NVMe: Metadata format support
[pandora-kernel.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_Q_DEPTH            1024
46 #define NVME_AQ_DEPTH           64
47 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
48 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
49 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
50 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
51 #define IOD_TIMEOUT             (retry_time * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char retry_time = 30;
62 module_param(retry_time, byte, 0644);
63 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
64
65 static unsigned char shutdown_timeout = 5;
66 module_param(shutdown_timeout, byte, 0644);
67 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
68
69 static int nvme_major;
70 module_param(nvme_major, int, 0);
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static DEFINE_SPINLOCK(dev_list_lock);
76 static LIST_HEAD(dev_list);
77 static struct task_struct *nvme_thread;
78 static struct workqueue_struct *nvme_workq;
79 static wait_queue_head_t nvme_kthread_wait;
80 static struct notifier_block nvme_nb;
81
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84
85 struct async_cmd_info {
86         struct kthread_work work;
87         struct kthread_worker *worker;
88         struct request *req;
89         u32 result;
90         int status;
91         void *ctx;
92 };
93
94 /*
95  * An NVM Express queue.  Each device has at least two (one for admin
96  * commands and one for I/O commands).
97  */
98 struct nvme_queue {
99         struct llist_node node;
100         struct device *q_dmadev;
101         struct nvme_dev *dev;
102         char irqname[24];       /* nvme4294967295-65535\0 */
103         spinlock_t q_lock;
104         struct nvme_command *sq_cmds;
105         volatile struct nvme_completion *cqes;
106         dma_addr_t sq_dma_addr;
107         dma_addr_t cq_dma_addr;
108         u32 __iomem *q_db;
109         u16 q_depth;
110         s16 cq_vector;
111         u16 sq_head;
112         u16 sq_tail;
113         u16 cq_head;
114         u16 qid;
115         u8 cq_phase;
116         u8 cqe_seen;
117         struct async_cmd_info cmdinfo;
118         struct blk_mq_hw_ctx *hctx;
119 };
120
121 /*
122  * Check we didin't inadvertently grow the command struct
123  */
124 static inline void _nvme_check_size(void)
125 {
126         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
136         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
137         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
138 }
139
140 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
141                                                 struct nvme_completion *);
142
143 struct nvme_cmd_info {
144         nvme_completion_fn fn;
145         void *ctx;
146         int aborted;
147         struct nvme_queue *nvmeq;
148         struct nvme_iod iod[0];
149 };
150
151 /*
152  * Max size of iod being embedded in the request payload
153  */
154 #define NVME_INT_PAGES          2
155 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
156
157 /*
158  * Will slightly overestimate the number of pages needed.  This is OK
159  * as it only leads to a small amount of wasted memory for the lifetime of
160  * the I/O.
161  */
162 static int nvme_npages(unsigned size, struct nvme_dev *dev)
163 {
164         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
165         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
166 }
167
168 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
169 {
170         unsigned int ret = sizeof(struct nvme_cmd_info);
171
172         ret += sizeof(struct nvme_iod);
173         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
174         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
175
176         return ret;
177 }
178
179 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
180                                 unsigned int hctx_idx)
181 {
182         struct nvme_dev *dev = data;
183         struct nvme_queue *nvmeq = dev->queues[0];
184
185         WARN_ON(nvmeq->hctx);
186         nvmeq->hctx = hctx;
187         hctx->driver_data = nvmeq;
188         return 0;
189 }
190
191 static int nvme_admin_init_request(void *data, struct request *req,
192                                 unsigned int hctx_idx, unsigned int rq_idx,
193                                 unsigned int numa_node)
194 {
195         struct nvme_dev *dev = data;
196         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
197         struct nvme_queue *nvmeq = dev->queues[0];
198
199         BUG_ON(!nvmeq);
200         cmd->nvmeq = nvmeq;
201         return 0;
202 }
203
204 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
205 {
206         struct nvme_queue *nvmeq = hctx->driver_data;
207
208         nvmeq->hctx = NULL;
209 }
210
211 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212                           unsigned int hctx_idx)
213 {
214         struct nvme_dev *dev = data;
215         struct nvme_queue *nvmeq = dev->queues[
216                                         (hctx_idx % dev->queue_count) + 1];
217
218         if (!nvmeq->hctx)
219                 nvmeq->hctx = hctx;
220
221         /* nvmeq queues are shared between namespaces. We assume here that
222          * blk-mq map the tags so they match up with the nvme queue tags. */
223         WARN_ON(nvmeq->hctx->tags != hctx->tags);
224
225         hctx->driver_data = nvmeq;
226         return 0;
227 }
228
229 static int nvme_init_request(void *data, struct request *req,
230                                 unsigned int hctx_idx, unsigned int rq_idx,
231                                 unsigned int numa_node)
232 {
233         struct nvme_dev *dev = data;
234         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
235         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
236
237         BUG_ON(!nvmeq);
238         cmd->nvmeq = nvmeq;
239         return 0;
240 }
241
242 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
243                                 nvme_completion_fn handler)
244 {
245         cmd->fn = handler;
246         cmd->ctx = ctx;
247         cmd->aborted = 0;
248         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
249 }
250
251 static void *iod_get_private(struct nvme_iod *iod)
252 {
253         return (void *) (iod->private & ~0x1UL);
254 }
255
256 /*
257  * If bit 0 is set, the iod is embedded in the request payload.
258  */
259 static bool iod_should_kfree(struct nvme_iod *iod)
260 {
261         return (iod->private & 0x01) == 0;
262 }
263
264 /* Special values must be less than 0x1000 */
265 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
266 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
267 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
268 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
269
270 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
271                                                 struct nvme_completion *cqe)
272 {
273         if (ctx == CMD_CTX_CANCELLED)
274                 return;
275         if (ctx == CMD_CTX_COMPLETED) {
276                 dev_warn(nvmeq->q_dmadev,
277                                 "completed id %d twice on queue %d\n",
278                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
279                 return;
280         }
281         if (ctx == CMD_CTX_INVALID) {
282                 dev_warn(nvmeq->q_dmadev,
283                                 "invalid id %d completed on queue %d\n",
284                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285                 return;
286         }
287         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
288 }
289
290 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
291 {
292         void *ctx;
293
294         if (fn)
295                 *fn = cmd->fn;
296         ctx = cmd->ctx;
297         cmd->fn = special_completion;
298         cmd->ctx = CMD_CTX_CANCELLED;
299         return ctx;
300 }
301
302 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
303                                                 struct nvme_completion *cqe)
304 {
305         struct request *req = ctx;
306
307         u32 result = le32_to_cpup(&cqe->result);
308         u16 status = le16_to_cpup(&cqe->status) >> 1;
309
310         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
311                 ++nvmeq->dev->event_limit;
312         if (status == NVME_SC_SUCCESS)
313                 dev_warn(nvmeq->q_dmadev,
314                         "async event result %08x\n", result);
315
316         blk_mq_free_hctx_request(nvmeq->hctx, req);
317 }
318
319 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
320                                                 struct nvme_completion *cqe)
321 {
322         struct request *req = ctx;
323
324         u16 status = le16_to_cpup(&cqe->status) >> 1;
325         u32 result = le32_to_cpup(&cqe->result);
326
327         blk_mq_free_hctx_request(nvmeq->hctx, req);
328
329         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
330         ++nvmeq->dev->abort_limit;
331 }
332
333 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
334                                                 struct nvme_completion *cqe)
335 {
336         struct async_cmd_info *cmdinfo = ctx;
337         cmdinfo->result = le32_to_cpup(&cqe->result);
338         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
339         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
340         blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
341 }
342
343 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
344                                   unsigned int tag)
345 {
346         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
347         struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
348
349         return blk_mq_rq_to_pdu(req);
350 }
351
352 /*
353  * Called with local interrupts disabled and the q_lock held.  May not sleep.
354  */
355 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
356                                                 nvme_completion_fn *fn)
357 {
358         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
359         void *ctx;
360         if (tag >= nvmeq->q_depth) {
361                 *fn = special_completion;
362                 return CMD_CTX_INVALID;
363         }
364         if (fn)
365                 *fn = cmd->fn;
366         ctx = cmd->ctx;
367         cmd->fn = special_completion;
368         cmd->ctx = CMD_CTX_COMPLETED;
369         return ctx;
370 }
371
372 /**
373  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
374  * @nvmeq: The queue to use
375  * @cmd: The command to send
376  *
377  * Safe to use from interrupt context
378  */
379 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
380 {
381         u16 tail = nvmeq->sq_tail;
382
383         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
384         if (++tail == nvmeq->q_depth)
385                 tail = 0;
386         writel(tail, nvmeq->q_db);
387         nvmeq->sq_tail = tail;
388
389         return 0;
390 }
391
392 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
393 {
394         unsigned long flags;
395         int ret;
396         spin_lock_irqsave(&nvmeq->q_lock, flags);
397         ret = __nvme_submit_cmd(nvmeq, cmd);
398         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
399         return ret;
400 }
401
402 static __le64 **iod_list(struct nvme_iod *iod)
403 {
404         return ((void *)iod) + iod->offset;
405 }
406
407 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
408                             unsigned nseg, unsigned long private)
409 {
410         iod->private = private;
411         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
412         iod->npages = -1;
413         iod->length = nbytes;
414         iod->nents = 0;
415 }
416
417 static struct nvme_iod *
418 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
419                  unsigned long priv, gfp_t gfp)
420 {
421         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
422                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
423                                 sizeof(struct scatterlist) * nseg, gfp);
424
425         if (iod)
426                 iod_init(iod, bytes, nseg, priv);
427
428         return iod;
429 }
430
431 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
432                                        gfp_t gfp)
433 {
434         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
435                                                 sizeof(struct nvme_dsm_range);
436         unsigned long mask = 0;
437         struct nvme_iod *iod;
438
439         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
440             size <= NVME_INT_BYTES(dev)) {
441                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
442
443                 iod = cmd->iod;
444                 mask = 0x01;
445                 iod_init(iod, size, rq->nr_phys_segments,
446                                 (unsigned long) rq | 0x01);
447                 return iod;
448         }
449
450         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
451                                 (unsigned long) rq, gfp);
452 }
453
454 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
455 {
456         const int last_prp = dev->page_size / 8 - 1;
457         int i;
458         __le64 **list = iod_list(iod);
459         dma_addr_t prp_dma = iod->first_dma;
460
461         if (iod->npages == 0)
462                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
463         for (i = 0; i < iod->npages; i++) {
464                 __le64 *prp_list = list[i];
465                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
466                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
467                 prp_dma = next_prp_dma;
468         }
469
470         if (iod_should_kfree(iod))
471                 kfree(iod);
472 }
473
474 static int nvme_error_status(u16 status)
475 {
476         switch (status & 0x7ff) {
477         case NVME_SC_SUCCESS:
478                 return 0;
479         case NVME_SC_CAP_EXCEEDED:
480                 return -ENOSPC;
481         default:
482                 return -EIO;
483         }
484 }
485
486 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
487 {
488         if (be32_to_cpu(pi->ref_tag) == v)
489                 pi->ref_tag = cpu_to_be32(p);
490 }
491
492 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
493 {
494         if (be32_to_cpu(pi->ref_tag) == p)
495                 pi->ref_tag = cpu_to_be32(v);
496 }
497
498 /**
499  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
500  *
501  * The virtual start sector is the one that was originally submitted by the
502  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
503  * start sector may be different. Remap protection information to match the
504  * physical LBA on writes, and back to the original seed on reads.
505  *
506  * Type 0 and 3 do not have a ref tag, so no remapping required.
