cfq-iosched: Get rid of st->active
[pandora-kernel.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20  * tunables
21  */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38  * offset from end of service tree
39  */
40 #define CFQ_IDLE_DELAY          (HZ / 5)
41
42 /*
43  * below this threshold, we consider thinktime immediate
44  */
45 #define CFQ_MIN_TT              (2)
46
47 #define CFQ_SLICE_SCALE         (5)
48 #define CFQ_HW_QUEUE_MIN        (5)
49 #define CFQ_SERVICE_SHIFT       12
50
51 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq)              \
57         ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
59 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private3)
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples)   ((samples) > 80)
76 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79  * Most of our rbtree usage is for sorting with min extraction, so
80  * if we cache the leftmost node we don't have to walk down the tree
81  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82  * move this into the elevator for the rq sorting as well.
83  */
84 struct cfq_rb_root {
85         struct rb_root rb;
86         struct rb_node *left;
87         unsigned count;
88         unsigned total_weight;
89         u64 min_vdisktime;
90 };
91 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92                         .count = 0, .min_vdisktime = 0, }
93
94 /*
95  * Per process-grouping structure
96  */
97 struct cfq_queue {
98         /* reference count */
99         atomic_t ref;
100         /* various state flags, see below */
101         unsigned int flags;
102         /* parent cfq_data */
103         struct cfq_data *cfqd;
104         /* service_tree member */
105         struct rb_node rb_node;
106         /* service_tree key */
107         unsigned long rb_key;
108         /* prio tree member */
109         struct rb_node p_node;
110         /* prio tree root we belong to, if any */
111         struct rb_root *p_root;
112         /* sorted list of pending requests */
113         struct rb_root sort_list;
114         /* if fifo isn't expired, next request to serve */
115         struct request *next_rq;
116         /* requests queued in sort_list */
117         int queued[2];
118         /* currently allocated requests */
119         int allocated[2];
120         /* fifo list of requests in sort_list */
121         struct list_head fifo;
122
123         /* time when queue got scheduled in to dispatch first request. */
124         unsigned long dispatch_start;
125         unsigned int allocated_slice;
126         unsigned int slice_dispatch;
127         /* time when first request from queue completed and slice started. */
128         unsigned long slice_start;
129         unsigned long slice_end;
130         long slice_resid;
131
132         /* pending metadata requests */
133         int meta_pending;
134         /* number of requests that are on the dispatch list or inside driver */
135         int dispatched;
136
137         /* io prio of this group */
138         unsigned short ioprio, org_ioprio;
139         unsigned short ioprio_class, org_ioprio_class;
140
141         pid_t pid;
142
143         u32 seek_history;
144         sector_t last_request_pos;
145
146         struct cfq_rb_root *service_tree;
147         struct cfq_queue *new_cfqq;
148         struct cfq_group *cfqg;
149         struct cfq_group *orig_cfqg;
150         /* Number of sectors dispatched from queue in single dispatch round */
151         unsigned long nr_sectors;
152 };
153
154 /*
155  * First index in the service_trees.
156  * IDLE is handled separately, so it has negative index
157  */
158 enum wl_prio_t {
159         BE_WORKLOAD = 0,
160         RT_WORKLOAD = 1,
161         IDLE_WORKLOAD = 2,
162         CFQ_PRIO_NR,
163 };
164
165 /*
166  * Second index in the service_trees.
167  */
168 enum wl_type_t {
169         ASYNC_WORKLOAD = 0,
170         SYNC_NOIDLE_WORKLOAD = 1,
171         SYNC_WORKLOAD = 2
172 };
173
174 /* This is per cgroup per device grouping structure */
175 struct cfq_group {
176         /* group service_tree member */
177         struct rb_node rb_node;
178
179         /* group service_tree key */
180         u64 vdisktime;
181         unsigned int weight;
182         bool on_st;
183
184         /* number of cfqq currently on this group */
185         int nr_cfqq;
186
187         /*
188          * Per group busy queus average. Useful for workload slice calc. We
189          * create the array for each prio class but at run time it is used
190          * only for RT and BE class and slot for IDLE class remains unused.
191          * This is primarily done to avoid confusion and a gcc warning.
192          */
193         unsigned int busy_queues_avg[CFQ_PRIO_NR];
194         /*
195          * rr lists of queues with requests. We maintain service trees for
196          * RT and BE classes. These trees are subdivided in subclasses
197          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198          * class there is no subclassification and all the cfq queues go on
199          * a single tree service_tree_idle.
200          * Counts are embedded in the cfq_rb_root
201          */
202         struct cfq_rb_root service_trees[2][3];
203         struct cfq_rb_root service_tree_idle;
204
205         unsigned long saved_workload_slice;
206         enum wl_type_t saved_workload;
207         enum wl_prio_t saved_serving_prio;
208         struct blkio_group blkg;
209 #ifdef CONFIG_CFQ_GROUP_IOSCHED
210         struct hlist_node cfqd_node;
211         atomic_t ref;
212 #endif
213         /* number of requests that are on the dispatch list or inside driver */
214         int dispatched;
215 };
216
217 /*
218  * Per block device queue structure
219  */
220 struct cfq_data {
221         struct request_queue *queue;
222         /* Root service tree for cfq_groups */
223         struct cfq_rb_root grp_service_tree;
224         struct cfq_group root_group;
225
226         /*
227          * The priority currently being served
228          */
229         enum wl_prio_t serving_prio;
230         enum wl_type_t serving_type;
231         unsigned long workload_expires;
232         struct cfq_group *serving_group;
233
234         /*
235          * Each priority tree is sorted by next_request position.  These
236          * trees are used when determining if two or more queues are
237          * interleaving requests (see cfq_close_cooperator).
238          */
239         struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241         unsigned int busy_queues;
242
243         int rq_in_driver;
244         int rq_in_flight[2];
245
246         /*
247          * queue-depth detection
248          */
249         int rq_queued;
250         int hw_tag;
251         /*
252          * hw_tag can be
253          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
254          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
255          *  0 => no NCQ
256          */
257         int hw_tag_est_depth;
258         unsigned int hw_tag_samples;
259
260         /*
261          * idle window management
262          */
263         struct timer_list idle_slice_timer;
264         struct work_struct unplug_work;
265
266         struct cfq_queue *active_queue;
267         struct cfq_io_context *active_cic;
268
269         /*
270          * async queue for each priority case
271          */
272         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
273         struct cfq_queue *async_idle_cfqq;
274
275         sector_t last_position;
276
277         /*
278          * tunables, see top of file
279          */
280         unsigned int cfq_quantum;
281         unsigned int cfq_fifo_expire[2];
282         unsigned int cfq_back_penalty;
283         unsigned int cfq_back_max;
284         unsigned int cfq_slice[2];
285         unsigned int cfq_slice_async_rq;
286         unsigned int cfq_slice_idle;
287         unsigned int cfq_group_idle;
288         unsigned int cfq_latency;
289         unsigned int cfq_group_isolation;
290
291         unsigned int cic_index;
292         struct list_head cic_list;
293
294         /*
295          * Fallback dummy cfqq for extreme OOM conditions
296          */
297         struct cfq_queue oom_cfqq;
298
299         unsigned long last_delayed_sync;
300
301         /* List of cfq groups being managed on this device*/
302         struct hlist_head cfqg_list;
303         struct rcu_head rcu;
304 };
305
306 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
307
308 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
309                                             enum wl_prio_t prio,
310                                             enum wl_type_t type)
311 {
312         if (!cfqg)
313                 return NULL;
314
315         if (prio == IDLE_WORKLOAD)
316                 return &cfqg->service_tree_idle;
317
318         return &cfqg->service_trees[prio][type];
319 }
320
321 enum cfqq_state_flags {
322         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
323         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
324         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
325         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
326         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
327         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
328         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
329         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
330         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
331         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
332         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
333         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
334         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
335 };
336
337 #define CFQ_CFQQ_FNS(name)                                              \
338 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
339 {                                                                       \
340         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
341 }                                                                       \
342 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
343 {                                                                       \
344         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
345 }                                                                       \
346 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
347 {                                                                       \
348         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
349 }
350
351 CFQ_CFQQ_FNS(on_rr);
352 CFQ_CFQQ_FNS(wait_request);
353 CFQ_CFQQ_FNS(must_dispatch);
354 CFQ_CFQQ_FNS(must_alloc_slice);
355 CFQ_CFQQ_FNS(fifo_expire);
356 CFQ_CFQQ_FNS(idle_window);
357 CFQ_CFQQ_FNS(prio_changed);
358 CFQ_CFQQ_FNS(slice_new);
359 CFQ_CFQQ_FNS(sync);
360 CFQ_CFQQ_FNS(coop);
361 CFQ_CFQQ_FNS(split_coop);
362 CFQ_CFQQ_FNS(deep);
363 CFQ_CFQQ_FNS(wait_busy);
364 #undef CFQ_CFQQ_FNS
365
366 #ifdef CONFIG_CFQ_GROUP_IOSCHED
367 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
368         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
369                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
370                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
371
372 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
373         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
374                                 blkg_path(&(cfqg)->blkg), ##args);      \
375
376 #else
377 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
378         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
379 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
380 #endif
381 #define cfq_log(cfqd, fmt, args...)     \
382         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
383
384 /* Traverses through cfq group service trees */
385 #define for_each_cfqg_st(cfqg, i, j, st) \
386         for (i = 0; i <= IDLE_WORKLOAD; i++) \
387                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
388                         : &cfqg->service_tree_idle; \
389                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
390                         (i == IDLE_WORKLOAD && j == 0); \
391                         j++, st = i < IDLE_WORKLOAD ? \
392                         &cfqg->service_trees[i][j]: NULL) \
393
394
395 static inline bool iops_mode(struct cfq_data *cfqd)
396 {
397         /*
398          * If we are not idling on queues and it is a NCQ drive, parallel
399          * execution of requests is on and measuring time is not possible
400          * in most of the cases until and unless we drive shallower queue
401          * depths and that becomes a performance bottleneck. In such cases
402          * switch to start providing fairness in terms of number of IOs.
403          */
404         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
405                 return true;
406         else
407                 return false;
408 }
409
410 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
411 {
412         if (cfq_class_idle(cfqq))
413                 return IDLE_WORKLOAD;
414         if (cfq_class_rt(cfqq))
415                 return RT_WORKLOAD;
416         return BE_WORKLOAD;
417 }
418
419
420 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
421 {
422         if (!cfq_cfqq_sync(cfqq))
423                 return ASYNC_WORKLOAD;
424         if (!cfq_cfqq_idle_window(cfqq))
425                 return SYNC_NOIDLE_WORKLOAD;
426         return SYNC_WORKLOAD;
427 }
428
429 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
430                                         struct cfq_data *cfqd,
431                                         struct cfq_group *cfqg)
432 {
433         if (wl == IDLE_WORKLOAD)
434                 return cfqg->service_tree_idle.count;
435
436         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
437                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
438                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
439 }
440
441 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
442                                         struct cfq_group *cfqg)
443 {
444         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
445                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
446 }
447
448 static void cfq_dispatch_insert(struct request_queue *, struct request *);
449 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
450                                        struct io_context *, gfp_t);
451 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
452                                                 struct io_context *);
453
454 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
455                                             bool is_sync)
456 {
457         return cic->cfqq[is_sync];
458 }
459
460 static inline void cic_set_cfqq(struct cfq_io_context *cic,
461                                 struct cfq_queue *cfqq, bool is_sync)
462 {
463         cic->cfqq[is_sync] = cfqq;
464 }
465
466 #define CIC_DEAD_KEY    1ul
467 #define CIC_DEAD_INDEX_SHIFT    1
468
469 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
470 {
471         return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
472 }
473
474 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
475 {
476         struct cfq_data *cfqd = cic->key;
477
478         if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
479                 return NULL;
480
481         return cfqd;
482 }
483
484 /*
485  * We regard a request as SYNC, if it's either a read or has the SYNC bit
486  * set (in which case it could also be direct WRITE).
487  */
488 static inline bool cfq_bio_sync(struct bio *bio)
489 {
490         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
491 }
492
493 /*
494  * scheduler run of queue, if there are requests pending and no one in the
495  * driver that will restart queueing
496  */
497 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
498 {
499         if (cfqd->busy_queues) {
500                 cfq_log(cfqd, "schedule dispatch");
501                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
502         }
503 }
504
505 static int cfq_queue_empty(struct request_queue *q)
506 {
507         struct cfq_data *cfqd = q->elevator->elevator_data;
508
509         return !cfqd->rq_queued;
510 }
511
512 /*
513  * Scale schedule slice based on io priority. Use the sync time slice only
514  * if a queue is marked sync and has sync io queued. A sync queue with async
515  * io only, should not get full sync slice length.
516  */
517 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
518                                  unsigned short prio)
519 {
520         const int base_slice = cfqd->cfq_slice[sync];
521
522         WARN_ON(prio >= IOPRIO_BE_NR);
523
524         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
525 }
526
527 static inline int
528 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529 {
530         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
531 }
532
533 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
534 {
535         u64 d = delta << CFQ_SERVICE_SHIFT;
536
537         d = d * BLKIO_WEIGHT_DEFAULT;
538         do_div(d, cfqg->weight);
539         return d;
540 }
541
542 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
543 {
544         s64 delta = (s64)(vdisktime - min_vdisktime);
545         if (delta > 0)
546                 min_vdisktime = vdisktime;
547
548         return min_vdisktime;
549 }
550
551 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
552 {
553         s64 delta = (s64)(vdisktime - min_vdisktime);
554         if (delta < 0)
555                 min_vdisktime = vdisktime;
556
557         return min_vdisktime;
558 }
559
560 static void update_min_vdisktime(struct cfq_rb_root *st)
561 {
562         u64 vdisktime = st->min_vdisktime;
563         struct cfq_group *cfqg;
564
565         if (st->left) {
566                 cfqg = rb_entry_cfqg(st->left);
567                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
568         }
569
570         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
571 }
572
573 /*
574  * get averaged number of queues of RT/BE priority.
