Merge branch 'x86/uv' into x86/devel
[pandora-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * PFN of last memory page.
53  */
54 unsigned long end_pfn;
55
56 /*
57  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
58  * The direct mapping extends to max_pfn_mapped, so that we can directly access
59  * apertures, ACPI and other tables without having to play with fixmaps.
60  */
61 unsigned long max_pfn_mapped;
62
63 static unsigned long dma_reserve __initdata;
64
65 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
66
67 int direct_gbpages __meminitdata
68 #ifdef CONFIG_DIRECT_GBPAGES
69                                 = 1
70 #endif
71 ;
72
73 static int __init parse_direct_gbpages_off(char *arg)
74 {
75         direct_gbpages = 0;
76         return 0;
77 }
78 early_param("nogbpages", parse_direct_gbpages_off);
79
80 static int __init parse_direct_gbpages_on(char *arg)
81 {
82         direct_gbpages = 1;
83         return 0;
84 }
85 early_param("gbpages", parse_direct_gbpages_on);
86
87 /*
88  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
89  * physical space so we can cache the place of the first one and move
90  * around without checking the pgd every time.
91  */
92
93 void show_mem(void)
94 {
95         long i, total = 0, reserved = 0;
96         long shared = 0, cached = 0;
97         struct page *page;
98         pg_data_t *pgdat;
99
100         printk(KERN_INFO "Mem-info:\n");
101         show_free_areas();
102         for_each_online_pgdat(pgdat) {
103                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
104                         /*
105                          * This loop can take a while with 256 GB and
106                          * 4k pages so defer the NMI watchdog:
107                          */
108                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
109                                 touch_nmi_watchdog();
110
111                         if (!pfn_valid(pgdat->node_start_pfn + i))
112                                 continue;
113
114                         page = pfn_to_page(pgdat->node_start_pfn + i);
115                         total++;
116                         if (PageReserved(page))
117                                 reserved++;
118                         else if (PageSwapCache(page))
119                                 cached++;
120                         else if (page_count(page))
121                                 shared += page_count(page) - 1;
122                 }
123         }
124         printk(KERN_INFO "%lu pages of RAM\n",          total);
125         printk(KERN_INFO "%lu reserved pages\n",        reserved);
126         printk(KERN_INFO "%lu pages shared\n",          shared);
127         printk(KERN_INFO "%lu pages swap cached\n",     cached);
128 }
129
130 int after_bootmem;
131
132 static __init void *spp_getpage(void)
133 {
134         void *ptr;
135
136         if (after_bootmem)
137                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
138         else
139                 ptr = alloc_bootmem_pages(PAGE_SIZE);
140
141         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
142                 panic("set_pte_phys: cannot allocate page data %s\n",
143                         after_bootmem ? "after bootmem" : "");
144         }
145
146         pr_debug("spp_getpage %p\n", ptr);
147
148         return ptr;
149 }
150
151 static __init void
152 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
153 {
154         pgd_t *pgd;
155         pud_t *pud;
156         pmd_t *pmd;
157         pte_t *pte, new_pte;
158
159         pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
160
161         pgd = pgd_offset_k(vaddr);
162         if (pgd_none(*pgd)) {
163                 printk(KERN_ERR
164                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
165                 return;
166         }
167         pud = pud_offset(pgd, vaddr);
168         if (pud_none(*pud)) {
169                 pmd = (pmd_t *) spp_getpage();
170                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
171                 if (pmd != pmd_offset(pud, 0)) {
172                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
173                                 pmd, pmd_offset(pud, 0));
174                         return;
175                 }
176         }
177         pmd = pmd_offset(pud, vaddr);
178         if (pmd_none(*pmd)) {
179                 pte = (pte_t *) spp_getpage();
180                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
181                 if (pte != pte_offset_kernel(pmd, 0)) {
182                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
183                         return;
184                 }
185         }
186         new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
187
188         pte = pte_offset_kernel(pmd, vaddr);
189         if (!pte_none(*pte) && pte_val(new_pte) &&
190             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
191                 pte_ERROR(*pte);
192         set_pte(pte, new_pte);
193
194         /*
195          * It's enough to flush this one mapping.
196          * (PGE mappings get flushed as well)
197          */
198         __flush_tlb_one(vaddr);
199 }
200
201 /*
202  * The head.S code sets up the kernel high mapping:
203  *
204  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
205  *
206  * phys_addr holds the negative offset to the kernel, which is added
207  * to the compile time generated pmds. This results in invalid pmds up
208  * to the point where we hit the physaddr 0 mapping.
