rbd: Fix ceph_snap_context size calculation
[pandora-kernel.git] / drivers / block / rbd.c
1 /*
2    rbd.c -- Export ceph rados objects as a Linux block device
3
4
5    based on drivers/block/osdblk.c:
6
7    Copyright 2009 Red Hat, Inc.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program; see the file COPYING.  If not, write to
20    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24    For usage instructions, please refer to:
25
26                  Documentation/ABI/testing/sysfs-bus-rbd
27
28  */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 /*
45  * The basic unit of block I/O is a sector.  It is interpreted in a
46  * number of contexts in Linux (blk, bio, genhd), but the default is
47  * universally 512 bytes.  These symbols are just slightly more
48  * meaningful than the bare numbers they represent.
49  */
50 #define SECTOR_SHIFT    9
51 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
52
53 #define RBD_DRV_NAME "rbd"
54 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
55
56 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
57
58 #define RBD_MAX_MD_NAME_LEN     (RBD_MAX_OBJ_NAME_LEN + sizeof(RBD_SUFFIX))
59 #define RBD_MAX_POOL_NAME_LEN   64
60 #define RBD_MAX_SNAP_NAME_LEN   32
61 #define RBD_MAX_OPT_LEN         1024
62
63 #define RBD_SNAP_HEAD_NAME      "-"
64
65 /*
66  * An RBD device name will be "rbd#", where the "rbd" comes from
67  * RBD_DRV_NAME above, and # is a unique integer identifier.
68  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
69  * enough to hold all possible device names.
70  */
71 #define DEV_NAME_LEN            32
72 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
73
74 #define RBD_NOTIFY_TIMEOUT_DEFAULT 10
75
76 /*
77  * block device image metadata (in-memory version)
78  */
79 struct rbd_image_header {
80         u64 image_size;
81         char block_name[32];
82         __u8 obj_order;
83         __u8 crypt_type;
84         __u8 comp_type;
85         struct ceph_snap_context *snapc;
86         size_t snap_names_len;
87         u64 snap_seq;
88         u32 total_snaps;
89
90         char *snap_names;
91         u64 *snap_sizes;
92
93         u64 obj_version;
94 };
95
96 struct rbd_options {
97         int     notify_timeout;
98 };
99
100 /*
101  * an instance of the client.  multiple devices may share an rbd client.
102  */
103 struct rbd_client {
104         struct ceph_client      *client;
105         struct rbd_options      *rbd_opts;
106         struct kref             kref;
107         struct list_head        node;
108 };
109
110 /*
111  * a request completion status
112  */
113 struct rbd_req_status {
114         int done;
115         int rc;
116         u64 bytes;
117 };
118
119 /*
120  * a collection of requests
121  */
122 struct rbd_req_coll {
123         int                     total;
124         int                     num_done;
125         struct kref             kref;
126         struct rbd_req_status   status[0];
127 };
128
129 /*
130  * a single io request
131  */
132 struct rbd_request {
133         struct request          *rq;            /* blk layer request */
134         struct bio              *bio;           /* cloned bio */
135         struct page             **pages;        /* list of used pages */
136         u64                     len;
137         int                     coll_index;
138         struct rbd_req_coll     *coll;
139 };
140
141 struct rbd_snap {
142         struct  device          dev;
143         const char              *name;
144         u64                     size;
145         struct list_head        node;
146         u64                     id;
147 };
148
149 /*
150  * a single device
151  */
152 struct rbd_device {
153         int                     id;             /* blkdev unique id */
154
155         int                     major;          /* blkdev assigned major */
156         struct gendisk          *disk;          /* blkdev's gendisk and rq */
157         struct request_queue    *q;
158
159         struct rbd_client       *rbd_client;
160
161         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
162
163         spinlock_t              lock;           /* queue lock */
164
165         struct rbd_image_header header;
166         char                    obj[RBD_MAX_OBJ_NAME_LEN]; /* rbd image name */
167         int                     obj_len;
168         char                    obj_md_name[RBD_MAX_MD_NAME_LEN]; /* hdr nm. */
169         char                    pool_name[RBD_MAX_POOL_NAME_LEN];
170         int                     poolid;
171
172         struct ceph_osd_event   *watch_event;
173         struct ceph_osd_request *watch_request;
174
175         /* protects updating the header */
176         struct rw_semaphore     header_rwsem;
177         char                    snap_name[RBD_MAX_SNAP_NAME_LEN];
178         u64                     snap_id;        /* current snapshot id */
179         int read_only;
180
181         struct list_head        node;
182
183         /* list of snapshots */
184         struct list_head        snaps;
185
186         /* sysfs related */
187         struct device           dev;
188 };
189
190 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
191
192 static LIST_HEAD(rbd_dev_list);    /* devices */
193 static DEFINE_SPINLOCK(rbd_dev_list_lock);
194
195 static LIST_HEAD(rbd_client_list);              /* clients */
196 static DEFINE_SPINLOCK(rbd_client_list_lock);
197
198 static int __rbd_init_snaps_header(struct rbd_device *rbd_dev);
199 static void rbd_dev_release(struct device *dev);
200 static ssize_t rbd_snap_add(struct device *dev,
201                             struct device_attribute *attr,
202                             const char *buf,
203                             size_t count);
204 static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
205                                   struct rbd_snap *snap);
206
207 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
208                        size_t count);
209 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
210                           size_t count);
211
212 static struct bus_attribute rbd_bus_attrs[] = {
213         __ATTR(add, S_IWUSR, NULL, rbd_add),
214         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
215         __ATTR_NULL
216 };
217
218 static struct bus_type rbd_bus_type = {
219         .name           = "rbd",
220         .bus_attrs      = rbd_bus_attrs,
221 };
222
223 static void rbd_root_dev_release(struct device *dev)
224 {
225 }
226
227 static struct device rbd_root_dev = {
228         .init_name =    "rbd",
229         .release =      rbd_root_dev_release,
230 };
231
232
233 static struct device *rbd_get_dev(struct rbd_device *rbd_dev)
234 {
235         return get_device(&rbd_dev->dev);
236 }
237
238 static void rbd_put_dev(struct rbd_device *rbd_dev)
239 {
240         put_device(&rbd_dev->dev);
241 }
242
243 static int __rbd_refresh_header(struct rbd_device *rbd_dev);
244
245 static int rbd_open(struct block_device *bdev, fmode_t mode)
246 {
247         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
248
249         rbd_get_dev(rbd_dev);
250
251         set_device_ro(bdev, rbd_dev->read_only);
252
253         if ((mode & FMODE_WRITE) && rbd_dev->read_only)
254                 return -EROFS;
255
256         return 0;
257 }
258
259 static int rbd_release(struct gendisk *disk, fmode_t mode)
260 {
261         struct rbd_device *rbd_dev = disk->private_data;
262
263         rbd_put_dev(rbd_dev);
264
265         return 0;
266 }
267
268 static const struct block_device_operations rbd_bd_ops = {
269         .owner                  = THIS_MODULE,
270         .open                   = rbd_open,
271         .release                = rbd_release,
272 };
273
274 /*
275  * Initialize an rbd client instance.
276  * We own *opt.
277  */
278 static struct rbd_client *rbd_client_create(struct ceph_options *opt,
279                                             struct rbd_options *rbd_opts)
280 {
281         struct rbd_client *rbdc;
282         int ret = -ENOMEM;
283
284         dout("rbd_client_create\n");
285         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
286         if (!rbdc)
287                 goto out_opt;
288
289         kref_init(&rbdc->kref);
290         INIT_LIST_HEAD(&rbdc->node);
291
292         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
293
294         rbdc->client = ceph_create_client(opt, rbdc, 0, 0);
295         if (IS_ERR(rbdc->client))
296                 goto out_mutex;
297         opt = NULL; /* Now rbdc->client is responsible for opt */
298
299         ret = ceph_open_session(rbdc->client);
300         if (ret < 0)
301                 goto out_err;
302
303         rbdc->rbd_opts = rbd_opts;
304
305         spin_lock(&rbd_client_list_lock);
306         list_add_tail(&rbdc->node, &rbd_client_list);
307         spin_unlock(&rbd_client_list_lock);
308
309         mutex_unlock(&ctl_mutex);
310
311         dout("rbd_client_create created %p\n", rbdc);
312         return rbdc;
313
314 out_err:
315         ceph_destroy_client(rbdc->client);
316 out_mutex:
317         mutex_unlock(&ctl_mutex);
318         kfree(rbdc);
319 out_opt:
320         if (opt)
321                 ceph_destroy_options(opt);
322         return ERR_PTR(ret);
323 }
324
325 /*
326  * Find a ceph client with specific addr and configuration.
327  */
328 static struct rbd_client *__rbd_client_find(struct ceph_options *opt)
329 {
330         struct rbd_client *client_node;
331
332         if (opt->flags & CEPH_OPT_NOSHARE)
333                 return NULL;
334
335         list_for_each_entry(client_node, &rbd_client_list, node)
336                 if (ceph_compare_options(opt, client_node->client) == 0)
337                         return client_node;
338         return NULL;
339 }
340
341 /*
342  * mount options
343  */
344 enum {
345         Opt_notify_timeout,
346         Opt_last_int,
347         /* int args above */
348         Opt_last_string,
349         /* string args above */
350 };
351
352 static match_table_t rbdopt_tokens = {
353         {Opt_notify_timeout, "notify_timeout=%d"},
354         /* int args above */
355         /* string args above */
356         {-1, NULL}
357 };
358
359 static int parse_rbd_opts_token(char *c, void *private)
360 {
361         struct rbd_options *rbdopt = private;
362         substring_t argstr[MAX_OPT_ARGS];
363         int token, intval, ret;
364
365         token = match_token(c, rbdopt_tokens, argstr);
366         if (token < 0)
367                 return -EINVAL;
368
369         if (token < Opt_last_int) {
370                 ret = match_int(&argstr[0], &intval);
371                 if (ret < 0) {
372                         pr_err("bad mount option arg (not int) "
373                                "at '%s'\n", c);
374                         return ret;
375                 }
376                 dout("got int token %d val %d\n", token, intval);
377         } else if (token > Opt_last_int && token < Opt_last_string) {
378                 dout("got string token %d val %s\n", token,
379                      argstr[0].from);
380         } else {
381                 dout("got token %d\n", token);
382         }
383
384         switch (token) {
385         case Opt_notify_timeout:
386                 rbdopt->notify_timeout = intval;
387                 break;
388         default:
389                 BUG_ON(token);
390         }
391         return 0;
392 }
393
394 /*
395  * Get a ceph client with specific addr and configuration, if one does
396  * not exist create it.
