KVM: Add MCE support
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45 #include <asm/mce.h>
46
47 #define MAX_IO_MSRS 256
48 #define CR0_RESERVED_BITS                                               \
49         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
50                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
51                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
52 #define CR4_RESERVED_BITS                                               \
53         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
54                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
55                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
56                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57
58 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
59
60 #define KVM_MAX_MCE_BANKS 32
61 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
62
63 /* EFER defaults:
64  * - enable syscall per default because its emulated by KVM
65  * - enable LME and LMA per default on 64 bit KVM
66  */
67 #ifdef CONFIG_X86_64
68 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
69 #else
70 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
71 #endif
72
73 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
74 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
75
76 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
77                                     struct kvm_cpuid_entry2 __user *entries);
78 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
79                                               u32 function, u32 index);
80
81 struct kvm_x86_ops *kvm_x86_ops;
82 EXPORT_SYMBOL_GPL(kvm_x86_ops);
83
84 struct kvm_stats_debugfs_item debugfs_entries[] = {
85         { "pf_fixed", VCPU_STAT(pf_fixed) },
86         { "pf_guest", VCPU_STAT(pf_guest) },
87         { "tlb_flush", VCPU_STAT(tlb_flush) },
88         { "invlpg", VCPU_STAT(invlpg) },
89         { "exits", VCPU_STAT(exits) },
90         { "io_exits", VCPU_STAT(io_exits) },
91         { "mmio_exits", VCPU_STAT(mmio_exits) },
92         { "signal_exits", VCPU_STAT(signal_exits) },
93         { "irq_window", VCPU_STAT(irq_window_exits) },
94         { "nmi_window", VCPU_STAT(nmi_window_exits) },
95         { "halt_exits", VCPU_STAT(halt_exits) },
96         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
97         { "hypercalls", VCPU_STAT(hypercalls) },
98         { "request_irq", VCPU_STAT(request_irq_exits) },
99         { "irq_exits", VCPU_STAT(irq_exits) },
100         { "host_state_reload", VCPU_STAT(host_state_reload) },
101         { "efer_reload", VCPU_STAT(efer_reload) },
102         { "fpu_reload", VCPU_STAT(fpu_reload) },
103         { "insn_emulation", VCPU_STAT(insn_emulation) },
104         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
105         { "irq_injections", VCPU_STAT(irq_injections) },
106         { "nmi_injections", VCPU_STAT(nmi_injections) },
107         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
108         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
109         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
110         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
111         { "mmu_flooded", VM_STAT(mmu_flooded) },
112         { "mmu_recycled", VM_STAT(mmu_recycled) },
113         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
114         { "mmu_unsync", VM_STAT(mmu_unsync) },
115         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
116         { "largepages", VM_STAT(lpages) },
117         { NULL }
118 };
119
120 unsigned long segment_base(u16 selector)
121 {
122         struct descriptor_table gdt;
123         struct desc_struct *d;
124         unsigned long table_base;
125         unsigned long v;
126
127         if (selector == 0)
128                 return 0;
129
130         asm("sgdt %0" : "=m"(gdt));
131         table_base = gdt.base;
132
133         if (selector & 4) {           /* from ldt */
134                 u16 ldt_selector;
135
136                 asm("sldt %0" : "=g"(ldt_selector));
137                 table_base = segment_base(ldt_selector);
138         }
139         d = (struct desc_struct *)(table_base + (selector & ~7));
140         v = d->base0 | ((unsigned long)d->base1 << 16) |
141                 ((unsigned long)d->base2 << 24);
142 #ifdef CONFIG_X86_64
143         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
144                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
145 #endif
146         return v;
147 }
148 EXPORT_SYMBOL_GPL(segment_base);
149
150 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
151 {
152         if (irqchip_in_kernel(vcpu->kvm))
153                 return vcpu->arch.apic_base;
154         else
155                 return vcpu->arch.apic_base;
156 }
157 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
158
159 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
160 {
161         /* TODO: reserve bits check */
162         if (irqchip_in_kernel(vcpu->kvm))
163                 kvm_lapic_set_base(vcpu, data);
164         else
165                 vcpu->arch.apic_base = data;
166 }
167 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
168
169 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
170 {
171         WARN_ON(vcpu->arch.exception.pending);
172         vcpu->arch.exception.pending = true;
173         vcpu->arch.exception.has_error_code = false;
174         vcpu->arch.exception.nr = nr;
175 }
176 EXPORT_SYMBOL_GPL(kvm_queue_exception);
177
178 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
179                            u32 error_code)
180 {
181         ++vcpu->stat.pf_guest;
182
183         if (vcpu->arch.exception.pending) {
184                 if (vcpu->arch.exception.nr == PF_VECTOR) {
185                         printk(KERN_DEBUG "kvm: inject_page_fault:"
186                                         " double fault 0x%lx\n", addr);
187                         vcpu->arch.exception.nr = DF_VECTOR;
188                         vcpu->arch.exception.error_code = 0;
189                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
190                         /* triple fault -> shutdown */
191                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
192                 }
193                 return;
194         }
195         vcpu->arch.cr2 = addr;
196         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
197 }
198
199 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
200 {
201         vcpu->arch.nmi_pending = 1;
202 }
203 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
204
205 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
206 {
207         WARN_ON(vcpu->arch.exception.pending);
208         vcpu->arch.exception.pending = true;
209         vcpu->arch.exception.has_error_code = true;
210         vcpu->arch.exception.nr = nr;
211         vcpu->arch.exception.error_code = error_code;
212 }
213 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
214
215 static void __queue_exception(struct kvm_vcpu *vcpu)
216 {
217         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
218                                      vcpu->arch.exception.has_error_code,
219                                      vcpu->arch.exception.error_code);
220 }
221
222 /*
223  * Load the pae pdptrs.  Return true is they are all valid.
