Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[pandora-kernel.git] / arch / x86 / platform / uv / uv_time.c
1 /*
2  * SGI RTC clock/timer routines.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, write to the Free Software
16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  *
18  *  Copyright (c) 2009 Silicon Graphics, Inc.  All Rights Reserved.
19  *  Copyright (c) Dimitri Sivanich
20  */
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
23
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
30
31 #define RTC_NAME                "sgi_rtc"
32
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static void uv_rtc_timer_setup(enum clock_event_mode,
36                                 struct clock_event_device *);
37
38 static struct clocksource clocksource_uv = {
39         .name           = RTC_NAME,
40         .rating         = 400,
41         .read           = uv_read_rtc,
42         .mask           = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
43         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
44 };
45
46 static struct clock_event_device clock_event_device_uv = {
47         .name           = RTC_NAME,
48         .features       = CLOCK_EVT_FEAT_ONESHOT,
49         .shift          = 20,
50         .rating         = 400,
51         .irq            = -1,
52         .set_next_event = uv_rtc_next_event,
53         .set_mode       = uv_rtc_timer_setup,
54         .event_handler  = NULL,
55 };
56
57 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
58
59 /* There is one of these allocated per node */
60 struct uv_rtc_timer_head {
61         spinlock_t      lock;
62         /* next cpu waiting for timer, local node relative: */
63         int             next_cpu;
64         /* number of cpus on this node: */
65         int             ncpus;
66         struct {
67                 int     lcpu;           /* systemwide logical cpu number */
68                 u64     expires;        /* next timer expiration for this cpu */
69         } cpu[1];
70 };
71
72 /*
73  * Access to uv_rtc_timer_head via blade id.
74  */
75 static struct uv_rtc_timer_head         **blade_info __read_mostly;
76
77 static int                              uv_rtc_evt_enable;
78
79 /*
80  * Hardware interface routines
81  */
82
83 /* Send IPIs to another node */
84 static void uv_rtc_send_IPI(int cpu)
85 {
86         unsigned long apicid, val;
87         int pnode;
88
89         apicid = cpu_physical_id(cpu);
90         pnode = uv_apicid_to_pnode(apicid);
91         apicid |= uv_apicid_hibits;
92         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
93               (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
94               (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
95
96         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
97 }
98
99 /* Check for an RTC interrupt pending */
100 static int uv_intr_pending(int pnode)
101 {
102         if (is_uv1_hub())
103                 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
104                         UV1H_EVENT_OCCURRED0_RTC1_MASK;
105         else
106                 return uv_read_global_mmr64(pnode, UV2H_EVENT_OCCURRED2) &
107                         UV2H_EVENT_OCCURRED2_RTC_1_MASK;
108 }
109
110 /* Setup interrupt and return non-zero if early expiration occurred. */
111 static int uv_setup_intr(int cpu, u64 expires)
112 {
113         u64 val;
114         unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
115         int pnode = uv_cpu_to_pnode(cpu);
116
117         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
118                 UVH_RTC1_INT_CONFIG_M_MASK);
119         uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
120
121         if (is_uv1_hub())
122                 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
123                                 UV1H_EVENT_OCCURRED0_RTC1_MASK);
124         else
125                 uv_write_global_mmr64(pnode, UV2H_EVENT_OCCURRED2_ALIAS,
126                                 UV2H_EVENT_OCCURRED2_RTC_1_MASK);
127
128         val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
129                 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
130
131         /* Set configuration */
132         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
133         /* Initialize comparator value */
134         uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
135
136         if (uv_read_rtc(NULL) <= expires)
137                 return 0;
138
139         return !uv_intr_pending(pnode);
140 }
141
142 /*
143  * Per-cpu timer tracking routines
144  */
145
146 static __init void uv_rtc_deallocate_timers(void)
147 {
148         int bid;
149
150         for_each_possible_blade(bid) {
151                 kfree(blade_info[bid]);
152         }
153         kfree(blade_info);