397  */
398 static struct rbd_client *rbd_get_client(const char *mon_addr,
399                                          size_t mon_addr_len,
400                                          char *options)
401 {
402         struct rbd_client *rbdc;
403         struct ceph_options *opt;
404         struct rbd_options *rbd_opts;
405
406         rbd_opts = kzalloc(sizeof(*rbd_opts), GFP_KERNEL);
407         if (!rbd_opts)
408                 return ERR_PTR(-ENOMEM);
409
410         rbd_opts->notify_timeout = RBD_NOTIFY_TIMEOUT_DEFAULT;
411
412         opt = ceph_parse_options(options, mon_addr,
413                                 mon_addr + mon_addr_len,
414                                 parse_rbd_opts_token, rbd_opts);
415         if (IS_ERR(opt)) {
416                 kfree(rbd_opts);
417                 return ERR_CAST(opt);
418         }
419
420         spin_lock(&rbd_client_list_lock);
421         rbdc = __rbd_client_find(opt);
422         if (rbdc) {
423                 /* using an existing client */
424                 kref_get(&rbdc->kref);
425                 spin_unlock(&rbd_client_list_lock);
426
427                 ceph_destroy_options(opt);
428                 kfree(rbd_opts);
429
430                 return rbdc;
431         }
432         spin_unlock(&rbd_client_list_lock);
433
434         rbdc = rbd_client_create(opt, rbd_opts);
435
436         if (IS_ERR(rbdc))
437                 kfree(rbd_opts);
438
439         return rbdc;
440 }
441
442 /*
443  * Destroy ceph client
444  *
445  * Caller must hold rbd_client_list_lock.
446  */
447 static void rbd_client_release(struct kref *kref)
448 {
449         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
450
451         dout("rbd_release_client %p\n", rbdc);
452         spin_lock(&rbd_client_list_lock);
453         list_del(&rbdc->node);
454         spin_unlock(&rbd_client_list_lock);
455
456         ceph_destroy_client(rbdc->client);
457         kfree(rbdc->rbd_opts);
458         kfree(rbdc);
459 }
460
461 /*
462  * Drop reference to ceph client node. If it's not referenced anymore, release
463  * it.
464  */
465 static void rbd_put_client(struct rbd_device *rbd_dev)
466 {
467         kref_put(&rbd_dev->rbd_client->kref, rbd_client_release);
468         rbd_dev->rbd_client = NULL;
469 }
470
471 /*
472  * Destroy requests collection
473  */
474 static void rbd_coll_release(struct kref *kref)
475 {
476         struct rbd_req_coll *coll =
477                 container_of(kref, struct rbd_req_coll, kref);
478
479         dout("rbd_coll_release %p\n", coll);
480         kfree(coll);
481 }
482
483 /*
484  * Create a new header structure, translate header format from the on-disk
485  * header.
486  */
487 static int rbd_header_from_disk(struct rbd_image_header *header,
488                                  struct rbd_image_header_ondisk *ondisk,
489                                  u32 allocated_snaps,
490                                  gfp_t gfp_flags)
491 {
492         u32 i, snap_count;
493
494         if (memcmp(ondisk, RBD_HEADER_TEXT, sizeof(RBD_HEADER_TEXT)))
495                 return -ENXIO;
496
497         snap_count = le32_to_cpu(ondisk->snap_count);
498         if (snap_count > (UINT_MAX - sizeof(struct ceph_snap_context))
499                          / sizeof (*ondisk))
500                 return -EINVAL;
501         header->snapc = kmalloc(sizeof(struct ceph_snap_context) +
502                                 snap_count * sizeof(u64),
503                                 gfp_flags);
504         if (!header->snapc)
505                 return -ENOMEM;
506
507         header->snap_names_len = le64_to_cpu(ondisk->snap_names_len);
508         if (snap_count) {
509                 header->snap_names = kmalloc(header->snap_names_len,
510                                              gfp_flags);
511                 if (!header->snap_names)
512                         goto err_snapc;
513                 header->snap_sizes = kmalloc(snap_count * sizeof(u64),
514                                              gfp_flags);
515                 if (!header->snap_sizes)
516                         goto err_names;
517         } else {
518                 header->snap_names = NULL;
519                 header->snap_sizes = NULL;
520         }
521         memcpy(header->block_name, ondisk->block_name,
522                sizeof(ondisk->block_name));
523
524         header->image_size = le64_to_cpu(ondisk->image_size);
525         header->obj_order = ondisk->options.order;
526         header->crypt_type = ondisk->options.crypt_type;
527         header->comp_type = ondisk->options.comp_type;
528
529         atomic_set(&header->snapc->nref, 1);
530         header->snap_seq = le64_to_cpu(ondisk->snap_seq);
531         header->snapc->num_snaps = snap_count;
532         header->total_snaps = snap_count;
533
534         if (snap_count && allocated_snaps == snap_count) {
535                 for (i = 0; i < snap_count; i++) {
536                         header->snapc->snaps[i] =
537                                 le64_to_cpu(ondisk->snaps[i].id);
538                         header->snap_sizes[i] =
539                                 le64_to_cpu(ondisk->snaps[i].image_size);
540                 }
541
542                 /* copy snapshot names */
543                 memcpy(header->snap_names, &ondisk->snaps[i],
544                         header->snap_names_len);
545         }
546
547         return 0;
548
549 err_names:
550         kfree(header->snap_names);
551 err_snapc:
552         kfree(header->snapc);
553         return -ENOMEM;
554 }
555
556 static int snap_by_name(struct rbd_image_header *header, const char *snap_name,
557                         u64 *seq, u64 *size)
558 {
559         int i;
560         char *p = header->snap_names;
561
562         for (i = 0; i < header->total_snaps; i++) {
563                 if (!strcmp(snap_name, p)) {
564
565                         /* Found it.  Pass back its id and/or size */
566
567                         if (seq)
568                                 *seq = header->snapc->snaps[i];
569                         if (size)
570                                 *size = header->snap_sizes[i];
571                         return i;
572                 }
573                 p += strlen(p) + 1;     /* Skip ahead to the next name */
574         }
575         return -ENOENT;
576 }
577
578 static int rbd_header_set_snap(struct rbd_device *dev, u64 *size)
579 {
580         struct rbd_image_header *header = &dev->header;
581         struct ceph_snap_context *snapc = header->snapc;
582         int ret = -ENOENT;
583
584         BUILD_BUG_ON(sizeof (dev->snap_name) < sizeof (RBD_SNAP_HEAD_NAME));
585
586         down_write(&dev->header_rwsem);
587
588         if (!memcmp(dev->snap_name, RBD_SNAP_HEAD_NAME,
589                     sizeof (RBD_SNAP_HEAD_NAME))) {
590                 if (header->total_snaps)
591                         snapc->seq = header->snap_seq;
592                 else
593                         snapc->seq = 0;
594                 dev->snap_id = CEPH_NOSNAP;
595                 dev->read_only = 0;
596                 if (size)
597                         *size = header->image_size;
598         } else {
599                 ret = snap_by_name(header, dev->snap_name, &snapc->seq, size);
600                 if (ret < 0)
601                         goto done;
602                 dev->snap_id = snapc->seq;
603                 dev->read_only = 1;
604         }
605
606         ret = 0;
607 done:
608         up_write(&dev->header_rwsem);
609         return ret;
610 }
611
612 static void rbd_header_free(struct rbd_image_header *header)
613 {
614         kfree(header->snapc);
615         kfree(header->snap_names);
616         kfree(header->snap_sizes);
617 }
618
619 /*
620  * get the actual striped segment name, offset and length
621  */
622 static u64 rbd_get_segment(struct rbd_image_header *header,
623                            const char *block_name,
624                            u64 ofs, u64 len,
625                            char *seg_name, u64 *segofs)
626 {
627         u64 seg = ofs >> header->obj_order;
628
629         if (seg_name)
630                 snprintf(seg_name, RBD_MAX_SEG_NAME_LEN,
631                          "%s.%012llx", block_name, seg);
632
633         ofs = ofs & ((1 << header->obj_order) - 1);
634         len = min_t(u64, len, (1 << header->obj_order) - ofs);
635
636         if (segofs)
637                 *segofs = ofs;
638
639         return len;
640 }
641
642 static int rbd_get_num_segments(struct rbd_image_header *header,
643                                 u64 ofs, u64 len)
644 {
645         u64 start_seg = ofs >> header->obj_order;
646         u64 end_seg = (ofs + len - 1) >> header->obj_order;
647         return end_seg - start_seg + 1;
648 }
649
650 /*
651  * returns the size of an object in the image
652  */
653 static u64 rbd_obj_bytes(struct rbd_image_header *header)
654 {
655         return 1 << header->obj_order;
656 }
657
658 /*
659  * bio helpers
660  */
661
662 static void bio_chain_put(struct bio *chain)
663 {
664         struct bio *tmp;
665
666         while (chain) {
667                 tmp = chain;
668                 chain = chain->bi_next;
669                 bio_put(tmp);
670         }
671 }
672
673 /*
674  * zeros a bio chain, starting at specific offset
675  */
676 static void zero_bio_chain(struct bio *chain, int start_ofs)
677 {
678         struct bio_vec *bv;
679         unsigned long flags;
680         void *buf;
681         int i;
682         int pos = 0;
683
684         while (chain) {
685                 bio_for_each_segment(bv, chain, i) {
686                         if (pos + bv->bv_len > start_ofs) {
687                                 int remainder = max(start_ofs - pos, 0);
688                                 buf = bvec_kmap_irq(bv, &flags);
689                                 memset(buf + remainder, 0,
690                                        bv->bv_len - remainder);
691                                 bvec_kunmap_irq(buf, &flags);
692                         }
693                         pos += bv->bv_len;
694                 }
695
696                 chain = chain->bi_next;
697         }
698 }
699
700 /*
701  * bio_chain_clone - clone a chain of bios up to a certain length.
702  * might return a bio_pair that will need to be released.
