x86: add table_top check for alloc_low_page in 64 bit
[pandora-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * PFN of last memory page.
53  */
54 unsigned long end_pfn;
55
56 /*
57  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
58  * The direct mapping extends to max_pfn_mapped, so that we can directly access
59  * apertures, ACPI and other tables without having to play with fixmaps.
60  */
61 unsigned long max_pfn_mapped;
62
63 static unsigned long dma_reserve __initdata;
64
65 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
66
67 int direct_gbpages __meminitdata
68 #ifdef CONFIG_DIRECT_GBPAGES
69                                 = 1
70 #endif
71 ;
72
73 static int __init parse_direct_gbpages_off(char *arg)
74 {
75         direct_gbpages = 0;
76         return 0;
77 }
78 early_param("nogbpages", parse_direct_gbpages_off);
79
80 static int __init parse_direct_gbpages_on(char *arg)
81 {
82         direct_gbpages = 1;
83         return 0;
84 }
85 early_param("gbpages", parse_direct_gbpages_on);
86
87 /*
88  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
89  * physical space so we can cache the place of the first one and move
90  * around without checking the pgd every time.
91  */
92
93 void show_mem(void)
94 {
95         long i, total = 0, reserved = 0;
96         long shared = 0, cached = 0;
97         struct page *page;
98         pg_data_t *pgdat;
99
100         printk(KERN_INFO "Mem-info:\n");
101         show_free_areas();
102         for_each_online_pgdat(pgdat) {
103                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
104                         /*
105                          * This loop can take a while with 256 GB and
106                          * 4k pages so defer the NMI watchdog:
107                          */
108                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
109                                 touch_nmi_watchdog();
110
111                         if (!pfn_valid(pgdat->node_start_pfn + i))
112                                 continue;
113
114                         page = pfn_to_page(pgdat->node_start_pfn + i);
115                         total++;
116                         if (PageReserved(page))
117                                 reserved++;
118                         else if (PageSwapCache(page))
119                                 cached++;
120                         else if (page_count(page))
121                                 shared += page_count(page) - 1;
122                 }
123         }
124         printk(KERN_INFO "%lu pages of RAM\n",          total);
125         printk(KERN_INFO "%lu reserved pages\n",        reserved);
126         printk(KERN_INFO "%lu pages shared\n",          shared);
127         printk(KERN_INFO "%lu pages swap cached\n",     cached);
128 }
129
130 int after_bootmem;
131
132 static __init void *spp_getpage(void)
133 {
134         void *ptr;
135
136         if (after_bootmem)
137                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
138         else
139                 ptr = alloc_bootmem_pages(PAGE_SIZE);
140
141         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
142                 panic("set_pte_phys: cannot allocate page data %s\n",
143                         after_bootmem ? "after bootmem" : "");
144         }
145
146         pr_debug("spp_getpage %p\n", ptr);
147
148         return ptr;
149 }
150
151 void
152 set_pte_vaddr(unsigned long vaddr, pte_t new_pte)
153 {
154         pgd_t *pgd;
155         pud_t *pud;
156         pmd_t *pmd;
157         pte_t *pte;
158
159         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(new_pte));
160
161         pgd = pgd_offset_k(vaddr);
162         if (pgd_none(*pgd)) {
163                 printk(KERN_ERR
164                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
165                 return;
166         }
167         pud = pud_offset(pgd, vaddr);
168         if (pud_none(*pud)) {
169                 pmd = (pmd_t *) spp_getpage();
170                 pud_populate(&init_mm, pud, pmd);
171                 if (pmd != pmd_offset(pud, 0)) {
172                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
173                                 pmd, pmd_offset(pud, 0));
174                         return;
175                 }
176         }
177         pmd = pmd_offset(pud, vaddr);
178         if (pmd_none(*pmd)) {
179                 pte = (pte_t *) spp_getpage();
180                 pmd_populate_kernel(&init_mm, pmd, pte);
181                 if (pte != pte_offset_kernel(pmd, 0)) {
182                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
183                         return;
184                 }
185         }
186
187         pte = pte_offset_kernel(pmd, vaddr);
188         if (!pte_none(*pte) && pte_val(new_pte) &&
189             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
190                 pte_ERROR(*pte);
191         set_pte(pte, new_pte);
192
193         /*
194          * It's enough to flush this one mapping.
