staging: comedi: vmk80xx: use comedi_auto_unconfig() for (*disconnect)
[pandora-kernel.git] / drivers / base / memory.c
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30
31 #define MEMORY_CLASS_NAME       "memory"
32
33 static int sections_per_block;
34
35 static inline int base_memory_block_id(int section_nr)
36 {
37         return section_nr / sections_per_block;
38 }
39
40 static struct bus_type memory_subsys = {
41         .name = MEMORY_CLASS_NAME,
42         .dev_name = MEMORY_CLASS_NAME,
43 };
44
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63         return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69         atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72
73 static void memory_block_release(struct device *dev)
74 {
75         struct memory_block *mem = container_of(dev, struct memory_block, dev);
76
77         kfree(mem);
78 }
79
80 /*
81  * register_memory - Setup a sysfs device for a memory block
82  */
83 static
84 int register_memory(struct memory_block *memory)
85 {
86         int error;
87
88         memory->dev.bus = &memory_subsys;
89         memory->dev.id = memory->start_section_nr / sections_per_block;
90         memory->dev.release = memory_block_release;
91
92         error = device_register(&memory->dev);
93         return error;
94 }
95
96 static void
97 unregister_memory(struct memory_block *memory)
98 {
99         BUG_ON(memory->dev.bus != &memory_subsys);
100
101         /* drop the ref. we got in remove_memory_block() */
102         kobject_put(&memory->dev.kobj);
103         device_unregister(&memory->dev);
104 }
105
106 unsigned long __weak memory_block_size_bytes(void)
107 {
108         return MIN_MEMORY_BLOCK_SIZE;
109 }
110
111 static unsigned long get_memory_block_size(void)
112 {
113         unsigned long block_sz;
114
115         block_sz = memory_block_size_bytes();
116
117         /* Validate blk_sz is a power of 2 and not less than section size */
118         if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
119                 WARN_ON(1);
120                 block_sz = MIN_MEMORY_BLOCK_SIZE;
121         }
122
123         return block_sz;
124 }
125
126 /*
127  * use this as the physical section index that this memsection
128  * uses.
129  */
130
131 static ssize_t show_mem_start_phys_index(struct device *dev,
132                         struct device_attribute *attr, char *buf)
133 {
134         struct memory_block *mem =
135                 container_of(dev, struct memory_block, dev);
136         unsigned long phys_index;
137
138         phys_index = mem->start_section_nr / sections_per_block;
139         return sprintf(buf, "%08lx\n", phys_index);
140 }
141
142 static ssize_t show_mem_end_phys_index(struct device *dev,
143                         struct device_attribute *attr, char *buf)
144 {
145         struct memory_block *mem =
146                 container_of(dev, struct memory_block, dev);
147         unsigned long phys_index;
148
149         phys_index = mem->end_section_nr / sections_per_block;
150         return sprintf(buf, "%08lx\n", phys_index);
151 }
152
153 /*
154  * Show whether the section of memory is likely to be hot-removable
155  */
156 static ssize_t show_mem_removable(struct device *dev,
157                         struct device_attribute *attr, char *buf)
158 {
159         unsigned long i, pfn;
160         int ret = 1;
161         struct memory_block *mem =
162                 container_of(dev, struct memory_block, dev);
163
164         for (i = 0; i < sections_per_block; i++) {
165                 pfn = section_nr_to_pfn(mem->start_section_nr + i);
166                 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
167         }
168
169         return sprintf(buf, "%d\n", ret);
170 }
171
172 /*
173  * online, offline, going offline, etc.