703  */
704 static struct bio *bio_chain_clone(struct bio **old, struct bio **next,
705                                    struct bio_pair **bp,
706                                    int len, gfp_t gfpmask)
707 {
708         struct bio *tmp, *old_chain = *old, *new_chain = NULL, *tail = NULL;
709         int total = 0;
710
711         if (*bp) {
712                 bio_pair_release(*bp);
713                 *bp = NULL;
714         }
715
716         while (old_chain && (total < len)) {
717                 tmp = bio_kmalloc(gfpmask, old_chain->bi_max_vecs);
718                 if (!tmp)
719                         goto err_out;
720
721                 if (total + old_chain->bi_size > len) {
722                         struct bio_pair *bp;
723
724                         /*
725                          * this split can only happen with a single paged bio,
726                          * split_bio will BUG_ON if this is not the case
727                          */
728                         dout("bio_chain_clone split! total=%d remaining=%d"
729                              "bi_size=%d\n",
730                              (int)total, (int)len-total,
731                              (int)old_chain->bi_size);
732
733                         /* split the bio. We'll release it either in the next
734                            call, or it will have to be released outside */
735                         bp = bio_split(old_chain, (len - total) / SECTOR_SIZE);
736                         if (!bp)
737                                 goto err_out;
738
739                         __bio_clone(tmp, &bp->bio1);
740
741                         *next = &bp->bio2;
742                 } else {
743                         __bio_clone(tmp, old_chain);
744                         *next = old_chain->bi_next;
745                 }
746
747                 tmp->bi_bdev = NULL;
748                 gfpmask &= ~__GFP_WAIT;
749                 tmp->bi_next = NULL;
750
751                 if (!new_chain) {
752                         new_chain = tail = tmp;
753                 } else {
754                         tail->bi_next = tmp;
755                         tail = tmp;
756                 }
757                 old_chain = old_chain->bi_next;
758
759                 total += tmp->bi_size;
760         }
761
762         BUG_ON(total < len);
763
764         if (tail)
765                 tail->bi_next = NULL;
766
767         *old = old_chain;
768
769         return new_chain;
770
771 err_out:
772         dout("bio_chain_clone with err\n");
773         bio_chain_put(new_chain);
774         return NULL;
775 }
776
777 /*
778  * helpers for osd request op vectors.
779  */
780 static int rbd_create_rw_ops(struct ceph_osd_req_op **ops,
781                             int num_ops,
782                             int opcode,
783                             u32 payload_len)
784 {
785         *ops = kzalloc(sizeof(struct ceph_osd_req_op) * (num_ops + 1),
786                        GFP_NOIO);
787         if (!*ops)
788                 return -ENOMEM;
789         (*ops)[0].op = opcode;
790         /*
791          * op extent offset and length will be set later on
792          * in calc_raw_layout()
793          */
794         (*ops)[0].payload_len = payload_len;
795         return 0;
796 }
797
798 static void rbd_destroy_ops(struct ceph_osd_req_op *ops)
799 {
800         kfree(ops);
801 }
802
803 static void rbd_coll_end_req_index(struct request *rq,
804                                    struct rbd_req_coll *coll,
805                                    int index,
806                                    int ret, u64 len)
807 {
808         struct request_queue *q;
809         int min, max, i;
810
811         dout("rbd_coll_end_req_index %p index %d ret %d len %lld\n",
812              coll, index, ret, len);
813
814         if (!rq)
815                 return;
816
817         if (!coll) {
818                 blk_end_request(rq, ret, len);
819                 return;
820         }
821
822         q = rq->q;
823
824         spin_lock_irq(q->queue_lock);
825         coll->status[index].done = 1;
826         coll->status[index].rc = ret;
827         coll->status[index].bytes = len;
828         max = min = coll->num_done;
829         while (max < coll->total && coll->status[max].done)
830                 max++;
831
832         for (i = min; i<max; i++) {
833                 __blk_end_request(rq, coll->status[i].rc,
834                                   coll->status[i].bytes);
835                 coll->num_done++;
836                 kref_put(&coll->kref, rbd_coll_release);
837         }
838         spin_unlock_irq(q->queue_lock);
839 }
840
841 static void rbd_coll_end_req(struct rbd_request *req,
842                              int ret, u64 len)
843 {
844         rbd_coll_end_req_index(req->rq, req->coll, req->coll_index, ret, len);
845 }
846
847 /*
848  * Send ceph osd request
849  */
850 static int rbd_do_request(struct request *rq,
851                           struct rbd_device *dev,
852                           struct ceph_snap_context *snapc,
853                           u64 snapid,
854                           const char *obj, u64 ofs, u64 len,
855                           struct bio *bio,
856                           struct page **pages,
857                           int num_pages,
858                           int flags,
859                           struct ceph_osd_req_op *ops,
860                           int num_reply,
861                           struct rbd_req_coll *coll,
862                           int coll_index,
863                           void (*rbd_cb)(struct ceph_osd_request *req,
864                                          struct ceph_msg *msg),
865                           struct ceph_osd_request **linger_req,
866                           u64 *ver)
867 {
868         struct ceph_osd_request *req;
869         struct ceph_file_layout *layout;
870         int ret;
871         u64 bno;
872         struct timespec mtime = CURRENT_TIME;
873         struct rbd_request *req_data;
874         struct ceph_osd_request_head *reqhead;
875         struct ceph_osd_client *osdc;
876
877         req_data = kzalloc(sizeof(*req_data), GFP_NOIO);
878         if (!req_data) {
879                 if (coll)
880                         rbd_coll_end_req_index(rq, coll, coll_index,
881                                                -ENOMEM, len);
882                 return -ENOMEM;
883         }
884
885         if (coll) {
886                 req_data->coll = coll;
887                 req_data->coll_index = coll_index;
888         }
889
890         dout("rbd_do_request obj=%s ofs=%lld len=%lld\n", obj, len, ofs);
891
892         down_read(&dev->header_rwsem);
893
894         osdc = &dev->rbd_client->client->osdc;
895         req = ceph_osdc_alloc_request(osdc, flags, snapc, ops,
896                                         false, GFP_NOIO, pages, bio);
897         if (!req) {
898                 up_read(&dev->header_rwsem);
899                 ret = -ENOMEM;
900                 goto done_pages;
901         }
902
903         req->r_callback = rbd_cb;
904
905         req_data->rq = rq;
906         req_data->bio = bio;
907         req_data->pages = pages;
908         req_data->len = len;
909
910         req->r_priv = req_data;
911
912         reqhead = req->r_request->front.iov_base;
913         reqhead->snapid = cpu_to_le64(CEPH_NOSNAP);
914
915         strncpy(req->r_oid, obj, sizeof(req->r_oid));
916         req->r_oid_len = strlen(req->r_oid);
917
918         layout = &req->r_file_layout;
919         memset(layout, 0, sizeof(*layout));
920         layout->fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
921         layout->fl_stripe_count = cpu_to_le32(1);
922         layout->fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
923         layout->fl_pg_pool = cpu_to_le32(dev->poolid);
924         ceph_calc_raw_layout(osdc, layout, snapid, ofs, &len, &bno,
925                                 req, ops);
926
927         ceph_osdc_build_request(req, ofs, &len,
928                                 ops,
929                                 snapc,
930                                 &mtime,
931                                 req->r_oid, req->r_oid_len);
932         up_read(&dev->header_rwsem);
933
934         if (linger_req) {
935                 ceph_osdc_set_request_linger(osdc, req);
936                 *linger_req = req;
937         }
938
939         ret = ceph_osdc_start_request(osdc, req, false);
940         if (ret < 0)
941                 goto done_err;
942
943         if (!rbd_cb) {
944                 ret = ceph_osdc_wait_request(osdc, req);
945                 if (ver)
946                         *ver = le64_to_cpu(req->r_reassert_version.version);
947                 dout("reassert_ver=%lld\n",
948                      le64_to_cpu(req->r_reassert_version.version));
949                 ceph_osdc_put_request(req);
950         }
951         return ret;
952
953 done_err:
954         bio_chain_put(req_data->bio);
955         ceph_osdc_put_request(req);
956 done_pages:
957         rbd_coll_end_req(req_data, ret, len);
958         kfree(req_data);
959         return ret;
960 }
961
962 /*
963  * Ceph osd op callback
964  */
965 static void rbd_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
966 {
967         struct rbd_request *req_data = req->r_priv;
968         struct ceph_osd_reply_head *replyhead;
969         struct ceph_osd_op *op;
970         __s32 rc;
971         u64 bytes;
972         int read_op;
973
974         /* parse reply */
975         replyhead = msg->front.iov_base;
976         WARN_ON(le32_to_cpu(replyhead->num_ops) == 0);
977         op = (void *)(replyhead + 1);
978         rc = le32_to_cpu(replyhead->result);
979         bytes = le64_to_cpu(op->extent.length);
980         read_op = (le32_to_cpu(op->op) == CEPH_OSD_OP_READ);
981
982         dout("rbd_req_cb bytes=%lld readop=%d rc=%d\n", bytes, read_op, rc);
983
984         if (rc == -ENOENT && read_op) {
985                 zero_bio_chain(req_data->bio, 0);
986                 rc = 0;
987         } else if (rc == 0 && read_op && bytes < req_data->len) {
988                 zero_bio_chain(req_data->bio, bytes);
989                 bytes = req_data->len;
990         }
991
992         rbd_coll_end_req(req_data, rc, bytes);
993
994         if (req_data->bio)
995                 bio_chain_put(req_data->bio);
996
997         ceph_osdc_put_request(req);
998         kfree(req_data);
999 }
1000
1001 static void rbd_simple_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
1002 {
1003         ceph_osdc_put_request(req);
1004 }
1005
1006 /*
1007  * Do a synchronous ceph osd operation
1008  */
1009 static int rbd_req_sync_op(struct rbd_device *dev,