195          * (PGE mappings get flushed as well)
196          */
197         __flush_tlb_one(vaddr);
198 }
199
200 /*
201  * The head.S code sets up the kernel high mapping:
202  *
203  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
204  *
205  * phys_addr holds the negative offset to the kernel, which is added
206  * to the compile time generated pmds. This results in invalid pmds up
207  * to the point where we hit the physaddr 0 mapping.
208  *
209  * We limit the mappings to the region from _text to _end.  _end is
210  * rounded up to the 2MB boundary. This catches the invalid pmds as
211  * well, as they are located before _text:
212  */
213 void __init cleanup_highmap(void)
214 {
215         unsigned long vaddr = __START_KERNEL_map;
216         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
217         pmd_t *pmd = level2_kernel_pgt;
218         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
219
220         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
221                 if (pmd_none(*pmd))
222                         continue;
223                 if (vaddr < (unsigned long) _text || vaddr > end)
224                         set_pmd(pmd, __pmd(0));
225         }
226 }
227
228 static unsigned long __initdata table_start;
229 static unsigned long __meminitdata table_end;
230 static unsigned long __meminitdata table_top;
231
232 static __meminit void *alloc_low_page(unsigned long *phys)
233 {
234         unsigned long pfn = table_end++;
235         void *adr;
236
237         if (after_bootmem) {
238                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
239                 *phys = __pa(adr);
240
241                 return adr;
242         }
243
244         if (pfn >= table_top)
245                 panic("alloc_low_page: ran out of memory");
246
247         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
248         memset(adr, 0, PAGE_SIZE);
249         *phys  = pfn * PAGE_SIZE;
250         return adr;
251 }
252
253 static __meminit void unmap_low_page(void *adr)
254 {
255         if (after_bootmem)
256                 return;
257
258         early_iounmap(adr, PAGE_SIZE);
259 }
260
261 static unsigned long __meminit
262 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
263 {
264         unsigned long pages = 0;
265
266         int i = pmd_index(address);
267
268         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
269                 pmd_t *pmd = pmd_page + pmd_index(address);
270
271                 if (address >= end) {
272                         if (!after_bootmem) {
273                                 for (; i < PTRS_PER_PMD; i++, pmd++)
274                                         set_pmd(pmd, __pmd(0));
275                         }
276                         break;
277                 }
278
279                 if (pmd_val(*pmd))
280                         continue;
281
282                 pages++;
283                 set_pte((pte_t *)pmd,
284                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
285         }
286         update_page_count(PG_LEVEL_2M, pages);
287         return address;
288 }
289
290 static unsigned long __meminit
291 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
292 {
293         pmd_t *pmd = pmd_offset(pud, 0);
294         unsigned long last_map_addr;
295
296         spin_lock(&init_mm.page_table_lock);
297         last_map_addr = phys_pmd_init(pmd, address, end);
298         spin_unlock(&init_mm.page_table_lock);
299         __flush_tlb_all();
300         return last_map_addr;
301 }
302
303 static unsigned long __meminit
304 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
305 {
306         unsigned long pages = 0;
307         unsigned long last_map_addr = end;
308         int i = pud_index(addr);
309
310         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
311                 unsigned long pmd_phys;
312                 pud_t *pud = pud_page + pud_index(addr);
313                 pmd_t *pmd;
314
315                 if (addr >= end)
316                         break;
317
318                 if (!after_bootmem &&
319                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
320                         set_pud(pud, __pud(0));
321                         continue;
322                 }
323
324                 if (pud_val(*pud)) {
325                         if (!pud_large(*pud))
326                                 last_map_addr = phys_pmd_update(pud, addr, end);
327                         continue;
328                 }
329
330                 if (direct_gbpages) {
331                         pages++;
332                         set_pte((pte_t *)pud,
333                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
334                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
335                         continue;
336                 }
337
338                 pmd = alloc_low_page(&pmd_phys);
339
340                 spin_lock(&init_mm.page_table_lock);
341                 pud_populate(&init_mm, pud, __va(pmd_phys));
342                 last_map_addr = phys_pmd_init(pmd, addr, end);
343                 spin_unlock(&init_mm.page_table_lock);
344
345                 unmap_low_page(pmd);
346         }
347         __flush_tlb_all();
348         update_page_count(PG_LEVEL_1G, pages);
349
350         return last_map_addr;
351 }
352
353 static void __init find_early_table_space(unsigned long end)
354 {
355         unsigned long puds, pmds, tables, start;
356
357         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
358         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
359         if (!direct_gbpages) {
360                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
361                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
362         }
363
364         /*
365          * RED-PEN putting page tables only on node 0 could
366          * cause a hotspot and fill up ZONE_DMA. The page tables
367          * need roughly 0.5KB per GB.
