4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/fixmap.h>
54 #include <asm/mmu_context.h>
55 #include <asm/setup.h>
56 #include <asm/paravirt.h>
58 #include <asm/linkage.h>
63 #include <asm/xen/hypercall.h>
64 #include <asm/xen/hypervisor.h>
68 #include <xen/interface/xen.h>
69 #include <xen/interface/hvm/hvm_op.h>
70 #include <xen/interface/version.h>
71 #include <xen/interface/memory.h>
72 #include <xen/hvc-console.h>
74 #include "multicalls.h"
78 #define MMU_UPDATE_HISTO 30
81 * Protects atomic reservation decrease/increase against concurrent increases.
82 * Also protects non-atomic updates of current_pages and balloon lists.
84 DEFINE_SPINLOCK(xen_reservation_lock);
86 #ifdef CONFIG_XEN_DEBUG_FS
90 u32 pgd_update_pinned;
91 u32 pgd_update_batched;
94 u32 pud_update_pinned;
95 u32 pud_update_batched;
98 u32 pmd_update_pinned;
99 u32 pmd_update_batched;
102 u32 pte_update_pinned;
103 u32 pte_update_batched;
106 u32 mmu_update_extended;
107 u32 mmu_update_histo[MMU_UPDATE_HISTO];
110 u32 prot_commit_batched;
113 u32 set_pte_at_batched;
114 u32 set_pte_at_pinned;
115 u32 set_pte_at_current;
116 u32 set_pte_at_kernel;
119 static u8 zero_stats;
121 static inline void check_zero(void)
123 if (unlikely(zero_stats)) {
124 memset(&mmu_stats, 0, sizeof(mmu_stats));
129 #define ADD_STATS(elem, val) \
130 do { check_zero(); mmu_stats.elem += (val); } while(0)
132 #else /* !CONFIG_XEN_DEBUG_FS */
134 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
136 #endif /* CONFIG_XEN_DEBUG_FS */
140 * Identity map, in addition to plain kernel map. This needs to be
141 * large enough to allocate page table pages to allocate the rest.
142 * Each page can map 2MB.
144 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
145 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
148 /* l3 pud for userspace vsyscall mapping */
149 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
150 #endif /* CONFIG_X86_64 */
153 * Note about cr3 (pagetable base) values:
155 * xen_cr3 contains the current logical cr3 value; it contains the
156 * last set cr3. This may not be the current effective cr3, because
157 * its update may be being lazily deferred. However, a vcpu looking
158 * at its own cr3 can use this value knowing that it everything will
159 * be self-consistent.
161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162 * hypercall to set the vcpu cr3 is complete (so it may be a little
163 * out of date, but it will never be set early). If one vcpu is
164 * looking at another vcpu's cr3 value, it should use this variable.
166 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
167 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
171 * Just beyond the highest usermode address. STACK_TOP_MAX has a
172 * redzone above it, so round it up to a PGD boundary.
174 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
176 unsigned long arbitrary_virt_to_mfn(void *vaddr)
178 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
180 return PFN_DOWN(maddr.maddr);
183 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
185 unsigned long address = (unsigned long)vaddr;
191 * if the PFN is in the linear mapped vaddr range, we can just use
192 * the (quick) virt_to_machine() p2m lookup
194 if (virt_addr_valid(vaddr))
195 return virt_to_machine(vaddr);
197 /* otherwise we have to do a (slower) full page-table walk */
199 pte = lookup_address(address, &level);
201 offset = address & ~PAGE_MASK;
202 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
204 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
206 void make_lowmem_page_readonly(void *vaddr)
209 unsigned long address = (unsigned long)vaddr;
212 pte = lookup_address(address, &level);
214 return; /* vaddr missing */
216 ptev = pte_wrprotect(*pte);
218 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
222 void make_lowmem_page_readwrite(void *vaddr)
225 unsigned long address = (unsigned long)vaddr;
228 pte = lookup_address(address, &level);
230 return; /* vaddr missing */
232 ptev = pte_mkwrite(*pte);
234 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
239 static bool xen_page_pinned(void *ptr)
241 struct page *page = virt_to_page(ptr);
243 return PagePinned(page);
246 static bool xen_iomap_pte(pte_t pte)
248 return pte_flags(pte) & _PAGE_IOMAP;
251 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
253 struct multicall_space mcs;
254 struct mmu_update *u;
256 mcs = xen_mc_entry(sizeof(*u));
259 /* ptep might be kmapped when using 32-bit HIGHPTE */
260 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
261 u->val = pte_val_ma(pteval);
263 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
267 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
269 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
271 xen_set_domain_pte(ptep, pteval, DOMID_IO);
274 static void xen_extend_mmu_update(const struct mmu_update *update)
276 struct multicall_space mcs;
277 struct mmu_update *u;
279 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
281 if (mcs.mc != NULL) {
282 ADD_STATS(mmu_update_extended, 1);
283 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
287 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
288 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
290 ADD_STATS(mmu_update_histo[0], 1);
292 ADD_STATS(mmu_update, 1);
293 mcs = __xen_mc_entry(sizeof(*u));
294 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
295 ADD_STATS(mmu_update_histo[1], 1);
302 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
310 /* ptr may be ioremapped for 64-bit pagetable setup */
311 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
312 u.val = pmd_val_ma(val);
313 xen_extend_mmu_update(&u);
315 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
317 xen_mc_issue(PARAVIRT_LAZY_MMU);
322 void xen_set_pmd(pmd_t *ptr, pmd_t val)
324 ADD_STATS(pmd_update, 1);
326 /* If page is not pinned, we can just update the entry
328 if (!xen_page_pinned(ptr)) {
333 ADD_STATS(pmd_update_pinned, 1);
335 xen_set_pmd_hyper(ptr, val);
339 * Associate a virtual page frame with a given physical page frame
340 * and protection flags for that frame.