1010                            struct ceph_snap_context *snapc,
1011                            u64 snapid,
1012                            int opcode,
1013                            int flags,
1014                            struct ceph_osd_req_op *orig_ops,
1015                            int num_reply,
1016                            const char *obj,
1017                            u64 ofs, u64 len,
1018                            char *buf,
1019                            struct ceph_osd_request **linger_req,
1020                            u64 *ver)
1021 {
1022         int ret;
1023         struct page **pages;
1024         int num_pages;
1025         struct ceph_osd_req_op *ops = orig_ops;
1026         u32 payload_len;
1027
1028         num_pages = calc_pages_for(ofs , len);
1029         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1030         if (IS_ERR(pages))
1031                 return PTR_ERR(pages);
1032
1033         if (!orig_ops) {
1034                 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? len : 0);
1035                 ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1036                 if (ret < 0)
1037                         goto done;
1038
1039                 if ((flags & CEPH_OSD_FLAG_WRITE) && buf) {
1040                         ret = ceph_copy_to_page_vector(pages, buf, ofs, len);
1041                         if (ret < 0)
1042                                 goto done_ops;
1043                 }
1044         }
1045
1046         ret = rbd_do_request(NULL, dev, snapc, snapid,
1047                           obj, ofs, len, NULL,
1048                           pages, num_pages,
1049                           flags,
1050                           ops,
1051                           2,
1052                           NULL, 0,
1053                           NULL,
1054                           linger_req, ver);
1055         if (ret < 0)
1056                 goto done_ops;
1057
1058         if ((flags & CEPH_OSD_FLAG_READ) && buf)
1059                 ret = ceph_copy_from_page_vector(pages, buf, ofs, ret);
1060
1061 done_ops:
1062         if (!orig_ops)
1063                 rbd_destroy_ops(ops);
1064 done:
1065         ceph_release_page_vector(pages, num_pages);
1066         return ret;
1067 }
1068
1069 /*
1070  * Do an asynchronous ceph osd operation
1071  */
1072 static int rbd_do_op(struct request *rq,
1073                      struct rbd_device *rbd_dev ,
1074                      struct ceph_snap_context *snapc,
1075                      u64 snapid,
1076                      int opcode, int flags, int num_reply,
1077                      u64 ofs, u64 len,
1078                      struct bio *bio,
1079                      struct rbd_req_coll *coll,
1080                      int coll_index)
1081 {
1082         char *seg_name;
1083         u64 seg_ofs;
1084         u64 seg_len;
1085         int ret;
1086         struct ceph_osd_req_op *ops;
1087         u32 payload_len;
1088
1089         seg_name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
1090         if (!seg_name)
1091                 return -ENOMEM;
1092
1093         seg_len = rbd_get_segment(&rbd_dev->header,
1094                                   rbd_dev->header.block_name,
1095                                   ofs, len,
1096                                   seg_name, &seg_ofs);
1097
1098         payload_len = (flags & CEPH_OSD_FLAG_WRITE ? seg_len : 0);
1099
1100         ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1101         if (ret < 0)
1102                 goto done;
1103
1104         /* we've taken care of segment sizes earlier when we
1105            cloned the bios. We should never have a segment
1106            truncated at this point */
1107         BUG_ON(seg_len < len);
1108
1109         ret = rbd_do_request(rq, rbd_dev, snapc, snapid,
1110                              seg_name, seg_ofs, seg_len,
1111                              bio,
1112                              NULL, 0,
1113                              flags,
1114                              ops,
1115                              num_reply,
1116                              coll, coll_index,
1117                              rbd_req_cb, 0, NULL);
1118
1119         rbd_destroy_ops(ops);
1120 done:
1121         kfree(seg_name);
1122         return ret;
1123 }
1124
1125 /*
1126  * Request async osd write
1127  */
1128 static int rbd_req_write(struct request *rq,
1129                          struct rbd_device *rbd_dev,
1130                          struct ceph_snap_context *snapc,
1131                          u64 ofs, u64 len,
1132                          struct bio *bio,
1133                          struct rbd_req_coll *coll,
1134                          int coll_index)
1135 {
1136         return rbd_do_op(rq, rbd_dev, snapc, CEPH_NOSNAP,
1137                          CEPH_OSD_OP_WRITE,
1138                          CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1139                          2,
1140                          ofs, len, bio, coll, coll_index);
1141 }
1142
1143 /*
1144  * Request async osd read
1145  */
1146 static int rbd_req_read(struct request *rq,
1147                          struct rbd_device *rbd_dev,
1148                          u64 snapid,
1149                          u64 ofs, u64 len,
1150                          struct bio *bio,
1151                          struct rbd_req_coll *coll,
1152                          int coll_index)
1153 {
1154         return rbd_do_op(rq, rbd_dev, NULL,
1155                          snapid,
1156                          CEPH_OSD_OP_READ,
1157                          CEPH_OSD_FLAG_READ,
1158                          2,
1159                          ofs, len, bio, coll, coll_index);
1160 }
1161
1162 /*
1163  * Request sync osd read
1164  */
1165 static int rbd_req_sync_read(struct rbd_device *dev,
1166                           struct ceph_snap_context *snapc,
1167                           u64 snapid,
1168                           const char *obj,
1169                           u64 ofs, u64 len,
1170                           char *buf,
1171                           u64 *ver)
1172 {
1173         return rbd_req_sync_op(dev, NULL,
1174                                snapid,
1175                                CEPH_OSD_OP_READ,
1176                                CEPH_OSD_FLAG_READ,
1177                                NULL,
1178                                1, obj, ofs, len, buf, NULL, ver);
1179 }
1180
1181 /*
1182  * Request sync osd watch
1183  */
1184 static int rbd_req_sync_notify_ack(struct rbd_device *dev,
1185                                    u64 ver,
1186                                    u64 notify_id,
1187                                    const char *obj)
1188 {
1189         struct ceph_osd_req_op *ops;
1190         struct page **pages = NULL;
1191         int ret;
1192
1193         ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY_ACK, 0);
1194         if (ret < 0)
1195                 return ret;
1196
1197         ops[0].watch.ver = cpu_to_le64(dev->header.obj_version);
1198         ops[0].watch.cookie = notify_id;
1199         ops[0].watch.flag = 0;
1200
1201         ret = rbd_do_request(NULL, dev, NULL, CEPH_NOSNAP,
1202                           obj, 0, 0, NULL,
1203                           pages, 0,
1204                           CEPH_OSD_FLAG_READ,
1205                           ops,
1206                           1,
1207                           NULL, 0,
1208                           rbd_simple_req_cb, 0, NULL);
1209
1210         rbd_destroy_ops(ops);
1211         return ret;
1212 }
1213
1214 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1215 {
1216         struct rbd_device *dev = (struct rbd_device *)data;
1217         int rc;
1218
1219         if (!dev)
1220                 return;
1221
1222         dout("rbd_watch_cb %s notify_id=%lld opcode=%d\n", dev->obj_md_name,
1223                 notify_id, (int)opcode);
1224         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1225         rc = __rbd_refresh_header(dev);
1226         mutex_unlock(&ctl_mutex);
1227         if (rc)
1228                 pr_warning(RBD_DRV_NAME "%d got notification but failed to "
1229                            " update snaps: %d\n", dev->major, rc);
1230
1231         rbd_req_sync_notify_ack(dev, ver, notify_id, dev->obj_md_name);
1232 }
1233
1234 /*
1235  * Request sync osd watch
1236  */
1237 static int rbd_req_sync_watch(struct rbd_device *dev,
1238                               const char *obj,
1239                               u64 ver)
1240 {
1241         struct ceph_osd_req_op *ops;
1242         struct ceph_osd_client *osdc = &dev->rbd_client->client->osdc;
1243
1244         int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1245         if (ret < 0)
1246                 return ret;
1247
1248         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0,
1249                                      (void *)dev, &dev->watch_event);
1250         if (ret < 0)
1251                 goto fail;
1252
1253         ops[0].watch.ver = cpu_to_le64(ver);
1254         ops[0].watch.cookie = cpu_to_le64(dev->watch_event->cookie);
1255         ops[0].watch.flag = 1;
1256
1257         ret = rbd_req_sync_op(dev, NULL,
1258                               CEPH_NOSNAP,
1259                               0,
1260                               CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1261                               ops,
1262                               1, obj, 0, 0, NULL,
1263                               &dev->watch_request, NULL);
1264
1265         if (ret < 0)
1266                 goto fail_event;
1267
1268         rbd_destroy_ops(ops);
1269         return 0;
1270
1271 fail_event:
1272         ceph_osdc_cancel_event(dev->watch_event);
1273         dev->watch_event = NULL;
1274 fail:
1275         rbd_destroy_ops(ops);
1276         return ret;
1277 }
1278
1279 /*
1280  * Request sync osd unwatch
1281  */
1282 static int rbd_req_sync_unwatch(struct rbd_device *dev,
1283                                 const char *obj)
1284 {
1285         struct ceph_osd_req_op *ops;
1286
1287         int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1288         if (ret < 0)
1289                 return ret;
1290
1291         ops[0].watch.ver = 0;
1292         ops[0].watch.cookie = cpu_to_le64(dev->watch_event->cookie);
1293         ops[0].watch.flag = 0;
1294
1295         ret = rbd_req_sync_op(dev, NULL,
1296                               CEPH_NOSNAP,
1297                               0,
1298                               CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1299                               ops,
1300                               1, obj, 0, 0, NULL, NULL, NULL);
1301
1302         rbd_destroy_ops(ops);