507  */
508 static void nvme_dif_remap(struct request *req,
509                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
510 {
511         struct nvme_ns *ns = req->rq_disk->private_data;
512         struct bio_integrity_payload *bip;
513         struct t10_pi_tuple *pi;
514         void *p, *pmap;
515         u32 i, nlb, ts, phys, virt;
516
517         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
518                 return;
519
520         bip = bio_integrity(req->bio);
521         if (!bip)
522                 return;
523
524         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
525         if (!pmap)
526                 return;
527
528         p = pmap;
529         virt = bip_get_seed(bip);
530         phys = nvme_block_nr(ns, blk_rq_pos(req));
531         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
532         ts = ns->disk->integrity->tuple_size;
533
534         for (i = 0; i < nlb; i++, virt++, phys++) {
535                 pi = (struct t10_pi_tuple *)p;
536                 dif_swap(phys, virt, pi);
537                 p += ts;
538         }
539         kunmap_atomic(pmap);
540 }
541
542 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
543                                                 struct nvme_completion *cqe)
544 {
545         struct nvme_iod *iod = ctx;
546         struct request *req = iod_get_private(iod);
547         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
548
549         u16 status = le16_to_cpup(&cqe->status) >> 1;
550
551         if (unlikely(status)) {
552                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
553                     && (jiffies - req->start_time) < req->timeout) {
554                         unsigned long flags;
555
556                         blk_mq_requeue_request(req);
557                         spin_lock_irqsave(req->q->queue_lock, flags);
558                         if (!blk_queue_stopped(req->q))
559                                 blk_mq_kick_requeue_list(req->q);
560                         spin_unlock_irqrestore(req->q->queue_lock, flags);
561                         return;
562                 }
563                 req->errors = nvme_error_status(status);
564         } else
565                 req->errors = 0;
566
567         if (cmd_rq->aborted)
568                 dev_warn(&nvmeq->dev->pci_dev->dev,
569                         "completing aborted command with status:%04x\n",
570                         status);
571
572         if (iod->nents) {
573                 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
574                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
575                 if (blk_integrity_rq(req)) {
576                         if (!rq_data_dir(req))
577                                 nvme_dif_remap(req, nvme_dif_complete);
578                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
579                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
580                 }
581         }
582         nvme_free_iod(nvmeq->dev, iod);
583
584         blk_mq_complete_request(req);
585 }
586
587 /* length is in bytes.  gfp flags indicates whether we may sleep. */
588 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
589                                                                 gfp_t gfp)
590 {
591         struct dma_pool *pool;
592         int length = total_len;
593         struct scatterlist *sg = iod->sg;
594         int dma_len = sg_dma_len(sg);
595         u64 dma_addr = sg_dma_address(sg);
596         int offset = offset_in_page(dma_addr);
597         __le64 *prp_list;
598         __le64 **list = iod_list(iod);
599         dma_addr_t prp_dma;
600         int nprps, i;
601         u32 page_size = dev->page_size;
602
603         length -= (page_size - offset);
604         if (length <= 0)
605                 return total_len;
606
607         dma_len -= (page_size - offset);
608         if (dma_len) {
609                 dma_addr += (page_size - offset);
610         } else {
611                 sg = sg_next(sg);
612                 dma_addr = sg_dma_address(sg);
613                 dma_len = sg_dma_len(sg);
614         }
615
616         if (length <= page_size) {
617                 iod->first_dma = dma_addr;
618                 return total_len;
619         }
620
621         nprps = DIV_ROUND_UP(length, page_size);
622         if (nprps <= (256 / 8)) {
623                 pool = dev->prp_small_pool;
624                 iod->npages = 0;
625         } else {
626                 pool = dev->prp_page_pool;
627                 iod->npages = 1;
628         }
629
630         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
631         if (!prp_list) {
632                 iod->first_dma = dma_addr;
633                 iod->npages = -1;
634                 return (total_len - length) + page_size;
635         }
636         list[0] = prp_list;
637         iod->first_dma = prp_dma;
638         i = 0;
639         for (;;) {
640                 if (i == page_size >> 3) {
641                         __le64 *old_prp_list = prp_list;
642                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
643                         if (!prp_list)
644                                 return total_len - length;
645                         list[iod->npages++] = prp_list;
646                         prp_list[0] = old_prp_list[i - 1];
647                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
648                         i = 1;
649                 }
650                 prp_list[i++] = cpu_to_le64(dma_addr);
651                 dma_len -= page_size;
652                 dma_addr += page_size;
653                 length -= page_size;
654                 if (length <= 0)
655                         break;
656                 if (dma_len > 0)
657                         continue;
658                 BUG_ON(dma_len < 0);
659                 sg = sg_next(sg);
660                 dma_addr = sg_dma_address(sg);
661                 dma_len = sg_dma_len(sg);
662         }
663
664         return total_len;
665 }
666
667 /*
668  * We reuse the small pool to allocate the 16-byte range here as it is not
669  * worth having a special pool for these or additional cases to handle freeing
670  * the iod.
671  */
672 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
673                 struct request *req, struct nvme_iod *iod)
674 {
675         struct nvme_dsm_range *range =
676                                 (struct nvme_dsm_range *)iod_list(iod)[0];
677         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
678
679         range->cattr = cpu_to_le32(0);
680         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
681         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
682
683         memset(cmnd, 0, sizeof(*cmnd));
684         cmnd->dsm.opcode = nvme_cmd_dsm;
685         cmnd->dsm.command_id = req->tag;
686         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
687         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
688         cmnd->dsm.nr = 0;
689         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
690
691         if (++nvmeq->sq_tail == nvmeq->q_depth)
692                 nvmeq->sq_tail = 0;
693         writel(nvmeq->sq_tail, nvmeq->q_db);
694 }
695
696 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
697                                                                 int cmdid)
698 {
699         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
700
701         memset(cmnd, 0, sizeof(*cmnd));
702         cmnd->common.opcode = nvme_cmd_flush;
703         cmnd->common.command_id = cmdid;
704         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
705
706         if (++nvmeq->sq_tail == nvmeq->q_depth)
707                 nvmeq->sq_tail = 0;
708         writel(nvmeq->sq_tail, nvmeq->q_db);
709 }
710
711 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
712                                                         struct nvme_ns *ns)
713 {
714         struct request *req = iod_get_private(iod);
715         struct nvme_command *cmnd;
716         u16 control = 0;
717         u32 dsmgmt = 0;
718
719         if (req->cmd_flags & REQ_FUA)
720                 control |= NVME_RW_FUA;
721         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
722                 control |= NVME_RW_LR;
723
724         if (req->cmd_flags & REQ_RAHEAD)
725                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
726
727         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
728         memset(cmnd, 0, sizeof(*cmnd));
729
730         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
731         cmnd->rw.command_id = req->tag;
732         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
733         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
734         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
735         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
736         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
737
738         if (blk_integrity_rq(req)) {
739                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
740                 switch (ns->pi_type) {
741                 case NVME_NS_DPS_PI_TYPE3:
742                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
743                         break;
744                 case NVME_NS_DPS_PI_TYPE1:
745                 case NVME_NS_DPS_PI_TYPE2:
746                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
747                                         NVME_RW_PRINFO_PRCHK_REF;
748                         cmnd->rw.reftag = cpu_to_le32(
749                                         nvme_block_nr(ns, blk_rq_pos(req)));
750                         break;
751                 }
752         } else if (ns->ms)
753                 control |= NVME_RW_PRINFO_PRACT;
754
755         cmnd->rw.control = cpu_to_le16(control);
756         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
757
758         if (++nvmeq->sq_tail == nvmeq->q_depth)
759                 nvmeq->sq_tail = 0;
760         writel(nvmeq->sq_tail, nvmeq->q_db);
761
762         return 0;
763 }
764
765 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
766                          const struct blk_mq_queue_data *bd)
767 {
768         struct nvme_ns *ns = hctx->queue->queuedata;
769         struct nvme_queue *nvmeq = hctx->driver_data;
770         struct request *req = bd->rq;
771         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
772         struct nvme_iod *iod;
773         enum dma_data_direction dma_dir;
774
775         /*
776          * If formated with metadata, require the block layer provide a buffer
777          * unless this namespace is formated such that the metadata can be
778          * stripped/generated by the controller with PRACT=1.
779          */
780         if (ns->ms && !blk_integrity_rq(req)) {
781                 if (!(ns->pi_type && ns->ms == 8)) {
782                         req->errors = -EFAULT;
783                         blk_mq_complete_request(req);
784                         return BLK_MQ_RQ_QUEUE_OK;
785                 }
786         }
787
788         iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
789         if (!iod)
790                 return BLK_MQ_RQ_QUEUE_BUSY;
791
792         if (req->cmd_flags & REQ_DISCARD) {
793                 void *range;
794                 /*
795                  * We reuse the small pool to allocate the 16-byte range here
796                  * as it is not worth having a special pool for these or
797                  * additional cases to handle freeing the iod.
798                  */
799                 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
800                                                 GFP_ATOMIC,
801                                                 &iod->first_dma);
802                 if (!range)
803                         goto retry_cmd;
804                 iod_list(iod)[0] = (__le64 *)range;
805                 iod->npages = 0;
806         } else if (req->nr_phys_segments) {
807                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
808
809                 sg_init_table(iod->sg, req->nr_phys_segments);
810                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
811                 if (!iod->nents)
812                         goto error_cmd;
813
814                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
815                         goto retry_cmd;
816
817                 if (blk_rq_bytes(req) !=
818                     nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
819                         dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
820                                         iod->nents, dma_dir);
821                         goto retry_cmd;
822                 }
823                 if (blk_integrity_rq(req)) {
824                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
825                                 goto error_cmd;
826
827                         sg_init_table(iod->meta_sg, 1);
828                         if (blk_rq_map_integrity_sg(
829                                         req->q, req->bio, iod->meta_sg) != 1)
830                                 goto error_cmd;
831
832                         if (rq_data_dir(req))
833                                 nvme_dif_remap(req, nvme_dif_prep);
834
835                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
836                                 goto error_cmd;
837                 }
838         }
839
840         nvme_set_info(cmd, iod, req_completion);
841         spin_lock_irq(&nvmeq->q_lock);
842         if (req->cmd_flags & REQ_DISCARD)
843                 nvme_submit_discard(nvmeq, ns, req, iod);
844         else if (req->cmd_flags & REQ_FLUSH)
845                 nvme_submit_flush(nvmeq, ns, req->tag);
846         else
847                 nvme_submit_iod(nvmeq, iod, ns);
848
849         nvme_process_cq(nvmeq);
850         spin_unlock_irq(&nvmeq->q_lock);
851         return BLK_MQ_RQ_QUEUE_OK;
852
853  error_cmd:
854         nvme_free_iod(nvmeq->dev, iod);
855         return BLK_MQ_RQ_QUEUE_ERROR;
856  retry_cmd:
857         nvme_free_iod(nvmeq->dev, iod);
858         return BLK_MQ_RQ_QUEUE_BUSY;
859 }
860
861 static int nvme_process_cq(struct nvme_queue *nvmeq)
862 {
863         u16 head, phase;
864
865         head = nvmeq->cq_head;
866         phase = nvmeq->cq_phase;
867
868         for (;;) {
869                 void *ctx;
870                 nvme_completion_fn fn;
871                 struct nvme_completion cqe = nvmeq->cqes[head];
872                 if ((le16_to_cpu(cqe.status) & 1) != phase)
873                         break;
874                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
875                 if (++head == nvmeq->q_depth) {
876                         head = 0;
877                         phase = !phase;
878                 }
879                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
880                 fn(nvmeq, ctx, &cqe);
881         }
882
883         /* If the controller ignores the cq head doorbell and continuously
884          * writes to the queue, it is theoretically possible to wrap around
885          * the queue twice and mistakenly return IRQ_NONE.  Linux only
886          * requires that 0.1% of your interrupts are handled, so this isn't
887          * a big problem.