575  * average is updated, with a formula that gives more weight to higher numbers,
576  * to quickly follows sudden increases and decrease slowly
577  */
578
579 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
580                                         struct cfq_group *cfqg, bool rt)
581 {
582         unsigned min_q, max_q;
583         unsigned mult  = cfq_hist_divisor - 1;
584         unsigned round = cfq_hist_divisor / 2;
585         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
586
587         min_q = min(cfqg->busy_queues_avg[rt], busy);
588         max_q = max(cfqg->busy_queues_avg[rt], busy);
589         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
590                 cfq_hist_divisor;
591         return cfqg->busy_queues_avg[rt];
592 }
593
594 static inline unsigned
595 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
596 {
597         struct cfq_rb_root *st = &cfqd->grp_service_tree;
598
599         return cfq_target_latency * cfqg->weight / st->total_weight;
600 }
601
602 static inline void
603 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
604 {
605         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
606         if (cfqd->cfq_latency) {
607                 /*
608                  * interested queues (we consider only the ones with the same
609                  * priority class in the cfq group)
610                  */
611                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
612                                                 cfq_class_rt(cfqq));
613                 unsigned sync_slice = cfqd->cfq_slice[1];
614                 unsigned expect_latency = sync_slice * iq;
615                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
616
617                 if (expect_latency > group_slice) {
618                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
619                         /* scale low_slice according to IO priority
620                          * and sync vs async */
621                         unsigned low_slice =
622                                 min(slice, base_low_slice * slice / sync_slice);
623                         /* the adapted slice value is scaled to fit all iqs
624                          * into the target latency */
625                         slice = max(slice * group_slice / expect_latency,
626                                     low_slice);
627                 }
628         }
629         cfqq->slice_start = jiffies;
630         cfqq->slice_end = jiffies + slice;
631         cfqq->allocated_slice = slice;
632         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
633 }
634
635 /*
636  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
637  * isn't valid until the first request from the dispatch is activated
638  * and the slice time set.
639  */
640 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
641 {
642         if (cfq_cfqq_slice_new(cfqq))
643                 return false;
644         if (time_before(jiffies, cfqq->slice_end))
645                 return false;
646
647         return true;
648 }
649
650 /*
651  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
652  * We choose the request that is closest to the head right now. Distance
653  * behind the head is penalized and only allowed to a certain extent.
654  */
655 static struct request *
656 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
657 {
658         sector_t s1, s2, d1 = 0, d2 = 0;
659         unsigned long back_max;
660 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
661 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
662         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
663
664         if (rq1 == NULL || rq1 == rq2)
665                 return rq2;
666         if (rq2 == NULL)
667                 return rq1;
668
669         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
670                 return rq1;
671         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
672                 return rq2;
673         if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
674                 return rq1;
675         else if ((rq2->cmd_flags & REQ_META) &&
676                  !(rq1->cmd_flags & REQ_META))
677                 return rq2;
678
679         s1 = blk_rq_pos(rq1);
680         s2 = blk_rq_pos(rq2);
681
682         /*
683          * by definition, 1KiB is 2 sectors
684          */
685         back_max = cfqd->cfq_back_max * 2;
686
687         /*
688          * Strict one way elevator _except_ in the case where we allow
689          * short backward seeks which are biased as twice the cost of a
690          * similar forward seek.
691          */
692         if (s1 >= last)
693                 d1 = s1 - last;
694         else if (s1 + back_max >= last)
695                 d1 = (last - s1) * cfqd->cfq_back_penalty;
696         else
697                 wrap |= CFQ_RQ1_WRAP;
698
699         if (s2 >= last)
700                 d2 = s2 - last;
701         else if (s2 + back_max >= last)
702                 d2 = (last - s2) * cfqd->cfq_back_penalty;
703         else
704                 wrap |= CFQ_RQ2_WRAP;
705
706         /* Found required data */
707
708         /*
709          * By doing switch() on the bit mask "wrap" we avoid having to
710          * check two variables for all permutations: --> faster!
711          */
712         switch (wrap) {
713         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
714                 if (d1 < d2)
715                         return rq1;
716                 else if (d2 < d1)
717                         return rq2;
718                 else {
719                         if (s1 >= s2)
720                                 return rq1;
721                         else
722                                 return rq2;
723                 }
724
725         case CFQ_RQ2_WRAP:
726                 return rq1;
727         case CFQ_RQ1_WRAP:
728                 return rq2;
729         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
730         default:
731                 /*
732                  * Since both rqs are wrapped,
733                  * start with the one that's further behind head
734                  * (--> only *one* back seek required),
735                  * since back seek takes more time than forward.
736                  */
737                 if (s1 <= s2)
738                         return rq1;
739                 else
740                         return rq2;
741         }
742 }
743
744 /*
745  * The below is leftmost cache rbtree addon
746  */
747 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
748 {
749         /* Service tree is empty */
750         if (!root->count)
751                 return NULL;
752
753         if (!root->left)
754                 root->left = rb_first(&root->rb);
755
756         if (root->left)
757                 return rb_entry(root->left, struct cfq_queue, rb_node);
758
759         return NULL;
760 }
761
762 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
763 {
764         if (!root->left)
765                 root->left = rb_first(&root->rb);
766
767         if (root->left)
768                 return rb_entry_cfqg(root->left);
769
770         return NULL;
771 }
772
773 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
774 {
775         rb_erase(n, root);
776         RB_CLEAR_NODE(n);
777 }
778
779 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
780 {
781         if (root->left == n)
782                 root->left = NULL;
783         rb_erase_init(n, &root->rb);
784         --root->count;
785 }
786
787 /*
788  * would be nice to take fifo expire time into account as well
789  */
790 static struct request *
791 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
792                   struct request *last)
793 {
794         struct rb_node *rbnext = rb_next(&last->rb_node);
795         struct rb_node *rbprev = rb_prev(&last->rb_node);
796         struct request *next = NULL, *prev = NULL;
797
798         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
799
800         if (rbprev)
801                 prev = rb_entry_rq(rbprev);
802
803         if (rbnext)
804                 next = rb_entry_rq(rbnext);
805         else {
806                 rbnext = rb_first(&cfqq->sort_list);
807                 if (rbnext && rbnext != &last->rb_node)
808                         next = rb_entry_rq(rbnext);
809         }
810
811         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
812 }
813
814 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
815                                       struct cfq_queue *cfqq)
816 {
817         /*
818          * just an approximation, should be ok.
819          */
820         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
821                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
822 }
823
824 static inline s64
825 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
826 {
827         return cfqg->vdisktime - st->min_vdisktime;
828 }
829
830 static void
831 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
832 {
833         struct rb_node **node = &st->rb.rb_node;
834         struct rb_node *parent = NULL;
835         struct cfq_group *__cfqg;
836         s64 key = cfqg_key(st, cfqg);
837         int left = 1;
838
839         while (*node != NULL) {
840                 parent = *node;
841                 __cfqg = rb_entry_cfqg(parent);
842
843                 if (key < cfqg_key(st, __cfqg))
844                         node = &parent->rb_left;
845                 else {
846                         node = &parent->rb_right;
847                         left = 0;
848                 }
849         }
850
851         if (left)
852                 st->left = &cfqg->rb_node;
853
854         rb_link_node(&cfqg->rb_node, parent, node);
855         rb_insert_color(&cfqg->rb_node, &st->rb);
856 }
857
858 static void
859 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
860 {
861         struct cfq_rb_root *st = &cfqd->grp_service_tree;
862         struct cfq_group *__cfqg;
863         struct rb_node *n;
864
865         cfqg->nr_cfqq++;
866         if (cfqg->on_st)
867                 return;
868
869         /*
870          * Currently put the group at the end. Later implement something
871          * so that groups get lesser vtime based on their weights, so that
872          * if group does not loose all if it was not continously backlogged.
873          */
874         n = rb_last(&st->rb);
875         if (n) {
876                 __cfqg = rb_entry_cfqg(n);
877                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
878         } else
879                 cfqg->vdisktime = st->min_vdisktime;
880
881         __cfq_group_service_tree_add(st, cfqg);
882         cfqg->on_st = true;
883         st->total_weight += cfqg->weight;
884 }
885
886 static void
887 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
888 {
889         struct cfq_rb_root *st = &cfqd->grp_service_tree;
890
891         BUG_ON(cfqg->nr_cfqq < 1);
892         cfqg->nr_cfqq--;
893
894         /* If there are other cfq queues under this group, don't delete it */
895         if (cfqg->nr_cfqq)
896                 return;
897
898         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
899         cfqg->on_st = false;
900         st->total_weight -= cfqg->weight;
901         if (!RB_EMPTY_NODE(&cfqg->rb_node))
902                 cfq_rb_erase(&cfqg->rb_node, st);
903         cfqg->saved_workload_slice = 0;
904         cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
905 }
906
907 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
908 {
909         unsigned int slice_used;
910
911         /*
912          * Queue got expired before even a single request completed or
913          * got expired immediately after first request completion.
914          */
915         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
916                 /*
917                  * Also charge the seek time incurred to the group, otherwise
918                  * if there are mutiple queues in the group, each can dispatch
919                  * a single request on seeky media and cause lots of seek time
920                  * and group will never know it.
921                  */
922                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
923                                         1);
924         } else {
925                 slice_used = jiffies - cfqq->slice_start;
926                 if (slice_used > cfqq->allocated_slice)
927                         slice_used = cfqq->allocated_slice;
928         }
929
930         return slice_used;
931 }
932
933 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
934                                 struct cfq_queue *cfqq)
935 {
936         struct cfq_rb_root *st = &cfqd->grp_service_tree;
937         unsigned int used_sl, charge;
938         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
939                         - cfqg->service_tree_idle.count;
940
941         BUG_ON(nr_sync < 0);
942         used_sl = charge = cfq_cfqq_slice_usage(cfqq);
943
944         if (iops_mode(cfqd))
945                 charge = cfqq->slice_dispatch;
946         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
947                 charge = cfqq->allocated_slice;
948
949         /* Can't update vdisktime while group is on service tree */
950         cfq_rb_erase(&cfqg->rb_node, st);
951         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
952         __cfq_group_service_tree_add(st, cfqg);
953
954         /* This group is being expired. Save the context */
955         if (time_after(cfqd->workload_expires, jiffies)) {
956                 cfqg->saved_workload_slice = cfqd->workload_expires
957                                                 - jiffies;
958                 cfqg->saved_workload = cfqd->serving_type;
959                 cfqg->saved_serving_prio = cfqd->serving_prio;
960         } else
961                 cfqg->saved_workload_slice = 0;
962
963         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
964                                         st->min_vdisktime);
965         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
966                         " sect=%u", used_sl, cfqq->slice_dispatch, charge,
967                         iops_mode(cfqd), cfqq->nr_sectors);
968         cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
969         cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
970 }
971
972 #ifdef CONFIG_CFQ_GROUP_IOSCHED
973 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
974 {
975         if (blkg)
976                 return container_of(blkg, struct cfq_group, blkg);
977         return NULL;
978 }
979
980 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
981                                         unsigned int weight)
982 {
983         cfqg_of_blkg(blkg)->weight = weight;
984 }
985
986 static struct cfq_group *
987 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
988 {
989         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
990         struct cfq_group *cfqg = NULL;
991         void *key = cfqd;
992         int i, j;
993         struct cfq_rb_root *st;
994         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
995         unsigned int major, minor;
996
997         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
998         if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
999                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1000                 cfqg->blkg.dev = MKDEV(major, minor);
1001                 goto done;
1002         }
1003         if (cfqg || !create)
1004                 goto done;
1005
1006         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1007         if (!cfqg)
1008                 goto done;
1009
1010         for_each_cfqg_st(cfqg, i, j, st)
1011                 *st = CFQ_RB_ROOT;
1012         RB_CLEAR_NODE(&cfqg->rb_node);
1013
1014         /*
1015          * Take the initial reference that will be released on destroy
1016          * This can be thought of a joint reference by cgroup and
1017          * elevator which will be dropped by either elevator exit
1018          * or cgroup deletion path depending on who is exiting first.
1019          */
1020         atomic_set(&cfqg->ref, 1);
1021
1022         /*
1023          * Add group onto cgroup list. It might happen that bdi->dev is
1024          * not initiliazed yet. Initialize this new group without major
1025          * and minor info and this info will be filled in once a new thread
1026          * comes for IO. See code above.
1027          */
1028         if (bdi->dev) {
1029                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1030                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1031                                         MKDEV(major, minor));
1032         } else
1033                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1034                                         0);
1035
1036         cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1037
1038         /* Add group on cfqd list */
1039         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1040
1041 done:
1042         return cfqg;
1043 }
1044
1045 /*
1046  * Search for the cfq group current task belongs to. If create = 1, then also
1047  * create the cfq group if it does not exist. request_queue lock must be held.
1048  */
1049 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1050 {
1051         struct cgroup *cgroup;
1052         struct cfq_group *cfqg = NULL;
1053
1054         rcu_read_lock();
1055         cgroup = task_cgroup(current, blkio_subsys_id);
1056         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1057         if (!cfqg && create)
1058                 cfqg = &cfqd->root_group;
1059         rcu_read_unlock();
1060         return cfqg;
1061 }
1062
1063 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1064 {
1065         atomic_inc(&cfqg->ref);
1066         return cfqg;
1067 }
1068
1069 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1070 {
1071         /* Currently, all async queues are mapped to root group */
1072         if (!cfq_cfqq_sync(cfqq))
1073                 cfqg = &cfqq->cfqd->root_group;
1074
1075         cfqq->cfqg = cfqg;
1076         /* cfqq reference on cfqg */
1077         atomic_inc(&cfqq->cfqg->ref);
1078 }
1079
1080 static void cfq_put_cfqg(struct cfq_group *cfqg)
1081 {
1082         struct cfq_rb_root *st;
1083         int i, j;
1084
1085         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1086         if (!atomic_dec_and_test(&cfqg->ref))
1087                 return;
1088         for_each_cfqg_st(cfqg, i, j, st)
1089                 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1090         kfree(cfqg);
1091 }
1092
1093 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1094 {
1095         /* Something wrong if we are trying to remove same group twice */
1096         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1097
1098         hlist_del_init(&cfqg->cfqd_node);
1099
1100         /*
1101          * Put the reference taken at the time of creation so that when all
1102          * queues are gone, group can be destroyed.
1103          */
1104         cfq_put_cfqg(cfqg);
1105 }
1106
1107 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1108 {
1109         struct hlist_node *pos, *n;
1110         struct cfq_group *cfqg;
1111
1112         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1113                 /*
1114                  * If cgroup removal path got to blk_group first and removed
1115                  * it from cgroup list, then it will take care of destroying
1116                  * cfqg also.
1117                  */
1118                 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1119                         cfq_destroy_cfqg(cfqd, cfqg);
1120         }
1121 }
1122
1123 /*
1124  * Blk cgroup controller notification saying that blkio_group object is being
1125  * delinked as associated cgroup object is going away. That also means that
1126  * no new IO will come in this group. So get rid of this group as soon as
1127  * any pending IO in the group is finished.
1128  *
1129  * This function is called under rcu_read_lock(). key is the rcu protected
1130  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1131  * read lock.
1132  *
1133  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1134  * it should not be NULL as even if elevator was exiting, cgroup deltion
1135  * path got to it first.