1303         ceph_osdc_cancel_event(dev->watch_event);
1304         dev->watch_event = NULL;
1305         return ret;
1306 }
1307
1308 struct rbd_notify_info {
1309         struct rbd_device *dev;
1310 };
1311
1312 static void rbd_notify_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1313 {
1314         struct rbd_device *dev = (struct rbd_device *)data;
1315         if (!dev)
1316                 return;
1317
1318         dout("rbd_notify_cb %s notify_id=%lld opcode=%d\n", dev->obj_md_name,
1319                 notify_id, (int)opcode);
1320 }
1321
1322 /*
1323  * Request sync osd notify
1324  */
1325 static int rbd_req_sync_notify(struct rbd_device *dev,
1326                           const char *obj)
1327 {
1328         struct ceph_osd_req_op *ops;
1329         struct ceph_osd_client *osdc = &dev->rbd_client->client->osdc;
1330         struct ceph_osd_event *event;
1331         struct rbd_notify_info info;
1332         int payload_len = sizeof(u32) + sizeof(u32);
1333         int ret;
1334
1335         ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY, payload_len);
1336         if (ret < 0)
1337                 return ret;
1338
1339         info.dev = dev;
1340
1341         ret = ceph_osdc_create_event(osdc, rbd_notify_cb, 1,
1342                                      (void *)&info, &event);
1343         if (ret < 0)
1344                 goto fail;
1345
1346         ops[0].watch.ver = 1;
1347         ops[0].watch.flag = 1;
1348         ops[0].watch.cookie = event->cookie;
1349         ops[0].watch.prot_ver = RADOS_NOTIFY_VER;
1350         ops[0].watch.timeout = 12;
1351
1352         ret = rbd_req_sync_op(dev, NULL,
1353                                CEPH_NOSNAP,
1354                                0,
1355                                CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1356                                ops,
1357                                1, obj, 0, 0, NULL, NULL, NULL);
1358         if (ret < 0)
1359                 goto fail_event;
1360
1361         ret = ceph_osdc_wait_event(event, CEPH_OSD_TIMEOUT_DEFAULT);
1362         dout("ceph_osdc_wait_event returned %d\n", ret);
1363         rbd_destroy_ops(ops);
1364         return 0;
1365
1366 fail_event:
1367         ceph_osdc_cancel_event(event);
1368 fail:
1369         rbd_destroy_ops(ops);
1370         return ret;
1371 }
1372
1373 /*
1374  * Request sync osd read
1375  */
1376 static int rbd_req_sync_exec(struct rbd_device *dev,
1377                              const char *obj,
1378                              const char *cls,
1379                              const char *method,
1380                              const char *data,
1381                              int len,
1382                              u64 *ver)
1383 {
1384         struct ceph_osd_req_op *ops;
1385         int cls_len = strlen(cls);
1386         int method_len = strlen(method);
1387         int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_CALL,
1388                                     cls_len + method_len + len);
1389         if (ret < 0)
1390                 return ret;
1391
1392         ops[0].cls.class_name = cls;
1393         ops[0].cls.class_len = (__u8)cls_len;
1394         ops[0].cls.method_name = method;
1395         ops[0].cls.method_len = (__u8)method_len;
1396         ops[0].cls.argc = 0;
1397         ops[0].cls.indata = data;
1398         ops[0].cls.indata_len = len;
1399
1400         ret = rbd_req_sync_op(dev, NULL,
1401                                CEPH_NOSNAP,
1402                                0,
1403                                CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1404                                ops,
1405                                1, obj, 0, 0, NULL, NULL, ver);
1406
1407         rbd_destroy_ops(ops);
1408
1409         dout("cls_exec returned %d\n", ret);
1410         return ret;
1411 }
1412
1413 static struct rbd_req_coll *rbd_alloc_coll(int num_reqs)
1414 {
1415         struct rbd_req_coll *coll =
1416                         kzalloc(sizeof(struct rbd_req_coll) +
1417                                 sizeof(struct rbd_req_status) * num_reqs,
1418                                 GFP_ATOMIC);
1419
1420         if (!coll)
1421                 return NULL;
1422         coll->total = num_reqs;
1423         kref_init(&coll->kref);
1424         return coll;
1425 }
1426
1427 /*
1428  * block device queue callback
1429  */
1430 static void rbd_rq_fn(struct request_queue *q)
1431 {
1432         struct rbd_device *rbd_dev = q->queuedata;
1433         struct request *rq;
1434         struct bio_pair *bp = NULL;
1435
1436         while ((rq = blk_fetch_request(q))) {
1437                 struct bio *bio;
1438                 struct bio *rq_bio, *next_bio = NULL;
1439                 bool do_write;
1440                 int size, op_size = 0;
1441                 u64 ofs;
1442                 int num_segs, cur_seg = 0;
1443                 struct rbd_req_coll *coll;
1444
1445                 /* peek at request from block layer */
1446                 if (!rq)
1447                         break;
1448
1449                 dout("fetched request\n");
1450
1451                 /* filter out block requests we don't understand */
1452                 if ((rq->cmd_type != REQ_TYPE_FS)) {
1453                         __blk_end_request_all(rq, 0);
1454                         continue;
1455                 }
1456
1457                 /* deduce our operation (read, write) */
1458                 do_write = (rq_data_dir(rq) == WRITE);
1459
1460                 size = blk_rq_bytes(rq);
1461                 ofs = blk_rq_pos(rq) * SECTOR_SIZE;
1462                 rq_bio = rq->bio;
1463                 if (do_write && rbd_dev->read_only) {
1464                         __blk_end_request_all(rq, -EROFS);
1465                         continue;
1466                 }
1467
1468                 spin_unlock_irq(q->queue_lock);
1469
1470                 dout("%s 0x%x bytes at 0x%llx\n",
1471                      do_write ? "write" : "read",
1472                      size, blk_rq_pos(rq) * SECTOR_SIZE);
1473
1474                 num_segs = rbd_get_num_segments(&rbd_dev->header, ofs, size);
1475                 coll = rbd_alloc_coll(num_segs);
1476                 if (!coll) {
1477                         spin_lock_irq(q->queue_lock);
1478                         __blk_end_request_all(rq, -ENOMEM);
1479                         continue;
1480                 }
1481
1482                 do {
1483                         /* a bio clone to be passed down to OSD req */
1484                         dout("rq->bio->bi_vcnt=%d\n", rq->bio->bi_vcnt);
1485                         op_size = rbd_get_segment(&rbd_dev->header,
1486                                                   rbd_dev->header.block_name,
1487                                                   ofs, size,
1488                                                   NULL, NULL);
1489                         kref_get(&coll->kref);
1490                         bio = bio_chain_clone(&rq_bio, &next_bio, &bp,
1491                                               op_size, GFP_ATOMIC);
1492                         if (!bio) {
1493                                 rbd_coll_end_req_index(rq, coll, cur_seg,
1494                                                        -ENOMEM, op_size);
1495                                 goto next_seg;
1496                         }
1497
1498
1499                         /* init OSD command: write or read */
1500                         if (do_write)
1501                                 rbd_req_write(rq, rbd_dev,
1502                                               rbd_dev->header.snapc,
1503                                               ofs,
1504                                               op_size, bio,
1505                                               coll, cur_seg);
1506                         else
1507                                 rbd_req_read(rq, rbd_dev,
1508                                              rbd_dev->snap_id,
1509                                              ofs,
1510                                              op_size, bio,
1511                                              coll, cur_seg);
1512
1513 next_seg:
1514                         size -= op_size;
1515                         ofs += op_size;
1516
1517                         cur_seg++;
1518                         rq_bio = next_bio;
1519                 } while (size > 0);
1520                 kref_put(&coll->kref, rbd_coll_release);
1521
1522                 if (bp)
1523                         bio_pair_release(bp);
1524                 spin_lock_irq(q->queue_lock);
1525         }
1526 }
1527
1528 /*
1529  * a queue callback. Makes sure that we don't create a bio that spans across
1530  * multiple osd objects. One exception would be with a single page bios,
1531  * which we handle later at bio_chain_clone
1532  */
1533 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1534                           struct bio_vec *bvec)
1535 {
1536         struct rbd_device *rbd_dev = q->queuedata;
1537         unsigned int chunk_sectors;
1538         sector_t sector;
1539         unsigned int bio_sectors;
1540         int max;
1541
1542         chunk_sectors = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
1543         sector = bmd->bi_sector + get_start_sect(bmd->bi_bdev);
1544         bio_sectors = bmd->bi_size >> SECTOR_SHIFT;
1545
1546         max =  (chunk_sectors - ((sector & (chunk_sectors - 1))
1547                                  + bio_sectors)) << SECTOR_SHIFT;
1548         if (max < 0)
1549                 max = 0; /* bio_add cannot handle a negative return */
1550         if (max <= bvec->bv_len && bio_sectors == 0)
1551                 return bvec->bv_len;
1552         return max;
1553 }
1554
1555 static void rbd_free_disk(struct rbd_device *rbd_dev)
1556 {
1557         struct gendisk *disk = rbd_dev->disk;
1558
1559         if (!disk)
1560                 return;
1561
1562         rbd_header_free(&rbd_dev->header);
1563
1564         if (disk->flags & GENHD_FL_UP)
1565                 del_gendisk(disk);
1566         if (disk->queue)
1567                 blk_cleanup_queue(disk->queue);
1568         put_disk(disk);
1569 }
1570
1571 /*
1572  * reload the ondisk the header 
1573  */
1574 static int rbd_read_header(struct rbd_device *rbd_dev,
1575                            struct rbd_image_header *header)
1576 {
1577         ssize_t rc;
1578         struct rbd_image_header_ondisk *dh;
1579         u32 snap_count = 0;
1580         u64 ver;
1581         size_t len;
1582
1583         /*
1584          * First reads the fixed-size header to determine the number
1585          * of snapshots, then re-reads it, along with all snapshot
1586          * records as well as their stored names.