888          */
889         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
890                 return 0;
891
892         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
893         nvmeq->cq_head = head;
894         nvmeq->cq_phase = phase;
895
896         nvmeq->cqe_seen = 1;
897         return 1;
898 }
899
900 /* Admin queue isn't initialized as a request queue. If at some point this
901  * happens anyway, make sure to notify the user */
902 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
903                                const struct blk_mq_queue_data *bd)
904 {
905         WARN_ON_ONCE(1);
906         return BLK_MQ_RQ_QUEUE_ERROR;
907 }
908
909 static irqreturn_t nvme_irq(int irq, void *data)
910 {
911         irqreturn_t result;
912         struct nvme_queue *nvmeq = data;
913         spin_lock(&nvmeq->q_lock);
914         nvme_process_cq(nvmeq);
915         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
916         nvmeq->cqe_seen = 0;
917         spin_unlock(&nvmeq->q_lock);
918         return result;
919 }
920
921 static irqreturn_t nvme_irq_check(int irq, void *data)
922 {
923         struct nvme_queue *nvmeq = data;
924         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
925         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
926                 return IRQ_NONE;
927         return IRQ_WAKE_THREAD;
928 }
929
930 static void nvme_abort_cmd_info(struct nvme_queue *nvmeq, struct nvme_cmd_info *
931                                                                 cmd_info)
932 {
933         spin_lock_irq(&nvmeq->q_lock);
934         cancel_cmd_info(cmd_info, NULL);
935         spin_unlock_irq(&nvmeq->q_lock);
936 }
937
938 struct sync_cmd_info {
939         struct task_struct *task;
940         u32 result;
941         int status;
942 };
943
944 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
945                                                 struct nvme_completion *cqe)
946 {
947         struct sync_cmd_info *cmdinfo = ctx;
948         cmdinfo->result = le32_to_cpup(&cqe->result);
949         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
950         wake_up_process(cmdinfo->task);
951 }
952
953 /*
954  * Returns 0 on success.  If the result is negative, it's a Linux error code;
955  * if the result is positive, it's an NVM Express status code
956  */
957 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
958                                                 u32 *result, unsigned timeout)
959 {
960         int ret;
961         struct sync_cmd_info cmdinfo;
962         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
963         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
964
965         cmdinfo.task = current;
966         cmdinfo.status = -EINTR;
967
968         cmd->common.command_id = req->tag;
969
970         nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
971
972         set_current_state(TASK_KILLABLE);
973         ret = nvme_submit_cmd(nvmeq, cmd);
974         if (ret) {
975                 nvme_finish_cmd(nvmeq, req->tag, NULL);
976                 set_current_state(TASK_RUNNING);
977         }
978         ret = schedule_timeout(timeout);
979
980         /*
981          * Ensure that sync_completion has either run, or that it will
982          * never run.
983          */
984         nvme_abort_cmd_info(nvmeq, blk_mq_rq_to_pdu(req));
985
986         /*
987          * We never got the completion
988          */
989         if (cmdinfo.status == -EINTR)
990                 return -EINTR;
991
992         if (result)
993                 *result = cmdinfo.result;
994
995         return cmdinfo.status;
996 }
997
998 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
999 {
1000         struct nvme_queue *nvmeq = dev->queues[0];
1001         struct nvme_command c;
1002         struct nvme_cmd_info *cmd_info;
1003         struct request *req;
1004
1005         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
1006         if (IS_ERR(req))
1007                 return PTR_ERR(req);
1008
1009         req->cmd_flags |= REQ_NO_TIMEOUT;
1010         cmd_info = blk_mq_rq_to_pdu(req);
1011         nvme_set_info(cmd_info, req, async_req_completion);
1012
1013         memset(&c, 0, sizeof(c));
1014         c.common.opcode = nvme_admin_async_event;
1015         c.common.command_id = req->tag;
1016
1017         return __nvme_submit_cmd(nvmeq, &c);
1018 }
1019
1020 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1021                         struct nvme_command *cmd,
1022                         struct async_cmd_info *cmdinfo, unsigned timeout)
1023 {
1024         struct nvme_queue *nvmeq = dev->queues[0];
1025         struct request *req;
1026         struct nvme_cmd_info *cmd_rq;
1027
1028         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1029         if (IS_ERR(req))
1030                 return PTR_ERR(req);
1031
1032         req->timeout = timeout;
1033         cmd_rq = blk_mq_rq_to_pdu(req);
1034         cmdinfo->req = req;
1035         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1036         cmdinfo->status = -EINTR;
1037
1038         cmd->common.command_id = req->tag;
1039
1040         return nvme_submit_cmd(nvmeq, cmd);
1041 }
1042
1043 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1044                                                 u32 *result, unsigned timeout)
1045 {
1046         int res;
1047         struct request *req;
1048
1049         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1050         if (IS_ERR(req))
1051                 return PTR_ERR(req);
1052         res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1053         blk_mq_free_request(req);
1054         return res;
1055 }
1056
1057 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1058                                                                 u32 *result)
1059 {
1060         return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1061 }
1062
1063 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1064                                         struct nvme_command *cmd, u32 *result)
1065 {
1066         int res;
1067         struct request *req;
1068
1069         req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1070                                                                         false);
1071         if (IS_ERR(req))
1072                 return PTR_ERR(req);
1073         res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1074         blk_mq_free_request(req);
1075         return res;
1076 }
1077
1078 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1079 {
1080         struct nvme_command c;
1081
1082         memset(&c, 0, sizeof(c));
1083         c.delete_queue.opcode = opcode;
1084         c.delete_queue.qid = cpu_to_le16(id);
1085
1086         return nvme_submit_admin_cmd(dev, &c, NULL);
1087 }
1088
1089 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1090                                                 struct nvme_queue *nvmeq)
1091 {
1092         struct nvme_command c;
1093         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1094
1095         memset(&c, 0, sizeof(c));
1096         c.create_cq.opcode = nvme_admin_create_cq;
1097         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1098         c.create_cq.cqid = cpu_to_le16(qid);
1099         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1100         c.create_cq.cq_flags = cpu_to_le16(flags);
1101         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1102
1103         return nvme_submit_admin_cmd(dev, &c, NULL);
1104 }
1105
1106 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1107                                                 struct nvme_queue *nvmeq)
1108 {
1109         struct nvme_command c;
1110         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1111
1112         memset(&c, 0, sizeof(c));
1113         c.create_sq.opcode = nvme_admin_create_sq;
1114         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1115         c.create_sq.sqid = cpu_to_le16(qid);
1116         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1117         c.create_sq.sq_flags = cpu_to_le16(flags);
1118         c.create_sq.cqid = cpu_to_le16(qid);
1119
1120         return nvme_submit_admin_cmd(dev, &c, NULL);
1121 }
1122
1123 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1124 {
1125         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1126 }
1127
1128 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1129 {
1130         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1131 }
1132
1133 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1134                                                         dma_addr_t dma_addr)
1135 {
1136         struct nvme_command c;
1137
1138         memset(&c, 0, sizeof(c));
1139         c.identify.opcode = nvme_admin_identify;
1140         c.identify.nsid = cpu_to_le32(nsid);
1141         c.identify.prp1 = cpu_to_le64(dma_addr);
1142         c.identify.cns = cpu_to_le32(cns);
1143
1144         return nvme_submit_admin_cmd(dev, &c, NULL);
1145 }
1146
1147 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1148                                         dma_addr_t dma_addr, u32 *result)
1149 {
1150         struct nvme_command c;
1151
1152         memset(&c, 0, sizeof(c));
1153         c.features.opcode = nvme_admin_get_features;
1154         c.features.nsid = cpu_to_le32(nsid);
1155         c.features.prp1 = cpu_to_le64(dma_addr);
1156         c.features.fid = cpu_to_le32(fid);
1157
1158         return nvme_submit_admin_cmd(dev, &c, result);
1159 }
1160
1161 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1162                                         dma_addr_t dma_addr, u32 *result)
1163 {
1164         struct nvme_command c;
1165
1166         memset(&c, 0, sizeof(c));
1167         c.features.opcode = nvme_admin_set_features;
1168         c.features.prp1 = cpu_to_le64(dma_addr);
1169         c.features.fid = cpu_to_le32(fid);
1170         c.features.dword11 = cpu_to_le32(dword11);
1171
1172         return nvme_submit_admin_cmd(dev, &c, result);
1173 }
1174
1175 /**
1176  * nvme_abort_req - Attempt aborting a request
1177  *
1178  * Schedule controller reset if the command was already aborted once before and
1179  * still hasn't been returned to the driver, or if this is the admin queue.
1180  */
1181 static void nvme_abort_req(struct request *req)
1182 {
1183         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1184         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1185         struct nvme_dev *dev = nvmeq->dev;
1186         struct request *abort_req;
1187         struct nvme_cmd_info *abort_cmd;
1188         struct nvme_command cmd;
1189
1190         if (!nvmeq->qid || cmd_rq->aborted) {
1191                 unsigned long flags;
1192
1193                 spin_lock_irqsave(&dev_list_lock, flags);
1194                 if (work_busy(&dev->reset_work))
1195                         goto out;
1196                 list_del_init(&dev->node);
1197                 dev_warn(&dev->pci_dev->dev,
1198                         "I/O %d QID %d timeout, reset controller\n",
1199                                                         req->tag, nvmeq->qid);
1200                 dev->reset_workfn = nvme_reset_failed_dev;
1201                 queue_work(nvme_workq, &dev->reset_work);
1202  out:
1203                 spin_unlock_irqrestore(&dev_list_lock, flags);
1204                 return;
1205         }
1206
1207         if (!dev->abort_limit)
1208                 return;
1209
1210         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1211                                                                         false);
1212         if (IS_ERR(abort_req))
1213                 return;
1214
1215         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1216         nvme_set_info(abort_cmd, abort_req, abort_completion);
1217
1218         memset(&cmd, 0, sizeof(cmd));
1219         cmd.abort.opcode = nvme_admin_abort_cmd;
1220         cmd.abort.cid = req->tag;
1221         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1222         cmd.abort.command_id = abort_req->tag;
1223
1224         --dev->abort_limit;
1225         cmd_rq->aborted = 1;
1226
1227         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1228                                                         nvmeq->qid);
1229         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1230                 dev_warn(nvmeq->q_dmadev,
1231                                 "Could not abort I/O %d QID %d",
1232                                 req->tag, nvmeq->qid);
1233                 blk_mq_free_request(abort_req);
1234         }
1235 }
1236
1237 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1238                                 struct request *req, void *data, bool reserved)
1239 {
1240         struct nvme_queue *nvmeq = data;
1241         void *ctx;
1242         nvme_completion_fn fn;
1243         struct nvme_cmd_info *cmd;
1244         struct nvme_completion cqe;
1245
1246         if (!blk_mq_request_started(req))
1247                 return;
1248
1249         cmd = blk_mq_rq_to_pdu(req);
1250
1251         if (cmd->ctx == CMD_CTX_CANCELLED)
1252                 return;
1253
1254         if (blk_queue_dying(req->q))
1255                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1256         else
1257                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1258
1259
1260         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1261                                                 req->tag, nvmeq->qid);
1262         ctx = cancel_cmd_info(cmd, &fn);
1263         fn(nvmeq, ctx, &cqe);
1264 }
1265
1266 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1267 {
1268         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1269         struct nvme_queue *nvmeq = cmd->nvmeq;
1270
1271         /*
1272          * The aborted req will be completed on receiving the abort req.