342 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
344 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
347 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
348 pte_t *ptep, pte_t pteval)
350 if (xen_iomap_pte(pteval)) {
351 xen_set_iomap_pte(ptep, pteval);
355 ADD_STATS(set_pte_at, 1);
356 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
357 ADD_STATS(set_pte_at_current, mm == current->mm);
358 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
360 if (mm == current->mm || mm == &init_mm) {
361 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
362 struct multicall_space mcs;
363 mcs = xen_mc_entry(0);
365 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
366 ADD_STATS(set_pte_at_batched, 1);
367 xen_mc_issue(PARAVIRT_LAZY_MMU);
370 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
373 xen_set_pte(ptep, pteval);
378 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
379 unsigned long addr, pte_t *ptep)
381 /* Just return the pte as-is. We preserve the bits on commit */
385 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
386 pte_t *ptep, pte_t pte)
392 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
393 u.val = pte_val_ma(pte);
394 xen_extend_mmu_update(&u);
396 ADD_STATS(prot_commit, 1);
397 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
399 xen_mc_issue(PARAVIRT_LAZY_MMU);
402 /* Assume pteval_t is equivalent to all the other *val_t types. */
403 static pteval_t pte_mfn_to_pfn(pteval_t val)
405 if (val & _PAGE_PRESENT) {
406 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
407 pteval_t flags = val & PTE_FLAGS_MASK;
408 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
414 static pteval_t pte_pfn_to_mfn(pteval_t val)
416 if (val & _PAGE_PRESENT) {
417 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
418 pteval_t flags = val & PTE_FLAGS_MASK;
421 if (!xen_feature(XENFEAT_auto_translated_physmap))
422 mfn = get_phys_to_machine(pfn);
426 * If there's no mfn for the pfn, then just create an
427 * empty non-present pte. Unfortunately this loses
428 * information about the original pfn, so
429 * pte_mfn_to_pfn is asymmetric.
431 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
436 * Paramount to do this test _after_ the
437 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
438 * IDENTITY_FRAME_BIT resolves to true.
440 mfn &= ~FOREIGN_FRAME_BIT;
441 if (mfn & IDENTITY_FRAME_BIT) {
442 mfn &= ~IDENTITY_FRAME_BIT;
443 flags |= _PAGE_IOMAP;
446 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
452 static pteval_t iomap_pte(pteval_t val)
454 if (val & _PAGE_PRESENT) {
455 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
456 pteval_t flags = val & PTE_FLAGS_MASK;
458 /* We assume the pte frame number is a MFN, so
459 just use it as-is. */
460 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
466 pteval_t xen_pte_val(pte_t pte)
468 pteval_t pteval = pte.pte;
470 /* If this is a WC pte, convert back from Xen WC to Linux WC */
471 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
472 WARN_ON(!pat_enabled);
473 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
476 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
479 return pte_mfn_to_pfn(pteval);
481 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
483 pgdval_t xen_pgd_val(pgd_t pgd)
485 return pte_mfn_to_pfn(pgd.pgd);
487 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
490 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
491 * are reserved for now, to correspond to the Intel-reserved PAT
494 * We expect Linux's PAT set as follows:
496 * Idx PTE flags Linux Xen Default
503 * 6 PAT PCD UC- UC UC-
504 * 7 PAT PCD PWT UC UC UC
507 void xen_set_pat(u64 pat)
509 /* We expect Linux to use a PAT setting of
510 * UC UC- WC WB (ignoring the PAT flag) */
511 WARN_ON(pat != 0x0007010600070106ull);
514 pte_t xen_make_pte(pteval_t pte)
516 phys_addr_t addr = (pte & PTE_PFN_MASK);
518 /* If Linux is trying to set a WC pte, then map to the Xen WC.
519 * If _PAGE_PAT is set, then it probably means it is really
520 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
521 * things work out OK...
523 * (We should never see kernel mappings with _PAGE_PSE set,
524 * but we could see hugetlbfs mappings, I think.).
526 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
527 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
528 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
532 * Unprivileged domains are allowed to do IOMAPpings for
533 * PCI passthrough, but not map ISA space. The ISA
534 * mappings are just dummy local mappings to keep other
535 * parts of the kernel happy.
537 if (unlikely(pte & _PAGE_IOMAP) &&
538 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
539 pte = iomap_pte(pte);
542 pte = pte_pfn_to_mfn(pte);
545 return native_make_pte(pte);
547 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
549 #ifdef CONFIG_XEN_DEBUG
550 pte_t xen_make_pte_debug(pteval_t pte)
552 phys_addr_t addr = (pte & PTE_PFN_MASK);
553 phys_addr_t other_addr;
554 bool io_page = false;
557 if (pte & _PAGE_IOMAP)
560 _pte = xen_make_pte(pte);
566 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
567 other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
568 WARN(addr != other_addr,
569 "0x%lx is using VM_IO, but it is 0x%lx!\n",
570 (unsigned long)addr, (unsigned long)other_addr);
572 pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
573 other_addr = (_pte.pte & PTE_PFN_MASK);
574 WARN((addr == other_addr) && (!io_page) && (!iomap_set),
575 "0x%lx is missing VM_IO (and wasn't fixed)!\n",
576 (unsigned long)addr);
581 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
584 pgd_t xen_make_pgd(pgdval_t pgd)
586 pgd = pte_pfn_to_mfn(pgd);
587 return native_make_pgd(pgd);
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
591 pmdval_t xen_pmd_val(pmd_t pmd)
593 return pte_mfn_to_pfn(pmd.pmd);
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
597 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
605 /* ptr may be ioremapped for 64-bit pagetable setup */
606 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
607 u.val = pud_val_ma(val);
608 xen_extend_mmu_update(&u);
610 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
612 xen_mc_issue(PARAVIRT_LAZY_MMU);
617 void xen_set_pud(pud_t *ptr, pud_t val)
619 ADD_STATS(pud_update, 1);
621 /* If page is not pinned, we can just update the entry
623 if (!xen_page_pinned(ptr)) {
628 ADD_STATS(pud_update_pinned, 1);
630 xen_set_pud_hyper(ptr, val);
633 void xen_set_pte(pte_t *ptep, pte_t pte)