209  *
210  * We limit the mappings to the region from _text to _end.  _end is
211  * rounded up to the 2MB boundary. This catches the invalid pmds as
212  * well, as they are located before _text:
213  */
214 void __init cleanup_highmap(void)
215 {
216         unsigned long vaddr = __START_KERNEL_map;
217         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
218         pmd_t *pmd = level2_kernel_pgt;
219         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
220
221         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
222                 if (pmd_none(*pmd))
223                         continue;
224                 if (vaddr < (unsigned long) _text || vaddr > end)
225                         set_pmd(pmd, __pmd(0));
226         }
227 }
228
229 /* NOTE: this is meant to be run only at boot */
230 void __init __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
231 {
232         unsigned long address = __fix_to_virt(idx);
233
234         if (idx >= __end_of_fixed_addresses) {
235                 printk(KERN_ERR "Invalid __set_fixmap\n");
236                 return;
237         }
238         set_pte_phys(address, phys, prot);
239 }
240
241 static unsigned long __initdata table_start;
242 static unsigned long __meminitdata table_end;
243
244 static __meminit void *alloc_low_page(unsigned long *phys)
245 {
246         unsigned long pfn = table_end++;
247         void *adr;
248
249         if (after_bootmem) {
250                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
251                 *phys = __pa(adr);
252
253                 return adr;
254         }
255
256         if (pfn >= end_pfn)
257                 panic("alloc_low_page: ran out of memory");
258
259         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
260         memset(adr, 0, PAGE_SIZE);
261         *phys  = pfn * PAGE_SIZE;
262         return adr;
263 }
264
265 static __meminit void unmap_low_page(void *adr)
266 {
267         if (after_bootmem)
268                 return;
269
270         early_iounmap(adr, PAGE_SIZE);
271 }
272
273 /* Must run before zap_low_mappings */
274 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
275 {
276         pmd_t *pmd, *last_pmd;
277         unsigned long vaddr;
278         int i, pmds;
279
280         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
281         vaddr = __START_KERNEL_map;
282         pmd = level2_kernel_pgt;
283         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
284
285         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
286                 for (i = 0; i < pmds; i++) {
287                         if (pmd_present(pmd[i]))
288                                 goto continue_outer_loop;
289                 }
290                 vaddr += addr & ~PMD_MASK;
291                 addr &= PMD_MASK;
292
293                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
294                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
295                 __flush_tlb_all();
296
297                 return (void *)vaddr;
298 continue_outer_loop:
299                 ;
300         }
301         printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
302
303         return NULL;
304 }
305
306 /*
307  * To avoid virtual aliases later:
308  */
309 __meminit void early_iounmap(void *addr, unsigned long size)
310 {
311         unsigned long vaddr;
312         pmd_t *pmd;
313         int i, pmds;
314
315         vaddr = (unsigned long)addr;
316         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
317         pmd = level2_kernel_pgt + pmd_index(vaddr);
318
319         for (i = 0; i < pmds; i++)
320                 pmd_clear(pmd + i);
321
322         __flush_tlb_all();
323 }
324
325 static unsigned long __meminit
326 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
327 {
328         unsigned long pages = 0;
329
330         int i = pmd_index(address);
331
332         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
333                 pmd_t *pmd = pmd_page + pmd_index(address);
334
335                 if (address >= end) {
336                         if (!after_bootmem) {
337                                 for (; i < PTRS_PER_PMD; i++, pmd++)
338                                         set_pmd(pmd, __pmd(0));
339                         }
340                         break;
341                 }
342
343                 if (pmd_val(*pmd))
344                         continue;
345
346                 pages++;
347                 set_pte((pte_t *)pmd,
348                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
349         }
350         update_page_count(PG_LEVEL_2M, pages);
351         return address;
352 }
353
354 static unsigned long __meminit
355 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
356 {
357         pmd_t *pmd = pmd_offset(pud, 0);
358         unsigned long last_map_addr;
359
360         spin_lock(&init_mm.page_table_lock);
361         last_map_addr = phys_pmd_init(pmd, address, end);
362         spin_unlock(&init_mm.page_table_lock);
363         __flush_tlb_all();
364         return last_map_addr;
365 }
366
367 static unsigned long __meminit
368 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
369 {
370         unsigned long pages = 0;
371         unsigned long last_map_addr = end;
372         int i = pud_index(addr);
373
374         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
375                 unsigned long pmd_phys;
376                 pud_t *pud = pud_page + pud_index(addr);
377                 pmd_t *pmd;
378
379                 if (addr >= end)
380                         break;
381
382                 if (!after_bootmem &&
383                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
384                         set_pud(pud, __pud(0));
385                         continue;
386                 }
387
388                 if (pud_val(*pud)) {
389                         if (!pud_large(*pud))
390                                 last_map_addr = phys_pmd_update(pud, addr, end);
391                         continue;
392                 }
393
394                 if (direct_gbpages) {
395                         pages++;
396                         set_pte((pte_t *)pud,
