s390/pgtable: fix ipte notify bit
[pandora-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111                                         "ACPI", "SMBIOS", "PCI",
112                                         "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122         /*
123          * Number of times the driver requested a timer while an operation
124          * was in progress.
125          */
126         SI_STAT_short_timeouts = 0,
127
128         /*
129          * Number of times the driver requested a timer while nothing was in
130          * progress.
131          */
132         SI_STAT_long_timeouts,
133
134         /* Number of times the interface was idle while being polled. */
135         SI_STAT_idles,
136
137         /* Number of interrupts the driver handled. */
138         SI_STAT_interrupts,
139
140         /* Number of time the driver got an ATTN from the hardware. */
141         SI_STAT_attentions,
142
143         /* Number of times the driver requested flags from the hardware. */
144         SI_STAT_flag_fetches,
145
146         /* Number of times the hardware didn't follow the state machine. */
147         SI_STAT_hosed_count,
148
149         /* Number of completed messages. */
150         SI_STAT_complete_transactions,
151
152         /* Number of IPMI events received from the hardware. */
153         SI_STAT_events,
154
155         /* Number of watchdog pretimeouts. */
156         SI_STAT_watchdog_pretimeouts,
157
158         /* Number of asynchronous messages received. */
159         SI_STAT_incoming_messages,
160
161
162         /* This *must* remain last, add new values above this. */
163         SI_NUM_STATS
164 };
165
166 struct smi_info {
167         int                    intf_num;
168         ipmi_smi_t             intf;
169         struct si_sm_data      *si_sm;
170         struct si_sm_handlers  *handlers;
171         enum si_type           si_type;
172         spinlock_t             si_lock;
173         struct list_head       xmit_msgs;
174         struct list_head       hp_xmit_msgs;
175         struct ipmi_smi_msg    *curr_msg;
176         enum si_intf_state     si_state;
177
178         /*
179          * Used to handle the various types of I/O that can occur with
180          * IPMI
181          */
182         struct si_sm_io io;
183         int (*io_setup)(struct smi_info *info);
184         void (*io_cleanup)(struct smi_info *info);
185         int (*irq_setup)(struct smi_info *info);
186         void (*irq_cleanup)(struct smi_info *info);
187         unsigned int io_size;
188         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189         void (*addr_source_cleanup)(struct smi_info *info);
190         void *addr_source_data;
191
192         /*
193          * Per-OEM handler, called from handle_flags().  Returns 1
194          * when handle_flags() needs to be re-run or 0 indicating it
195          * set si_state itself.
196          */
197         int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
199         /*
200          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201          * is set to hold the flags until we are done handling everything
202          * from the flags.
203          */
204 #define RECEIVE_MSG_AVAIL       0x01
205 #define EVENT_MSG_BUFFER_FULL   0x02
206 #define WDT_PRE_TIMEOUT_INT     0x08
207 #define OEM0_DATA_AVAIL     0x20
208 #define OEM1_DATA_AVAIL     0x40
209 #define OEM2_DATA_AVAIL     0x80
210 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
211                              OEM1_DATA_AVAIL | \
212                              OEM2_DATA_AVAIL)
213         unsigned char       msg_flags;
214
215         /* Does the BMC have an event buffer? */
216         char                has_event_buffer;
217
218         /*
219          * If set to true, this will request events the next time the
220          * state machine is idle.
221          */
222         atomic_t            req_events;
223
224         /*
225          * If true, run the state machine to completion on every send
226          * call.  Generally used after a panic to make sure stuff goes
227          * out.
228          */
229         int                 run_to_completion;
230
231         /* The I/O port of an SI interface. */
232         int                 port;
233
234         /*
235          * The space between start addresses of the two ports.  For
236          * instance, if the first port is 0xca2 and the spacing is 4, then
237          * the second port is 0xca6.
238          */
239         unsigned int        spacing;
240
241         /* zero if no irq; */
242         int                 irq;
243
244         /* The timer for this si. */
245         struct timer_list   si_timer;
246
247         /* The time (in jiffies) the last timeout occurred at. */
248         unsigned long       last_timeout_jiffies;
249
250         /* Used to gracefully stop the timer without race conditions. */
251         atomic_t            stop_operation;
252
253         /*
254          * The driver will disable interrupts when it gets into a
255          * situation where it cannot handle messages due to lack of
256          * memory.  Once that situation clears up, it will re-enable
257          * interrupts.
258          */
259         int interrupt_disabled;
260
261         /* From the get device id response... */
262         struct ipmi_device_id device_id;
263
264         /* Driver model stuff. */
265         struct device *dev;
266         struct platform_device *pdev;
267
268         /*
269          * True if we allocated the device, false if it came from
270          * someplace else (like PCI).
271          */
272         int dev_registered;
273
274         /* Slave address, could be reported from DMI. */
275         unsigned char slave_addr;
276
277         /* Counters and things for the proc filesystem. */
278         atomic_t stats[SI_NUM_STATS];
279
280         struct task_struct *thread;
281
282         struct list_head link;
283         union ipmi_smi_info_union addr_info;
284 };
285
286 #define smi_inc_stat(smi, stat) \
287         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290
291 #define SI_MAX_PARMS 4
292
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304
305 static int unload_when_empty = 1;
306
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317
318 static void deliver_recv_msg(struct smi_info *smi_info,
319                              struct ipmi_smi_msg *msg)
320 {
321         /* Deliver the message to the upper layer. */
322         ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327         struct ipmi_smi_msg *msg = smi_info->curr_msg;
328
329         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330                 cCode = IPMI_ERR_UNSPECIFIED;
331         /* else use it as is */
332
333         /* Make it a response */
334         msg->rsp[0] = msg->data[0] | 4;
335         msg->rsp[1] = msg->data[1];
336         msg->rsp[2] = cCode;
337         msg->rsp_size = 3;
338
339         smi_info->curr_msg = NULL;
340         deliver_recv_msg(smi_info, msg);
341 }
342
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345         int              rv;
346         struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348         struct timeval t;
349 #endif
350
351         /* Pick the high priority queue first. */
352         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353                 entry = smi_info->hp_xmit_msgs.next;
354         } else if (!list_empty(&(smi_info->xmit_msgs))) {
355                 entry = smi_info->xmit_msgs.next;
356         }
357
358         if (!entry) {
359                 smi_info->curr_msg = NULL;
360                 rv = SI_SM_IDLE;
361         } else {
362                 int err;
363
364                 list_del(entry);
365                 smi_info->curr_msg = list_entry(entry,
366                                                 struct ipmi_smi_msg,
367                                                 link);
368 #ifdef DEBUG_TIMING
369                 do_gettimeofday(&t);
370                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372                 err = atomic_notifier_call_chain(&xaction_notifier_list,
373                                 0, smi_info);
374                 if (err & NOTIFY_STOP_MASK) {
375                         rv = SI_SM_CALL_WITHOUT_DELAY;
376                         goto out;
377                 }
378                 err = smi_info->handlers->start_transaction(
379                         smi_info->si_sm,
380                         smi_info->curr_msg->data,
381                         smi_info->curr_msg->data_size);
382                 if (err)
383                         return_hosed_msg(smi_info, err);
384
385                 rv = SI_SM_CALL_WITHOUT_DELAY;
386         }
387  out:
388         return rv;
389 }
390
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393         unsigned char msg[2];
394
395         /*
396          * If we are enabling interrupts, we have to tell the
397          * BMC to use them.
398          */
399         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401
402         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408         unsigned char msg[2];
409
410         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412
413         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419         unsigned char msg[3];
420
421         /* Make sure the watchdog pre-timeout flag is not set at startup. */
422         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424         msg[2] = WDT_PRE_TIMEOUT_INT;
425
426         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427         smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429
430 /*
431  * When we have a situtaion where we run out of memory and cannot
432  * allocate messages, we just leave them in the BMC and run the system
433  * polled until we can allocate some memory.  Once we have some
434  * memory, we will re-enable the interrupt.
435  */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439                 start_disable_irq(smi_info);
440                 smi_info->interrupt_disabled = 1;
441                 if (!atomic_read(&smi_info->stop_operation))
442                         mod_timer(&smi_info->si_timer,
443                                   jiffies + SI_TIMEOUT_JIFFIES);
444         }
445 }
446
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450                 start_enable_irq(smi_info);
451                 smi_info->interrupt_disabled = 0;
452         }
453 }
454
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459                 /* Watchdog pre-timeout */
460                 smi_inc_stat(smi_info, watchdog_pretimeouts);
461
462                 start_clear_flags(smi_info);
463                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
465         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466                 /* Messages available. */
467                 smi_info->curr_msg = ipmi_alloc_smi_msg();
468                 if (!smi_info->curr_msg) {
469                         disable_si_irq(smi_info);
470                         smi_info->si_state = SI_NORMAL;
471                         return;
472                 }
473                 enable_si_irq(smi_info);
474
475                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477                 smi_info->curr_msg->data_size = 2;
478
479                 smi_info->handlers->start_transaction(
480                         smi_info->si_sm,
481                         smi_info->curr_msg->data,
482                         smi_info->curr_msg->data_size);
483                 smi_info->si_state = SI_GETTING_MESSAGES;
484         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485                 /* Events available. */
486                 smi_info->curr_msg = ipmi_alloc_smi_msg();
487                 if (!smi_info->curr_msg) {
488                         disable_si_irq(smi_info);
489                         smi_info->si_state = SI_NORMAL;
490                         return;
491                 }
492                 enable_si_irq(smi_info);
493
494                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496                 smi_info->curr_msg->data_size = 2;
497
498                 smi_info->handlers->start_transaction(
499                         smi_info->si_sm,
500                         smi_info->curr_msg->data,
501                         smi_info->curr_msg->data_size);
502                 smi_info->si_state = SI_GETTING_EVENTS;
503         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504                    smi_info->oem_data_avail_handler) {
505                 if (smi_info->oem_data_avail_handler(smi_info))
506                         goto retry;
507         } else
508                 smi_info->si_state = SI_NORMAL;
509 }
510
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513         struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515         struct timeval t;
516
517         do_gettimeofday(&t);
518         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520         switch (smi_info->si_state) {
521         case SI_NORMAL:
522                 if (!smi_info->curr_msg)
523                         break;
524
525                 smi_info->curr_msg->rsp_size
526                         = smi_info->handlers->get_result(
527                                 smi_info->si_sm,
528                                 smi_info->curr_msg->rsp,
529                                 IPMI_MAX_MSG_LENGTH);
530
531                 /*
532                  * Do this here becase deliver_recv_msg() releases the
533                  * lock, and a new message can be put in during the
534                  * time the lock is released.
535                  */
536                 msg = smi_info->curr_msg;
537                 smi_info->curr_msg = NULL;
538                 deliver_recv_msg(smi_info, msg);
539                 break;
540
541         case SI_GETTING_FLAGS:
542         {
543                 unsigned char msg[4];
544                 unsigned int  len;
545
546                 /* We got the flags from the SMI, now handle them. */
547                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548                 if (msg[2] != 0) {
549                         /* Error fetching flags, just give up for now. */
550                         smi_info->si_state = SI_NORMAL;
551                 } else if (len < 4) {
552                         /*
553                          * Hmm, no flags.  That's technically illegal, but
554                          * don't use uninitialized data.
555                          */
556                         smi_info->si_state = SI_NORMAL;
557                 } else {
558                         smi_info->msg_flags = msg[3];
559                         handle_flags(smi_info);
560                 }
561                 break;
562         }
563
564         case SI_CLEARING_FLAGS:
565         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566         {
567                 unsigned char msg[3];
568
569                 /* We cleared the flags. */
570                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571                 if (msg[2] != 0) {
572                         /* Error clearing flags */
573                         dev_warn(smi_info->dev,
574                                  "Error clearing flags: %2.2x\n", msg[2]);
575                 }
576                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577                         start_enable_irq(smi_info);
578                 else
579                         smi_info->si_state = SI_NORMAL;
580                 break;
581         }
582
583         case SI_GETTING_EVENTS:
584         {
585                 smi_info->curr_msg->rsp_size
586                         = smi_info->handlers->get_result(
587                                 smi_info->si_sm,
588                                 smi_info->curr_msg->rsp,
589                                 IPMI_MAX_MSG_LENGTH);
590
591                 /*
592                  * Do this here becase deliver_recv_msg() releases the
593                  * lock, and a new message can be put in during the
594                  * time the lock is released.
595                  */
596                 msg = smi_info->curr_msg;
597                 smi_info->curr_msg = NULL;
598                 if (msg->rsp[2] != 0) {
599                         /* Error getting event, probably done. */
600                         msg->done(msg);
601
602                         /* Take off the event flag. */
603                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604                         handle_flags(smi_info);
605                 } else {
606                         smi_inc_stat(smi_info, events);
607
608                         /*
609                          * Do this before we deliver the message
610                          * because delivering the message releases the
611                          * lock and something else can mess with the
612                          * state.