174  */
175 static ssize_t show_mem_state(struct device *dev,
176                         struct device_attribute *attr, char *buf)
177 {
178         struct memory_block *mem =
179                 container_of(dev, struct memory_block, dev);
180         ssize_t len = 0;
181
182         /*
183          * We can probably put these states in a nice little array
184          * so that they're not open-coded
185          */
186         switch (mem->state) {
187                 case MEM_ONLINE:
188                         len = sprintf(buf, "online\n");
189                         break;
190                 case MEM_OFFLINE:
191                         len = sprintf(buf, "offline\n");
192                         break;
193                 case MEM_GOING_OFFLINE:
194                         len = sprintf(buf, "going-offline\n");
195                         break;
196                 default:
197                         len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
198                                         mem->state);
199                         WARN_ON(1);
200                         break;
201         }
202
203         return len;
204 }
205
206 int memory_notify(unsigned long val, void *v)
207 {
208         return blocking_notifier_call_chain(&memory_chain, val, v);
209 }
210
211 int memory_isolate_notify(unsigned long val, void *v)
212 {
213         return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
214 }
215
216 /*
217  * The probe routines leave the pages reserved, just as the bootmem code does.
218  * Make sure they're still that way.
219  */
220 static bool pages_correctly_reserved(unsigned long start_pfn,
221                                         unsigned long nr_pages)
222 {
223         int i, j;
224         struct page *page;
225         unsigned long pfn = start_pfn;
226
227         /*
228          * memmap between sections is not contiguous except with
229          * SPARSEMEM_VMEMMAP. We lookup the page once per section
230          * and assume memmap is contiguous within each section
231          */
232         for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
233                 if (WARN_ON_ONCE(!pfn_valid(pfn)))
234                         return false;
235                 page = pfn_to_page(pfn);
236
237                 for (j = 0; j < PAGES_PER_SECTION; j++) {
238                         if (PageReserved(page + j))
239                                 continue;
240
241                         printk(KERN_WARNING "section number %ld page number %d "
242                                 "not reserved, was it already online?\n",
243                                 pfn_to_section_nr(pfn), j);
244
245                         return false;
246                 }
247         }
248
249         return true;
250 }
251
252 /*
253  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
254  * OK to have direct references to sparsemem variables in here.
255  */
256 static int
257 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
258 {
259         unsigned long start_pfn;
260         unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
261         struct page *first_page;
262         int ret;
263
264         first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
265         start_pfn = page_to_pfn(first_page);
266
267         switch (action) {
268                 case MEM_ONLINE:
269                         if (!pages_correctly_reserved(start_pfn, nr_pages))
270                                 return -EBUSY;
271
272                         ret = online_pages(start_pfn, nr_pages, online_type);
273                         break;
274                 case MEM_OFFLINE:
275                         ret = offline_pages(start_pfn, nr_pages);
276                         break;
277                 default:
278                         WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
279                              "%ld\n", __func__, phys_index, action, action);
280                         ret = -EINVAL;
281         }
282
283         return ret;
284 }
285
286 static int __memory_block_change_state(struct memory_block *mem,
287                 unsigned long to_state, unsigned long from_state_req,
288                 int online_type)
289 {
290         int ret = 0;
291
292         if (mem->state != from_state_req) {
293                 ret = -EINVAL;
294                 goto out;
295         }
296
297         if (to_state == MEM_OFFLINE)
298                 mem->state = MEM_GOING_OFFLINE;
299
300         ret = memory_block_action(mem->start_section_nr, to_state, online_type);
301
302         if (ret) {
303                 mem->state = from_state_req;
304                 goto out;
305         }
306
307         mem->state = to_state;
308         switch (mem->state) {
309         case MEM_OFFLINE:
310                 kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
311                 break;
312         case MEM_ONLINE:
313                 kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
314                 break;
315         default:
316                 break;
317         }
318 out:
319         return ret;
320 }
321
322 static int memory_block_change_state(struct memory_block *mem,
323                 unsigned long to_state, unsigned long from_state_req,
324                 int online_type)
325 {
326         int ret;
327
328         mutex_lock(&mem->state_mutex);
329         ret = __memory_block_change_state(mem, to_state, from_state_req,
330                                           online_type);
331         mutex_unlock(&mem->state_mutex);
332
333         return ret;
334 }
335 static ssize_t
336 store_mem_state(struct device *dev,
337                 struct device_attribute *attr, const char *buf, size_t count)
338 {
339         struct memory_block *mem;
340         int ret = -EINVAL;
341
342         mem = container_of(dev, struct memory_block, dev);
343
344         if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
345                 ret = memory_block_change_state(mem, MEM_ONLINE,
346                                                 MEM_OFFLINE, ONLINE_KERNEL);
347         else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
348                 ret = memory_block_change_state(mem, MEM_ONLINE,
349                                                 MEM_OFFLINE, ONLINE_MOVABLE);
350         else if (!strncmp(buf, "online", min_t(int, count, 6)))
351                 ret = memory_block_change_state(mem, MEM_ONLINE,
352                                                 MEM_OFFLINE, ONLINE_KEEP);
353         else if(!strncmp(buf, "offline", min_t(int, count, 7)))
354                 ret = memory_block_change_state(mem, MEM_OFFLINE,
355                                                 MEM_ONLINE, -1);
356
357         if (ret)
358                 return ret;
359         return count;
360 }
361
362 /*
363  * phys_device is a bad name for this.  What I really want
364  * is a way to differentiate between memory ranges that
365  * are part of physical devices that constitute
366  * a complete removable unit or fru.
