900         unsigned char         *resp;
2901         unsigned long         resp_len;
2902         int                   rv = 0;
2903
2904         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2905         if (!resp)
2906                 return -ENOMEM;
2907
2908         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2909         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2910         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2911
2912         rv = wait_for_msg_done(smi_info);
2913         if (rv) {
2914                 printk(KERN_WARNING PFX "Error getting response from get"
2915                        " global enables command, the event buffer is not"
2916                        " enabled.\n");
2917                 goto out;
2918         }
2919
2920         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2921                                                   resp, IPMI_MAX_MSG_LENGTH);
2922
2923         if (resp_len < 4 ||
2924                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2925                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2926                         resp[2] != 0) {
2927                 printk(KERN_WARNING PFX "Invalid return from get global"
2928                        " enables command, cannot enable the event buffer.\n");
2929                 rv = -EINVAL;
2930                 goto out;
2931         }
2932
2933         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
2934                 /* buffer is already enabled, nothing to do. */
2935                 smi_info->supports_event_msg_buff = true;
2936                 goto out;
2937         }
2938
2939         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2940         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2941         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2942         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2943
2944         rv = wait_for_msg_done(smi_info);
2945         if (rv) {
2946                 printk(KERN_WARNING PFX "Error getting response from set"
2947                        " global, enables command, the event buffer is not"
2948                        " enabled.\n");
2949                 goto out;
2950         }
2951
2952         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2953                                                   resp, IPMI_MAX_MSG_LENGTH);
2954
2955         if (resp_len < 3 ||
2956                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2957                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2958                 printk(KERN_WARNING PFX "Invalid return from get global,"
2959                        "enables command, not enable the event buffer.\n");
2960                 rv = -EINVAL;
2961                 goto out;
2962         }
2963
2964         if (resp[2] != 0)
2965                 /*
2966                  * An error when setting the event buffer bit means
2967                  * that the event buffer is not supported.
2968                  */
2969                 rv = -ENOENT;
2970         else
2971                 smi_info->supports_event_msg_buff = true;
2972
2973  out:
2974         kfree(resp);
2975         return rv;
2976 }
2977
2978 static int smi_type_proc_show(struct seq_file *m, void *v)
2979 {
2980         struct smi_info *smi = m->private;
2981
2982         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2983
2984         return seq_has_overflowed(m);
2985 }
2986
2987 static int smi_type_proc_open(struct inode *inode, struct file *file)
2988 {
2989         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2990 }
2991
2992 static const struct file_operations smi_type_proc_ops = {
2993         .open           = smi_type_proc_open,
2994         .read           = seq_read,
2995         .llseek         = seq_lseek,
2996         .release        = single_release,
2997 };
2998
2999 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3000 {
3001         struct smi_info *smi = m->private;
3002
3003         seq_printf(m, "interrupts_enabled:    %d\n",
3004                        smi->irq && !smi->interrupt_disabled);
3005         seq_printf(m, "short_timeouts:        %u\n",
3006                        smi_get_stat(smi, short_timeouts));
3007         seq_printf(m, "long_timeouts:         %u\n",
3008                        smi_get_stat(smi, long_timeouts));
3009         seq_printf(m, "idles:                 %u\n",
3010                        smi_get_stat(smi, idles));
3011         seq_printf(m, "interrupts:            %u\n",
3012                        smi_get_stat(smi, interrupts));
3013         seq_printf(m, "attentions:            %u\n",
3014                        smi_get_stat(smi, attentions));
3015         seq_printf(m, "flag_fetches:          %u\n",
3016                        smi_get_stat(smi, flag_fetches));
3017         seq_printf(m, "hosed_count:           %u\n",
3018                        smi_get_stat(smi, hosed_count));
3019         seq_printf(m, "complete_transactions: %u\n",
3020                        smi_get_stat(smi, complete_transactions));
3021         seq_printf(m, "events:                %u\n",
3022                        smi_get_stat(smi, events));
3023         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3024                        smi_get_stat(smi, watchdog_pretimeouts));