1136  */
1137 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1138 {
1139         unsigned long  flags;
1140         struct cfq_data *cfqd = key;
1141
1142         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1143         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1144         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1145 }
1146
1147 #else /* GROUP_IOSCHED */
1148 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1149 {
1150         return &cfqd->root_group;
1151 }
1152
1153 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1154 {
1155         return cfqg;
1156 }
1157
1158 static inline void
1159 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1160         cfqq->cfqg = cfqg;
1161 }
1162
1163 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1164 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1165
1166 #endif /* GROUP_IOSCHED */
1167
1168 /*
1169  * The cfqd->service_trees holds all pending cfq_queue's that have
1170  * requests waiting to be processed. It is sorted in the order that
1171  * we will service the queues.
1172  */
1173 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1174                                  bool add_front)
1175 {
1176         struct rb_node **p, *parent;
1177         struct cfq_queue *__cfqq;
1178         unsigned long rb_key;
1179         struct cfq_rb_root *service_tree;
1180         int left;
1181         int new_cfqq = 1;
1182         int group_changed = 0;
1183
1184 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1185         if (!cfqd->cfq_group_isolation
1186             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1187             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1188                 /* Move this cfq to root group */
1189                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1190                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1191                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1192                 cfqq->orig_cfqg = cfqq->cfqg;
1193                 cfqq->cfqg = &cfqd->root_group;
1194                 atomic_inc(&cfqd->root_group.ref);
1195                 group_changed = 1;
1196         } else if (!cfqd->cfq_group_isolation
1197                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1198                 /* cfqq is sequential now needs to go to its original group */
1199                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1200                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1201                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1202                 cfq_put_cfqg(cfqq->cfqg);
1203                 cfqq->cfqg = cfqq->orig_cfqg;
1204                 cfqq->orig_cfqg = NULL;
1205                 group_changed = 1;
1206                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1207         }
1208 #endif
1209
1210         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1211                                                 cfqq_type(cfqq));
1212         if (cfq_class_idle(cfqq)) {
1213                 rb_key = CFQ_IDLE_DELAY;
1214                 parent = rb_last(&service_tree->rb);
1215                 if (parent && parent != &cfqq->rb_node) {
1216                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1217                         rb_key += __cfqq->rb_key;
1218                 } else
1219                         rb_key += jiffies;
1220         } else if (!add_front) {
1221                 /*
1222                  * Get our rb key offset. Subtract any residual slice
1223                  * value carried from last service. A negative resid
1224                  * count indicates slice overrun, and this should position
1225                  * the next service time further away in the tree.
1226                  */
1227                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1228                 rb_key -= cfqq->slice_resid;
1229                 cfqq->slice_resid = 0;
1230         } else {
1231                 rb_key = -HZ;
1232                 __cfqq = cfq_rb_first(service_tree);
1233                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1234         }
1235
1236         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1237                 new_cfqq = 0;
1238                 /*
1239                  * same position, nothing more to do
1240                  */
1241                 if (rb_key == cfqq->rb_key &&
1242                     cfqq->service_tree == service_tree)
1243                         return;
1244
1245                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1246                 cfqq->service_tree = NULL;
1247         }
1248
1249         left = 1;
1250         parent = NULL;
1251         cfqq->service_tree = service_tree;
1252         p = &service_tree->rb.rb_node;
1253         while (*p) {
1254                 struct rb_node **n;
1255
1256                 parent = *p;
1257                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1258
1259                 /*
1260                  * sort by key, that represents service time.
1261                  */
1262                 if (time_before(rb_key, __cfqq->rb_key))
1263                         n = &(*p)->rb_left;
1264                 else {
1265                         n = &(*p)->rb_right;
1266                         left = 0;
1267                 }
1268
1269                 p = n;
1270         }
1271
1272         if (left)
1273                 service_tree->left = &cfqq->rb_node;
1274
1275         cfqq->rb_key = rb_key;
1276         rb_link_node(&cfqq->rb_node, parent, p);
1277         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1278         service_tree->count++;
1279         if ((add_front || !new_cfqq) && !group_changed)
1280                 return;
1281         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1282 }
1283
1284 static struct cfq_queue *
1285 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1286                      sector_t sector, struct rb_node **ret_parent,
1287                      struct rb_node ***rb_link)
1288 {
1289         struct rb_node **p, *parent;
1290         struct cfq_queue *cfqq = NULL;
1291
1292         parent = NULL;
1293         p = &root->rb_node;
1294         while (*p) {
1295                 struct rb_node **n;
1296
1297                 parent = *p;
1298                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1299
1300                 /*
1301                  * Sort strictly based on sector.  Smallest to the left,
1302                  * largest to the right.
1303                  */
1304                 if (sector > blk_rq_pos(cfqq->next_rq))
1305                         n = &(*p)->rb_right;
1306                 else if (sector < blk_rq_pos(cfqq->next_rq))
1307                         n = &(*p)->rb_left;
1308                 else
1309                         break;
1310                 p = n;
1311                 cfqq = NULL;
1312         }
1313
1314         *ret_parent = parent;
1315         if (rb_link)
1316                 *rb_link = p;
1317         return cfqq;
1318 }
1319
1320 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1321 {
1322         struct rb_node **p, *parent;
1323         struct cfq_queue *__cfqq;
1324
1325         if (cfqq->p_root) {
1326                 rb_erase(&cfqq->p_node, cfqq->p_root);
1327                 cfqq->p_root = NULL;
1328         }
1329
1330         if (cfq_class_idle(cfqq))
1331                 return;
1332         if (!cfqq->next_rq)
1333                 return;
1334
1335         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1336         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1337                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1338         if (!__cfqq) {
1339                 rb_link_node(&cfqq->p_node, parent, p);
1340                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1341         } else
1342                 cfqq->p_root = NULL;
1343 }
1344
1345 /*
1346  * Update cfqq's position in the service tree.
1347  */
1348 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1349 {
1350         /*
1351          * Resorting requires the cfqq to be on the RR list already.
1352          */
1353         if (cfq_cfqq_on_rr(cfqq)) {
1354                 cfq_service_tree_add(cfqd, cfqq, 0);
1355                 cfq_prio_tree_add(cfqd, cfqq);
1356         }
1357 }
1358
1359 /*
1360  * add to busy list of queues for service, trying to be fair in ordering
1361  * the pending list according to last request service
1362  */
1363 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1364 {
1365         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1366         BUG_ON(cfq_cfqq_on_rr(cfqq));
1367         cfq_mark_cfqq_on_rr(cfqq);
1368         cfqd->busy_queues++;
1369
1370         cfq_resort_rr_list(cfqd, cfqq);
1371 }
1372
1373 /*
1374  * Called when the cfqq no longer has requests pending, remove it from
1375  * the service tree.
1376  */
1377 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1378 {
1379         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1380         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1381         cfq_clear_cfqq_on_rr(cfqq);
1382
1383         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1384                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1385                 cfqq->service_tree = NULL;
1386         }
1387         if (cfqq->p_root) {
1388                 rb_erase(&cfqq->p_node, cfqq->p_root);
1389                 cfqq->p_root = NULL;
1390         }
1391
1392         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1393         BUG_ON(!cfqd->busy_queues);
1394         cfqd->busy_queues--;
1395 }
1396
1397 /*
1398  * rb tree support functions
1399  */
1400 static void cfq_del_rq_rb(struct request *rq)
1401 {
1402         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1403         const int sync = rq_is_sync(rq);
1404
1405         BUG_ON(!cfqq->queued[sync]);
1406         cfqq->queued[sync]--;
1407
1408         elv_rb_del(&cfqq->sort_list, rq);
1409
1410         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1411                 /*
1412                  * Queue will be deleted from service tree when we actually
1413                  * expire it later. Right now just remove it from prio tree
1414                  * as it is empty.
1415                  */
1416                 if (cfqq->p_root) {
1417                         rb_erase(&cfqq->p_node, cfqq->p_root);
1418                         cfqq->p_root = NULL;
1419                 }
1420         }
1421 }
1422
1423 static void cfq_add_rq_rb(struct request *rq)
1424 {
1425         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1426         struct cfq_data *cfqd = cfqq->cfqd;
1427         struct request *__alias, *prev;
1428
1429         cfqq->queued[rq_is_sync(rq)]++;
1430
1431         /*
1432          * looks a little odd, but the first insert might return an alias.
1433          * if that happens, put the alias on the dispatch list
1434          */
1435         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1436                 cfq_dispatch_insert(cfqd->queue, __alias);
1437
1438         if (!cfq_cfqq_on_rr(cfqq))
1439                 cfq_add_cfqq_rr(cfqd, cfqq);
1440
1441         /*
1442          * check if this request is a better next-serve candidate
1443          */
1444         prev = cfqq->next_rq;
1445         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1446
1447         /*
1448          * adjust priority tree position, if ->next_rq changes
1449          */
1450         if (prev != cfqq->next_rq)
1451                 cfq_prio_tree_add(cfqd, cfqq);
1452
1453         BUG_ON(!cfqq->next_rq);
1454 }
1455
1456 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1457 {
1458         elv_rb_del(&cfqq->sort_list, rq);
1459         cfqq->queued[rq_is_sync(rq)]--;
1460         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1461                                         rq_data_dir(rq), rq_is_sync(rq));
1462         cfq_add_rq_rb(rq);
1463         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1464                         &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1465                         rq_is_sync(rq));
1466 }
1467
1468 static struct request *
1469 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1470 {
1471         struct task_struct *tsk = current;
1472         struct cfq_io_context *cic;
1473         struct cfq_queue *cfqq;
1474
1475         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1476         if (!cic)
1477                 return NULL;
1478
1479         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1480         if (cfqq) {
1481                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1482
1483                 return elv_rb_find(&cfqq->sort_list, sector);
1484         }
1485
1486         return NULL;
1487 }
1488
1489 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1490 {
1491         struct cfq_data *cfqd = q->elevator->elevator_data;
1492
1493         cfqd->rq_in_driver++;
1494         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1495                                                 cfqd->rq_in_driver);
1496
1497         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1498 }
1499
1500 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1501 {
1502         struct cfq_data *cfqd = q->elevator->elevator_data;
1503
1504         WARN_ON(!cfqd->rq_in_driver);
1505         cfqd->rq_in_driver--;
1506         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1507                                                 cfqd->rq_in_driver);
1508 }
1509
1510 static void cfq_remove_request(struct request *rq)
1511 {
1512         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1513
1514         if (cfqq->next_rq == rq)
1515                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1516
1517         list_del_init(&rq->queuelist);
1518         cfq_del_rq_rb(rq);
1519
1520         cfqq->cfqd->rq_queued--;
1521         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1522                                         rq_data_dir(rq), rq_is_sync(rq));
1523         if (rq->cmd_flags & REQ_META) {
1524                 WARN_ON(!cfqq->meta_pending);
1525                 cfqq->meta_pending--;
1526         }
1527 }
1528
1529 static int cfq_merge(struct request_queue *q, struct request **req,
1530                      struct bio *bio)
1531 {
1532         struct cfq_data *cfqd = q->elevator->elevator_data;
1533         struct request *__rq;
1534
1535         __rq = cfq_find_rq_fmerge(cfqd, bio);
1536         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1537                 *req = __rq;
1538                 return ELEVATOR_FRONT_MERGE;
1539         }
1540
1541         return ELEVATOR_NO_MERGE;
1542 }
1543
1544 static void cfq_merged_request(struct request_queue *q, struct request *req,
1545                                int type)
1546 {
1547         if (type == ELEVATOR_FRONT_MERGE) {
1548                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1549
1550                 cfq_reposition_rq_rb(cfqq, req);
1551         }
1552 }
1553
1554 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1555                                 struct bio *bio)
1556 {
1557         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1558                                         bio_data_dir(bio), cfq_bio_sync(bio));
1559 }
1560
1561 static void
1562 cfq_merged_requests(struct request_queue *q, struct request *rq,
1563                     struct request *next)
1564 {
1565         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1566         /*
1567          * reposition in fifo if next is older than rq
1568          */
1569         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1570             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1571                 list_move(&rq->queuelist, &next->queuelist);
1572                 rq_set_fifo_time(rq, rq_fifo_time(next));
1573         }
1574
1575         if (cfqq->next_rq == next)
1576                 cfqq->next_rq = rq;
1577         cfq_remove_request(next);
1578         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1579                                         rq_data_dir(next), rq_is_sync(next));
1580 }
1581
1582 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1583                            struct bio *bio)
1584 {
1585         struct cfq_data *cfqd = q->elevator->elevator_data;
1586         struct cfq_io_context *cic;
1587         struct cfq_queue *cfqq;
1588
1589         /*
1590          * Disallow merge of a sync bio into an async request.
1591          */
1592         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1593                 return false;
1594
1595         /*
1596          * Lookup the cfqq that this bio will be queued with. Allow
1597          * merge only if rq is queued there.
1598          */
1599         cic = cfq_cic_lookup(cfqd, current->io_context);
1600         if (!cic)
1601                 return false;
1602
1603         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1604         return cfqq == RQ_CFQQ(rq);
1605 }
1606
1607 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1608 {
1609         del_timer(&cfqd->idle_slice_timer);
1610         cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1611 }
1612
1613 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1614                                    struct cfq_queue *cfqq)
1615 {
1616         if (cfqq) {
1617                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1618                                 cfqd->serving_prio, cfqd->serving_type);
1619                 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1620                 cfqq->slice_start = 0;
1621                 cfqq->dispatch_start = jiffies;
1622                 cfqq->allocated_slice = 0;
1623                 cfqq->slice_end = 0;
1624                 cfqq->slice_dispatch = 0;
1625                 cfqq->nr_sectors = 0;
1626
1627                 cfq_clear_cfqq_wait_request(cfqq);
1628                 cfq_clear_cfqq_must_dispatch(cfqq);
1629                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1630                 cfq_clear_cfqq_fifo_expire(cfqq);
1631                 cfq_mark_cfqq_slice_new(cfqq);
1632
1633                 cfq_del_timer(cfqd, cfqq);
1634         }
1635
1636         cfqd->active_queue = cfqq;
1637 }
1638
1639 /*
1640  * current cfqq expired its slice (or was too idle), select new one
1641  */
1642 static void
1643 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1644                     bool timed_out)
1645 {
1646         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1647
1648         if (cfq_cfqq_wait_request(cfqq))
1649                 cfq_del_timer(cfqd, cfqq);
1650
1651         cfq_clear_cfqq_wait_request(cfqq);
1652         cfq_clear_cfqq_wait_busy(cfqq);
1653
1654         /*
1655          * If this cfqq is shared between multiple processes, check to
1656          * make sure that those processes are still issuing I/Os within
1657          * the mean seek distance.  If not, it may be time to break the
1658          * queues apart again.
