Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20  * tunables
21  */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38  * offset from end of service tree
39  */
40 #define CFQ_IDLE_DELAY          (HZ / 5)
41
42 /*
43  * below this threshold, we consider thinktime immediate
44  */
45 #define CFQ_MIN_TT              (2)
46
47 #define CFQ_SLICE_SCALE         (5)
48 #define CFQ_HW_QUEUE_MIN        (5)
49 #define CFQ_SERVICE_SHIFT       12
50
51 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq)              \
57         ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private[2])
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples)   ((samples) > 80)
76 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79  * Most of our rbtree usage is for sorting with min extraction, so
80  * if we cache the leftmost node we don't have to walk down the tree
81  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82  * move this into the elevator for the rq sorting as well.
83  */
84 struct cfq_rb_root {
85         struct rb_root rb;
86         struct rb_node *left;
87         unsigned count;
88         unsigned total_weight;
89         u64 min_vdisktime;
90         struct cfq_ttime ttime;
91 };
92 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, \
93                         .ttime = {.last_end_request = jiffies,},}
94
95 /*
96  * Per process-grouping structure
97  */
98 struct cfq_queue {
99         /* reference count */
100         int ref;
101         /* various state flags, see below */
102         unsigned int flags;
103         /* parent cfq_data */
104         struct cfq_data *cfqd;
105         /* service_tree member */
106         struct rb_node rb_node;
107         /* service_tree key */
108         unsigned long rb_key;
109         /* prio tree member */
110         struct rb_node p_node;
111         /* prio tree root we belong to, if any */
112         struct rb_root *p_root;
113         /* sorted list of pending requests */
114         struct rb_root sort_list;
115         /* if fifo isn't expired, next request to serve */
116         struct request *next_rq;
117         /* requests queued in sort_list */
118         int queued[2];
119         /* currently allocated requests */
120         int allocated[2];
121         /* fifo list of requests in sort_list */
122         struct list_head fifo;
123
124         /* time when queue got scheduled in to dispatch first request. */
125         unsigned long dispatch_start;
126         unsigned int allocated_slice;
127         unsigned int slice_dispatch;
128         /* time when first request from queue completed and slice started. */
129         unsigned long slice_start;
130         unsigned long slice_end;
131         long slice_resid;
132
133         /* number of requests that are on the dispatch list or inside driver */
134         int dispatched;
135
136         /* io prio of this group */
137         unsigned short ioprio, org_ioprio;
138         unsigned short ioprio_class;
139
140         pid_t pid;
141
142         u32 seek_history;
143         sector_t last_request_pos;
144
145         struct cfq_rb_root *service_tree;
146         struct cfq_queue *new_cfqq;
147         struct cfq_group *cfqg;
148         /* Number of sectors dispatched from queue in single dispatch round */
149         unsigned long nr_sectors;
150 };
151
152 /*
153  * First index in the service_trees.
154  * IDLE is handled separately, so it has negative index
155  */
156 enum wl_prio_t {
157         BE_WORKLOAD = 0,
158         RT_WORKLOAD = 1,
159         IDLE_WORKLOAD = 2,
160         CFQ_PRIO_NR,
161 };
162
163 /*
164  * Second index in the service_trees.
165  */
166 enum wl_type_t {
167         ASYNC_WORKLOAD = 0,
168         SYNC_NOIDLE_WORKLOAD = 1,
169         SYNC_WORKLOAD = 2
170 };
171
172 /* This is per cgroup per device grouping structure */
173 struct cfq_group {
174         /* group service_tree member */
175         struct rb_node rb_node;
176
177         /* group service_tree key */
178         u64 vdisktime;
179         unsigned int weight;
180         unsigned int new_weight;
181         bool needs_update;
182
183         /* number of cfqq currently on this group */
184         int nr_cfqq;
185
186         /*
187          * Per group busy queues average. Useful for workload slice calc. We
188          * create the array for each prio class but at run time it is used
189          * only for RT and BE class and slot for IDLE class remains unused.
190          * This is primarily done to avoid confusion and a gcc warning.
191          */
192         unsigned int busy_queues_avg[CFQ_PRIO_NR];
193         /*
194          * rr lists of queues with requests. We maintain service trees for
195          * RT and BE classes. These trees are subdivided in subclasses
196          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197          * class there is no subclassification and all the cfq queues go on
198          * a single tree service_tree_idle.
199          * Counts are embedded in the cfq_rb_root
200          */
201         struct cfq_rb_root service_trees[2][3];
202         struct cfq_rb_root service_tree_idle;
203
204         unsigned long saved_workload_slice;
205         enum wl_type_t saved_workload;
206         enum wl_prio_t saved_serving_prio;
207         struct blkio_group blkg;
208 #ifdef CONFIG_CFQ_GROUP_IOSCHED
209         struct hlist_node cfqd_node;
210         int ref;
211 #endif
212         /* number of requests that are on the dispatch list or inside driver */
213         int dispatched;
214         struct cfq_ttime ttime;
215 };
216
217 /*
218  * Per block device queue structure
219  */
220 struct cfq_data {
221         struct request_queue *queue;
222         /* Root service tree for cfq_groups */
223         struct cfq_rb_root grp_service_tree;
224         struct cfq_group root_group;
225
226         /*
227          * The priority currently being served
228          */
229         enum wl_prio_t serving_prio;
230         enum wl_type_t serving_type;
231         unsigned long workload_expires;
232         struct cfq_group *serving_group;
233
234         /*
235          * Each priority tree is sorted by next_request position.  These
236          * trees are used when determining if two or more queues are
237          * interleaving requests (see cfq_close_cooperator).
238          */
239         struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241         unsigned int busy_queues;
242         unsigned int busy_sync_queues;
243
244         int rq_in_driver;
245         int rq_in_flight[2];
246
247         /*
248          * queue-depth detection
249          */
250         int rq_queued;
251         int hw_tag;
252         /*
253          * hw_tag can be
254          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256          *  0 => no NCQ
257          */
258         int hw_tag_est_depth;
259         unsigned int hw_tag_samples;
260
261         /*
262          * idle window management
263          */
264         struct timer_list idle_slice_timer;
265         struct work_struct unplug_work;
266
267         struct cfq_queue *active_queue;
268         struct cfq_io_context *active_cic;
269
270         /*
271          * async queue for each priority case
272          */
273         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274         struct cfq_queue *async_idle_cfqq;
275
276         sector_t last_position;
277
278         /*
279          * tunables, see top of file
280          */
281         unsigned int cfq_quantum;
282         unsigned int cfq_fifo_expire[2];
283         unsigned int cfq_back_penalty;
284         unsigned int cfq_back_max;
285         unsigned int cfq_slice[2];
286         unsigned int cfq_slice_async_rq;
287         unsigned int cfq_slice_idle;
288         unsigned int cfq_group_idle;
289         unsigned int cfq_latency;
290
291         unsigned int cic_index;
292         struct list_head cic_list;
293
294         /*
295          * Fallback dummy cfqq for extreme OOM conditions
296          */
297         struct cfq_queue oom_cfqq;
298
299         unsigned long last_delayed_sync;
300
301         /* List of cfq groups being managed on this device*/
302         struct hlist_head cfqg_list;
303
304         /* Number of groups which are on blkcg->blkg_list */
305         unsigned int nr_blkcg_linked_grps;
306 };
307
308 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
310 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311                                             enum wl_prio_t prio,
312                                             enum wl_type_t type)
313 {
314         if (!cfqg)
315                 return NULL;
316
317         if (prio == IDLE_WORKLOAD)
318                 return &cfqg->service_tree_idle;
319
320         return &cfqg->service_trees[prio][type];
321 }
322
323 enum cfqq_state_flags {
324         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
325         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
326         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
327         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
328         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
329         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
330         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
331         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
332         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
333         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
334         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
335         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
336         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
337 };
338
339 #define CFQ_CFQQ_FNS(name)                                              \
340 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
341 {                                                                       \
342         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
343 }                                                                       \
344 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
345 {                                                                       \
346         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
347 }                                                                       \
348 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
349 {                                                                       \
350         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
351 }
352
353 CFQ_CFQQ_FNS(on_rr);
354 CFQ_CFQQ_FNS(wait_request);
355 CFQ_CFQQ_FNS(must_dispatch);
356 CFQ_CFQQ_FNS(must_alloc_slice);
357 CFQ_CFQQ_FNS(fifo_expire);
358 CFQ_CFQQ_FNS(idle_window);
359 CFQ_CFQQ_FNS(prio_changed);
360 CFQ_CFQQ_FNS(slice_new);
361 CFQ_CFQQ_FNS(sync);
362 CFQ_CFQQ_FNS(coop);
363 CFQ_CFQQ_FNS(split_coop);
364 CFQ_CFQQ_FNS(deep);
365 CFQ_CFQQ_FNS(wait_busy);
366 #undef CFQ_CFQQ_FNS
367
368 #ifdef CONFIG_CFQ_GROUP_IOSCHED
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
370         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372                         blkg_path(&(cfqq)->cfqg->blkg), ##args)
373
374 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
375         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
376                                 blkg_path(&(cfqg)->blkg), ##args)       \
377
378 #else
379 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
380         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
382 #endif
383 #define cfq_log(cfqd, fmt, args...)     \
384         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
386 /* Traverses through cfq group service trees */
387 #define for_each_cfqg_st(cfqg, i, j, st) \
388         for (i = 0; i <= IDLE_WORKLOAD; i++) \
389                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390                         : &cfqg->service_tree_idle; \
391                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392                         (i == IDLE_WORKLOAD && j == 0); \
393                         j++, st = i < IDLE_WORKLOAD ? \
394                         &cfqg->service_trees[i][j]: NULL) \
395
396 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
397         struct cfq_ttime *ttime, bool group_idle)
398 {
399         unsigned long slice;
400         if (!sample_valid(ttime->ttime_samples))
401                 return false;
402         if (group_idle)
403                 slice = cfqd->cfq_group_idle;
404         else
405                 slice = cfqd->cfq_slice_idle;
406         return ttime->ttime_mean > slice;
407 }
408
409 static inline bool iops_mode(struct cfq_data *cfqd)
410 {
411         /*
412          * If we are not idling on queues and it is a NCQ drive, parallel
413          * execution of requests is on and measuring time is not possible
414          * in most of the cases until and unless we drive shallower queue
415          * depths and that becomes a performance bottleneck. In such cases
416          * switch to start providing fairness in terms of number of IOs.
417          */
418         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
419                 return true;
420         else
421                 return false;
422 }
423
424 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
425 {
426         if (cfq_class_idle(cfqq))
427                 return IDLE_WORKLOAD;
428         if (cfq_class_rt(cfqq))
429                 return RT_WORKLOAD;
430         return BE_WORKLOAD;
431 }
432
433
434 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
435 {
436         if (!cfq_cfqq_sync(cfqq))
437                 return ASYNC_WORKLOAD;
438         if (!cfq_cfqq_idle_window(cfqq))
439                 return SYNC_NOIDLE_WORKLOAD;
440         return SYNC_WORKLOAD;
441 }
442
443 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
444                                         struct cfq_data *cfqd,
445                                         struct cfq_group *cfqg)
446 {
447         if (wl == IDLE_WORKLOAD)
448                 return cfqg->service_tree_idle.count;
449
450         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
451                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
452                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
453 }
454
455 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
456                                         struct cfq_group *cfqg)
457 {
458         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
459                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
460 }
461
462 static void cfq_dispatch_insert(struct request_queue *, struct request *);
463 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
464                                        struct io_context *, gfp_t);
465 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
466                                                 struct io_context *);
467
468 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
469                                             bool is_sync)
470 {
471         return cic->cfqq[is_sync];
472 }
473
474 static inline void cic_set_cfqq(struct cfq_io_context *cic,
475                                 struct cfq_queue *cfqq, bool is_sync)
476 {
477         cic->cfqq[is_sync] = cfqq;
478 }
479
480 #define CIC_DEAD_KEY    1ul
481 #define CIC_DEAD_INDEX_SHIFT    1
482
483 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
484 {
485         return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
486 }
487
488 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
489 {
490         struct cfq_data *cfqd = cic->key;
491
492         if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
493                 return NULL;
494
495         return cfqd;
496 }
497
498 /*
499  * We regard a request as SYNC, if it's either a read or has the SYNC bit
500  * set (in which case it could also be direct WRITE).
501  */
502 static inline bool cfq_bio_sync(struct bio *bio)
503 {
504         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
505 }
506
507 /*
508  * scheduler run of queue, if there are requests pending and no one in the
509  * driver that will restart queueing
510  */
511 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
512 {
513         if (cfqd->busy_queues) {
514                 cfq_log(cfqd, "schedule dispatch");
515                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
516         }
517 }
518
519 /*
520  * Scale schedule slice based on io priority. Use the sync time slice only
521  * if a queue is marked sync and has sync io queued. A sync queue with async
522  * io only, should not get full sync slice length.
523  */
524 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
525                                  unsigned short prio)
526 {
527         const int base_slice = cfqd->cfq_slice[sync];
528
529         WARN_ON(prio >= IOPRIO_BE_NR);
530
531         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
532 }
533
534 static inline int
535 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
536 {
537         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
538 }
539
540 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
541 {
542         u64 d = delta << CFQ_SERVICE_SHIFT;
543
544         d = d * BLKIO_WEIGHT_DEFAULT;
545         do_div(d, cfqg->weight);
546         return d;
547 }
548
549 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
550 {
551         s64 delta = (s64)(vdisktime - min_vdisktime);
552         if (delta > 0)
553                 min_vdisktime = vdisktime;
554
555         return min_vdisktime;
556 }
557
558 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
559 {
560         s64 delta = (s64)(vdisktime - min_vdisktime);
561         if (delta < 0)
562                 min_vdisktime = vdisktime;
563
564         return min_vdisktime;
565 }
566
567 static void update_min_vdisktime(struct cfq_rb_root *st)
568 {
569         struct cfq_group *cfqg;
570
571         if (st->left) {
572                 cfqg = rb_entry_cfqg(st->left);
573                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
574                                                   cfqg->vdisktime);
575         }
576 }
577
578 /*
579  * get averaged number of queues of RT/BE priority.
580  * average is updated, with a formula that gives more weight to higher numbers,
581  * to quickly follows sudden increases and decrease slowly
582  */
583
584 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
585                                         struct cfq_group *cfqg, bool rt)
586 {
587         unsigned min_q, max_q;
588         unsigned mult  = cfq_hist_divisor - 1;
589         unsigned round = cfq_hist_divisor / 2;
590         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
591
592         min_q = min(cfqg->busy_queues_avg[rt], busy);
593         max_q = max(cfqg->busy_queues_avg[rt], busy);
594         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
595                 cfq_hist_divisor;
596         return cfqg->busy_queues_avg[rt];
597 }
598
599 static inline unsigned
600 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
601 {
602         struct cfq_rb_root *st = &cfqd->grp_service_tree;
603
604         return cfq_target_latency * cfqg->weight / st->total_weight;
605 }
606
607 static inline unsigned
608 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
609 {
610         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
611         if (cfqd->cfq_latency) {
612                 /*
613                  * interested queues (we consider only the ones with the same
614                  * priority class in the cfq group)
615                  */
616                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
617                                                 cfq_class_rt(cfqq));
618                 unsigned sync_slice = cfqd->cfq_slice[1];
619                 unsigned expect_latency = sync_slice * iq;
620                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
621
622                 if (expect_latency > group_slice) {
623                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
624                         /* scale low_slice according to IO priority
625                          * and sync vs async */
626                         unsigned low_slice =
627                                 min(slice, base_low_slice * slice / sync_slice);
628                         /* the adapted slice value is scaled to fit all iqs
629                          * into the target latency */
630                         slice = max(slice * group_slice / expect_latency,
631                                     low_slice);
632                 }
633         }
634         return slice;
635 }
636
637 static inline void
638 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
639 {
640         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
641
642         cfqq->slice_start = jiffies;
643         cfqq->slice_end = jiffies + slice;
644         cfqq->allocated_slice = slice;
645         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
646 }
647
648 /*
649  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
650  * isn't valid until the first request from the dispatch is activated
651  * and the slice time set.