3025         seq_printf(m, "incoming_messages:     %u\n",
3026                        smi_get_stat(smi, incoming_messages));
3027         return 0;
3028 }
3029
3030 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3031 {
3032         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3033 }
3034
3035 static const struct file_operations smi_si_stats_proc_ops = {
3036         .open           = smi_si_stats_proc_open,
3037         .read           = seq_read,
3038         .llseek         = seq_lseek,
3039         .release        = single_release,
3040 };
3041
3042 static int smi_params_proc_show(struct seq_file *m, void *v)
3043 {
3044         struct smi_info *smi = m->private;
3045
3046         seq_printf(m,
3047                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3048                    si_to_str[smi->si_type],
3049                    addr_space_to_str[smi->io.addr_type],
3050                    smi->io.addr_data,
3051                    smi->io.regspacing,
3052                    smi->io.regsize,
3053                    smi->io.regshift,
3054                    smi->irq,
3055                    smi->slave_addr);
3056
3057         return seq_has_overflowed(m);
3058 }
3059
3060 static int smi_params_proc_open(struct inode *inode, struct file *file)
3061 {
3062         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3063 }
3064
3065 static const struct file_operations smi_params_proc_ops = {
3066         .open           = smi_params_proc_open,
3067         .read           = seq_read,
3068         .llseek         = seq_lseek,
3069         .release        = single_release,
3070 };
3071
3072 /*
3073  * oem_data_avail_to_receive_msg_avail
3074  * @info - smi_info structure with msg_flags set
3075  *
3076  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3077  * Returns 1 indicating need to re-run handle_flags().
3078  */
3079 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3080 {
3081         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3082                                RECEIVE_MSG_AVAIL);
3083         return 1;
3084 }
3085
3086 /*
3087  * setup_dell_poweredge_oem_data_handler
3088  * @info - smi_info.device_id must be populated
3089  *
3090  * Systems that match, but have firmware version < 1.40 may assert
3091  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3092  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3093  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3094  * as RECEIVE_MSG_AVAIL instead.
3095  *
3096  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3097  * assert the OEM[012] bits, and if it did, the driver would have to
3098  * change to handle that properly, we don't actually check for the
3099  * firmware version.
3100  * Device ID = 0x20                BMC on PowerEdge 8G servers
3101  * Device Revision = 0x80
3102  * Firmware Revision1 = 0x01       BMC version 1.40
3103  * Firmware Revision2 = 0x40       BCD encoded
3104  * IPMI Version = 0x51             IPMI 1.5
3105  * Manufacturer ID = A2 02 00      Dell IANA
3106  *
3107  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3108  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3109  *
3110  */
3111 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3112 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3113 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3114 #define DELL_IANA_MFR_ID 0x0002a2
3115 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3116 {
3117         struct ipmi_device_id *id = &smi_info->device_id;
3118         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3119                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3120                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3121                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3122                         smi_info->oem_data_avail_handler =
3123                                 oem_data_avail_to_receive_msg_avail;
3124                 } else if (ipmi_version_major(id) < 1 ||
3125                            (ipmi_version_major(id) == 1 &&
3126                             ipmi_version_minor(id) < 5)) {
3127                         smi_info->oem_data_avail_handler =
3128                                 oem_data_avail_to_receive_msg_avail;
3129                 }
3130         }
3131 }
3132
3133 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3134 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3135 {
3136         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3137
3138         /* Make it a response */
3139         msg->rsp[0] = msg->data[0] | 4;
3140         msg->rsp[1] = msg->data[1];
3141         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3142         msg->rsp_size = 3;
3143         smi_info->curr_msg = NULL;
3144         deliver_recv_msg(smi_info, msg);
3145 }
3146
3147 /*
3148  * dell_poweredge_bt_xaction_handler
3149  * @info - smi_info.device_id must be populated
3150  *
3151  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3152  * not respond to a Get SDR command if the length of the data
3153  * requested is exactly 0x3A, which leads to command timeouts and no
3154  * data returned.  This intercepts such commands, and causes userspace
3155  * callers to try again with a different-sized buffer, which succeeds.