367  * i.e. do these ranges belong to the same physical device,
368  * s.t. if I offline all of these sections I can then
369  * remove the physical device?
370  */
371 static ssize_t show_phys_device(struct device *dev,
372                                 struct device_attribute *attr, char *buf)
373 {
374         struct memory_block *mem =
375                 container_of(dev, struct memory_block, dev);
376         return sprintf(buf, "%d\n", mem->phys_device);
377 }
378
379 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
380 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
381 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
382 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
383 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
384
385 #define mem_create_simple_file(mem, attr_name)  \
386         device_create_file(&mem->dev, &dev_attr_##attr_name)
387 #define mem_remove_simple_file(mem, attr_name)  \
388         device_remove_file(&mem->dev, &dev_attr_##attr_name)
389
390 /*
391  * Block size attribute stuff
392  */
393 static ssize_t
394 print_block_size(struct device *dev, struct device_attribute *attr,
395                  char *buf)
396 {
397         return sprintf(buf, "%lx\n", get_memory_block_size());
398 }
399
400 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
401
402 static int block_size_init(void)
403 {
404         return device_create_file(memory_subsys.dev_root,
405                                   &dev_attr_block_size_bytes);
406 }
407
408 /*
409  * Some architectures will have custom drivers to do this, and
410  * will not need to do it from userspace.  The fake hot-add code
411  * as well as ppc64 will do all of their discovery in userspace
412  * and will require this interface.
413  */
414 #ifdef CONFIG_ARCH_MEMORY_PROBE
415 static ssize_t
416 memory_probe_store(struct device *dev, struct device_attribute *attr,
417                    const char *buf, size_t count)
418 {
419         u64 phys_addr;
420         int nid;
421         int i, ret;
422         unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
423
424         phys_addr = simple_strtoull(buf, NULL, 0);
425
426         if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
427                 return -EINVAL;
428
429         for (i = 0; i < sections_per_block; i++) {
430                 nid = memory_add_physaddr_to_nid(phys_addr);
431                 ret = add_memory(nid, phys_addr,
432                                  PAGES_PER_SECTION << PAGE_SHIFT);
433                 if (ret)
434                         goto out;
435
436                 phys_addr += MIN_MEMORY_BLOCK_SIZE;
437         }
438
439         ret = count;
440 out:
441         return ret;
442 }
443 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
444
445 static int memory_probe_init(void)
446 {
447         return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
448 }
449 #else
450 static inline int memory_probe_init(void)
451 {
452         return 0;
453 }
454 #endif
455
456 #ifdef CONFIG_MEMORY_FAILURE
457 /*
458  * Support for offlining pages of memory
459  */
460
461 /* Soft offline a page */
462 static ssize_t
463 store_soft_offline_page(struct device *dev,
464                         struct device_attribute *attr,
465                         const char *buf, size_t count)
466 {
467         int ret;
468         u64 pfn;
469         if (!capable(CAP_SYS_ADMIN))
470                 return -EPERM;
471         if (strict_strtoull(buf, 0, &pfn) < 0)
472                 return -EINVAL;
473         pfn >>= PAGE_SHIFT;
474         if (!pfn_valid(pfn))
475                 return -ENXIO;
476         ret = soft_offline_page(pfn_to_page(pfn), 0);
477         return ret == 0 ? count : ret;
478 }
479
480 /* Forcibly offline a page, including killing processes. */
481 static ssize_t
482 store_hard_offline_page(struct device *dev,
483                         struct device_attribute *attr,
484                         const char *buf, size_t count)
485 {
486         int ret;
487         u64 pfn;
488         if (!capable(CAP_SYS_ADMIN))
489                 return -EPERM;
490         if (strict_strtoull(buf, 0, &pfn) < 0)
491                 return -EINVAL;
492         pfn >>= PAGE_SHIFT;
493         ret = memory_failure(pfn, 0, 0);