1273          * We enable the timer again. If hit twice, it'll cause a device reset,
1274          * as the device then is in a faulty state.
1275          */
1276         int ret = BLK_EH_RESET_TIMER;
1277
1278         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1279                                                         nvmeq->qid);
1280
1281         spin_lock_irq(&nvmeq->q_lock);
1282         if (!nvmeq->dev->initialized) {
1283                 /*
1284                  * Force cancelled command frees the request, which requires we
1285                  * return BLK_EH_NOT_HANDLED.
1286                  */
1287                 nvme_cancel_queue_ios(nvmeq->hctx, req, nvmeq, reserved);
1288                 ret = BLK_EH_NOT_HANDLED;
1289         } else
1290                 nvme_abort_req(req);
1291         spin_unlock_irq(&nvmeq->q_lock);
1292
1293         return ret;
1294 }
1295
1296 static void nvme_free_queue(struct nvme_queue *nvmeq)
1297 {
1298         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1299                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1300         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1301                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1302         kfree(nvmeq);
1303 }
1304
1305 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1306 {
1307         int i;
1308
1309         for (i = dev->queue_count - 1; i >= lowest; i--) {
1310                 struct nvme_queue *nvmeq = dev->queues[i];
1311                 dev->queue_count--;
1312                 dev->queues[i] = NULL;
1313                 nvme_free_queue(nvmeq);
1314         }
1315 }
1316
1317 /**
1318  * nvme_suspend_queue - put queue into suspended state
1319  * @nvmeq - queue to suspend
1320  */
1321 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1322 {
1323         int vector;
1324
1325         spin_lock_irq(&nvmeq->q_lock);
1326         if (nvmeq->cq_vector == -1) {
1327                 spin_unlock_irq(&nvmeq->q_lock);
1328                 return 1;
1329         }
1330         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1331         nvmeq->dev->online_queues--;
1332         nvmeq->cq_vector = -1;
1333         spin_unlock_irq(&nvmeq->q_lock);
1334
1335         irq_set_affinity_hint(vector, NULL);
1336         free_irq(vector, nvmeq);
1337
1338         return 0;
1339 }
1340
1341 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1342 {
1343         struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1344
1345         spin_lock_irq(&nvmeq->q_lock);
1346         nvme_process_cq(nvmeq);
1347         if (hctx && hctx->tags)
1348                 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1349         spin_unlock_irq(&nvmeq->q_lock);
1350 }
1351
1352 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1353 {
1354         struct nvme_queue *nvmeq = dev->queues[qid];
1355
1356         if (!nvmeq)
1357                 return;
1358         if (nvme_suspend_queue(nvmeq))
1359                 return;
1360
1361         /* Don't tell the adapter to delete the admin queue.
1362          * Don't tell a removed adapter to delete IO queues. */
1363         if (qid && readl(&dev->bar->csts) != -1) {
1364                 adapter_delete_sq(dev, qid);
1365                 adapter_delete_cq(dev, qid);
1366         }
1367         if (!qid && dev->admin_q)
1368                 blk_mq_freeze_queue_start(dev->admin_q);
1369         nvme_clear_queue(nvmeq);
1370 }
1371
1372 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1373                                                         int depth)
1374 {
1375         struct device *dmadev = &dev->pci_dev->dev;
1376         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1377         if (!nvmeq)
1378                 return NULL;
1379
1380         nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1381                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1382         if (!nvmeq->cqes)
1383                 goto free_nvmeq;
1384
1385         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1386                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1387         if (!nvmeq->sq_cmds)
1388                 goto free_cqdma;
1389
1390         nvmeq->q_dmadev = dmadev;
1391         nvmeq->dev = dev;
1392         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1393                         dev->instance, qid);
1394         spin_lock_init(&nvmeq->q_lock);
1395         nvmeq->cq_head = 0;
1396         nvmeq->cq_phase = 1;
1397         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1398         nvmeq->q_depth = depth;
1399         nvmeq->qid = qid;
1400         dev->queue_count++;
1401         dev->queues[qid] = nvmeq;
1402
1403         return nvmeq;
1404
1405  free_cqdma:
1406         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1407                                                         nvmeq->cq_dma_addr);
1408  free_nvmeq:
1409         kfree(nvmeq);
1410         return NULL;
1411 }
1412
1413 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1414                                                         const char *name)
1415 {
1416         if (use_threaded_interrupts)
1417                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1418                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1419                                         name, nvmeq);
1420         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1421                                 IRQF_SHARED, name, nvmeq);
1422 }
1423
1424 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1425 {
1426         struct nvme_dev *dev = nvmeq->dev;
1427
1428         spin_lock_irq(&nvmeq->q_lock);
1429         nvmeq->sq_tail = 0;
1430         nvmeq->cq_head = 0;
1431         nvmeq->cq_phase = 1;
1432         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1433         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1434         dev->online_queues++;
1435         spin_unlock_irq(&nvmeq->q_lock);
1436 }
1437
1438 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1439 {
1440         struct nvme_dev *dev = nvmeq->dev;
1441         int result;
1442
1443         nvmeq->cq_vector = qid - 1;
1444         result = adapter_alloc_cq(dev, qid, nvmeq);
1445         if (result < 0)
1446                 return result;
1447
1448         result = adapter_alloc_sq(dev, qid, nvmeq);
1449         if (result < 0)
1450                 goto release_cq;
1451
1452         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1453         if (result < 0)
1454                 goto release_sq;
1455
1456         nvme_init_queue(nvmeq, qid);
1457         return result;
1458
1459  release_sq:
1460         adapter_delete_sq(dev, qid);
1461  release_cq:
1462         adapter_delete_cq(dev, qid);
1463         return result;
1464 }
1465
1466 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1467 {
1468         unsigned long timeout;
1469         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1470
1471         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1472
1473         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1474                 msleep(100);
1475                 if (fatal_signal_pending(current))
1476                         return -EINTR;
1477                 if (time_after(jiffies, timeout)) {
1478                         dev_err(&dev->pci_dev->dev,
1479                                 "Device not ready; aborting %s\n", enabled ?
1480                                                 "initialisation" : "reset");
1481                         return -ENODEV;
1482                 }
1483         }
1484
1485         return 0;
1486 }
1487
1488 /*
1489  * If the device has been passed off to us in an enabled state, just clear
1490  * the enabled bit.  The spec says we should set the 'shutdown notification
1491  * bits', but doing so may cause the device to complete commands to the
1492  * admin queue ... and we don't know what memory that might be pointing at!
1493  */
1494 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1495 {
1496         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1497         dev->ctrl_config &= ~NVME_CC_ENABLE;
1498         writel(dev->ctrl_config, &dev->bar->cc);
1499
1500         return nvme_wait_ready(dev, cap, false);
1501 }
1502
1503 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1504 {
1505         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1506         dev->ctrl_config |= NVME_CC_ENABLE;
1507         writel(dev->ctrl_config, &dev->bar->cc);
1508
1509         return nvme_wait_ready(dev, cap, true);
1510 }
1511
1512 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1513 {
1514         unsigned long timeout;
1515
1516         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1517         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1518
1519         writel(dev->ctrl_config, &dev->bar->cc);
1520
1521         timeout = SHUTDOWN_TIMEOUT + jiffies;
1522         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1523                                                         NVME_CSTS_SHST_CMPLT) {
1524                 msleep(100);
1525                 if (fatal_signal_pending(current))
1526                         return -EINTR;
1527                 if (time_after(jiffies, timeout)) {
1528                         dev_err(&dev->pci_dev->dev,
1529                                 "Device shutdown incomplete; abort shutdown\n");
1530                         return -ENODEV;
1531                 }
1532         }
1533
1534         return 0;
1535 }
1536
1537 static struct blk_mq_ops nvme_mq_admin_ops = {
1538         .queue_rq       = nvme_admin_queue_rq,
1539         .map_queue      = blk_mq_map_queue,
1540         .init_hctx      = nvme_admin_init_hctx,
1541         .exit_hctx      = nvme_exit_hctx,
1542         .init_request   = nvme_admin_init_request,
1543         .timeout        = nvme_timeout,
1544 };
1545
1546 static struct blk_mq_ops nvme_mq_ops = {
1547         .queue_rq       = nvme_queue_rq,
1548         .map_queue      = blk_mq_map_queue,
1549         .init_hctx      = nvme_init_hctx,
1550         .exit_hctx      = nvme_exit_hctx,
1551         .init_request   = nvme_init_request,
1552         .timeout        = nvme_timeout,
1553 };
1554
1555 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1556 {
1557         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1558                 blk_cleanup_queue(dev->admin_q);
1559                 blk_mq_free_tag_set(&dev->admin_tagset);
1560         }
1561 }
1562
1563 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1564 {
1565         if (!dev->admin_q) {
1566                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1567                 dev->admin_tagset.nr_hw_queues = 1;
1568                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1569                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1570                 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1571                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1572                 dev->admin_tagset.driver_data = dev;
1573
1574                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1575                         return -ENOMEM;
1576
1577                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1578                 if (IS_ERR(dev->admin_q)) {
1579                         blk_mq_free_tag_set(&dev->admin_tagset);
1580                         return -ENOMEM;
1581                 }
1582                 if (!blk_get_queue(dev->admin_q)) {
1583                         nvme_dev_remove_admin(dev);
1584                         return -ENODEV;
1585                 }
1586         } else
1587                 blk_mq_unfreeze_queue(dev->admin_q);
1588
1589         return 0;
1590 }
1591
1592 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1593 {
1594         int result;
1595         u32 aqa;
1596         u64 cap = readq(&dev->bar->cap);
1597         struct nvme_queue *nvmeq;
1598         unsigned page_shift = PAGE_SHIFT;
1599         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1600         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1601
1602         if (page_shift < dev_page_min) {
1603                 dev_err(&dev->pci_dev->dev,
1604                                 "Minimum device page size (%u) too large for "
1605                                 "host (%u)\n", 1 << dev_page_min,
1606                                 1 << page_shift);
1607                 return -ENODEV;
1608         }
1609         if (page_shift > dev_page_max) {
1610                 dev_info(&dev->pci_dev->dev,
1611                                 "Device maximum page size (%u) smaller than "
1612                                 "host (%u); enabling work-around\n",
1613                                 1 << dev_page_max, 1 << page_shift);
1614                 page_shift = dev_page_max;
1615         }
1616
1617         result = nvme_disable_ctrl(dev, cap);
1618         if (result < 0)
1619                 return result;
1620
1621         nvmeq = dev->queues[0];
1622         if (!nvmeq) {
1623                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1624                 if (!nvmeq)
1625                         return -ENOMEM;
1626         }
1627
1628         aqa = nvmeq->q_depth - 1;
1629         aqa |= aqa << 16;
1630
1631         dev->page_size = 1 << page_shift;
1632
1633         dev->ctrl_config = NVME_CC_CSS_NVM;
1634         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1635         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1636         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1637
1638         writel(aqa, &dev->bar->aqa);
1639         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1640         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1641
1642         result = nvme_enable_ctrl(dev, cap);
1643         if (result)
1644                 goto free_nvmeq;
1645
1646         nvmeq->cq_vector = 0;
1647         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1648         if (result)
1649                 goto free_nvmeq;
1650
1651         return result;
1652
1653  free_nvmeq:
1654         nvme_free_queues(dev, 0);
1655         return result;
1656 }
1657
1658 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1659                                 unsigned long addr, unsigned length)
1660 {
1661         int i, err, count, nents, offset;
1662         struct scatterlist *sg;
1663         struct page **pages;
1664         struct nvme_iod *iod;
1665
1666         if (addr & 3)
1667                 return ERR_PTR(-EINVAL);
1668         if (!length || length > INT_MAX - PAGE_SIZE)
1669                 return ERR_PTR(-EINVAL);
1670
1671         offset = offset_in_page(addr);
1672         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1673         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1674         if (!pages)
1675                 return ERR_PTR(-ENOMEM);