3156  */
3157
3158 #define STORAGE_NETFN 0x0A
3159 #define STORAGE_CMD_GET_SDR 0x23
3160 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3161                                              unsigned long unused,
3162                                              void *in)
3163 {
3164         struct smi_info *smi_info = in;
3165         unsigned char *data = smi_info->curr_msg->data;
3166         unsigned int size   = smi_info->curr_msg->data_size;
3167         if (size >= 8 &&
3168             (data[0]>>2) == STORAGE_NETFN &&
3169             data[1] == STORAGE_CMD_GET_SDR &&
3170             data[7] == 0x3A) {
3171                 return_hosed_msg_badsize(smi_info);
3172                 return NOTIFY_STOP;
3173         }
3174         return NOTIFY_DONE;
3175 }
3176
3177 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3178         .notifier_call  = dell_poweredge_bt_xaction_handler,
3179 };
3180
3181 /*
3182  * setup_dell_poweredge_bt_xaction_handler
3183  * @info - smi_info.device_id must be filled in already
3184  *
3185  * Fills in smi_info.device_id.start_transaction_pre_hook
3186  * when we know what function to use there.
3187  */
3188 static void
3189 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3190 {
3191         struct ipmi_device_id *id = &smi_info->device_id;
3192         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3193             smi_info->si_type == SI_BT)
3194                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3195 }
3196
3197 /*
3198  * setup_oem_data_handler
3199  * @info - smi_info.device_id must be filled in already
3200  *
3201  * Fills in smi_info.device_id.oem_data_available_handler
3202  * when we know what function to use there.
3203  */
3204
3205 static void setup_oem_data_handler(struct smi_info *smi_info)
3206 {
3207         setup_dell_poweredge_oem_data_handler(smi_info);
3208 }
3209
3210 static void setup_xaction_handlers(struct smi_info *smi_info)
3211 {
3212         setup_dell_poweredge_bt_xaction_handler(smi_info);
3213 }
3214
3215 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3216 {
3217         if (smi_info->thread != NULL)
3218                 kthread_stop(smi_info->thread);
3219         if (smi_info->timer_running)
3220                 del_timer_sync(&smi_info->si_timer);
3221 }
3222
3223 static struct ipmi_default_vals
3224 {
3225         int type;
3226         int port;
3227 } ipmi_defaults[] =
3228 {
3229         { .type = SI_KCS, .port = 0xca2 },
3230         { .type = SI_SMIC, .port = 0xca9 },
3231         { .type = SI_BT, .port = 0xe4 },
3232         { .port = 0 }
3233 };
3234
3235 static void default_find_bmc(void)
3236 {
3237         struct smi_info *info;
3238         int             i;
3239
3240         for (i = 0; ; i++) {
3241                 if (!ipmi_defaults[i].port)
3242                         break;
3243 #ifdef CONFIG_PPC
3244                 if (check_legacy_ioport(ipmi_defaults[i].port))
3245                         continue;
3246 #endif
3247                 info = smi_info_alloc();
3248                 if (!info)
3249                         return;
3250
3251                 info->addr_source = SI_DEFAULT;
3252
3253                 info->si_type = ipmi_defaults[i].type;
3254                 info->io_setup = port_setup;
3255                 info->io.addr_data = ipmi_defaults[i].port;
3256                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3257
3258                 info->io.addr = NULL;
3259                 info->io.regspacing = DEFAULT_REGSPACING;
3260                 info->io.regsize = DEFAULT_REGSPACING;
3261                 info->io.regshift = 0;
3262
3263                 if (add_smi(info) == 0) {
3264                         if ((try_smi_init(info)) == 0) {
3265                                 /* Found one... */
3266                                 printk(KERN_INFO PFX "Found default %s"
3267                                 " state machine at %s address 0x%lx\n",
3268                                 si_to_str[info->si_type],