494         return ret ? ret : count;
495 }
496
497 static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
498 static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
499
500 static __init int memory_fail_init(void)
501 {
502         int err;
503
504         err = device_create_file(memory_subsys.dev_root,
505                                 &dev_attr_soft_offline_page);
506         if (!err)
507                 err = device_create_file(memory_subsys.dev_root,
508                                 &dev_attr_hard_offline_page);
509         return err;
510 }
511 #else
512 static inline int memory_fail_init(void)
513 {
514         return 0;
515 }
516 #endif
517
518 /*
519  * Note that phys_device is optional.  It is here to allow for
520  * differentiation between which *physical* devices each
521  * section belongs to...
522  */
523 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
524 {
525         return 0;
526 }
527
528 /*
529  * A reference for the returned object is held and the reference for the
530  * hinted object is released.
531  */
532 struct memory_block *find_memory_block_hinted(struct mem_section *section,
533                                               struct memory_block *hint)
534 {
535         int block_id = base_memory_block_id(__section_nr(section));
536         struct device *hintdev = hint ? &hint->dev : NULL;
537         struct device *dev;
538
539         dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
540         if (hint)
541                 put_device(&hint->dev);
542         if (!dev)
543                 return NULL;
544         return container_of(dev, struct memory_block, dev);
545 }
546
547 /*
548  * For now, we have a linear search to go find the appropriate
549  * memory_block corresponding to a particular phys_index. If
550  * this gets to be a real problem, we can always use a radix
551  * tree or something here.
552  *
553  * This could be made generic for all device subsystems.
554  */
555 struct memory_block *find_memory_block(struct mem_section *section)
556 {
557         return find_memory_block_hinted(section, NULL);
558 }
559
560 static int init_memory_block(struct memory_block **memory,
561                              struct mem_section *section, unsigned long state)
562 {
563         struct memory_block *mem;
564         unsigned long start_pfn;
565         int scn_nr;
566         int ret = 0;
567
568         mem = kzalloc(sizeof(*mem), GFP_KERNEL);
569         if (!mem)
570                 return -ENOMEM;
571
572         scn_nr = __section_nr(section);
573         mem->start_section_nr =
574                         base_memory_block_id(scn_nr) * sections_per_block;
575         mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
576         mem->state = state;
577         mem->section_count++;
578         mutex_init(&mem->state_mutex);
579         start_pfn = section_nr_to_pfn(mem->start_section_nr);
580         mem->phys_device = arch_get_memory_phys_device(start_pfn);
581
582         ret = register_memory(mem);
583         if (!ret)
584                 ret = mem_create_simple_file(mem, phys_index);
585         if (!ret)
586                 ret = mem_create_simple_file(mem, end_phys_index);
587         if (!ret)
588                 ret = mem_create_simple_file(mem, state);
589         if (!ret)
590                 ret = mem_create_simple_file(mem, phys_device);
591         if (!ret)
592                 ret = mem_create_simple_file(mem, removable);
593
594         *memory = mem;
595         return ret;
596 }
597
598 static int add_memory_section(int nid, struct mem_section *section,
599                         struct memory_block **mem_p,
600                         unsigned long state, enum mem_add_context context)
601 {
602         struct memory_block *mem = NULL;
603         int scn_nr = __section_nr(section);
604         int ret = 0;
605
606         mutex_lock(&mem_sysfs_mutex);
607
608         if (context == BOOT) {
609                 /* same memory block ? */
610                 if (mem_p && *mem_p)
611                         if (scn_nr >= (*mem_p)->start_section_nr &&
612                             scn_nr <= (*mem_p)->end_section_nr) {
613                                 mem = *mem_p;
614                                 kobject_get(&mem->dev.kobj);