224  */
225 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
226 {
227         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
228         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
229         int i;
230         int ret;
231         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
232
233         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
234                                   offset * sizeof(u64), sizeof(pdpte));
235         if (ret < 0) {
236                 ret = 0;
237                 goto out;
238         }
239         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
240                 if (is_present_pte(pdpte[i]) &&
241                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
242                         ret = 0;
243                         goto out;
244                 }
245         }
246         ret = 1;
247
248         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
249 out:
250
251         return ret;
252 }
253 EXPORT_SYMBOL_GPL(load_pdptrs);
254
255 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
256 {
257         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
258         bool changed = true;
259         int r;
260
261         if (is_long_mode(vcpu) || !is_pae(vcpu))
262                 return false;
263
264         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
265         if (r < 0)
266                 goto out;
267         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
268 out:
269
270         return changed;
271 }
272
273 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
274 {
275         if (cr0 & CR0_RESERVED_BITS) {
276                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
277                        cr0, vcpu->arch.cr0);
278                 kvm_inject_gp(vcpu, 0);
279                 return;
280         }
281
282         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
283                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
284                 kvm_inject_gp(vcpu, 0);
285                 return;
286         }
287
288         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
289                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
290                        "and a clear PE flag\n");
291                 kvm_inject_gp(vcpu, 0);
292                 return;
293         }
294
295         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
296 #ifdef CONFIG_X86_64
297                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
298                         int cs_db, cs_l;
299
300                         if (!is_pae(vcpu)) {
301                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
302                                        "in long mode while PAE is disabled\n");
303                                 kvm_inject_gp(vcpu, 0);
304                                 return;
305                         }
306                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
307                         if (cs_l) {
308                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
309                                        "in long mode while CS.L == 1\n");
310                                 kvm_inject_gp(vcpu, 0);
311                                 return;
312
313                         }
314                 } else
315 #endif
316                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
317                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
318                                "reserved bits\n");
319                         kvm_inject_gp(vcpu, 0);
320                         return;
321                 }
322
323         }
324
325         kvm_x86_ops->set_cr0(vcpu, cr0);
326         vcpu->arch.cr0 = cr0;
327
328         kvm_mmu_reset_context(vcpu);
329         return;
330 }
331 EXPORT_SYMBOL_GPL(kvm_set_cr0);
332
333 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
334 {
335         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
336         KVMTRACE_1D(LMSW, vcpu,
337                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
338                     handler);
339 }
340 EXPORT_SYMBOL_GPL(kvm_lmsw);
341
342 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
343 {
344         unsigned long old_cr4 = vcpu->arch.cr4;
345         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
346
347         if (cr4 & CR4_RESERVED_BITS) {
348                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
349                 kvm_inject_gp(vcpu, 0);
350                 return;
351         }
352
353         if (is_long_mode(vcpu)) {
354                 if (!(cr4 & X86_CR4_PAE)) {
355                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
356                                "in long mode\n");
357                         kvm_inject_gp(vcpu, 0);
358                         return;
359                 }
360         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
361                    && ((cr4 ^ old_cr4) & pdptr_bits)
362                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
363                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
364                 kvm_inject_gp(vcpu, 0);
365                 return;
366         }
367
368         if (cr4 & X86_CR4_VMXE) {
369                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
370                 kvm_inject_gp(vcpu, 0);
371                 return;
372         }
373         kvm_x86_ops->set_cr4(vcpu, cr4);
374         vcpu->arch.cr4 = cr4;
375         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
376         kvm_mmu_reset_context(vcpu);
377 }
378 EXPORT_SYMBOL_GPL(kvm_set_cr4);
379
380 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
381 {
382         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
383                 kvm_mmu_sync_roots(vcpu);
384                 kvm_mmu_flush_tlb(vcpu);
385                 return;
386         }
387
388         if (is_long_mode(vcpu)) {
389                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
390                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
391                         kvm_inject_gp(vcpu, 0);
392                         return;
393                 }
394         } else {
395                 if (is_pae(vcpu)) {
396                         if (cr3 & CR3_PAE_RESERVED_BITS) {
397                                 printk(KERN_DEBUG
398                                        "set_cr3: #GP, reserved bits\n");
399                                 kvm_inject_gp(vcpu, 0);
400                                 return;
401                         }
402                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
403                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
404                                        "reserved bits\n");
405                                 kvm_inject_gp(vcpu, 0);
406                                 return;
407                         }
408                 }
409                 /*
410                  * We don't check reserved bits in nonpae mode, because
411                  * this isn't enforced, and VMware depends on this.
412                  */
413         }
414
415         /*
416          * Does the new cr3 value map to physical memory? (Note, we
417          * catch an invalid cr3 even in real-mode, because it would
418          * cause trouble later on when we turn on paging anyway.)
419          *
420          * A real CPU would silently accept an invalid cr3 and would
421          * attempt to use it - with largely undefined (and often hard
422          * to debug) behavior on the guest side.
423          */
424         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
425                 kvm_inject_gp(vcpu, 0);
426         else {
427                 vcpu->arch.cr3 = cr3;
428                 vcpu->arch.mmu.new_cr3(vcpu);
429         }
430 }
431 EXPORT_SYMBOL_GPL(kvm_set_cr3);
432
433 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
434 {
435         if (cr8 & CR8_RESERVED_BITS) {
436                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
437                 kvm_inject_gp(vcpu, 0);
438                 return;
439         }
440         if (irqchip_in_kernel(vcpu->kvm))
441                 kvm_lapic_set_tpr(vcpu, cr8);
442         else
443                 vcpu->arch.cr8 = cr8;
444 }
445 EXPORT_SYMBOL_GPL(kvm_set_cr8);
446
447 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
448 {
449         if (irqchip_in_kernel(vcpu->kvm))
450                 return kvm_lapic_get_cr8(vcpu);
451         else
452                 return vcpu->arch.cr8;
453 }
454 EXPORT_SYMBOL_GPL(kvm_get_cr8);
455
456 static inline u32 bit(int bitno)
457 {
458         return 1 << (bitno & 31);
459 }
460
461 /*
462  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
463  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
464  *
465  * This list is modified at module load time to reflect the
466  * capabilities of the host cpu.