635 if (xen_iomap_pte(pte)) {
636 xen_set_iomap_pte(ptep, pte);
640 ADD_STATS(pte_update, 1);
641 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
642 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
644 #ifdef CONFIG_X86_PAE
645 ptep->pte_high = pte.pte_high;
647 ptep->pte_low = pte.pte_low;
653 #ifdef CONFIG_X86_PAE
654 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
656 if (xen_iomap_pte(pte)) {
657 xen_set_iomap_pte(ptep, pte);
661 set_64bit((u64 *)ptep, native_pte_val(pte));
664 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
667 smp_wmb(); /* make sure low gets written first */
671 void xen_pmd_clear(pmd_t *pmdp)
673 set_pmd(pmdp, __pmd(0));
675 #endif /* CONFIG_X86_PAE */
677 pmd_t xen_make_pmd(pmdval_t pmd)
679 pmd = pte_pfn_to_mfn(pmd);
680 return native_make_pmd(pmd);
682 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
684 #if PAGETABLE_LEVELS == 4
685 pudval_t xen_pud_val(pud_t pud)
687 return pte_mfn_to_pfn(pud.pud);
689 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
691 pud_t xen_make_pud(pudval_t pud)
693 pud = pte_pfn_to_mfn(pud);
695 return native_make_pud(pud);
697 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
699 pgd_t *xen_get_user_pgd(pgd_t *pgd)
701 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
702 unsigned offset = pgd - pgd_page;
703 pgd_t *user_ptr = NULL;
705 if (offset < pgd_index(USER_LIMIT)) {
706 struct page *page = virt_to_page(pgd_page);
707 user_ptr = (pgd_t *)page->private;
715 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
719 u.ptr = virt_to_machine(ptr).maddr;
720 u.val = pgd_val_ma(val);
721 xen_extend_mmu_update(&u);
725 * Raw hypercall-based set_pgd, intended for in early boot before
726 * there's a page structure. This implies:
727 * 1. The only existing pagetable is the kernel's
728 * 2. It is always pinned
729 * 3. It has no user pagetable attached to it
731 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
737 __xen_set_pgd_hyper(ptr, val);
739 xen_mc_issue(PARAVIRT_LAZY_MMU);
744 void xen_set_pgd(pgd_t *ptr, pgd_t val)
746 pgd_t *user_ptr = xen_get_user_pgd(ptr);
748 ADD_STATS(pgd_update, 1);
750 /* If page is not pinned, we can just update the entry
752 if (!xen_page_pinned(ptr)) {
755 WARN_ON(xen_page_pinned(user_ptr));
761 ADD_STATS(pgd_update_pinned, 1);
762 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
764 /* If it's pinned, then we can at least batch the kernel and
765 user updates together. */
768 __xen_set_pgd_hyper(ptr, val);
770 __xen_set_pgd_hyper(user_ptr, val);
772 xen_mc_issue(PARAVIRT_LAZY_MMU);
774 #endif /* PAGETABLE_LEVELS == 4 */
777 * (Yet another) pagetable walker. This one is intended for pinning a
778 * pagetable. This means that it walks a pagetable and calls the
779 * callback function on each page it finds making up the page table,
780 * at every level. It walks the entire pagetable, but it only bothers
781 * pinning pte pages which are below limit. In the normal case this
782 * will be STACK_TOP_MAX, but at boot we need to pin up to
785 * For 32-bit the important bit is that we don't pin beyond there,
786 * because then we start getting into Xen's ptes.
788 * For 64-bit, we must skip the Xen hole in the middle of the address
789 * space, just after the big x86-64 virtual hole.
791 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
792 int (*func)(struct mm_struct *mm, struct page *,
797 unsigned hole_low, hole_high;
798 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
799 unsigned pgdidx, pudidx, pmdidx;
801 /* The limit is the last byte to be touched */
803 BUG_ON(limit >= FIXADDR_TOP);
805 if (xen_feature(XENFEAT_auto_translated_physmap))
809 * 64-bit has a great big hole in the middle of the address
810 * space, which contains the Xen mappings. On 32-bit these
811 * will end up making a zero-sized hole and so is a no-op.
813 hole_low = pgd_index(USER_LIMIT);
814 hole_high = pgd_index(PAGE_OFFSET);
816 pgdidx_limit = pgd_index(limit);
818 pudidx_limit = pud_index(limit);
823 pmdidx_limit = pmd_index(limit);
828 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
831 if (pgdidx >= hole_low && pgdidx < hole_high)
834 if (!pgd_val(pgd[pgdidx]))
837 pud = pud_offset(&pgd[pgdidx], 0);
839 if (PTRS_PER_PUD > 1) /* not folded */
840 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
842 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
845 if (pgdidx == pgdidx_limit &&
846 pudidx > pudidx_limit)
849 if (pud_none(pud[pudidx]))
852 pmd = pmd_offset(&pud[pudidx], 0);
854 if (PTRS_PER_PMD > 1) /* not folded */
855 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
857 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
860 if (pgdidx == pgdidx_limit &&
861 pudidx == pudidx_limit &&
862 pmdidx > pmdidx_limit)
865 if (pmd_none(pmd[pmdidx]))
868 pte = pmd_page(pmd[pmdidx]);
869 flush |= (*func)(mm, pte, PT_PTE);
875 /* Do the top level last, so that the callbacks can use it as
876 a cue to do final things like tlb flushes. */
877 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
882 static int xen_pgd_walk(struct mm_struct *mm,
883 int (*func)(struct mm_struct *mm, struct page *,
887 return __xen_pgd_walk(mm, mm->pgd, func, limit);
890 /* If we're using split pte locks, then take the page's lock and
891 return a pointer to it. Otherwise return NULL. */
892 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
894 spinlock_t *ptl = NULL;
896 #if USE_SPLIT_PTLOCKS
897 ptl = __pte_lockptr(page);
898 spin_lock_nest_lock(ptl, &mm->page_table_lock);
904 static void xen_pte_unlock(void *v)
910 static void xen_do_pin(unsigned level, unsigned long pfn)
912 struct mmuext_op *op;
913 struct multicall_space mcs;
915 mcs = __xen_mc_entry(sizeof(*op));
918 op->arg1.mfn = pfn_to_mfn(pfn);
919 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
922 static int xen_pin_page(struct mm_struct *mm, struct page *page,
925 unsigned pgfl = TestSetPagePinned(page);
929 flush = 0; /* already pinned */
930 else if (PageHighMem(page))
931 /* kmaps need flushing if we found an unpinned
935 void *pt = lowmem_page_address(page);
936 unsigned long pfn = page_to_pfn(page);
937 struct multicall_space mcs = __xen_mc_entry(0);
943 * We need to hold the pagetable lock between the time
944 * we make the pagetable RO and when we actually pin
945 * it. If we don't, then other users may come in and
946 * attempt to update the pagetable by writing it,
947 * which will fail because the memory is RO but not
948 * pinned, so Xen won't do the trap'n'emulate.