368          */
369         start = 0x8000;
370         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
371         if (table_start == -1UL)
372                 panic("Cannot find space for the kernel page tables");
373
374         table_start >>= PAGE_SHIFT;
375         table_end = table_start;
376         table_top = table_start + (tables >> PAGE_SHIFT);
377
378         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
379                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
380 }
381
382 static void __init init_gbpages(void)
383 {
384         if (direct_gbpages && cpu_has_gbpages)
385                 printk(KERN_INFO "Using GB pages for direct mapping\n");
386         else
387                 direct_gbpages = 0;
388 }
389
390 #ifdef CONFIG_MEMTEST
391
392 static void __init memtest(unsigned long start_phys, unsigned long size,
393                                  unsigned pattern)
394 {
395         unsigned long i;
396         unsigned long *start;
397         unsigned long start_bad;
398         unsigned long last_bad;
399         unsigned long val;
400         unsigned long start_phys_aligned;
401         unsigned long count;
402         unsigned long incr;
403
404         switch (pattern) {
405         case 0:
406                 val = 0UL;
407                 break;
408         case 1:
409                 val = -1UL;
410                 break;
411         case 2:
412                 val = 0x5555555555555555UL;
413                 break;
414         case 3:
415                 val = 0xaaaaaaaaaaaaaaaaUL;
416                 break;
417         default:
418                 return;
419         }
420
421         incr = sizeof(unsigned long);
422         start_phys_aligned = ALIGN(start_phys, incr);
423         count = (size - (start_phys_aligned - start_phys))/incr;
424         start = __va(start_phys_aligned);
425         start_bad = 0;
426         last_bad = 0;
427
428         for (i = 0; i < count; i++)
429                 start[i] = val;
430         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
431                 if (*start != val) {
432                         if (start_phys_aligned == last_bad + incr) {
433                                 last_bad += incr;
434                         } else {
435                                 if (start_bad) {
436                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
437                                                 val, start_bad, last_bad + incr);
438                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
439                                 }
440                                 start_bad = last_bad = start_phys_aligned;
441                         }
442                 }
443         }
444         if (start_bad) {
445                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
446                         val, start_bad, last_bad + incr);
447                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
448         }
449
450 }
451
452 /* default is disabled */
453 static int memtest_pattern __initdata;
454
455 static int __init parse_memtest(char *arg)
456 {
457         if (arg)
458                 memtest_pattern = simple_strtoul(arg, NULL, 0);
459         return 0;
460 }
461
462 early_param("memtest", parse_memtest);
463
464 static void __init early_memtest(unsigned long start, unsigned long end)
465 {
466         u64 t_start, t_size;
467         unsigned pattern;
468
469         if (!memtest_pattern)
470                 return;
471
472         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
473         for (pattern = 0; pattern < memtest_pattern; pattern++) {
474                 t_start = start;
475                 t_size = 0;
476                 while (t_start < end) {
477                         t_start = find_e820_area_size(t_start, &t_size, 1);
478
479                         /* done ? */
480                         if (t_start >= end)
481                                 break;
482                         if (t_start + t_size > end)
483                                 t_size = end - t_start;
484
485                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
486                                 (unsigned long long)t_start,
487                                 (unsigned long long)t_start + t_size, pattern);
488
489                         memtest(t_start, t_size, pattern);
490
491                         t_start += t_size;
492                 }
493         }
494         printk(KERN_CONT "\n");
495 }
496 #else
497 static void __init early_memtest(unsigned long start, unsigned long end)
498 {
499 }
500 #endif
501
502 /*
503  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
504  * This runs before bootmem is initialized and gets pages directly from
505  * the physical memory. To access them they are temporarily mapped.
506  */
507 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
508 {
509         unsigned long next, last_map_addr = end;
510         unsigned long start_phys = start, end_phys = end;
511
512         printk(KERN_INFO "init_memory_mapping\n");
513
514         /*
515          * Find space for the kernel direct mapping tables.