397                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
398                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
399                         continue;
400                 }
401
402                 pmd = alloc_low_page(&pmd_phys);
403
404                 spin_lock(&init_mm.page_table_lock);
405                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
406                 last_map_addr = phys_pmd_init(pmd, addr, end);
407                 spin_unlock(&init_mm.page_table_lock);
408
409                 unmap_low_page(pmd);
410         }
411         __flush_tlb_all();
412         update_page_count(PG_LEVEL_1G, pages);
413
414         return last_map_addr >> PAGE_SHIFT;
415 }
416
417 static void __init find_early_table_space(unsigned long end)
418 {
419         unsigned long puds, pmds, tables, start;
420
421         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
422         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
423         if (!direct_gbpages) {
424                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
425                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
426         }
427
428         /*
429          * RED-PEN putting page tables only on node 0 could
430          * cause a hotspot and fill up ZONE_DMA. The page tables
431          * need roughly 0.5KB per GB.
432          */
433         start = 0x8000;
434         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
435         if (table_start == -1UL)
436                 panic("Cannot find space for the kernel page tables");
437
438         table_start >>= PAGE_SHIFT;
439         table_end = table_start;
440
441         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
442                 end, table_start << PAGE_SHIFT,
443                 (table_start << PAGE_SHIFT) + tables);
444 }
445
446 static void __init init_gbpages(void)
447 {
448         if (direct_gbpages && cpu_has_gbpages)
449                 printk(KERN_INFO "Using GB pages for direct mapping\n");
450         else
451                 direct_gbpages = 0;
452 }
453
454 #ifdef CONFIG_MEMTEST
455
456 static void __init memtest(unsigned long start_phys, unsigned long size,
457                                  unsigned pattern)
458 {
459         unsigned long i;
460         unsigned long *start;
461         unsigned long start_bad;
462         unsigned long last_bad;
463         unsigned long val;
464         unsigned long start_phys_aligned;
465         unsigned long count;
466         unsigned long incr;
467
468         switch (pattern) {
469         case 0:
470                 val = 0UL;
471                 break;
472         case 1:
473                 val = -1UL;
474                 break;
475         case 2:
476                 val = 0x5555555555555555UL;
477                 break;
478         case 3:
479                 val = 0xaaaaaaaaaaaaaaaaUL;
480                 break;
481         default:
482                 return;
483         }
484
485         incr = sizeof(unsigned long);
486         start_phys_aligned = ALIGN(start_phys, incr);
487         count = (size - (start_phys_aligned - start_phys))/incr;
488         start = __va(start_phys_aligned);
489         start_bad = 0;
490         last_bad = 0;
491
492         for (i = 0; i < count; i++)
493                 start[i] = val;
494         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
495                 if (*start != val) {
496                         if (start_phys_aligned == last_bad + incr) {
497                                 last_bad += incr;
498                         } else {
499                                 if (start_bad) {
500                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
501                                                 val, start_bad, last_bad + incr);
502                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
503                                 }
504                                 start_bad = last_bad = start_phys_aligned;
505                         }
506                 }
507         }
508         if (start_bad) {
509                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
510                         val, start_bad, last_bad + incr);
511                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
512         }
513
514 }
515
516 /* default is disabled */
517 static int memtest_pattern __initdata;
518
519 static int __init parse_memtest(char *arg)
520 {
521         if (arg)
522                 memtest_pattern = simple_strtoul(arg, NULL, 0);
523         return 0;
524 }
525
526 early_param("memtest", parse_memtest);
527
528 static void __init early_memtest(unsigned long start, unsigned long end)
529 {
530         u64 t_start, t_size;
531         unsigned pattern;
532
533         if (!memtest_pattern)
534                 return;
535
536         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
537         for (pattern = 0; pattern < memtest_pattern; pattern++) {
538                 t_start = start;
539                 t_size = 0;
540                 while (t_start < end) {
541                         t_start = find_e820_area_size(t_start, &t_size, 1);
542
543                         /* done ? */
544                         if (t_start >= end)
545                                 break;
546                         if (t_start + t_size > end)
547                                 t_size = end - t_start;
548
549                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
550                                 (unsigned long long)t_start,
551                                 (unsigned long long)t_start + t_size, pattern);
552
553                         memtest(t_start, t_size, pattern);
554
555                         t_start += t_size;
556                 }
557         }
558         printk(KERN_CONT "\n");
559 }
560 #else
561 static void __init early_memtest(unsigned long start, unsigned long end)
562 {
563 }
564 #endif
565
566 /*
567  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
568  * This runs before bootmem is initialized and gets pages directly from
569  * the physical memory. To access them they are temporarily mapped.