154 }
155
156 /* Allocate per-node list of cpu timer expiration times. */
157 static __init int uv_rtc_allocate_timers(void)
158 {
159         int cpu;
160
161         blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
162         if (!blade_info)
163                 return -ENOMEM;
164         memset(blade_info, 0, uv_possible_blades * sizeof(void *));
165
166         for_each_present_cpu(cpu) {
167                 int nid = cpu_to_node(cpu);
168                 int bid = uv_cpu_to_blade_id(cpu);
169                 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
170                 struct uv_rtc_timer_head *head = blade_info[bid];
171
172                 if (!head) {
173                         head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
174                                 (uv_blade_nr_possible_cpus(bid) *
175                                         2 * sizeof(u64)),
176                                 GFP_KERNEL, nid);
177                         if (!head) {
178                                 uv_rtc_deallocate_timers();
179                                 return -ENOMEM;
180                         }
181                         spin_lock_init(&head->lock);
182                         head->ncpus = uv_blade_nr_possible_cpus(bid);
183                         head->next_cpu = -1;
184                         blade_info[bid] = head;
185                 }
186
187                 head->cpu[bcpu].lcpu = cpu;
188                 head->cpu[bcpu].expires = ULLONG_MAX;
189         }
190
191         return 0;
192 }
193
194 /* Find and set the next expiring timer.  */
195 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
196 {
197         u64 lowest = ULLONG_MAX;
198         int c, bcpu = -1;
199
200         head->next_cpu = -1;
201         for (c = 0; c < head->ncpus; c++) {
202                 u64 exp = head->cpu[c].expires;
203                 if (exp < lowest) {
204                         bcpu = c;
205                         lowest = exp;
206                 }
207         }
208         if (bcpu >= 0) {
209                 head->next_cpu = bcpu;
210                 c = head->cpu[bcpu].lcpu;
211                 if (uv_setup_intr(c, lowest))
212                         /* If we didn't set it up in time, trigger */
213                         uv_rtc_send_IPI(c);
214         } else {
215                 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
216                         UVH_RTC1_INT_CONFIG_M_MASK);
217         }
218 }
219
220 /*
221  * Set expiration time for current cpu.
222  *
223  * Returns 1 if we missed the expiration time.
224  */
225 static int uv_rtc_set_timer(int cpu, u64 expires)
226 {
227         int pnode = uv_cpu_to_pnode(cpu);
228         int bid = uv_cpu_to_blade_id(cpu);
229         struct uv_rtc_timer_head *head = blade_info[bid];
230         int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
231         u64 *t = &head->cpu[bcpu].expires;
232         unsigned long flags;
233         int next_cpu;
234
235         spin_lock_irqsave(&head->lock, flags);
236
237         next_cpu = head->next_cpu;
238         *t = expires;
239
240         /* Will this one be next to go off? */
241         if (next_cpu < 0 || bcpu == next_cpu ||
242                         expires < head->cpu[next_cpu].expires) {
243                 head->next_cpu = bcpu;
244                 if (uv_setup_intr(cpu, expires)) {
245                         *t = ULLONG_MAX;
246                         uv_rtc_find_next_timer(head, pnode);
247                         spin_unlock_irqrestore(&head->lock, flags);
248                         return -ETIME;
249                 }
250         }
251
252         spin_unlock_irqrestore(&head->lock, flags);
253         return 0;
254 }
255
256 /*
257  * Unset expiration time for current cpu.
258  *
259  * Returns 1 if this timer was pending.
260  */
261 static int uv_rtc_unset_timer(int cpu, int force)
262 {
263         int pnode = uv_cpu_to_pnode(cpu);
264         int bid = uv_cpu_to_blade_id(cpu);
265         struct uv_rtc_timer_head *head = blade_info[bid];
266         int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
267         u64 *t = &head->cpu[bcpu].expires;
268         unsigned long flags;
269         int rc = 0;
270
271         spin_lock_irqsave(&head->lock, flags);
272
273         if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
274                 rc = 1;
275
276         if (rc) {
277                 *t = ULLONG_MAX;
278                 /* Was the hardware setup for this timer? */
279                 if (head->next_cpu == bcpu)
280                         uv_rtc_find_next_timer(head, pnode);
281         }
282
283         spin_unlock_irqrestore(&head->lock, flags);
284
285         return rc;
286 }
287
288
289 /*
290  * Kernel interface routines.