615                         }
616         } else
617                 mem = find_memory_block(section);
618
619         if (mem) {
620                 mem->section_count++;
621                 kobject_put(&mem->dev.kobj);
622         } else {
623                 ret = init_memory_block(&mem, section, state);
624                 /* store memory_block pointer for next loop */
625                 if (!ret && context == BOOT)
626                         if (mem_p)
627                                 *mem_p = mem;
628         }
629
630         if (!ret) {
631                 if (context == HOTPLUG &&
632                     mem->section_count == sections_per_block)
633                         ret = register_mem_sect_under_node(mem, nid);
634         }
635
636         mutex_unlock(&mem_sysfs_mutex);
637         return ret;
638 }
639
640 int remove_memory_block(unsigned long node_id, struct mem_section *section,
641                 int phys_device)
642 {
643         struct memory_block *mem;
644
645         mutex_lock(&mem_sysfs_mutex);
646         mem = find_memory_block(section);
647         unregister_mem_sect_under_nodes(mem, __section_nr(section));
648
649         mem->section_count--;
650         if (mem->section_count == 0) {
651                 mem_remove_simple_file(mem, phys_index);
652                 mem_remove_simple_file(mem, end_phys_index);
653                 mem_remove_simple_file(mem, state);
654                 mem_remove_simple_file(mem, phys_device);
655                 mem_remove_simple_file(mem, removable);
656                 unregister_memory(mem);
657         } else
658                 kobject_put(&mem->dev.kobj);
659
660         mutex_unlock(&mem_sysfs_mutex);
661         return 0;
662 }
663
664 /*
665  * need an interface for the VM to add new memory regions,
666  * but without onlining it.
667  */
668 int register_new_memory(int nid, struct mem_section *section)
669 {
670         return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
671 }
672
673 int unregister_memory_section(struct mem_section *section)
674 {
675         if (!present_section(section))
676                 return -EINVAL;
677
678         return remove_memory_block(0, section, 0);
679 }
680
681 /*
682  * offline one memory block. If the memory block has been offlined, do nothing.
683  */
684 int offline_memory_block(struct memory_block *mem)
685 {
686         int ret = 0;
687
688         mutex_lock(&mem->state_mutex);
689         if (mem->state != MEM_OFFLINE)
690                 ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
691         mutex_unlock(&mem->state_mutex);
692
693         return ret;
694 }
695
696 /*
697  * Initialize the sysfs support for memory devices...
698  */
699 int __init memory_dev_init(void)
700 {
701         unsigned int i;
702         int ret;
703         int err;
704         unsigned long block_sz;
705         struct memory_block *mem = NULL;
706
707         ret = subsys_system_register(&memory_subsys, NULL);
708         if (ret)
709                 goto out;
710
711         block_sz = get_memory_block_size();
712         sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
713
714         /*
715          * Create entries for memory sections that were found
716          * during boot and have been initialized
717          */
718         for (i = 0; i < NR_MEM_SECTIONS; i++) {
719                 if (!present_section_nr(i))
720                         continue;
721                 /* don't need to reuse memory_block if only one per block */
722                 err = add_memory_section(0, __nr_to_section(i),
723                                  (sections_per_block == 1) ? NULL : &mem,
724                                          MEM_ONLINE,
725                                          BOOT);
726                 if (!ret)
727                         ret = err;
728         }
729
730         err = memory_probe_init();
731         if (!ret)
732                 ret = err;
733         err = memory_fail_init();
734         if (!ret)
735                 ret = err;
736         err = block_size_init();
737         if (!ret)
738                 ret = err;
739 out:
740         if (ret)
741                 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
742         return ret;
743 }