516          *
517          * Later we should allocate these tables in the local node of the
518          * memory mapped. Unfortunately this is done currently before the
519          * nodes are discovered.
520          */
521         if (!after_bootmem) {
522                 init_gbpages();
523                 find_early_table_space(end);
524         }
525
526         start = (unsigned long)__va(start);
527         end = (unsigned long)__va(end);
528
529         for (; start < end; start = next) {
530                 pgd_t *pgd = pgd_offset_k(start);
531                 unsigned long pud_phys;
532                 pud_t *pud;
533
534                 if (after_bootmem)
535                         pud = pud_offset(pgd, start & PGDIR_MASK);
536                 else
537                         pud = alloc_low_page(&pud_phys);
538
539                 next = start + PGDIR_SIZE;
540                 if (next > end)
541                         next = end;
542                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
543                 if (!after_bootmem)
544                         pgd_populate(&init_mm, pgd_offset_k(start),
545                                      __va(pud_phys));
546                 unmap_low_page(pud);
547         }
548
549         if (!after_bootmem)
550                 mmu_cr4_features = read_cr4();
551         __flush_tlb_all();
552
553         if (!after_bootmem)
554                 reserve_early(table_start << PAGE_SHIFT,
555                                  table_end << PAGE_SHIFT, "PGTABLE");
556
557         if (!after_bootmem)
558                 early_memtest(start_phys, end_phys);
559
560         return last_map_addr >> PAGE_SHIFT;
561 }
562
563 #ifndef CONFIG_NUMA
564 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
565 {
566         unsigned long bootmap_size, bootmap;
567
568         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
569         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
570                                  PAGE_SIZE);
571         if (bootmap == -1L)
572                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
573         /* don't touch min_low_pfn */
574         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
575                                          0, end_pfn);
576         e820_register_active_regions(0, start_pfn, end_pfn);
577         free_bootmem_with_active_regions(0, end_pfn);
578         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
579         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
580 }
581
582 void __init paging_init(void)
583 {
584         unsigned long max_zone_pfns[MAX_NR_ZONES];
585
586         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
587         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
588         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
589         max_zone_pfns[ZONE_NORMAL] = end_pfn;
590
591         memory_present(0, 0, end_pfn);
592         sparse_init();
593         free_area_init_nodes(max_zone_pfns);
594 }
595 #endif
596
597 /*
598  * Memory hotplug specific functions
599  */
600 #ifdef CONFIG_MEMORY_HOTPLUG
601 /*
602  * Memory is added always to NORMAL zone. This means you will never get
603  * additional DMA/DMA32 memory.
604  */
605 int arch_add_memory(int nid, u64 start, u64 size)
606 {
607         struct pglist_data *pgdat = NODE_DATA(nid);
608         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
609         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
610         unsigned long nr_pages = size >> PAGE_SHIFT;
611         int ret;
612
613         last_mapped_pfn = init_memory_mapping(start, start + size-1);
614         if (last_mapped_pfn > max_pfn_mapped)
615                 max_pfn_mapped = last_mapped_pfn;
616
617         ret = __add_pages(zone, start_pfn, nr_pages);
618         WARN_ON(1);
619
620         return ret;
621 }
622 EXPORT_SYMBOL_GPL(arch_add_memory);
623
624 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
625 int memory_add_physaddr_to_nid(u64 start)
626 {
627         return 0;
628 }
629 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
630 #endif
631
632 #endif /* CONFIG_MEMORY_HOTPLUG */
633
634 /*
635  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
636  * is valid. The argument is a physical page number.
637  *
638  *
639  * On x86, access has to be given to the first megabyte of ram because that area
640  * contains bios code and data regions used by X and dosemu and similar apps.
641  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
642  * mmio resources as well as potential bios/acpi data regions.