1659          */
1660         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1661                 cfq_mark_cfqq_split_coop(cfqq);
1662
1663         /*
1664          * store what was left of this slice, if the queue idled/timed out
1665          */
1666         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1667                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1668                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1669         }
1670
1671         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1672
1673         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1674                 cfq_del_cfqq_rr(cfqd, cfqq);
1675
1676         cfq_resort_rr_list(cfqd, cfqq);
1677
1678         if (cfqq == cfqd->active_queue)
1679                 cfqd->active_queue = NULL;
1680
1681         if (cfqd->active_cic) {
1682                 put_io_context(cfqd->active_cic->ioc);
1683                 cfqd->active_cic = NULL;
1684         }
1685 }
1686
1687 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1688 {
1689         struct cfq_queue *cfqq = cfqd->active_queue;
1690
1691         if (cfqq)
1692                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1693 }
1694
1695 /*
1696  * Get next queue for service. Unless we have a queue preemption,
1697  * we'll simply select the first cfqq in the service tree.
1698  */
1699 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1700 {
1701         struct cfq_rb_root *service_tree =
1702                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1703                                         cfqd->serving_type);
1704
1705         if (!cfqd->rq_queued)
1706                 return NULL;
1707
1708         /* There is nothing to dispatch */
1709         if (!service_tree)
1710                 return NULL;
1711         if (RB_EMPTY_ROOT(&service_tree->rb))
1712                 return NULL;
1713         return cfq_rb_first(service_tree);
1714 }
1715
1716 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1717 {
1718         struct cfq_group *cfqg;
1719         struct cfq_queue *cfqq;
1720         int i, j;
1721         struct cfq_rb_root *st;
1722
1723         if (!cfqd->rq_queued)
1724                 return NULL;
1725
1726         cfqg = cfq_get_next_cfqg(cfqd);
1727         if (!cfqg)
1728                 return NULL;
1729
1730         for_each_cfqg_st(cfqg, i, j, st)
1731                 if ((cfqq = cfq_rb_first(st)) != NULL)
1732                         return cfqq;
1733         return NULL;
1734 }
1735
1736 /*
1737  * Get and set a new active queue for service.
1738  */
1739 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1740                                               struct cfq_queue *cfqq)
1741 {
1742         if (!cfqq)
1743                 cfqq = cfq_get_next_queue(cfqd);
1744
1745         __cfq_set_active_queue(cfqd, cfqq);
1746         return cfqq;
1747 }
1748
1749 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1750                                           struct request *rq)
1751 {
1752         if (blk_rq_pos(rq) >= cfqd->last_position)
1753                 return blk_rq_pos(rq) - cfqd->last_position;
1754         else
1755                 return cfqd->last_position - blk_rq_pos(rq);
1756 }
1757
1758 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1759                                struct request *rq)
1760 {
1761         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1762 }
1763
1764 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1765                                     struct cfq_queue *cur_cfqq)
1766 {
1767         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1768         struct rb_node *parent, *node;
1769         struct cfq_queue *__cfqq;
1770         sector_t sector = cfqd->last_position;
1771
1772         if (RB_EMPTY_ROOT(root))
1773                 return NULL;
1774
1775         /*
1776          * First, if we find a request starting at the end of the last
1777          * request, choose it.
1778          */
1779         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1780         if (__cfqq)
1781                 return __cfqq;
1782
1783         /*
1784          * If the exact sector wasn't found, the parent of the NULL leaf
1785          * will contain the closest sector.
1786          */
1787         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1788         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1789                 return __cfqq;
1790
1791         if (blk_rq_pos(__cfqq->next_rq) < sector)
1792                 node = rb_next(&__cfqq->p_node);
1793         else
1794                 node = rb_prev(&__cfqq->p_node);
1795         if (!node)
1796                 return NULL;
1797
1798         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1799         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1800                 return __cfqq;
1801
1802         return NULL;
1803 }
1804
1805 /*
1806  * cfqd - obvious
1807  * cur_cfqq - passed in so that we don't decide that the current queue is
1808  *            closely cooperating with itself.
1809  *
1810  * So, basically we're assuming that that cur_cfqq has dispatched at least
1811  * one request, and that cfqd->last_position reflects a position on the disk
1812  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1813  * assumption.
1814  */
1815 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1816                                               struct cfq_queue *cur_cfqq)
1817 {
1818         struct cfq_queue *cfqq;
1819
1820         if (cfq_class_idle(cur_cfqq))
1821                 return NULL;
1822         if (!cfq_cfqq_sync(cur_cfqq))
1823                 return NULL;
1824         if (CFQQ_SEEKY(cur_cfqq))
1825                 return NULL;
1826
1827         /*
1828          * Don't search priority tree if it's the only queue in the group.
1829          */
1830         if (cur_cfqq->cfqg->nr_cfqq == 1)
1831                 return NULL;
1832
1833         /*
1834          * We should notice if some of the queues are cooperating, eg
1835          * working closely on the same area of the disk. In that case,
1836          * we can group them together and don't waste time idling.
1837          */
1838         cfqq = cfqq_close(cfqd, cur_cfqq);
1839         if (!cfqq)
1840                 return NULL;
1841
1842         /* If new queue belongs to different cfq_group, don't choose it */
1843         if (cur_cfqq->cfqg != cfqq->cfqg)
1844                 return NULL;
1845
1846         /*
1847          * It only makes sense to merge sync queues.
1848          */
1849         if (!cfq_cfqq_sync(cfqq))
1850                 return NULL;
1851         if (CFQQ_SEEKY(cfqq))
1852                 return NULL;
1853
1854         /*
1855          * Do not merge queues of different priority classes
1856          */
1857         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1858                 return NULL;
1859
1860         return cfqq;
1861 }
1862
1863 /*
1864  * Determine whether we should enforce idle window for this queue.
1865  */
1866
1867 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1868 {
1869         enum wl_prio_t prio = cfqq_prio(cfqq);
1870         struct cfq_rb_root *service_tree = cfqq->service_tree;
1871
1872         BUG_ON(!service_tree);
1873         BUG_ON(!service_tree->count);
1874
1875         if (!cfqd->cfq_slice_idle)
1876                 return false;
1877
1878         /* We never do for idle class queues. */
1879         if (prio == IDLE_WORKLOAD)
1880                 return false;
1881
1882         /* We do for queues that were marked with idle window flag. */
1883         if (cfq_cfqq_idle_window(cfqq) &&
1884            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1885                 return true;
1886
1887         /*
1888          * Otherwise, we do only if they are the last ones
1889          * in their service tree.
1890          */
1891         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1892                 return true;
1893         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1894                         service_tree->count);
1895         return false;
1896 }
1897
1898 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1899 {
1900         struct cfq_queue *cfqq = cfqd->active_queue;
1901         struct cfq_io_context *cic;
1902         unsigned long sl, group_idle = 0;
1903
1904         /*
1905          * SSD device without seek penalty, disable idling. But only do so
1906          * for devices that support queuing, otherwise we still have a problem
1907          * with sync vs async workloads.
1908          */
1909         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1910                 return;
1911
1912         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1913         WARN_ON(cfq_cfqq_slice_new(cfqq));
1914
1915         /*
1916          * idle is disabled, either manually or by past process history
1917          */
1918         if (!cfq_should_idle(cfqd, cfqq)) {
1919                 /* no queue idling. Check for group idling */
1920                 if (cfqd->cfq_group_idle)
1921                         group_idle = cfqd->cfq_group_idle;
1922                 else
1923                         return;
1924         }
1925
1926         /*
1927          * still active requests from this queue, don't idle
1928          */
1929         if (cfqq->dispatched)
1930                 return;
1931
1932         /*
1933          * task has exited, don't wait
1934          */
1935         cic = cfqd->active_cic;
1936         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1937                 return;
1938
1939         /*
1940          * If our average think time is larger than the remaining time
1941          * slice, then don't idle. This avoids overrunning the allotted
1942          * time slice.
1943          */
1944         if (sample_valid(cic->ttime_samples) &&
1945             (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1946                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1947                                 cic->ttime_mean);
1948                 return;
1949         }
1950
1951         /* There are other queues in the group, don't do group idle */
1952         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1953                 return;
1954
1955         cfq_mark_cfqq_wait_request(cfqq);
1956
1957         if (group_idle)
1958                 sl = cfqd->cfq_group_idle;
1959         else
1960                 sl = cfqd->cfq_slice_idle;
1961
1962         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1963         cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1964         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1965                         group_idle ? 1 : 0);
1966 }
1967
1968 /*
1969  * Move request from internal lists to the request queue dispatch list.
1970  */
1971 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1972 {
1973         struct cfq_data *cfqd = q->elevator->elevator_data;
1974         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1975
1976         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1977
1978         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1979         cfq_remove_request(rq);
1980         cfqq->dispatched++;
1981         (RQ_CFQG(rq))->dispatched++;
1982         elv_dispatch_sort(q, rq);
1983
1984         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1985         cfqq->nr_sectors += blk_rq_sectors(rq);
1986         cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1987                                         rq_data_dir(rq), rq_is_sync(rq));
1988 }
1989
1990 /*
1991  * return expired entry, or NULL to just start from scratch in rbtree
1992  */
1993 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1994 {
1995         struct request *rq = NULL;
1996
1997         if (cfq_cfqq_fifo_expire(cfqq))
1998                 return NULL;
1999
2000         cfq_mark_cfqq_fifo_expire(cfqq);
2001
2002         if (list_empty(&cfqq->fifo))
2003                 return NULL;
2004
2005         rq = rq_entry_fifo(cfqq->fifo.next);
2006         if (time_before(jiffies, rq_fifo_time(rq)))
2007                 rq = NULL;
2008
2009         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2010         return rq;
2011 }
2012
2013 static inline int
2014 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2015 {
2016         const int base_rq = cfqd->cfq_slice_async_rq;
2017
2018         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2019
2020         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2021 }
2022
2023 /*
2024  * Must be called with the queue_lock held.
2025  */
2026 static int cfqq_process_refs(struct cfq_queue *cfqq)
2027 {
2028         int process_refs, io_refs;
2029
2030         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2031         process_refs = atomic_read(&cfqq->ref) - io_refs;
2032         BUG_ON(process_refs < 0);
2033         return process_refs;
2034 }
2035
2036 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2037 {
2038         int process_refs, new_process_refs;
2039         struct cfq_queue *__cfqq;
2040
2041         /*
2042          * If there are no process references on the new_cfqq, then it is
2043          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2044          * chain may have dropped their last reference (not just their
2045          * last process reference).
2046          */
2047         if (!cfqq_process_refs(new_cfqq))
2048                 return;
2049
2050         /* Avoid a circular list and skip interim queue merges */
2051         while ((__cfqq = new_cfqq->new_cfqq)) {
2052                 if (__cfqq == cfqq)
2053                         return;
2054                 new_cfqq = __cfqq;
2055         }
2056
2057         process_refs = cfqq_process_refs(cfqq);
2058         new_process_refs = cfqq_process_refs(new_cfqq);
2059         /*
2060          * If the process for the cfqq has gone away, there is no
2061          * sense in merging the queues.
2062          */
2063         if (process_refs == 0 || new_process_refs == 0)
2064                 return;
2065
2066         /*
2067          * Merge in the direction of the lesser amount of work.
2068          */
2069         if (new_process_refs >= process_refs) {
2070                 cfqq->new_cfqq = new_cfqq;
2071                 atomic_add(process_refs, &new_cfqq->ref);
2072         } else {
2073                 new_cfqq->new_cfqq = cfqq;
2074                 atomic_add(new_process_refs, &cfqq->ref);
2075         }
2076 }
2077
2078 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2079                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2080 {
2081         struct cfq_queue *queue;
2082         int i;
2083         bool key_valid = false;
2084         unsigned long lowest_key = 0;
2085         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2086
2087         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2088                 /* select the one with lowest rb_key */
2089                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2090                 if (queue &&
2091                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2092                         lowest_key = queue->rb_key;
2093                         cur_best = i;
2094                         key_valid = true;
2095                 }
2096         }
2097
2098         return cur_best;
2099 }
2100
2101 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2102 {
2103         unsigned slice;
2104         unsigned count;
2105         struct cfq_rb_root *st;
2106         unsigned group_slice;
2107
2108         if (!cfqg) {
2109                 cfqd->serving_prio = IDLE_WORKLOAD;
2110                 cfqd->workload_expires = jiffies + 1;
2111                 return;
2112         }
2113
2114         /* Choose next priority. RT > BE > IDLE */
2115         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2116                 cfqd->serving_prio = RT_WORKLOAD;
2117         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2118                 cfqd->serving_prio = BE_WORKLOAD;
2119         else {
2120                 cfqd->serving_prio = IDLE_WORKLOAD;
2121                 cfqd->workload_expires = jiffies + 1;
2122                 return;
2123         }
2124
2125         /*
2126          * For RT and BE, we have to choose also the type
2127          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2128          * expiration time
2129          */
2130         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2131         count = st->count;
2132
2133         /*
2134          * check workload expiration, and that we still have other queues ready
2135          */
2136         if (count && !time_after(jiffies, cfqd->workload_expires))
2137                 return;
2138
2139         /* otherwise select new workload type */
2140         cfqd->serving_type =
2141                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2142         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2143         count = st->count;
2144
2145         /*
2146          * the workload slice is computed as a fraction of target latency
2147          * proportional to the number of queues in that workload, over
2148          * all the queues in the same priority class
2149          */
2150         group_slice = cfq_group_slice(cfqd, cfqg);
2151
2152         slice = group_slice * count /
2153                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2154                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2155
2156         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2157                 unsigned int tmp;
2158
2159                 /*
2160                  * Async queues are currently system wide. Just taking
2161                  * proportion of queues with-in same group will lead to higher
2162                  * async ratio system wide as generally root group is going
2163                  * to have higher weight. A more accurate thing would be to
2164                  * calculate system wide asnc/sync ratio.