3269                                 addr_space_to_str[info->io.addr_type],
3270                                 info->io.addr_data);
3271                         } else
3272                                 cleanup_one_si(info);
3273                 } else {
3274                         kfree(info);
3275                 }
3276         }
3277 }
3278
3279 static int is_new_interface(struct smi_info *info)
3280 {
3281         struct smi_info *e;
3282
3283         list_for_each_entry(e, &smi_infos, link) {
3284                 if (e->io.addr_type != info->io.addr_type)
3285                         continue;
3286                 if (e->io.addr_data == info->io.addr_data)
3287                         return 0;
3288         }
3289
3290         return 1;
3291 }
3292
3293 static int add_smi(struct smi_info *new_smi)
3294 {
3295         int rv = 0;
3296
3297         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3298                ipmi_addr_src_to_str(new_smi->addr_source),
3299                si_to_str[new_smi->si_type]);
3300         mutex_lock(&smi_infos_lock);
3301         if (!is_new_interface(new_smi)) {
3302                 printk(KERN_CONT " duplicate interface\n");
3303                 rv = -EBUSY;
3304                 goto out_err;
3305         }
3306
3307         printk(KERN_CONT "\n");
3308
3309         /* So we know not to free it unless we have allocated one. */
3310         new_smi->intf = NULL;
3311         new_smi->si_sm = NULL;
3312         new_smi->handlers = NULL;
3313
3314         list_add_tail(&new_smi->link, &smi_infos);
3315
3316 out_err:
3317         mutex_unlock(&smi_infos_lock);
3318         return rv;
3319 }
3320
3321 static int try_smi_init(struct smi_info *new_smi)
3322 {
3323         int rv = 0;
3324         int i;
3325
3326         printk(KERN_INFO PFX "Trying %s-specified %s state"
3327                " machine at %s address 0x%lx, slave address 0x%x,"
3328                " irq %d\n",
3329                ipmi_addr_src_to_str(new_smi->addr_source),
3330                si_to_str[new_smi->si_type],
3331                addr_space_to_str[new_smi->io.addr_type],
3332                new_smi->io.addr_data,
3333                new_smi->slave_addr, new_smi->irq);
3334
3335         switch (new_smi->si_type) {
3336         case SI_KCS:
3337                 new_smi->handlers = &kcs_smi_handlers;
3338                 break;
3339
3340         case SI_SMIC:
3341                 new_smi->handlers = &smic_smi_handlers;
3342                 break;
3343
3344         case SI_BT:
3345                 new_smi->handlers = &bt_smi_handlers;
3346                 break;
3347
3348         default:
3349                 /* No support for anything else yet. */
3350                 rv = -EIO;
3351                 goto out_err;
3352         }
3353
3354         /* Allocate the state machine's data and initialize it. */
3355         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3356         if (!new_smi->si_sm) {
3357                 printk(KERN_ERR PFX
3358                        "Could not allocate state machine memory\n");
3359                 rv = -ENOMEM;
3360                 goto out_err;
3361         }
3362         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3363                                                         &new_smi->io);
3364
3365         /* Now that we know the I/O size, we can set up the I/O. */
3366         rv = new_smi->io_setup(new_smi);
3367         if (rv) {
3368                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3369                 goto out_err;
3370         }
3371
3372         /* Do low-level detection first. */
3373         if (new_smi->handlers->detect(new_smi->si_sm)) {
3374                 if (new_smi->addr_source)
3375                         printk(KERN_INFO PFX "Interface detection failed\n");
3376                 rv = -ENODEV;
3377                 goto out_err;
3378         }
3379
3380         /*
3381          * Attempt a get device id command.  If it fails, we probably
3382          * don't have a BMC here.