570  */
571 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
572 {
573         unsigned long next, last_map_addr = end;
574         unsigned long start_phys = start, end_phys = end;
575
576         printk(KERN_INFO "init_memory_mapping\n");
577
578         /*
579          * Find space for the kernel direct mapping tables.
580          *
581          * Later we should allocate these tables in the local node of the
582          * memory mapped. Unfortunately this is done currently before the
583          * nodes are discovered.
584          */
585         if (!after_bootmem) {
586                 init_gbpages();
587                 find_early_table_space(end);
588         }
589
590         start = (unsigned long)__va(start);
591         end = (unsigned long)__va(end);
592
593         for (; start < end; start = next) {
594                 pgd_t *pgd = pgd_offset_k(start);
595                 unsigned long pud_phys;
596                 pud_t *pud;
597
598                 if (after_bootmem)
599                         pud = pud_offset(pgd, start & PGDIR_MASK);
600                 else
601                         pud = alloc_low_page(&pud_phys);
602
603                 next = start + PGDIR_SIZE;
604                 if (next > end)
605                         next = end;
606                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
607                 if (!after_bootmem)
608                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
609                 unmap_low_page(pud);
610         }
611
612         if (!after_bootmem)
613                 mmu_cr4_features = read_cr4();
614         __flush_tlb_all();
615
616         if (!after_bootmem)
617                 reserve_early(table_start << PAGE_SHIFT,
618                                  table_end << PAGE_SHIFT, "PGTABLE");
619
620         if (!after_bootmem)
621                 early_memtest(start_phys, end_phys);
622
623         return last_map_addr;
624 }
625
626 #ifndef CONFIG_NUMA
627 void __init paging_init(void)
628 {
629         unsigned long max_zone_pfns[MAX_NR_ZONES];
630
631         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
632         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
633         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
634         max_zone_pfns[ZONE_NORMAL] = end_pfn;
635
636         memory_present(0, 0, end_pfn);
637         sparse_init();
638         free_area_init_nodes(max_zone_pfns);
639 }
640 #endif
641
642 /*
643  * Memory hotplug specific functions
644  */
645 #ifdef CONFIG_MEMORY_HOTPLUG
646 /*
647  * Memory is added always to NORMAL zone. This means you will never get
648  * additional DMA/DMA32 memory.
649  */
650 int arch_add_memory(int nid, u64 start, u64 size)
651 {
652         struct pglist_data *pgdat = NODE_DATA(nid);
653         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
654         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
655         unsigned long nr_pages = size >> PAGE_SHIFT;
656         int ret;
657
658         last_mapped_pfn = init_memory_mapping(start, start + size-1);
659         if (last_mapped_pfn > max_pfn_mapped)
660                 max_pfn_mapped = last_mapped_pfn;
661
662         ret = __add_pages(zone, start_pfn, nr_pages);
663         WARN_ON(1);
664
665         return ret;
666 }
667 EXPORT_SYMBOL_GPL(arch_add_memory);
668
669 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
670 int memory_add_physaddr_to_nid(u64 start)
671 {
672         return 0;
673 }
674 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
675 #endif
676
677 #endif /* CONFIG_MEMORY_HOTPLUG */
678
679 /*
680  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
681  * is valid. The argument is a physical page number.
682  *
683  *
684  * On x86, access has to be given to the first megabyte of ram because that area
685  * contains bios code and data regions used by X and dosemu and similar apps.
686  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
687  * mmio resources as well as potential bios/acpi data regions.