652  */
653 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
654 {
655         if (cfq_cfqq_slice_new(cfqq))
656                 return false;
657         if (time_before(jiffies, cfqq->slice_end))
658                 return false;
659
660         return true;
661 }
662
663 /*
664  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
665  * We choose the request that is closest to the head right now. Distance
666  * behind the head is penalized and only allowed to a certain extent.
667  */
668 static struct request *
669 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
670 {
671         sector_t s1, s2, d1 = 0, d2 = 0;
672         unsigned long back_max;
673 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
674 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
675         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
676
677         if (rq1 == NULL || rq1 == rq2)
678                 return rq2;
679         if (rq2 == NULL)
680                 return rq1;
681
682         if (rq_is_sync(rq1) != rq_is_sync(rq2))
683                 return rq_is_sync(rq1) ? rq1 : rq2;
684
685         s1 = blk_rq_pos(rq1);
686         s2 = blk_rq_pos(rq2);
687
688         /*
689          * by definition, 1KiB is 2 sectors
690          */
691         back_max = cfqd->cfq_back_max * 2;
692
693         /*
694          * Strict one way elevator _except_ in the case where we allow
695          * short backward seeks which are biased as twice the cost of a
696          * similar forward seek.
697          */
698         if (s1 >= last)
699                 d1 = s1 - last;
700         else if (s1 + back_max >= last)
701                 d1 = (last - s1) * cfqd->cfq_back_penalty;
702         else
703                 wrap |= CFQ_RQ1_WRAP;
704
705         if (s2 >= last)
706                 d2 = s2 - last;
707         else if (s2 + back_max >= last)
708                 d2 = (last - s2) * cfqd->cfq_back_penalty;
709         else
710                 wrap |= CFQ_RQ2_WRAP;
711
712         /* Found required data */
713
714         /*
715          * By doing switch() on the bit mask "wrap" we avoid having to
716          * check two variables for all permutations: --> faster!
717          */
718         switch (wrap) {
719         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
720                 if (d1 < d2)
721                         return rq1;
722                 else if (d2 < d1)
723                         return rq2;
724                 else {
725                         if (s1 >= s2)
726                                 return rq1;
727                         else
728                                 return rq2;
729                 }
730
731         case CFQ_RQ2_WRAP:
732                 return rq1;
733         case CFQ_RQ1_WRAP:
734                 return rq2;
735         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
736         default:
737                 /*
738                  * Since both rqs are wrapped,
739                  * start with the one that's further behind head
740                  * (--> only *one* back seek required),
741                  * since back seek takes more time than forward.
742                  */
743                 if (s1 <= s2)
744                         return rq1;
745                 else
746                         return rq2;
747         }
748 }
749
750 /*
751  * The below is leftmost cache rbtree addon
752  */
753 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
754 {
755         /* Service tree is empty */
756         if (!root->count)
757                 return NULL;
758
759         if (!root->left)
760                 root->left = rb_first(&root->rb);
761
762         if (root->left)
763                 return rb_entry(root->left, struct cfq_queue, rb_node);
764
765         return NULL;
766 }
767
768 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
769 {
770         if (!root->left)
771                 root->left = rb_first(&root->rb);
772
773         if (root->left)
774                 return rb_entry_cfqg(root->left);
775
776         return NULL;
777 }
778
779 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
780 {
781         rb_erase(n, root);
782         RB_CLEAR_NODE(n);
783 }
784
785 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
786 {
787         if (root->left == n)
788                 root->left = NULL;
789         rb_erase_init(n, &root->rb);
790         --root->count;
791 }
792
793 /*
794  * would be nice to take fifo expire time into account as well
795  */
796 static struct request *
797 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
798                   struct request *last)
799 {
800         struct rb_node *rbnext = rb_next(&last->rb_node);
801         struct rb_node *rbprev = rb_prev(&last->rb_node);
802         struct request *next = NULL, *prev = NULL;
803
804         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
805
806         if (rbprev)
807                 prev = rb_entry_rq(rbprev);
808
809         if (rbnext)
810                 next = rb_entry_rq(rbnext);
811         else {
812                 rbnext = rb_first(&cfqq->sort_list);
813                 if (rbnext && rbnext != &last->rb_node)
814                         next = rb_entry_rq(rbnext);
815         }
816
817         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
818 }
819
820 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
821                                       struct cfq_queue *cfqq)
822 {
823         /*
824          * just an approximation, should be ok.
825          */
826         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
827                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
828 }
829
830 static inline s64
831 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
832 {
833         return cfqg->vdisktime - st->min_vdisktime;
834 }
835
836 static void
837 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
838 {
839         struct rb_node **node = &st->rb.rb_node;
840         struct rb_node *parent = NULL;
841         struct cfq_group *__cfqg;
842         s64 key = cfqg_key(st, cfqg);
843         int left = 1;
844
845         while (*node != NULL) {
846                 parent = *node;
847                 __cfqg = rb_entry_cfqg(parent);
848
849                 if (key < cfqg_key(st, __cfqg))
850                         node = &parent->rb_left;
851                 else {
852                         node = &parent->rb_right;
853                         left = 0;
854                 }
855         }
856
857         if (left)
858                 st->left = &cfqg->rb_node;
859
860         rb_link_node(&cfqg->rb_node, parent, node);
861         rb_insert_color(&cfqg->rb_node, &st->rb);
862 }
863
864 static void
865 cfq_update_group_weight(struct cfq_group *cfqg)
866 {
867         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
868         if (cfqg->needs_update) {
869                 cfqg->weight = cfqg->new_weight;
870                 cfqg->needs_update = false;
871         }
872 }
873
874 static void
875 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
876 {
877         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
878
879         cfq_update_group_weight(cfqg);
880         __cfq_group_service_tree_add(st, cfqg);
881         st->total_weight += cfqg->weight;
882 }
883
884 static void
885 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
886 {
887         struct cfq_rb_root *st = &cfqd->grp_service_tree;
888         struct cfq_group *__cfqg;
889         struct rb_node *n;
890
891         cfqg->nr_cfqq++;
892         if (!RB_EMPTY_NODE(&cfqg->rb_node))
893                 return;
894
895         /*
896          * Currently put the group at the end. Later implement something
897          * so that groups get lesser vtime based on their weights, so that
898          * if group does not loose all if it was not continuously backlogged.
899          */
900         n = rb_last(&st->rb);
901         if (n) {
902                 __cfqg = rb_entry_cfqg(n);
903                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
904         } else
905                 cfqg->vdisktime = st->min_vdisktime;
906         cfq_group_service_tree_add(st, cfqg);
907 }
908
909 static void
910 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
911 {
912         st->total_weight -= cfqg->weight;
913         if (!RB_EMPTY_NODE(&cfqg->rb_node))
914                 cfq_rb_erase(&cfqg->rb_node, st);
915 }
916
917 static void
918 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
919 {
920         struct cfq_rb_root *st = &cfqd->grp_service_tree;
921
922         BUG_ON(cfqg->nr_cfqq < 1);
923         cfqg->nr_cfqq--;
924
925         /* If there are other cfq queues under this group, don't delete it */
926         if (cfqg->nr_cfqq)
927                 return;
928
929         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
930         cfq_group_service_tree_del(st, cfqg);
931         cfqg->saved_workload_slice = 0;
932         cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
933 }
934
935 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
936                                                 unsigned int *unaccounted_time)
937 {
938         unsigned int slice_used;
939
940         /*
941          * Queue got expired before even a single request completed or
942          * got expired immediately after first request completion.
943          */
944         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
945                 /*
946                  * Also charge the seek time incurred to the group, otherwise
947                  * if there are mutiple queues in the group, each can dispatch
948                  * a single request on seeky media and cause lots of seek time
949                  * and group will never know it.
950                  */
951                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
952                                         1);
953         } else {
954                 slice_used = jiffies - cfqq->slice_start;
955                 if (slice_used > cfqq->allocated_slice) {
956                         *unaccounted_time = slice_used - cfqq->allocated_slice;
957                         slice_used = cfqq->allocated_slice;
958                 }
959                 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
960                         *unaccounted_time += cfqq->slice_start -
961                                         cfqq->dispatch_start;
962         }
963
964         return slice_used;
965 }
966
967 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
968                                 struct cfq_queue *cfqq)
969 {
970         struct cfq_rb_root *st = &cfqd->grp_service_tree;
971         unsigned int used_sl, charge, unaccounted_sl = 0;
972         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
973                         - cfqg->service_tree_idle.count;
974
975         BUG_ON(nr_sync < 0);
976         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
977
978         if (iops_mode(cfqd))
979                 charge = cfqq->slice_dispatch;
980         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
981                 charge = cfqq->allocated_slice;
982
983         /* Can't update vdisktime while group is on service tree */
984         cfq_group_service_tree_del(st, cfqg);
985         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
986         /* If a new weight was requested, update now, off tree */
987         cfq_group_service_tree_add(st, cfqg);
988
989         /* This group is being expired. Save the context */
990         if (time_after(cfqd->workload_expires, jiffies)) {
991                 cfqg->saved_workload_slice = cfqd->workload_expires
992                                                 - jiffies;
993                 cfqg->saved_workload = cfqd->serving_type;
994                 cfqg->saved_serving_prio = cfqd->serving_prio;
995         } else
996                 cfqg->saved_workload_slice = 0;
997
998         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
999                                         st->min_vdisktime);
1000         cfq_log_cfqq(cfqq->cfqd, cfqq,
1001                      "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1002                      used_sl, cfqq->slice_dispatch, charge,
1003                      iops_mode(cfqd), cfqq->nr_sectors);
1004         cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1005                                           unaccounted_sl);
1006         cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1007 }
1008
1009 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1010 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1011 {
1012         if (blkg)
1013                 return container_of(blkg, struct cfq_group, blkg);
1014         return NULL;
1015 }
1016
1017 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1018                                           unsigned int weight)
1019 {
1020         struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1021         cfqg->new_weight = weight;
1022         cfqg->needs_update = true;
1023 }
1024
1025 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1026                         struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1027 {
1028         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1029         unsigned int major, minor;
1030
1031         /*
1032          * Add group onto cgroup list. It might happen that bdi->dev is
1033          * not initialized yet. Initialize this new group without major
1034          * and minor info and this info will be filled in once a new thread
1035          * comes for IO.
1036          */
1037         if (bdi->dev) {
1038                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1039                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1040                                         (void *)cfqd, MKDEV(major, minor));
1041         } else
1042                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1043                                         (void *)cfqd, 0);
1044
1045         cfqd->nr_blkcg_linked_grps++;
1046         cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1047
1048         /* Add group on cfqd list */
1049         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1050 }
1051
1052 /*
1053  * Should be called from sleepable context. No request queue lock as per
1054  * cpu stats are allocated dynamically and alloc_percpu needs to be called
1055  * from sleepable context.
1056  */
1057 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1058 {
1059         struct cfq_group *cfqg = NULL;
1060         int i, j, ret;
1061         struct cfq_rb_root *st;
1062
1063         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1064         if (!cfqg)
1065                 return NULL;
1066
1067         for_each_cfqg_st(cfqg, i, j, st)
1068                 *st = CFQ_RB_ROOT;
1069         RB_CLEAR_NODE(&cfqg->rb_node);
1070
1071         cfqg->ttime.last_end_request = jiffies;
1072
1073         /*
1074          * Take the initial reference that will be released on destroy
1075          * This can be thought of a joint reference by cgroup and
1076          * elevator which will be dropped by either elevator exit
1077          * or cgroup deletion path depending on who is exiting first.
1078          */
1079         cfqg->ref = 1;
1080
1081         ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1082         if (ret) {
1083                 kfree(cfqg);
1084                 return NULL;
1085         }
1086
1087         return cfqg;
1088 }
1089
1090 static struct cfq_group *
1091 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1092 {
1093         struct cfq_group *cfqg = NULL;
1094         void *key = cfqd;
1095         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1096         unsigned int major, minor;
1097
1098         /*
1099          * This is the common case when there are no blkio cgroups.
1100          * Avoid lookup in this case
1101          */
1102         if (blkcg == &blkio_root_cgroup)
1103                 cfqg = &cfqd->root_group;
1104         else
1105                 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1106
1107         if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1108                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1109                 cfqg->blkg.dev = MKDEV(major, minor);
1110         }
1111
1112         return cfqg;
1113 }
1114
1115 /*
1116  * Search for the cfq group current task belongs to. request_queue lock must
1117  * be held.
1118  */
1119 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1120 {
1121         struct blkio_cgroup *blkcg;
1122         struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1123         struct request_queue *q = cfqd->queue;
1124
1125         rcu_read_lock();
1126         blkcg = task_blkio_cgroup(current);
1127         cfqg = cfq_find_cfqg(cfqd, blkcg);
1128         if (cfqg) {
1129                 rcu_read_unlock();
1130                 return cfqg;
1131         }
1132
1133         /*
1134          * Need to allocate a group. Allocation of group also needs allocation
1135          * of per cpu stats which in-turn takes a mutex() and can block. Hence
1136          * we need to drop rcu lock and queue_lock before we call alloc.
1137          *
1138          * Not taking any queue reference here and assuming that queue is
1139          * around by the time we return. CFQ queue allocation code does
1140          * the same. It might be racy though.