1587          */
1588         len = sizeof (*dh);
1589         while (1) {
1590                 dh = kmalloc(len, GFP_KERNEL);
1591                 if (!dh)
1592                         return -ENOMEM;
1593
1594                 rc = rbd_req_sync_read(rbd_dev,
1595                                        NULL, CEPH_NOSNAP,
1596                                        rbd_dev->obj_md_name,
1597                                        0, len,
1598                                        (char *)dh, &ver);
1599                 if (rc < 0)
1600                         goto out_dh;
1601
1602                 rc = rbd_header_from_disk(header, dh, snap_count, GFP_KERNEL);
1603                 if (rc < 0) {
1604                         if (rc == -ENXIO)
1605                                 pr_warning("unrecognized header format"
1606                                            " for image %s", rbd_dev->obj);
1607                         goto out_dh;
1608                 }
1609
1610                 if (snap_count == header->total_snaps)
1611                         break;
1612
1613                 snap_count = header->total_snaps;
1614                 len = sizeof (*dh) +
1615                         snap_count * sizeof(struct rbd_image_snap_ondisk) +
1616                         header->snap_names_len;
1617
1618                 rbd_header_free(header);
1619                 kfree(dh);
1620         }
1621         header->obj_version = ver;
1622
1623 out_dh:
1624         kfree(dh);
1625         return rc;
1626 }
1627
1628 /*
1629  * create a snapshot
1630  */
1631 static int rbd_header_add_snap(struct rbd_device *dev,
1632                                const char *snap_name,
1633                                gfp_t gfp_flags)
1634 {
1635         int name_len = strlen(snap_name);
1636         u64 new_snapid;
1637         int ret;
1638         void *data, *p, *e;
1639         u64 ver;
1640         struct ceph_mon_client *monc;
1641
1642         /* we should create a snapshot only if we're pointing at the head */
1643         if (dev->snap_id != CEPH_NOSNAP)
1644                 return -EINVAL;
1645
1646         monc = &dev->rbd_client->client->monc;
1647         ret = ceph_monc_create_snapid(monc, dev->poolid, &new_snapid);
1648         dout("created snapid=%lld\n", new_snapid);
1649         if (ret < 0)
1650                 return ret;
1651
1652         data = kmalloc(name_len + 16, gfp_flags);
1653         if (!data)
1654                 return -ENOMEM;
1655
1656         p = data;
1657         e = data + name_len + 16;
1658
1659         ceph_encode_string_safe(&p, e, snap_name, name_len, bad);
1660         ceph_encode_64_safe(&p, e, new_snapid, bad);
1661
1662         ret = rbd_req_sync_exec(dev, dev->obj_md_name, "rbd", "snap_add",
1663                                 data, p - data, &ver);
1664
1665         kfree(data);
1666
1667         if (ret < 0)
1668                 return ret;
1669
1670         down_write(&dev->header_rwsem);
1671         dev->header.snapc->seq = new_snapid;
1672         up_write(&dev->header_rwsem);
1673
1674         return 0;
1675 bad:
1676         return -ERANGE;
1677 }
1678
1679 static void __rbd_remove_all_snaps(struct rbd_device *rbd_dev)
1680 {
1681         struct rbd_snap *snap;
1682
1683         while (!list_empty(&rbd_dev->snaps)) {
1684                 snap = list_first_entry(&rbd_dev->snaps, struct rbd_snap, node);
1685                 __rbd_remove_snap_dev(rbd_dev, snap);
1686         }
1687 }
1688
1689 /*
1690  * only read the first part of the ondisk header, without the snaps info
1691  */
1692 static int __rbd_refresh_header(struct rbd_device *rbd_dev)
1693 {
1694         int ret;
1695         struct rbd_image_header h;
1696         u64 snap_seq;
1697         int follow_seq = 0;
1698
1699         ret = rbd_read_header(rbd_dev, &h);
1700         if (ret < 0)
1701                 return ret;
1702
1703         /* resized? */
1704         set_capacity(rbd_dev->disk, h.image_size / SECTOR_SIZE);
1705
1706         down_write(&rbd_dev->header_rwsem);
1707
1708         snap_seq = rbd_dev->header.snapc->seq;
1709         if (rbd_dev->header.total_snaps &&
1710             rbd_dev->header.snapc->snaps[0] == snap_seq)
1711                 /* pointing at the head, will need to follow that
1712                    if head moves */
1713                 follow_seq = 1;
1714
1715         kfree(rbd_dev->header.snapc);
1716         kfree(rbd_dev->header.snap_names);
1717         kfree(rbd_dev->header.snap_sizes);
1718
1719         rbd_dev->header.total_snaps = h.total_snaps;
1720         rbd_dev->header.snapc = h.snapc;
1721         rbd_dev->header.snap_names = h.snap_names;
1722         rbd_dev->header.snap_names_len = h.snap_names_len;
1723         rbd_dev->header.snap_sizes = h.snap_sizes;
1724         if (follow_seq)
1725                 rbd_dev->header.snapc->seq = rbd_dev->header.snapc->snaps[0];
1726         else
1727                 rbd_dev->header.snapc->seq = snap_seq;
1728
1729         ret = __rbd_init_snaps_header(rbd_dev);
1730
1731         up_write(&rbd_dev->header_rwsem);
1732
1733         return ret;
1734 }
1735
1736 static int rbd_init_disk(struct rbd_device *rbd_dev)
1737 {
1738         struct gendisk *disk;
1739         struct request_queue *q;
1740         int rc;
1741         u64 segment_size;
1742         u64 total_size = 0;
1743
1744         /* contact OSD, request size info about the object being mapped */
1745         rc = rbd_read_header(rbd_dev, &rbd_dev->header);
1746         if (rc)
1747                 return rc;
1748
1749         /* no need to lock here, as rbd_dev is not registered yet */
1750         rc = __rbd_init_snaps_header(rbd_dev);
1751         if (rc)
1752                 return rc;
1753
1754         rc = rbd_header_set_snap(rbd_dev, &total_size);
1755         if (rc)
1756                 return rc;
1757
1758         /* create gendisk info */
1759         rc = -ENOMEM;
1760         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
1761         if (!disk)
1762                 goto out;
1763
1764         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
1765                  rbd_dev->id);
1766         disk->major = rbd_dev->major;
1767         disk->first_minor = 0;
1768         disk->fops = &rbd_bd_ops;
1769         disk->private_data = rbd_dev;
1770
1771         /* init rq */
1772         rc = -ENOMEM;
1773         q = blk_init_queue(rbd_rq_fn, &rbd_dev->lock);
1774         if (!q)
1775                 goto out_disk;
1776
1777         /* We use the default size, but let's be explicit about it. */
1778         blk_queue_physical_block_size(q, SECTOR_SIZE);
1779
1780         /* set io sizes to object size */
1781         segment_size = rbd_obj_bytes(&rbd_dev->header);
1782         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
1783         blk_queue_max_segment_size(q, segment_size);
1784         blk_queue_io_min(q, segment_size);
1785         blk_queue_io_opt(q, segment_size);
1786
1787         blk_queue_merge_bvec(q, rbd_merge_bvec);
1788         disk->queue = q;
1789
1790         q->queuedata = rbd_dev;
1791
1792         rbd_dev->disk = disk;
1793         rbd_dev->q = q;
1794
1795         /* finally, announce the disk to the world */
1796         set_capacity(disk, total_size / SECTOR_SIZE);
1797         add_disk(disk);
1798
1799         pr_info("%s: added with size 0x%llx\n",
1800                 disk->disk_name, (unsigned long long)total_size);
1801         return 0;
1802
1803 out_disk:
1804         put_disk(disk);
1805 out:
1806         return rc;
1807 }
1808
1809 /*
1810   sysfs
1811 */
1812
1813 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
1814 {
1815         return container_of(dev, struct rbd_device, dev);
1816 }
1817
1818 static ssize_t rbd_size_show(struct device *dev,
1819                              struct device_attribute *attr, char *buf)
1820 {
1821         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1822
1823         return sprintf(buf, "%llu\n", (unsigned long long)rbd_dev->header.image_size);
1824 }
1825
1826 static ssize_t rbd_major_show(struct device *dev,
1827                               struct device_attribute *attr, char *buf)
1828 {
1829         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1830
1831         return sprintf(buf, "%d\n", rbd_dev->major);
1832 }
1833
1834 static ssize_t rbd_client_id_show(struct device *dev,
1835                                   struct device_attribute *attr, char *buf)
1836 {
1837         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1838
1839         return sprintf(buf, "client%lld\n",
1840                         ceph_client_id(rbd_dev->rbd_client->client));
1841 }
1842
1843 static ssize_t rbd_pool_show(struct device *dev,
1844                              struct device_attribute *attr, char *buf)
1845 {
1846         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1847
1848         return sprintf(buf, "%s\n", rbd_dev->pool_name);
1849 }
1850
1851 static ssize_t rbd_name_show(struct device *dev,
1852                              struct device_attribute *attr, char *buf)
1853 {
1854         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1855
1856         return sprintf(buf, "%s\n", rbd_dev->obj);
1857 }
1858
1859 static ssize_t rbd_snap_show(struct device *dev,
1860                              struct device_attribute *attr,
1861                              char *buf)
1862 {
1863         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1864
1865         return sprintf(buf, "%s\n", rbd_dev->snap_name);
1866 }
1867
1868 static ssize_t rbd_image_refresh(struct device *dev,
1869                                  struct device_attribute *attr,
1870                                  const char *buf,
1871                                  size_t size)
1872 {
1873         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1874         int rc;
1875         int ret = size;
1876
1877         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1878
1879         rc = __rbd_refresh_header(rbd_dev);
1880         if (rc < 0)
1881                 ret = rc;
1882
1883         mutex_unlock(&ctl_mutex);
1884         return ret;
1885 }
1886
1887 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
1888 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
1889 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
1890 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
1891 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
1892 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
1893 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
1894 static DEVICE_ATTR(create_snap, S_IWUSR, NULL, rbd_snap_add);
1895
1896 static struct attribute *rbd_attrs[] = {
1897         &dev_attr_size.attr,
1898         &dev_attr_major.attr,
1899         &dev_attr_client_id.attr,
1900         &dev_attr_pool.attr,
1901         &dev_attr_name.attr,
1902         &dev_attr_current_snap.attr,
1903         &dev_attr_refresh.attr,
1904         &dev_attr_create_snap.attr,
1905         NULL
1906 };
1907
1908 static struct attribute_group rbd_attr_group = {
1909         .attrs = rbd_attrs,
1910 };
1911
1912 static const struct attribute_group *rbd_attr_groups[] = {
1913         &rbd_attr_group,
1914         NULL
1915 };
1916
1917 static void rbd_sysfs_dev_release(struct device *dev)
1918 {
1919 }
1920
1921 static struct device_type rbd_device_type = {
1922         .name           = "rbd",
1923         .groups         = rbd_attr_groups,
1924         .release        = rbd_sysfs_dev_release,
1925 };
1926
1927
1928 /*
1929   sysfs - snapshots
1930 */
1931
1932 static ssize_t rbd_snap_size_show(struct device *dev,
1933                                   struct device_attribute *attr,
1934                                   char *buf)
1935 {
1936         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1937
1938         return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
1939 }
1940
1941 static ssize_t rbd_snap_id_show(struct device *dev,
1942                                 struct device_attribute *attr,
1943                                 char *buf)
1944 {
1945         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1946
1947         return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
1948 }
1949
1950 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
1951 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
1952
1953 static struct attribute *rbd_snap_attrs[] = {
1954         &dev_attr_snap_size.attr,
1955         &dev_attr_snap_id.attr,
1956         NULL,
1957 };
1958
1959 static struct attribute_group rbd_snap_attr_group = {
1960         .attrs = rbd_snap_attrs,
1961 };
1962
1963 static void rbd_snap_dev_release(struct device *dev)
1964 {
1965         struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1966         kfree(snap->name);
1967         kfree(snap);
1968 }
1969
1970 static const struct attribute_group *rbd_snap_attr_groups[] = {
1971         &rbd_snap_attr_group,
1972         NULL
1973 };
1974
1975 static struct device_type rbd_snap_device_type = {
1976         .groups         = rbd_snap_attr_groups,
1977         .release        = rbd_snap_dev_release,
1978 };
1979
1980 static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
1981                                   struct rbd_snap *snap)
1982 {
1983         list_del(&snap->node);
1984         device_unregister(&snap->dev);
1985 }
1986
1987 static int rbd_register_snap_dev(struct rbd_device *rbd_dev,
1988                                   struct rbd_snap *snap,
1989                                   struct device *parent)
1990 {
1991         struct device *dev = &snap->dev;
1992         int ret;
1993
1994         dev->type = &rbd_snap_device_type;
1995         dev->parent = parent;
1996         dev->release = rbd_snap_dev_release;
1997         dev_set_name(dev, "snap_%s", snap->name);
1998         ret = device_register(dev);
1999
2000         return ret;
2001 }
2002
2003 static int __rbd_add_snap_dev(struct rbd_device *rbd_dev,
2004                               int i, const char *name,
2005                               struct rbd_snap **snapp)
2006 {
2007         int ret;
2008         struct rbd_snap *snap = kzalloc(sizeof(*snap), GFP_KERNEL);
2009         if (!snap)
2010                 return -ENOMEM;
2011         snap->name = kstrdup(name, GFP_KERNEL);
2012         snap->size = rbd_dev->header.snap_sizes[i];
2013         snap->id = rbd_dev->header.snapc->snaps[i];
2014         if (device_is_registered(&rbd_dev->dev)) {
2015                 ret = rbd_register_snap_dev(rbd_dev, snap,
2016                                              &rbd_dev->dev);
2017                 if (ret < 0)
2018                         goto err;
2019         }
2020         *snapp = snap;
2021         return 0;
2022 err:
2023         kfree(snap->name);
2024         kfree(snap);
2025         return ret;
2026 }
2027
2028 /*
2029  * search for the previous snap in a null delimited string list
2030  */
2031 const char *rbd_prev_snap_name(const char *name, const char *start)
2032 {
2033         if (name < start + 2)
2034                 return NULL;
2035
2036         name -= 2;
2037         while (*name) {
2038                 if (name == start)
2039                         return start;
2040                 name--;
2041         }
2042         return name + 1;
2043 }
2044
2045 /*
2046  * compare the old list of snapshots that we have to what's in the header
2047  * and update it accordingly. Note that the header holds the snapshots
2048  * in a reverse order (from newest to oldest) and we need to go from
2049  * older to new so that we don't get a duplicate snap name when
2050  * doing the process (e.g., removed snapshot and recreated a new
2051  * one with the same name.