613                          */
614                         handle_flags(smi_info);
615
616                         deliver_recv_msg(smi_info, msg);
617                 }
618                 break;
619         }
620
621         case SI_GETTING_MESSAGES:
622         {
623                 smi_info->curr_msg->rsp_size
624                         = smi_info->handlers->get_result(
625                                 smi_info->si_sm,
626                                 smi_info->curr_msg->rsp,
627                                 IPMI_MAX_MSG_LENGTH);
628
629                 /*
630                  * Do this here becase deliver_recv_msg() releases the
631                  * lock, and a new message can be put in during the
632                  * time the lock is released.
633                  */
634                 msg = smi_info->curr_msg;
635                 smi_info->curr_msg = NULL;
636                 if (msg->rsp[2] != 0) {
637                         /* Error getting event, probably done. */
638                         msg->done(msg);
639
640                         /* Take off the msg flag. */
641                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642                         handle_flags(smi_info);
643                 } else {
644                         smi_inc_stat(smi_info, incoming_messages);
645
646                         /*
647                          * Do this before we deliver the message
648                          * because delivering the message releases the
649                          * lock and something else can mess with the
650                          * state.
651                          */
652                         handle_flags(smi_info);
653
654                         deliver_recv_msg(smi_info, msg);
655                 }
656                 break;
657         }
658
659         case SI_ENABLE_INTERRUPTS1:
660         {
661                 unsigned char msg[4];
662
663                 /* We got the flags from the SMI, now handle them. */
664                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665                 if (msg[2] != 0) {
666                         dev_warn(smi_info->dev, "Could not enable interrupts"
667                                  ", failed get, using polled mode.\n");
668                         smi_info->si_state = SI_NORMAL;
669                 } else {
670                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
671                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
672                         msg[2] = (msg[3] |
673                                   IPMI_BMC_RCV_MSG_INTR |
674                                   IPMI_BMC_EVT_MSG_INTR);
675                         smi_info->handlers->start_transaction(
676                                 smi_info->si_sm, msg, 3);
677                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678                 }
679                 break;
680         }
681
682         case SI_ENABLE_INTERRUPTS2:
683         {
684                 unsigned char msg[4];
685
686                 /* We got the flags from the SMI, now handle them. */
687                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688                 if (msg[2] != 0)
689                         dev_warn(smi_info->dev, "Could not enable interrupts"
690                                  ", failed set, using polled mode.\n");
691                 else
692                         smi_info->interrupt_disabled = 0;
693                 smi_info->si_state = SI_NORMAL;
694                 break;
695         }
696
697         case SI_DISABLE_INTERRUPTS1:
698         {
699                 unsigned char msg[4];
700
701                 /* We got the flags from the SMI, now handle them. */
702                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703                 if (msg[2] != 0) {
704                         dev_warn(smi_info->dev, "Could not disable interrupts"
705                                  ", failed get.\n");
706                         smi_info->si_state = SI_NORMAL;
707                 } else {
708                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
709                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
710                         msg[2] = (msg[3] &
711                                   ~(IPMI_BMC_RCV_MSG_INTR |
712                                     IPMI_BMC_EVT_MSG_INTR));
713                         smi_info->handlers->start_transaction(
714                                 smi_info->si_sm, msg, 3);
715                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716                 }
717                 break;
718         }
719
720         case SI_DISABLE_INTERRUPTS2:
721         {
722                 unsigned char msg[4];
723
724                 /* We got the flags from the SMI, now handle them. */
725                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726                 if (msg[2] != 0) {
727                         dev_warn(smi_info->dev, "Could not disable interrupts"
728                                  ", failed set.\n");
729                 }
730                 smi_info->si_state = SI_NORMAL;
731                 break;
732         }
733         }
734 }
735
736 /*
737  * Called on timeouts and events.  Timeouts should pass the elapsed
738  * time, interrupts should pass in zero.  Must be called with
739  * si_lock held and interrupts disabled.
740  */
741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742                                            int time)
743 {
744         enum si_sm_result si_sm_result;
745
746  restart:
747         /*
748          * There used to be a loop here that waited a little while
749          * (around 25us) before giving up.  That turned out to be
750          * pointless, the minimum delays I was seeing were in the 300us
751          * range, which is far too long to wait in an interrupt.  So
752          * we just run until the state machine tells us something
753          * happened or it needs a delay.
754          */
755         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756         time = 0;
757         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
758                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
759
760         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
761                 smi_inc_stat(smi_info, complete_transactions);
762
763                 handle_transaction_done(smi_info);
764                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765         } else if (si_sm_result == SI_SM_HOSED) {
766                 smi_inc_stat(smi_info, hosed_count);
767
768                 /*
769                  * Do the before return_hosed_msg, because that
770                  * releases the lock.
771                  */
772                 smi_info->si_state = SI_NORMAL;
773                 if (smi_info->curr_msg != NULL) {
774                         /*
775                          * If we were handling a user message, format
776                          * a response to send to the upper layer to
777                          * tell it about the error.
778                          */
779                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
780                 }
781                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782         }
783
784         /*
785          * We prefer handling attn over new messages.  But don't do
786          * this if there is not yet an upper layer to handle anything.
787          */
788         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
789                 unsigned char msg[2];
790
791                 smi_inc_stat(smi_info, attentions);
792
793                 /*
794                  * Got a attn, send down a get message flags to see
795                  * what's causing it.  It would be better to handle
796                  * this in the upper layer, but due to the way
797                  * interrupts work with the SMI, that's not really
798                  * possible.
799                  */
800                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802
803                 smi_info->handlers->start_transaction(
804                         smi_info->si_sm, msg, 2);
805                 smi_info->si_state = SI_GETTING_FLAGS;
806                 goto restart;
807         }
808
809         /* If we are currently idle, try to start the next message. */
810         if (si_sm_result == SI_SM_IDLE) {
811                 smi_inc_stat(smi_info, idles);
812
813                 si_sm_result = start_next_msg(smi_info);
814                 if (si_sm_result != SI_SM_IDLE)
815                         goto restart;
816         }
817
818         if ((si_sm_result == SI_SM_IDLE)
819             && (atomic_read(&smi_info->req_events))) {
820                 /*
821                  * We are idle and the upper layer requested that I fetch
822                  * events, so do so.
823                  */
824                 atomic_set(&smi_info->req_events, 0);
825
826                 smi_info->curr_msg = ipmi_alloc_smi_msg();
827                 if (!smi_info->curr_msg)
828                         goto out;
829
830                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832                 smi_info->curr_msg->data_size = 2;
833
834                 smi_info->handlers->start_transaction(
835                         smi_info->si_sm,
836                         smi_info->curr_msg->data,
837                         smi_info->curr_msg->data_size);
838                 smi_info->si_state = SI_GETTING_EVENTS;
839                 goto restart;
840         }
841  out:
842         return si_sm_result;
843 }
844
845 static void sender(void                *send_info,
846                    struct ipmi_smi_msg *msg,
847                    int                 priority)
848 {
849         struct smi_info   *smi_info = send_info;
850         enum si_sm_result result;
851         unsigned long     flags;
852 #ifdef DEBUG_TIMING
853         struct timeval    t;
854 #endif
855
856         if (atomic_read(&smi_info->stop_operation)) {
857                 msg->rsp[0] = msg->data[0] | 4;
858                 msg->rsp[1] = msg->data[1];
859                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860                 msg->rsp_size = 3;
861                 deliver_recv_msg(smi_info, msg);
862                 return;
863         }
864
865 #ifdef DEBUG_TIMING
866         do_gettimeofday(&t);
867         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868 #endif
869
870         if (smi_info->run_to_completion) {
871                 /*
872                  * If we are running to completion, then throw it in
873                  * the list and run transactions until everything is
874                  * clear.  Priority doesn't matter here.
875                  */
876
877                 /*
878                  * Run to completion means we are single-threaded, no
879                  * need for locks.
880                  */
881                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882
883                 result = smi_event_handler(smi_info, 0);
884                 while (result != SI_SM_IDLE) {
885                         udelay(SI_SHORT_TIMEOUT_USEC);
886                         result = smi_event_handler(smi_info,
887                                                    SI_SHORT_TIMEOUT_USEC);
888                 }
889                 return;
890         }
891
892         spin_lock_irqsave(&smi_info->si_lock, flags);
893         if (priority > 0)
894                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895         else
896                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
897
898         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
899                 /*
900                  * last_timeout_jiffies is updated here to avoid
901                  * smi_timeout() handler passing very large time_diff
902                  * value to smi_event_handler() that causes
903                  * the send command to abort.
904                  */
905                 smi_info->last_timeout_jiffies = jiffies;
906
907                 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908
909                 if (smi_info->thread)
910                         wake_up_process(smi_info->thread);
911
912                 start_next_msg(smi_info);
913                 smi_event_handler(smi_info, 0);
914         }
915         spin_unlock_irqrestore(&smi_info->si_lock, flags);
916 }
917
918 static void set_run_to_completion(void *send_info, int i_run_to_completion)
919 {
920         struct smi_info   *smi_info = send_info;
921         enum si_sm_result result;
922
923         smi_info->run_to_completion = i_run_to_completion;
924         if (i_run_to_completion) {
925                 result = smi_event_handler(smi_info, 0);
926                 while (result != SI_SM_IDLE) {
927                         udelay(SI_SHORT_TIMEOUT_USEC);
928                         result = smi_event_handler(smi_info,
929                                                    SI_SHORT_TIMEOUT_USEC);
930                 }
931         }
932 }
933
934 /*
935  * Use -1 in the nsec value of the busy waiting timespec to tell that
936  * we are spinning in kipmid looking for something and not delaying
937  * between checks
938  */
939 static inline void ipmi_si_set_not_busy(struct timespec *ts)
940 {
941         ts->tv_nsec = -1;
942 }
943 static inline int ipmi_si_is_busy(struct timespec *ts)
944 {
945         return ts->tv_nsec != -1;
946 }
947
948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949                                  const struct smi_info *smi_info,
950                                  struct timespec *busy_until)
951 {
952         unsigned int max_busy_us = 0;
953
954         if (smi_info->intf_num < num_max_busy_us)
955                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957                 ipmi_si_set_not_busy(busy_until);
958         else if (!ipmi_si_is_busy(busy_until)) {
959                 getnstimeofday(busy_until);
960                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961         } else {
962                 struct timespec now;
963                 getnstimeofday(&now);
964                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965                         ipmi_si_set_not_busy(busy_until);
966                         return 0;
967                 }
968         }
969         return 1;
970 }
971
972
973 /*
974  * A busy-waiting loop for speeding up IPMI operation.
975  *
976  * Lousy hardware makes this hard.  This is only enabled for systems
977  * that are not BT and do not have interrupts.  It starts spinning
978  * when an operation is complete or until max_busy tells it to stop
979  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
980  * Documentation/IPMI.txt for details.
981  */
982 static int ipmi_thread(void *data)
983 {
984         struct smi_info *smi_info = data;
985         unsigned long flags;
986         enum si_sm_result smi_result;
987         struct timespec busy_until;
988
989         ipmi_si_set_not_busy(&busy_until);
990         set_user_nice(current, 19);
991         while (!kthread_should_stop()) {
992                 int busy_wait;
993
994                 spin_lock_irqsave(&(smi_info->si_lock), flags);
995                 smi_result = smi_event_handler(smi_info, 0);
996                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
997                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998                                                   &busy_until);
999                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000                         ; /* do nothing */
1001                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1002                         schedule();
1003                 else if (smi_result == SI_SM_IDLE)
1004                         schedule_timeout_interruptible(100);
1005                 else
1006                         schedule_timeout_interruptible(1);
1007         }
1008         return 0;
1009 }
1010
1011
1012 static void poll(void *send_info)
1013 {
1014         struct smi_info *smi_info = send_info;
1015         unsigned long flags = 0;
1016         int run_to_completion = smi_info->run_to_completion;
1017
1018         /*
1019          * Make sure there is some delay in the poll loop so we can
1020          * drive time forward and timeout things.
1021          */
1022         udelay(10);
1023         if (!run_to_completion)
1024                 spin_lock_irqsave(&smi_info->si_lock, flags);
1025         smi_event_handler(smi_info, 10);
1026         if (!run_to_completion)
1027                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1028 }
1029
1030 static void request_events(void *send_info)
1031 {
1032         struct smi_info *smi_info = send_info;
1033
1034         if (atomic_read(&smi_info->stop_operation) ||
1035                                 !smi_info->has_event_buffer)
1036                 return;
1037
1038         atomic_set(&smi_info->req_events, 1);
1039 }
1040
1041 static int initialized;
1042
1043 static void smi_timeout(unsigned long data)
1044 {
1045         struct smi_info   *smi_info = (struct smi_info *) data;
1046         enum si_sm_result smi_result;
1047         unsigned long     flags;
1048         unsigned long     jiffies_now;
1049         long              time_diff;
1050         long              timeout;
1051 #ifdef DEBUG_TIMING
1052         struct timeval    t;
1053 #endif
1054
1055         spin_lock_irqsave(&(smi_info->si_lock), flags);
1056 #ifdef DEBUG_TIMING
1057         do_gettimeofday(&t);
1058         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1059 #endif
1060         jiffies_now = jiffies;
1061         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1062                      * SI_USEC_PER_JIFFY);
1063         smi_result = smi_event_handler(smi_info, time_diff);
1064
1065         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066
1067         smi_info->last_timeout_jiffies = jiffies_now;
1068
1069         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1070                 /* Running with interrupts, only do long timeouts. */
1071                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1072                 smi_inc_stat(smi_info, long_timeouts);
1073                 goto do_mod_timer;
1074         }
1075
1076         /*
1077          * If the state machine asks for a short delay, then shorten
1078          * the timer timeout.