467  */
468 static u32 msrs_to_save[] = {
469         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
470         MSR_K6_STAR,
471 #ifdef CONFIG_X86_64
472         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
473 #endif
474         MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
475         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
476 };
477
478 static unsigned num_msrs_to_save;
479
480 static u32 emulated_msrs[] = {
481         MSR_IA32_MISC_ENABLE,
482 };
483
484 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
485 {
486         if (efer & efer_reserved_bits) {
487                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
488                        efer);
489                 kvm_inject_gp(vcpu, 0);
490                 return;
491         }
492
493         if (is_paging(vcpu)
494             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
495                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
496                 kvm_inject_gp(vcpu, 0);
497                 return;
498         }
499
500         if (efer & EFER_FFXSR) {
501                 struct kvm_cpuid_entry2 *feat;
502
503                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
504                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
505                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
506                         kvm_inject_gp(vcpu, 0);
507                         return;
508                 }
509         }
510
511         if (efer & EFER_SVME) {
512                 struct kvm_cpuid_entry2 *feat;
513
514                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
515                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
516                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
517                         kvm_inject_gp(vcpu, 0);
518                         return;
519                 }
520         }
521
522         kvm_x86_ops->set_efer(vcpu, efer);
523
524         efer &= ~EFER_LMA;
525         efer |= vcpu->arch.shadow_efer & EFER_LMA;
526
527         vcpu->arch.shadow_efer = efer;
528
529         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
530         kvm_mmu_reset_context(vcpu);
531 }
532
533 void kvm_enable_efer_bits(u64 mask)
534 {
535        efer_reserved_bits &= ~mask;
536 }
537 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
538
539
540 /*
541  * Writes msr value into into the appropriate "register".
542  * Returns 0 on success, non-0 otherwise.
543  * Assumes vcpu_load() was already called.
544  */
545 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
546 {
547         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
548 }
549
550 /*
551  * Adapt set_msr() to msr_io()'s calling convention
552  */
553 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
554 {
555         return kvm_set_msr(vcpu, index, *data);
556 }
557
558 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
559 {
560         static int version;
561         struct pvclock_wall_clock wc;
562         struct timespec now, sys, boot;
563
564         if (!wall_clock)
565                 return;
566
567         version++;
568
569         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
570
571         /*
572          * The guest calculates current wall clock time by adding
573          * system time (updated by kvm_write_guest_time below) to the
574          * wall clock specified here.  guest system time equals host
575          * system time for us, thus we must fill in host boot time here.
576          */
577         now = current_kernel_time();
578         ktime_get_ts(&sys);
579         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
580
581         wc.sec = boot.tv_sec;
582         wc.nsec = boot.tv_nsec;
583         wc.version = version;
584
585         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
586
587         version++;
588         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
589 }
590
591 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
592 {
593         uint32_t quotient, remainder;
594
595         /* Don't try to replace with do_div(), this one calculates
596          * "(dividend << 32) / divisor" */
597         __asm__ ( "divl %4"
598                   : "=a" (quotient), "=d" (remainder)
599                   : "0" (0), "1" (dividend), "r" (divisor) );
600         return quotient;
601 }
602
603 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
604 {
605         uint64_t nsecs = 1000000000LL;
606         int32_t  shift = 0;
607         uint64_t tps64;
608         uint32_t tps32;
609
610         tps64 = tsc_khz * 1000LL;
611         while (tps64 > nsecs*2) {
612                 tps64 >>= 1;
613                 shift--;
614         }
615
616         tps32 = (uint32_t)tps64;
617         while (tps32 <= (uint32_t)nsecs) {
618                 tps32 <<= 1;
619                 shift++;
620         }
621
622         hv_clock->tsc_shift = shift;
623         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
624
625         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
626                  __func__, tsc_khz, hv_clock->tsc_shift,
627                  hv_clock->tsc_to_system_mul);
628 }
629
630 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
631
632 static void kvm_write_guest_time(struct kvm_vcpu *v)
633 {
634         struct timespec ts;
635         unsigned long flags;
636         struct kvm_vcpu_arch *vcpu = &v->arch;
637         void *shared_kaddr;
638         unsigned long this_tsc_khz;
639
640         if ((!vcpu->time_page))
641                 return;
642
643         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
644         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
645                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
646                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
647         }
648         put_cpu_var(cpu_tsc_khz);
649
650         /* Keep irq disabled to prevent changes to the clock */
651         local_irq_save(flags);
652         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
653         ktime_get_ts(&ts);
654         local_irq_restore(flags);
655
656         /* With all the info we got, fill in the values */
657
658         vcpu->hv_clock.system_time = ts.tv_nsec +
659                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
660         /*
661          * The interface expects us to write an even number signaling that the
662          * update is finished. Since the guest won't see the intermediate
663          * state, we just increase by 2 at the end.