3383          */
3384         rv = try_get_dev_id(new_smi);
3385         if (rv) {
3386                 if (new_smi->addr_source)
3387                         printk(KERN_INFO PFX "There appears to be no BMC"
3388                                " at this location\n");
3389                 goto out_err;
3390         }
3391
3392         setup_oem_data_handler(new_smi);
3393         setup_xaction_handlers(new_smi);
3394
3395         new_smi->waiting_msg = NULL;
3396         new_smi->curr_msg = NULL;
3397         atomic_set(&new_smi->req_events, 0);
3398         new_smi->run_to_completion = false;
3399         for (i = 0; i < SI_NUM_STATS; i++)
3400                 atomic_set(&new_smi->stats[i], 0);
3401
3402         new_smi->interrupt_disabled = true;
3403         atomic_set(&new_smi->need_watch, 0);
3404         new_smi->intf_num = smi_num;
3405         smi_num++;
3406
3407         rv = try_enable_event_buffer(new_smi);
3408         if (rv == 0)
3409                 new_smi->has_event_buffer = true;
3410
3411         /*
3412          * Start clearing the flags before we enable interrupts or the
3413          * timer to avoid racing with the timer.
3414          */
3415         start_clear_flags(new_smi);
3416
3417         /*
3418          * IRQ is defined to be set when non-zero.  req_events will
3419          * cause a global flags check that will enable interrupts.
3420          */
3421         if (new_smi->irq) {
3422                 new_smi->interrupt_disabled = false;
3423                 atomic_set(&new_smi->req_events, 1);
3424         }
3425
3426         if (!new_smi->dev) {
3427                 /*
3428                  * If we don't already have a device from something
3429                  * else (like PCI), then register a new one.
3430                  */
3431                 new_smi->pdev = platform_device_alloc("ipmi_si",
3432                                                       new_smi->intf_num);
3433                 if (!new_smi->pdev) {
3434                         printk(KERN_ERR PFX
3435                                "Unable to allocate platform device\n");
3436                         goto out_err;
3437                 }
3438                 new_smi->dev = &new_smi->pdev->dev;
3439                 new_smi->dev->driver = &ipmi_driver.driver;
3440
3441                 rv = platform_device_add(new_smi->pdev);
3442                 if (rv) {
3443                         printk(KERN_ERR PFX
3444                                "Unable to register system interface device:"
3445                                " %d\n",
3446                                rv);
3447                         goto out_err;
3448                 }
3449                 new_smi->dev_registered = true;
3450         }
3451
3452         rv = ipmi_register_smi(&handlers,
3453                                new_smi,
3454                                &new_smi->device_id,
3455                                new_smi->dev,
3456                                new_smi->slave_addr);
3457         if (rv) {
3458                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3459                         rv);
3460                 goto out_err_stop_timer;
3461         }
3462
3463         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3464                                      &smi_type_proc_ops,
3465                                      new_smi);
3466         if (rv) {
3467                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3468                 goto out_err_stop_timer;
3469         }
3470
3471         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3472                                      &smi_si_stats_proc_ops,
3473                                      new_smi);
3474         if (rv) {
3475                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3476                 goto out_err_stop_timer;
3477         }
3478
3479         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3480                                      &smi_params_proc_ops,
3481                                      new_smi);
3482         if (rv) {
3483                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3484                 goto out_err_stop_timer;
3485         }
3486
3487         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3488                  si_to_str[new_smi->si_type]);
3489
3490         return 0;
3491
3492  out_err_stop_timer:
3493         wait_for_timer_and_thread(new_smi);
3494
3495  out_err:
3496         new_smi->interrupt_disabled = true;
3497
3498         if (new_smi->intf) {
3499                 ipmi_smi_t intf = new_smi->intf;
3500                 new_smi->intf = NULL;
3501                 ipmi_unregister_smi(intf);
3502         }
3503
3504         if (new_smi->irq_cleanup) {
3505                 new_smi->irq_cleanup(new_smi);
3506                 new_smi->irq_cleanup = NULL;
3507         }
3508
3509         /*
3510          * Wait until we know that we are out of any interrupt
3511          * handlers might have been running before we freed the
3512          * interrupt.