1079          */
1080         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1081                 smi_inc_stat(smi_info, short_timeouts);
1082                 timeout = jiffies + 1;
1083         } else {
1084                 smi_inc_stat(smi_info, long_timeouts);
1085                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1086         }
1087
1088  do_mod_timer:
1089         if (smi_result != SI_SM_IDLE)
1090                 mod_timer(&(smi_info->si_timer), timeout);
1091 }
1092
1093 static irqreturn_t si_irq_handler(int irq, void *data)
1094 {
1095         struct smi_info *smi_info = data;
1096         unsigned long   flags;
1097 #ifdef DEBUG_TIMING
1098         struct timeval  t;
1099 #endif
1100
1101         spin_lock_irqsave(&(smi_info->si_lock), flags);
1102
1103         smi_inc_stat(smi_info, interrupts);
1104
1105 #ifdef DEBUG_TIMING
1106         do_gettimeofday(&t);
1107         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1108 #endif
1109         smi_event_handler(smi_info, 0);
1110         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111         return IRQ_HANDLED;
1112 }
1113
1114 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1115 {
1116         struct smi_info *smi_info = data;
1117         /* We need to clear the IRQ flag for the BT interface. */
1118         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1119                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1121         return si_irq_handler(irq, data);
1122 }
1123
1124 static int smi_start_processing(void       *send_info,
1125                                 ipmi_smi_t intf)
1126 {
1127         struct smi_info *new_smi = send_info;
1128         int             enable = 0;
1129
1130         new_smi->intf = intf;
1131
1132         /* Try to claim any interrupts. */
1133         if (new_smi->irq_setup)
1134                 new_smi->irq_setup(new_smi);
1135
1136         /* Set up the timer that drives the interface. */
1137         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138         new_smi->last_timeout_jiffies = jiffies;
1139         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140
1141         /*
1142          * Check if the user forcefully enabled the daemon.
1143          */
1144         if (new_smi->intf_num < num_force_kipmid)
1145                 enable = force_kipmid[new_smi->intf_num];
1146         /*
1147          * The BT interface is efficient enough to not need a thread,
1148          * and there is no need for a thread if we have interrupts.
1149          */
1150         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1151                 enable = 1;
1152
1153         if (enable) {
1154                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155                                               "kipmi%d", new_smi->intf_num);
1156                 if (IS_ERR(new_smi->thread)) {
1157                         dev_notice(new_smi->dev, "Could not start"
1158                                    " kernel thread due to error %ld, only using"
1159                                    " timers to drive the interface\n",
1160                                    PTR_ERR(new_smi->thread));
1161                         new_smi->thread = NULL;
1162                 }
1163         }
1164
1165         return 0;
1166 }
1167
1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169 {
1170         struct smi_info *smi = send_info;
1171
1172         data->addr_src = smi->addr_source;
1173         data->dev = smi->dev;
1174         data->addr_info = smi->addr_info;
1175         get_device(smi->dev);
1176
1177         return 0;
1178 }
1179
1180 static void set_maintenance_mode(void *send_info, int enable)
1181 {
1182         struct smi_info   *smi_info = send_info;
1183
1184         if (!enable)
1185                 atomic_set(&smi_info->req_events, 0);
1186 }
1187
1188 static struct ipmi_smi_handlers handlers = {
1189         .owner                  = THIS_MODULE,
1190         .start_processing       = smi_start_processing,
1191         .get_smi_info           = get_smi_info,
1192         .sender                 = sender,
1193         .request_events         = request_events,
1194         .set_maintenance_mode   = set_maintenance_mode,
1195         .set_run_to_completion  = set_run_to_completion,
1196         .poll                   = poll,
1197 };
1198
1199 /*
1200  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1202  */
1203
1204 static LIST_HEAD(smi_infos);
1205 static DEFINE_MUTEX(smi_infos_lock);
1206 static int smi_num; /* Used to sequence the SMIs */
1207
1208 #define DEFAULT_REGSPACING      1
1209 #define DEFAULT_REGSIZE         1
1210
1211 #ifdef CONFIG_ACPI
1212 static bool          si_tryacpi = 1;
1213 #endif
1214 #ifdef CONFIG_DMI
1215 static bool          si_trydmi = 1;
1216 #endif
1217 static bool          si_tryplatform = 1;
1218 #ifdef CONFIG_PCI
1219 static bool          si_trypci = 1;
1220 #endif
1221 static bool          si_trydefaults = 1;
1222 static char          *si_type[SI_MAX_PARMS];
1223 #define MAX_SI_TYPE_STR 30
1224 static char          si_type_str[MAX_SI_TYPE_STR];
1225 static unsigned long addrs[SI_MAX_PARMS];
1226 static unsigned int num_addrs;
1227 static unsigned int  ports[SI_MAX_PARMS];
1228 static unsigned int num_ports;
1229 static int           irqs[SI_MAX_PARMS];
1230 static unsigned int num_irqs;
1231 static int           regspacings[SI_MAX_PARMS];
1232 static unsigned int num_regspacings;
1233 static int           regsizes[SI_MAX_PARMS];
1234 static unsigned int num_regsizes;
1235 static int           regshifts[SI_MAX_PARMS];
1236 static unsigned int num_regshifts;
1237 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1238 static unsigned int num_slave_addrs;
1239
1240 #define IPMI_IO_ADDR_SPACE  0
1241 #define IPMI_MEM_ADDR_SPACE 1
1242 static char *addr_space_to_str[] = { "i/o", "mem" };
1243
1244 static int hotmod_handler(const char *val, struct kernel_param *kp);
1245
1246 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1247 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1248                  " Documentation/IPMI.txt in the kernel sources for the"
1249                  " gory details.");
1250
1251 #ifdef CONFIG_ACPI
1252 module_param_named(tryacpi, si_tryacpi, bool, 0);
1253 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1254                  " default scan of the interfaces identified via ACPI");
1255 #endif
1256 #ifdef CONFIG_DMI
1257 module_param_named(trydmi, si_trydmi, bool, 0);
1258 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1259                  " default scan of the interfaces identified via DMI");
1260 #endif
1261 module_param_named(tryplatform, si_tryplatform, bool, 0);
1262 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1263                  " default scan of the interfaces identified via platform"
1264                  " interfaces like openfirmware");
1265 #ifdef CONFIG_PCI
1266 module_param_named(trypci, si_trypci, bool, 0);
1267 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1268                  " default scan of the interfaces identified via pci");
1269 #endif
1270 module_param_named(trydefaults, si_trydefaults, bool, 0);
1271 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1272                  " default scan of the KCS and SMIC interface at the standard"
1273                  " address");
1274 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1275 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1276                  " interface separated by commas.  The types are 'kcs',"
1277                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1278                  " the first interface to kcs and the second to bt");
1279 module_param_array(addrs, ulong, &num_addrs, 0);
1280 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1281                  " addresses separated by commas.  Only use if an interface"
1282                  " is in memory.  Otherwise, set it to zero or leave"
1283                  " it blank.");
1284 module_param_array(ports, uint, &num_ports, 0);
1285 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1286                  " addresses separated by commas.  Only use if an interface"
1287                  " is a port.  Otherwise, set it to zero or leave"
1288                  " it blank.");
1289 module_param_array(irqs, int, &num_irqs, 0);
1290 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1291                  " addresses separated by commas.  Only use if an interface"
1292                  " has an interrupt.  Otherwise, set it to zero or leave"
1293                  " it blank.");
1294 module_param_array(regspacings, int, &num_regspacings, 0);
1295 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1296                  " and each successive register used by the interface.  For"
1297                  " instance, if the start address is 0xca2 and the spacing"
1298                  " is 2, then the second address is at 0xca4.  Defaults"
1299                  " to 1.");
1300 module_param_array(regsizes, int, &num_regsizes, 0);
1301 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1302                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1303                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1304                  " the 8-bit IPMI register has to be read from a larger"
1305                  " register.");
1306 module_param_array(regshifts, int, &num_regshifts, 0);
1307 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1308                  " IPMI register, in bits.  For instance, if the data"
1309                  " is read from a 32-bit word and the IPMI data is in"
1310                  " bit 8-15, then the shift would be 8");
1311 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1312 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1313                  " the controller.  Normally this is 0x20, but can be"
1314                  " overridden by this parm.  This is an array indexed"
1315                  " by interface number.");
1316 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1317 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1318                  " disabled(0).  Normally the IPMI driver auto-detects"
1319                  " this, but the value may be overridden by this parm.");
1320 module_param(unload_when_empty, int, 0);
1321 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1322                  " specified or found, default is 1.  Setting to 0"
1323                  " is useful for hot add of devices using hotmod.");
1324 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1325 MODULE_PARM_DESC(kipmid_max_busy_us,
1326                  "Max time (in microseconds) to busy-wait for IPMI data before"
1327                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1328                  " if kipmid is using up a lot of CPU time.");
1329
1330
1331 static void std_irq_cleanup(struct smi_info *info)
1332 {
1333         if (info->si_type == SI_BT)
1334                 /* Disable the interrupt in the BT interface. */
1335                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1336         free_irq(info->irq, info);
1337 }
1338
1339 static int std_irq_setup(struct smi_info *info)
1340 {
1341         int rv;
1342
1343         if (!info->irq)
1344                 return 0;
1345
1346         if (info->si_type == SI_BT) {
1347                 rv = request_irq(info->irq,
1348                                  si_bt_irq_handler,
1349                                  IRQF_SHARED | IRQF_DISABLED,
1350                                  DEVICE_NAME,
1351                                  info);
1352                 if (!rv)
1353                         /* Enable the interrupt in the BT interface. */
1354                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1355                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1356         } else
1357                 rv = request_irq(info->irq,
1358                                  si_irq_handler,
1359                                  IRQF_SHARED | IRQF_DISABLED,
1360                                  DEVICE_NAME,
1361                                  info);
1362         if (rv) {
1363                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1364                          " running polled\n",
1365                          DEVICE_NAME, info->irq);
1366                 info->irq = 0;
1367         } else {
1368                 info->irq_cleanup = std_irq_cleanup;
1369                 dev_info(info->dev, "Using irq %d\n", info->irq);
1370         }
1371
1372         return rv;
1373 }
1374
1375 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1376 {
1377         unsigned int addr = io->addr_data;
1378
1379         return inb(addr + (offset * io->regspacing));
1380 }
1381
1382 static void port_outb(struct si_sm_io *io, unsigned int offset,
1383                       unsigned char b)
1384 {
1385         unsigned int addr = io->addr_data;
1386
1387         outb(b, addr + (offset * io->regspacing));
1388 }
1389
1390 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1391 {
1392         unsigned int addr = io->addr_data;
1393
1394         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1395 }
1396
1397 static void port_outw(struct si_sm_io *io, unsigned int offset,
1398                       unsigned char b)
1399 {
1400         unsigned int addr = io->addr_data;
1401
1402         outw(b << io->regshift, addr + (offset * io->regspacing));
1403 }
1404
1405 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1406 {
1407         unsigned int addr = io->addr_data;
1408
1409         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1410 }
1411
1412 static void port_outl(struct si_sm_io *io, unsigned int offset,
1413                       unsigned char b)
1414 {
1415         unsigned int addr = io->addr_data;
1416
1417         outl(b << io->regshift, addr+(offset * io->regspacing));
1418 }
1419
1420 static void port_cleanup(struct smi_info *info)
1421 {
1422         unsigned int addr = info->io.addr_data;
1423         int          idx;
1424
1425         if (addr) {
1426                 for (idx = 0; idx < info->io_size; idx++)
1427                         release_region(addr + idx * info->io.regspacing,
1428                                        info->io.regsize);
1429         }
1430 }
1431
1432 static int port_setup(struct smi_info *info)
1433 {
1434         unsigned int addr = info->io.addr_data;
1435         int          idx;
1436
1437         if (!addr)
1438                 return -ENODEV;
1439
1440         info->io_cleanup = port_cleanup;
1441
1442         /*
1443          * Figure out the actual inb/inw/inl/etc routine to use based
1444          * upon the register size.