1141          */
1142
1143         rcu_read_unlock();
1144         spin_unlock_irq(q->queue_lock);
1145
1146         cfqg = cfq_alloc_cfqg(cfqd);
1147
1148         spin_lock_irq(q->queue_lock);
1149
1150         rcu_read_lock();
1151         blkcg = task_blkio_cgroup(current);
1152
1153         /*
1154          * If some other thread already allocated the group while we were
1155          * not holding queue lock, free up the group
1156          */
1157         __cfqg = cfq_find_cfqg(cfqd, blkcg);
1158
1159         if (__cfqg) {
1160                 kfree(cfqg);
1161                 rcu_read_unlock();
1162                 return __cfqg;
1163         }
1164
1165         if (!cfqg)
1166                 cfqg = &cfqd->root_group;
1167
1168         cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1169         rcu_read_unlock();
1170         return cfqg;
1171 }
1172
1173 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1174 {
1175         cfqg->ref++;
1176         return cfqg;
1177 }
1178
1179 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1180 {
1181         /* Currently, all async queues are mapped to root group */
1182         if (!cfq_cfqq_sync(cfqq))
1183                 cfqg = &cfqq->cfqd->root_group;
1184
1185         cfqq->cfqg = cfqg;
1186         /* cfqq reference on cfqg */
1187         cfqq->cfqg->ref++;
1188 }
1189
1190 static void cfq_put_cfqg(struct cfq_group *cfqg)
1191 {
1192         struct cfq_rb_root *st;
1193         int i, j;
1194
1195         BUG_ON(cfqg->ref <= 0);
1196         cfqg->ref--;
1197         if (cfqg->ref)
1198                 return;
1199         for_each_cfqg_st(cfqg, i, j, st)
1200                 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1201         free_percpu(cfqg->blkg.stats_cpu);
1202         kfree(cfqg);
1203 }
1204
1205 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1206 {
1207         /* Something wrong if we are trying to remove same group twice */
1208         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1209
1210         hlist_del_init(&cfqg->cfqd_node);
1211
1212         /*
1213          * Put the reference taken at the time of creation so that when all
1214          * queues are gone, group can be destroyed.
1215          */
1216         cfq_put_cfqg(cfqg);
1217 }
1218
1219 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1220 {
1221         struct hlist_node *pos, *n;
1222         struct cfq_group *cfqg;
1223
1224         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1225                 /*
1226                  * If cgroup removal path got to blk_group first and removed
1227                  * it from cgroup list, then it will take care of destroying
1228                  * cfqg also.
1229                  */
1230                 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1231                         cfq_destroy_cfqg(cfqd, cfqg);
1232         }
1233 }
1234
1235 /*
1236  * Blk cgroup controller notification saying that blkio_group object is being
1237  * delinked as associated cgroup object is going away. That also means that
1238  * no new IO will come in this group. So get rid of this group as soon as
1239  * any pending IO in the group is finished.
1240  *
1241  * This function is called under rcu_read_lock(). key is the rcu protected
1242  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1243  * read lock.
1244  *
1245  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1246  * it should not be NULL as even if elevator was exiting, cgroup deltion
1247  * path got to it first.
1248  */
1249 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1250 {
1251         unsigned long  flags;
1252         struct cfq_data *cfqd = key;
1253
1254         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1255         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1256         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1257 }
1258
1259 #else /* GROUP_IOSCHED */
1260 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1261 {
1262         return &cfqd->root_group;
1263 }
1264
1265 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1266 {
1267         return cfqg;
1268 }
1269
1270 static inline void
1271 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1272         cfqq->cfqg = cfqg;
1273 }
1274
1275 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1276 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1277
1278 #endif /* GROUP_IOSCHED */
1279
1280 /*
1281  * The cfqd->service_trees holds all pending cfq_queue's that have
1282  * requests waiting to be processed. It is sorted in the order that
1283  * we will service the queues.
1284  */
1285 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1286                                  bool add_front)
1287 {
1288         struct rb_node **p, *parent;
1289         struct cfq_queue *__cfqq;
1290         unsigned long rb_key;
1291         struct cfq_rb_root *service_tree;
1292         int left;
1293         int new_cfqq = 1;
1294
1295         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1296                                                 cfqq_type(cfqq));
1297         if (cfq_class_idle(cfqq)) {
1298                 rb_key = CFQ_IDLE_DELAY;
1299                 parent = rb_last(&service_tree->rb);
1300                 if (parent && parent != &cfqq->rb_node) {
1301                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1302                         rb_key += __cfqq->rb_key;
1303                 } else
1304                         rb_key += jiffies;
1305         } else if (!add_front) {
1306                 /*
1307                  * Get our rb key offset. Subtract any residual slice
1308                  * value carried from last service. A negative resid
1309                  * count indicates slice overrun, and this should position
1310                  * the next service time further away in the tree.
1311                  */
1312                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1313                 rb_key -= cfqq->slice_resid;
1314                 cfqq->slice_resid = 0;
1315         } else {
1316                 rb_key = -HZ;
1317                 __cfqq = cfq_rb_first(service_tree);
1318                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1319         }
1320
1321         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1322                 new_cfqq = 0;
1323                 /*
1324                  * same position, nothing more to do
1325                  */
1326                 if (rb_key == cfqq->rb_key &&
1327                     cfqq->service_tree == service_tree)
1328                         return;
1329
1330                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1331                 cfqq->service_tree = NULL;
1332         }
1333
1334         left = 1;
1335         parent = NULL;
1336         cfqq->service_tree = service_tree;
1337         p = &service_tree->rb.rb_node;
1338         while (*p) {
1339                 struct rb_node **n;
1340
1341                 parent = *p;
1342                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1343
1344                 /*
1345                  * sort by key, that represents service time.
1346                  */
1347                 if (time_before(rb_key, __cfqq->rb_key))
1348                         n = &(*p)->rb_left;
1349                 else {
1350                         n = &(*p)->rb_right;
1351                         left = 0;
1352                 }
1353
1354                 p = n;
1355         }
1356
1357         if (left)
1358                 service_tree->left = &cfqq->rb_node;
1359
1360         cfqq->rb_key = rb_key;
1361         rb_link_node(&cfqq->rb_node, parent, p);
1362         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1363         service_tree->count++;
1364         if (add_front || !new_cfqq)
1365                 return;
1366         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1367 }
1368
1369 static struct cfq_queue *
1370 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1371                      sector_t sector, struct rb_node **ret_parent,
1372                      struct rb_node ***rb_link)
1373 {
1374         struct rb_node **p, *parent;
1375         struct cfq_queue *cfqq = NULL;
1376
1377         parent = NULL;
1378         p = &root->rb_node;
1379         while (*p) {
1380                 struct rb_node **n;
1381
1382                 parent = *p;
1383                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1384
1385                 /*
1386                  * Sort strictly based on sector.  Smallest to the left,
1387                  * largest to the right.
1388                  */
1389                 if (sector > blk_rq_pos(cfqq->next_rq))
1390                         n = &(*p)->rb_right;
1391                 else if (sector < blk_rq_pos(cfqq->next_rq))
1392                         n = &(*p)->rb_left;
1393                 else
1394                         break;
1395                 p = n;
1396                 cfqq = NULL;
1397         }
1398
1399         *ret_parent = parent;
1400         if (rb_link)
1401                 *rb_link = p;
1402         return cfqq;
1403 }
1404
1405 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1406 {
1407         struct rb_node **p, *parent;
1408         struct cfq_queue *__cfqq;
1409
1410         if (cfqq->p_root) {
1411                 rb_erase(&cfqq->p_node, cfqq->p_root);
1412                 cfqq->p_root = NULL;
1413         }
1414
1415         if (cfq_class_idle(cfqq))
1416                 return;
1417         if (!cfqq->next_rq)
1418                 return;
1419
1420         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1421         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1422                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1423         if (!__cfqq) {
1424                 rb_link_node(&cfqq->p_node, parent, p);
1425                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1426         } else
1427                 cfqq->p_root = NULL;
1428 }
1429
1430 /*
1431  * Update cfqq's position in the service tree.
1432  */
1433 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1434 {
1435         /*
1436          * Resorting requires the cfqq to be on the RR list already.
1437          */
1438         if (cfq_cfqq_on_rr(cfqq)) {
1439                 cfq_service_tree_add(cfqd, cfqq, 0);
1440                 cfq_prio_tree_add(cfqd, cfqq);
1441         }
1442 }
1443
1444 /*
1445  * add to busy list of queues for service, trying to be fair in ordering
1446  * the pending list according to last request service
1447  */
1448 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1449 {
1450         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1451         BUG_ON(cfq_cfqq_on_rr(cfqq));
1452         cfq_mark_cfqq_on_rr(cfqq);
1453         cfqd->busy_queues++;
1454         if (cfq_cfqq_sync(cfqq))
1455                 cfqd->busy_sync_queues++;
1456
1457         cfq_resort_rr_list(cfqd, cfqq);
1458 }
1459
1460 /*
1461  * Called when the cfqq no longer has requests pending, remove it from
1462  * the service tree.
1463  */
1464 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1465 {
1466         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1467         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1468         cfq_clear_cfqq_on_rr(cfqq);
1469
1470         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1471                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1472                 cfqq->service_tree = NULL;
1473         }
1474         if (cfqq->p_root) {
1475                 rb_erase(&cfqq->p_node, cfqq->p_root);
1476                 cfqq->p_root = NULL;
1477         }
1478
1479         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1480         BUG_ON(!cfqd->busy_queues);
1481         cfqd->busy_queues--;
1482         if (cfq_cfqq_sync(cfqq))
1483                 cfqd->busy_sync_queues--;
1484 }
1485
1486 /*
1487  * rb tree support functions
1488  */
1489 static void cfq_del_rq_rb(struct request *rq)
1490 {
1491         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1492         const int sync = rq_is_sync(rq);
1493
1494         BUG_ON(!cfqq->queued[sync]);
1495         cfqq->queued[sync]--;
1496
1497         elv_rb_del(&cfqq->sort_list, rq);
1498
1499         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1500                 /*
1501                  * Queue will be deleted from service tree when we actually
1502                  * expire it later. Right now just remove it from prio tree
1503                  * as it is empty.
1504                  */
1505                 if (cfqq->p_root) {
1506                         rb_erase(&cfqq->p_node, cfqq->p_root);
1507                         cfqq->p_root = NULL;
1508                 }
1509         }
1510 }
1511
1512 static void cfq_add_rq_rb(struct request *rq)
1513 {
1514         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1515         struct cfq_data *cfqd = cfqq->cfqd;
1516         struct request *prev;
1517
1518         cfqq->queued[rq_is_sync(rq)]++;
1519
1520         elv_rb_add(&cfqq->sort_list, rq);
1521
1522         if (!cfq_cfqq_on_rr(cfqq))
1523                 cfq_add_cfqq_rr(cfqd, cfqq);
1524
1525         /*
1526          * check if this request is a better next-serve candidate
1527          */
1528         prev = cfqq->next_rq;
1529         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1530
1531         /*
1532          * adjust priority tree position, if ->next_rq changes
1533          */
1534         if (prev != cfqq->next_rq)
1535                 cfq_prio_tree_add(cfqd, cfqq);
1536
1537         BUG_ON(!cfqq->next_rq);
1538 }
1539
1540 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1541 {
1542         elv_rb_del(&cfqq->sort_list, rq);
1543         cfqq->queued[rq_is_sync(rq)]--;
1544         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1545                                         rq_data_dir(rq), rq_is_sync(rq));
1546         cfq_add_rq_rb(rq);
1547         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1548                         &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1549                         rq_is_sync(rq));
1550 }
1551
1552 static struct request *
1553 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1554 {
1555         struct task_struct *tsk = current;
1556         struct cfq_io_context *cic;
1557         struct cfq_queue *cfqq;
1558
1559         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1560         if (!cic)
1561                 return NULL;
1562
1563         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1564         if (cfqq) {
1565                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1566
1567                 return elv_rb_find(&cfqq->sort_list, sector);
1568         }
1569
1570         return NULL;
1571 }
1572
1573 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1574 {
1575         struct cfq_data *cfqd = q->elevator->elevator_data;
1576
1577         cfqd->rq_in_driver++;
1578         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1579                                                 cfqd->rq_in_driver);
1580
1581         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1582 }
1583
1584 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1585 {
1586         struct cfq_data *cfqd = q->elevator->elevator_data;
1587
1588         WARN_ON(!cfqd->rq_in_driver);
1589         cfqd->rq_in_driver--;
1590         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1591                                                 cfqd->rq_in_driver);
1592 }
1593
1594 static void cfq_remove_request(struct request *rq)
1595 {
1596         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1597
1598         if (cfqq->next_rq == rq)
1599                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1600
1601         list_del_init(&rq->queuelist);
1602         cfq_del_rq_rb(rq);
1603
1604         cfqq->cfqd->rq_queued--;
1605         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1606                                         rq_data_dir(rq), rq_is_sync(rq));
1607 }
1608
1609 static int cfq_merge(struct request_queue *q, struct request **req,
1610                      struct bio *bio)
1611 {
1612         struct cfq_data *cfqd = q->elevator->elevator_data;
1613         struct request *__rq;
1614
1615         __rq = cfq_find_rq_fmerge(cfqd, bio);
1616         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1617                 *req = __rq;
1618                 return ELEVATOR_FRONT_MERGE;
1619         }
1620
1621         return ELEVATOR_NO_MERGE;
1622 }
1623
1624 static void cfq_merged_request(struct request_queue *q, struct request *req,
1625                                int type)
1626 {
1627         if (type == ELEVATOR_FRONT_MERGE) {
1628                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1629
1630                 cfq_reposition_rq_rb(cfqq, req);
1631         }
1632 }
1633
1634 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1635                                 struct bio *bio)
1636 {
1637         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1638                                         bio_data_dir(bio), cfq_bio_sync(bio));
1639 }
1640
1641 static void
1642 cfq_merged_requests(struct request_queue *q, struct request *rq,
1643                     struct request *next)
1644 {
1645         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1646         /*
1647          * reposition in fifo if next is older than rq
1648          */
1649         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1650             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1651                 list_move(&rq->queuelist, &next->queuelist);
1652                 rq_set_fifo_time(rq, rq_fifo_time(next));
1653         }
1654
1655         if (cfqq->next_rq == next)
1656                 cfqq->next_rq = rq;
1657         cfq_remove_request(next);
1658         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1659                                         rq_data_dir(next), rq_is_sync(next));
1660 }
1661
1662 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1663                            struct bio *bio)
1664 {
1665         struct cfq_data *cfqd = q->elevator->elevator_data;
1666         struct cfq_io_context *cic;
1667         struct cfq_queue *cfqq;
1668
1669         /*
1670          * Disallow merge of a sync bio into an async request.
1671          */
1672         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1673                 return false;
1674
1675         /*
1676          * Lookup the cfqq that this bio will be queued with. Allow
1677          * merge only if rq is queued there.
1678          */
1679         cic = cfq_cic_lookup(cfqd, current->io_context);
1680         if (!cic)
1681                 return false;
1682
1683         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1684         return cfqq == RQ_CFQQ(rq);
1685 }
1686
1687 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1688 {
1689         del_timer(&cfqd->idle_slice_timer);
1690         cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1691 }
1692
1693 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1694                                    struct cfq_queue *cfqq)
1695 {
1696         if (cfqq) {
1697                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1698                                 cfqd->serving_prio, cfqd->serving_type);
1699                 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1700                 cfqq->slice_start = 0;
1701                 cfqq->dispatch_start = jiffies;
1702                 cfqq->allocated_slice = 0;
1703                 cfqq->slice_end = 0;
1704                 cfqq->slice_dispatch = 0;
1705                 cfqq->nr_sectors = 0;
1706
1707                 cfq_clear_cfqq_wait_request(cfqq);
1708                 cfq_clear_cfqq_must_dispatch(cfqq);
1709                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1710                 cfq_clear_cfqq_fifo_expire(cfqq);
1711                 cfq_mark_cfqq_slice_new(cfqq);
1712
1713                 cfq_del_timer(cfqd, cfqq);
1714         }
1715
1716         cfqd->active_queue = cfqq;
1717 }
1718
1719 /*
1720  * current cfqq expired its slice (or was too idle), select new one
1721  */
1722 static void
1723 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1724                     bool timed_out)
1725 {
1726         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1727
1728         if (cfq_cfqq_wait_request(cfqq))
1729                 cfq_del_timer(cfqd, cfqq);
1730
1731         cfq_clear_cfqq_wait_request(cfqq);
1732         cfq_clear_cfqq_wait_busy(cfqq);
1733
1734         /*
1735          * If this cfqq is shared between multiple processes, check to
1736          * make sure that those processes are still issuing I/Os within
1737          * the mean seek distance.  If not, it may be time to break the
1738          * queues apart again.