1676
1677         err = get_user_pages_fast(addr, count, 1, pages);
1678         if (err < count) {
1679                 count = err;
1680                 err = -EFAULT;
1681                 goto put_pages;
1682         }
1683
1684         err = -ENOMEM;
1685         iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1686         if (!iod)
1687                 goto put_pages;
1688
1689         sg = iod->sg;
1690         sg_init_table(sg, count);
1691         for (i = 0; i < count; i++) {
1692                 sg_set_page(&sg[i], pages[i],
1693                             min_t(unsigned, length, PAGE_SIZE - offset),
1694                             offset);
1695                 length -= (PAGE_SIZE - offset);
1696                 offset = 0;
1697         }
1698         sg_mark_end(&sg[i - 1]);
1699         iod->nents = count;
1700
1701         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1702                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1703         if (!nents)
1704                 goto free_iod;
1705
1706         kfree(pages);
1707         return iod;
1708
1709  free_iod:
1710         kfree(iod);
1711  put_pages:
1712         for (i = 0; i < count; i++)
1713                 put_page(pages[i]);
1714         kfree(pages);
1715         return ERR_PTR(err);
1716 }
1717
1718 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1719                         struct nvme_iod *iod)
1720 {
1721         int i;
1722
1723         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1724                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1725
1726         for (i = 0; i < iod->nents; i++)
1727                 put_page(sg_page(&iod->sg[i]));
1728 }
1729
1730 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1731 {
1732         struct nvme_dev *dev = ns->dev;
1733         struct nvme_user_io io;
1734         struct nvme_command c;
1735         unsigned length, meta_len;
1736         int status, i;
1737         struct nvme_iod *iod, *meta_iod = NULL;
1738         dma_addr_t meta_dma_addr;
1739         void *meta, *uninitialized_var(meta_mem);
1740
1741         if (copy_from_user(&io, uio, sizeof(io)))
1742                 return -EFAULT;
1743         length = (io.nblocks + 1) << ns->lba_shift;
1744         meta_len = (io.nblocks + 1) * ns->ms;
1745
1746         if (meta_len && ((io.metadata & 3) || !io.metadata))
1747                 return -EINVAL;
1748
1749         switch (io.opcode) {
1750         case nvme_cmd_write:
1751         case nvme_cmd_read:
1752         case nvme_cmd_compare:
1753                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1754                 break;
1755         default:
1756                 return -EINVAL;
1757         }
1758
1759         if (IS_ERR(iod))
1760                 return PTR_ERR(iod);
1761
1762         memset(&c, 0, sizeof(c));
1763         c.rw.opcode = io.opcode;
1764         c.rw.flags = io.flags;
1765         c.rw.nsid = cpu_to_le32(ns->ns_id);
1766         c.rw.slba = cpu_to_le64(io.slba);
1767         c.rw.length = cpu_to_le16(io.nblocks);
1768         c.rw.control = cpu_to_le16(io.control);
1769         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1770         c.rw.reftag = cpu_to_le32(io.reftag);
1771         c.rw.apptag = cpu_to_le16(io.apptag);
1772         c.rw.appmask = cpu_to_le16(io.appmask);
1773
1774         if (meta_len) {
1775                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1776                                                                 meta_len);
1777                 if (IS_ERR(meta_iod)) {
1778                         status = PTR_ERR(meta_iod);
1779                         meta_iod = NULL;
1780                         goto unmap;
1781                 }
1782
1783                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1784                                                 &meta_dma_addr, GFP_KERNEL);
1785                 if (!meta_mem) {
1786                         status = -ENOMEM;
1787                         goto unmap;
1788                 }
1789
1790                 if (io.opcode & 1) {
1791                         int meta_offset = 0;
1792
1793                         for (i = 0; i < meta_iod->nents; i++) {
1794                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1795                                                 meta_iod->sg[i].offset;
1796                                 memcpy(meta_mem + meta_offset, meta,
1797                                                 meta_iod->sg[i].length);
1798                                 kunmap_atomic(meta);
1799                                 meta_offset += meta_iod->sg[i].length;
1800                         }
1801                 }
1802
1803                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1804         }
1805
1806         length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1807         c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1808         c.rw.prp2 = cpu_to_le64(iod->first_dma);
1809
1810         if (length != (io.nblocks + 1) << ns->lba_shift)
1811                 status = -ENOMEM;
1812         else
1813                 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1814
1815         if (meta_len) {
1816                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1817                         int meta_offset = 0;
1818
1819                         for (i = 0; i < meta_iod->nents; i++) {
1820                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1821                                                 meta_iod->sg[i].offset;
1822                                 memcpy(meta, meta_mem + meta_offset,
1823                                                 meta_iod->sg[i].length);
1824                                 kunmap_atomic(meta);
1825                                 meta_offset += meta_iod->sg[i].length;
1826                         }
1827                 }
1828
1829                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1830                                                                 meta_dma_addr);
1831         }
1832
1833  unmap:
1834         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1835         nvme_free_iod(dev, iod);
1836
1837         if (meta_iod) {
1838                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1839                 nvme_free_iod(dev, meta_iod);
1840         }
1841
1842         return status;
1843 }
1844
1845 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1846                         struct nvme_passthru_cmd __user *ucmd)
1847 {
1848         struct nvme_passthru_cmd cmd;
1849         struct nvme_command c;
1850         int status, length;
1851         struct nvme_iod *uninitialized_var(iod);
1852         unsigned timeout;
1853
1854         if (!capable(CAP_SYS_ADMIN))
1855                 return -EACCES;
1856         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1857                 return -EFAULT;
1858
1859         memset(&c, 0, sizeof(c));
1860         c.common.opcode = cmd.opcode;
1861         c.common.flags = cmd.flags;
1862         c.common.nsid = cpu_to_le32(cmd.nsid);
1863         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1864         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1865         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1866         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1867         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1868         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1869         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1870         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1871
1872         length = cmd.data_len;
1873         if (cmd.data_len) {
1874                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1875                                                                 length);
1876                 if (IS_ERR(iod))
1877                         return PTR_ERR(iod);
1878                 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1879                 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1880                 c.common.prp2 = cpu_to_le64(iod->first_dma);
1881         }
1882
1883         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1884                                                                 ADMIN_TIMEOUT;
1885
1886         if (length != cmd.data_len)
1887                 status = -ENOMEM;
1888         else if (ns) {
1889                 struct request *req;
1890
1891                 req = blk_mq_alloc_request(ns->queue, WRITE,
1892                                                 (GFP_KERNEL|__GFP_WAIT), false);
1893                 if (IS_ERR(req))
1894                         status = PTR_ERR(req);
1895                 else {
1896                         status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1897                                                                 timeout);
1898                         blk_mq_free_request(req);
1899                 }
1900         } else
1901                 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1902
1903         if (cmd.data_len) {
1904                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1905                 nvme_free_iod(dev, iod);
1906         }
1907
1908         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1909                                                         sizeof(cmd.result)))
1910                 status = -EFAULT;
1911
1912         return status;
1913 }
1914
1915 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1916                                                         unsigned long arg)
1917 {
1918         struct nvme_ns *ns = bdev->bd_disk->private_data;
1919
1920         switch (cmd) {
1921         case NVME_IOCTL_ID:
1922                 force_successful_syscall_return();
1923                 return ns->ns_id;
1924         case NVME_IOCTL_ADMIN_CMD:
1925                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1926         case NVME_IOCTL_IO_CMD:
1927                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1928         case NVME_IOCTL_SUBMIT_IO:
1929                 return nvme_submit_io(ns, (void __user *)arg);
1930         case SG_GET_VERSION_NUM:
1931                 return nvme_sg_get_version_num((void __user *)arg);
1932         case SG_IO:
1933                 return nvme_sg_io(ns, (void __user *)arg);
1934         default:
1935                 return -ENOTTY;
1936         }
1937 }
1938
1939 #ifdef CONFIG_COMPAT
1940 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1941                                         unsigned int cmd, unsigned long arg)
1942 {
1943         switch (cmd) {
1944         case SG_IO:
1945                 return -ENOIOCTLCMD;
1946         }
1947         return nvme_ioctl(bdev, mode, cmd, arg);
1948 }
1949 #else
1950 #define nvme_compat_ioctl       NULL
1951 #endif
1952
1953 static int nvme_open(struct block_device *bdev, fmode_t mode)
1954 {
1955         int ret = 0;
1956         struct nvme_ns *ns;
1957
1958         spin_lock(&dev_list_lock);
1959         ns = bdev->bd_disk->private_data;
1960         if (!ns)
1961                 ret = -ENXIO;
1962         else if (!kref_get_unless_zero(&ns->dev->kref))
1963                 ret = -ENXIO;
1964         spin_unlock(&dev_list_lock);
1965
1966         return ret;
1967 }
1968
1969 static void nvme_free_dev(struct kref *kref);
1970
1971 static void nvme_release(struct gendisk *disk, fmode_t mode)
1972 {
1973         struct nvme_ns *ns = disk->private_data;
1974         struct nvme_dev *dev = ns->dev;
1975
1976         kref_put(&dev->kref, nvme_free_dev);
1977 }
1978
1979 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1980 {
1981         /* some standard values */
1982         geo->heads = 1 << 6;
1983         geo->sectors = 1 << 5;
1984         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1985         return 0;
1986 }
1987
1988 static void nvme_config_discard(struct nvme_ns *ns)
1989 {
1990         u32 logical_block_size = queue_logical_block_size(ns->queue);
1991         ns->queue->limits.discard_zeroes_data = 0;
1992         ns->queue->limits.discard_alignment = logical_block_size;
1993         ns->queue->limits.discard_granularity = logical_block_size;
1994         ns->queue->limits.max_discard_sectors = 0xffffffff;
1995         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1996 }
1997
1998 static int nvme_noop_verify(struct blk_integrity_iter *iter)
1999 {
2000         return 0;
2001 }
2002
2003 static int nvme_noop_generate(struct blk_integrity_iter *iter)
2004 {
2005         return 0;
2006 }
2007
2008 struct blk_integrity nvme_meta_noop = {
2009         .name                   = "NVME_META_NOOP",
2010         .generate_fn            = nvme_noop_generate,
2011         .verify_fn              = nvme_noop_verify,
2012 };
2013
2014 static void nvme_init_integrity(struct nvme_ns *ns)
2015 {
2016         struct blk_integrity integrity;
2017
2018         switch (ns->pi_type) {
2019         case NVME_NS_DPS_PI_TYPE3:
2020                 integrity = t10_pi_type3_crc;
2021                 break;
2022         case NVME_NS_DPS_PI_TYPE1:
2023         case NVME_NS_DPS_PI_TYPE2:
2024                 integrity = t10_pi_type1_crc;
2025                 break;
2026         default:
2027                 integrity = nvme_meta_noop;
2028                 break;
2029         }
2030         integrity.tuple_size = ns->ms;
2031         blk_integrity_register(ns->disk, &integrity);
2032         blk_queue_max_integrity_segments(ns->queue, 1);
2033 }
2034
2035 static int nvme_revalidate_disk(struct gendisk *disk)
2036 {
2037         struct nvme_ns *ns = disk->private_data;
2038         struct nvme_dev *dev = ns->dev;
2039         struct nvme_id_ns *id;
2040         dma_addr_t dma_addr;
2041         int lbaf, pi_type, old_ms;
2042         unsigned short bs;
2043
2044         id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2045                                                                 GFP_KERNEL);
2046         if (!id) {
2047                 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2048                                                                 __func__);
2049                 return 0;
2050         }
2051         if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2052                 dev_warn(&dev->pci_dev->dev,
2053                         "identify failed ns:%d, setting capacity to 0\n",
2054                         ns->ns_id);
2055                 memset(id, 0, sizeof(*id));
2056         }
2057
2058         old_ms = ns->ms;
2059         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2060         ns->lba_shift = id->lbaf[lbaf].ds;
2061         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2062
2063         /*
2064          * If identify namespace failed, use default 512 byte block size so
2065          * block layer can use before failing read/write for 0 capacity.