950 * If we're using split pte locks, we can't hold the
951 * entire pagetable's worth of locks during the
952 * traverse, because we may wrap the preempt count (8
953 * bits). The solution is to mark RO and pin each PTE
954 * page while holding the lock. This means the number
955 * of locks we end up holding is never more than a
956 * batch size (~32 entries, at present).
958 * If we're not using split pte locks, we needn't pin
959 * the PTE pages independently, because we're
960 * protected by the overall pagetable lock.
964 ptl = xen_pte_lock(page, mm);
966 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
967 pfn_pte(pfn, PAGE_KERNEL_RO),
968 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
971 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
973 /* Queue a deferred unlock for when this batch
975 xen_mc_callback(xen_pte_unlock, ptl);
982 /* This is called just after a mm has been created, but it has not
983 been used yet. We need to make sure that its pagetable is all
984 read-only, and can be pinned. */
985 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
989 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
990 /* re-enable interrupts for flushing */
1000 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1002 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1005 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1006 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1007 PFN_DOWN(__pa(user_pgd)));
1010 #else /* CONFIG_X86_32 */
1011 #ifdef CONFIG_X86_PAE
1012 /* Need to make sure unshared kernel PMD is pinnable */
1013 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1016 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1017 #endif /* CONFIG_X86_64 */
1021 static void xen_pgd_pin(struct mm_struct *mm)
1023 __xen_pgd_pin(mm, mm->pgd);
1027 * On save, we need to pin all pagetables to make sure they get their
1028 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1029 * them (unpinned pgds are not currently in use, probably because the
1030 * process is under construction or destruction).
1032 * Expected to be called in stop_machine() ("equivalent to taking
1033 * every spinlock in the system"), so the locking doesn't really
1034 * matter all that much.
1036 void xen_mm_pin_all(void)
1040 spin_lock(&pgd_lock);
1042 list_for_each_entry(page, &pgd_list, lru) {
1043 if (!PagePinned(page)) {
1044 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1045 SetPageSavePinned(page);
1049 spin_unlock(&pgd_lock);
1053 * The init_mm pagetable is really pinned as soon as its created, but
1054 * that's before we have page structures to store the bits. So do all
1055 * the book-keeping now.
1057 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1058 enum pt_level level)
1060 SetPagePinned(page);
1064 static void __init xen_mark_init_mm_pinned(void)
1066 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1069 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1070 enum pt_level level)
1072 unsigned pgfl = TestClearPagePinned(page);
1074 if (pgfl && !PageHighMem(page)) {
1075 void *pt = lowmem_page_address(page);
1076 unsigned long pfn = page_to_pfn(page);
1077 spinlock_t *ptl = NULL;
1078 struct multicall_space mcs;
1081 * Do the converse to pin_page. If we're using split
1082 * pte locks, we must be holding the lock for while
1083 * the pte page is unpinned but still RO to prevent
1084 * concurrent updates from seeing it in this
1085 * partially-pinned state.
1087 if (level == PT_PTE) {
1088 ptl = xen_pte_lock(page, mm);
1091 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1094 mcs = __xen_mc_entry(0);
1096 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1097 pfn_pte(pfn, PAGE_KERNEL),
1098 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1101 /* unlock when batch completed */
1102 xen_mc_callback(xen_pte_unlock, ptl);
1106 return 0; /* never need to flush on unpin */
1109 /* Release a pagetables pages back as normal RW */
1110 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1114 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1116 #ifdef CONFIG_X86_64
1118 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1121 xen_do_pin(MMUEXT_UNPIN_TABLE,
1122 PFN_DOWN(__pa(user_pgd)));
1123 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1128 #ifdef CONFIG_X86_PAE
1129 /* Need to make sure unshared kernel PMD is unpinned */
1130 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1134 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1139 static void xen_pgd_unpin(struct mm_struct *mm)
1141 __xen_pgd_unpin(mm, mm->pgd);
1145 * On resume, undo any pinning done at save, so that the rest of the
1146 * kernel doesn't see any unexpected pinned pagetables.
1148 void xen_mm_unpin_all(void)
1152 spin_lock(&pgd_lock);
1154 list_for_each_entry(page, &pgd_list, lru) {
1155 if (PageSavePinned(page)) {
1156 BUG_ON(!PagePinned(page));
1157 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1158 ClearPageSavePinned(page);
1162 spin_unlock(&pgd_lock);
1165 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1167 spin_lock(&next->page_table_lock);
1169 spin_unlock(&next->page_table_lock);
1172 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1174 spin_lock(&mm->page_table_lock);
1176 spin_unlock(&mm->page_table_lock);
1181 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1182 we need to repoint it somewhere else before we can unpin it. */
1183 static void drop_other_mm_ref(void *info)
1185 struct mm_struct *mm = info;
1186 struct mm_struct *active_mm;
1188 active_mm = percpu_read(cpu_tlbstate.active_mm);
1190 if (active_mm == mm)
1191 leave_mm(smp_processor_id());
1193 /* If this cpu still has a stale cr3 reference, then make sure
1194 it has been flushed. */
1195 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1196 load_cr3(swapper_pg_dir);
1199 static void xen_drop_mm_ref(struct mm_struct *mm)
1204 if (current->active_mm == mm) {
1205 if (current->mm == mm)
1206 load_cr3(swapper_pg_dir);
1208 leave_mm(smp_processor_id());
1211 /* Get the "official" set of cpus referring to our pagetable. */
1212 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1213 for_each_online_cpu(cpu) {
1214 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1215 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1217 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1221 cpumask_copy(mask, mm_cpumask(mm));
1223 /* It's possible that a vcpu may have a stale reference to our
1224 cr3, because its in lazy mode, and it hasn't yet flushed
1225 its set of pending hypercalls yet. In this case, we can
1226 look at its actual current cr3 value, and force it to flush
1228 for_each_online_cpu(cpu) {
1229 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1230 cpumask_set_cpu(cpu, mask);
1233 if (!cpumask_empty(mask))
1234 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1235 free_cpumask_var(mask);
1238 static void xen_drop_mm_ref(struct mm_struct *mm)
1240 if (current->active_mm == mm)
1241 load_cr3(swapper_pg_dir);
1246 * While a process runs, Xen pins its pagetables, which means that the
1247 * hypervisor forces it to be read-only, and it controls all updates
1248 * to it. This means that all pagetable updates have to go via the
1249 * hypervisor, which is moderately expensive.