1445          */
1446         switch (info->io.regsize) {
1447         case 1:
1448                 info->io.inputb = port_inb;
1449                 info->io.outputb = port_outb;
1450                 break;
1451         case 2:
1452                 info->io.inputb = port_inw;
1453                 info->io.outputb = port_outw;
1454                 break;
1455         case 4:
1456                 info->io.inputb = port_inl;
1457                 info->io.outputb = port_outl;
1458                 break;
1459         default:
1460                 dev_warn(info->dev, "Invalid register size: %d\n",
1461                          info->io.regsize);
1462                 return -EINVAL;
1463         }
1464
1465         /*
1466          * Some BIOSes reserve disjoint I/O regions in their ACPI
1467          * tables.  This causes problems when trying to register the
1468          * entire I/O region.  Therefore we must register each I/O
1469          * port separately.
1470          */
1471         for (idx = 0; idx < info->io_size; idx++) {
1472                 if (request_region(addr + idx * info->io.regspacing,
1473                                    info->io.regsize, DEVICE_NAME) == NULL) {
1474                         /* Undo allocations */
1475                         while (idx--) {
1476                                 release_region(addr + idx * info->io.regspacing,
1477                                                info->io.regsize);
1478                         }
1479                         return -EIO;
1480                 }
1481         }
1482         return 0;
1483 }
1484
1485 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1486 {
1487         return readb((io->addr)+(offset * io->regspacing));
1488 }
1489
1490 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1491                      unsigned char b)
1492 {
1493         writeb(b, (io->addr)+(offset * io->regspacing));
1494 }
1495
1496 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1497 {
1498         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1499                 & 0xff;
1500 }
1501
1502 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1503                      unsigned char b)
1504 {
1505         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1506 }
1507
1508 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1509 {
1510         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1511                 & 0xff;
1512 }
1513
1514 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1515                      unsigned char b)
1516 {
1517         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1518 }
1519
1520 #ifdef readq
1521 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1522 {
1523         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1524                 & 0xff;
1525 }
1526
1527 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1528                      unsigned char b)
1529 {
1530         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1531 }
1532 #endif
1533
1534 static void mem_cleanup(struct smi_info *info)
1535 {
1536         unsigned long addr = info->io.addr_data;
1537         int           mapsize;
1538
1539         if (info->io.addr) {
1540                 iounmap(info->io.addr);
1541
1542                 mapsize = ((info->io_size * info->io.regspacing)
1543                            - (info->io.regspacing - info->io.regsize));
1544
1545                 release_mem_region(addr, mapsize);
1546         }
1547 }
1548
1549 static int mem_setup(struct smi_info *info)
1550 {
1551         unsigned long addr = info->io.addr_data;
1552         int           mapsize;
1553
1554         if (!addr)
1555                 return -ENODEV;
1556
1557         info->io_cleanup = mem_cleanup;
1558
1559         /*
1560          * Figure out the actual readb/readw/readl/etc routine to use based
1561          * upon the register size.
1562          */
1563         switch (info->io.regsize) {
1564         case 1:
1565                 info->io.inputb = intf_mem_inb;
1566                 info->io.outputb = intf_mem_outb;
1567                 break;
1568         case 2:
1569                 info->io.inputb = intf_mem_inw;
1570                 info->io.outputb = intf_mem_outw;
1571                 break;
1572         case 4:
1573                 info->io.inputb = intf_mem_inl;
1574                 info->io.outputb = intf_mem_outl;
1575                 break;
1576 #ifdef readq
1577         case 8:
1578                 info->io.inputb = mem_inq;
1579                 info->io.outputb = mem_outq;
1580                 break;
1581 #endif
1582         default:
1583                 dev_warn(info->dev, "Invalid register size: %d\n",
1584                          info->io.regsize);
1585                 return -EINVAL;
1586         }
1587
1588         /*
1589          * Calculate the total amount of memory to claim.  This is an
1590          * unusual looking calculation, but it avoids claiming any
1591          * more memory than it has to.  It will claim everything
1592          * between the first address to the end of the last full
1593          * register.
1594          */
1595         mapsize = ((info->io_size * info->io.regspacing)
1596                    - (info->io.regspacing - info->io.regsize));
1597
1598         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1599                 return -EIO;
1600
1601         info->io.addr = ioremap(addr, mapsize);
1602         if (info->io.addr == NULL) {
1603                 release_mem_region(addr, mapsize);
1604                 return -EIO;
1605         }
1606         return 0;
1607 }
1608
1609 /*
1610  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1611  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1612  * Options are:
1613  *   rsp=<regspacing>
1614  *   rsi=<regsize>
1615  *   rsh=<regshift>
1616  *   irq=<irq>
1617  *   ipmb=<ipmb addr>
1618  */
1619 enum hotmod_op { HM_ADD, HM_REMOVE };
1620 struct hotmod_vals {
1621         char *name;
1622         int  val;
1623 };
1624 static struct hotmod_vals hotmod_ops[] = {
1625         { "add",        HM_ADD },
1626         { "remove",     HM_REMOVE },
1627         { NULL }
1628 };
1629 static struct hotmod_vals hotmod_si[] = {
1630         { "kcs",        SI_KCS },
1631         { "smic",       SI_SMIC },
1632         { "bt",         SI_BT },
1633         { NULL }
1634 };
1635 static struct hotmod_vals hotmod_as[] = {
1636         { "mem",        IPMI_MEM_ADDR_SPACE },
1637         { "i/o",        IPMI_IO_ADDR_SPACE },
1638         { NULL }
1639 };
1640
1641 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1642 {
1643         char *s;
1644         int  i;
1645
1646         s = strchr(*curr, ',');
1647         if (!s) {
1648                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1649                 return -EINVAL;
1650         }
1651         *s = '\0';
1652         s++;
1653         for (i = 0; hotmod_ops[i].name; i++) {
1654                 if (strcmp(*curr, v[i].name) == 0) {
1655                         *val = v[i].val;
1656                         *curr = s;
1657                         return 0;
1658                 }
1659         }
1660
1661         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1662         return -EINVAL;
1663 }
1664
1665 static int check_hotmod_int_op(const char *curr, const char *option,
1666                                const char *name, int *val)
1667 {
1668         char *n;
1669
1670         if (strcmp(curr, name) == 0) {
1671                 if (!option) {
1672                         printk(KERN_WARNING PFX
1673                                "No option given for '%s'\n",
1674                                curr);
1675                         return -EINVAL;
1676                 }
1677                 *val = simple_strtoul(option, &n, 0);
1678                 if ((*n != '\0') || (*option == '\0')) {
1679                         printk(KERN_WARNING PFX
1680                                "Bad option given for '%s'\n",
1681                                curr);
1682                         return -EINVAL;
1683                 }
1684                 return 1;
1685         }
1686         return 0;
1687 }
1688
1689 static struct smi_info *smi_info_alloc(void)
1690 {
1691         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1692
1693         if (info)
1694                 spin_lock_init(&info->si_lock);
1695         return info;
1696 }
1697
1698 static int hotmod_handler(const char *val, struct kernel_param *kp)
1699 {
1700         char *str = kstrdup(val, GFP_KERNEL);
1701         int  rv;
1702         char *next, *curr, *s, *n, *o;
1703         enum hotmod_op op;
1704         enum si_type si_type;
1705         int  addr_space;
1706         unsigned long addr;
1707         int regspacing;
1708         int regsize;
1709         int regshift;
1710         int irq;
1711         int ipmb;
1712         int ival;
1713         int len;
1714         struct smi_info *info;
1715
1716         if (!str)
1717                 return -ENOMEM;
1718
1719         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1720         len = strlen(str);
1721         ival = len - 1;
1722         while ((ival >= 0) && isspace(str[ival])) {
1723                 str[ival] = '\0';
1724                 ival--;
1725         }
1726
1727         for (curr = str; curr; curr = next) {
1728                 regspacing = 1;
1729                 regsize = 1;
1730                 regshift = 0;
1731                 irq = 0;
1732                 ipmb = 0; /* Choose the default if not specified */
1733
1734                 next = strchr(curr, ':');
1735                 if (next) {
1736                         *next = '\0';
1737                         next++;
1738                 }
1739
1740                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1741                 if (rv)
1742                         break;
1743                 op = ival;
1744
1745                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1746                 if (rv)
1747                         break;
1748                 si_type = ival;
1749
1750                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1751                 if (rv)
1752                         break;
1753
1754                 s = strchr(curr, ',');
1755                 if (s) {
1756                         *s = '\0';
1757                         s++;
1758                 }
1759                 addr = simple_strtoul(curr, &n, 0);
1760                 if ((*n != '\0') || (*curr == '\0')) {
1761                         printk(KERN_WARNING PFX "Invalid hotmod address"
1762                                " '%s'\n", curr);
1763                         break;
1764                 }
1765
1766                 while (s) {
1767                         curr = s;
1768                         s = strchr(curr, ',');
1769                         if (s) {
1770                                 *s = '\0';
1771                                 s++;
1772                         }
1773                         o = strchr(curr, '=');
1774                         if (o) {
1775                                 *o = '\0';
1776                                 o++;
1777                         }
1778                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1779                         if (rv < 0)
1780                                 goto out;
1781                         else if (rv)
1782                                 continue;
1783                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1784                         if (rv < 0)
1785                                 goto out;
1786                         else if (rv)
1787                                 continue;
1788                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1789                         if (rv < 0)
1790                                 goto out;
1791                         else if (rv)
1792                                 continue;
1793                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1794                         if (rv < 0)
1795                                 goto out;
1796                         else if (rv)
1797                                 continue;
1798                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1799                         if (rv < 0)
1800                                 goto out;
1801                         else if (rv)
1802                                 continue;
1803
1804                         rv = -EINVAL;
1805                         printk(KERN_WARNING PFX
1806                                "Invalid hotmod option '%s'\n",
1807                                curr);
1808                         goto out;
1809                 }
1810
1811                 if (op == HM_ADD) {
1812                         info = smi_info_alloc();
1813                         if (!info) {
1814                                 rv = -ENOMEM;
1815                                 goto out;
1816                         }
1817
1818                         info->addr_source = SI_HOTMOD;
1819                         info->si_type = si_type;
1820                         info->io.addr_data = addr;
1821                         info->io.addr_type = addr_space;
1822                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1823                                 info->io_setup = mem_setup;
1824                         else
1825                                 info->io_setup = port_setup;
1826
1827                         info->io.addr = NULL;
1828                         info->io.regspacing = regspacing;
1829                         if (!info->io.regspacing)
1830                                 info->io.regspacing = DEFAULT_REGSPACING;
1831                         info->io.regsize = regsize;
1832                         if (!info->io.regsize)
1833                                 info->io.regsize = DEFAULT_REGSPACING;
1834                         info->io.regshift = regshift;
1835                         info->irq = irq;
1836                         if (info->irq)
1837                                 info->irq_setup = std_irq_setup;
1838                         info->slave_addr = ipmb;
1839
1840                         if (!add_smi(info)) {
1841                                 if (try_smi_init(info))
1842                                         cleanup_one_si(info);
1843                         } else {
1844                                 kfree(info);
1845                         }
1846                 } else {
1847                         /* remove */
1848                         struct smi_info *e, *tmp_e;
1849
1850                         mutex_lock(&smi_infos_lock);
1851                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1852                                 if (e->io.addr_type != addr_space)
1853                                         continue;
1854                                 if (e->si_type != si_type)
1855                                         continue;
1856                                 if (e->io.addr_data == addr)
1857                                         cleanup_one_si(e);
1858                         }
1859                         mutex_unlock(&smi_infos_lock);
1860                 }
1861         }
1862         rv = len;
1863  out:
1864         kfree(str);
1865         return rv;
1866 }
1867
1868 static int hardcode_find_bmc(void)
1869 {
1870         int ret = -ENODEV;
1871         int             i;
1872         struct smi_info *info;
1873
1874         for (i = 0; i < SI_MAX_PARMS; i++) {
1875                 if (!ports[i] && !addrs[i])
1876                         continue;
1877
1878                 info = smi_info_alloc();
1879                 if (!info)
1880                         return -ENOMEM;
1881
1882                 info->addr_source = SI_HARDCODED;
1883                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1884
1885                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1886                         info->si_type = SI_KCS;
1887                 } else if (strcmp(si_type[i], "smic") == 0) {
1888                         info->si_type = SI_SMIC;
1889                 } else if (strcmp(si_type[i], "bt") == 0) {
1890                         info->si_type = SI_BT;
1891                 } else {
1892                         printk(KERN_WARNING PFX "Interface type specified "
1893                                "for interface %d, was invalid: %s\n",
1894                                i, si_type[i]);
1895                         kfree(info);
1896                         continue;
1897                 }
1898
1899                 if (ports[i]) {
1900                         /* An I/O port */
1901                         info->io_setup = port_setup;
1902                         info->io.addr_data = ports[i];
1903                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1904                 } else if (addrs[i]) {
1905                         /* A memory port */
1906                         info->io_setup = mem_setup;
1907                         info->io.addr_data = addrs[i];
1908                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1909                 } else {
1910                         printk(KERN_WARNING PFX "Interface type specified "
1911                                "for interface %d, but port and address were "
1912                                "not set or set to zero.\n", i);
1913                         kfree(info);
1914                         continue;
1915                 }
1916
1917                 info->io.addr = NULL;
1918                 info->io.regspacing = regspacings[i];
1919                 if (!info->io.regspacing)
1920                         info->io.regspacing = DEFAULT_REGSPACING;
1921                 info->io.regsize = regsizes[i];
1922                 if (!info->io.regsize)
1923                         info->io.regsize = DEFAULT_REGSPACING;
1924                 info->io.regshift = regshifts[i];
1925                 info->irq = irqs[i];
1926                 if (info->irq)
1927                         info->irq_setup = std_irq_setup;
1928                 info->slave_addr = slave_addrs[i];
1929
1930                 if (!add_smi(info)) {
1931                         if (try_smi_init(info))
1932                                 cleanup_one_si(info);
1933                         ret = 0;
1934                 } else {
1935                         kfree(info);
1936                 }
1937         }
1938         return ret;
1939 }
1940
1941 #ifdef CONFIG_ACPI
1942
1943 #include <linux/acpi.h>
1944
1945 /*
1946  * Once we get an ACPI failure, we don't try any more, because we go
1947  * through the tables sequentially.  Once we don't find a table, there
1948  * are no more.