2066          */
2067         if (ns->lba_shift == 0)
2068                 ns->lba_shift = 9;
2069         bs = 1 << ns->lba_shift;
2070
2071         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2072         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2073                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
2074
2075         if (disk->integrity && (ns->pi_type != pi_type || ns->ms != old_ms ||
2076                                 bs != queue_logical_block_size(disk->queue) ||
2077                                 (ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
2078                 blk_integrity_unregister(disk);
2079
2080         ns->pi_type = pi_type;
2081         blk_queue_logical_block_size(ns->queue, bs);
2082
2083         if (ns->ms && !disk->integrity && (disk->flags & GENHD_FL_UP) &&
2084                                 !(id->flbas & NVME_NS_FLBAS_META_EXT))
2085                 nvme_init_integrity(ns);
2086
2087         if (id->ncap == 0 || (ns->ms && !disk->integrity))
2088                 set_capacity(disk, 0);
2089         else
2090                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2091
2092         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2093                 nvme_config_discard(ns);
2094
2095         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2096         return 0;
2097 }
2098
2099 static const struct block_device_operations nvme_fops = {
2100         .owner          = THIS_MODULE,
2101         .ioctl          = nvme_ioctl,
2102         .compat_ioctl   = nvme_compat_ioctl,
2103         .open           = nvme_open,
2104         .release        = nvme_release,
2105         .getgeo         = nvme_getgeo,
2106         .revalidate_disk= nvme_revalidate_disk,
2107 };
2108
2109 static int nvme_kthread(void *data)
2110 {
2111         struct nvme_dev *dev, *next;
2112
2113         while (!kthread_should_stop()) {
2114                 set_current_state(TASK_INTERRUPTIBLE);
2115                 spin_lock(&dev_list_lock);
2116                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2117                         int i;
2118                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
2119                                                         dev->initialized) {
2120                                 if (work_busy(&dev->reset_work))
2121                                         continue;
2122                                 list_del_init(&dev->node);
2123                                 dev_warn(&dev->pci_dev->dev,
2124                                         "Failed status: %x, reset controller\n",
2125                                         readl(&dev->bar->csts));
2126                                 dev->reset_workfn = nvme_reset_failed_dev;
2127                                 queue_work(nvme_workq, &dev->reset_work);
2128                                 continue;
2129                         }
2130                         for (i = 0; i < dev->queue_count; i++) {
2131                                 struct nvme_queue *nvmeq = dev->queues[i];
2132                                 if (!nvmeq)
2133                                         continue;
2134                                 spin_lock_irq(&nvmeq->q_lock);
2135                                 nvme_process_cq(nvmeq);
2136
2137                                 while ((i == 0) && (dev->event_limit > 0)) {
2138                                         if (nvme_submit_async_admin_req(dev))
2139                                                 break;
2140                                         dev->event_limit--;
2141                                 }
2142                                 spin_unlock_irq(&nvmeq->q_lock);
2143                         }
2144                 }
2145                 spin_unlock(&dev_list_lock);
2146                 schedule_timeout(round_jiffies_relative(HZ));
2147         }
2148         return 0;
2149 }
2150
2151 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2152 {
2153         struct nvme_ns *ns;
2154         struct gendisk *disk;
2155         int node = dev_to_node(&dev->pci_dev->dev);
2156
2157         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2158         if (!ns)
2159                 return;
2160
2161         ns->queue = blk_mq_init_queue(&dev->tagset);
2162         if (IS_ERR(ns->queue))
2163                 goto out_free_ns;
2164         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2165         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2166         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2167         ns->dev = dev;
2168         ns->queue->queuedata = ns;
2169
2170         disk = alloc_disk_node(0, node);
2171         if (!disk)
2172                 goto out_free_queue;
2173
2174         ns->ns_id = nsid;
2175         ns->disk = disk;
2176         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2177         list_add_tail(&ns->list, &dev->namespaces);
2178
2179         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2180         if (dev->max_hw_sectors)
2181                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2182         if (dev->stripe_size)
2183                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2184         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2185                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2186
2187         disk->major = nvme_major;
2188         disk->first_minor = 0;
2189         disk->fops = &nvme_fops;
2190         disk->private_data = ns;
2191         disk->queue = ns->queue;
2192         disk->driverfs_dev = &dev->pci_dev->dev;
2193         disk->flags = GENHD_FL_EXT_DEVT;
2194         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2195
2196         /*
2197          * Initialize capacity to 0 until we establish the namespace format and
2198          * setup integrity extentions if necessary. The revalidate_disk after
2199          * add_disk allows the driver to register with integrity if the format
2200          * requires it.
2201          */
2202         set_capacity(disk, 0);
2203         nvme_revalidate_disk(ns->disk);
2204         add_disk(ns->disk);
2205         if (ns->ms)
2206                 revalidate_disk(ns->disk);
2207         return;
2208  out_free_queue:
2209         blk_cleanup_queue(ns->queue);
2210  out_free_ns:
2211         kfree(ns);
2212 }
2213
2214 static void nvme_create_io_queues(struct nvme_dev *dev)
2215 {
2216         unsigned i;
2217
2218         for (i = dev->queue_count; i <= dev->max_qid; i++)
2219                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2220                         break;
2221
2222         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2223                 if (nvme_create_queue(dev->queues[i], i))
2224                         break;
2225 }
2226
2227 static int set_queue_count(struct nvme_dev *dev, int count)
2228 {
2229         int status;
2230         u32 result;
2231         u32 q_count = (count - 1) | ((count - 1) << 16);
2232
2233         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2234                                                                 &result);
2235         if (status < 0)
2236                 return status;
2237         if (status > 0) {
2238                 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2239                                                                         status);
2240                 return 0;
2241         }
2242         return min(result & 0xffff, result >> 16) + 1;
2243 }
2244
2245 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2246 {
2247         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2248 }
2249
2250 static int nvme_setup_io_queues(struct nvme_dev *dev)
2251 {
2252         struct nvme_queue *adminq = dev->queues[0];
2253         struct pci_dev *pdev = dev->pci_dev;
2254         int result, i, vecs, nr_io_queues, size;
2255
2256         nr_io_queues = num_possible_cpus();
2257         result = set_queue_count(dev, nr_io_queues);
2258         if (result <= 0)
2259                 return result;
2260         if (result < nr_io_queues)
2261                 nr_io_queues = result;
2262
2263         size = db_bar_size(dev, nr_io_queues);
2264         if (size > 8192) {
2265                 iounmap(dev->bar);
2266                 do {
2267                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2268                         if (dev->bar)
2269                                 break;
2270                         if (!--nr_io_queues)
2271                                 return -ENOMEM;
2272                         size = db_bar_size(dev, nr_io_queues);
2273                 } while (1);
2274                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2275                 adminq->q_db = dev->dbs;
2276         }
2277
2278         /* Deregister the admin queue's interrupt */
2279         free_irq(dev->entry[0].vector, adminq);
2280
2281         /*
2282          * If we enable msix early due to not intx, disable it again before
2283          * setting up the full range we need.
2284          */
2285         if (!pdev->irq)
2286                 pci_disable_msix(pdev);
2287
2288         for (i = 0; i < nr_io_queues; i++)
2289                 dev->entry[i].entry = i;
2290         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2291         if (vecs < 0) {
2292                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2293                 if (vecs < 0) {
2294                         vecs = 1;
2295                 } else {
2296                         for (i = 0; i < vecs; i++)
2297                                 dev->entry[i].vector = i + pdev->irq;
2298                 }
2299         }
2300
2301         /*
2302          * Should investigate if there's a performance win from allocating
2303          * more queues than interrupt vectors; it might allow the submission
2304          * path to scale better, even if the receive path is limited by the
2305          * number of interrupts.
2306          */
2307         nr_io_queues = vecs;
2308         dev->max_qid = nr_io_queues;
2309
2310         result = queue_request_irq(dev, adminq, adminq->irqname);
2311         if (result)
2312                 goto free_queues;
2313
2314         /* Free previously allocated queues that are no longer usable */
2315         nvme_free_queues(dev, nr_io_queues + 1);
2316         nvme_create_io_queues(dev);
2317
2318         return 0;
2319
2320  free_queues:
2321         nvme_free_queues(dev, 1);
2322         return result;
2323 }
2324
2325 /*
2326  * Return: error value if an error occurred setting up the queues or calling
2327  * Identify Device.  0 if these succeeded, even if adding some of the
2328  * namespaces failed.  At the moment, these failures are silent.  TBD which
2329  * failures should be reported.
2330  */
2331 static int nvme_dev_add(struct nvme_dev *dev)
2332 {
2333         struct pci_dev *pdev = dev->pci_dev;
2334         int res;
2335         unsigned nn, i;
2336         struct nvme_id_ctrl *ctrl;
2337         void *mem;
2338         dma_addr_t dma_addr;
2339         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2340
2341         mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2342         if (!mem)
2343                 return -ENOMEM;
2344
2345         res = nvme_identify(dev, 0, 1, dma_addr);
2346         if (res) {
2347                 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2348                 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2349                 return -EIO;
2350         }
2351
2352         ctrl = mem;
2353         nn = le32_to_cpup(&ctrl->nn);
2354         dev->oncs = le16_to_cpup(&ctrl->oncs);
2355         dev->abort_limit = ctrl->acl + 1;
2356         dev->vwc = ctrl->vwc;
2357         dev->event_limit = min(ctrl->aerl + 1, 8);
2358         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2359         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2360         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2361         if (ctrl->mdts)
2362                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2363         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2364                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2365                 unsigned int max_hw_sectors;
2366
2367                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2368                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2369                 if (dev->max_hw_sectors) {
2370                         dev->max_hw_sectors = min(max_hw_sectors,
2371                                                         dev->max_hw_sectors);
2372                 } else
2373                         dev->max_hw_sectors = max_hw_sectors;
2374         }
2375         dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2376
2377         dev->tagset.ops = &nvme_mq_ops;
2378         dev->tagset.nr_hw_queues = dev->online_queues - 1;
2379         dev->tagset.timeout = NVME_IO_TIMEOUT;
2380         dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2381         dev->tagset.queue_depth =
2382                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2383         dev->tagset.cmd_size = nvme_cmd_size(dev);
2384         dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2385         dev->tagset.driver_data = dev;
2386
2387         if (blk_mq_alloc_tag_set(&dev->tagset))
2388                 return 0;
2389
2390         for (i = 1; i <= nn; i++)
2391                 nvme_alloc_ns(dev, i);
2392
2393         return 0;
2394 }
2395
2396 static int nvme_dev_map(struct nvme_dev *dev)
2397 {
2398         u64 cap;
2399         int bars, result = -ENOMEM;
2400         struct pci_dev *pdev = dev->pci_dev;
2401
2402         if (pci_enable_device_mem(pdev))
2403                 return result;
2404
2405         dev->entry[0].vector = pdev->irq;
2406         pci_set_master(pdev);
2407         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2408         if (!bars)
2409                 goto disable_pci;
2410
2411         if (pci_request_selected_regions(pdev, bars, "nvme"))
2412                 goto disable_pci;
2413
2414         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2415             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2416                 goto disable;
2417
2418         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2419         if (!dev->bar)
2420                 goto disable;
2421
2422         if (readl(&dev->bar->csts) == -1) {
2423                 result = -ENODEV;
2424                 goto unmap;
2425         }
2426
2427         /*
2428          * Some devices don't advertse INTx interrupts, pre-enable a single
2429          * MSIX vec for setup. We'll adjust this later.