1251 * Since we're pulling the pagetable down, we switch to use init_mm,
1252 * unpin old process pagetable and mark it all read-write, which
1253 * allows further operations on it to be simple memory accesses.
1255 * The only subtle point is that another CPU may be still using the
1256 * pagetable because of lazy tlb flushing. This means we need need to
1257 * switch all CPUs off this pagetable before we can unpin it.
1259 void xen_exit_mmap(struct mm_struct *mm)
1261 get_cpu(); /* make sure we don't move around */
1262 xen_drop_mm_ref(mm);
1265 spin_lock(&mm->page_table_lock);
1267 /* pgd may not be pinned in the error exit path of execve */
1268 if (xen_page_pinned(mm->pgd))
1271 spin_unlock(&mm->page_table_lock);
1274 static __init void xen_pagetable_setup_start(pgd_t *base)
1278 static void xen_post_allocator_init(void);
1280 static __init void xen_pagetable_setup_done(pgd_t *base)
1282 xen_setup_shared_info();
1283 xen_post_allocator_init();
1286 static void xen_write_cr2(unsigned long cr2)
1288 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1291 static unsigned long xen_read_cr2(void)
1293 return percpu_read(xen_vcpu)->arch.cr2;
1296 unsigned long xen_read_cr2_direct(void)
1298 return percpu_read(xen_vcpu_info.arch.cr2);
1301 static void xen_flush_tlb(void)
1303 struct mmuext_op *op;
1304 struct multicall_space mcs;
1308 mcs = xen_mc_entry(sizeof(*op));
1311 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1312 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1314 xen_mc_issue(PARAVIRT_LAZY_MMU);
1319 static void xen_flush_tlb_single(unsigned long addr)
1321 struct mmuext_op *op;
1322 struct multicall_space mcs;
1326 mcs = xen_mc_entry(sizeof(*op));
1328 op->cmd = MMUEXT_INVLPG_LOCAL;
1329 op->arg1.linear_addr = addr & PAGE_MASK;
1330 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1332 xen_mc_issue(PARAVIRT_LAZY_MMU);
1337 static void xen_flush_tlb_others(const struct cpumask *cpus,
1338 struct mm_struct *mm, unsigned long va)
1341 struct mmuext_op op;
1342 DECLARE_BITMAP(mask, NR_CPUS);
1344 struct multicall_space mcs;
1346 if (cpumask_empty(cpus))
1347 return; /* nothing to do */
1349 mcs = xen_mc_entry(sizeof(*args));
1351 args->op.arg2.vcpumask = to_cpumask(args->mask);
1353 /* Remove us, and any offline CPUS. */
1354 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1355 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1357 if (va == TLB_FLUSH_ALL) {
1358 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1360 args->op.cmd = MMUEXT_INVLPG_MULTI;
1361 args->op.arg1.linear_addr = va;
1364 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1366 xen_mc_issue(PARAVIRT_LAZY_MMU);
1369 static unsigned long xen_read_cr3(void)
1371 return percpu_read(xen_cr3);
1374 static void set_current_cr3(void *v)
1376 percpu_write(xen_current_cr3, (unsigned long)v);
1379 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1381 struct mmuext_op *op;
1382 struct multicall_space mcs;
1386 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1390 WARN_ON(mfn == 0 && kernel);
1392 mcs = __xen_mc_entry(sizeof(*op));
1395 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1398 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1401 percpu_write(xen_cr3, cr3);
1403 /* Update xen_current_cr3 once the batch has actually
1405 xen_mc_callback(set_current_cr3, (void *)cr3);
1409 static void xen_write_cr3(unsigned long cr3)
1411 BUG_ON(preemptible());
1413 xen_mc_batch(); /* disables interrupts */
1415 /* Update while interrupts are disabled, so its atomic with
1417 percpu_write(xen_cr3, cr3);
1419 __xen_write_cr3(true, cr3);
1421 #ifdef CONFIG_X86_64
1423 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1425 __xen_write_cr3(false, __pa(user_pgd));
1427 __xen_write_cr3(false, 0);
1431 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1434 static int xen_pgd_alloc(struct mm_struct *mm)
1436 pgd_t *pgd = mm->pgd;
1439 BUG_ON(PagePinned(virt_to_page(pgd)));
1441 #ifdef CONFIG_X86_64
1443 struct page *page = virt_to_page(pgd);
1446 BUG_ON(page->private != 0);
1450 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1451 page->private = (unsigned long)user_pgd;
1453 if (user_pgd != NULL) {
1454 user_pgd[pgd_index(VSYSCALL_START)] =
1455 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1459 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1466 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1468 #ifdef CONFIG_X86_64
1469 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1472 free_page((unsigned long)user_pgd);
1476 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1478 unsigned long pfn = pte_pfn(pte);
1480 #ifdef CONFIG_X86_32
1481 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1482 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1483 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1488 * If the new pfn is within the range of the newly allocated
1489 * kernel pagetable, and it isn't being mapped into an
1490 * early_ioremap fixmap slot, make sure it is RO.