1949  */
1950 static int acpi_failure;
1951
1952 /* For GPE-type interrupts. */
1953 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1954         u32 gpe_number, void *context)
1955 {
1956         struct smi_info *smi_info = context;
1957         unsigned long   flags;
1958 #ifdef DEBUG_TIMING
1959         struct timeval t;
1960 #endif
1961
1962         spin_lock_irqsave(&(smi_info->si_lock), flags);
1963
1964         smi_inc_stat(smi_info, interrupts);
1965
1966 #ifdef DEBUG_TIMING
1967         do_gettimeofday(&t);
1968         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1969 #endif
1970         smi_event_handler(smi_info, 0);
1971         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1972
1973         return ACPI_INTERRUPT_HANDLED;
1974 }
1975
1976 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1977 {
1978         if (!info->irq)
1979                 return;
1980
1981         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1982 }
1983
1984 static int acpi_gpe_irq_setup(struct smi_info *info)
1985 {
1986         acpi_status status;
1987
1988         if (!info->irq)
1989                 return 0;
1990
1991         /* FIXME - is level triggered right? */
1992         status = acpi_install_gpe_handler(NULL,
1993                                           info->irq,
1994                                           ACPI_GPE_LEVEL_TRIGGERED,
1995                                           &ipmi_acpi_gpe,
1996                                           info);
1997         if (status != AE_OK) {
1998                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1999                          " running polled\n", DEVICE_NAME, info->irq);
2000                 info->irq = 0;
2001                 return -EINVAL;
2002         } else {
2003                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2004                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2005                 return 0;
2006         }
2007 }
2008
2009 /*
2010  * Defined at
2011  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2012  */
2013 struct SPMITable {
2014         s8      Signature[4];
2015         u32     Length;
2016         u8      Revision;
2017         u8      Checksum;
2018         s8      OEMID[6];
2019         s8      OEMTableID[8];
2020         s8      OEMRevision[4];
2021         s8      CreatorID[4];
2022         s8      CreatorRevision[4];
2023         u8      InterfaceType;
2024         u8      IPMIlegacy;
2025         s16     SpecificationRevision;
2026
2027         /*
2028          * Bit 0 - SCI interrupt supported
2029          * Bit 1 - I/O APIC/SAPIC
2030          */
2031         u8      InterruptType;
2032
2033         /*
2034          * If bit 0 of InterruptType is set, then this is the SCI
2035          * interrupt in the GPEx_STS register.
2036          */
2037         u8      GPE;
2038
2039         s16     Reserved;
2040
2041         /*
2042          * If bit 1 of InterruptType is set, then this is the I/O
2043          * APIC/SAPIC interrupt.
2044          */
2045         u32     GlobalSystemInterrupt;
2046
2047         /* The actual register address. */
2048         struct acpi_generic_address addr;
2049
2050         u8      UID[4];
2051
2052         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2053 };
2054
2055 static int try_init_spmi(struct SPMITable *spmi)
2056 {
2057         struct smi_info  *info;
2058
2059         if (spmi->IPMIlegacy != 1) {
2060                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2061                 return -ENODEV;
2062         }
2063
2064         info = smi_info_alloc();
2065         if (!info) {
2066                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2067                 return -ENOMEM;
2068         }
2069
2070         info->addr_source = SI_SPMI;
2071         printk(KERN_INFO PFX "probing via SPMI\n");
2072
2073         /* Figure out the interface type. */
2074         switch (spmi->InterfaceType) {
2075         case 1: /* KCS */
2076                 info->si_type = SI_KCS;
2077                 break;
2078         case 2: /* SMIC */
2079                 info->si_type = SI_SMIC;
2080                 break;
2081         case 3: /* BT */
2082                 info->si_type = SI_BT;
2083                 break;
2084         default:
2085                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2086                        spmi->InterfaceType);
2087                 kfree(info);
2088                 return -EIO;
2089         }
2090
2091         if (spmi->InterruptType & 1) {
2092                 /* We've got a GPE interrupt. */
2093                 info->irq = spmi->GPE;
2094                 info->irq_setup = acpi_gpe_irq_setup;
2095         } else if (spmi->InterruptType & 2) {
2096                 /* We've got an APIC/SAPIC interrupt. */
2097                 info->irq = spmi->GlobalSystemInterrupt;
2098                 info->irq_setup = std_irq_setup;
2099         } else {
2100                 /* Use the default interrupt setting. */
2101                 info->irq = 0;
2102                 info->irq_setup = NULL;
2103         }
2104
2105         if (spmi->addr.bit_width) {
2106                 /* A (hopefully) properly formed register bit width. */
2107                 info->io.regspacing = spmi->addr.bit_width / 8;
2108         } else {
2109                 info->io.regspacing = DEFAULT_REGSPACING;
2110         }
2111         info->io.regsize = info->io.regspacing;
2112         info->io.regshift = spmi->addr.bit_offset;
2113
2114         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2115                 info->io_setup = mem_setup;
2116                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2117         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2118                 info->io_setup = port_setup;
2119                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2120         } else {
2121                 kfree(info);
2122                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2123                 return -EIO;
2124         }
2125         info->io.addr_data = spmi->addr.address;
2126
2127         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2128                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2129                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2130                  info->irq);
2131
2132         if (add_smi(info))
2133                 kfree(info);
2134
2135         return 0;
2136 }
2137
2138 static void spmi_find_bmc(void)
2139 {
2140         acpi_status      status;
2141         struct SPMITable *spmi;
2142         int              i;
2143
2144         if (acpi_disabled)
2145                 return;
2146
2147         if (acpi_failure)
2148                 return;
2149
2150         for (i = 0; ; i++) {
2151                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2152                                         (struct acpi_table_header **)&spmi);
2153                 if (status != AE_OK)
2154                         return;
2155
2156                 try_init_spmi(spmi);
2157         }
2158 }
2159
2160 static int ipmi_pnp_probe(struct pnp_dev *dev,
2161                                     const struct pnp_device_id *dev_id)
2162 {
2163         struct acpi_device *acpi_dev;
2164         struct smi_info *info;
2165         struct resource *res, *res_second;
2166         acpi_handle handle;
2167         acpi_status status;
2168         unsigned long long tmp;
2169
2170         acpi_dev = pnp_acpi_device(dev);
2171         if (!acpi_dev)
2172                 return -ENODEV;
2173
2174         info = smi_info_alloc();
2175         if (!info)
2176                 return -ENOMEM;
2177
2178         info->addr_source = SI_ACPI;
2179         printk(KERN_INFO PFX "probing via ACPI\n");
2180
2181         handle = acpi_dev->handle;
2182         info->addr_info.acpi_info.acpi_handle = handle;
2183
2184         /* _IFT tells us the interface type: KCS, BT, etc */
2185         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2186         if (ACPI_FAILURE(status))
2187                 goto err_free;
2188
2189         switch (tmp) {
2190         case 1:
2191                 info->si_type = SI_KCS;
2192                 break;
2193         case 2:
2194                 info->si_type = SI_SMIC;
2195                 break;
2196         case 3:
2197                 info->si_type = SI_BT;
2198                 break;
2199         default:
2200                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2201                 goto err_free;
2202         }
2203
2204         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2205         if (res) {
2206                 info->io_setup = port_setup;
2207                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2208         } else {
2209                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2210                 if (res) {
2211                         info->io_setup = mem_setup;
2212                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2213                 }
2214         }
2215         if (!res) {
2216                 dev_err(&dev->dev, "no I/O or memory address\n");
2217                 goto err_free;
2218         }
2219         info->io.addr_data = res->start;
2220
2221         info->io.regspacing = DEFAULT_REGSPACING;
2222         res_second = pnp_get_resource(dev,
2223                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2224                                         IORESOURCE_IO : IORESOURCE_MEM,
2225                                1);
2226         if (res_second) {
2227                 if (res_second->start > info->io.addr_data)
2228                         info->io.regspacing = res_second->start - info->io.addr_data;
2229         }
2230         info->io.regsize = DEFAULT_REGSPACING;
2231         info->io.regshift = 0;
2232
2233         /* If _GPE exists, use it; otherwise use standard interrupts */
2234         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2235         if (ACPI_SUCCESS(status)) {
2236                 info->irq = tmp;
2237                 info->irq_setup = acpi_gpe_irq_setup;
2238         } else if (pnp_irq_valid(dev, 0)) {
2239                 info->irq = pnp_irq(dev, 0);
2240                 info->irq_setup = std_irq_setup;
2241         }
2242
2243         info->dev = &dev->dev;
2244         pnp_set_drvdata(dev, info);
2245
2246         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2247                  res, info->io.regsize, info->io.regspacing,
2248                  info->irq);
2249
2250         if (add_smi(info))
2251                 goto err_free;
2252
2253         return 0;
2254
2255 err_free:
2256         kfree(info);
2257         return -EINVAL;
2258 }
2259
2260 static void ipmi_pnp_remove(struct pnp_dev *dev)
2261 {
2262         struct smi_info *info = pnp_get_drvdata(dev);
2263
2264         cleanup_one_si(info);
2265 }
2266
2267 static const struct pnp_device_id pnp_dev_table[] = {
2268         {"IPI0001", 0},
2269         {"", 0},
2270 };
2271
2272 static struct pnp_driver ipmi_pnp_driver = {
2273         .name           = DEVICE_NAME,
2274         .probe          = ipmi_pnp_probe,
2275         .remove         = ipmi_pnp_remove,
2276         .id_table       = pnp_dev_table,
2277 };
2278 #endif
2279
2280 #ifdef CONFIG_DMI
2281 struct dmi_ipmi_data {
2282         u8              type;
2283         u8              addr_space;
2284         unsigned long   base_addr;
2285         u8              irq;
2286         u8              offset;
2287         u8              slave_addr;
2288 };
2289
2290 static int decode_dmi(const struct dmi_header *dm,
2291                                 struct dmi_ipmi_data *dmi)
2292 {
2293         const u8        *data = (const u8 *)dm;
2294         unsigned long   base_addr;
2295         u8              reg_spacing;
2296         u8              len = dm->length;
2297
2298         dmi->type = data[4];
2299
2300         memcpy(&base_addr, data+8, sizeof(unsigned long));
2301         if (len >= 0x11) {
2302                 if (base_addr & 1) {
2303                         /* I/O */
2304                         base_addr &= 0xFFFE;
2305                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2306                 } else
2307                         /* Memory */
2308                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2309
2310                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2311                    is odd. */
2312                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2313
2314                 dmi->irq = data[0x11];
2315
2316                 /* The top two bits of byte 0x10 hold the register spacing. */
2317                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2318                 switch (reg_spacing) {
2319                 case 0x00: /* Byte boundaries */
2320                     dmi->offset = 1;
2321                     break;
2322                 case 0x01: /* 32-bit boundaries */
2323                     dmi->offset = 4;
2324                     break;
2325                 case 0x02: /* 16-byte boundaries */
2326                     dmi->offset = 16;
2327                     break;
2328                 default:
2329                     /* Some other interface, just ignore it. */
2330                     return -EIO;
2331                 }
2332         } else {
2333                 /* Old DMI spec. */
2334                 /*
2335                  * Note that technically, the lower bit of the base
2336                  * address should be 1 if the address is I/O and 0 if
2337                  * the address is in memory.  So many systems get that
2338                  * wrong (and all that I have seen are I/O) so we just
2339                  * ignore that bit and assume I/O.  Systems that use
2340                  * memory should use the newer spec, anyway.