3513          */
3514         synchronize_sched();
3515
3516         if (new_smi->si_sm) {
3517                 if (new_smi->handlers)
3518                         new_smi->handlers->cleanup(new_smi->si_sm);
3519                 kfree(new_smi->si_sm);
3520                 new_smi->si_sm = NULL;
3521         }
3522         if (new_smi->addr_source_cleanup) {
3523                 new_smi->addr_source_cleanup(new_smi);
3524                 new_smi->addr_source_cleanup = NULL;
3525         }
3526         if (new_smi->io_cleanup) {
3527                 new_smi->io_cleanup(new_smi);
3528                 new_smi->io_cleanup = NULL;
3529         }
3530
3531         if (new_smi->dev_registered) {
3532                 platform_device_unregister(new_smi->pdev);
3533                 new_smi->dev_registered = false;
3534         }
3535
3536         return rv;
3537 }
3538
3539 static int init_ipmi_si(void)
3540 {
3541         int  i;
3542         char *str;
3543         int  rv;
3544         struct smi_info *e;
3545         enum ipmi_addr_src type = SI_INVALID;
3546
3547         if (initialized)
3548                 return 0;
3549         initialized = 1;
3550
3551         if (si_tryplatform) {
3552                 rv = platform_driver_register(&ipmi_driver);
3553                 if (rv) {
3554                         printk(KERN_ERR PFX "Unable to register "
3555                                "driver: %d\n", rv);
3556                         return rv;
3557                 }
3558         }
3559
3560         /* Parse out the si_type string into its components. */
3561         str = si_type_str;
3562         if (*str != '\0') {
3563                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3564                         si_type[i] = str;
3565                         str = strchr(str, ',');
3566                         if (str) {
3567                                 *str = '\0';
3568                                 str++;
3569                         } else {
3570                                 break;
3571                         }
3572                 }
3573         }
3574
3575         printk(KERN_INFO "IPMI System Interface driver.\n");
3576
3577         /* If the user gave us a device, they presumably want us to use it */
3578         if (!hardcode_find_bmc())
3579                 return 0;
3580
3581 #ifdef CONFIG_PCI
3582         if (si_trypci) {
3583                 rv = pci_register_driver(&ipmi_pci_driver);
3584                 if (rv)
3585                         printk(KERN_ERR PFX "Unable to register "
3586                                "PCI driver: %d\n", rv);
3587                 else
3588                         pci_registered = true;
3589         }
3590 #endif
3591
3592 #ifdef CONFIG_ACPI
3593         if (si_tryacpi) {
3594                 pnp_register_driver(&ipmi_pnp_driver);
3595                 pnp_registered = true;
3596         }
3597 #endif
3598
3599 #ifdef CONFIG_DMI
3600         if (si_trydmi)
3601                 dmi_find_bmc();
3602 #endif
3603
3604 #ifdef CONFIG_ACPI
3605         if (si_tryacpi)
3606                 spmi_find_bmc();
3607 #endif
3608
3609 #ifdef CONFIG_PARISC
3610         register_parisc_driver(&ipmi_parisc_driver);
3611         parisc_registered = true;
3612         /* poking PC IO addresses will crash machine, don't do it */
3613         si_trydefaults = 0;
3614 #endif
3615
3616         /* We prefer devices with interrupts, but in the case of a machine
3617            with multiple BMCs we assume that there will be several instances
3618            of a given type so if we succeed in registering a type then also
3619            try to register everything else of the same type */
3620
3621         mutex_lock(&smi_infos_lock);
3622         list_for_each_entry(e, &smi_infos, link) {
3623                 /* Try to register a device if it has an IRQ and we either
3624                    haven't successfully registered a device yet or this
3625                    device has the same type as one we successfully registered */
3626                 if (e->irq && (!type || e->addr_source == type)) {
3627                         if (!try_smi_init(e)) {
3628                                 type = e->addr_source;
3629                         }
3630                 }
3631         }
3632
3633         /* type will only have been set if we successfully registered an si */
3634         if (type) {
3635                 mutex_unlock(&smi_infos_lock);
3636                 return 0;
3637         }
3638
3639         /* Fall back to the preferred device */