1739          */
1740         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1741                 cfq_mark_cfqq_split_coop(cfqq);
1742
1743         /*
1744          * store what was left of this slice, if the queue idled/timed out
1745          */
1746         if (timed_out) {
1747                 if (cfq_cfqq_slice_new(cfqq))
1748                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1749                 else
1750                         cfqq->slice_resid = cfqq->slice_end - jiffies;
1751                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1752         }
1753
1754         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1755
1756         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1757                 cfq_del_cfqq_rr(cfqd, cfqq);
1758
1759         cfq_resort_rr_list(cfqd, cfqq);
1760
1761         if (cfqq == cfqd->active_queue)
1762                 cfqd->active_queue = NULL;
1763
1764         if (cfqd->active_cic) {
1765                 put_io_context(cfqd->active_cic->ioc);
1766                 cfqd->active_cic = NULL;
1767         }
1768 }
1769
1770 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1771 {
1772         struct cfq_queue *cfqq = cfqd->active_queue;
1773
1774         if (cfqq)
1775                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1776 }
1777
1778 /*
1779  * Get next queue for service. Unless we have a queue preemption,
1780  * we'll simply select the first cfqq in the service tree.
1781  */
1782 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1783 {
1784         struct cfq_rb_root *service_tree =
1785                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1786                                         cfqd->serving_type);
1787
1788         if (!cfqd->rq_queued)
1789                 return NULL;
1790
1791         /* There is nothing to dispatch */
1792         if (!service_tree)
1793                 return NULL;
1794         if (RB_EMPTY_ROOT(&service_tree->rb))
1795                 return NULL;
1796         return cfq_rb_first(service_tree);
1797 }
1798
1799 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1800 {
1801         struct cfq_group *cfqg;
1802         struct cfq_queue *cfqq;
1803         int i, j;
1804         struct cfq_rb_root *st;
1805
1806         if (!cfqd->rq_queued)
1807                 return NULL;
1808
1809         cfqg = cfq_get_next_cfqg(cfqd);
1810         if (!cfqg)
1811                 return NULL;
1812
1813         for_each_cfqg_st(cfqg, i, j, st)
1814                 if ((cfqq = cfq_rb_first(st)) != NULL)
1815                         return cfqq;
1816         return NULL;
1817 }
1818
1819 /*
1820  * Get and set a new active queue for service.
1821  */
1822 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1823                                               struct cfq_queue *cfqq)
1824 {
1825         if (!cfqq)
1826                 cfqq = cfq_get_next_queue(cfqd);
1827
1828         __cfq_set_active_queue(cfqd, cfqq);
1829         return cfqq;
1830 }
1831
1832 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1833                                           struct request *rq)
1834 {
1835         if (blk_rq_pos(rq) >= cfqd->last_position)
1836                 return blk_rq_pos(rq) - cfqd->last_position;
1837         else
1838                 return cfqd->last_position - blk_rq_pos(rq);
1839 }
1840
1841 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1842                                struct request *rq)
1843 {
1844         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1845 }
1846
1847 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1848                                     struct cfq_queue *cur_cfqq)
1849 {
1850         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1851         struct rb_node *parent, *node;
1852         struct cfq_queue *__cfqq;
1853         sector_t sector = cfqd->last_position;
1854
1855         if (RB_EMPTY_ROOT(root))
1856                 return NULL;
1857
1858         /*
1859          * First, if we find a request starting at the end of the last
1860          * request, choose it.
1861          */
1862         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1863         if (__cfqq)
1864                 return __cfqq;
1865
1866         /*
1867          * If the exact sector wasn't found, the parent of the NULL leaf
1868          * will contain the closest sector.
1869          */
1870         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1871         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1872                 return __cfqq;
1873
1874         if (blk_rq_pos(__cfqq->next_rq) < sector)
1875                 node = rb_next(&__cfqq->p_node);
1876         else
1877                 node = rb_prev(&__cfqq->p_node);
1878         if (!node)
1879                 return NULL;
1880
1881         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1882         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1883                 return __cfqq;
1884
1885         return NULL;
1886 }
1887
1888 /*
1889  * cfqd - obvious
1890  * cur_cfqq - passed in so that we don't decide that the current queue is
1891  *            closely cooperating with itself.
1892  *
1893  * So, basically we're assuming that that cur_cfqq has dispatched at least
1894  * one request, and that cfqd->last_position reflects a position on the disk
1895  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1896  * assumption.
1897  */
1898 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1899                                               struct cfq_queue *cur_cfqq)
1900 {
1901         struct cfq_queue *cfqq;
1902
1903         if (cfq_class_idle(cur_cfqq))
1904                 return NULL;
1905         if (!cfq_cfqq_sync(cur_cfqq))
1906                 return NULL;
1907         if (CFQQ_SEEKY(cur_cfqq))
1908                 return NULL;
1909
1910         /*
1911          * Don't search priority tree if it's the only queue in the group.
1912          */
1913         if (cur_cfqq->cfqg->nr_cfqq == 1)
1914                 return NULL;
1915
1916         /*
1917          * We should notice if some of the queues are cooperating, eg
1918          * working closely on the same area of the disk. In that case,
1919          * we can group them together and don't waste time idling.
1920          */
1921         cfqq = cfqq_close(cfqd, cur_cfqq);
1922         if (!cfqq)
1923                 return NULL;
1924
1925         /* If new queue belongs to different cfq_group, don't choose it */
1926         if (cur_cfqq->cfqg != cfqq->cfqg)
1927                 return NULL;
1928
1929         /*
1930          * It only makes sense to merge sync queues.
1931          */
1932         if (!cfq_cfqq_sync(cfqq))
1933                 return NULL;
1934         if (CFQQ_SEEKY(cfqq))
1935                 return NULL;
1936
1937         /*
1938          * Do not merge queues of different priority classes
1939          */
1940         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1941                 return NULL;
1942
1943         return cfqq;
1944 }
1945
1946 /*
1947  * Determine whether we should enforce idle window for this queue.
1948  */
1949
1950 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1951 {
1952         enum wl_prio_t prio = cfqq_prio(cfqq);
1953         struct cfq_rb_root *service_tree = cfqq->service_tree;
1954
1955         BUG_ON(!service_tree);
1956         BUG_ON(!service_tree->count);
1957
1958         if (!cfqd->cfq_slice_idle)
1959                 return false;
1960
1961         /* We never do for idle class queues. */
1962         if (prio == IDLE_WORKLOAD)
1963                 return false;
1964
1965         /* We do for queues that were marked with idle window flag. */
1966         if (cfq_cfqq_idle_window(cfqq) &&
1967            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1968                 return true;
1969
1970         /*
1971          * Otherwise, we do only if they are the last ones
1972          * in their service tree.
1973          */
1974         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1975            !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1976                 return true;
1977         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1978                         service_tree->count);
1979         return false;
1980 }
1981
1982 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1983 {
1984         struct cfq_queue *cfqq = cfqd->active_queue;
1985         struct cfq_io_context *cic;
1986         unsigned long sl, group_idle = 0;
1987
1988         /*
1989          * SSD device without seek penalty, disable idling. But only do so
1990          * for devices that support queuing, otherwise we still have a problem
1991          * with sync vs async workloads.
1992          */
1993         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1994                 return;
1995
1996         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1997         WARN_ON(cfq_cfqq_slice_new(cfqq));
1998
1999         /*
2000          * idle is disabled, either manually or by past process history
2001          */
2002         if (!cfq_should_idle(cfqd, cfqq)) {
2003                 /* no queue idling. Check for group idling */
2004                 if (cfqd->cfq_group_idle)
2005                         group_idle = cfqd->cfq_group_idle;
2006                 else
2007                         return;
2008         }
2009
2010         /*
2011          * still active requests from this queue, don't idle
2012          */
2013         if (cfqq->dispatched)
2014                 return;
2015
2016         /*
2017          * task has exited, don't wait
2018          */
2019         cic = cfqd->active_cic;
2020         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2021                 return;
2022
2023         /*
2024          * If our average think time is larger than the remaining time
2025          * slice, then don't idle. This avoids overrunning the allotted
2026          * time slice.
2027          */
2028         if (sample_valid(cic->ttime.ttime_samples) &&
2029             (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2030                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2031                              cic->ttime.ttime_mean);
2032                 return;
2033         }
2034
2035         /* There are other queues in the group, don't do group idle */
2036         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2037                 return;
2038
2039         cfq_mark_cfqq_wait_request(cfqq);
2040
2041         if (group_idle)
2042                 sl = cfqd->cfq_group_idle;
2043         else
2044                 sl = cfqd->cfq_slice_idle;
2045
2046         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2047         cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2048         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2049                         group_idle ? 1 : 0);
2050 }
2051
2052 /*
2053  * Move request from internal lists to the request queue dispatch list.
2054  */
2055 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2056 {
2057         struct cfq_data *cfqd = q->elevator->elevator_data;
2058         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2059
2060         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2061
2062         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2063         cfq_remove_request(rq);
2064         cfqq->dispatched++;
2065         (RQ_CFQG(rq))->dispatched++;
2066         elv_dispatch_sort(q, rq);
2067
2068         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2069         cfqq->nr_sectors += blk_rq_sectors(rq);
2070         cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2071                                         rq_data_dir(rq), rq_is_sync(rq));
2072 }
2073
2074 /*
2075  * return expired entry, or NULL to just start from scratch in rbtree
2076  */
2077 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2078 {
2079         struct request *rq = NULL;
2080
2081         if (cfq_cfqq_fifo_expire(cfqq))
2082                 return NULL;
2083
2084         cfq_mark_cfqq_fifo_expire(cfqq);
2085
2086         if (list_empty(&cfqq->fifo))
2087                 return NULL;
2088
2089         rq = rq_entry_fifo(cfqq->fifo.next);
2090         if (time_before(jiffies, rq_fifo_time(rq)))
2091                 rq = NULL;
2092
2093         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2094         return rq;
2095 }
2096
2097 static inline int
2098 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2099 {
2100         const int base_rq = cfqd->cfq_slice_async_rq;
2101
2102         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2103
2104         return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2105 }
2106
2107 /*
2108  * Must be called with the queue_lock held.
2109  */
2110 static int cfqq_process_refs(struct cfq_queue *cfqq)
2111 {
2112         int process_refs, io_refs;
2113
2114         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2115         process_refs = cfqq->ref - io_refs;
2116         BUG_ON(process_refs < 0);
2117         return process_refs;
2118 }
2119
2120 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2121 {
2122         int process_refs, new_process_refs;
2123         struct cfq_queue *__cfqq;
2124
2125         /*
2126          * If there are no process references on the new_cfqq, then it is
2127          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2128          * chain may have dropped their last reference (not just their
2129          * last process reference).
2130          */
2131         if (!cfqq_process_refs(new_cfqq))
2132                 return;
2133
2134         /* Avoid a circular list and skip interim queue merges */
2135         while ((__cfqq = new_cfqq->new_cfqq)) {
2136                 if (__cfqq == cfqq)
2137                         return;
2138                 new_cfqq = __cfqq;
2139         }
2140
2141         process_refs = cfqq_process_refs(cfqq);
2142         new_process_refs = cfqq_process_refs(new_cfqq);
2143         /*
2144          * If the process for the cfqq has gone away, there is no
2145          * sense in merging the queues.
2146          */
2147         if (process_refs == 0 || new_process_refs == 0)
2148                 return;
2149
2150         /*
2151          * Merge in the direction of the lesser amount of work.
2152          */
2153         if (new_process_refs >= process_refs) {
2154                 cfqq->new_cfqq = new_cfqq;
2155                 new_cfqq->ref += process_refs;
2156         } else {
2157                 new_cfqq->new_cfqq = cfqq;
2158                 cfqq->ref += new_process_refs;
2159         }
2160 }
2161
2162 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2163                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2164 {
2165         struct cfq_queue *queue;
2166         int i;
2167         bool key_valid = false;
2168         unsigned long lowest_key = 0;
2169         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2170
2171         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2172                 /* select the one with lowest rb_key */
2173                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2174                 if (queue &&
2175                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2176                         lowest_key = queue->rb_key;
2177                         cur_best = i;
2178                         key_valid = true;
2179                 }
2180         }
2181
2182         return cur_best;
2183 }
2184
2185 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2186 {
2187         unsigned slice;
2188         unsigned count;
2189         struct cfq_rb_root *st;
2190         unsigned group_slice;
2191         enum wl_prio_t original_prio = cfqd->serving_prio;
2192
2193         /* Choose next priority. RT > BE > IDLE */
2194         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2195                 cfqd->serving_prio = RT_WORKLOAD;
2196         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2197                 cfqd->serving_prio = BE_WORKLOAD;
2198         else {
2199                 cfqd->serving_prio = IDLE_WORKLOAD;
2200                 cfqd->workload_expires = jiffies + 1;
2201                 return;
2202         }
2203
2204         if (original_prio != cfqd->serving_prio)
2205                 goto new_workload;
2206
2207         /*
2208          * For RT and BE, we have to choose also the type
2209          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2210          * expiration time
2211          */
2212         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2213         count = st->count;
2214
2215         /*
2216          * check workload expiration, and that we still have other queues ready
2217          */
2218         if (count && !time_after(jiffies, cfqd->workload_expires))
2219                 return;
2220
2221 new_workload:
2222         /* otherwise select new workload type */
2223         cfqd->serving_type =
2224                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2225         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2226         count = st->count;
2227
2228         /*
2229          * the workload slice is computed as a fraction of target latency
2230          * proportional to the number of queues in that workload, over
2231          * all the queues in the same priority class
2232          */
2233         group_slice = cfq_group_slice(cfqd, cfqg);
2234
2235         slice = group_slice * count /
2236                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2237                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2238
2239         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2240                 unsigned int tmp;
2241
2242                 /*
2243                  * Async queues are currently system wide. Just taking
2244                  * proportion of queues with-in same group will lead to higher
2245                  * async ratio system wide as generally root group is going
2246                  * to have higher weight. A more accurate thing would be to
2247                  * calculate system wide asnc/sync ratio.