2430          */
2431         if (!pdev->irq) {
2432                 result = pci_enable_msix(pdev, dev->entry, 1);
2433                 if (result < 0)
2434                         goto unmap;
2435         }
2436
2437         cap = readq(&dev->bar->cap);
2438         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2439         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2440         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2441
2442         return 0;
2443
2444  unmap:
2445         iounmap(dev->bar);
2446         dev->bar = NULL;
2447  disable:
2448         pci_release_regions(pdev);
2449  disable_pci:
2450         pci_disable_device(pdev);
2451         return result;
2452 }
2453
2454 static void nvme_dev_unmap(struct nvme_dev *dev)
2455 {
2456         if (dev->pci_dev->msi_enabled)
2457                 pci_disable_msi(dev->pci_dev);
2458         else if (dev->pci_dev->msix_enabled)
2459                 pci_disable_msix(dev->pci_dev);
2460
2461         if (dev->bar) {
2462                 iounmap(dev->bar);
2463                 dev->bar = NULL;
2464                 pci_release_regions(dev->pci_dev);
2465         }
2466
2467         if (pci_is_enabled(dev->pci_dev))
2468                 pci_disable_device(dev->pci_dev);
2469 }
2470
2471 struct nvme_delq_ctx {
2472         struct task_struct *waiter;
2473         struct kthread_worker *worker;
2474         atomic_t refcount;
2475 };
2476
2477 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2478 {
2479         dq->waiter = current;
2480         mb();
2481
2482         for (;;) {
2483                 set_current_state(TASK_KILLABLE);
2484                 if (!atomic_read(&dq->refcount))
2485                         break;
2486                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2487                                         fatal_signal_pending(current)) {
2488                         /*
2489                          * Disable the controller first since we can't trust it
2490                          * at this point, but leave the admin queue enabled
2491                          * until all queue deletion requests are flushed.
2492                          * FIXME: This may take a while if there are more h/w
2493                          * queues than admin tags.
2494                          */
2495                         set_current_state(TASK_RUNNING);
2496                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2497                         nvme_clear_queue(dev->queues[0]);
2498                         flush_kthread_worker(dq->worker);
2499                         nvme_disable_queue(dev, 0);
2500                         return;
2501                 }
2502         }
2503         set_current_state(TASK_RUNNING);
2504 }
2505
2506 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2507 {
2508         atomic_dec(&dq->refcount);
2509         if (dq->waiter)
2510                 wake_up_process(dq->waiter);
2511 }
2512
2513 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2514 {
2515         atomic_inc(&dq->refcount);
2516         return dq;
2517 }
2518
2519 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2520 {
2521         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2522
2523         nvme_clear_queue(nvmeq);
2524         nvme_put_dq(dq);
2525 }
2526
2527 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2528                                                 kthread_work_func_t fn)
2529 {
2530         struct nvme_command c;
2531
2532         memset(&c, 0, sizeof(c));
2533         c.delete_queue.opcode = opcode;
2534         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2535
2536         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2537         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2538                                                                 ADMIN_TIMEOUT);
2539 }
2540
2541 static void nvme_del_cq_work_handler(struct kthread_work *work)
2542 {
2543         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2544                                                         cmdinfo.work);
2545         nvme_del_queue_end(nvmeq);
2546 }
2547
2548 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2549 {
2550         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2551                                                 nvme_del_cq_work_handler);
2552 }
2553
2554 static void nvme_del_sq_work_handler(struct kthread_work *work)
2555 {
2556         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2557                                                         cmdinfo.work);
2558         int status = nvmeq->cmdinfo.status;
2559
2560         if (!status)
2561                 status = nvme_delete_cq(nvmeq);
2562         if (status)
2563                 nvme_del_queue_end(nvmeq);
2564 }
2565
2566 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2567 {
2568         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2569                                                 nvme_del_sq_work_handler);
2570 }
2571
2572 static void nvme_del_queue_start(struct kthread_work *work)
2573 {
2574         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2575                                                         cmdinfo.work);
2576         if (nvme_delete_sq(nvmeq))
2577                 nvme_del_queue_end(nvmeq);
2578 }
2579
2580 static void nvme_disable_io_queues(struct nvme_dev *dev)
2581 {
2582         int i;
2583         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2584         struct nvme_delq_ctx dq;
2585         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2586                                         &worker, "nvme%d", dev->instance);
2587
2588         if (IS_ERR(kworker_task)) {
2589                 dev_err(&dev->pci_dev->dev,
2590                         "Failed to create queue del task\n");
2591                 for (i = dev->queue_count - 1; i > 0; i--)
2592                         nvme_disable_queue(dev, i);
2593                 return;
2594         }
2595
2596         dq.waiter = NULL;
2597         atomic_set(&dq.refcount, 0);
2598         dq.worker = &worker;
2599         for (i = dev->queue_count - 1; i > 0; i--) {
2600                 struct nvme_queue *nvmeq = dev->queues[i];
2601
2602                 if (nvme_suspend_queue(nvmeq))
2603                         continue;
2604                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2605                 nvmeq->cmdinfo.worker = dq.worker;
2606                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2607                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2608         }
2609         nvme_wait_dq(&dq, dev);
2610         kthread_stop(kworker_task);
2611 }
2612
2613 /*
2614 * Remove the node from the device list and check
2615 * for whether or not we need to stop the nvme_thread.
2616 */
2617 static void nvme_dev_list_remove(struct nvme_dev *dev)
2618 {
2619         struct task_struct *tmp = NULL;
2620
2621         spin_lock(&dev_list_lock);
2622         list_del_init(&dev->node);
2623         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2624                 tmp = nvme_thread;
2625                 nvme_thread = NULL;
2626         }
2627         spin_unlock(&dev_list_lock);
2628
2629         if (tmp)
2630                 kthread_stop(tmp);
2631 }
2632
2633 static void nvme_freeze_queues(struct nvme_dev *dev)
2634 {
2635         struct nvme_ns *ns;
2636
2637         list_for_each_entry(ns, &dev->namespaces, list) {
2638                 blk_mq_freeze_queue_start(ns->queue);
2639
2640                 spin_lock(ns->queue->queue_lock);
2641                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2642                 spin_unlock(ns->queue->queue_lock);
2643
2644                 blk_mq_cancel_requeue_work(ns->queue);
2645                 blk_mq_stop_hw_queues(ns->queue);
2646         }
2647 }
2648
2649 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2650 {
2651         struct nvme_ns *ns;
2652
2653         list_for_each_entry(ns, &dev->namespaces, list) {
2654                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2655                 blk_mq_unfreeze_queue(ns->queue);
2656                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2657                 blk_mq_kick_requeue_list(ns->queue);
2658         }
2659 }
2660
2661 static void nvme_dev_shutdown(struct nvme_dev *dev)
2662 {
2663         int i;
2664         u32 csts = -1;
2665
2666         dev->initialized = 0;
2667         nvme_dev_list_remove(dev);
2668
2669         if (dev->bar) {
2670                 nvme_freeze_queues(dev);
2671                 csts = readl(&dev->bar->csts);
2672         }
2673         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2674                 for (i = dev->queue_count - 1; i >= 0; i--) {
2675                         struct nvme_queue *nvmeq = dev->queues[i];
2676                         nvme_suspend_queue(nvmeq);
2677                         nvme_clear_queue(nvmeq);
2678                 }
2679         } else {
2680                 nvme_disable_io_queues(dev);
2681                 nvme_shutdown_ctrl(dev);
2682                 nvme_disable_queue(dev, 0);
2683         }
2684         nvme_dev_unmap(dev);
2685 }
2686
2687 static void nvme_dev_remove(struct nvme_dev *dev)
2688 {
2689         struct nvme_ns *ns;
2690
2691         list_for_each_entry(ns, &dev->namespaces, list) {
2692                 if (ns->disk->flags & GENHD_FL_UP) {
2693                         if (ns->disk->integrity)
2694                                 blk_integrity_unregister(ns->disk);
2695                         del_gendisk(ns->disk);
2696                 }
2697                 if (!blk_queue_dying(ns->queue)) {
2698                         blk_mq_abort_requeue_list(ns->queue);
2699                         blk_cleanup_queue(ns->queue);
2700                 }
2701         }
2702 }
2703
2704 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2705 {
2706         struct device *dmadev = &dev->pci_dev->dev;
2707         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2708                                                 PAGE_SIZE, PAGE_SIZE, 0);
2709         if (!dev->prp_page_pool)
2710                 return -ENOMEM;
2711
2712         /* Optimisation for I/Os between 4k and 128k */
2713         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2714                                                 256, 256, 0);
2715         if (!dev->prp_small_pool) {
2716                 dma_pool_destroy(dev->prp_page_pool);
2717                 return -ENOMEM;
2718         }
2719         return 0;
2720 }
2721
2722 static void nvme_release_prp_pools(struct nvme_dev *dev)
2723 {
2724         dma_pool_destroy(dev->prp_page_pool);
2725         dma_pool_destroy(dev->prp_small_pool);
2726 }
2727
2728 static DEFINE_IDA(nvme_instance_ida);
2729
2730 static int nvme_set_instance(struct nvme_dev *dev)
2731 {
2732         int instance, error;
2733
2734         do {
2735                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2736                         return -ENODEV;
2737
2738                 spin_lock(&dev_list_lock);
2739                 error = ida_get_new(&nvme_instance_ida, &instance);
2740                 spin_unlock(&dev_list_lock);
2741         } while (error == -EAGAIN);
2742
2743         if (error)
2744                 return -ENODEV;
2745
2746         dev->instance = instance;
2747         return 0;
2748 }
2749
2750 static void nvme_release_instance(struct nvme_dev *dev)
2751 {
2752         spin_lock(&dev_list_lock);
2753         ida_remove(&nvme_instance_ida, dev->instance);
2754         spin_unlock(&dev_list_lock);
2755 }
2756
2757 static void nvme_free_namespaces(struct nvme_dev *dev)
2758 {
2759         struct nvme_ns *ns, *next;
2760
2761         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2762                 list_del(&ns->list);
2763
2764                 spin_lock(&dev_list_lock);
2765                 ns->disk->private_data = NULL;
2766                 spin_unlock(&dev_list_lock);
2767
2768                 put_disk(ns->disk);
2769                 kfree(ns);
2770         }
2771 }
2772
2773 static void nvme_free_dev(struct kref *kref)
2774 {
2775         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2776
2777         pci_dev_put(dev->pci_dev);
2778         nvme_free_namespaces(dev);
2779         nvme_release_instance(dev);
2780         blk_mq_free_tag_set(&dev->tagset);
2781         blk_put_queue(dev->admin_q);
2782         kfree(dev->queues);
2783         kfree(dev->entry);
2784         kfree(dev);
2785 }
2786
2787 static int nvme_dev_open(struct inode *inode, struct file *f)
2788 {
2789         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2790                                                                 miscdev);
2791         kref_get(&dev->kref);