2165                  */
2166                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2167                 tmp = tmp/cfqd->busy_queues;
2168                 slice = min_t(unsigned, slice, tmp);
2169
2170                 /* async workload slice is scaled down according to
2171                  * the sync/async slice ratio. */
2172                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2173         } else
2174                 /* sync workload slice is at least 2 * cfq_slice_idle */
2175                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2176
2177         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2178         cfq_log(cfqd, "workload slice:%d", slice);
2179         cfqd->workload_expires = jiffies + slice;
2180 }
2181
2182 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2183 {
2184         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2185         struct cfq_group *cfqg;
2186
2187         if (RB_EMPTY_ROOT(&st->rb))
2188                 return NULL;
2189         cfqg = cfq_rb_first_group(st);
2190         update_min_vdisktime(st);
2191         return cfqg;
2192 }
2193
2194 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2195 {
2196         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2197
2198         cfqd->serving_group = cfqg;
2199
2200         /* Restore the workload type data */
2201         if (cfqg->saved_workload_slice) {
2202                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2203                 cfqd->serving_type = cfqg->saved_workload;
2204                 cfqd->serving_prio = cfqg->saved_serving_prio;
2205         } else
2206                 cfqd->workload_expires = jiffies - 1;
2207
2208         choose_service_tree(cfqd, cfqg);
2209 }
2210
2211 /*
2212  * Select a queue for service. If we have a current active queue,
2213  * check whether to continue servicing it, or retrieve and set a new one.
2214  */
2215 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2216 {
2217         struct cfq_queue *cfqq, *new_cfqq = NULL;
2218
2219         cfqq = cfqd->active_queue;
2220         if (!cfqq)
2221                 goto new_queue;
2222
2223         if (!cfqd->rq_queued)
2224                 return NULL;
2225
2226         /*
2227          * We were waiting for group to get backlogged. Expire the queue
2228          */
2229         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2230                 goto expire;
2231
2232         /*
2233          * The active queue has run out of time, expire it and select new.
2234          */
2235         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2236                 /*
2237                  * If slice had not expired at the completion of last request
2238                  * we might not have turned on wait_busy flag. Don't expire
2239                  * the queue yet. Allow the group to get backlogged.
2240                  *
2241                  * The very fact that we have used the slice, that means we
2242                  * have been idling all along on this queue and it should be
2243                  * ok to wait for this request to complete.
2244                  */
2245                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2246                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2247                         cfqq = NULL;
2248                         goto keep_queue;
2249                 } else
2250                         goto check_group_idle;
2251         }
2252
2253         /*
2254          * The active queue has requests and isn't expired, allow it to
2255          * dispatch.
2256          */
2257         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2258                 goto keep_queue;
2259
2260         /*
2261          * If another queue has a request waiting within our mean seek
2262          * distance, let it run.  The expire code will check for close
2263          * cooperators and put the close queue at the front of the service
2264          * tree.  If possible, merge the expiring queue with the new cfqq.
2265          */
2266         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2267         if (new_cfqq) {
2268                 if (!cfqq->new_cfqq)
2269                         cfq_setup_merge(cfqq, new_cfqq);
2270                 goto expire;
2271         }
2272
2273         /*
2274          * No requests pending. If the active queue still has requests in
2275          * flight or is idling for a new request, allow either of these
2276          * conditions to happen (or time out) before selecting a new queue.
2277          */
2278         if (timer_pending(&cfqd->idle_slice_timer)) {
2279                 cfqq = NULL;
2280                 goto keep_queue;
2281         }
2282
2283         /*
2284          * This is a deep seek queue, but the device is much faster than
2285          * the queue can deliver, don't idle
2286          **/
2287         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2288             (cfq_cfqq_slice_new(cfqq) ||
2289             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2290                 cfq_clear_cfqq_deep(cfqq);
2291                 cfq_clear_cfqq_idle_window(cfqq);
2292         }
2293
2294         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2295                 cfqq = NULL;
2296                 goto keep_queue;
2297         }
2298
2299         /*
2300          * If group idle is enabled and there are requests dispatched from
2301          * this group, wait for requests to complete.
2302          */
2303 check_group_idle:
2304         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2305             && cfqq->cfqg->dispatched) {
2306                 cfqq = NULL;
2307                 goto keep_queue;
2308         }
2309
2310 expire:
2311         cfq_slice_expired(cfqd, 0);
2312 new_queue:
2313         /*
2314          * Current queue expired. Check if we have to switch to a new
2315          * service tree
2316          */
2317         if (!new_cfqq)
2318                 cfq_choose_cfqg(cfqd);
2319
2320         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2321 keep_queue:
2322         return cfqq;
2323 }
2324
2325 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2326 {
2327         int dispatched = 0;
2328
2329         while (cfqq->next_rq) {
2330                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2331                 dispatched++;
2332         }
2333
2334         BUG_ON(!list_empty(&cfqq->fifo));
2335
2336         /* By default cfqq is not expired if it is empty. Do it explicitly */
2337         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2338         return dispatched;
2339 }
2340
2341 /*
2342  * Drain our current requests. Used for barriers and when switching
2343  * io schedulers on-the-fly.
2344  */
2345 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2346 {
2347         struct cfq_queue *cfqq;
2348         int dispatched = 0;
2349
2350         /* Expire the timeslice of the current active queue first */
2351         cfq_slice_expired(cfqd, 0);
2352         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2353                 __cfq_set_active_queue(cfqd, cfqq);
2354                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2355         }
2356
2357         BUG_ON(cfqd->busy_queues);
2358
2359         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2360         return dispatched;
2361 }
2362
2363 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2364         struct cfq_queue *cfqq)
2365 {
2366         /* the queue hasn't finished any request, can't estimate */
2367         if (cfq_cfqq_slice_new(cfqq))
2368                 return true;
2369         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2370                 cfqq->slice_end))
2371                 return true;
2372
2373         return false;
2374 }
2375
2376 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2377 {
2378         unsigned int max_dispatch;
2379
2380         /*
2381          * Drain async requests before we start sync IO
2382          */
2383         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2384                 return false;
2385
2386         /*
2387          * If this is an async queue and we have sync IO in flight, let it wait
2388          */
2389         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2390                 return false;
2391
2392         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2393         if (cfq_class_idle(cfqq))
2394                 max_dispatch = 1;
2395
2396         /*
2397          * Does this cfqq already have too much IO in flight?
2398          */
2399         if (cfqq->dispatched >= max_dispatch) {
2400                 /*
2401                  * idle queue must always only have a single IO in flight
2402                  */
2403                 if (cfq_class_idle(cfqq))
2404                         return false;
2405
2406                 /*
2407                  * We have other queues, don't allow more IO from this one
2408                  */
2409                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2410                         return false;
2411
2412                 /*
2413                  * Sole queue user, no limit
2414                  */
2415                 if (cfqd->busy_queues == 1)
2416                         max_dispatch = -1;
2417                 else
2418                         /*
2419                          * Normally we start throttling cfqq when cfq_quantum/2
2420                          * requests have been dispatched. But we can drive
2421                          * deeper queue depths at the beginning of slice
2422                          * subjected to upper limit of cfq_quantum.
2423                          * */
2424                         max_dispatch = cfqd->cfq_quantum;
2425         }
2426
2427         /*
2428          * Async queues must wait a bit before being allowed dispatch.
2429          * We also ramp up the dispatch depth gradually for async IO,
2430          * based on the last sync IO we serviced
2431          */
2432         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2433                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2434                 unsigned int depth;
2435
2436                 depth = last_sync / cfqd->cfq_slice[1];
2437                 if (!depth && !cfqq->dispatched)
2438                         depth = 1;
2439                 if (depth < max_dispatch)
2440                         max_dispatch = depth;
2441         }
2442
2443         /*
2444          * If we're below the current max, allow a dispatch
2445          */
2446         return cfqq->dispatched < max_dispatch;
2447 }
2448
2449 /*
2450  * Dispatch a request from cfqq, moving them to the request queue
2451  * dispatch list.
2452  */
2453 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2454 {
2455         struct request *rq;
2456
2457         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2458
2459         if (!cfq_may_dispatch(cfqd, cfqq))
2460                 return false;
2461
2462         /*
2463          * follow expired path, else get first next available
2464          */
2465         rq = cfq_check_fifo(cfqq);
2466         if (!rq)
2467                 rq = cfqq->next_rq;
2468
2469         /*
2470          * insert request into driver dispatch list
2471          */
2472         cfq_dispatch_insert(cfqd->queue, rq);
2473
2474         if (!cfqd->active_cic) {
2475                 struct cfq_io_context *cic = RQ_CIC(rq);
2476
2477                 atomic_long_inc(&cic->ioc->refcount);
2478                 cfqd->active_cic = cic;
2479         }
2480
2481         return true;
2482 }
2483
2484 /*
2485  * Find the cfqq that we need to service and move a request from that to the
2486  * dispatch list
2487  */
2488 static int cfq_dispatch_requests(struct request_queue *q, int force)
2489 {
2490         struct cfq_data *cfqd = q->elevator->elevator_data;
2491         struct cfq_queue *cfqq;
2492
2493         if (!cfqd->busy_queues)
2494                 return 0;
2495
2496         if (unlikely(force))
2497                 return cfq_forced_dispatch(cfqd);
2498
2499         cfqq = cfq_select_queue(cfqd);
2500         if (!cfqq)
2501                 return 0;
2502
2503         /*
2504          * Dispatch a request from this cfqq, if it is allowed
2505          */
2506         if (!cfq_dispatch_request(cfqd, cfqq))
2507                 return 0;
2508
2509         cfqq->slice_dispatch++;
2510         cfq_clear_cfqq_must_dispatch(cfqq);
2511
2512         /*
2513          * expire an async queue immediately if it has used up its slice. idle
2514          * queue always expire after 1 dispatch round.
2515          */
2516         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2517             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2518             cfq_class_idle(cfqq))) {
2519                 cfqq->slice_end = jiffies + 1;
2520                 cfq_slice_expired(cfqd, 0);
2521         }
2522
2523         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2524         return 1;
2525 }
2526
2527 /*
2528  * task holds one reference to the queue, dropped when task exits. each rq
2529  * in-flight on this queue also holds a reference, dropped when rq is freed.
2530  *
2531  * Each cfq queue took a reference on the parent group. Drop it now.
2532  * queue lock must be held here.
2533  */
2534 static void cfq_put_queue(struct cfq_queue *cfqq)
2535 {
2536         struct cfq_data *cfqd = cfqq->cfqd;
2537         struct cfq_group *cfqg, *orig_cfqg;
2538
2539         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2540
2541         if (!atomic_dec_and_test(&cfqq->ref))
2542                 return;
2543
2544         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2545         BUG_ON(rb_first(&cfqq->sort_list));
2546         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2547         cfqg = cfqq->cfqg;
2548         orig_cfqg = cfqq->orig_cfqg;
2549
2550         if (unlikely(cfqd->active_queue == cfqq)) {
2551                 __cfq_slice_expired(cfqd, cfqq, 0);
2552                 cfq_schedule_dispatch(cfqd);
2553         }
2554
2555         BUG_ON(cfq_cfqq_on_rr(cfqq));
2556         kmem_cache_free(cfq_pool, cfqq);
2557         cfq_put_cfqg(cfqg);
2558         if (orig_cfqg)
2559                 cfq_put_cfqg(orig_cfqg);
2560 }
2561
2562 /*
2563  * Must always be called with the rcu_read_lock() held
2564  */
2565 static void
2566 __call_for_each_cic(struct io_context *ioc,
2567                     void (*func)(struct io_context *, struct cfq_io_context *))
2568 {
2569         struct cfq_io_context *cic;
2570         struct hlist_node *n;
2571
2572         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2573                 func(ioc, cic);
2574 }
2575
2576 /*
2577  * Call func for each cic attached to this ioc.
2578  */
2579 static void
2580 call_for_each_cic(struct io_context *ioc,
2581                   void (*func)(struct io_context *, struct cfq_io_context *))
2582 {
2583         rcu_read_lock();
2584         __call_for_each_cic(ioc, func);
2585         rcu_read_unlock();
2586 }
2587
2588 static void cfq_cic_free_rcu(struct rcu_head *head)
2589 {
2590         struct cfq_io_context *cic;
2591
2592         cic = container_of(head, struct cfq_io_context, rcu_head);
2593
2594         kmem_cache_free(cfq_ioc_pool, cic);
2595         elv_ioc_count_dec(cfq_ioc_count);
2596
2597         if (ioc_gone) {
2598                 /*
2599                  * CFQ scheduler is exiting, grab exit lock and check
2600                  * the pending io context count. If it hits zero,
2601                  * complete ioc_gone and set it back to NULL
2602                  */
2603                 spin_lock(&ioc_gone_lock);
2604                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2605                         complete(ioc_gone);
2606                         ioc_gone = NULL;
2607                 }
2608                 spin_unlock(&ioc_gone_lock);
2609         }
2610 }
2611
2612 static void cfq_cic_free(struct cfq_io_context *cic)
2613 {
2614         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2615 }
2616
2617 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2618 {
2619         unsigned long flags;
2620         unsigned long dead_key = (unsigned long) cic->key;
2621
2622         BUG_ON(!(dead_key & CIC_DEAD_KEY));
2623
2624         spin_lock_irqsave(&ioc->lock, flags);
2625         radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2626         hlist_del_rcu(&cic->cic_list);
2627         spin_unlock_irqrestore(&ioc->lock, flags);
2628
2629         cfq_cic_free(cic);
2630 }
2631
2632 /*
2633  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2634  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2635  * and ->trim() which is called with the task lock held
2636  */
2637 static void cfq_free_io_context(struct io_context *ioc)
2638 {
2639         /*
2640          * ioc->refcount is zero here, or we are called from elv_unregister(),
2641          * so no more cic's are allowed to be linked into this ioc.  So it
2642          * should be ok to iterate over the known list, we will see all cic's
2643          * since no new ones are added.