643  */
644 int devmem_is_allowed(unsigned long pagenr)
645 {
646         if (pagenr <= 256)
647                 return 1;
648         if (!page_is_ram(pagenr))
649                 return 1;
650         return 0;
651 }
652
653
654 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
655                          kcore_modules, kcore_vsyscall;
656
657 void __init mem_init(void)
658 {
659         long codesize, reservedpages, datasize, initsize;
660
661         pci_iommu_alloc();
662
663         /* clear_bss() already clear the empty_zero_page */
664
665         reservedpages = 0;
666
667         /* this will put all low memory onto the freelists */
668 #ifdef CONFIG_NUMA
669         totalram_pages = numa_free_all_bootmem();
670 #else
671         totalram_pages = free_all_bootmem();
672 #endif
673         reservedpages = end_pfn - totalram_pages -
674                                         absent_pages_in_range(0, end_pfn);
675         after_bootmem = 1;
676
677         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
678         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
679         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
680
681         /* Register memory areas for /proc/kcore */
682         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
683         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
684                    VMALLOC_END-VMALLOC_START);
685         kclist_add(&kcore_kernel, &_stext, _end - _stext);
686         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
687         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
688                                  VSYSCALL_END - VSYSCALL_START);
689
690         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
691                                 "%ldk reserved, %ldk data, %ldk init)\n",
692                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
693                 end_pfn << (PAGE_SHIFT-10),
694                 codesize >> 10,
695                 reservedpages << (PAGE_SHIFT-10),
696                 datasize >> 10,
697                 initsize >> 10);
698
699         cpa_init();
700 }
701
702 void free_init_pages(char *what, unsigned long begin, unsigned long end)
703 {
704         unsigned long addr = begin;
705
706         if (addr >= end)
707                 return;
708
709         /*
710          * If debugging page accesses then do not free this memory but
711          * mark them not present - any buggy init-section access will
712          * create a kernel page fault:
713          */
714 #ifdef CONFIG_DEBUG_PAGEALLOC
715         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
716                 begin, PAGE_ALIGN(end));
717         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
718 #else
719         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
720
721         for (; addr < end; addr += PAGE_SIZE) {
722                 ClearPageReserved(virt_to_page(addr));
723                 init_page_count(virt_to_page(addr));
724                 memset((void *)(addr & ~(PAGE_SIZE-1)),
725                         POISON_FREE_INITMEM, PAGE_SIZE);
726                 free_page(addr);
727                 totalram_pages++;
728         }
729 #endif
730 }
731
732 void free_initmem(void)
733 {
734         free_init_pages("unused kernel memory",
735                         (unsigned long)(&__init_begin),
736                         (unsigned long)(&__init_end));
737 }
738
739 #ifdef CONFIG_DEBUG_RODATA
740 const int rodata_test_data = 0xC3;
741 EXPORT_SYMBOL_GPL(rodata_test_data);
742
743 void mark_rodata_ro(void)
744 {
745         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
746
747         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
748                (end - start) >> 10);
749         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
750
751         /*
752          * The rodata section (but not the kernel text!) should also be
753          * not-executable.
754          */
755         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
756         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
757
758         rodata_test();
759
760 #ifdef CONFIG_CPA_DEBUG
761         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
762         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
763
764         printk(KERN_INFO "Testing CPA: again\n");
765         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
766 #endif
767 }
768
769 #endif
770
771 #ifdef CONFIG_BLK_DEV_INITRD
772 void free_initrd_mem(unsigned long start, unsigned long end)
773 {
774         free_init_pages("initrd memory", start, end);
775 }
776 #endif
777
778 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
779                                    int flags)
780 {
781 #ifdef CONFIG_NUMA
782         int nid, next_nid;
783         int ret;
784 #endif
785         unsigned long pfn = phys >> PAGE_SHIFT;
786
787         if (pfn >= end_pfn) {
788                 /*
789                  * This can happen with kdump kernels when accessing
790                  * firmware tables:
791                  */
792                 if (pfn < max_pfn_mapped)
793                         return -EFAULT;
794
795                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
796                                 phys, len);
797                 return -EFAULT;
798         }
799
800         /* Should check here against the e820 map to avoid double free */
801 #ifdef CONFIG_NUMA
802         nid = phys_to_nid(phys);
803         next_nid = phys_to_nid(phys + len - 1);
804         if (nid == next_nid)
805                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