1492 if (!is_early_ioremap_ptep(ptep) &&
1493 pfn >= pgt_buf_start && pfn < pgt_buf_end)
1494 pte = pte_wrprotect(pte);
1499 /* Init-time set_pte while constructing initial pagetables, which
1500 doesn't allow RO pagetable pages to be remapped RW */
1501 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1503 pte = mask_rw_pte(ptep, pte);
1505 xen_set_pte(ptep, pte);
1508 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1510 struct mmuext_op op;
1512 op.arg1.mfn = pfn_to_mfn(pfn);
1513 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1517 /* Early in boot, while setting up the initial pagetable, assume
1518 everything is pinned. */
1519 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1521 #ifdef CONFIG_FLATMEM
1522 BUG_ON(mem_map); /* should only be used early */
1524 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1525 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1528 /* Used for pmd and pud */
1529 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1531 #ifdef CONFIG_FLATMEM
1532 BUG_ON(mem_map); /* should only be used early */
1534 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1537 /* Early release_pte assumes that all pts are pinned, since there's
1538 only init_mm and anything attached to that is pinned. */
1539 static __init void xen_release_pte_init(unsigned long pfn)
1541 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1542 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1545 static __init void xen_release_pmd_init(unsigned long pfn)
1547 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1550 /* This needs to make sure the new pte page is pinned iff its being
1551 attached to a pinned pagetable. */
1552 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1554 struct page *page = pfn_to_page(pfn);
1556 if (PagePinned(virt_to_page(mm->pgd))) {
1557 SetPagePinned(page);
1559 if (!PageHighMem(page)) {
1560 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1561 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1562 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1564 /* make sure there are no stray mappings of
1566 kmap_flush_unused();
1571 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1573 xen_alloc_ptpage(mm, pfn, PT_PTE);
1576 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1578 xen_alloc_ptpage(mm, pfn, PT_PMD);
1581 /* This should never happen until we're OK to use struct page */
1582 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1584 struct page *page = pfn_to_page(pfn);
1586 if (PagePinned(page)) {
1587 if (!PageHighMem(page)) {
1588 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1589 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1590 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1592 ClearPagePinned(page);
1596 static void xen_release_pte(unsigned long pfn)
1598 xen_release_ptpage(pfn, PT_PTE);
1601 static void xen_release_pmd(unsigned long pfn)
1603 xen_release_ptpage(pfn, PT_PMD);
1606 #if PAGETABLE_LEVELS == 4
1607 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1609 xen_alloc_ptpage(mm, pfn, PT_PUD);
1612 static void xen_release_pud(unsigned long pfn)
1614 xen_release_ptpage(pfn, PT_PUD);
1618 void __init xen_reserve_top(void)
1620 #ifdef CONFIG_X86_32
1621 unsigned long top = HYPERVISOR_VIRT_START;
1622 struct xen_platform_parameters pp;
1624 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1625 top = pp.virt_start;
1627 reserve_top_address(-top);
1628 #endif /* CONFIG_X86_32 */
1632 * Like __va(), but returns address in the kernel mapping (which is
1633 * all we have until the physical memory mapping has been set up.
1635 static void *__ka(phys_addr_t paddr)
1637 #ifdef CONFIG_X86_64
1638 return (void *)(paddr + __START_KERNEL_map);
1644 /* Convert a machine address to physical address */
1645 static unsigned long m2p(phys_addr_t maddr)
1649 maddr &= PTE_PFN_MASK;
1650 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1655 /* Convert a machine address to kernel virtual */
1656 static void *m2v(phys_addr_t maddr)
1658 return __ka(m2p(maddr));
1661 /* Set the page permissions on an identity-mapped pages */
1662 static void set_page_prot(void *addr, pgprot_t prot)
1664 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1665 pte_t pte = pfn_pte(pfn, prot);
1667 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1671 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1673 unsigned pmdidx, pteidx;
1677 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1682 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1685 /* Reuse or allocate a page of ptes */
1686 if (pmd_present(pmd[pmdidx]))
1687 pte_page = m2v(pmd[pmdidx].pmd);
1689 /* Check for free pte pages */
1690 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1693 pte_page = &level1_ident_pgt[ident_pte];
1694 ident_pte += PTRS_PER_PTE;
1696 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1699 /* Install mappings */
1700 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1703 if (pfn > max_pfn_mapped)
1704 max_pfn_mapped = pfn;
1706 if (!pte_none(pte_page[pteidx]))
1709 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1710 pte_page[pteidx] = pte;
1714 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1715 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1717 set_page_prot(pmd, PAGE_KERNEL_RO);
1720 void __init xen_setup_machphys_mapping(void)
1722 struct xen_machphys_mapping mapping;
1723 unsigned long machine_to_phys_nr_ents;
1725 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1726 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1727 machine_to_phys_nr_ents = mapping.max_mfn + 1;
1729 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1731 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1734 #ifdef CONFIG_X86_64
1735 static void convert_pfn_mfn(void *v)
1740 /* All levels are converted the same way, so just treat them
1742 for (i = 0; i < PTRS_PER_PTE; i++)
1743 pte[i] = xen_make_pte(pte[i].pte);
1747 * Set up the inital kernel pagetable.
1749 * We can construct this by grafting the Xen provided pagetable into
1750 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1751 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1752 * means that only the kernel has a physical mapping to start with -
1753 * but that's enough to get __va working. We need to fill in the rest
1754 * of the physical mapping once some sort of allocator has been set
1757 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1758 unsigned long max_pfn)
1763 /* Zap identity mapping */
1764 init_level4_pgt[0] = __pgd(0);
1766 /* Pre-constructed entries are in pfn, so convert to mfn */
1767 convert_pfn_mfn(init_level4_pgt);
1768 convert_pfn_mfn(level3_ident_pgt);
1769 convert_pfn_mfn(level3_kernel_pgt);
1771 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1772 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1774 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1775 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1777 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1778 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1779 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1781 /* Set up identity map */
1782 xen_map_identity_early(level2_ident_pgt, max_pfn);
1784 /* Make pagetable pieces RO */
1785 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1786 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1787 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1788 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1789 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1790 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1792 /* Pin down new L4 */
1793 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1794 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1796 /* Unpin Xen-provided one */
1797 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1800 pgd = init_level4_pgt;
1803 * At this stage there can be no user pgd, and no page
1804 * structure to attach it to, so make sure we just set kernel
1808 __xen_write_cr3(true, __pa(pgd));
1809 xen_mc_issue(PARAVIRT_LAZY_CPU);
1811 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1812 __pa(xen_start_info->pt_base +
1813 xen_start_info->nr_pt_frames * PAGE_SIZE),
1818 #else /* !CONFIG_X86_64 */
1819 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1820 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1822 static __init void xen_write_cr3_init(unsigned long cr3)
1824 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1826 BUG_ON(read_cr3() != __pa(initial_page_table));
1827 BUG_ON(cr3 != __pa(swapper_pg_dir));
1830 * We are switching to swapper_pg_dir for the first time (from
1831 * initial_page_table) and therefore need to mark that page
1832 * read-only and then pin it.