2052  */
2053 static int __rbd_init_snaps_header(struct rbd_device *rbd_dev)
2054 {
2055         const char *name, *first_name;
2056         int i = rbd_dev->header.total_snaps;
2057         struct rbd_snap *snap, *old_snap = NULL;
2058         int ret;
2059         struct list_head *p, *n;
2060
2061         first_name = rbd_dev->header.snap_names;
2062         name = first_name + rbd_dev->header.snap_names_len;
2063
2064         list_for_each_prev_safe(p, n, &rbd_dev->snaps) {
2065                 u64 cur_id;
2066
2067                 old_snap = list_entry(p, struct rbd_snap, node);
2068
2069                 if (i)
2070                         cur_id = rbd_dev->header.snapc->snaps[i - 1];
2071
2072                 if (!i || old_snap->id < cur_id) {
2073                         /* old_snap->id was skipped, thus was removed */
2074                         __rbd_remove_snap_dev(rbd_dev, old_snap);
2075                         continue;
2076                 }
2077                 if (old_snap->id == cur_id) {
2078                         /* we have this snapshot already */
2079                         i--;
2080                         name = rbd_prev_snap_name(name, first_name);
2081                         continue;
2082                 }
2083                 for (; i > 0;
2084                      i--, name = rbd_prev_snap_name(name, first_name)) {
2085                         if (!name) {
2086                                 WARN_ON(1);
2087                                 return -EINVAL;
2088                         }
2089                         cur_id = rbd_dev->header.snapc->snaps[i];
2090                         /* snapshot removal? handle it above */
2091                         if (cur_id >= old_snap->id)
2092                                 break;
2093                         /* a new snapshot */
2094                         ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2095                         if (ret < 0)
2096                                 return ret;
2097
2098                         /* note that we add it backward so using n and not p */
2099                         list_add(&snap->node, n);
2100                         p = &snap->node;
2101                 }
2102         }
2103         /* we're done going over the old snap list, just add what's left */
2104         for (; i > 0; i--) {
2105                 name = rbd_prev_snap_name(name, first_name);
2106                 if (!name) {
2107                         WARN_ON(1);
2108                         return -EINVAL;
2109                 }
2110                 ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2111                 if (ret < 0)
2112                         return ret;
2113                 list_add(&snap->node, &rbd_dev->snaps);
2114         }
2115
2116         return 0;
2117 }
2118
2119 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
2120 {
2121         int ret;
2122         struct device *dev;
2123         struct rbd_snap *snap;
2124
2125         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2126         dev = &rbd_dev->dev;
2127
2128         dev->bus = &rbd_bus_type;
2129         dev->type = &rbd_device_type;
2130         dev->parent = &rbd_root_dev;
2131         dev->release = rbd_dev_release;
2132         dev_set_name(dev, "%d", rbd_dev->id);
2133         ret = device_register(dev);
2134         if (ret < 0)
2135                 goto out;
2136
2137         list_for_each_entry(snap, &rbd_dev->snaps, node) {
2138                 ret = rbd_register_snap_dev(rbd_dev, snap,
2139                                              &rbd_dev->dev);
2140                 if (ret < 0)
2141                         break;
2142         }
2143 out:
2144         mutex_unlock(&ctl_mutex);
2145         return ret;
2146 }
2147
2148 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
2149 {
2150         device_unregister(&rbd_dev->dev);
2151 }
2152
2153 static int rbd_init_watch_dev(struct rbd_device *rbd_dev)
2154 {
2155         int ret, rc;
2156
2157         do {
2158                 ret = rbd_req_sync_watch(rbd_dev, rbd_dev->obj_md_name,
2159                                          rbd_dev->header.obj_version);
2160                 if (ret == -ERANGE) {
2161                         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2162                         rc = __rbd_refresh_header(rbd_dev);
2163                         mutex_unlock(&ctl_mutex);
2164                         if (rc < 0)
2165                                 return rc;
2166                 }
2167         } while (ret == -ERANGE);
2168
2169         return ret;
2170 }
2171
2172 static atomic64_t rbd_id_max = ATOMIC64_INIT(0);
2173
2174 /*
2175  * Get a unique rbd identifier for the given new rbd_dev, and add
2176  * the rbd_dev to the global list.  The minimum rbd id is 1.
2177  */
2178 static void rbd_id_get(struct rbd_device *rbd_dev)
2179 {
2180         rbd_dev->id = atomic64_inc_return(&rbd_id_max);
2181
2182         spin_lock(&rbd_dev_list_lock);
2183         list_add_tail(&rbd_dev->node, &rbd_dev_list);
2184         spin_unlock(&rbd_dev_list_lock);
2185 }
2186
2187 /*
2188  * Remove an rbd_dev from the global list, and record that its
2189  * identifier is no longer in use.
2190  */
2191 static void rbd_id_put(struct rbd_device *rbd_dev)
2192 {
2193         struct list_head *tmp;
2194         int rbd_id = rbd_dev->id;
2195         int max_id;
2196
2197         BUG_ON(rbd_id < 1);
2198
2199         spin_lock(&rbd_dev_list_lock);
2200         list_del_init(&rbd_dev->node);
2201
2202         /*
2203          * If the id being "put" is not the current maximum, there
2204          * is nothing special we need to do.
2205          */
2206         if (rbd_id != atomic64_read(&rbd_id_max)) {
2207                 spin_unlock(&rbd_dev_list_lock);
2208                 return;
2209         }
2210
2211         /*
2212          * We need to update the current maximum id.  Search the
2213          * list to find out what it is.  We're more likely to find
2214          * the maximum at the end, so search the list backward.
2215          */
2216         max_id = 0;
2217         list_for_each_prev(tmp, &rbd_dev_list) {
2218                 struct rbd_device *rbd_dev;
2219
2220                 rbd_dev = list_entry(tmp, struct rbd_device, node);
2221                 if (rbd_id > max_id)
2222                         max_id = rbd_id;
2223         }
2224         spin_unlock(&rbd_dev_list_lock);
2225
2226         /*
2227          * The max id could have been updated by rbd_id_get(), in
2228          * which case it now accurately reflects the new maximum.
2229          * Be careful not to overwrite the maximum value in that
2230          * case.
2231          */
2232         atomic64_cmpxchg(&rbd_id_max, rbd_id, max_id);
2233 }
2234
2235 /*
2236  * Skips over white space at *buf, and updates *buf to point to the
2237  * first found non-space character (if any). Returns the length of
2238  * the token (string of non-white space characters) found.  Note
2239  * that *buf must be terminated with '\0'.
2240  */
2241 static inline size_t next_token(const char **buf)
2242 {
2243         /*
2244         * These are the characters that produce nonzero for
2245         * isspace() in the "C" and "POSIX" locales.
2246         */
2247         const char *spaces = " \f\n\r\t\v";
2248
2249         *buf += strspn(*buf, spaces);   /* Find start of token */
2250
2251         return strcspn(*buf, spaces);   /* Return token length */
2252 }
2253
2254 /*
2255  * Finds the next token in *buf, and if the provided token buffer is
2256  * big enough, copies the found token into it.  The result, if
2257  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
2258  * must be terminated with '\0' on entry.
2259  *
2260  * Returns the length of the token found (not including the '\0').
2261  * Return value will be 0 if no token is found, and it will be >=
2262  * token_size if the token would not fit.
2263  *
2264  * The *buf pointer will be updated to point beyond the end of the
2265  * found token.  Note that this occurs even if the token buffer is
2266  * too small to hold it.
2267  */
2268 static inline size_t copy_token(const char **buf,
2269                                 char *token,
2270                                 size_t token_size)
2271 {
2272         size_t len;
2273
2274         len = next_token(buf);
2275         if (len < token_size) {
2276                 memcpy(token, *buf, len);
2277                 *(token + len) = '\0';
2278         }
2279         *buf += len;
2280
2281         return len;
2282 }
2283
2284 /*
2285  * This fills in the pool_name, obj, obj_len, snap_name, obj_len,
2286  * rbd_dev, rbd_md_name, and name fields of the given rbd_dev, based
2287  * on the list of monitor addresses and other options provided via
2288  * /sys/bus/rbd/add.