2248                  */
2249                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2250                 tmp = tmp/cfqd->busy_queues;
2251                 slice = min_t(unsigned, slice, tmp);
2252
2253                 /* async workload slice is scaled down according to
2254                  * the sync/async slice ratio. */
2255                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2256         } else
2257                 /* sync workload slice is at least 2 * cfq_slice_idle */
2258                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2259
2260         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2261         cfq_log(cfqd, "workload slice:%d", slice);
2262         cfqd->workload_expires = jiffies + slice;
2263 }
2264
2265 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2266 {
2267         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2268         struct cfq_group *cfqg;
2269
2270         if (RB_EMPTY_ROOT(&st->rb))
2271                 return NULL;
2272         cfqg = cfq_rb_first_group(st);
2273         update_min_vdisktime(st);
2274         return cfqg;
2275 }
2276
2277 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2278 {
2279         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2280
2281         cfqd->serving_group = cfqg;
2282
2283         /* Restore the workload type data */
2284         if (cfqg->saved_workload_slice) {
2285                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2286                 cfqd->serving_type = cfqg->saved_workload;
2287                 cfqd->serving_prio = cfqg->saved_serving_prio;
2288         } else
2289                 cfqd->workload_expires = jiffies - 1;
2290
2291         choose_service_tree(cfqd, cfqg);
2292 }
2293
2294 /*
2295  * Select a queue for service. If we have a current active queue,
2296  * check whether to continue servicing it, or retrieve and set a new one.
2297  */
2298 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2299 {
2300         struct cfq_queue *cfqq, *new_cfqq = NULL;
2301
2302         cfqq = cfqd->active_queue;
2303         if (!cfqq)
2304                 goto new_queue;
2305
2306         if (!cfqd->rq_queued)
2307                 return NULL;
2308
2309         /*
2310          * We were waiting for group to get backlogged. Expire the queue
2311          */
2312         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2313                 goto expire;
2314
2315         /*
2316          * The active queue has run out of time, expire it and select new.
2317          */
2318         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2319                 /*
2320                  * If slice had not expired at the completion of last request
2321                  * we might not have turned on wait_busy flag. Don't expire
2322                  * the queue yet. Allow the group to get backlogged.
2323                  *
2324                  * The very fact that we have used the slice, that means we
2325                  * have been idling all along on this queue and it should be
2326                  * ok to wait for this request to complete.
2327                  */
2328                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2329                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2330                         cfqq = NULL;
2331                         goto keep_queue;
2332                 } else
2333                         goto check_group_idle;
2334         }
2335
2336         /*
2337          * The active queue has requests and isn't expired, allow it to
2338          * dispatch.
2339          */
2340         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2341                 goto keep_queue;
2342
2343         /*
2344          * If another queue has a request waiting within our mean seek
2345          * distance, let it run.  The expire code will check for close
2346          * cooperators and put the close queue at the front of the service
2347          * tree.  If possible, merge the expiring queue with the new cfqq.
2348          */
2349         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2350         if (new_cfqq) {
2351                 if (!cfqq->new_cfqq)
2352                         cfq_setup_merge(cfqq, new_cfqq);
2353                 goto expire;
2354         }
2355
2356         /*
2357          * No requests pending. If the active queue still has requests in
2358          * flight or is idling for a new request, allow either of these
2359          * conditions to happen (or time out) before selecting a new queue.
2360          */
2361         if (timer_pending(&cfqd->idle_slice_timer)) {
2362                 cfqq = NULL;
2363                 goto keep_queue;
2364         }
2365
2366         /*
2367          * This is a deep seek queue, but the device is much faster than
2368          * the queue can deliver, don't idle
2369          **/
2370         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2371             (cfq_cfqq_slice_new(cfqq) ||
2372             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2373                 cfq_clear_cfqq_deep(cfqq);
2374                 cfq_clear_cfqq_idle_window(cfqq);
2375         }
2376
2377         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2378                 cfqq = NULL;
2379                 goto keep_queue;
2380         }
2381
2382         /*
2383          * If group idle is enabled and there are requests dispatched from
2384          * this group, wait for requests to complete.
2385          */
2386 check_group_idle:
2387         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2388             cfqq->cfqg->dispatched &&
2389             !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2390                 cfqq = NULL;
2391                 goto keep_queue;
2392         }
2393
2394 expire:
2395         cfq_slice_expired(cfqd, 0);
2396 new_queue:
2397         /*
2398          * Current queue expired. Check if we have to switch to a new
2399          * service tree
2400          */
2401         if (!new_cfqq)
2402                 cfq_choose_cfqg(cfqd);
2403
2404         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2405 keep_queue:
2406         return cfqq;
2407 }
2408
2409 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2410 {
2411         int dispatched = 0;
2412
2413         while (cfqq->next_rq) {
2414                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2415                 dispatched++;
2416         }
2417
2418         BUG_ON(!list_empty(&cfqq->fifo));
2419
2420         /* By default cfqq is not expired if it is empty. Do it explicitly */
2421         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2422         return dispatched;
2423 }
2424
2425 /*
2426  * Drain our current requests. Used for barriers and when switching
2427  * io schedulers on-the-fly.
2428  */
2429 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2430 {
2431         struct cfq_queue *cfqq;
2432         int dispatched = 0;
2433
2434         /* Expire the timeslice of the current active queue first */
2435         cfq_slice_expired(cfqd, 0);
2436         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2437                 __cfq_set_active_queue(cfqd, cfqq);
2438                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2439         }
2440
2441         BUG_ON(cfqd->busy_queues);
2442
2443         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2444         return dispatched;
2445 }
2446
2447 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2448         struct cfq_queue *cfqq)
2449 {
2450         /* the queue hasn't finished any request, can't estimate */
2451         if (cfq_cfqq_slice_new(cfqq))
2452                 return true;
2453         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2454                 cfqq->slice_end))
2455                 return true;
2456
2457         return false;
2458 }
2459
2460 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2461 {
2462         unsigned int max_dispatch;
2463
2464         /*
2465          * Drain async requests before we start sync IO
2466          */
2467         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2468                 return false;
2469
2470         /*
2471          * If this is an async queue and we have sync IO in flight, let it wait
2472          */
2473         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2474                 return false;
2475
2476         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2477         if (cfq_class_idle(cfqq))
2478                 max_dispatch = 1;
2479
2480         /*
2481          * Does this cfqq already have too much IO in flight?
2482          */
2483         if (cfqq->dispatched >= max_dispatch) {
2484                 bool promote_sync = false;
2485                 /*
2486                  * idle queue must always only have a single IO in flight
2487                  */
2488                 if (cfq_class_idle(cfqq))
2489                         return false;
2490
2491                 /*
2492                  * If there is only one sync queue
2493                  * we can ignore async queue here and give the sync
2494                  * queue no dispatch limit. The reason is a sync queue can
2495                  * preempt async queue, limiting the sync queue doesn't make
2496                  * sense. This is useful for aiostress test.
2497                  */
2498                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2499                         promote_sync = true;
2500
2501                 /*
2502                  * We have other queues, don't allow more IO from this one
2503                  */
2504                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2505                                 !promote_sync)
2506                         return false;
2507
2508                 /*
2509                  * Sole queue user, no limit
2510                  */
2511                 if (cfqd->busy_queues == 1 || promote_sync)
2512                         max_dispatch = -1;
2513                 else
2514                         /*
2515                          * Normally we start throttling cfqq when cfq_quantum/2
2516                          * requests have been dispatched. But we can drive
2517                          * deeper queue depths at the beginning of slice
2518                          * subjected to upper limit of cfq_quantum.
2519                          * */
2520                         max_dispatch = cfqd->cfq_quantum;
2521         }
2522
2523         /*
2524          * Async queues must wait a bit before being allowed dispatch.
2525          * We also ramp up the dispatch depth gradually for async IO,
2526          * based on the last sync IO we serviced
2527          */
2528         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2529                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2530                 unsigned int depth;
2531
2532                 depth = last_sync / cfqd->cfq_slice[1];
2533                 if (!depth && !cfqq->dispatched)
2534                         depth = 1;
2535                 if (depth < max_dispatch)
2536                         max_dispatch = depth;
2537         }
2538
2539         /*
2540          * If we're below the current max, allow a dispatch
2541          */
2542         return cfqq->dispatched < max_dispatch;
2543 }
2544
2545 /*
2546  * Dispatch a request from cfqq, moving them to the request queue
2547  * dispatch list.
2548  */
2549 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2550 {
2551         struct request *rq;
2552
2553         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2554
2555         if (!cfq_may_dispatch(cfqd, cfqq))
2556                 return false;
2557
2558         /*
2559          * follow expired path, else get first next available
2560          */
2561         rq = cfq_check_fifo(cfqq);
2562         if (!rq)
2563                 rq = cfqq->next_rq;
2564
2565         /*
2566          * insert request into driver dispatch list
2567          */
2568         cfq_dispatch_insert(cfqd->queue, rq);
2569
2570         if (!cfqd->active_cic) {
2571                 struct cfq_io_context *cic = RQ_CIC(rq);
2572
2573                 atomic_long_inc(&cic->ioc->refcount);
2574                 cfqd->active_cic = cic;
2575         }
2576
2577         return true;
2578 }
2579
2580 /*
2581  * Find the cfqq that we need to service and move a request from that to the
2582  * dispatch list
2583  */
2584 static int cfq_dispatch_requests(struct request_queue *q, int force)
2585 {
2586         struct cfq_data *cfqd = q->elevator->elevator_data;
2587         struct cfq_queue *cfqq;
2588
2589         if (!cfqd->busy_queues)
2590                 return 0;
2591
2592         if (unlikely(force))
2593                 return cfq_forced_dispatch(cfqd);
2594
2595         cfqq = cfq_select_queue(cfqd);
2596         if (!cfqq)
2597                 return 0;
2598
2599         /*
2600          * Dispatch a request from this cfqq, if it is allowed
2601          */
2602         if (!cfq_dispatch_request(cfqd, cfqq))
2603                 return 0;
2604
2605         cfqq->slice_dispatch++;
2606         cfq_clear_cfqq_must_dispatch(cfqq);
2607
2608         /*
2609          * expire an async queue immediately if it has used up its slice. idle
2610          * queue always expire after 1 dispatch round.
2611          */
2612         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2613             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2614             cfq_class_idle(cfqq))) {
2615                 cfqq->slice_end = jiffies + 1;
2616                 cfq_slice_expired(cfqd, 0);
2617         }
2618
2619         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2620         return 1;
2621 }
2622
2623 /*
2624  * task holds one reference to the queue, dropped when task exits. each rq
2625  * in-flight on this queue also holds a reference, dropped when rq is freed.
2626  *
2627  * Each cfq queue took a reference on the parent group. Drop it now.
2628  * queue lock must be held here.
2629  */
2630 static void cfq_put_queue(struct cfq_queue *cfqq)
2631 {
2632         struct cfq_data *cfqd = cfqq->cfqd;
2633         struct cfq_group *cfqg;
2634
2635         BUG_ON(cfqq->ref <= 0);
2636
2637         cfqq->ref--;
2638         if (cfqq->ref)
2639                 return;
2640
2641         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2642         BUG_ON(rb_first(&cfqq->sort_list));
2643         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2644         cfqg = cfqq->cfqg;
2645
2646         if (unlikely(cfqd->active_queue == cfqq)) {
2647                 __cfq_slice_expired(cfqd, cfqq, 0);
2648                 cfq_schedule_dispatch(cfqd);
2649         }
2650
2651         BUG_ON(cfq_cfqq_on_rr(cfqq));
2652         kmem_cache_free(cfq_pool, cfqq);
2653         cfq_put_cfqg(cfqg);
2654 }
2655
2656 /*
2657  * Call func for each cic attached to this ioc.
2658  */
2659 static void
2660 call_for_each_cic(struct io_context *ioc,
2661                   void (*func)(struct io_context *, struct cfq_io_context *))
2662 {
2663         struct cfq_io_context *cic;
2664         struct hlist_node *n;
2665
2666         rcu_read_lock();
2667
2668         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2669                 func(ioc, cic);
2670
2671         rcu_read_unlock();
2672 }
2673
2674 static void cfq_cic_free_rcu(struct rcu_head *head)
2675 {
2676         struct cfq_io_context *cic;
2677
2678         cic = container_of(head, struct cfq_io_context, rcu_head);
2679
2680         kmem_cache_free(cfq_ioc_pool, cic);
2681         elv_ioc_count_dec(cfq_ioc_count);
2682
2683         if (ioc_gone) {
2684                 /*
2685                  * CFQ scheduler is exiting, grab exit lock and check
2686                  * the pending io context count. If it hits zero,
2687                  * complete ioc_gone and set it back to NULL
2688                  */
2689                 spin_lock(&ioc_gone_lock);
2690                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2691                         complete(ioc_gone);
2692                         ioc_gone = NULL;
2693                 }
2694                 spin_unlock(&ioc_gone_lock);
2695         }
2696 }
2697
2698 static void cfq_cic_free(struct cfq_io_context *cic)
2699 {
2700         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2701 }
2702
2703 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2704 {
2705         unsigned long flags;
2706         unsigned long dead_key = (unsigned long) cic->key;
2707
2708         BUG_ON(!(dead_key & CIC_DEAD_KEY));
2709
2710         spin_lock_irqsave(&ioc->lock, flags);
2711         radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2712         hlist_del_rcu(&cic->cic_list);
2713         spin_unlock_irqrestore(&ioc->lock, flags);
2714
2715         cfq_cic_free(cic);
2716 }
2717
2718 /*
2719  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2720  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2721  * and ->trim() which is called with the task lock held
2722  */
2723 static void cfq_free_io_context(struct io_context *ioc)
2724 {
2725         /*
2726          * ioc->refcount is zero here, or we are called from elv_unregister(),
2727          * so no more cic's are allowed to be linked into this ioc.  So it
2728          * should be ok to iterate over the known list, we will see all cic's
2729          * since no new ones are added.
2730          */
2731         call_for_each_cic(ioc, cic_free_func);
2732 }
2733
2734 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2735 {
2736         struct cfq_queue *__cfqq, *next;
2737
2738         /*
2739          * If this queue was scheduled to merge with another queue, be
2740          * sure to drop the reference taken on that queue (and others in
2741          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2742          */
2743         __cfqq = cfqq->new_cfqq;
2744         while (__cfqq) {
2745                 if (__cfqq == cfqq) {
2746                         WARN(1, "cfqq->new_cfqq loop detected\n");
2747                         break;
2748                 }
2749                 next = __cfqq->new_cfqq;
2750                 cfq_put_queue(__cfqq);
2751                 __cfqq = next;
2752         }
2753 }
2754
2755 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2756 {
2757         if (unlikely(cfqq == cfqd->active_queue)) {
2758                 __cfq_slice_expired(cfqd, cfqq, 0);
2759                 cfq_schedule_dispatch(cfqd);
2760         }
2761
2762         cfq_put_cooperator(cfqq);
2763
2764         cfq_put_queue(cfqq);
2765 }
2766
2767 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2768                                          struct cfq_io_context *cic)
2769 {
2770         struct io_context *ioc = cic->ioc;
2771
2772         list_del_init(&cic->queue_list);
2773
2774         /*
2775          * Make sure dead mark is seen for dead queues
2776          */
2777         smp_wmb();
2778         cic->key = cfqd_dead_key(cfqd);
2779
2780         rcu_read_lock();
2781         if (rcu_dereference(ioc->ioc_data) == cic) {
2782                 rcu_read_unlock();
2783                 spin_lock(&ioc->lock);
2784                 rcu_assign_pointer(ioc->ioc_data, NULL);
2785                 spin_unlock(&ioc->lock);
2786         } else
2787                 rcu_read_unlock();
2788
2789         if (cic->cfqq[BLK_RW_ASYNC]) {
2790                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2791                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2792         }
2793
2794         if (cic->cfqq[BLK_RW_SYNC]) {
2795                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2796                 cic->cfqq[BLK_RW_SYNC] = NULL;
2797         }
2798 }
2799
2800 static void cfq_exit_single_io_context(struct io_context *ioc,
2801                                        struct cfq_io_context *cic)
2802 {
2803         struct cfq_data *cfqd = cic_to_cfqd(cic);
2804
2805         if (cfqd) {
2806                 struct request_queue *q = cfqd->queue;
2807                 unsigned long flags;
2808
2809                 spin_lock_irqsave(q->queue_lock, flags);
2810
2811                 /*
2812                  * Ensure we get a fresh copy of the ->key to prevent
2813                  * race between exiting task and queue
2814                  */
2815                 smp_read_barrier_depends();
2816                 if (cic->key == cfqd)
2817                         __cfq_exit_single_io_context(cfqd, cic);
2818
2819                 spin_unlock_irqrestore(q->queue_lock, flags);
2820         }
2821 }
2822
2823 /*
2824  * The process that ioc belongs to has exited, we need to clean up
2825  * and put the internal structures we have that belongs to that process.