664          */
665         vcpu->hv_clock.version += 2;
666
667         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
668
669         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
670                sizeof(vcpu->hv_clock));
671
672         kunmap_atomic(shared_kaddr, KM_USER0);
673
674         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
675 }
676
677 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
678 {
679         struct kvm_vcpu_arch *vcpu = &v->arch;
680
681         if (!vcpu->time_page)
682                 return 0;
683         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
684         return 1;
685 }
686
687 static bool msr_mtrr_valid(unsigned msr)
688 {
689         switch (msr) {
690         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
691         case MSR_MTRRfix64K_00000:
692         case MSR_MTRRfix16K_80000:
693         case MSR_MTRRfix16K_A0000:
694         case MSR_MTRRfix4K_C0000:
695         case MSR_MTRRfix4K_C8000:
696         case MSR_MTRRfix4K_D0000:
697         case MSR_MTRRfix4K_D8000:
698         case MSR_MTRRfix4K_E0000:
699         case MSR_MTRRfix4K_E8000:
700         case MSR_MTRRfix4K_F0000:
701         case MSR_MTRRfix4K_F8000:
702         case MSR_MTRRdefType:
703         case MSR_IA32_CR_PAT:
704                 return true;
705         case 0x2f8:
706                 return true;
707         }
708         return false;
709 }
710
711 static bool valid_pat_type(unsigned t)
712 {
713         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
714 }
715
716 static bool valid_mtrr_type(unsigned t)
717 {
718         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
719 }
720
721 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
722 {
723         int i;
724
725         if (!msr_mtrr_valid(msr))
726                 return false;
727
728         if (msr == MSR_IA32_CR_PAT) {
729                 for (i = 0; i < 8; i++)
730                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
731                                 return false;
732                 return true;
733         } else if (msr == MSR_MTRRdefType) {
734                 if (data & ~0xcff)
735                         return false;
736                 return valid_mtrr_type(data & 0xff);
737         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
738                 for (i = 0; i < 8 ; i++)
739                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
740                                 return false;
741                 return true;
742         }
743
744         /* variable MTRRs */
745         return valid_mtrr_type(data & 0xff);
746 }
747
748 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
749 {
750         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
751
752         if (!mtrr_valid(vcpu, msr, data))
753                 return 1;
754
755         if (msr == MSR_MTRRdefType) {
756                 vcpu->arch.mtrr_state.def_type = data;
757                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
758         } else if (msr == MSR_MTRRfix64K_00000)
759                 p[0] = data;
760         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
761                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
762         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
763                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
764         else if (msr == MSR_IA32_CR_PAT)
765                 vcpu->arch.pat = data;
766         else {  /* Variable MTRRs */
767                 int idx, is_mtrr_mask;
768                 u64 *pt;
769
770                 idx = (msr - 0x200) / 2;
771                 is_mtrr_mask = msr - 0x200 - 2 * idx;
772                 if (!is_mtrr_mask)
773                         pt =
774                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
775                 else
776                         pt =
777                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
778                 *pt = data;
779         }
780
781         kvm_mmu_reset_context(vcpu);
782         return 0;
783 }
784
785 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
786 {
787         u64 mcg_cap = vcpu->arch.mcg_cap;
788         unsigned bank_num = mcg_cap & 0xff;
789
790         switch (msr) {
791         case MSR_IA32_MCG_STATUS:
792                 vcpu->arch.mcg_status = data;
793                 break;
794         case MSR_IA32_MCG_CTL:
795                 if (!(mcg_cap & MCG_CTL_P))
796                         return 1;
797                 if (data != 0 && data != ~(u64)0)
798                         return -1;
799                 vcpu->arch.mcg_ctl = data;
800                 break;
801         default:
802                 if (msr >= MSR_IA32_MC0_CTL &&
803                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
804                         u32 offset = msr - MSR_IA32_MC0_CTL;
805                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
806                         if ((offset & 0x3) == 0 &&
807                             data != 0 && data != ~(u64)0)
808                                 return -1;
809                         vcpu->arch.mce_banks[offset] = data;
810                         break;
811                 }
812                 return 1;
813         }
814         return 0;
815 }
816
817 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
818 {
819         switch (msr) {
820         case MSR_EFER:
821                 set_efer(vcpu, data);
822                 break;
823         case MSR_IA32_DEBUGCTLMSR:
824                 if (!data) {
825                         /* We support the non-activated case already */
826                         break;
827                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
828                         /* Values other than LBR and BTF are vendor-specific,
829                            thus reserved and should throw a #GP */
830                         return 1;
831                 }
832                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
833                         __func__, data);
834                 break;
835         case MSR_IA32_UCODE_REV:
836         case MSR_IA32_UCODE_WRITE:
837         case MSR_VM_HSAVE_PA:
838                 break;
839         case 0x200 ... 0x2ff:
840                 return set_msr_mtrr(vcpu, msr, data);
841         case MSR_IA32_APICBASE:
842                 kvm_set_apic_base(vcpu, data);
843                 break;
844         case MSR_IA32_MISC_ENABLE:
845                 vcpu->arch.ia32_misc_enable_msr = data;
846                 break;
847         case MSR_KVM_WALL_CLOCK:
848                 vcpu->kvm->arch.wall_clock = data;
849                 kvm_write_wall_clock(vcpu->kvm, data);
850                 break;
851         case MSR_KVM_SYSTEM_TIME: {
852                 if (vcpu->arch.time_page) {
853                         kvm_release_page_dirty(vcpu->arch.time_page);
854                         vcpu->arch.time_page = NULL;
855                 }
856
857                 vcpu->arch.time = data;
858
859                 /* we verify if the enable bit is set... */
860                 if (!(data & 1))
861                         break;
862
863                 /* ...but clean it before doing the actual write */
864                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
865
866                 vcpu->arch.time_page =
867                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
868
869                 if (is_error_page(vcpu->arch.time_page)) {
870                         kvm_release_page_clean(vcpu->arch.time_page);
871                         vcpu->arch.time_page = NULL;
872                 }
873
874                 kvm_request_guest_time_update(vcpu);
875                 break;
876         }
877         case MSR_IA32_MCG_CTL:
878         case MSR_IA32_MCG_STATUS:
879         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
880                 return set_msr_mce(vcpu, msr, data);
881         default:
882                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
883                 return 1;
884         }
885         return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
888
889
890 /*
891  * Reads an msr value (of 'msr_index') into 'pdata'.