1834 * Xen disallows sharing of kernel PMDs for PAE
1835 * guests. Therefore we must copy the kernel PMD from
1836 * initial_page_table into a new kernel PMD to be used in
1839 swapper_kernel_pmd =
1840 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1841 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1842 sizeof(pmd_t) * PTRS_PER_PMD);
1843 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1844 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1845 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1847 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1849 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1851 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1852 PFN_DOWN(__pa(initial_page_table)));
1853 set_page_prot(initial_page_table, PAGE_KERNEL);
1854 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1856 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1859 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1860 unsigned long max_pfn)
1864 initial_kernel_pmd =
1865 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1867 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1868 xen_start_info->nr_pt_frames * PAGE_SIZE +
1871 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1872 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1874 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1876 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1877 initial_page_table[KERNEL_PGD_BOUNDARY] =
1878 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1880 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1881 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1882 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1884 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1886 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1887 PFN_DOWN(__pa(initial_page_table)));
1888 xen_write_cr3(__pa(initial_page_table));
1890 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1891 __pa(xen_start_info->pt_base +
1892 xen_start_info->nr_pt_frames * PAGE_SIZE),
1895 return initial_page_table;
1897 #endif /* CONFIG_X86_64 */
1899 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1901 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1905 phys >>= PAGE_SHIFT;
1908 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1909 #ifdef CONFIG_X86_F00F_BUG
1912 #ifdef CONFIG_X86_32
1915 # ifdef CONFIG_HIGHMEM
1916 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1919 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1921 case FIX_TEXT_POKE0:
1922 case FIX_TEXT_POKE1:
1923 /* All local page mappings */
1924 pte = pfn_pte(phys, prot);
1927 #ifdef CONFIG_X86_LOCAL_APIC
1928 case FIX_APIC_BASE: /* maps dummy local APIC */
1929 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1933 #ifdef CONFIG_X86_IO_APIC
1934 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1936 * We just don't map the IO APIC - all access is via
1937 * hypercalls. Keep the address in the pte for reference.
1939 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1943 case FIX_PARAVIRT_BOOTMAP:
1944 /* This is an MFN, but it isn't an IO mapping from the
1946 pte = mfn_pte(phys, prot);
1950 /* By default, set_fixmap is used for hardware mappings */
1951 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1955 __native_set_fixmap(idx, pte);
1957 #ifdef CONFIG_X86_64
1958 /* Replicate changes to map the vsyscall page into the user
1959 pagetable vsyscall mapping. */
1960 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1961 unsigned long vaddr = __fix_to_virt(idx);
1962 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1967 __init void xen_ident_map_ISA(void)
1972 * If we're dom0, then linear map the ISA machine addresses into
1973 * the kernel's address space.
1975 if (!xen_initial_domain())
1978 xen_raw_printk("Xen: setup ISA identity maps\n");
1980 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1981 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1983 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1990 static __init void xen_post_allocator_init(void)
1992 #ifdef CONFIG_XEN_DEBUG
1993 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
1995 pv_mmu_ops.set_pte = xen_set_pte;
1996 pv_mmu_ops.set_pmd = xen_set_pmd;
1997 pv_mmu_ops.set_pud = xen_set_pud;
1998 #if PAGETABLE_LEVELS == 4
1999 pv_mmu_ops.set_pgd = xen_set_pgd;
2002 /* This will work as long as patching hasn't happened yet
2003 (which it hasn't) */
2004 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2005 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2006 pv_mmu_ops.release_pte = xen_release_pte;
2007 pv_mmu_ops.release_pmd = xen_release_pmd;
2008 #if PAGETABLE_LEVELS == 4
2009 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2010 pv_mmu_ops.release_pud = xen_release_pud;
2013 #ifdef CONFIG_X86_64
2014 SetPagePinned(virt_to_page(level3_user_vsyscall));
2016 xen_mark_init_mm_pinned();
2019 static void xen_leave_lazy_mmu(void)
2023 paravirt_leave_lazy_mmu();
2027 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
2028 .read_cr2 = xen_read_cr2,
2029 .write_cr2 = xen_write_cr2,
2031 .read_cr3 = xen_read_cr3,
2032 #ifdef CONFIG_X86_32
2033 .write_cr3 = xen_write_cr3_init,
2035 .write_cr3 = xen_write_cr3,
2038 .flush_tlb_user = xen_flush_tlb,
2039 .flush_tlb_kernel = xen_flush_tlb,
2040 .flush_tlb_single = xen_flush_tlb_single,
2041 .flush_tlb_others = xen_flush_tlb_others,
2043 .pte_update = paravirt_nop,
2044 .pte_update_defer = paravirt_nop,
2046 .pgd_alloc = xen_pgd_alloc,
2047 .pgd_free = xen_pgd_free,
2049 .alloc_pte = xen_alloc_pte_init,
2050 .release_pte = xen_release_pte_init,
2051 .alloc_pmd = xen_alloc_pmd_init,
2052 .release_pmd = xen_release_pmd_init,
2054 .set_pte = xen_set_pte_init,
2055 .set_pte_at = xen_set_pte_at,
2056 .set_pmd = xen_set_pmd_hyper,
2058 .ptep_modify_prot_start = __ptep_modify_prot_start,
2059 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2061 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2062 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2064 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2065 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2067 #ifdef CONFIG_X86_PAE
2068 .set_pte_atomic = xen_set_pte_atomic,
2069 .pte_clear = xen_pte_clear,
2070 .pmd_clear = xen_pmd_clear,
2071 #endif /* CONFIG_X86_PAE */
2072 .set_pud = xen_set_pud_hyper,
2074 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2075 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2077 #if PAGETABLE_LEVELS == 4
2078 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2079 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2080 .set_pgd = xen_set_pgd_hyper,
2082 .alloc_pud = xen_alloc_pmd_init,
2083 .release_pud = xen_release_pmd_init,
2084 #endif /* PAGETABLE_LEVELS == 4 */
2086 .activate_mm = xen_activate_mm,
2087 .dup_mmap = xen_dup_mmap,
2088 .exit_mmap = xen_exit_mmap,
2091 .enter = paravirt_enter_lazy_mmu,
2092 .leave = xen_leave_lazy_mmu,
2095 .set_fixmap = xen_set_fixmap,
2098 void __init xen_init_mmu_ops(void)
2100 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2101 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2102 pv_mmu_ops = xen_mmu_ops;
2104 memset(dummy_mapping, 0xff, PAGE_SIZE);
2107 /* Protected by xen_reservation_lock. */
2108 #define MAX_CONTIG_ORDER 9 /* 2MB */
2109 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2111 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2112 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2113 unsigned long *in_frames,
2114 unsigned long *out_frames)
2117 struct multicall_space mcs;
2120 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2121 mcs = __xen_mc_entry(0);
2124 in_frames[i] = virt_to_mfn(vaddr);
2126 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2127 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2130 out_frames[i] = virt_to_pfn(vaddr);
2136 * Update the pfn-to-mfn mappings for a virtual address range, either to
2137 * point to an array of mfns, or contiguously from a single starting
2140 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2141 unsigned long *mfns,
2142 unsigned long first_mfn)
2149 limit = 1u << order;
2150 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2151 struct multicall_space mcs;
2154 mcs = __xen_mc_entry(0);
2158 mfn = first_mfn + i;
2160 if (i < (limit - 1))
2164 flags = UVMF_INVLPG | UVMF_ALL;
2166 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2169 MULTI_update_va_mapping(mcs.mc, vaddr,
2170 mfn_pte(mfn, PAGE_KERNEL), flags);
2172 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2179 * Perform the hypercall to exchange a region of our pfns to point to
2180 * memory with the required contiguous alignment. Takes the pfns as
2181 * input, and populates mfns as output.