806         else
807                 ret = reserve_bootmem(phys, len, flags);
808
809         if (ret != 0)
810                 return ret;
811
812 #else
813         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
814 #endif
815
816         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
817                 dma_reserve += len / PAGE_SIZE;
818                 set_dma_reserve(dma_reserve);
819         }
820
821         return 0;
822 }
823
824 int kern_addr_valid(unsigned long addr)
825 {
826         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
827         pgd_t *pgd;
828         pud_t *pud;
829         pmd_t *pmd;
830         pte_t *pte;
831
832         if (above != 0 && above != -1UL)
833                 return 0;
834
835         pgd = pgd_offset_k(addr);
836         if (pgd_none(*pgd))
837                 return 0;
838
839         pud = pud_offset(pgd, addr);
840         if (pud_none(*pud))
841                 return 0;
842
843         pmd = pmd_offset(pud, addr);
844         if (pmd_none(*pmd))
845                 return 0;
846
847         if (pmd_large(*pmd))
848                 return pfn_valid(pmd_pfn(*pmd));
849
850         pte = pte_offset_kernel(pmd, addr);
851         if (pte_none(*pte))
852                 return 0;
853
854         return pfn_valid(pte_pfn(*pte));
855 }
856
857 /*
858  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
859  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
860  * not need special handling anymore:
861  */
862 static struct vm_area_struct gate_vma = {
863         .vm_start       = VSYSCALL_START,
864         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
865         .vm_page_prot   = PAGE_READONLY_EXEC,
866         .vm_flags       = VM_READ | VM_EXEC
867 };
868
869 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
870 {
871 #ifdef CONFIG_IA32_EMULATION
872         if (test_tsk_thread_flag(tsk, TIF_IA32))
873                 return NULL;
874 #endif
875         return &gate_vma;
876 }
877
878 int in_gate_area(struct task_struct *task, unsigned long addr)
879 {
880         struct vm_area_struct *vma = get_gate_vma(task);
881
882         if (!vma)
883                 return 0;
884
885         return (addr >= vma->vm_start) && (addr < vma->vm_end);
886 }
887
888 /*
889  * Use this when you have no reliable task/vma, typically from interrupt
890  * context. It is less reliable than using the task's vma and may give
891  * false positives:
892  */
893 int in_gate_area_no_task(unsigned long addr)
894 {
895         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
896 }
897
898 const char *arch_vma_name(struct vm_area_struct *vma)
899 {
900         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
901                 return "[vdso]";
902         if (vma == &gate_vma)
903                 return "[vsyscall]";
904         return NULL;
905 }
906
907 #ifdef CONFIG_SPARSEMEM_VMEMMAP
908 /*
909  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
910  */
911 static long __meminitdata addr_start, addr_end;
912 static void __meminitdata *p_start, *p_end;
913 static int __meminitdata node_start;
914
915 int __meminit
916 vmemmap_populate(struct page *start_page, unsigned long size, int node)
917 {
918         unsigned long addr = (unsigned long)start_page;
919         unsigned long end = (unsigned long)(start_page + size);
920         unsigned long next;
921         pgd_t *pgd;
922         pud_t *pud;
923         pmd_t *pmd;
924
925         for (; addr < end; addr = next) {
926                 next = pmd_addr_end(addr, end);
927
928                 pgd = vmemmap_pgd_populate(addr, node);
929                 if (!pgd)
930                         return -ENOMEM;
931
932                 pud = vmemmap_pud_populate(pgd, addr, node);
933                 if (!pud)
934                         return -ENOMEM;
935
936                 pmd = pmd_offset(pud, addr);
937                 if (pmd_none(*pmd)) {
938                         pte_t entry;
939                         void *p;
940
941                         p = vmemmap_alloc_block(PMD_SIZE, node);
942                         if (!p)
943                                 return -ENOMEM;
944
945                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
946                                                         PAGE_KERNEL_LARGE);
947                         set_pmd(pmd, __pmd(pte_val(entry)));
948
949                         /* check to see if we have contiguous blocks */
950                         if (p_end != p || node_start != node) {
951                                 if (p_start)
952                                         printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
953                                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
954                                 addr_start = addr;
955                                 node_start = node;
956                                 p_start = p;
957                         }
958                         addr_end = addr + PMD_SIZE;
959                         p_end = p + PMD_SIZE;
960                 } else {
961                         vmemmap_verify((pte_t *)pmd, node, addr, next);
962                 }
963         }
964         return 0;
965 }
966
967 void __meminit vmemmap_populate_print_last(void)
968 {
969         if (p_start) {
970                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
971                         addr_start, addr_end-1, p_start, p_end-1, node_start);
972                 p_start = NULL;
973                 p_end = NULL;
974                 node_start = 0;
975         }
976 }
977 #endif