2826  */
2827 static void cfq_exit_io_context(struct io_context *ioc)
2828 {
2829         call_for_each_cic(ioc, cfq_exit_single_io_context);
2830 }
2831
2832 static struct cfq_io_context *
2833 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2834 {
2835         struct cfq_io_context *cic;
2836
2837         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2838                                                         cfqd->queue->node);
2839         if (cic) {
2840                 cic->ttime.last_end_request = jiffies;
2841                 INIT_LIST_HEAD(&cic->queue_list);
2842                 INIT_HLIST_NODE(&cic->cic_list);
2843                 cic->dtor = cfq_free_io_context;
2844                 cic->exit = cfq_exit_io_context;
2845                 elv_ioc_count_inc(cfq_ioc_count);
2846         }
2847
2848         return cic;
2849 }
2850
2851 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2852 {
2853         struct task_struct *tsk = current;
2854         int ioprio_class;
2855
2856         if (!cfq_cfqq_prio_changed(cfqq))
2857                 return;
2858
2859         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2860         switch (ioprio_class) {
2861         default:
2862                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2863         case IOPRIO_CLASS_NONE:
2864                 /*
2865                  * no prio set, inherit CPU scheduling settings
2866                  */
2867                 cfqq->ioprio = task_nice_ioprio(tsk);
2868                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2869                 break;
2870         case IOPRIO_CLASS_RT:
2871                 cfqq->ioprio = task_ioprio(ioc);
2872                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2873                 break;
2874         case IOPRIO_CLASS_BE:
2875                 cfqq->ioprio = task_ioprio(ioc);
2876                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2877                 break;
2878         case IOPRIO_CLASS_IDLE:
2879                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2880                 cfqq->ioprio = 7;
2881                 cfq_clear_cfqq_idle_window(cfqq);
2882                 break;
2883         }
2884
2885         /*
2886          * keep track of original prio settings in case we have to temporarily
2887          * elevate the priority of this queue
2888          */
2889         cfqq->org_ioprio = cfqq->ioprio;
2890         cfq_clear_cfqq_prio_changed(cfqq);
2891 }
2892
2893 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2894 {
2895         struct cfq_data *cfqd = cic_to_cfqd(cic);
2896         struct cfq_queue *cfqq;
2897         unsigned long flags;
2898
2899         if (unlikely(!cfqd))
2900                 return;
2901
2902         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2903
2904         cfqq = cic->cfqq[BLK_RW_ASYNC];
2905         if (cfqq) {
2906                 struct cfq_queue *new_cfqq;
2907                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2908                                                 GFP_ATOMIC);
2909                 if (new_cfqq) {
2910                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2911                         cfq_put_queue(cfqq);
2912                 }
2913         }
2914
2915         cfqq = cic->cfqq[BLK_RW_SYNC];
2916         if (cfqq)
2917                 cfq_mark_cfqq_prio_changed(cfqq);
2918
2919         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2920 }
2921
2922 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2923 {
2924         call_for_each_cic(ioc, changed_ioprio);
2925         ioc->ioprio_changed = 0;
2926 }
2927
2928 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2929                           pid_t pid, bool is_sync)
2930 {
2931         RB_CLEAR_NODE(&cfqq->rb_node);
2932         RB_CLEAR_NODE(&cfqq->p_node);
2933         INIT_LIST_HEAD(&cfqq->fifo);
2934
2935         cfqq->ref = 0;
2936         cfqq->cfqd = cfqd;
2937
2938         cfq_mark_cfqq_prio_changed(cfqq);
2939
2940         if (is_sync) {
2941                 if (!cfq_class_idle(cfqq))
2942                         cfq_mark_cfqq_idle_window(cfqq);
2943                 cfq_mark_cfqq_sync(cfqq);
2944         }
2945         cfqq->pid = pid;
2946 }
2947
2948 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2949 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2950 {
2951         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2952         struct cfq_data *cfqd = cic_to_cfqd(cic);
2953         unsigned long flags;
2954         struct request_queue *q;
2955
2956         if (unlikely(!cfqd))
2957                 return;
2958
2959         q = cfqd->queue;
2960
2961         spin_lock_irqsave(q->queue_lock, flags);
2962
2963         if (sync_cfqq) {
2964                 /*
2965                  * Drop reference to sync queue. A new sync queue will be
2966                  * assigned in new group upon arrival of a fresh request.
2967                  */
2968                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2969                 cic_set_cfqq(cic, NULL, 1);
2970                 cfq_put_queue(sync_cfqq);
2971         }
2972
2973         spin_unlock_irqrestore(q->queue_lock, flags);
2974 }
2975
2976 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2977 {
2978         call_for_each_cic(ioc, changed_cgroup);
2979         ioc->cgroup_changed = 0;
2980 }
2981 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2982
2983 static struct cfq_queue *
2984 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2985                      struct io_context *ioc, gfp_t gfp_mask)
2986 {
2987         struct cfq_queue *cfqq, *new_cfqq = NULL;
2988         struct cfq_io_context *cic;
2989         struct cfq_group *cfqg;
2990
2991 retry:
2992         cfqg = cfq_get_cfqg(cfqd);
2993         cic = cfq_cic_lookup(cfqd, ioc);
2994         /* cic always exists here */
2995         cfqq = cic_to_cfqq(cic, is_sync);
2996
2997         /*
2998          * Always try a new alloc if we fell back to the OOM cfqq
2999          * originally, since it should just be a temporary situation.
3000          */
3001         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3002                 cfqq = NULL;
3003                 if (new_cfqq) {
3004                         cfqq = new_cfqq;
3005                         new_cfqq = NULL;
3006                 } else if (gfp_mask & __GFP_WAIT) {
3007                         spin_unlock_irq(cfqd->queue->queue_lock);
3008                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
3009                                         gfp_mask | __GFP_ZERO,
3010                                         cfqd->queue->node);
3011                         spin_lock_irq(cfqd->queue->queue_lock);
3012                         if (new_cfqq)
3013                                 goto retry;
3014                 } else {
3015                         cfqq = kmem_cache_alloc_node(cfq_pool,
3016                                         gfp_mask | __GFP_ZERO,
3017                                         cfqd->queue->node);
3018                 }
3019
3020                 if (cfqq) {
3021                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3022                         cfq_init_prio_data(cfqq, ioc);
3023                         cfq_link_cfqq_cfqg(cfqq, cfqg);
3024                         cfq_log_cfqq(cfqd, cfqq, "alloced");
3025                 } else
3026                         cfqq = &cfqd->oom_cfqq;
3027         }
3028
3029         if (new_cfqq)
3030                 kmem_cache_free(cfq_pool, new_cfqq);
3031
3032         return cfqq;
3033 }
3034
3035 static struct cfq_queue **
3036 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3037 {
3038         switch (ioprio_class) {
3039         case IOPRIO_CLASS_RT:
3040                 return &cfqd->async_cfqq[0][ioprio];
3041         case IOPRIO_CLASS_BE:
3042                 return &cfqd->async_cfqq[1][ioprio];
3043         case IOPRIO_CLASS_IDLE:
3044                 return &cfqd->async_idle_cfqq;
3045         default:
3046                 BUG();
3047         }
3048 }
3049
3050 static struct cfq_queue *
3051 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3052               gfp_t gfp_mask)
3053 {
3054         const int ioprio = task_ioprio(ioc);
3055         const int ioprio_class = task_ioprio_class(ioc);
3056         struct cfq_queue **async_cfqq = NULL;
3057         struct cfq_queue *cfqq = NULL;
3058
3059         if (!is_sync) {
3060                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3061                 cfqq = *async_cfqq;
3062         }
3063
3064         if (!cfqq)
3065                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3066
3067         /*
3068          * pin the queue now that it's allocated, scheduler exit will prune it
3069          */
3070         if (!is_sync && !(*async_cfqq)) {
3071                 cfqq->ref++;
3072                 *async_cfqq = cfqq;
3073         }
3074
3075         cfqq->ref++;
3076         return cfqq;
3077 }
3078
3079 /*
3080  * We drop cfq io contexts lazily, so we may find a dead one.
3081  */
3082 static void
3083 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3084                   struct cfq_io_context *cic)
3085 {
3086         unsigned long flags;
3087
3088         WARN_ON(!list_empty(&cic->queue_list));
3089         BUG_ON(cic->key != cfqd_dead_key(cfqd));
3090
3091         spin_lock_irqsave(&ioc->lock, flags);
3092
3093         BUG_ON(rcu_dereference_check(ioc->ioc_data,
3094                 lockdep_is_held(&ioc->lock)) == cic);
3095
3096         radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3097         hlist_del_rcu(&cic->cic_list);
3098         spin_unlock_irqrestore(&ioc->lock, flags);
3099
3100         cfq_cic_free(cic);
3101 }
3102
3103 static struct cfq_io_context *
3104 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3105 {
3106         struct cfq_io_context *cic;
3107         unsigned long flags;
3108
3109         if (unlikely(!ioc))
3110                 return NULL;
3111
3112         rcu_read_lock();
3113
3114         /*
3115          * we maintain a last-hit cache, to avoid browsing over the tree
3116          */
3117         cic = rcu_dereference(ioc->ioc_data);
3118         if (cic && cic->key == cfqd) {
3119                 rcu_read_unlock();
3120                 return cic;
3121         }
3122
3123         do {
3124                 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3125                 rcu_read_unlock();
3126                 if (!cic)
3127                         break;
3128                 if (unlikely(cic->key != cfqd)) {
3129                         cfq_drop_dead_cic(cfqd, ioc, cic);
3130                         rcu_read_lock();
3131                         continue;
3132                 }
3133
3134                 spin_lock_irqsave(&ioc->lock, flags);
3135                 rcu_assign_pointer(ioc->ioc_data, cic);
3136                 spin_unlock_irqrestore(&ioc->lock, flags);
3137                 break;
3138         } while (1);
3139
3140         return cic;
3141 }
3142
3143 /*
3144  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3145  * the process specific cfq io context when entered from the block layer.
3146  * Also adds the cic to a per-cfqd list, used when this queue is removed.
3147  */
3148 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3149                         struct cfq_io_context *cic, gfp_t gfp_mask)
3150 {
3151         unsigned long flags;
3152         int ret;
3153
3154         ret = radix_tree_preload(gfp_mask);
3155         if (!ret) {
3156                 cic->ioc = ioc;
3157                 cic->key = cfqd;
3158
3159                 spin_lock_irqsave(&ioc->lock, flags);
3160                 ret = radix_tree_insert(&ioc->radix_root,
3161                                                 cfqd->cic_index, cic);
3162                 if (!ret)
3163                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3164                 spin_unlock_irqrestore(&ioc->lock, flags);
3165
3166                 radix_tree_preload_end();
3167
3168                 if (!ret) {
3169                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3170                         list_add(&cic->queue_list, &cfqd->cic_list);
3171                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3172                 }
3173         }
3174
3175         if (ret)
3176                 printk(KERN_ERR "cfq: cic link failed!\n");
3177
3178         return ret;
3179 }
3180
3181 /*
3182  * Setup general io context and cfq io context. There can be several cfq
3183  * io contexts per general io context, if this process is doing io to more
3184  * than one device managed by cfq.
3185  */
3186 static struct cfq_io_context *
3187 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3188 {
3189         struct io_context *ioc = NULL;
3190         struct cfq_io_context *cic;
3191
3192         might_sleep_if(gfp_mask & __GFP_WAIT);
3193
3194         ioc = get_io_context(gfp_mask, cfqd->queue->node);
3195         if (!ioc)
3196                 return NULL;
3197
3198         cic = cfq_cic_lookup(cfqd, ioc);
3199         if (cic)
3200                 goto out;
3201
3202         cic = cfq_alloc_io_context(cfqd, gfp_mask);
3203         if (cic == NULL)
3204                 goto err;
3205
3206         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3207                 goto err_free;
3208
3209 out:
3210         smp_read_barrier_depends();
3211         if (unlikely(ioc->ioprio_changed))
3212                 cfq_ioc_set_ioprio(ioc);
3213
3214 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3215         if (unlikely(ioc->cgroup_changed))
3216                 cfq_ioc_set_cgroup(ioc);
3217 #endif
3218         return cic;
3219 err_free:
3220         cfq_cic_free(cic);
3221 err:
3222         put_io_context(ioc);
3223         return NULL;
3224 }
3225
3226 static void
3227 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3228 {
3229         unsigned long elapsed = jiffies - ttime->last_end_request;
3230         elapsed = min(elapsed, 2UL * slice_idle);
3231
3232         ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3233         ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3234         ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3235 }
3236
3237 static void
3238 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3239         struct cfq_io_context *cic)
3240 {
3241         if (cfq_cfqq_sync(cfqq)) {
3242                 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3243                 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3244                         cfqd->cfq_slice_idle);
3245         }
3246 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3247         __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3248 #endif
3249 }
3250
3251 static void
3252 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3253                        struct request *rq)
3254 {
3255         sector_t sdist = 0;
3256         sector_t n_sec = blk_rq_sectors(rq);
3257         if (cfqq->last_request_pos) {
3258                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3259                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3260                 else
3261                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3262         }
3263
3264         cfqq->seek_history <<= 1;
3265         if (blk_queue_nonrot(cfqd->queue))
3266                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3267         else
3268                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3269 }
3270
3271 /*
3272  * Disable idle window if the process thinks too long or seeks so much that
3273  * it doesn't matter
3274  */
3275 static void
3276 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3277                        struct cfq_io_context *cic)
3278 {
3279         int old_idle, enable_idle;
3280
3281         /*
3282          * Don't idle for async or idle io prio class
3283          */
3284         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3285                 return;
3286
3287         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3288
3289         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3290                 cfq_mark_cfqq_deep(cfqq);
3291
3292         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3293                 enable_idle = 0;
3294         else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3295             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3296                 enable_idle = 0;
3297         else if (sample_valid(cic->ttime.ttime_samples)) {
3298                 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3299                         enable_idle = 0;
3300                 else
3301                         enable_idle = 1;
3302         }
3303
3304         if (old_idle != enable_idle) {
3305                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3306                 if (enable_idle)
3307                         cfq_mark_cfqq_idle_window(cfqq);
3308                 else
3309                         cfq_clear_cfqq_idle_window(cfqq);
3310         }
3311 }
3312
3313 /*
3314  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3315  * no or if we aren't sure, a 1 will cause a preempt.