892  * Returns 0 on success, non-0 otherwise.
893  * Assumes vcpu_load() was already called.
894  */
895 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
896 {
897         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
898 }
899
900 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
901 {
902         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
903
904         if (!msr_mtrr_valid(msr))
905                 return 1;
906
907         if (msr == MSR_MTRRdefType)
908                 *pdata = vcpu->arch.mtrr_state.def_type +
909                          (vcpu->arch.mtrr_state.enabled << 10);
910         else if (msr == MSR_MTRRfix64K_00000)
911                 *pdata = p[0];
912         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
913                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
914         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
915                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
916         else if (msr == MSR_IA32_CR_PAT)
917                 *pdata = vcpu->arch.pat;
918         else {  /* Variable MTRRs */
919                 int idx, is_mtrr_mask;
920                 u64 *pt;
921
922                 idx = (msr - 0x200) / 2;
923                 is_mtrr_mask = msr - 0x200 - 2 * idx;
924                 if (!is_mtrr_mask)
925                         pt =
926                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
927                 else
928                         pt =
929                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
930                 *pdata = *pt;
931         }
932
933         return 0;
934 }
935
936 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
937 {
938         u64 data;
939         u64 mcg_cap = vcpu->arch.mcg_cap;
940         unsigned bank_num = mcg_cap & 0xff;
941
942         switch (msr) {
943         case MSR_IA32_P5_MC_ADDR:
944         case MSR_IA32_P5_MC_TYPE:
945                 data = 0;
946                 break;
947         case MSR_IA32_MCG_CAP:
948                 data = vcpu->arch.mcg_cap;
949                 break;
950         case MSR_IA32_MCG_CTL:
951                 if (!(mcg_cap & MCG_CTL_P))
952                         return 1;
953                 data = vcpu->arch.mcg_ctl;
954                 break;
955         case MSR_IA32_MCG_STATUS:
956                 data = vcpu->arch.mcg_status;
957                 break;
958         default:
959                 if (msr >= MSR_IA32_MC0_CTL &&
960                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
961                         u32 offset = msr - MSR_IA32_MC0_CTL;
962                         data = vcpu->arch.mce_banks[offset];
963                         break;
964                 }
965                 return 1;
966         }
967         *pdata = data;
968         return 0;
969 }
970
971 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
972 {
973         u64 data;
974
975         switch (msr) {
976         case 0xc0010010: /* SYSCFG */
977         case 0xc0010015: /* HWCR */
978         case MSR_IA32_PLATFORM_ID:
979         case MSR_IA32_UCODE_REV:
980         case MSR_IA32_EBL_CR_POWERON:
981         case MSR_IA32_DEBUGCTLMSR:
982         case MSR_IA32_LASTBRANCHFROMIP:
983         case MSR_IA32_LASTBRANCHTOIP:
984         case MSR_IA32_LASTINTFROMIP:
985         case MSR_IA32_LASTINTTOIP:
986         case MSR_VM_HSAVE_PA:
987         case MSR_P6_EVNTSEL0:
988         case MSR_P6_EVNTSEL1:
989         case MSR_K7_EVNTSEL0:
990                 data = 0;
991                 break;
992         case MSR_MTRRcap:
993                 data = 0x500 | KVM_NR_VAR_MTRR;
994                 break;
995         case 0x200 ... 0x2ff:
996                 return get_msr_mtrr(vcpu, msr, pdata);
997         case 0xcd: /* fsb frequency */
998                 data = 3;
999                 break;
1000         case MSR_IA32_APICBASE:
1001                 data = kvm_get_apic_base(vcpu);
1002                 break;
1003         case MSR_IA32_MISC_ENABLE:
1004                 data = vcpu->arch.ia32_misc_enable_msr;
1005                 break;
1006         case MSR_IA32_PERF_STATUS:
1007                 /* TSC increment by tick */
1008                 data = 1000ULL;
1009                 /* CPU multiplier */
1010                 data |= (((uint64_t)4ULL) << 40);
1011                 break;
1012         case MSR_EFER:
1013                 data = vcpu->arch.shadow_efer;
1014                 break;
1015         case MSR_KVM_WALL_CLOCK:
1016                 data = vcpu->kvm->arch.wall_clock;
1017                 break;
1018         case MSR_KVM_SYSTEM_TIME:
1019                 data = vcpu->arch.time;
1020                 break;
1021         case MSR_IA32_P5_MC_ADDR:
1022         case MSR_IA32_P5_MC_TYPE:
1023         case MSR_IA32_MCG_CAP:
1024         case MSR_IA32_MCG_CTL:
1025         case MSR_IA32_MCG_STATUS:
1026         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1027                 return get_msr_mce(vcpu, msr, pdata);
1028         default:
1029                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1030                 return 1;
1031         }
1032         *pdata = data;
1033         return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1036
1037 /*
1038  * Read or write a bunch of msrs. All parameters are kernel addresses.
1039  *
1040  * @return number of msrs set successfully.