291  */
292
293 /*
294  * Read the RTC.
295  *
296  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
297  * cachelines of it's own page.  This allows faster simultaneous reads
298  * from a given socket.
299  */
300 static cycle_t uv_read_rtc(struct clocksource *cs)
301 {
302         unsigned long offset;
303
304         if (uv_get_min_hub_revision_id() == 1)
305                 offset = 0;
306         else
307                 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
308
309         return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
310 }
311
312 /*
313  * Program the next event, relative to now
314  */
315 static int uv_rtc_next_event(unsigned long delta,
316                              struct clock_event_device *ced)
317 {
318         int ced_cpu = cpumask_first(ced->cpumask);
319
320         return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
321 }
322
323 /*
324  * Setup the RTC timer in oneshot mode
325  */
326 static void uv_rtc_timer_setup(enum clock_event_mode mode,
327                                struct clock_event_device *evt)
328 {
329         int ced_cpu = cpumask_first(evt->cpumask);
330
331         switch (mode) {
332         case CLOCK_EVT_MODE_PERIODIC:
333         case CLOCK_EVT_MODE_ONESHOT:
334         case CLOCK_EVT_MODE_RESUME:
335                 /* Nothing to do here yet */
336                 break;
337         case CLOCK_EVT_MODE_UNUSED:
338         case CLOCK_EVT_MODE_SHUTDOWN:
339                 uv_rtc_unset_timer(ced_cpu, 1);
340                 break;
341         }
342 }
343
344 static void uv_rtc_interrupt(void)
345 {
346         int cpu = smp_processor_id();
347         struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
348
349         if (!ced || !ced->event_handler)
350                 return;
351
352         if (uv_rtc_unset_timer(cpu, 0) != 1)
353                 return;
354
355         ced->event_handler(ced);
356 }
357
358 static int __init uv_enable_evt_rtc(char *str)
359 {
360         uv_rtc_evt_enable = 1;
361
362         return 1;
363 }
364 __setup("uvrtcevt", uv_enable_evt_rtc);
365
366 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
367 {
368         struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
369
370         *ced = clock_event_device_uv;
371         ced->cpumask = cpumask_of(smp_processor_id());
372         clockevents_register_device(ced);
373 }
374
375 static __init int uv_rtc_setup_clock(void)
376 {
377         int rc;
378
379         if (!is_uv_system())
380                 return -ENODEV;
381
382         /* If single blade, prefer tsc */
383         if (uv_num_possible_blades() == 1)
384                 clocksource_uv.rating = 250;
385
386         rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
387         if (rc)
388                 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
389         else
390                 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
391                         sn_rtc_cycles_per_second/(unsigned long)1E6);
392
393         if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
394                 return rc;
395
396         /* Setup and register clockevents */
397         rc = uv_rtc_allocate_timers();
398         if (rc)
399                 goto error;
400
401         x86_platform_ipi_callback = uv_rtc_interrupt;
402
403         clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
404                                 NSEC_PER_SEC, clock_event_device_uv.shift);
405
406         clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
407                                                 sn_rtc_cycles_per_second;
408
409         clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
410                                 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
411
412         rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
413         if (rc) {
414                 x86_platform_ipi_callback = NULL;
415                 uv_rtc_deallocate_timers();
416                 goto error;
417         }
418
419         printk(KERN_INFO "UV RTC clockevents registered\n");
420
421         return 0;
422
423 error:
424         clocksource_unregister(&clocksource_uv);
425         printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
426
427         return rc;
428 }
429 arch_initcall(uv_rtc_setup_clock);