3316  */
3317 static bool
3318 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3319                    struct request *rq)
3320 {
3321         struct cfq_queue *cfqq;
3322
3323         cfqq = cfqd->active_queue;
3324         if (!cfqq)
3325                 return false;
3326
3327         if (cfq_class_idle(new_cfqq))
3328                 return false;
3329
3330         if (cfq_class_idle(cfqq))
3331                 return true;
3332
3333         /*
3334          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3335          */
3336         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3337                 return false;
3338
3339         /*
3340          * if the new request is sync, but the currently running queue is
3341          * not, let the sync request have priority.
3342          */
3343         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3344                 return true;
3345
3346         if (new_cfqq->cfqg != cfqq->cfqg)
3347                 return false;
3348
3349         if (cfq_slice_used(cfqq))
3350                 return true;
3351
3352         /* Allow preemption only if we are idling on sync-noidle tree */
3353         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3354             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3355             new_cfqq->service_tree->count == 2 &&
3356             RB_EMPTY_ROOT(&cfqq->sort_list))
3357                 return true;
3358
3359         /*
3360          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3361          */
3362         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3363                 return true;
3364
3365         /* An idle queue should not be idle now for some reason */
3366         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3367                 return true;
3368
3369         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3370                 return false;
3371
3372         /*
3373          * if this request is as-good as one we would expect from the
3374          * current cfqq, let it preempt
3375          */
3376         if (cfq_rq_close(cfqd, cfqq, rq))
3377                 return true;
3378
3379         return false;
3380 }
3381
3382 /*
3383  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3384  * let it have half of its nominal slice.
3385  */
3386 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3387 {
3388         struct cfq_queue *old_cfqq = cfqd->active_queue;
3389
3390         cfq_log_cfqq(cfqd, cfqq, "preempt");
3391         cfq_slice_expired(cfqd, 1);
3392
3393         /*
3394          * workload type is changed, don't save slice, otherwise preempt
3395          * doesn't happen
3396          */
3397         if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3398                 cfqq->cfqg->saved_workload_slice = 0;
3399
3400         /*
3401          * Put the new queue at the front of the of the current list,
3402          * so we know that it will be selected next.
3403          */
3404         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3405
3406         cfq_service_tree_add(cfqd, cfqq, 1);
3407
3408         cfqq->slice_end = 0;
3409         cfq_mark_cfqq_slice_new(cfqq);
3410 }
3411
3412 /*
3413  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3414  * something we should do about it
3415  */
3416 static void
3417 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3418                 struct request *rq)
3419 {
3420         struct cfq_io_context *cic = RQ_CIC(rq);
3421
3422         cfqd->rq_queued++;
3423
3424         cfq_update_io_thinktime(cfqd, cfqq, cic);
3425         cfq_update_io_seektime(cfqd, cfqq, rq);
3426         cfq_update_idle_window(cfqd, cfqq, cic);
3427
3428         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3429
3430         if (cfqq == cfqd->active_queue) {
3431                 /*
3432                  * Remember that we saw a request from this process, but
3433                  * don't start queuing just yet. Otherwise we risk seeing lots
3434                  * of tiny requests, because we disrupt the normal plugging
3435                  * and merging. If the request is already larger than a single
3436                  * page, let it rip immediately. For that case we assume that
3437                  * merging is already done. Ditto for a busy system that
3438                  * has other work pending, don't risk delaying until the
3439                  * idle timer unplug to continue working.
3440                  */
3441                 if (cfq_cfqq_wait_request(cfqq)) {
3442                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3443                             cfqd->busy_queues > 1) {
3444                                 cfq_del_timer(cfqd, cfqq);
3445                                 cfq_clear_cfqq_wait_request(cfqq);
3446                                 __blk_run_queue(cfqd->queue);
3447                         } else {
3448                                 cfq_blkiocg_update_idle_time_stats(
3449                                                 &cfqq->cfqg->blkg);
3450                                 cfq_mark_cfqq_must_dispatch(cfqq);
3451                         }
3452                 }
3453         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3454                 /*
3455                  * not the active queue - expire current slice if it is
3456                  * idle and has expired it's mean thinktime or this new queue
3457                  * has some old slice time left and is of higher priority or
3458                  * this new queue is RT and the current one is BE
3459                  */
3460                 cfq_preempt_queue(cfqd, cfqq);
3461                 __blk_run_queue(cfqd->queue);
3462         }
3463 }
3464
3465 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3466 {
3467         struct cfq_data *cfqd = q->elevator->elevator_data;
3468         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3469
3470         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3471         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3472
3473         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3474         list_add_tail(&rq->queuelist, &cfqq->fifo);
3475         cfq_add_rq_rb(rq);
3476         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3477                         &cfqd->serving_group->blkg, rq_data_dir(rq),
3478                         rq_is_sync(rq));
3479         cfq_rq_enqueued(cfqd, cfqq, rq);
3480 }
3481
3482 /*
3483  * Update hw_tag based on peak queue depth over 50 samples under
3484  * sufficient load.
3485  */
3486 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3487 {
3488         struct cfq_queue *cfqq = cfqd->active_queue;
3489
3490         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3491                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3492
3493         if (cfqd->hw_tag == 1)
3494                 return;
3495
3496         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3497             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3498                 return;
3499
3500         /*
3501          * If active queue hasn't enough requests and can idle, cfq might not
3502          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3503          * case
3504          */
3505         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3506             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3507             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3508                 return;
3509
3510         if (cfqd->hw_tag_samples++ < 50)
3511                 return;
3512
3513         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3514                 cfqd->hw_tag = 1;
3515         else
3516                 cfqd->hw_tag = 0;
3517 }
3518
3519 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3520 {
3521         struct cfq_io_context *cic = cfqd->active_cic;
3522
3523         /* If the queue already has requests, don't wait */
3524         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3525                 return false;
3526
3527         /* If there are other queues in the group, don't wait */
3528         if (cfqq->cfqg->nr_cfqq > 1)
3529                 return false;
3530
3531         /* the only queue in the group, but think time is big */
3532         if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3533                 return false;
3534
3535         if (cfq_slice_used(cfqq))
3536                 return true;
3537
3538         /* if slice left is less than think time, wait busy */
3539         if (cic && sample_valid(cic->ttime.ttime_samples)
3540             && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3541                 return true;
3542
3543         /*
3544          * If think times is less than a jiffy than ttime_mean=0 and above
3545          * will not be true. It might happen that slice has not expired yet
3546          * but will expire soon (4-5 ns) during select_queue(). To cover the
3547          * case where think time is less than a jiffy, mark the queue wait
3548          * busy if only 1 jiffy is left in the slice.
3549          */
3550         if (cfqq->slice_end - jiffies == 1)
3551                 return true;
3552
3553         return false;
3554 }
3555
3556 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3557 {
3558         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3559         struct cfq_data *cfqd = cfqq->cfqd;
3560         const int sync = rq_is_sync(rq);
3561         unsigned long now;
3562
3563         now = jiffies;
3564         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3565                      !!(rq->cmd_flags & REQ_NOIDLE));
3566
3567         cfq_update_hw_tag(cfqd);
3568
3569         WARN_ON(!cfqd->rq_in_driver);
3570         WARN_ON(!cfqq->dispatched);
3571         cfqd->rq_in_driver--;
3572         cfqq->dispatched--;
3573         (RQ_CFQG(rq))->dispatched--;
3574         cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3575                         rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3576                         rq_data_dir(rq), rq_is_sync(rq));
3577
3578         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3579
3580         if (sync) {
3581                 struct cfq_rb_root *service_tree;
3582
3583                 RQ_CIC(rq)->ttime.last_end_request = now;
3584
3585                 if (cfq_cfqq_on_rr(cfqq))
3586                         service_tree = cfqq->service_tree;
3587                 else
3588                         service_tree = service_tree_for(cfqq->cfqg,
3589                                 cfqq_prio(cfqq), cfqq_type(cfqq));
3590                 service_tree->ttime.last_end_request = now;
3591                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3592                         cfqd->last_delayed_sync = now;
3593         }
3594
3595 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3596         cfqq->cfqg->ttime.last_end_request = now;
3597 #endif
3598
3599         /*
3600          * If this is the active queue, check if it needs to be expired,
3601          * or if we want to idle in case it has no pending requests.
3602          */
3603         if (cfqd->active_queue == cfqq) {
3604                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3605
3606                 if (cfq_cfqq_slice_new(cfqq)) {
3607                         cfq_set_prio_slice(cfqd, cfqq);
3608                         cfq_clear_cfqq_slice_new(cfqq);
3609                 }
3610
3611                 /*
3612                  * Should we wait for next request to come in before we expire
3613                  * the queue.
3614                  */
3615                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3616                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3617                         if (!cfqd->cfq_slice_idle)
3618                                 extend_sl = cfqd->cfq_group_idle;
3619                         cfqq->slice_end = jiffies + extend_sl;
3620                         cfq_mark_cfqq_wait_busy(cfqq);
3621                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3622                 }
3623
3624                 /*
3625                  * Idling is not enabled on:
3626                  * - expired queues
3627                  * - idle-priority queues
3628                  * - async queues
3629                  * - queues with still some requests queued
3630                  * - when there is a close cooperator
3631                  */
3632                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3633                         cfq_slice_expired(cfqd, 1);
3634                 else if (sync && cfqq_empty &&
3635                          !cfq_close_cooperator(cfqd, cfqq)) {
3636                         cfq_arm_slice_timer(cfqd);
3637                 }
3638         }
3639
3640         if (!cfqd->rq_in_driver)
3641                 cfq_schedule_dispatch(cfqd);
3642 }
3643
3644 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3645 {
3646         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3647                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3648                 return ELV_MQUEUE_MUST;
3649         }
3650
3651         return ELV_MQUEUE_MAY;
3652 }
3653
3654 static int cfq_may_queue(struct request_queue *q, int rw)
3655 {
3656         struct cfq_data *cfqd = q->elevator->elevator_data;
3657         struct task_struct *tsk = current;
3658         struct cfq_io_context *cic;
3659         struct cfq_queue *cfqq;
3660
3661         /*
3662          * don't force setup of a queue from here, as a call to may_queue
3663          * does not necessarily imply that a request actually will be queued.
3664          * so just lookup a possibly existing queue, or return 'may queue'
3665          * if that fails
3666          */
3667         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3668         if (!cic)
3669                 return ELV_MQUEUE_MAY;
3670
3671         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3672         if (cfqq) {
3673                 cfq_init_prio_data(cfqq, cic->ioc);
3674
3675                 return __cfq_may_queue(cfqq);
3676         }
3677
3678         return ELV_MQUEUE_MAY;
3679 }
3680
3681 /*
3682  * queue lock held here
3683  */
3684 static void cfq_put_request(struct request *rq)
3685 {
3686         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3687
3688         if (cfqq) {
3689                 const int rw = rq_data_dir(rq);
3690
3691                 BUG_ON(!cfqq->allocated[rw]);
3692                 cfqq->allocated[rw]--;
3693
3694                 put_io_context(RQ_CIC(rq)->ioc);
3695
3696                 rq->elevator_private[0] = NULL;
3697                 rq->elevator_private[1] = NULL;
3698
3699                 /* Put down rq reference on cfqg */
3700                 cfq_put_cfqg(RQ_CFQG(rq));
3701                 rq->elevator_private[2] = NULL;
3702
3703                 cfq_put_queue(cfqq);
3704         }
3705 }
3706
3707 static struct cfq_queue *
3708 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3709                 struct cfq_queue *cfqq)
3710 {
3711         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3712         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3713         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3714         cfq_put_queue(cfqq);
3715         return cic_to_cfqq(cic, 1);
3716 }
3717
3718 /*
3719  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3720  * was the last process referring to said cfqq.
3721  */
3722 static struct cfq_queue *
3723 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3724 {
3725         if (cfqq_process_refs(cfqq) == 1) {
3726                 cfqq->pid = current->pid;
3727                 cfq_clear_cfqq_coop(cfqq);
3728                 cfq_clear_cfqq_split_coop(cfqq);
3729                 return cfqq;
3730         }
3731
3732         cic_set_cfqq(cic, NULL, 1);
3733
3734         cfq_put_cooperator(cfqq);
3735
3736         cfq_put_queue(cfqq);
3737         return NULL;
3738 }
3739 /*
3740  * Allocate cfq data structures associated with this request.
3741  */
3742 static int
3743 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3744 {
3745         struct cfq_data *cfqd = q->elevator->elevator_data;
3746         struct cfq_io_context *cic;
3747         const int rw = rq_data_dir(rq);
3748         const bool is_sync = rq_is_sync(rq);
3749         struct cfq_queue *cfqq;
3750         unsigned long flags;
3751
3752         might_sleep_if(gfp_mask & __GFP_WAIT);
3753
3754         cic = cfq_get_io_context(cfqd, gfp_mask);
3755
3756         spin_lock_irqsave(q->queue_lock, flags);
3757
3758         if (!cic)
3759                 goto queue_fail;
3760
3761 new_queue:
3762         cfqq = cic_to_cfqq(cic, is_sync);
3763         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3764                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3765                 cic_set_cfqq(cic, cfqq, is_sync);
3766         } else {
3767                 /*
3768                  * If the queue was seeky for too long, break it apart.
3769                  */
3770                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3771                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3772                         cfqq = split_cfqq(cic, cfqq);
3773                         if (!cfqq)
3774                                 goto new_queue;
3775                 }
3776
3777                 /*
3778                  * Check to see if this queue is scheduled to merge with
3779                  * another, closely cooperating queue.  The merging of
3780                  * queues happens here as it must be done in process context.
3781                  * The reference on new_cfqq was taken in merge_cfqqs.