2644          */
2645         __call_for_each_cic(ioc, cic_free_func);
2646 }
2647
2648 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2649 {
2650         struct cfq_queue *__cfqq, *next;
2651
2652         /*
2653          * If this queue was scheduled to merge with another queue, be
2654          * sure to drop the reference taken on that queue (and others in
2655          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2656          */
2657         __cfqq = cfqq->new_cfqq;
2658         while (__cfqq) {
2659                 if (__cfqq == cfqq) {
2660                         WARN(1, "cfqq->new_cfqq loop detected\n");
2661                         break;
2662                 }
2663                 next = __cfqq->new_cfqq;
2664                 cfq_put_queue(__cfqq);
2665                 __cfqq = next;
2666         }
2667 }
2668
2669 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2670 {
2671         if (unlikely(cfqq == cfqd->active_queue)) {
2672                 __cfq_slice_expired(cfqd, cfqq, 0);
2673                 cfq_schedule_dispatch(cfqd);
2674         }
2675
2676         cfq_put_cooperator(cfqq);
2677
2678         cfq_put_queue(cfqq);
2679 }
2680
2681 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2682                                          struct cfq_io_context *cic)
2683 {
2684         struct io_context *ioc = cic->ioc;
2685
2686         list_del_init(&cic->queue_list);
2687
2688         /*
2689          * Make sure dead mark is seen for dead queues
2690          */
2691         smp_wmb();
2692         cic->key = cfqd_dead_key(cfqd);
2693
2694         if (ioc->ioc_data == cic)
2695                 rcu_assign_pointer(ioc->ioc_data, NULL);
2696
2697         if (cic->cfqq[BLK_RW_ASYNC]) {
2698                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2699                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2700         }
2701
2702         if (cic->cfqq[BLK_RW_SYNC]) {
2703                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2704                 cic->cfqq[BLK_RW_SYNC] = NULL;
2705         }
2706 }
2707
2708 static void cfq_exit_single_io_context(struct io_context *ioc,
2709                                        struct cfq_io_context *cic)
2710 {
2711         struct cfq_data *cfqd = cic_to_cfqd(cic);
2712
2713         if (cfqd) {
2714                 struct request_queue *q = cfqd->queue;
2715                 unsigned long flags;
2716
2717                 spin_lock_irqsave(q->queue_lock, flags);
2718
2719                 /*
2720                  * Ensure we get a fresh copy of the ->key to prevent
2721                  * race between exiting task and queue
2722                  */
2723                 smp_read_barrier_depends();
2724                 if (cic->key == cfqd)
2725                         __cfq_exit_single_io_context(cfqd, cic);
2726
2727                 spin_unlock_irqrestore(q->queue_lock, flags);
2728         }
2729 }
2730
2731 /*
2732  * The process that ioc belongs to has exited, we need to clean up
2733  * and put the internal structures we have that belongs to that process.
2734  */
2735 static void cfq_exit_io_context(struct io_context *ioc)
2736 {
2737         call_for_each_cic(ioc, cfq_exit_single_io_context);
2738 }
2739
2740 static struct cfq_io_context *
2741 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2742 {
2743         struct cfq_io_context *cic;
2744
2745         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2746                                                         cfqd->queue->node);
2747         if (cic) {
2748                 cic->last_end_request = jiffies;
2749                 INIT_LIST_HEAD(&cic->queue_list);
2750                 INIT_HLIST_NODE(&cic->cic_list);
2751                 cic->dtor = cfq_free_io_context;
2752                 cic->exit = cfq_exit_io_context;
2753                 elv_ioc_count_inc(cfq_ioc_count);
2754         }
2755
2756         return cic;
2757 }
2758
2759 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2760 {
2761         struct task_struct *tsk = current;
2762         int ioprio_class;
2763
2764         if (!cfq_cfqq_prio_changed(cfqq))
2765                 return;
2766
2767         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2768         switch (ioprio_class) {
2769         default:
2770                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2771         case IOPRIO_CLASS_NONE:
2772                 /*
2773                  * no prio set, inherit CPU scheduling settings
2774                  */
2775                 cfqq->ioprio = task_nice_ioprio(tsk);
2776                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2777                 break;
2778         case IOPRIO_CLASS_RT:
2779                 cfqq->ioprio = task_ioprio(ioc);
2780                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2781                 break;
2782         case IOPRIO_CLASS_BE:
2783                 cfqq->ioprio = task_ioprio(ioc);
2784                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2785                 break;
2786         case IOPRIO_CLASS_IDLE:
2787                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2788                 cfqq->ioprio = 7;
2789                 cfq_clear_cfqq_idle_window(cfqq);
2790                 break;
2791         }
2792
2793         /*
2794          * keep track of original prio settings in case we have to temporarily
2795          * elevate the priority of this queue
2796          */
2797         cfqq->org_ioprio = cfqq->ioprio;
2798         cfqq->org_ioprio_class = cfqq->ioprio_class;
2799         cfq_clear_cfqq_prio_changed(cfqq);
2800 }
2801
2802 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2803 {
2804         struct cfq_data *cfqd = cic_to_cfqd(cic);
2805         struct cfq_queue *cfqq;
2806         unsigned long flags;
2807
2808         if (unlikely(!cfqd))
2809                 return;
2810
2811         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2812
2813         cfqq = cic->cfqq[BLK_RW_ASYNC];
2814         if (cfqq) {
2815                 struct cfq_queue *new_cfqq;
2816                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2817                                                 GFP_ATOMIC);
2818                 if (new_cfqq) {
2819                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2820                         cfq_put_queue(cfqq);
2821                 }
2822         }
2823
2824         cfqq = cic->cfqq[BLK_RW_SYNC];
2825         if (cfqq)
2826                 cfq_mark_cfqq_prio_changed(cfqq);
2827
2828         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2829 }
2830
2831 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2832 {
2833         call_for_each_cic(ioc, changed_ioprio);
2834         ioc->ioprio_changed = 0;
2835 }
2836
2837 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2838                           pid_t pid, bool is_sync)
2839 {
2840         RB_CLEAR_NODE(&cfqq->rb_node);
2841         RB_CLEAR_NODE(&cfqq->p_node);
2842         INIT_LIST_HEAD(&cfqq->fifo);
2843
2844         atomic_set(&cfqq->ref, 0);
2845         cfqq->cfqd = cfqd;
2846
2847         cfq_mark_cfqq_prio_changed(cfqq);
2848
2849         if (is_sync) {
2850                 if (!cfq_class_idle(cfqq))
2851                         cfq_mark_cfqq_idle_window(cfqq);
2852                 cfq_mark_cfqq_sync(cfqq);
2853         }
2854         cfqq->pid = pid;
2855 }
2856
2857 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2858 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2859 {
2860         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2861         struct cfq_data *cfqd = cic_to_cfqd(cic);
2862         unsigned long flags;
2863         struct request_queue *q;
2864
2865         if (unlikely(!cfqd))
2866                 return;
2867
2868         q = cfqd->queue;
2869
2870         spin_lock_irqsave(q->queue_lock, flags);
2871
2872         if (sync_cfqq) {
2873                 /*
2874                  * Drop reference to sync queue. A new sync queue will be
2875                  * assigned in new group upon arrival of a fresh request.
2876                  */
2877                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2878                 cic_set_cfqq(cic, NULL, 1);
2879                 cfq_put_queue(sync_cfqq);
2880         }
2881
2882         spin_unlock_irqrestore(q->queue_lock, flags);
2883 }
2884
2885 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2886 {
2887         call_for_each_cic(ioc, changed_cgroup);
2888         ioc->cgroup_changed = 0;
2889 }
2890 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2891
2892 static struct cfq_queue *
2893 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2894                      struct io_context *ioc, gfp_t gfp_mask)
2895 {
2896         struct cfq_queue *cfqq, *new_cfqq = NULL;
2897         struct cfq_io_context *cic;
2898         struct cfq_group *cfqg;
2899
2900 retry:
2901         cfqg = cfq_get_cfqg(cfqd, 1);
2902         cic = cfq_cic_lookup(cfqd, ioc);
2903         /* cic always exists here */
2904         cfqq = cic_to_cfqq(cic, is_sync);
2905
2906         /*
2907          * Always try a new alloc if we fell back to the OOM cfqq
2908          * originally, since it should just be a temporary situation.
2909          */
2910         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2911                 cfqq = NULL;
2912                 if (new_cfqq) {
2913                         cfqq = new_cfqq;
2914                         new_cfqq = NULL;
2915                 } else if (gfp_mask & __GFP_WAIT) {
2916                         spin_unlock_irq(cfqd->queue->queue_lock);
2917                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2918                                         gfp_mask | __GFP_ZERO,
2919                                         cfqd->queue->node);
2920                         spin_lock_irq(cfqd->queue->queue_lock);
2921                         if (new_cfqq)
2922                                 goto retry;
2923                 } else {
2924                         cfqq = kmem_cache_alloc_node(cfq_pool,
2925                                         gfp_mask | __GFP_ZERO,
2926                                         cfqd->queue->node);
2927                 }
2928
2929                 if (cfqq) {
2930                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2931                         cfq_init_prio_data(cfqq, ioc);
2932                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2933                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2934                 } else
2935                         cfqq = &cfqd->oom_cfqq;
2936         }
2937
2938         if (new_cfqq)
2939                 kmem_cache_free(cfq_pool, new_cfqq);
2940
2941         return cfqq;
2942 }
2943
2944 static struct cfq_queue **
2945 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2946 {
2947         switch (ioprio_class) {
2948         case IOPRIO_CLASS_RT:
2949                 return &cfqd->async_cfqq[0][ioprio];
2950         case IOPRIO_CLASS_BE:
2951                 return &cfqd->async_cfqq[1][ioprio];
2952         case IOPRIO_CLASS_IDLE:
2953                 return &cfqd->async_idle_cfqq;
2954         default:
2955                 BUG();
2956         }
2957 }
2958
2959 static struct cfq_queue *
2960 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2961               gfp_t gfp_mask)
2962 {
2963         const int ioprio = task_ioprio(ioc);
2964         const int ioprio_class = task_ioprio_class(ioc);
2965         struct cfq_queue **async_cfqq = NULL;
2966         struct cfq_queue *cfqq = NULL;
2967
2968         if (!is_sync) {
2969                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2970                 cfqq = *async_cfqq;
2971         }
2972
2973         if (!cfqq)
2974                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2975
2976         /*
2977          * pin the queue now that it's allocated, scheduler exit will prune it
2978          */
2979         if (!is_sync && !(*async_cfqq)) {
2980                 atomic_inc(&cfqq->ref);
2981                 *async_cfqq = cfqq;
2982         }
2983
2984         atomic_inc(&cfqq->ref);
2985         return cfqq;
2986 }
2987
2988 /*
2989  * We drop cfq io contexts lazily, so we may find a dead one.
2990  */
2991 static void
2992 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2993                   struct cfq_io_context *cic)
2994 {
2995         unsigned long flags;
2996
2997         WARN_ON(!list_empty(&cic->queue_list));
2998         BUG_ON(cic->key != cfqd_dead_key(cfqd));
2999
3000         spin_lock_irqsave(&ioc->lock, flags);
3001
3002         BUG_ON(ioc->ioc_data == cic);
3003
3004         radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3005         hlist_del_rcu(&cic->cic_list);
3006         spin_unlock_irqrestore(&ioc->lock, flags);
3007
3008         cfq_cic_free(cic);
3009 }
3010
3011 static struct cfq_io_context *
3012 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3013 {
3014         struct cfq_io_context *cic;
3015         unsigned long flags;
3016
3017         if (unlikely(!ioc))
3018                 return NULL;
3019
3020         rcu_read_lock();
3021
3022         /*
3023          * we maintain a last-hit cache, to avoid browsing over the tree
3024          */
3025         cic = rcu_dereference(ioc->ioc_data);
3026         if (cic && cic->key == cfqd) {
3027                 rcu_read_unlock();
3028                 return cic;
3029         }
3030
3031         do {
3032                 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3033                 rcu_read_unlock();
3034                 if (!cic)
3035                         break;
3036                 if (unlikely(cic->key != cfqd)) {
3037                         cfq_drop_dead_cic(cfqd, ioc, cic);
3038                         rcu_read_lock();
3039                         continue;
3040                 }
3041
3042                 spin_lock_irqsave(&ioc->lock, flags);
3043                 rcu_assign_pointer(ioc->ioc_data, cic);
3044                 spin_unlock_irqrestore(&ioc->lock, flags);
3045                 break;
3046         } while (1);
3047
3048         return cic;
3049 }
3050
3051 /*
3052  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3053  * the process specific cfq io context when entered from the block layer.
3054  * Also adds the cic to a per-cfqd list, used when this queue is removed.
3055  */
3056 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3057                         struct cfq_io_context *cic, gfp_t gfp_mask)
3058 {
3059         unsigned long flags;
3060         int ret;
3061
3062         ret = radix_tree_preload(gfp_mask);
3063         if (!ret) {
3064                 cic->ioc = ioc;
3065                 cic->key = cfqd;
3066
3067                 spin_lock_irqsave(&ioc->lock, flags);
3068                 ret = radix_tree_insert(&ioc->radix_root,
3069                                                 cfqd->cic_index, cic);
3070                 if (!ret)
3071                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3072                 spin_unlock_irqrestore(&ioc->lock, flags);
3073
3074                 radix_tree_preload_end();
3075
3076                 if (!ret) {
3077                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3078                         list_add(&cic->queue_list, &cfqd->cic_list);
3079                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3080                 }
3081         }
3082
3083         if (ret)
3084                 printk(KERN_ERR "cfq: cic link failed!\n");
3085
3086         return ret;
3087 }
3088
3089 /*
3090  * Setup general io context and cfq io context. There can be several cfq
3091  * io contexts per general io context, if this process is doing io to more
3092  * than one device managed by cfq.
3093  */
3094 static struct cfq_io_context *
3095 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3096 {
3097         struct io_context *ioc = NULL;
3098         struct cfq_io_context *cic;
3099
3100         might_sleep_if(gfp_mask & __GFP_WAIT);
3101
3102         ioc = get_io_context(gfp_mask, cfqd->queue->node);
3103         if (!ioc)
3104                 return NULL;
3105
3106         cic = cfq_cic_lookup(cfqd, ioc);
3107         if (cic)
3108                 goto out;
3109
3110         cic = cfq_alloc_io_context(cfqd, gfp_mask);
3111         if (cic == NULL)
3112                 goto err;
3113
3114         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3115                 goto err_free;
3116
3117 out:
3118         smp_read_barrier_depends();
3119         if (unlikely(ioc->ioprio_changed))
3120                 cfq_ioc_set_ioprio(ioc);
3121
3122 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3123         if (unlikely(ioc->cgroup_changed))
3124                 cfq_ioc_set_cgroup(ioc);
3125 #endif
3126         return cic;
3127 err_free:
3128         cfq_cic_free(cic);
3129 err:
3130         put_io_context(ioc);
3131         return NULL;
3132 }
3133
3134 static void
3135 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3136 {
3137         unsigned long elapsed = jiffies - cic->last_end_request;
3138         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3139
3140         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3141         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3142         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3143 }
3144
3145 static void
3146 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3147                        struct request *rq)
3148 {
3149         sector_t sdist = 0;
3150         sector_t n_sec = blk_rq_sectors(rq);
3151         if (cfqq->last_request_pos) {
3152                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3153                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3154                 else
3155                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3156         }
3157
3158         cfqq->seek_history <<= 1;
3159         if (blk_queue_nonrot(cfqd->queue))
3160                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3161         else
3162                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3163 }
3164
3165 /*
3166  * Disable idle window if the process thinks too long or seeks so much that
3167  * it doesn't matter
3168  */
3169 static void
3170 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3171                        struct cfq_io_context *cic)
3172 {
3173         int old_idle, enable_idle;
3174
3175         /*
3176          * Don't idle for async or idle io prio class
3177          */
3178         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3179                 return;
3180
3181         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3182
3183         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3184                 cfq_mark_cfqq_deep(cfqq);
3185
3186         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3187                 enable_idle = 0;
3188         else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3189             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3190                 enable_idle = 0;
3191         else if (sample_valid(cic->ttime_samples)) {
3192                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3193                         enable_idle = 0;
3194                 else
3195                         enable_idle = 1;
3196         }
3197
3198         if (old_idle != enable_idle) {
3199                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3200                 if (enable_idle)
3201                         cfq_mark_cfqq_idle_window(cfqq);
3202                 else
3203                         cfq_clear_cfqq_idle_window(cfqq);
3204         }
3205 }
3206
3207 /*
3208  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3209  * no or if we aren't sure, a 1 will cause a preempt.