1041  */
1042 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1043                     struct kvm_msr_entry *entries,
1044                     int (*do_msr)(struct kvm_vcpu *vcpu,
1045                                   unsigned index, u64 *data))
1046 {
1047         int i;
1048
1049         vcpu_load(vcpu);
1050
1051         down_read(&vcpu->kvm->slots_lock);
1052         for (i = 0; i < msrs->nmsrs; ++i)
1053                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1054                         break;
1055         up_read(&vcpu->kvm->slots_lock);
1056
1057         vcpu_put(vcpu);
1058
1059         return i;
1060 }
1061
1062 /*
1063  * Read or write a bunch of msrs. Parameters are user addresses.
1064  *
1065  * @return number of msrs set successfully.
1066  */
1067 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1068                   int (*do_msr)(struct kvm_vcpu *vcpu,
1069                                 unsigned index, u64 *data),
1070                   int writeback)
1071 {
1072         struct kvm_msrs msrs;
1073         struct kvm_msr_entry *entries;
1074         int r, n;
1075         unsigned size;
1076
1077         r = -EFAULT;
1078         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1079                 goto out;
1080
1081         r = -E2BIG;
1082         if (msrs.nmsrs >= MAX_IO_MSRS)
1083                 goto out;
1084
1085         r = -ENOMEM;
1086         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1087         entries = vmalloc(size);
1088         if (!entries)
1089                 goto out;
1090
1091         r = -EFAULT;
1092         if (copy_from_user(entries, user_msrs->entries, size))
1093                 goto out_free;
1094
1095         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1096         if (r < 0)
1097                 goto out_free;
1098
1099         r = -EFAULT;
1100         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1101                 goto out_free;
1102
1103         r = n;
1104
1105 out_free:
1106         vfree(entries);
1107 out:
1108         return r;
1109 }
1110
1111 int kvm_dev_ioctl_check_extension(long ext)
1112 {
1113         int r;
1114
1115         switch (ext) {
1116         case KVM_CAP_IRQCHIP:
1117         case KVM_CAP_HLT:
1118         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1119         case KVM_CAP_SET_TSS_ADDR:
1120         case KVM_CAP_EXT_CPUID:
1121         case KVM_CAP_CLOCKSOURCE:
1122         case KVM_CAP_PIT:
1123         case KVM_CAP_NOP_IO_DELAY:
1124         case KVM_CAP_MP_STATE:
1125         case KVM_CAP_SYNC_MMU:
1126         case KVM_CAP_REINJECT_CONTROL:
1127         case KVM_CAP_IRQ_INJECT_STATUS:
1128         case KVM_CAP_ASSIGN_DEV_IRQ:
1129                 r = 1;
1130                 break;
1131         case KVM_CAP_COALESCED_MMIO:
1132                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1133                 break;
1134         case KVM_CAP_VAPIC:
1135                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1136                 break;
1137         case KVM_CAP_NR_VCPUS:
1138                 r = KVM_MAX_VCPUS;
1139                 break;
1140         case KVM_CAP_NR_MEMSLOTS:
1141                 r = KVM_MEMORY_SLOTS;
1142                 break;
1143         case KVM_CAP_PV_MMU:
1144                 r = !tdp_enabled;
1145                 break;
1146         case KVM_CAP_IOMMU:
1147                 r = iommu_found();
1148                 break;
1149         case KVM_CAP_MCE:
1150                 r = KVM_MAX_MCE_BANKS;
1151                 break;
1152         default:
1153                 r = 0;
1154                 break;
1155         }
1156         return r;
1157
1158 }
1159
1160 long kvm_arch_dev_ioctl(struct file *filp,
1161                         unsigned int ioctl, unsigned long arg)
1162 {
1163         void __user *argp = (void __user *)arg;
1164         long r;
1165
1166         switch (ioctl) {
1167         case KVM_GET_MSR_INDEX_LIST: {
1168                 struct kvm_msr_list __user *user_msr_list = argp;
1169                 struct kvm_msr_list msr_list;
1170                 unsigned n;
1171
1172                 r = -EFAULT;
1173                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1174                         goto out;
1175                 n = msr_list.nmsrs;
1176                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1177                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1178                         goto out;
1179                 r = -E2BIG;
1180                 if (n < msr_list.nmsrs)
1181                         goto out;
1182                 r = -EFAULT;
1183                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1184                                  num_msrs_to_save * sizeof(u32)))
1185                         goto out;
1186                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1187                                  &emulated_msrs,
1188                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1189                         goto out;
1190                 r = 0;
1191                 break;
1192         }
1193         case KVM_GET_SUPPORTED_CPUID: {
1194                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1195                 struct kvm_cpuid2 cpuid;
1196
1197                 r = -EFAULT;
1198                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1199                         goto out;
1200                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1201                                                       cpuid_arg->entries);
1202                 if (r)
1203                         goto out;
1204
1205                 r = -EFAULT;
1206                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1207                         goto out;
1208                 r = 0;
1209                 break;
1210         }
1211         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1212                 u64 mce_cap;
1213
1214                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1215                 r = -EFAULT;
1216                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1217                         goto out;
1218                 r = 0;
1219                 break;
1220         }
1221         default:
1222                 r = -EINVAL;
1223         }
1224 out:
1225         return r;
1226 }
1227
1228 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1229 {
1230         kvm_x86_ops->vcpu_load(vcpu, cpu);
1231         kvm_request_guest_time_update(vcpu);
1232 }
1233
1234 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1235 {
1236         kvm_x86_ops->vcpu_put(vcpu);
1237         kvm_put_guest_fpu(vcpu);
1238 }
1239
1240 static int is_efer_nx(void)
1241 {
1242         unsigned long long efer = 0;
1243
1244         rdmsrl_safe(MSR_EFER, &efer);
1245         return efer & EFER_NX;
1246 }
1247
1248 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1249 {
1250         int i;
1251         struct kvm_cpuid_entry2 *e, *entry;
1252
1253         entry = NULL;
1254         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1255                 e = &vcpu->arch.cpuid_entries[i];
1256                 if (e->function == 0x80000001) {
1257                         entry = e;
1258                         break;
1259                 }
1260         }
1261         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1262                 entry->edx &= ~(1 << 20);
1263                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1264         }
1265 }
1266
1267 /* when an old userspace process fills a new kernel module */
1268 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1269                                     struct kvm_cpuid *cpuid,