2183 * Returns a success code indicating whether the hypervisor was able to
2184 * satisfy the request or not.
2186 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2187 unsigned long *pfns_in,
2188 unsigned long extents_out,
2189 unsigned int order_out,
2190 unsigned long *mfns_out,
2191 unsigned int address_bits)
2196 struct xen_memory_exchange exchange = {
2198 .nr_extents = extents_in,
2199 .extent_order = order_in,
2200 .extent_start = pfns_in,
2204 .nr_extents = extents_out,
2205 .extent_order = order_out,
2206 .extent_start = mfns_out,
2207 .address_bits = address_bits,
2212 BUG_ON(extents_in << order_in != extents_out << order_out);
2214 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2215 success = (exchange.nr_exchanged == extents_in);
2217 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2218 BUG_ON(success && (rc != 0));
2223 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2224 unsigned int address_bits)
2226 unsigned long *in_frames = discontig_frames, out_frame;
2227 unsigned long flags;
2231 * Currently an auto-translated guest will not perform I/O, nor will
2232 * it require PAE page directories below 4GB. Therefore any calls to
2233 * this function are redundant and can be ignored.
2236 if (xen_feature(XENFEAT_auto_translated_physmap))
2239 if (unlikely(order > MAX_CONTIG_ORDER))
2242 memset((void *) vstart, 0, PAGE_SIZE << order);
2244 spin_lock_irqsave(&xen_reservation_lock, flags);
2246 /* 1. Zap current PTEs, remembering MFNs. */
2247 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2249 /* 2. Get a new contiguous memory extent. */
2250 out_frame = virt_to_pfn(vstart);
2251 success = xen_exchange_memory(1UL << order, 0, in_frames,
2252 1, order, &out_frame,
2255 /* 3. Map the new extent in place of old pages. */
2257 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2259 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2261 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2263 return success ? 0 : -ENOMEM;
2265 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2267 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2269 unsigned long *out_frames = discontig_frames, in_frame;
2270 unsigned long flags;
2273 if (xen_feature(XENFEAT_auto_translated_physmap))
2276 if (unlikely(order > MAX_CONTIG_ORDER))
2279 memset((void *) vstart, 0, PAGE_SIZE << order);
2281 spin_lock_irqsave(&xen_reservation_lock, flags);
2283 /* 1. Find start MFN of contiguous extent. */
2284 in_frame = virt_to_mfn(vstart);
2286 /* 2. Zap current PTEs. */
2287 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2289 /* 3. Do the exchange for non-contiguous MFNs. */
2290 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2293 /* 4. Map new pages in place of old pages. */
2295 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2297 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2299 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2301 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2303 #ifdef CONFIG_XEN_PVHVM
2304 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2306 struct xen_hvm_pagetable_dying a;
2309 a.domid = DOMID_SELF;
2310 a.gpa = __pa(mm->pgd);
2311 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2312 WARN_ON_ONCE(rc < 0);
2315 static int is_pagetable_dying_supported(void)
2317 struct xen_hvm_pagetable_dying a;
2320 a.domid = DOMID_SELF;
2322 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2324 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2330 void __init xen_hvm_init_mmu_ops(void)
2332 if (is_pagetable_dying_supported())
2333 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2337 #define REMAP_BATCH_SIZE 16
2342 struct mmu_update *mmu_update;
2345 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2346 unsigned long addr, void *data)
2348 struct remap_data *rmd = data;
2349 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2351 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2352 rmd->mmu_update->val = pte_val_ma(pte);
2358 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2360 unsigned long mfn, int nr,
2361 pgprot_t prot, unsigned domid)
2363 struct remap_data rmd;
2364 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2366 unsigned long range;
2369 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2371 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2372 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2378 batch = min(REMAP_BATCH_SIZE, nr);
2379 range = (unsigned long)batch << PAGE_SHIFT;
2381 rmd.mmu_update = mmu_update;
2382 err = apply_to_page_range(vma->vm_mm, addr, range,
2383 remap_area_mfn_pte_fn, &rmd);
2388 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2402 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2404 #ifdef CONFIG_XEN_DEBUG_FS
2406 static int p2m_dump_open(struct inode *inode, struct file *filp)
2408 return single_open(filp, p2m_dump_show, NULL);
2411 static const struct file_operations p2m_dump_fops = {
2412 .open = p2m_dump_open,
2414 .llseek = seq_lseek,
2415 .release = single_release,
2418 static struct dentry *d_mmu_debug;
2420 static int __init xen_mmu_debugfs(void)
2422 struct dentry *d_xen = xen_init_debugfs();
2427 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2429 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2431 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2432 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2433 &mmu_stats.pgd_update_pinned);
2434 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2435 &mmu_stats.pgd_update_pinned);
2437 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2438 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2439 &mmu_stats.pud_update_pinned);
2440 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2441 &mmu_stats.pud_update_pinned);
2443 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2444 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2445 &mmu_stats.pmd_update_pinned);
2446 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2447 &mmu_stats.pmd_update_pinned);
2449 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2450 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2451 // &mmu_stats.pte_update_pinned);
2452 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2453 &mmu_stats.pte_update_pinned);
2455 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2456 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2457 &mmu_stats.mmu_update_extended);
2458 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2459 mmu_stats.mmu_update_histo, 20);
2461 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2462 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2463 &mmu_stats.set_pte_at_batched);
2464 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2465 &mmu_stats.set_pte_at_current);
2466 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2467 &mmu_stats.set_pte_at_kernel);
2469 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2470 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2471 &mmu_stats.prot_commit_batched);
2473 debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
2476 fs_initcall(xen_mmu_debugfs);
2478 #endif /* CONFIG_XEN_DEBUG_FS */