3210  */
3211 static bool
3212 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3213                    struct request *rq)
3214 {
3215         struct cfq_queue *cfqq;
3216
3217         cfqq = cfqd->active_queue;
3218         if (!cfqq)
3219                 return false;
3220
3221         if (cfq_class_idle(new_cfqq))
3222                 return false;
3223
3224         if (cfq_class_idle(cfqq))
3225                 return true;
3226
3227         /*
3228          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3229          */
3230         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3231                 return false;
3232
3233         /*
3234          * if the new request is sync, but the currently running queue is
3235          * not, let the sync request have priority.
3236          */
3237         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3238                 return true;
3239
3240         if (new_cfqq->cfqg != cfqq->cfqg)
3241                 return false;
3242
3243         if (cfq_slice_used(cfqq))
3244                 return true;
3245
3246         /* Allow preemption only if we are idling on sync-noidle tree */
3247         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3248             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3249             new_cfqq->service_tree->count == 2 &&
3250             RB_EMPTY_ROOT(&cfqq->sort_list))
3251                 return true;
3252
3253         /*
3254          * So both queues are sync. Let the new request get disk time if
3255          * it's a metadata request and the current queue is doing regular IO.
3256          */
3257         if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3258                 return true;
3259
3260         /*
3261          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3262          */
3263         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3264                 return true;
3265
3266         /* An idle queue should not be idle now for some reason */
3267         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3268                 return true;
3269
3270         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3271                 return false;
3272
3273         /*
3274          * if this request is as-good as one we would expect from the
3275          * current cfqq, let it preempt
3276          */
3277         if (cfq_rq_close(cfqd, cfqq, rq))
3278                 return true;
3279
3280         return false;
3281 }
3282
3283 /*
3284  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3285  * let it have half of its nominal slice.
3286  */
3287 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3288 {
3289         cfq_log_cfqq(cfqd, cfqq, "preempt");
3290         cfq_slice_expired(cfqd, 1);
3291
3292         /*
3293          * Put the new queue at the front of the of the current list,
3294          * so we know that it will be selected next.
3295          */
3296         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3297
3298         cfq_service_tree_add(cfqd, cfqq, 1);
3299
3300         cfqq->slice_end = 0;
3301         cfq_mark_cfqq_slice_new(cfqq);
3302 }
3303
3304 /*
3305  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3306  * something we should do about it
3307  */
3308 static void
3309 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3310                 struct request *rq)
3311 {
3312         struct cfq_io_context *cic = RQ_CIC(rq);
3313
3314         cfqd->rq_queued++;
3315         if (rq->cmd_flags & REQ_META)
3316                 cfqq->meta_pending++;
3317
3318         cfq_update_io_thinktime(cfqd, cic);
3319         cfq_update_io_seektime(cfqd, cfqq, rq);
3320         cfq_update_idle_window(cfqd, cfqq, cic);
3321
3322         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3323
3324         if (cfqq == cfqd->active_queue) {
3325                 /*
3326                  * Remember that we saw a request from this process, but
3327                  * don't start queuing just yet. Otherwise we risk seeing lots
3328                  * of tiny requests, because we disrupt the normal plugging
3329                  * and merging. If the request is already larger than a single
3330                  * page, let it rip immediately. For that case we assume that
3331                  * merging is already done. Ditto for a busy system that
3332                  * has other work pending, don't risk delaying until the
3333                  * idle timer unplug to continue working.
3334                  */
3335                 if (cfq_cfqq_wait_request(cfqq)) {
3336                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3337                             cfqd->busy_queues > 1) {
3338                                 cfq_del_timer(cfqd, cfqq);
3339                                 cfq_clear_cfqq_wait_request(cfqq);
3340                                 __blk_run_queue(cfqd->queue);
3341                         } else {
3342                                 cfq_blkiocg_update_idle_time_stats(
3343                                                 &cfqq->cfqg->blkg);
3344                                 cfq_mark_cfqq_must_dispatch(cfqq);
3345                         }
3346                 }
3347         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3348                 /*
3349                  * not the active queue - expire current slice if it is
3350                  * idle and has expired it's mean thinktime or this new queue
3351                  * has some old slice time left and is of higher priority or
3352                  * this new queue is RT and the current one is BE
3353                  */
3354                 cfq_preempt_queue(cfqd, cfqq);
3355                 __blk_run_queue(cfqd->queue);
3356         }
3357 }
3358
3359 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3360 {
3361         struct cfq_data *cfqd = q->elevator->elevator_data;
3362         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3363
3364         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3365         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3366
3367         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3368         list_add_tail(&rq->queuelist, &cfqq->fifo);
3369         cfq_add_rq_rb(rq);
3370         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3371                         &cfqd->serving_group->blkg, rq_data_dir(rq),
3372                         rq_is_sync(rq));
3373         cfq_rq_enqueued(cfqd, cfqq, rq);
3374 }
3375
3376 /*
3377  * Update hw_tag based on peak queue depth over 50 samples under
3378  * sufficient load.
3379  */
3380 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3381 {
3382         struct cfq_queue *cfqq = cfqd->active_queue;
3383
3384         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3385                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3386
3387         if (cfqd->hw_tag == 1)
3388                 return;
3389
3390         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3391             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3392                 return;
3393
3394         /*
3395          * If active queue hasn't enough requests and can idle, cfq might not
3396          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3397          * case
3398          */
3399         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3400             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3401             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3402                 return;
3403
3404         if (cfqd->hw_tag_samples++ < 50)
3405                 return;
3406
3407         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3408                 cfqd->hw_tag = 1;
3409         else
3410                 cfqd->hw_tag = 0;
3411 }
3412
3413 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3414 {
3415         struct cfq_io_context *cic = cfqd->active_cic;
3416
3417         /* If there are other queues in the group, don't wait */
3418         if (cfqq->cfqg->nr_cfqq > 1)
3419                 return false;
3420
3421         if (cfq_slice_used(cfqq))
3422                 return true;
3423
3424         /* if slice left is less than think time, wait busy */
3425         if (cic && sample_valid(cic->ttime_samples)
3426             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3427                 return true;
3428
3429         /*
3430          * If think times is less than a jiffy than ttime_mean=0 and above
3431          * will not be true. It might happen that slice has not expired yet
3432          * but will expire soon (4-5 ns) during select_queue(). To cover the
3433          * case where think time is less than a jiffy, mark the queue wait
3434          * busy if only 1 jiffy is left in the slice.
3435          */
3436         if (cfqq->slice_end - jiffies == 1)
3437                 return true;
3438
3439         return false;
3440 }
3441
3442 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3443 {
3444         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3445         struct cfq_data *cfqd = cfqq->cfqd;
3446         const int sync = rq_is_sync(rq);
3447         unsigned long now;
3448
3449         now = jiffies;
3450         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3451                      !!(rq->cmd_flags & REQ_NOIDLE));
3452
3453         cfq_update_hw_tag(cfqd);
3454
3455         WARN_ON(!cfqd->rq_in_driver);
3456         WARN_ON(!cfqq->dispatched);
3457         cfqd->rq_in_driver--;
3458         cfqq->dispatched--;
3459         (RQ_CFQG(rq))->dispatched--;
3460         cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3461                         rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3462                         rq_data_dir(rq), rq_is_sync(rq));
3463
3464         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3465
3466         if (sync) {
3467                 RQ_CIC(rq)->last_end_request = now;
3468                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3469                         cfqd->last_delayed_sync = now;
3470         }
3471
3472         /*
3473          * If this is the active queue, check if it needs to be expired,
3474          * or if we want to idle in case it has no pending requests.
3475          */
3476         if (cfqd->active_queue == cfqq) {
3477                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3478
3479                 if (cfq_cfqq_slice_new(cfqq)) {
3480                         cfq_set_prio_slice(cfqd, cfqq);
3481                         cfq_clear_cfqq_slice_new(cfqq);
3482                 }
3483
3484                 /*
3485                  * Should we wait for next request to come in before we expire
3486                  * the queue.
3487                  */
3488                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3489                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3490                         if (!cfqd->cfq_slice_idle)
3491                                 extend_sl = cfqd->cfq_group_idle;
3492                         cfqq->slice_end = jiffies + extend_sl;
3493                         cfq_mark_cfqq_wait_busy(cfqq);
3494                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3495                 }
3496
3497                 /*
3498                  * Idling is not enabled on:
3499                  * - expired queues
3500                  * - idle-priority queues
3501                  * - async queues
3502                  * - queues with still some requests queued
3503                  * - when there is a close cooperator
3504                  */
3505                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3506                         cfq_slice_expired(cfqd, 1);
3507                 else if (sync && cfqq_empty &&
3508                          !cfq_close_cooperator(cfqd, cfqq)) {
3509                         cfq_arm_slice_timer(cfqd);
3510                 }
3511         }
3512
3513         if (!cfqd->rq_in_driver)
3514                 cfq_schedule_dispatch(cfqd);
3515 }
3516
3517 /*
3518  * we temporarily boost lower priority queues if they are holding fs exclusive
3519  * resources. they are boosted to normal prio (CLASS_BE/4)
3520  */
3521 static void cfq_prio_boost(struct cfq_queue *cfqq)
3522 {
3523         if (has_fs_excl()) {
3524                 /*
3525                  * boost idle prio on transactions that would lock out other
3526                  * users of the filesystem
3527                  */
3528                 if (cfq_class_idle(cfqq))
3529                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3530                 if (cfqq->ioprio > IOPRIO_NORM)
3531                         cfqq->ioprio = IOPRIO_NORM;
3532         } else {
3533                 /*
3534                  * unboost the queue (if needed)
3535                  */
3536                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3537                 cfqq->ioprio = cfqq->org_ioprio;
3538         }
3539 }
3540
3541 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3542 {
3543         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3544                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3545                 return ELV_MQUEUE_MUST;
3546         }
3547
3548         return ELV_MQUEUE_MAY;
3549 }
3550
3551 static int cfq_may_queue(struct request_queue *q, int rw)
3552 {
3553         struct cfq_data *cfqd = q->elevator->elevator_data;
3554         struct task_struct *tsk = current;
3555         struct cfq_io_context *cic;
3556         struct cfq_queue *cfqq;
3557
3558         /*
3559          * don't force setup of a queue from here, as a call to may_queue
3560          * does not necessarily imply that a request actually will be queued.
3561          * so just lookup a possibly existing queue, or return 'may queue'
3562          * if that fails
3563          */
3564         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3565         if (!cic)
3566                 return ELV_MQUEUE_MAY;
3567
3568         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3569         if (cfqq) {
3570                 cfq_init_prio_data(cfqq, cic->ioc);
3571                 cfq_prio_boost(cfqq);
3572
3573                 return __cfq_may_queue(cfqq);
3574         }
3575
3576         return ELV_MQUEUE_MAY;
3577 }
3578
3579 /*
3580  * queue lock held here
3581  */
3582 static void cfq_put_request(struct request *rq)
3583 {
3584         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3585
3586         if (cfqq) {
3587                 const int rw = rq_data_dir(rq);
3588
3589                 BUG_ON(!cfqq->allocated[rw]);
3590                 cfqq->allocated[rw]--;
3591
3592                 put_io_context(RQ_CIC(rq)->ioc);
3593
3594                 rq->elevator_private = NULL;
3595                 rq->elevator_private2 = NULL;
3596
3597                 /* Put down rq reference on cfqg */
3598                 cfq_put_cfqg(RQ_CFQG(rq));
3599                 rq->elevator_private3 = NULL;
3600
3601                 cfq_put_queue(cfqq);
3602         }
3603 }
3604
3605 static struct cfq_queue *
3606 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3607                 struct cfq_queue *cfqq)
3608 {
3609         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3610         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3611         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3612         cfq_put_queue(cfqq);
3613         return cic_to_cfqq(cic, 1);
3614 }
3615
3616 /*
3617  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3618  * was the last process referring to said cfqq.
3619  */
3620 static struct cfq_queue *
3621 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3622 {
3623         if (cfqq_process_refs(cfqq) == 1) {
3624                 cfqq->pid = current->pid;
3625                 cfq_clear_cfqq_coop(cfqq);
3626                 cfq_clear_cfqq_split_coop(cfqq);
3627                 return cfqq;
3628         }
3629
3630         cic_set_cfqq(cic, NULL, 1);
3631
3632         cfq_put_cooperator(cfqq);
3633
3634         cfq_put_queue(cfqq);
3635         return NULL;
3636 }
3637 /*
3638  * Allocate cfq data structures associated with this request.
3639  */
3640 static int
3641 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3642 {
3643         struct cfq_data *cfqd = q->elevator->elevator_data;
3644         struct cfq_io_context *cic;
3645         const int rw = rq_data_dir(rq);
3646         const bool is_sync = rq_is_sync(rq);
3647         struct cfq_queue *cfqq;
3648         unsigned long flags;
3649
3650         might_sleep_if(gfp_mask & __GFP_WAIT);
3651
3652         cic = cfq_get_io_context(cfqd, gfp_mask);
3653
3654         spin_lock_irqsave(q->queue_lock, flags);
3655
3656         if (!cic)
3657                 goto queue_fail;
3658
3659 new_queue:
3660         cfqq = cic_to_cfqq(cic, is_sync);
3661         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3662                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3663                 cic_set_cfqq(cic, cfqq, is_sync);
3664         } else {
3665                 /*
3666                  * If the queue was seeky for too long, break it apart.
3667                  */
3668                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3669                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3670                         cfqq = split_cfqq(cic, cfqq);
3671                         if (!cfqq)
3672                                 goto new_queue;
3673                 }
3674
3675                 /*
3676                  * Check to see if this queue is scheduled to merge with
3677                  * another, closely cooperating queue.  The merging of
3678                  * queues happens here as it must be done in process context.
3679                  * The reference on new_cfqq was taken in merge_cfqqs.