2341                  */
2342                 dmi->base_addr = base_addr & 0xfffe;
2343                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2344                 dmi->offset = 1;
2345         }
2346
2347         dmi->slave_addr = data[6];
2348
2349         return 0;
2350 }
2351
2352 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2353 {
2354         struct smi_info *info;
2355
2356         info = smi_info_alloc();
2357         if (!info) {
2358                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2359                 return;
2360         }
2361
2362         info->addr_source = SI_SMBIOS;
2363         printk(KERN_INFO PFX "probing via SMBIOS\n");
2364
2365         switch (ipmi_data->type) {
2366         case 0x01: /* KCS */
2367                 info->si_type = SI_KCS;
2368                 break;
2369         case 0x02: /* SMIC */
2370                 info->si_type = SI_SMIC;
2371                 break;
2372         case 0x03: /* BT */
2373                 info->si_type = SI_BT;
2374                 break;
2375         default:
2376                 kfree(info);
2377                 return;
2378         }
2379
2380         switch (ipmi_data->addr_space) {
2381         case IPMI_MEM_ADDR_SPACE:
2382                 info->io_setup = mem_setup;
2383                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2384                 break;
2385
2386         case IPMI_IO_ADDR_SPACE:
2387                 info->io_setup = port_setup;
2388                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2389                 break;
2390
2391         default:
2392                 kfree(info);
2393                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2394                        ipmi_data->addr_space);
2395                 return;
2396         }
2397         info->io.addr_data = ipmi_data->base_addr;
2398
2399         info->io.regspacing = ipmi_data->offset;
2400         if (!info->io.regspacing)
2401                 info->io.regspacing = DEFAULT_REGSPACING;
2402         info->io.regsize = DEFAULT_REGSPACING;
2403         info->io.regshift = 0;
2404
2405         info->slave_addr = ipmi_data->slave_addr;
2406
2407         info->irq = ipmi_data->irq;
2408         if (info->irq)
2409                 info->irq_setup = std_irq_setup;
2410
2411         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2412                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2413                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2414                  info->irq);
2415
2416         if (add_smi(info))
2417                 kfree(info);
2418 }
2419
2420 static void dmi_find_bmc(void)
2421 {
2422         const struct dmi_device *dev = NULL;
2423         struct dmi_ipmi_data data;
2424         int                  rv;
2425
2426         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2427                 memset(&data, 0, sizeof(data));
2428                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2429                                 &data);
2430                 if (!rv)
2431                         try_init_dmi(&data);
2432         }
2433 }
2434 #endif /* CONFIG_DMI */
2435
2436 #ifdef CONFIG_PCI
2437
2438 #define PCI_ERMC_CLASSCODE              0x0C0700
2439 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2440 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2441 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2442 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2443 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2444
2445 #define PCI_HP_VENDOR_ID    0x103C
2446 #define PCI_MMC_DEVICE_ID   0x121A
2447 #define PCI_MMC_ADDR_CW     0x10
2448
2449 static void ipmi_pci_cleanup(struct smi_info *info)
2450 {
2451         struct pci_dev *pdev = info->addr_source_data;
2452
2453         pci_disable_device(pdev);
2454 }
2455
2456 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2457 {
2458         if (info->si_type == SI_KCS) {
2459                 unsigned char   status;
2460                 int             regspacing;
2461
2462                 info->io.regsize = DEFAULT_REGSIZE;
2463                 info->io.regshift = 0;
2464                 info->io_size = 2;
2465                 info->handlers = &kcs_smi_handlers;
2466
2467                 /* detect 1, 4, 16byte spacing */
2468                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2469                         info->io.regspacing = regspacing;
2470                         if (info->io_setup(info)) {
2471                                 dev_err(info->dev,
2472                                         "Could not setup I/O space\n");
2473                                 return DEFAULT_REGSPACING;
2474                         }
2475                         /* write invalid cmd */
2476                         info->io.outputb(&info->io, 1, 0x10);
2477                         /* read status back */
2478                         status = info->io.inputb(&info->io, 1);
2479                         info->io_cleanup(info);
2480                         if (status)
2481                                 return regspacing;
2482                         regspacing *= 4;
2483                 }
2484         }
2485         return DEFAULT_REGSPACING;
2486 }
2487
2488 static int ipmi_pci_probe(struct pci_dev *pdev,
2489                                     const struct pci_device_id *ent)
2490 {
2491         int rv;
2492         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2493         struct smi_info *info;
2494
2495         info = smi_info_alloc();
2496         if (!info)
2497                 return -ENOMEM;
2498
2499         info->addr_source = SI_PCI;
2500         dev_info(&pdev->dev, "probing via PCI");
2501
2502         switch (class_type) {
2503         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2504                 info->si_type = SI_SMIC;
2505                 break;
2506
2507         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2508                 info->si_type = SI_KCS;
2509                 break;
2510
2511         case PCI_ERMC_CLASSCODE_TYPE_BT:
2512                 info->si_type = SI_BT;
2513                 break;
2514
2515         default:
2516                 kfree(info);
2517                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2518                 return -ENOMEM;
2519         }
2520
2521         rv = pci_enable_device(pdev);
2522         if (rv) {
2523                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2524                 kfree(info);
2525                 return rv;
2526         }
2527
2528         info->addr_source_cleanup = ipmi_pci_cleanup;
2529         info->addr_source_data = pdev;
2530
2531         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2532                 info->io_setup = port_setup;
2533                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2534         } else {
2535                 info->io_setup = mem_setup;
2536                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2537         }
2538         info->io.addr_data = pci_resource_start(pdev, 0);
2539
2540         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2541         info->io.regsize = DEFAULT_REGSIZE;
2542         info->io.regshift = 0;
2543
2544         info->irq = pdev->irq;
2545         if (info->irq)
2546                 info->irq_setup = std_irq_setup;
2547
2548         info->dev = &pdev->dev;
2549         pci_set_drvdata(pdev, info);
2550
2551         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2552                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2553                 info->irq);
2554
2555         if (add_smi(info))
2556                 kfree(info);
2557
2558         return 0;
2559 }
2560
2561 static void ipmi_pci_remove(struct pci_dev *pdev)
2562 {
2563         struct smi_info *info = pci_get_drvdata(pdev);
2564         cleanup_one_si(info);
2565 }
2566
2567 static struct pci_device_id ipmi_pci_devices[] = {
2568         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2569         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2570         { 0, }
2571 };
2572 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2573
2574 static struct pci_driver ipmi_pci_driver = {
2575         .name =         DEVICE_NAME,
2576         .id_table =     ipmi_pci_devices,
2577         .probe =        ipmi_pci_probe,
2578         .remove =       ipmi_pci_remove,
2579 };
2580 #endif /* CONFIG_PCI */
2581
2582 static struct of_device_id ipmi_match[];
2583 static int ipmi_probe(struct platform_device *dev)
2584 {
2585 #ifdef CONFIG_OF
2586         const struct of_device_id *match;
2587         struct smi_info *info;
2588         struct resource resource;
2589         const __be32 *regsize, *regspacing, *regshift;
2590         struct device_node *np = dev->dev.of_node;
2591         int ret;
2592         int proplen;
2593
2594         dev_info(&dev->dev, "probing via device tree\n");
2595
2596         match = of_match_device(ipmi_match, &dev->dev);
2597         if (!match)
2598                 return -EINVAL;
2599
2600         ret = of_address_to_resource(np, 0, &resource);
2601         if (ret) {
2602                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2603                 return ret;
2604         }
2605
2606         regsize = of_get_property(np, "reg-size", &proplen);
2607         if (regsize && proplen != 4) {
2608                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2609                 return -EINVAL;
2610         }
2611
2612         regspacing = of_get_property(np, "reg-spacing", &proplen);
2613         if (regspacing && proplen != 4) {
2614                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2615                 return -EINVAL;
2616         }
2617
2618         regshift = of_get_property(np, "reg-shift", &proplen);
2619         if (regshift && proplen != 4) {
2620                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2621                 return -EINVAL;
2622         }
2623
2624         info = smi_info_alloc();
2625
2626         if (!info) {
2627                 dev_err(&dev->dev,
2628                         "could not allocate memory for OF probe\n");
2629                 return -ENOMEM;
2630         }
2631
2632         info->si_type           = (enum si_type) match->data;
2633         info->addr_source       = SI_DEVICETREE;
2634         info->irq_setup         = std_irq_setup;
2635
2636         if (resource.flags & IORESOURCE_IO) {
2637                 info->io_setup          = port_setup;
2638                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2639         } else {
2640                 info->io_setup          = mem_setup;
2641                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2642         }
2643
2644         info->io.addr_data      = resource.start;
2645
2646         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2647         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2648         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2649
2650         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2651         info->dev               = &dev->dev;
2652
2653         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2654                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2655                 info->irq);
2656
2657         dev_set_drvdata(&dev->dev, info);
2658
2659         if (add_smi(info)) {
2660                 kfree(info);
2661                 return -EBUSY;
2662         }
2663 #endif
2664         return 0;
2665 }
2666
2667 static int ipmi_remove(struct platform_device *dev)
2668 {
2669 #ifdef CONFIG_OF
2670         cleanup_one_si(dev_get_drvdata(&dev->dev));
2671 #endif
2672         return 0;
2673 }
2674
2675 static struct of_device_id ipmi_match[] =
2676 {
2677         { .type = "ipmi", .compatible = "ipmi-kcs",
2678           .data = (void *)(unsigned long) SI_KCS },
2679         { .type = "ipmi", .compatible = "ipmi-smic",
2680           .data = (void *)(unsigned long) SI_SMIC },
2681         { .type = "ipmi", .compatible = "ipmi-bt",
2682           .data = (void *)(unsigned long) SI_BT },
2683         {},
2684 };
2685
2686 static struct platform_driver ipmi_driver = {
2687         .driver = {
2688                 .name = DEVICE_NAME,
2689                 .owner = THIS_MODULE,
2690                 .of_match_table = ipmi_match,
2691         },
2692         .probe          = ipmi_probe,
2693         .remove         = ipmi_remove,
2694 };
2695
2696 static int wait_for_msg_done(struct smi_info *smi_info)
2697 {
2698         enum si_sm_result     smi_result;
2699
2700         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2701         for (;;) {
2702                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2703                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2704                         schedule_timeout_uninterruptible(1);
2705                         smi_result = smi_info->handlers->event(
2706                                 smi_info->si_sm, 100);
2707                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2708                         smi_result = smi_info->handlers->event(
2709                                 smi_info->si_sm, 0);
2710                 } else
2711                         break;
2712         }
2713         if (smi_result == SI_SM_HOSED)
2714                 /*
2715                  * We couldn't get the state machine to run, so whatever's at
2716                  * the port is probably not an IPMI SMI interface.
2717                  */
2718                 return -ENODEV;
2719
2720         return 0;
2721 }
2722
2723 static int try_get_dev_id(struct smi_info *smi_info)
2724 {
2725         unsigned char         msg[2];
2726         unsigned char         *resp;
2727         unsigned long         resp_len;
2728         int                   rv = 0;
2729
2730         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2731         if (!resp)
2732                 return -ENOMEM;
2733
2734         /*
2735          * Do a Get Device ID command, since it comes back with some
2736          * useful info.
2737          */
2738         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2739         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2740         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2741
2742         rv = wait_for_msg_done(smi_info);
2743         if (rv)
2744                 goto out;
2745
2746         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2747                                                   resp, IPMI_MAX_MSG_LENGTH);
2748
2749         /* Check and record info from the get device id, in case we need it. */
2750         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2751
2752  out:
2753         kfree(resp);
2754         return rv;
2755 }
2756
2757 static int try_enable_event_buffer(struct smi_info *smi_info)
2758 {
2759         unsigned char         msg[3];
2760         unsigned char         *resp;
2761         unsigned long         resp_len;
2762         int                   rv = 0;
2763
2764         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2765         if (!resp)
2766                 return -ENOMEM;
2767
2768         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2770         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2771
2772         rv = wait_for_msg_done(smi_info);
2773         if (rv) {
2774                 printk(KERN_WARNING PFX "Error getting response from get"
2775                        " global enables command, the event buffer is not"
2776                        " enabled.\n");
2777                 goto out;
2778         }
2779
2780         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2781                                                   resp, IPMI_MAX_MSG_LENGTH);
2782
2783         if (resp_len < 4 ||
2784                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2785                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2786                         resp[2] != 0) {
2787                 printk(KERN_WARNING PFX "Invalid return from get global"
2788                        " enables command, cannot enable the event buffer.\n");
2789                 rv = -EINVAL;
2790                 goto out;
2791         }
2792
2793         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2794                 /* buffer is already enabled, nothing to do. */
2795                 goto out;
2796
2797         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2798         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2799         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2800         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2801
2802         rv = wait_for_msg_done(smi_info);
2803         if (rv) {
2804                 printk(KERN_WARNING PFX "Error getting response from set"
2805                        " global, enables command, the event buffer is not"
2806                        " enabled.\n");
2807                 goto out;
2808         }
2809
2810         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2811                                                   resp, IPMI_MAX_MSG_LENGTH);
2812
2813         if (resp_len < 3 ||
2814                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2815                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2816                 printk(KERN_WARNING PFX "Invalid return from get global,"
2817                        "enables command, not enable the event buffer.\n");
2818                 rv = -EINVAL;
2819                 goto out;
2820         }
2821
2822         if (resp[2] != 0)
2823                 /*
2824                  * An error when setting the event buffer bit means
2825                  * that the event buffer is not supported.