2792         f->private_data = dev;
2793         return 0;
2794 }
2795
2796 static int nvme_dev_release(struct inode *inode, struct file *f)
2797 {
2798         struct nvme_dev *dev = f->private_data;
2799         kref_put(&dev->kref, nvme_free_dev);
2800         return 0;
2801 }
2802
2803 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2804 {
2805         struct nvme_dev *dev = f->private_data;
2806         struct nvme_ns *ns;
2807
2808         switch (cmd) {
2809         case NVME_IOCTL_ADMIN_CMD:
2810                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2811         case NVME_IOCTL_IO_CMD:
2812                 if (list_empty(&dev->namespaces))
2813                         return -ENOTTY;
2814                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2815                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2816         default:
2817                 return -ENOTTY;
2818         }
2819 }
2820
2821 static const struct file_operations nvme_dev_fops = {
2822         .owner          = THIS_MODULE,
2823         .open           = nvme_dev_open,
2824         .release        = nvme_dev_release,
2825         .unlocked_ioctl = nvme_dev_ioctl,
2826         .compat_ioctl   = nvme_dev_ioctl,
2827 };
2828
2829 static void nvme_set_irq_hints(struct nvme_dev *dev)
2830 {
2831         struct nvme_queue *nvmeq;
2832         int i;
2833
2834         for (i = 0; i < dev->online_queues; i++) {
2835                 nvmeq = dev->queues[i];
2836
2837                 if (!nvmeq->hctx)
2838                         continue;
2839
2840                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2841                                                         nvmeq->hctx->cpumask);
2842         }
2843 }
2844
2845 static int nvme_dev_start(struct nvme_dev *dev)
2846 {
2847         int result;
2848         bool start_thread = false;
2849
2850         result = nvme_dev_map(dev);
2851         if (result)
2852                 return result;
2853
2854         result = nvme_configure_admin_queue(dev);
2855         if (result)
2856                 goto unmap;
2857
2858         spin_lock(&dev_list_lock);
2859         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2860                 start_thread = true;
2861                 nvme_thread = NULL;
2862         }
2863         list_add(&dev->node, &dev_list);
2864         spin_unlock(&dev_list_lock);
2865
2866         if (start_thread) {
2867                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2868                 wake_up_all(&nvme_kthread_wait);
2869         } else
2870                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2871
2872         if (IS_ERR_OR_NULL(nvme_thread)) {
2873                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2874                 goto disable;
2875         }
2876
2877         nvme_init_queue(dev->queues[0], 0);
2878         result = nvme_alloc_admin_tags(dev);
2879         if (result)
2880                 goto disable;
2881
2882         result = nvme_setup_io_queues(dev);
2883         if (result)
2884                 goto free_tags;
2885
2886         nvme_set_irq_hints(dev);
2887
2888         return result;
2889
2890  free_tags:
2891         nvme_dev_remove_admin(dev);
2892  disable:
2893         nvme_disable_queue(dev, 0);
2894         nvme_dev_list_remove(dev);
2895  unmap:
2896         nvme_dev_unmap(dev);
2897         return result;
2898 }
2899
2900 static int nvme_remove_dead_ctrl(void *arg)
2901 {
2902         struct nvme_dev *dev = (struct nvme_dev *)arg;
2903         struct pci_dev *pdev = dev->pci_dev;
2904
2905         if (pci_get_drvdata(pdev))
2906                 pci_stop_and_remove_bus_device_locked(pdev);
2907         kref_put(&dev->kref, nvme_free_dev);
2908         return 0;
2909 }
2910
2911 static void nvme_remove_disks(struct work_struct *ws)
2912 {
2913         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2914
2915         nvme_free_queues(dev, 1);
2916         nvme_dev_remove(dev);
2917 }
2918
2919 static int nvme_dev_resume(struct nvme_dev *dev)
2920 {
2921         int ret;
2922
2923         ret = nvme_dev_start(dev);
2924         if (ret)
2925                 return ret;
2926         if (dev->online_queues < 2) {
2927                 spin_lock(&dev_list_lock);
2928                 dev->reset_workfn = nvme_remove_disks;
2929                 queue_work(nvme_workq, &dev->reset_work);
2930                 spin_unlock(&dev_list_lock);
2931         } else {
2932                 nvme_unfreeze_queues(dev);
2933                 nvme_set_irq_hints(dev);
2934         }
2935         dev->initialized = 1;
2936         return 0;
2937 }
2938
2939 static void nvme_dev_reset(struct nvme_dev *dev)
2940 {
2941         nvme_dev_shutdown(dev);
2942         if (nvme_dev_resume(dev)) {
2943                 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2944                 kref_get(&dev->kref);
2945                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2946                                                         dev->instance))) {
2947                         dev_err(&dev->pci_dev->dev,
2948                                 "Failed to start controller remove task\n");
2949                         kref_put(&dev->kref, nvme_free_dev);
2950                 }
2951         }
2952 }
2953
2954 static void nvme_reset_failed_dev(struct work_struct *ws)
2955 {
2956         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2957         nvme_dev_reset(dev);
2958 }
2959
2960 static void nvme_reset_workfn(struct work_struct *work)
2961 {
2962         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2963         dev->reset_workfn(work);
2964 }
2965
2966 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2967 {
2968         int node, result = -ENOMEM;
2969         struct nvme_dev *dev;
2970
2971         node = dev_to_node(&pdev->dev);
2972         if (node == NUMA_NO_NODE)
2973                 set_dev_node(&pdev->dev, 0);
2974
2975         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2976         if (!dev)
2977                 return -ENOMEM;
2978         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2979                                                         GFP_KERNEL, node);
2980         if (!dev->entry)
2981                 goto free;
2982         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2983                                                         GFP_KERNEL, node);
2984         if (!dev->queues)
2985                 goto free;
2986
2987         INIT_LIST_HEAD(&dev->namespaces);
2988         dev->reset_workfn = nvme_reset_failed_dev;
2989         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2990         dev->pci_dev = pci_dev_get(pdev);
2991         pci_set_drvdata(pdev, dev);
2992         result = nvme_set_instance(dev);
2993         if (result)
2994                 goto put_pci;
2995
2996         result = nvme_setup_prp_pools(dev);
2997         if (result)
2998                 goto release;
2999
3000         kref_init(&dev->kref);
3001         result = nvme_dev_start(dev);
3002         if (result)
3003                 goto release_pools;
3004
3005         if (dev->online_queues > 1)
3006                 result = nvme_dev_add(dev);
3007         if (result)
3008                 goto shutdown;
3009
3010         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
3011         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
3012         dev->miscdev.parent = &pdev->dev;
3013         dev->miscdev.name = dev->name;
3014         dev->miscdev.fops = &nvme_dev_fops;
3015         result = misc_register(&dev->miscdev);
3016         if (result)
3017                 goto remove;
3018
3019         nvme_set_irq_hints(dev);
3020
3021         dev->initialized = 1;
3022         return 0;
3023
3024  remove:
3025         nvme_dev_remove(dev);
3026         nvme_dev_remove_admin(dev);
3027         nvme_free_namespaces(dev);
3028  shutdown:
3029         nvme_dev_shutdown(dev);
3030  release_pools:
3031         nvme_free_queues(dev, 0);
3032         nvme_release_prp_pools(dev);
3033  release:
3034         nvme_release_instance(dev);
3035  put_pci:
3036         pci_dev_put(dev->pci_dev);
3037  free:
3038         kfree(dev->queues);
3039         kfree(dev->entry);
3040         kfree(dev);
3041         return result;
3042 }
3043
3044 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3045 {
3046         struct nvme_dev *dev = pci_get_drvdata(pdev);
3047
3048         if (prepare)
3049                 nvme_dev_shutdown(dev);
3050         else
3051                 nvme_dev_resume(dev);
3052 }
3053
3054 static void nvme_shutdown(struct pci_dev *pdev)
3055 {
3056         struct nvme_dev *dev = pci_get_drvdata(pdev);
3057         nvme_dev_shutdown(dev);
3058 }
3059
3060 static void nvme_remove(struct pci_dev *pdev)
3061 {
3062         struct nvme_dev *dev = pci_get_drvdata(pdev);
3063
3064         spin_lock(&dev_list_lock);
3065         list_del_init(&dev->node);
3066         spin_unlock(&dev_list_lock);
3067
3068         pci_set_drvdata(pdev, NULL);
3069         flush_work(&dev->reset_work);
3070         misc_deregister(&dev->miscdev);
3071         nvme_dev_shutdown(dev);
3072         nvme_dev_remove(dev);
3073         nvme_dev_remove_admin(dev);
3074         nvme_free_queues(dev, 0);
3075         nvme_release_prp_pools(dev);
3076         kref_put(&dev->kref, nvme_free_dev);
3077 }
3078
3079 /* These functions are yet to be implemented */
3080 #define nvme_error_detected NULL
3081 #define nvme_dump_registers NULL
3082 #define nvme_link_reset NULL
3083 #define nvme_slot_reset NULL
3084 #define nvme_error_resume NULL
3085
3086 #ifdef CONFIG_PM_SLEEP
3087 static int nvme_suspend(struct device *dev)
3088 {
3089         struct pci_dev *pdev = to_pci_dev(dev);
3090         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3091
3092         nvme_dev_shutdown(ndev);
3093         return 0;
3094 }
3095
3096 static int nvme_resume(struct device *dev)
3097 {
3098         struct pci_dev *pdev = to_pci_dev(dev);
3099         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3100
3101         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3102                 ndev->reset_workfn = nvme_reset_failed_dev;
3103                 queue_work(nvme_workq, &ndev->reset_work);
3104         }
3105         return 0;
3106 }
3107 #endif
3108
3109 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3110
3111 static const struct pci_error_handlers nvme_err_handler = {
3112         .error_detected = nvme_error_detected,
3113         .mmio_enabled   = nvme_dump_registers,
3114         .link_reset     = nvme_link_reset,
3115         .slot_reset     = nvme_slot_reset,
3116         .resume         = nvme_error_resume,
3117         .reset_notify   = nvme_reset_notify,
3118 };
3119
3120 /* Move to pci_ids.h later */
3121 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3122
3123 static const struct pci_device_id nvme_id_table[] = {
3124         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3125         { 0, }
3126 };
3127 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3128
3129 static struct pci_driver nvme_driver = {
3130         .name           = "nvme",
3131         .id_table       = nvme_id_table,
3132         .probe          = nvme_probe,
3133         .remove         = nvme_remove,
3134         .shutdown       = nvme_shutdown,
3135         .driver         = {
3136                 .pm     = &nvme_dev_pm_ops,
3137         },
3138         .err_handler    = &nvme_err_handler,
3139 };
3140
3141 static int __init nvme_init(void)
3142 {
3143         int result;
3144
3145         init_waitqueue_head(&nvme_kthread_wait);
3146
3147         nvme_workq = create_singlethread_workqueue("nvme");
3148         if (!nvme_workq)
3149                 return -ENOMEM;
3150
3151         result = register_blkdev(nvme_major, "nvme");
3152         if (result < 0)
3153                 goto kill_workq;
3154         else if (result > 0)
3155                 nvme_major = result;
3156
3157         result = pci_register_driver(&nvme_driver);
3158         if (result)
3159                 goto unregister_blkdev;
3160         return 0;
3161
3162  unregister_blkdev:
3163         unregister_blkdev(nvme_major, "nvme");
3164  kill_workq:
3165         destroy_workqueue(nvme_workq);
3166         return result;
3167 }
3168
3169 static void __exit nvme_exit(void)
3170 {
3171         pci_unregister_driver(&nvme_driver);
3172         unregister_hotcpu_notifier(&nvme_nb);
3173         unregister_blkdev(nvme_major, "nvme");
3174         destroy_workqueue(nvme_workq);
3175         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3176         _nvme_check_size();
3177 }
3178
3179 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3180 MODULE_LICENSE("GPL");
3181 MODULE_VERSION("1.0");
3182 module_init(nvme_init);
3183 module_exit(nvme_exit);