688  */
689 int devmem_is_allowed(unsigned long pagenr)
690 {
691         if (pagenr <= 256)
692                 return 1;
693         if (!page_is_ram(pagenr))
694                 return 1;
695         return 0;
696 }
697
698
699 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
700                          kcore_modules, kcore_vsyscall;
701
702 void __init mem_init(void)
703 {
704         long codesize, reservedpages, datasize, initsize;
705
706         pci_iommu_alloc();
707
708         /* clear_bss() already clear the empty_zero_page */
709
710         reservedpages = 0;
711
712         /* this will put all low memory onto the freelists */
713 #ifdef CONFIG_NUMA
714         totalram_pages = numa_free_all_bootmem();
715 #else
716         totalram_pages = free_all_bootmem();
717 #endif
718         reservedpages = end_pfn - totalram_pages -
719                                         absent_pages_in_range(0, end_pfn);
720         after_bootmem = 1;
721
722         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
723         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
724         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
725
726         /* Register memory areas for /proc/kcore */
727         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
728         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
729                    VMALLOC_END-VMALLOC_START);
730         kclist_add(&kcore_kernel, &_stext, _end - _stext);
731         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
732         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
733                                  VSYSCALL_END - VSYSCALL_START);
734
735         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
736                                 "%ldk reserved, %ldk data, %ldk init)\n",
737                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
738                 end_pfn << (PAGE_SHIFT-10),
739                 codesize >> 10,
740                 reservedpages << (PAGE_SHIFT-10),
741                 datasize >> 10,
742                 initsize >> 10);
743
744         cpa_init();
745 }
746
747 void free_init_pages(char *what, unsigned long begin, unsigned long end)
748 {
749         unsigned long addr = begin;
750
751         if (addr >= end)
752                 return;
753
754         /*
755          * If debugging page accesses then do not free this memory but
756          * mark them not present - any buggy init-section access will
757          * create a kernel page fault:
758          */
759 #ifdef CONFIG_DEBUG_PAGEALLOC
760         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
761                 begin, PAGE_ALIGN(end));
762         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
763 #else
764         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
765
766         for (; addr < end; addr += PAGE_SIZE) {
767                 ClearPageReserved(virt_to_page(addr));
768                 init_page_count(virt_to_page(addr));
769                 memset((void *)(addr & ~(PAGE_SIZE-1)),
770                         POISON_FREE_INITMEM, PAGE_SIZE);
771                 free_page(addr);
772                 totalram_pages++;
773         }
774 #endif
775 }
776
777 void free_initmem(void)
778 {
779         free_init_pages("unused kernel memory",
780                         (unsigned long)(&__init_begin),
781                         (unsigned long)(&__init_end));
782 }
783
784 #ifdef CONFIG_DEBUG_RODATA
785 const int rodata_test_data = 0xC3;
786 EXPORT_SYMBOL_GPL(rodata_test_data);
787
788 void mark_rodata_ro(void)
789 {
790         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
791
792         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
793                (end - start) >> 10);
794         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
795
796         /*
797          * The rodata section (but not the kernel text!) should also be
798          * not-executable.
799          */
800         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
801         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
802
803         rodata_test();
804
805 #ifdef CONFIG_CPA_DEBUG
806         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
807         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
808
809         printk(KERN_INFO "Testing CPA: again\n");
810         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
811 #endif
812 }
813
814 #endif
815
816 #ifdef CONFIG_BLK_DEV_INITRD
817 void free_initrd_mem(unsigned long start, unsigned long end)
818 {
819         free_init_pages("initrd memory", start, end);
820 }
821 #endif
822
823 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
824                                    int flags)
825 {
826 #ifdef CONFIG_NUMA
827         int nid, next_nid;
828 #endif
829         unsigned long pfn = phys >> PAGE_SHIFT;
830         int ret;
831
832         if (pfn >= end_pfn) {
833                 /*
834                  * This can happen with kdump kernels when accessing
835                  * firmware tables:
836                  */
837                 if (pfn < max_pfn_mapped)
838                         return -EFAULT;
839
840                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
841                                 phys, len);
842                 return -EFAULT;
843         }
844
845         /* Should check here against the e820 map to avoid double free */
846 #ifdef CONFIG_NUMA
847         nid = phys_to_nid(phys);
848         next_nid = phys_to_nid(phys + len - 1);
849         if (nid == next_nid)
850                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