3640
3641         list_for_each_entry(e, &smi_infos, link) {
3642                 if (!e->irq && (!type || e->addr_source == type)) {
3643                         if (!try_smi_init(e)) {
3644                                 type = e->addr_source;
3645                         }
3646                 }
3647         }
3648         mutex_unlock(&smi_infos_lock);
3649
3650         if (type)
3651                 return 0;
3652
3653         if (si_trydefaults) {
3654                 mutex_lock(&smi_infos_lock);
3655                 if (list_empty(&smi_infos)) {
3656                         /* No BMC was found, try defaults. */
3657                         mutex_unlock(&smi_infos_lock);
3658                         default_find_bmc();
3659                 } else
3660                         mutex_unlock(&smi_infos_lock);
3661         }
3662
3663         mutex_lock(&smi_infos_lock);
3664         if (unload_when_empty && list_empty(&smi_infos)) {
3665                 mutex_unlock(&smi_infos_lock);
3666                 cleanup_ipmi_si();
3667                 printk(KERN_WARNING PFX
3668                        "Unable to find any System Interface(s)\n");
3669                 return -ENODEV;
3670         } else {
3671                 mutex_unlock(&smi_infos_lock);
3672                 return 0;
3673         }
3674 }
3675 module_init(init_ipmi_si);
3676
3677 static void cleanup_one_si(struct smi_info *to_clean)
3678 {
3679         int           rv = 0;
3680
3681         if (!to_clean)
3682                 return;
3683
3684         if (to_clean->intf) {
3685                 ipmi_smi_t intf = to_clean->intf;
3686
3687                 to_clean->intf = NULL;
3688                 rv = ipmi_unregister_smi(intf);
3689                 if (rv) {
3690                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3691                                rv);
3692                 }
3693         }
3694
3695         if (to_clean->dev)
3696                 dev_set_drvdata(to_clean->dev, NULL);
3697
3698         list_del(&to_clean->link);
3699
3700         /*
3701          * Make sure that interrupts, the timer and the thread are
3702          * stopped and will not run again.
3703          */
3704         if (to_clean->irq_cleanup)
3705                 to_clean->irq_cleanup(to_clean);
3706         wait_for_timer_and_thread(to_clean);
3707
3708         /*
3709          * Timeouts are stopped, now make sure the interrupts are off
3710          * in the BMC.  Note that timers and CPU interrupts are off,
3711          * so no need for locks.
3712          */
3713         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3714                 poll(to_clean);
3715                 schedule_timeout_uninterruptible(1);
3716         }
3717         disable_si_irq(to_clean);
3718         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3719                 poll(to_clean);
3720                 schedule_timeout_uninterruptible(1);
3721         }
3722
3723         if (to_clean->handlers)
3724                 to_clean->handlers->cleanup(to_clean->si_sm);
3725
3726         kfree(to_clean->si_sm);
3727
3728         if (to_clean->addr_source_cleanup)
3729                 to_clean->addr_source_cleanup(to_clean);
3730         if (to_clean->io_cleanup)
3731                 to_clean->io_cleanup(to_clean);
3732
3733         if (to_clean->dev_registered)
3734                 platform_device_unregister(to_clean->pdev);
3735
3736         kfree(to_clean);
3737 }
3738
3739 static void cleanup_ipmi_si(void)
3740 {
3741         struct smi_info *e, *tmp_e;
3742
3743         if (!initialized)
3744                 return;
3745
3746 #ifdef CONFIG_PCI
3747         if (pci_registered)
3748                 pci_unregister_driver(&ipmi_pci_driver);
3749 #endif
3750 #ifdef CONFIG_ACPI
3751         if (pnp_registered)
3752                 pnp_unregister_driver(&ipmi_pnp_driver);
3753 #endif
3754 #ifdef CONFIG_PARISC
3755         if (parisc_registered)
3756                 unregister_parisc_driver(&ipmi_parisc_driver);
3757 #endif
3758
3759         platform_driver_unregister(&ipmi_driver);
3760
3761         mutex_lock(&smi_infos_lock);
3762         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3763                 cleanup_one_si(e);
3764         mutex_unlock(&smi_infos_lock);
3765 }
3766 module_exit(cleanup_ipmi_si);
3767
3768 MODULE_LICENSE("GPL");
3769 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3770 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3771                    " system interfaces.");