2826                  */
2827                 rv = -ENOENT;
2828  out:
2829         kfree(resp);
2830         return rv;
2831 }
2832
2833 static int smi_type_proc_show(struct seq_file *m, void *v)
2834 {
2835         struct smi_info *smi = m->private;
2836
2837         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2838 }
2839
2840 static int smi_type_proc_open(struct inode *inode, struct file *file)
2841 {
2842         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2843 }
2844
2845 static const struct file_operations smi_type_proc_ops = {
2846         .open           = smi_type_proc_open,
2847         .read           = seq_read,
2848         .llseek         = seq_lseek,
2849         .release        = single_release,
2850 };
2851
2852 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2853 {
2854         struct smi_info *smi = m->private;
2855
2856         seq_printf(m, "interrupts_enabled:    %d\n",
2857                        smi->irq && !smi->interrupt_disabled);
2858         seq_printf(m, "short_timeouts:        %u\n",
2859                        smi_get_stat(smi, short_timeouts));
2860         seq_printf(m, "long_timeouts:         %u\n",
2861                        smi_get_stat(smi, long_timeouts));
2862         seq_printf(m, "idles:                 %u\n",
2863                        smi_get_stat(smi, idles));
2864         seq_printf(m, "interrupts:            %u\n",
2865                        smi_get_stat(smi, interrupts));
2866         seq_printf(m, "attentions:            %u\n",
2867                        smi_get_stat(smi, attentions));
2868         seq_printf(m, "flag_fetches:          %u\n",
2869                        smi_get_stat(smi, flag_fetches));
2870         seq_printf(m, "hosed_count:           %u\n",
2871                        smi_get_stat(smi, hosed_count));
2872         seq_printf(m, "complete_transactions: %u\n",
2873                        smi_get_stat(smi, complete_transactions));
2874         seq_printf(m, "events:                %u\n",
2875                        smi_get_stat(smi, events));
2876         seq_printf(m, "watchdog_pretimeouts:  %u\n",
2877                        smi_get_stat(smi, watchdog_pretimeouts));
2878         seq_printf(m, "incoming_messages:     %u\n",
2879                        smi_get_stat(smi, incoming_messages));
2880         return 0;
2881 }
2882
2883 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2884 {
2885         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2886 }
2887
2888 static const struct file_operations smi_si_stats_proc_ops = {
2889         .open           = smi_si_stats_proc_open,
2890         .read           = seq_read,
2891         .llseek         = seq_lseek,
2892         .release        = single_release,
2893 };
2894
2895 static int smi_params_proc_show(struct seq_file *m, void *v)
2896 {
2897         struct smi_info *smi = m->private;
2898
2899         return seq_printf(m,
2900                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2901                        si_to_str[smi->si_type],
2902                        addr_space_to_str[smi->io.addr_type],
2903                        smi->io.addr_data,
2904                        smi->io.regspacing,
2905                        smi->io.regsize,
2906                        smi->io.regshift,
2907                        smi->irq,
2908                        smi->slave_addr);
2909 }
2910
2911 static int smi_params_proc_open(struct inode *inode, struct file *file)
2912 {
2913         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2914 }
2915
2916 static const struct file_operations smi_params_proc_ops = {
2917         .open           = smi_params_proc_open,
2918         .read           = seq_read,
2919         .llseek         = seq_lseek,
2920         .release        = single_release,
2921 };
2922
2923 /*
2924  * oem_data_avail_to_receive_msg_avail
2925  * @info - smi_info structure with msg_flags set
2926  *
2927  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2928  * Returns 1 indicating need to re-run handle_flags().
2929  */
2930 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2931 {
2932         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2933                                RECEIVE_MSG_AVAIL);
2934         return 1;
2935 }
2936
2937 /*
2938  * setup_dell_poweredge_oem_data_handler
2939  * @info - smi_info.device_id must be populated
2940  *
2941  * Systems that match, but have firmware version < 1.40 may assert
2942  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2943  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2944  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2945  * as RECEIVE_MSG_AVAIL instead.
2946  *
2947  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2948  * assert the OEM[012] bits, and if it did, the driver would have to
2949  * change to handle that properly, we don't actually check for the
2950  * firmware version.
2951  * Device ID = 0x20                BMC on PowerEdge 8G servers
2952  * Device Revision = 0x80
2953  * Firmware Revision1 = 0x01       BMC version 1.40
2954  * Firmware Revision2 = 0x40       BCD encoded
2955  * IPMI Version = 0x51             IPMI 1.5
2956  * Manufacturer ID = A2 02 00      Dell IANA
2957  *
2958  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2959  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2960  *
2961  */
2962 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2963 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2964 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2965 #define DELL_IANA_MFR_ID 0x0002a2
2966 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2967 {
2968         struct ipmi_device_id *id = &smi_info->device_id;
2969         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2970                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2971                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2972                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2973                         smi_info->oem_data_avail_handler =
2974                                 oem_data_avail_to_receive_msg_avail;
2975                 } else if (ipmi_version_major(id) < 1 ||
2976                            (ipmi_version_major(id) == 1 &&
2977                             ipmi_version_minor(id) < 5)) {
2978                         smi_info->oem_data_avail_handler =
2979                                 oem_data_avail_to_receive_msg_avail;
2980                 }
2981         }
2982 }
2983
2984 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2985 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2986 {
2987         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2988
2989         /* Make it a response */
2990         msg->rsp[0] = msg->data[0] | 4;
2991         msg->rsp[1] = msg->data[1];
2992         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2993         msg->rsp_size = 3;
2994         smi_info->curr_msg = NULL;
2995         deliver_recv_msg(smi_info, msg);
2996 }
2997
2998 /*
2999  * dell_poweredge_bt_xaction_handler
3000  * @info - smi_info.device_id must be populated
3001  *
3002  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3003  * not respond to a Get SDR command if the length of the data
3004  * requested is exactly 0x3A, which leads to command timeouts and no
3005  * data returned.  This intercepts such commands, and causes userspace
3006  * callers to try again with a different-sized buffer, which succeeds.
3007  */
3008
3009 #define STORAGE_NETFN 0x0A
3010 #define STORAGE_CMD_GET_SDR 0x23
3011 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3012                                              unsigned long unused,
3013                                              void *in)
3014 {
3015         struct smi_info *smi_info = in;
3016         unsigned char *data = smi_info->curr_msg->data;
3017         unsigned int size   = smi_info->curr_msg->data_size;
3018         if (size >= 8 &&
3019             (data[0]>>2) == STORAGE_NETFN &&
3020             data[1] == STORAGE_CMD_GET_SDR &&
3021             data[7] == 0x3A) {
3022                 return_hosed_msg_badsize(smi_info);
3023                 return NOTIFY_STOP;
3024         }
3025         return NOTIFY_DONE;
3026 }
3027
3028 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3029         .notifier_call  = dell_poweredge_bt_xaction_handler,
3030 };
3031
3032 /*
3033  * setup_dell_poweredge_bt_xaction_handler
3034  * @info - smi_info.device_id must be filled in already
3035  *
3036  * Fills in smi_info.device_id.start_transaction_pre_hook
3037  * when we know what function to use there.
3038  */
3039 static void
3040 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3041 {
3042         struct ipmi_device_id *id = &smi_info->device_id;
3043         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3044             smi_info->si_type == SI_BT)
3045                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3046 }
3047
3048 /*
3049  * setup_oem_data_handler
3050  * @info - smi_info.device_id must be filled in already
3051  *
3052  * Fills in smi_info.device_id.oem_data_available_handler
3053  * when we know what function to use there.
3054  */
3055
3056 static void setup_oem_data_handler(struct smi_info *smi_info)
3057 {
3058         setup_dell_poweredge_oem_data_handler(smi_info);
3059 }
3060
3061 static void setup_xaction_handlers(struct smi_info *smi_info)
3062 {
3063         setup_dell_poweredge_bt_xaction_handler(smi_info);
3064 }
3065
3066 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3067 {
3068         if (smi_info->intf) {
3069                 /*
3070                  * The timer and thread are only running if the
3071                  * interface has been started up and registered.
3072                  */
3073                 if (smi_info->thread != NULL)
3074                         kthread_stop(smi_info->thread);
3075                 del_timer_sync(&smi_info->si_timer);
3076         }
3077 }
3078
3079 static struct ipmi_default_vals
3080 {
3081         int type;
3082         int port;
3083 } ipmi_defaults[] =
3084 {
3085         { .type = SI_KCS, .port = 0xca2 },
3086         { .type = SI_SMIC, .port = 0xca9 },
3087         { .type = SI_BT, .port = 0xe4 },
3088         { .port = 0 }
3089 };
3090
3091 static void default_find_bmc(void)
3092 {
3093         struct smi_info *info;
3094         int             i;
3095
3096         for (i = 0; ; i++) {
3097                 if (!ipmi_defaults[i].port)
3098                         break;
3099 #ifdef CONFIG_PPC
3100                 if (check_legacy_ioport(ipmi_defaults[i].port))
3101                         continue;
3102 #endif
3103                 info = smi_info_alloc();
3104                 if (!info)
3105                         return;
3106
3107                 info->addr_source = SI_DEFAULT;
3108
3109                 info->si_type = ipmi_defaults[i].type;
3110                 info->io_setup = port_setup;
3111                 info->io.addr_data = ipmi_defaults[i].port;
3112                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3113
3114                 info->io.addr = NULL;
3115                 info->io.regspacing = DEFAULT_REGSPACING;
3116                 info->io.regsize = DEFAULT_REGSPACING;
3117                 info->io.regshift = 0;
3118
3119                 if (add_smi(info) == 0) {
3120                         if ((try_smi_init(info)) == 0) {
3121                                 /* Found one... */
3122                                 printk(KERN_INFO PFX "Found default %s"
3123                                 " state machine at %s address 0x%lx\n",
3124                                 si_to_str[info->si_type],
3125                                 addr_space_to_str[info->io.addr_type],
3126                                 info->io.addr_data);
3127                         } else
3128                                 cleanup_one_si(info);
3129                 } else {
3130                         kfree(info);
3131                 }
3132         }
3133 }
3134
3135 static int is_new_interface(struct smi_info *info)
3136 {
3137         struct smi_info *e;
3138
3139         list_for_each_entry(e, &smi_infos, link) {
3140                 if (e->io.addr_type != info->io.addr_type)
3141                         continue;
3142                 if (e->io.addr_data == info->io.addr_data)
3143                         return 0;
3144         }
3145
3146         return 1;
3147 }
3148
3149 static int add_smi(struct smi_info *new_smi)
3150 {
3151         int rv = 0;
3152
3153         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3154                         ipmi_addr_src_to_str[new_smi->addr_source],
3155                         si_to_str[new_smi->si_type]);
3156         mutex_lock(&smi_infos_lock);
3157         if (!is_new_interface(new_smi)) {
3158                 printk(KERN_CONT " duplicate interface\n");
3159                 rv = -EBUSY;
3160                 goto out_err;
3161         }
3162
3163         printk(KERN_CONT "\n");
3164
3165         /* So we know not to free it unless we have allocated one. */
3166         new_smi->intf = NULL;
3167         new_smi->si_sm = NULL;
3168         new_smi->handlers = NULL;
3169
3170         list_add_tail(&new_smi->link, &smi_infos);
3171
3172 out_err:
3173         mutex_unlock(&smi_infos_lock);
3174         return rv;
3175 }
3176
3177 static int try_smi_init(struct smi_info *new_smi)
3178 {
3179         int rv = 0;
3180         int i;
3181
3182         printk(KERN_INFO PFX "Trying %s-specified %s state"
3183                " machine at %s address 0x%lx, slave address 0x%x,"
3184                " irq %d\n",
3185                ipmi_addr_src_to_str[new_smi->addr_source],
3186                si_to_str[new_smi->si_type],
3187                addr_space_to_str[new_smi->io.addr_type],
3188                new_smi->io.addr_data,
3189                new_smi->slave_addr, new_smi->irq);
3190
3191         switch (new_smi->si_type) {
3192         case SI_KCS:
3193                 new_smi->handlers = &kcs_smi_handlers;
3194                 break;
3195
3196         case SI_SMIC:
3197                 new_smi->handlers = &smic_smi_handlers;
3198                 break;
3199
3200         case SI_BT:
3201                 new_smi->handlers = &bt_smi_handlers;
3202                 break;
3203
3204         default:
3205                 /* No support for anything else yet. */
3206                 rv = -EIO;
3207                 goto out_err;
3208         }
3209
3210         /* Allocate the state machine's data and initialize it. */
3211         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3212         if (!new_smi->si_sm) {
3213                 printk(KERN_ERR PFX
3214                        "Could not allocate state machine memory\n");
3215                 rv = -ENOMEM;
3216                 goto out_err;
3217         }
3218         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3219                                                         &new_smi->io);
3220
3221         /* Now that we know the I/O size, we can set up the I/O. */
3222         rv = new_smi->io_setup(new_smi);
3223         if (rv) {
3224                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3225                 goto out_err;
3226         }
3227
3228         /* Do low-level detection first. */
3229         if (new_smi->handlers->detect(new_smi->si_sm)) {
3230                 if (new_smi->addr_source)
3231                         printk(KERN_INFO PFX "Interface detection failed\n");
3232                 rv = -ENODEV;
3233                 goto out_err;
3234         }
3235
3236         /*
3237          * Attempt a get device id command.  If it fails, we probably
3238          * don't have a BMC here.