851         else
852                 ret = reserve_bootmem(phys, len, flags);
853
854         if (ret != 0)
855                 return ret;
856
857 #else
858         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
859 #endif
860
861         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
862                 dma_reserve += len / PAGE_SIZE;
863                 set_dma_reserve(dma_reserve);
864         }
865
866         return 0;
867 }
868
869 int kern_addr_valid(unsigned long addr)
870 {
871         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
872         pgd_t *pgd;
873         pud_t *pud;
874         pmd_t *pmd;
875         pte_t *pte;
876
877         if (above != 0 && above != -1UL)
878                 return 0;
879
880         pgd = pgd_offset_k(addr);
881         if (pgd_none(*pgd))
882                 return 0;
883
884         pud = pud_offset(pgd, addr);
885         if (pud_none(*pud))
886                 return 0;
887
888         pmd = pmd_offset(pud, addr);
889         if (pmd_none(*pmd))
890                 return 0;
891
892         if (pmd_large(*pmd))
893                 return pfn_valid(pmd_pfn(*pmd));
894
895         pte = pte_offset_kernel(pmd, addr);
896         if (pte_none(*pte))
897                 return 0;
898
899         return pfn_valid(pte_pfn(*pte));
900 }
901
902 /*
903  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
904  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
905  * not need special handling anymore:
906  */
907 static struct vm_area_struct gate_vma = {
908         .vm_start       = VSYSCALL_START,
909         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
910         .vm_page_prot   = PAGE_READONLY_EXEC,
911         .vm_flags       = VM_READ | VM_EXEC
912 };
913
914 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
915 {
916 #ifdef CONFIG_IA32_EMULATION
917         if (test_tsk_thread_flag(tsk, TIF_IA32))
918                 return NULL;
919 #endif
920         return &gate_vma;
921 }
922
923 int in_gate_area(struct task_struct *task, unsigned long addr)
924 {
925         struct vm_area_struct *vma = get_gate_vma(task);
926
927         if (!vma)
928                 return 0;
929
930         return (addr >= vma->vm_start) && (addr < vma->vm_end);
931 }
932
933 /*
934  * Use this when you have no reliable task/vma, typically from interrupt
935  * context. It is less reliable than using the task's vma and may give
936  * false positives:
937  */
938 int in_gate_area_no_task(unsigned long addr)
939 {
940         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
941 }
942
943 const char *arch_vma_name(struct vm_area_struct *vma)
944 {
945         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
946                 return "[vdso]";
947         if (vma == &gate_vma)
948                 return "[vsyscall]";
949         return NULL;
950 }
951
952 #ifdef CONFIG_SPARSEMEM_VMEMMAP
953 /*
954  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
955  */
956 static long __meminitdata addr_start, addr_end;
957 static void __meminitdata *p_start, *p_end;
958 static int __meminitdata node_start;
959
960 int __meminit
961 vmemmap_populate(struct page *start_page, unsigned long size, int node)
962 {
963         unsigned long addr = (unsigned long)start_page;
964         unsigned long end = (unsigned long)(start_page + size);
965         unsigned long next;
966         pgd_t *pgd;
967         pud_t *pud;
968         pmd_t *pmd;
969
970         for (; addr < end; addr = next) {
971                 next = pmd_addr_end(addr, end);
972
973                 pgd = vmemmap_pgd_populate(addr, node);
974                 if (!pgd)
975                         return -ENOMEM;
976
977                 pud = vmemmap_pud_populate(pgd, addr, node);
978                 if (!pud)
979                         return -ENOMEM;
980
981                 pmd = pmd_offset(pud, addr);
982                 if (pmd_none(*pmd)) {
983                         pte_t entry;
984                         void *p;
985
986                         p = vmemmap_alloc_block(PMD_SIZE, node);
987                         if (!p)
988                                 return -ENOMEM;
989
990                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
991                                                         PAGE_KERNEL_LARGE);
992                         set_pmd(pmd, __pmd(pte_val(entry)));
993
994                         /* check to see if we have contiguous blocks */
995                         if (p_end != p || node_start != node) {
996                                 if (p_start)
997                                         printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
998                                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
999                                 addr_start = addr;
1000                                 node_start = node;
1001                                 p_start = p;
1002                         }
1003                         addr_end = addr + PMD_SIZE;
1004                         p_end = p + PMD_SIZE;
1005                 } else {
1006                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1007                 }
1008         }
1009         return 0;
1010 }
1011
1012 void __meminit vmemmap_populate_print_last(void)
1013 {
1014         if (p_start) {
1015                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1016                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1017                 p_start = NULL;
1018                 p_end = NULL;
1019                 node_start = 0;
1020         }
1021 }
1022 #endif