1270                                     struct kvm_cpuid_entry __user *entries)
1271 {
1272         int r, i;
1273         struct kvm_cpuid_entry *cpuid_entries;
1274
1275         r = -E2BIG;
1276         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1277                 goto out;
1278         r = -ENOMEM;
1279         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1280         if (!cpuid_entries)
1281                 goto out;
1282         r = -EFAULT;
1283         if (copy_from_user(cpuid_entries, entries,
1284                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1285                 goto out_free;
1286         for (i = 0; i < cpuid->nent; i++) {
1287                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1288                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1289                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1290                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1291                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1292                 vcpu->arch.cpuid_entries[i].index = 0;
1293                 vcpu->arch.cpuid_entries[i].flags = 0;
1294                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1295                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1296                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1297         }
1298         vcpu->arch.cpuid_nent = cpuid->nent;
1299         cpuid_fix_nx_cap(vcpu);
1300         r = 0;
1301
1302 out_free:
1303         vfree(cpuid_entries);
1304 out:
1305         return r;
1306 }
1307
1308 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1309                                      struct kvm_cpuid2 *cpuid,
1310                                      struct kvm_cpuid_entry2 __user *entries)
1311 {
1312         int r;
1313
1314         r = -E2BIG;
1315         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1316                 goto out;
1317         r = -EFAULT;
1318         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1319                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1320                 goto out;
1321         vcpu->arch.cpuid_nent = cpuid->nent;
1322         return 0;
1323
1324 out:
1325         return r;
1326 }
1327
1328 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1329                                      struct kvm_cpuid2 *cpuid,
1330                                      struct kvm_cpuid_entry2 __user *entries)
1331 {
1332         int r;
1333
1334         r = -E2BIG;
1335         if (cpuid->nent < vcpu->arch.cpuid_nent)
1336                 goto out;
1337         r = -EFAULT;
1338         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1339                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1340                 goto out;
1341         return 0;
1342
1343 out:
1344         cpuid->nent = vcpu->arch.cpuid_nent;
1345         return r;
1346 }
1347
1348 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1349                            u32 index)
1350 {
1351         entry->function = function;
1352         entry->index = index;
1353         cpuid_count(entry->function, entry->index,
1354                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1355         entry->flags = 0;
1356 }
1357
1358 #define F(x) bit(X86_FEATURE_##x)
1359
1360 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1361                          u32 index, int *nent, int maxnent)
1362 {
1363         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1364 #ifdef CONFIG_X86_64
1365         unsigned f_lm = F(LM);
1366 #else
1367         unsigned f_lm = 0;
1368 #endif
1369
1370         /* cpuid 1.edx */
1371         const u32 kvm_supported_word0_x86_features =
1372                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1373                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1374                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1375                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1376                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1377                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1378                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1379                 0 /* HTT, TM, Reserved, PBE */;
1380         /* cpuid 0x80000001.edx */
1381         const u32 kvm_supported_word1_x86_features =
1382                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1383                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1384                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1385                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1386                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1387                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1388                 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1389                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1390         /* cpuid 1.ecx */
1391         const u32 kvm_supported_word4_x86_features =
1392                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1393                 0 /* DS-CPL, VMX, SMX, EST */ |
1394                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1395                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1396                 0 /* Reserved, DCA */ | F(XMM4_1) |
1397                 F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
1398                 0 /* Reserved, XSAVE, OSXSAVE */;
1399         /* cpuid 0x80000001.ecx */
1400         const u32 kvm_supported_word6_x86_features =
1401                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1402                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1403                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1404                 0 /* SKINIT */ | 0 /* WDT */;
1405
1406         /* all calls to cpuid_count() should be made on the same cpu */
1407         get_cpu();
1408         do_cpuid_1_ent(entry, function, index);
1409         ++*nent;
1410
1411         switch (function) {
1412         case 0:
1413                 entry->eax = min(entry->eax, (u32)0xb);
1414                 break;
1415         case 1:
1416                 entry->edx &= kvm_supported_word0_x86_features;
1417                 entry->ecx &= kvm_supported_word4_x86_features;
1418                 break;
1419         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1420          * may return different values. This forces us to get_cpu() before
1421          * issuing the first command, and also to emulate this annoying behavior
1422          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1423         case 2: {
1424                 int t, times = entry->eax & 0xff;
1425
1426                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1427                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1428                 for (t = 1; t < times && *nent < maxnent; ++t) {
1429                         do_cpuid_1_ent(&entry[t], function, 0);
1430                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1431                         ++*nent;
1432                 }
1433                 break;
1434         }
1435         /* function 4 and 0xb have additional index. */
1436         case 4: {
1437                 int i, cache_type;
1438
1439                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1440                 /* read more entries until cache_type is zero */
1441                 for (i = 1; *nent < maxnent; ++i) {
1442                         cache_type = entry[i - 1].eax & 0x1f;
1443                         if (!cache_type)