3680                  */
3681                 if (cfqq->new_cfqq)
3682                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3683         }
3684
3685         cfqq->allocated[rw]++;
3686         atomic_inc(&cfqq->ref);
3687
3688         spin_unlock_irqrestore(q->queue_lock, flags);
3689
3690         rq->elevator_private = cic;
3691         rq->elevator_private2 = cfqq;
3692         rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3693         return 0;
3694
3695 queue_fail:
3696         if (cic)
3697                 put_io_context(cic->ioc);
3698
3699         cfq_schedule_dispatch(cfqd);
3700         spin_unlock_irqrestore(q->queue_lock, flags);
3701         cfq_log(cfqd, "set_request fail");
3702         return 1;
3703 }
3704
3705 static void cfq_kick_queue(struct work_struct *work)
3706 {
3707         struct cfq_data *cfqd =
3708                 container_of(work, struct cfq_data, unplug_work);
3709         struct request_queue *q = cfqd->queue;
3710
3711         spin_lock_irq(q->queue_lock);
3712         __blk_run_queue(cfqd->queue);
3713         spin_unlock_irq(q->queue_lock);
3714 }
3715
3716 /*
3717  * Timer running if the active_queue is currently idling inside its time slice
3718  */
3719 static void cfq_idle_slice_timer(unsigned long data)
3720 {
3721         struct cfq_data *cfqd = (struct cfq_data *) data;
3722         struct cfq_queue *cfqq;
3723         unsigned long flags;
3724         int timed_out = 1;
3725
3726         cfq_log(cfqd, "idle timer fired");
3727
3728         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3729
3730         cfqq = cfqd->active_queue;
3731         if (cfqq) {
3732                 timed_out = 0;
3733
3734                 /*
3735                  * We saw a request before the queue expired, let it through
3736                  */
3737                 if (cfq_cfqq_must_dispatch(cfqq))
3738                         goto out_kick;
3739
3740                 /*
3741                  * expired
3742                  */
3743                 if (cfq_slice_used(cfqq))
3744                         goto expire;
3745
3746                 /*
3747                  * only expire and reinvoke request handler, if there are
3748                  * other queues with pending requests
3749                  */
3750                 if (!cfqd->busy_queues)
3751                         goto out_cont;
3752
3753                 /*
3754                  * not expired and it has a request pending, let it dispatch
3755                  */
3756                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3757                         goto out_kick;
3758
3759                 /*
3760                  * Queue depth flag is reset only when the idle didn't succeed
3761                  */
3762                 cfq_clear_cfqq_deep(cfqq);
3763         }
3764 expire:
3765         cfq_slice_expired(cfqd, timed_out);
3766 out_kick:
3767         cfq_schedule_dispatch(cfqd);
3768 out_cont:
3769         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3770 }
3771
3772 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3773 {
3774         del_timer_sync(&cfqd->idle_slice_timer);
3775         cancel_work_sync(&cfqd->unplug_work);
3776 }
3777
3778 static void cfq_put_async_queues(struct cfq_data *cfqd)
3779 {
3780         int i;
3781
3782         for (i = 0; i < IOPRIO_BE_NR; i++) {
3783                 if (cfqd->async_cfqq[0][i])
3784                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3785                 if (cfqd->async_cfqq[1][i])
3786                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3787         }
3788
3789         if (cfqd->async_idle_cfqq)
3790                 cfq_put_queue(cfqd->async_idle_cfqq);
3791 }
3792
3793 static void cfq_cfqd_free(struct rcu_head *head)
3794 {
3795         kfree(container_of(head, struct cfq_data, rcu));
3796 }
3797
3798 static void cfq_exit_queue(struct elevator_queue *e)
3799 {
3800         struct cfq_data *cfqd = e->elevator_data;
3801         struct request_queue *q = cfqd->queue;
3802
3803         cfq_shutdown_timer_wq(cfqd);
3804
3805         spin_lock_irq(q->queue_lock);
3806
3807         if (cfqd->active_queue)
3808                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3809
3810         while (!list_empty(&cfqd->cic_list)) {
3811                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3812                                                         struct cfq_io_context,
3813                                                         queue_list);
3814
3815                 __cfq_exit_single_io_context(cfqd, cic);
3816         }
3817
3818         cfq_put_async_queues(cfqd);
3819         cfq_release_cfq_groups(cfqd);
3820         cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3821
3822         spin_unlock_irq(q->queue_lock);
3823
3824         cfq_shutdown_timer_wq(cfqd);
3825
3826         spin_lock(&cic_index_lock);
3827         ida_remove(&cic_index_ida, cfqd->cic_index);
3828         spin_unlock(&cic_index_lock);
3829
3830         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3831         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3832 }
3833
3834 static int cfq_alloc_cic_index(void)
3835 {
3836         int index, error;
3837
3838         do {
3839                 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3840                         return -ENOMEM;
3841
3842                 spin_lock(&cic_index_lock);
3843                 error = ida_get_new(&cic_index_ida, &index);
3844                 spin_unlock(&cic_index_lock);
3845                 if (error && error != -EAGAIN)
3846                         return error;
3847         } while (error);
3848
3849         return index;
3850 }
3851
3852 static void *cfq_init_queue(struct request_queue *q)
3853 {
3854         struct cfq_data *cfqd;
3855         int i, j;
3856         struct cfq_group *cfqg;
3857         struct cfq_rb_root *st;
3858
3859         i = cfq_alloc_cic_index();
3860         if (i < 0)
3861                 return NULL;
3862
3863         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3864         if (!cfqd)
3865                 return NULL;
3866
3867         cfqd->cic_index = i;
3868
3869         /* Init root service tree */
3870         cfqd->grp_service_tree = CFQ_RB_ROOT;
3871
3872         /* Init root group */
3873         cfqg = &cfqd->root_group;
3874         for_each_cfqg_st(cfqg, i, j, st)
3875                 *st = CFQ_RB_ROOT;
3876         RB_CLEAR_NODE(&cfqg->rb_node);
3877
3878         /* Give preference to root group over other groups */
3879         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3880
3881 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3882         /*
3883          * Take a reference to root group which we never drop. This is just
3884          * to make sure that cfq_put_cfqg() does not try to kfree root group
3885          */
3886         atomic_set(&cfqg->ref, 1);
3887         rcu_read_lock();
3888         cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3889                                         (void *)cfqd, 0);
3890         rcu_read_unlock();
3891 #endif
3892         /*
3893          * Not strictly needed (since RB_ROOT just clears the node and we
3894          * zeroed cfqd on alloc), but better be safe in case someone decides
3895          * to add magic to the rb code
3896          */
3897         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3898                 cfqd->prio_trees[i] = RB_ROOT;
3899
3900         /*
3901          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3902          * Grab a permanent reference to it, so that the normal code flow
3903          * will not attempt to free it.
3904          */
3905         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3906         atomic_inc(&cfqd->oom_cfqq.ref);
3907         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3908
3909         INIT_LIST_HEAD(&cfqd->cic_list);
3910
3911         cfqd->queue = q;
3912
3913         init_timer(&cfqd->idle_slice_timer);
3914         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3915         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3916
3917         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3918
3919         cfqd->cfq_quantum = cfq_quantum;
3920         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3921         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3922         cfqd->cfq_back_max = cfq_back_max;
3923         cfqd->cfq_back_penalty = cfq_back_penalty;
3924         cfqd->cfq_slice[0] = cfq_slice_async;
3925         cfqd->cfq_slice[1] = cfq_slice_sync;
3926         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3927         cfqd->cfq_slice_idle = cfq_slice_idle;
3928         cfqd->cfq_group_idle = cfq_group_idle;
3929         cfqd->cfq_latency = 1;
3930         cfqd->cfq_group_isolation = 0;
3931         cfqd->hw_tag = -1;
3932         /*
3933          * we optimistically start assuming sync ops weren't delayed in last
3934          * second, in order to have larger depth for async operations.
3935          */
3936         cfqd->last_delayed_sync = jiffies - HZ;
3937         return cfqd;
3938 }
3939
3940 static void cfq_slab_kill(void)
3941 {
3942         /*
3943          * Caller already ensured that pending RCU callbacks are completed,
3944          * so we should have no busy allocations at this point.
3945          */
3946         if (cfq_pool)
3947                 kmem_cache_destroy(cfq_pool);
3948         if (cfq_ioc_pool)
3949                 kmem_cache_destroy(cfq_ioc_pool);
3950 }
3951
3952 static int __init cfq_slab_setup(void)
3953 {
3954         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3955         if (!cfq_pool)
3956                 goto fail;
3957
3958         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3959         if (!cfq_ioc_pool)
3960                 goto fail;
3961
3962         return 0;
3963 fail:
3964         cfq_slab_kill();
3965         return -ENOMEM;
3966 }
3967
3968 /*
3969  * sysfs parts below -->
3970  */
3971 static ssize_t
3972 cfq_var_show(unsigned int var, char *page)
3973 {
3974         return sprintf(page, "%d\n", var);
3975 }
3976
3977 static ssize_t
3978 cfq_var_store(unsigned int *var, const char *page, size_t count)
3979 {
3980         char *p = (char *) page;
3981
3982         *var = simple_strtoul(p, &p, 10);
3983         return count;
3984 }
3985
3986 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3987 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3988 {                                                                       \
3989         struct cfq_data *cfqd = e->elevator_data;                       \
3990         unsigned int __data = __VAR;                                    \
3991         if (__CONV)                                                     \
3992                 __data = jiffies_to_msecs(__data);                      \
3993         return cfq_var_show(__data, (page));                            \
3994 }
3995 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3996 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3997 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3998 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3999 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4000 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4001 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4002 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4003 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4004 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4005 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4006 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
4007 #undef SHOW_FUNCTION
4008
4009 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4010 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4011 {                                                                       \
4012         struct cfq_data *cfqd = e->elevator_data;                       \
4013         unsigned int __data;                                            \
4014         int ret = cfq_var_store(&__data, (page), count);                \
4015         if (__data < (MIN))                                             \
4016                 __data = (MIN);                                         \
4017         else if (__data > (MAX))                                        \
4018                 __data = (MAX);                                         \
4019         if (__CONV)                                                     \
4020                 *(__PTR) = msecs_to_jiffies(__data);                    \
4021         else                                                            \
4022                 *(__PTR) = __data;                                      \
4023         return ret;                                                     \
4024 }
4025 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4026 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4027                 UINT_MAX, 1);
4028 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4029                 UINT_MAX, 1);
4030 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4031 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4032                 UINT_MAX, 0);
4033 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4034 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4035 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4036 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4037 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4038                 UINT_MAX, 0);
4039 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4040 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
4041 #undef STORE_FUNCTION
4042
4043 #define CFQ_ATTR(name) \
4044         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4045
4046 static struct elv_fs_entry cfq_attrs[] = {
4047         CFQ_ATTR(quantum),
4048         CFQ_ATTR(fifo_expire_sync),
4049         CFQ_ATTR(fifo_expire_async),
4050         CFQ_ATTR(back_seek_max),
4051         CFQ_ATTR(back_seek_penalty),
4052         CFQ_ATTR(slice_sync),
4053         CFQ_ATTR(slice_async),
4054         CFQ_ATTR(slice_async_rq),
4055         CFQ_ATTR(slice_idle),
4056         CFQ_ATTR(group_idle),
4057         CFQ_ATTR(low_latency),
4058         CFQ_ATTR(group_isolation),
4059         __ATTR_NULL
4060 };
4061
4062 static struct elevator_type iosched_cfq = {
4063         .ops = {
4064                 .elevator_merge_fn =            cfq_merge,
4065                 .elevator_merged_fn =           cfq_merged_request,
4066                 .elevator_merge_req_fn =        cfq_merged_requests,
4067                 .elevator_allow_merge_fn =      cfq_allow_merge,
4068                 .elevator_bio_merged_fn =       cfq_bio_merged,
4069                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4070                 .elevator_add_req_fn =          cfq_insert_request,
4071                 .elevator_activate_req_fn =     cfq_activate_request,
4072                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4073                 .elevator_queue_empty_fn =      cfq_queue_empty,
4074                 .elevator_completed_req_fn =    cfq_completed_request,
4075                 .elevator_former_req_fn =       elv_rb_former_request,
4076                 .elevator_latter_req_fn =       elv_rb_latter_request,
4077                 .elevator_set_req_fn =          cfq_set_request,
4078                 .elevator_put_req_fn =          cfq_put_request,
4079                 .elevator_may_queue_fn =        cfq_may_queue,
4080                 .elevator_init_fn =             cfq_init_queue,
4081                 .elevator_exit_fn =             cfq_exit_queue,
4082                 .trim =                         cfq_free_io_context,
4083         },
4084         .elevator_attrs =       cfq_attrs,
4085         .elevator_name =        "cfq",
4086         .elevator_owner =       THIS_MODULE,
4087 };
4088
4089 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4090 static struct blkio_policy_type blkio_policy_cfq = {
4091         .ops = {
4092                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
4093                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4094         },
4095         .plid = BLKIO_POLICY_PROP,
4096 };
4097 #else
4098 static struct blkio_policy_type blkio_policy_cfq;
4099 #endif
4100
4101 static int __init cfq_init(void)
4102 {
4103         /*
4104          * could be 0 on HZ < 1000 setups
4105          */
4106         if (!cfq_slice_async)
4107                 cfq_slice_async = 1;
4108         if (!cfq_slice_idle)
4109                 cfq_slice_idle = 1;
4110
4111 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4112         if (!cfq_group_idle)
4113                 cfq_group_idle = 1;
4114 #else
4115                 cfq_group_idle = 0;
4116 #endif
4117         if (cfq_slab_setup())
4118                 return -ENOMEM;
4119
4120         elv_register(&iosched_cfq);
4121         blkio_policy_register(&blkio_policy_cfq);
4122
4123         return 0;
4124 }
4125
4126 static void __exit cfq_exit(void)
4127 {
4128         DECLARE_COMPLETION_ONSTACK(all_gone);
4129         blkio_policy_unregister(&blkio_policy_cfq);
4130         elv_unregister(&iosched_cfq);
4131         ioc_gone = &all_gone;
4132         /* ioc_gone's update must be visible before reading ioc_count */
4133         smp_wmb();
4134
4135         /*
4136          * this also protects us from entering cfq_slab_kill() with
4137          * pending RCU callbacks
4138          */
4139         if (elv_ioc_count_read(cfq_ioc_count))
4140                 wait_for_completion(&all_gone);
4141         ida_destroy(&cic_index_ida);
4142         cfq_slab_kill();
4143 }
4144
4145 module_init(cfq_init);
4146 module_exit(cfq_exit);
4147
4148 MODULE_AUTHOR("Jens Axboe");
4149 MODULE_LICENSE("GPL");
4150 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");