2289  */
2290 static int rbd_add_parse_args(struct rbd_device *rbd_dev,
2291                               const char *buf,
2292                               const char **mon_addrs,
2293                               size_t *mon_addrs_size,
2294                               char *options,
2295                               size_t options_size)
2296 {
2297         size_t  len;
2298
2299         /* The first four tokens are required */
2300
2301         len = next_token(&buf);
2302         if (!len)
2303                 return -EINVAL;
2304         *mon_addrs_size = len + 1;
2305         *mon_addrs = buf;
2306
2307         buf += len;
2308
2309         len = copy_token(&buf, options, options_size);
2310         if (!len || len >= options_size)
2311                 return -EINVAL;
2312
2313         len = copy_token(&buf, rbd_dev->pool_name, sizeof (rbd_dev->pool_name));
2314         if (!len || len >= sizeof (rbd_dev->pool_name))
2315                 return -EINVAL;
2316
2317         len = copy_token(&buf, rbd_dev->obj, sizeof (rbd_dev->obj));
2318         if (!len || len >= sizeof (rbd_dev->obj))
2319                 return -EINVAL;
2320
2321         /* We have the object length in hand, save it. */
2322
2323         rbd_dev->obj_len = len;
2324
2325         BUILD_BUG_ON(RBD_MAX_MD_NAME_LEN
2326                                 < RBD_MAX_OBJ_NAME_LEN + sizeof (RBD_SUFFIX));
2327         sprintf(rbd_dev->obj_md_name, "%s%s", rbd_dev->obj, RBD_SUFFIX);
2328
2329         /*
2330          * The snapshot name is optional, but it's an error if it's
2331          * too long.  If no snapshot is supplied, fill in the default.
2332          */
2333         len = copy_token(&buf, rbd_dev->snap_name, sizeof (rbd_dev->snap_name));
2334         if (!len)
2335                 memcpy(rbd_dev->snap_name, RBD_SNAP_HEAD_NAME,
2336                         sizeof (RBD_SNAP_HEAD_NAME));
2337         else if (len >= sizeof (rbd_dev->snap_name))
2338                 return -EINVAL;
2339
2340         return 0;
2341 }
2342
2343 static ssize_t rbd_add(struct bus_type *bus,
2344                        const char *buf,
2345                        size_t count)
2346 {
2347         struct rbd_device *rbd_dev;
2348         const char *mon_addrs = NULL;
2349         size_t mon_addrs_size = 0;
2350         char *options = NULL;
2351         struct ceph_osd_client *osdc;
2352         int rc = -ENOMEM;
2353
2354         if (!try_module_get(THIS_MODULE))
2355                 return -ENODEV;
2356
2357         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
2358         if (!rbd_dev)
2359                 goto err_nomem;
2360         options = kmalloc(count, GFP_KERNEL);
2361         if (!options)
2362                 goto err_nomem;
2363
2364         /* static rbd_device initialization */
2365         spin_lock_init(&rbd_dev->lock);
2366         INIT_LIST_HEAD(&rbd_dev->node);
2367         INIT_LIST_HEAD(&rbd_dev->snaps);
2368         init_rwsem(&rbd_dev->header_rwsem);
2369
2370         init_rwsem(&rbd_dev->header_rwsem);
2371
2372         /* generate unique id: find highest unique id, add one */
2373         rbd_id_get(rbd_dev);
2374
2375         /* Fill in the device name, now that we have its id. */
2376         BUILD_BUG_ON(DEV_NAME_LEN
2377                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
2378         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->id);
2379
2380         /* parse add command */
2381         rc = rbd_add_parse_args(rbd_dev, buf, &mon_addrs, &mon_addrs_size,
2382                                 options, count);
2383         if (rc)
2384                 goto err_put_id;
2385
2386         rbd_dev->rbd_client = rbd_get_client(mon_addrs, mon_addrs_size - 1,
2387                                                 options);
2388         if (IS_ERR(rbd_dev->rbd_client)) {
2389                 rc = PTR_ERR(rbd_dev->rbd_client);
2390                 goto err_put_id;
2391         }
2392
2393         /* pick the pool */
2394         osdc = &rbd_dev->rbd_client->client->osdc;
2395         rc = ceph_pg_poolid_by_name(osdc->osdmap, rbd_dev->pool_name);
2396         if (rc < 0)
2397                 goto err_out_client;
2398         rbd_dev->poolid = rc;
2399
2400         /* register our block device */
2401         rc = register_blkdev(0, rbd_dev->name);
2402         if (rc < 0)
2403                 goto err_out_client;
2404         rbd_dev->major = rc;
2405
2406         rc = rbd_bus_add_dev(rbd_dev);
2407         if (rc)
2408                 goto err_out_blkdev;
2409
2410         /*
2411          * At this point cleanup in the event of an error is the job
2412          * of the sysfs code (initiated by rbd_bus_del_dev()).
2413          *
2414          * Set up and announce blkdev mapping.
2415          */
2416         rc = rbd_init_disk(rbd_dev);
2417         if (rc)
2418                 goto err_out_bus;
2419
2420         rc = rbd_init_watch_dev(rbd_dev);
2421         if (rc)
2422                 goto err_out_bus;
2423
2424         return count;
2425
2426 err_out_bus:
2427         /* this will also clean up rest of rbd_dev stuff */
2428
2429         rbd_bus_del_dev(rbd_dev);
2430         kfree(options);
2431         return rc;
2432
2433 err_out_blkdev:
2434         unregister_blkdev(rbd_dev->major, rbd_dev->name);
2435 err_out_client:
2436         rbd_put_client(rbd_dev);
2437 err_put_id:
2438         rbd_id_put(rbd_dev);
2439 err_nomem:
2440         kfree(options);
2441         kfree(rbd_dev);
2442
2443         dout("Error adding device %s\n", buf);
2444         module_put(THIS_MODULE);
2445
2446         return (ssize_t) rc;
2447 }
2448
2449 static struct rbd_device *__rbd_get_dev(unsigned long id)
2450 {
2451         struct list_head *tmp;
2452         struct rbd_device *rbd_dev;
2453
2454         spin_lock(&rbd_dev_list_lock);
2455         list_for_each(tmp, &rbd_dev_list) {
2456                 rbd_dev = list_entry(tmp, struct rbd_device, node);
2457                 if (rbd_dev->id == id) {
2458                         spin_unlock(&rbd_dev_list_lock);
2459                         return rbd_dev;
2460                 }
2461         }
2462         spin_unlock(&rbd_dev_list_lock);
2463         return NULL;
2464 }
2465
2466 static void rbd_dev_release(struct device *dev)
2467 {
2468         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2469
2470         if (rbd_dev->watch_request) {
2471                 struct ceph_client *client = rbd_dev->rbd_client->client;
2472
2473                 ceph_osdc_unregister_linger_request(&client->osdc,
2474                                                     rbd_dev->watch_request);
2475         }
2476         if (rbd_dev->watch_event)
2477                 rbd_req_sync_unwatch(rbd_dev, rbd_dev->obj_md_name);
2478
2479         rbd_put_client(rbd_dev);
2480
2481         /* clean up and free blkdev */
2482         rbd_free_disk(rbd_dev);
2483         unregister_blkdev(rbd_dev->major, rbd_dev->name);
2484
2485         /* done with the id, and with the rbd_dev */
2486         rbd_id_put(rbd_dev);
2487         kfree(rbd_dev);
2488
2489         /* release module ref */
2490         module_put(THIS_MODULE);
2491 }
2492
2493 static ssize_t rbd_remove(struct bus_type *bus,
2494                           const char *buf,
2495                           size_t count)
2496 {
2497         struct rbd_device *rbd_dev = NULL;
2498         int target_id, rc;
2499         unsigned long ul;
2500         int ret = count;
2501
2502         rc = strict_strtoul(buf, 10, &ul);
2503         if (rc)
2504                 return rc;
2505
2506         /* convert to int; abort if we lost anything in the conversion */
2507         target_id = (int) ul;
2508         if (target_id != ul)
2509                 return -EINVAL;
2510
2511         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2512
2513         rbd_dev = __rbd_get_dev(target_id);
2514         if (!rbd_dev) {
2515                 ret = -ENOENT;
2516                 goto done;
2517         }
2518
2519         __rbd_remove_all_snaps(rbd_dev);
2520         rbd_bus_del_dev(rbd_dev);
2521
2522 done:
2523         mutex_unlock(&ctl_mutex);
2524         return ret;
2525 }
2526
2527 static ssize_t rbd_snap_add(struct device *dev,
2528                             struct device_attribute *attr,
2529                             const char *buf,
2530                             size_t count)
2531 {
2532         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2533         int ret;
2534         char *name = kmalloc(count + 1, GFP_KERNEL);
2535         if (!name)
2536                 return -ENOMEM;
2537
2538         snprintf(name, count, "%s", buf);
2539
2540         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2541
2542         ret = rbd_header_add_snap(rbd_dev,
2543                                   name, GFP_KERNEL);
2544         if (ret < 0)
2545                 goto err_unlock;
2546
2547         ret = __rbd_refresh_header(rbd_dev);
2548         if (ret < 0)
2549                 goto err_unlock;
2550
2551         /* shouldn't hold ctl_mutex when notifying.. notify might
2552            trigger a watch callback that would need to get that mutex */
2553         mutex_unlock(&ctl_mutex);
2554
2555         /* make a best effort, don't error if failed */
2556         rbd_req_sync_notify(rbd_dev, rbd_dev->obj_md_name);
2557
2558         ret = count;
2559         kfree(name);
2560         return ret;
2561
2562 err_unlock:
2563         mutex_unlock(&ctl_mutex);
2564         kfree(name);
2565         return ret;
2566 }
2567
2568 /*
2569  * create control files in sysfs
2570  * /sys/bus/rbd/...
2571  */
2572 static int rbd_sysfs_init(void)
2573 {
2574         int ret;
2575
2576         ret = device_register(&rbd_root_dev);
2577         if (ret < 0)
2578                 return ret;
2579
2580         ret = bus_register(&rbd_bus_type);
2581         if (ret < 0)
2582                 device_unregister(&rbd_root_dev);
2583
2584         return ret;
2585 }
2586
2587 static void rbd_sysfs_cleanup(void)
2588 {
2589         bus_unregister(&rbd_bus_type);
2590         device_unregister(&rbd_root_dev);
2591 }
2592
2593 int __init rbd_init(void)
2594 {
2595         int rc;
2596
2597         rc = rbd_sysfs_init();
2598         if (rc)
2599                 return rc;
2600         pr_info("loaded " RBD_DRV_NAME_LONG "\n");
2601         return 0;
2602 }
2603
2604 void __exit rbd_exit(void)
2605 {
2606         rbd_sysfs_cleanup();
2607 }
2608
2609 module_init(rbd_init);
2610 module_exit(rbd_exit);
2611
2612 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
2613 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
2614 MODULE_DESCRIPTION("rados block device");
2615
2616 /* following authorship retained from original osdblk.c */
2617 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
2618
2619 MODULE_LICENSE("GPL");