3782                  */
3783                 if (cfqq->new_cfqq)
3784                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3785         }
3786
3787         cfqq->allocated[rw]++;
3788
3789         cfqq->ref++;
3790         rq->elevator_private[0] = cic;
3791         rq->elevator_private[1] = cfqq;
3792         rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3793         spin_unlock_irqrestore(q->queue_lock, flags);
3794         return 0;
3795
3796 queue_fail:
3797         cfq_schedule_dispatch(cfqd);
3798         spin_unlock_irqrestore(q->queue_lock, flags);
3799         cfq_log(cfqd, "set_request fail");
3800         return 1;
3801 }
3802
3803 static void cfq_kick_queue(struct work_struct *work)
3804 {
3805         struct cfq_data *cfqd =
3806                 container_of(work, struct cfq_data, unplug_work);
3807         struct request_queue *q = cfqd->queue;
3808
3809         spin_lock_irq(q->queue_lock);
3810         __blk_run_queue(cfqd->queue);
3811         spin_unlock_irq(q->queue_lock);
3812 }
3813
3814 /*
3815  * Timer running if the active_queue is currently idling inside its time slice
3816  */
3817 static void cfq_idle_slice_timer(unsigned long data)
3818 {
3819         struct cfq_data *cfqd = (struct cfq_data *) data;
3820         struct cfq_queue *cfqq;
3821         unsigned long flags;
3822         int timed_out = 1;
3823
3824         cfq_log(cfqd, "idle timer fired");
3825
3826         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3827
3828         cfqq = cfqd->active_queue;
3829         if (cfqq) {
3830                 timed_out = 0;
3831
3832                 /*
3833                  * We saw a request before the queue expired, let it through
3834                  */
3835                 if (cfq_cfqq_must_dispatch(cfqq))
3836                         goto out_kick;
3837
3838                 /*
3839                  * expired
3840                  */
3841                 if (cfq_slice_used(cfqq))
3842                         goto expire;
3843
3844                 /*
3845                  * only expire and reinvoke request handler, if there are
3846                  * other queues with pending requests
3847                  */
3848                 if (!cfqd->busy_queues)
3849                         goto out_cont;
3850
3851                 /*
3852                  * not expired and it has a request pending, let it dispatch
3853                  */
3854                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3855                         goto out_kick;
3856
3857                 /*
3858                  * Queue depth flag is reset only when the idle didn't succeed
3859                  */
3860                 cfq_clear_cfqq_deep(cfqq);
3861         }
3862 expire:
3863         cfq_slice_expired(cfqd, timed_out);
3864 out_kick:
3865         cfq_schedule_dispatch(cfqd);
3866 out_cont:
3867         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3868 }
3869
3870 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3871 {
3872         del_timer_sync(&cfqd->idle_slice_timer);
3873         cancel_work_sync(&cfqd->unplug_work);
3874 }
3875
3876 static void cfq_put_async_queues(struct cfq_data *cfqd)
3877 {
3878         int i;
3879
3880         for (i = 0; i < IOPRIO_BE_NR; i++) {
3881                 if (cfqd->async_cfqq[0][i])
3882                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3883                 if (cfqd->async_cfqq[1][i])
3884                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3885         }
3886
3887         if (cfqd->async_idle_cfqq)
3888                 cfq_put_queue(cfqd->async_idle_cfqq);
3889 }
3890
3891 static void cfq_exit_queue(struct elevator_queue *e)
3892 {
3893         struct cfq_data *cfqd = e->elevator_data;
3894         struct request_queue *q = cfqd->queue;
3895         bool wait = false;
3896
3897         cfq_shutdown_timer_wq(cfqd);
3898
3899         spin_lock_irq(q->queue_lock);
3900
3901         if (cfqd->active_queue)
3902                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3903
3904         while (!list_empty(&cfqd->cic_list)) {
3905                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3906                                                         struct cfq_io_context,
3907                                                         queue_list);
3908
3909                 __cfq_exit_single_io_context(cfqd, cic);
3910         }
3911
3912         cfq_put_async_queues(cfqd);
3913         cfq_release_cfq_groups(cfqd);
3914
3915         /*
3916          * If there are groups which we could not unlink from blkcg list,
3917          * wait for a rcu period for them to be freed.
3918          */
3919         if (cfqd->nr_blkcg_linked_grps)
3920                 wait = true;
3921
3922         spin_unlock_irq(q->queue_lock);
3923
3924         cfq_shutdown_timer_wq(cfqd);
3925
3926         spin_lock(&cic_index_lock);
3927         ida_remove(&cic_index_ida, cfqd->cic_index);
3928         spin_unlock(&cic_index_lock);
3929
3930         /*
3931          * Wait for cfqg->blkg->key accessors to exit their grace periods.
3932          * Do this wait only if there are other unlinked groups out
3933          * there. This can happen if cgroup deletion path claimed the
3934          * responsibility of cleaning up a group before queue cleanup code
3935          * get to the group.
3936          *
3937          * Do not call synchronize_rcu() unconditionally as there are drivers
3938          * which create/delete request queue hundreds of times during scan/boot
3939          * and synchronize_rcu() can take significant time and slow down boot.
3940          */
3941         if (wait)
3942                 synchronize_rcu();
3943
3944 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3945         /* Free up per cpu stats for root group */
3946         free_percpu(cfqd->root_group.blkg.stats_cpu);
3947 #endif
3948         kfree(cfqd);
3949 }
3950
3951 static int cfq_alloc_cic_index(void)
3952 {
3953         int index, error;
3954
3955         do {
3956                 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3957                         return -ENOMEM;
3958
3959                 spin_lock(&cic_index_lock);
3960                 error = ida_get_new(&cic_index_ida, &index);
3961                 spin_unlock(&cic_index_lock);
3962                 if (error && error != -EAGAIN)
3963                         return error;
3964         } while (error);
3965
3966         return index;
3967 }
3968
3969 static void *cfq_init_queue(struct request_queue *q)
3970 {
3971         struct cfq_data *cfqd;
3972         int i, j;
3973         struct cfq_group *cfqg;
3974         struct cfq_rb_root *st;
3975
3976         i = cfq_alloc_cic_index();
3977         if (i < 0)
3978                 return NULL;
3979
3980         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3981         if (!cfqd) {
3982                 spin_lock(&cic_index_lock);
3983                 ida_remove(&cic_index_ida, i);
3984                 spin_unlock(&cic_index_lock);
3985                 return NULL;
3986         }
3987
3988         /*
3989          * Don't need take queue_lock in the routine, since we are
3990          * initializing the ioscheduler, and nobody is using cfqd
3991          */
3992         cfqd->cic_index = i;
3993
3994         /* Init root service tree */
3995         cfqd->grp_service_tree = CFQ_RB_ROOT;
3996
3997         /* Init root group */
3998         cfqg = &cfqd->root_group;
3999         for_each_cfqg_st(cfqg, i, j, st)
4000                 *st = CFQ_RB_ROOT;
4001         RB_CLEAR_NODE(&cfqg->rb_node);
4002
4003         /* Give preference to root group over other groups */
4004         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4005
4006 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4007         /*
4008          * Set root group reference to 2. One reference will be dropped when
4009          * all groups on cfqd->cfqg_list are being deleted during queue exit.
4010          * Other reference will remain there as we don't want to delete this
4011          * group as it is statically allocated and gets destroyed when
4012          * throtl_data goes away.
4013          */
4014         cfqg->ref = 2;
4015
4016         if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4017                 kfree(cfqg);
4018                 kfree(cfqd);
4019                 return NULL;
4020         }
4021
4022         rcu_read_lock();
4023
4024         cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4025                                         (void *)cfqd, 0);
4026         rcu_read_unlock();
4027         cfqd->nr_blkcg_linked_grps++;
4028
4029         /* Add group on cfqd->cfqg_list */
4030         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4031 #endif
4032         /*
4033          * Not strictly needed (since RB_ROOT just clears the node and we
4034          * zeroed cfqd on alloc), but better be safe in case someone decides
4035          * to add magic to the rb code
4036          */
4037         for (i = 0; i < CFQ_PRIO_LISTS; i++)
4038                 cfqd->prio_trees[i] = RB_ROOT;
4039
4040         /*
4041          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4042          * Grab a permanent reference to it, so that the normal code flow
4043          * will not attempt to free it.
4044          */
4045         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4046         cfqd->oom_cfqq.ref++;
4047         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4048
4049         INIT_LIST_HEAD(&cfqd->cic_list);
4050
4051         cfqd->queue = q;
4052
4053         init_timer(&cfqd->idle_slice_timer);
4054         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4055         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4056
4057         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4058
4059         cfqd->cfq_quantum = cfq_quantum;
4060         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4061         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4062         cfqd->cfq_back_max = cfq_back_max;
4063         cfqd->cfq_back_penalty = cfq_back_penalty;
4064         cfqd->cfq_slice[0] = cfq_slice_async;
4065         cfqd->cfq_slice[1] = cfq_slice_sync;
4066         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4067         cfqd->cfq_slice_idle = cfq_slice_idle;
4068         cfqd->cfq_group_idle = cfq_group_idle;
4069         cfqd->cfq_latency = 1;
4070         cfqd->hw_tag = -1;
4071         /*
4072          * we optimistically start assuming sync ops weren't delayed in last
4073          * second, in order to have larger depth for async operations.
4074          */
4075         cfqd->last_delayed_sync = jiffies - HZ;
4076         return cfqd;
4077 }
4078
4079 static void cfq_slab_kill(void)
4080 {
4081         /*
4082          * Caller already ensured that pending RCU callbacks are completed,
4083          * so we should have no busy allocations at this point.
4084          */
4085         if (cfq_pool)
4086                 kmem_cache_destroy(cfq_pool);
4087         if (cfq_ioc_pool)
4088                 kmem_cache_destroy(cfq_ioc_pool);
4089 }
4090
4091 static int __init cfq_slab_setup(void)
4092 {
4093         cfq_pool = KMEM_CACHE(cfq_queue, 0);
4094         if (!cfq_pool)
4095                 goto fail;
4096
4097         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4098         if (!cfq_ioc_pool)
4099                 goto fail;
4100
4101         return 0;
4102 fail:
4103         cfq_slab_kill();
4104         return -ENOMEM;
4105 }
4106
4107 /*
4108  * sysfs parts below -->
4109  */
4110 static ssize_t
4111 cfq_var_show(unsigned int var, char *page)
4112 {
4113         return sprintf(page, "%d\n", var);
4114 }
4115
4116 static ssize_t
4117 cfq_var_store(unsigned int *var, const char *page, size_t count)
4118 {
4119         char *p = (char *) page;
4120
4121         *var = simple_strtoul(p, &p, 10);
4122         return count;
4123 }
4124
4125 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
4126 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4127 {                                                                       \
4128         struct cfq_data *cfqd = e->elevator_data;                       \
4129         unsigned int __data = __VAR;                                    \
4130         if (__CONV)                                                     \
4131                 __data = jiffies_to_msecs(__data);                      \
4132         return cfq_var_show(__data, (page));                            \
4133 }
4134 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4135 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4136 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4137 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4138 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4139 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4140 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4141 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4142 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4143 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4144 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4145 #undef SHOW_FUNCTION
4146
4147 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4148 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4149 {                                                                       \
4150         struct cfq_data *cfqd = e->elevator_data;                       \
4151         unsigned int __data;                                            \
4152         int ret = cfq_var_store(&__data, (page), count);                \
4153         if (__data < (MIN))                                             \
4154                 __data = (MIN);                                         \
4155         else if (__data > (MAX))                                        \
4156                 __data = (MAX);                                         \
4157         if (__CONV)                                                     \
4158                 *(__PTR) = msecs_to_jiffies(__data);                    \
4159         else                                                            \
4160                 *(__PTR) = __data;                                      \
4161         return ret;                                                     \
4162 }
4163 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4164 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4165                 UINT_MAX, 1);
4166 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4167                 UINT_MAX, 1);
4168 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4169 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4170                 UINT_MAX, 0);
4171 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4172 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4173 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4174 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4175 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4176                 UINT_MAX, 0);
4177 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4178 #undef STORE_FUNCTION
4179
4180 #define CFQ_ATTR(name) \
4181         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4182
4183 static struct elv_fs_entry cfq_attrs[] = {
4184         CFQ_ATTR(quantum),
4185         CFQ_ATTR(fifo_expire_sync),
4186         CFQ_ATTR(fifo_expire_async),
4187         CFQ_ATTR(back_seek_max),
4188         CFQ_ATTR(back_seek_penalty),
4189         CFQ_ATTR(slice_sync),
4190         CFQ_ATTR(slice_async),
4191         CFQ_ATTR(slice_async_rq),
4192         CFQ_ATTR(slice_idle),
4193         CFQ_ATTR(group_idle),
4194         CFQ_ATTR(low_latency),
4195         __ATTR_NULL
4196 };
4197
4198 static struct elevator_type iosched_cfq = {
4199         .ops = {
4200                 .elevator_merge_fn =            cfq_merge,
4201                 .elevator_merged_fn =           cfq_merged_request,
4202                 .elevator_merge_req_fn =        cfq_merged_requests,
4203                 .elevator_allow_merge_fn =      cfq_allow_merge,
4204                 .elevator_bio_merged_fn =       cfq_bio_merged,
4205                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4206                 .elevator_add_req_fn =          cfq_insert_request,
4207                 .elevator_activate_req_fn =     cfq_activate_request,
4208                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4209                 .elevator_completed_req_fn =    cfq_completed_request,
4210                 .elevator_former_req_fn =       elv_rb_former_request,
4211                 .elevator_latter_req_fn =       elv_rb_latter_request,
4212                 .elevator_set_req_fn =          cfq_set_request,
4213                 .elevator_put_req_fn =          cfq_put_request,
4214                 .elevator_may_queue_fn =        cfq_may_queue,
4215                 .elevator_init_fn =             cfq_init_queue,
4216                 .elevator_exit_fn =             cfq_exit_queue,
4217                 .trim =                         cfq_free_io_context,
4218         },
4219         .elevator_attrs =       cfq_attrs,
4220         .elevator_name =        "cfq",
4221         .elevator_owner =       THIS_MODULE,
4222 };
4223
4224 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4225 static struct blkio_policy_type blkio_policy_cfq = {
4226         .ops = {
4227                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
4228                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4229         },
4230         .plid = BLKIO_POLICY_PROP,
4231 };
4232 #else
4233 static struct blkio_policy_type blkio_policy_cfq;
4234 #endif
4235
4236 static int __init cfq_init(void)
4237 {
4238         /*
4239          * could be 0 on HZ < 1000 setups
4240          */
4241         if (!cfq_slice_async)
4242                 cfq_slice_async = 1;
4243         if (!cfq_slice_idle)
4244                 cfq_slice_idle = 1;
4245
4246 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4247         if (!cfq_group_idle)
4248                 cfq_group_idle = 1;
4249 #else
4250                 cfq_group_idle = 0;
4251 #endif
4252         if (cfq_slab_setup())
4253                 return -ENOMEM;
4254
4255         elv_register(&iosched_cfq);
4256         blkio_policy_register(&blkio_policy_cfq);
4257
4258         return 0;
4259 }
4260
4261 static void __exit cfq_exit(void)
4262 {
4263         DECLARE_COMPLETION_ONSTACK(all_gone);
4264         blkio_policy_unregister(&blkio_policy_cfq);
4265         elv_unregister(&iosched_cfq);
4266         ioc_gone = &all_gone;
4267         /* ioc_gone's update must be visible before reading ioc_count */
4268         smp_wmb();
4269
4270         /*
4271          * this also protects us from entering cfq_slab_kill() with
4272          * pending RCU callbacks
4273          */
4274         if (elv_ioc_count_read(cfq_ioc_count))
4275                 wait_for_completion(&all_gone);
4276         ida_destroy(&cic_index_ida);
4277         cfq_slab_kill();
4278 }
4279
4280 module_init(cfq_init);
4281 module_exit(cfq_exit);
4282
4283 MODULE_AUTHOR("Jens Axboe");
4284 MODULE_LICENSE("GPL");
4285 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");