3239          */
3240         rv = try_get_dev_id(new_smi);
3241         if (rv) {
3242                 if (new_smi->addr_source)
3243                         printk(KERN_INFO PFX "There appears to be no BMC"
3244                                " at this location\n");
3245                 goto out_err;
3246         }
3247
3248         setup_oem_data_handler(new_smi);
3249         setup_xaction_handlers(new_smi);
3250
3251         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3252         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3253         new_smi->curr_msg = NULL;
3254         atomic_set(&new_smi->req_events, 0);
3255         new_smi->run_to_completion = 0;
3256         for (i = 0; i < SI_NUM_STATS; i++)
3257                 atomic_set(&new_smi->stats[i], 0);
3258
3259         new_smi->interrupt_disabled = 1;
3260         atomic_set(&new_smi->stop_operation, 0);
3261         new_smi->intf_num = smi_num;
3262         smi_num++;
3263
3264         rv = try_enable_event_buffer(new_smi);
3265         if (rv == 0)
3266                 new_smi->has_event_buffer = 1;
3267
3268         /*
3269          * Start clearing the flags before we enable interrupts or the
3270          * timer to avoid racing with the timer.
3271          */
3272         start_clear_flags(new_smi);
3273         /* IRQ is defined to be set when non-zero. */
3274         if (new_smi->irq)
3275                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3276
3277         if (!new_smi->dev) {
3278                 /*
3279                  * If we don't already have a device from something
3280                  * else (like PCI), then register a new one.
3281                  */
3282                 new_smi->pdev = platform_device_alloc("ipmi_si",
3283                                                       new_smi->intf_num);
3284                 if (!new_smi->pdev) {
3285                         printk(KERN_ERR PFX
3286                                "Unable to allocate platform device\n");
3287                         goto out_err;
3288                 }
3289                 new_smi->dev = &new_smi->pdev->dev;
3290                 new_smi->dev->driver = &ipmi_driver.driver;
3291
3292                 rv = platform_device_add(new_smi->pdev);
3293                 if (rv) {
3294                         printk(KERN_ERR PFX
3295                                "Unable to register system interface device:"
3296                                " %d\n",
3297                                rv);
3298                         goto out_err;
3299                 }
3300                 new_smi->dev_registered = 1;
3301         }
3302
3303         rv = ipmi_register_smi(&handlers,
3304                                new_smi,
3305                                &new_smi->device_id,
3306                                new_smi->dev,
3307                                "bmc",
3308                                new_smi->slave_addr);
3309         if (rv) {
3310                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3311                         rv);
3312                 goto out_err_stop_timer;
3313         }
3314
3315         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3316                                      &smi_type_proc_ops,
3317                                      new_smi);
3318         if (rv) {
3319                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3320                 goto out_err_stop_timer;
3321         }
3322
3323         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3324                                      &smi_si_stats_proc_ops,
3325                                      new_smi);
3326         if (rv) {
3327                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3328                 goto out_err_stop_timer;
3329         }
3330
3331         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3332                                      &smi_params_proc_ops,
3333                                      new_smi);
3334         if (rv) {
3335                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3336                 goto out_err_stop_timer;
3337         }
3338
3339         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3340                  si_to_str[new_smi->si_type]);
3341
3342         return 0;
3343
3344  out_err_stop_timer:
3345         atomic_inc(&new_smi->stop_operation);
3346         wait_for_timer_and_thread(new_smi);
3347
3348  out_err:
3349         new_smi->interrupt_disabled = 1;
3350
3351         if (new_smi->intf) {
3352                 ipmi_unregister_smi(new_smi->intf);
3353                 new_smi->intf = NULL;
3354         }
3355
3356         if (new_smi->irq_cleanup) {
3357                 new_smi->irq_cleanup(new_smi);
3358                 new_smi->irq_cleanup = NULL;
3359         }
3360
3361         /*
3362          * Wait until we know that we are out of any interrupt
3363          * handlers might have been running before we freed the
3364          * interrupt.
3365          */
3366         synchronize_sched();
3367
3368         if (new_smi->si_sm) {
3369                 if (new_smi->handlers)
3370                         new_smi->handlers->cleanup(new_smi->si_sm);
3371                 kfree(new_smi->si_sm);
3372                 new_smi->si_sm = NULL;
3373         }
3374         if (new_smi->addr_source_cleanup) {
3375                 new_smi->addr_source_cleanup(new_smi);
3376                 new_smi->addr_source_cleanup = NULL;
3377         }
3378         if (new_smi->io_cleanup) {
3379                 new_smi->io_cleanup(new_smi);
3380                 new_smi->io_cleanup = NULL;
3381         }
3382
3383         if (new_smi->dev_registered) {
3384                 platform_device_unregister(new_smi->pdev);
3385                 new_smi->dev_registered = 0;
3386         }
3387
3388         return rv;
3389 }
3390
3391 static int init_ipmi_si(void)
3392 {
3393         int  i;
3394         char *str;
3395         int  rv;
3396         struct smi_info *e;
3397         enum ipmi_addr_src type = SI_INVALID;
3398
3399         if (initialized)
3400                 return 0;
3401         initialized = 1;
3402
3403         if (si_tryplatform) {
3404                 rv = platform_driver_register(&ipmi_driver);
3405                 if (rv) {
3406                         printk(KERN_ERR PFX "Unable to register "
3407                                "driver: %d\n", rv);
3408                         return rv;
3409                 }
3410         }
3411
3412         /* Parse out the si_type string into its components. */
3413         str = si_type_str;
3414         if (*str != '\0') {
3415                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3416                         si_type[i] = str;
3417                         str = strchr(str, ',');
3418                         if (str) {
3419                                 *str = '\0';
3420                                 str++;
3421                         } else {
3422                                 break;
3423                         }
3424                 }
3425         }
3426
3427         printk(KERN_INFO "IPMI System Interface driver.\n");
3428
3429         /* If the user gave us a device, they presumably want us to use it */
3430         if (!hardcode_find_bmc())
3431                 return 0;
3432
3433 #ifdef CONFIG_PCI
3434         if (si_trypci) {
3435                 rv = pci_register_driver(&ipmi_pci_driver);
3436                 if (rv)
3437                         printk(KERN_ERR PFX "Unable to register "
3438                                "PCI driver: %d\n", rv);
3439                 else
3440                         pci_registered = 1;
3441         }
3442 #endif
3443
3444 #ifdef CONFIG_ACPI
3445         if (si_tryacpi) {
3446                 pnp_register_driver(&ipmi_pnp_driver);
3447                 pnp_registered = 1;
3448         }
3449 #endif
3450
3451 #ifdef CONFIG_DMI
3452         if (si_trydmi)
3453                 dmi_find_bmc();
3454 #endif
3455
3456 #ifdef CONFIG_ACPI
3457         if (si_tryacpi)
3458                 spmi_find_bmc();
3459 #endif
3460
3461         /* We prefer devices with interrupts, but in the case of a machine
3462            with multiple BMCs we assume that there will be several instances
3463            of a given type so if we succeed in registering a type then also
3464            try to register everything else of the same type */
3465
3466         mutex_lock(&smi_infos_lock);
3467         list_for_each_entry(e, &smi_infos, link) {
3468                 /* Try to register a device if it has an IRQ and we either
3469                    haven't successfully registered a device yet or this
3470                    device has the same type as one we successfully registered */
3471                 if (e->irq && (!type || e->addr_source == type)) {
3472                         if (!try_smi_init(e)) {
3473                                 type = e->addr_source;
3474                         }
3475                 }
3476         }
3477
3478         /* type will only have been set if we successfully registered an si */
3479         if (type) {
3480                 mutex_unlock(&smi_infos_lock);
3481                 return 0;
3482         }
3483
3484         /* Fall back to the preferred device */
3485
3486         list_for_each_entry(e, &smi_infos, link) {
3487                 if (!e->irq && (!type || e->addr_source == type)) {
3488                         if (!try_smi_init(e)) {
3489                                 type = e->addr_source;
3490                         }
3491                 }
3492         }
3493         mutex_unlock(&smi_infos_lock);
3494
3495         if (type)
3496                 return 0;
3497
3498         if (si_trydefaults) {
3499                 mutex_lock(&smi_infos_lock);
3500                 if (list_empty(&smi_infos)) {
3501                         /* No BMC was found, try defaults. */
3502                         mutex_unlock(&smi_infos_lock);
3503                         default_find_bmc();
3504                 } else
3505                         mutex_unlock(&smi_infos_lock);
3506         }
3507
3508         mutex_lock(&smi_infos_lock);
3509         if (unload_when_empty && list_empty(&smi_infos)) {
3510                 mutex_unlock(&smi_infos_lock);
3511                 cleanup_ipmi_si();
3512                 printk(KERN_WARNING PFX
3513                        "Unable to find any System Interface(s)\n");
3514                 return -ENODEV;
3515         } else {
3516                 mutex_unlock(&smi_infos_lock);
3517                 return 0;
3518         }
3519 }
3520 module_init(init_ipmi_si);
3521
3522 static void cleanup_one_si(struct smi_info *to_clean)
3523 {
3524         int           rv = 0;
3525         unsigned long flags;
3526
3527         if (!to_clean)
3528                 return;
3529
3530         list_del(&to_clean->link);
3531
3532         /* Tell the driver that we are shutting down. */
3533         atomic_inc(&to_clean->stop_operation);
3534
3535         /*
3536          * Make sure the timer and thread are stopped and will not run
3537          * again.
3538          */
3539         wait_for_timer_and_thread(to_clean);
3540
3541         /*
3542          * Timeouts are stopped, now make sure the interrupts are off
3543          * for the device.  A little tricky with locks to make sure
3544          * there are no races.
3545          */
3546         spin_lock_irqsave(&to_clean->si_lock, flags);
3547         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3548                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3549                 poll(to_clean);
3550                 schedule_timeout_uninterruptible(1);
3551                 spin_lock_irqsave(&to_clean->si_lock, flags);
3552         }
3553         disable_si_irq(to_clean);
3554         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3555         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3556                 poll(to_clean);
3557                 schedule_timeout_uninterruptible(1);
3558         }
3559
3560         /* Clean up interrupts and make sure that everything is done. */
3561         if (to_clean->irq_cleanup)
3562                 to_clean->irq_cleanup(to_clean);
3563         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3564                 poll(to_clean);
3565                 schedule_timeout_uninterruptible(1);
3566         }
3567
3568         if (to_clean->intf)
3569                 rv = ipmi_unregister_smi(to_clean->intf);
3570
3571         if (rv) {
3572                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3573                        rv);
3574         }
3575
3576         if (to_clean->handlers)
3577                 to_clean->handlers->cleanup(to_clean->si_sm);
3578
3579         kfree(to_clean->si_sm);
3580
3581         if (to_clean->addr_source_cleanup)
3582                 to_clean->addr_source_cleanup(to_clean);
3583         if (to_clean->io_cleanup)
3584                 to_clean->io_cleanup(to_clean);
3585
3586         if (to_clean->dev_registered)
3587                 platform_device_unregister(to_clean->pdev);
3588
3589         kfree(to_clean);
3590 }
3591
3592 static void cleanup_ipmi_si(void)
3593 {
3594         struct smi_info *e, *tmp_e;
3595
3596         if (!initialized)
3597                 return;
3598
3599 #ifdef CONFIG_PCI
3600         if (pci_registered)
3601                 pci_unregister_driver(&ipmi_pci_driver);
3602 #endif
3603 #ifdef CONFIG_ACPI
3604         if (pnp_registered)
3605                 pnp_unregister_driver(&ipmi_pnp_driver);
3606 #endif
3607
3608         platform_driver_unregister(&ipmi_driver);
3609
3610         mutex_lock(&smi_infos_lock);
3611         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3612                 cleanup_one_si(e);
3613         mutex_unlock(&smi_infos_lock);
3614 }
3615 module_exit(cleanup_ipmi_si);
3616
3617 MODULE_LICENSE("GPL");
3618 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3619 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3620                    " system interfaces.");