1444                                 break;
1445                         do_cpuid_1_ent(&entry[i], function, i);
1446                         entry[i].flags |=
1447                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1448                         ++*nent;
1449                 }
1450                 break;
1451         }
1452         case 0xb: {
1453                 int i, level_type;
1454
1455                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1456                 /* read more entries until level_type is zero */
1457                 for (i = 1; *nent < maxnent; ++i) {
1458                         level_type = entry[i - 1].ecx & 0xff00;
1459                         if (!level_type)
1460                                 break;
1461                         do_cpuid_1_ent(&entry[i], function, i);
1462                         entry[i].flags |=
1463                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1464                         ++*nent;
1465                 }
1466                 break;
1467         }
1468         case 0x80000000:
1469                 entry->eax = min(entry->eax, 0x8000001a);
1470                 break;
1471         case 0x80000001:
1472                 entry->edx &= kvm_supported_word1_x86_features;
1473                 entry->ecx &= kvm_supported_word6_x86_features;
1474                 break;
1475         }
1476         put_cpu();
1477 }
1478
1479 #undef F
1480
1481 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1482                                      struct kvm_cpuid_entry2 __user *entries)
1483 {
1484         struct kvm_cpuid_entry2 *cpuid_entries;
1485         int limit, nent = 0, r = -E2BIG;
1486         u32 func;
1487
1488         if (cpuid->nent < 1)
1489                 goto out;
1490         r = -ENOMEM;
1491         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1492         if (!cpuid_entries)
1493                 goto out;
1494
1495         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1496         limit = cpuid_entries[0].eax;
1497         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1498                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1499                              &nent, cpuid->nent);
1500         r = -E2BIG;
1501         if (nent >= cpuid->nent)
1502                 goto out_free;
1503
1504         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1505         limit = cpuid_entries[nent - 1].eax;
1506         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1507                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1508                              &nent, cpuid->nent);
1509         r = -EFAULT;
1510         if (copy_to_user(entries, cpuid_entries,
1511                          nent * sizeof(struct kvm_cpuid_entry2)))
1512                 goto out_free;
1513         cpuid->nent = nent;
1514         r = 0;
1515
1516 out_free:
1517         vfree(cpuid_entries);
1518 out:
1519         return r;
1520 }
1521
1522 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1523                                     struct kvm_lapic_state *s)
1524 {
1525         vcpu_load(vcpu);
1526         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1527         vcpu_put(vcpu);
1528
1529         return 0;
1530 }
1531
1532 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1533                                     struct kvm_lapic_state *s)
1534 {
1535         vcpu_load(vcpu);
1536         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1537         kvm_apic_post_state_restore(vcpu);
1538         vcpu_put(vcpu);
1539
1540         return 0;
1541 }
1542
1543 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1544                                     struct kvm_interrupt *irq)
1545 {
1546         if (irq->irq < 0 || irq->irq >= 256)
1547                 return -EINVAL;
1548         if (irqchip_in_kernel(vcpu->kvm))
1549                 return -ENXIO;
1550         vcpu_load(vcpu);
1551
1552         kvm_queue_interrupt(vcpu, irq->irq, false);
1553
1554         vcpu_put(vcpu);
1555
1556         return 0;
1557 }
1558
1559 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1560 {
1561         vcpu_load(vcpu);
1562         kvm_inject_nmi(vcpu);
1563         vcpu_put(vcpu);
1564
1565         return 0;
1566 }
1567
1568 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1569                                            struct kvm_tpr_access_ctl *tac)
1570 {
1571         if (tac->flags)
1572                 return -EINVAL;
1573         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1574         return 0;
1575 }
1576
1577 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1578                                         u64 mcg_cap)
1579 {
1580         int r;
1581         unsigned bank_num = mcg_cap & 0xff, bank;
1582
1583         r = -EINVAL;
1584         if (!bank_num)
1585                 goto out;
1586         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1587                 goto out;
1588         r = 0;
1589         vcpu->arch.mcg_cap = mcg_cap;
1590         /* Init IA32_MCG_CTL to all 1s */
1591         if (mcg_cap & MCG_CTL_P)
1592                 vcpu->arch.mcg_ctl = ~(u64)0;
1593         /* Init IA32_MCi_CTL to all 1s */
1594         for (bank = 0; bank < bank_num; bank++)
1595                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1596 out:
1597         return r;
1598 }
1599
1600 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1601                                       struct kvm_x86_mce *mce)
1602 {
1603         u64 mcg_cap = vcpu->arch.mcg_cap;
1604         unsigned bank_num = mcg_cap & 0xff;
1605         u64 *banks = vcpu->arch.mce_banks;
1606
1607         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1608                 return -EINVAL;
1609         /*
1610          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1611          * reporting is disabled
1612          */
1613         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1614             vcpu->arch.mcg_ctl != ~(u64)0)
1615                 return 0;
1616         banks += 4 * mce->bank;
1617         /*
1618          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1619          * reporting is disabled for the bank
1620          */
1621         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1622                 return 0;
1623         if (mce->status & MCI_STATUS_UC) {
1624                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1625                     !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1626                         printk(KERN_DEBUG "kvm: set_mce: "
1627                                "injects mce exception while "
1628                                "previous one is in progress!\n");
1629                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1630                         return 0;
1631                 }
1632                 if (banks[1] & MCI_STATUS_VAL)
1633                         mce->status |= MCI_STATUS_OVER;
1634                 banks[2] = mce->addr;
1635                 banks[3] = mce->misc;
1636                 vcpu->arch.mcg_status = mce->mcg_status;
1637                 banks[1] = mce->status;
1638                 kvm_queue_exception(vcpu, MC_VECTOR);
1639         } else if (!(banks[1] & MCI_STATUS_VAL)
1640                    || !(banks[1] & MCI_STATUS_UC)) {
1641                 if (banks[1] & MCI_STATUS_VAL)
1642                         mce->status |= MCI_STATUS_OVER;
1643                 banks[2] = mce->addr;
1644                 banks[3] = mce->misc;
1645                 banks[1] = mce->status;
1646         } else
1647                 banks[1] |= MCI_STATUS_OVER;
1648         return 0;
1649 }
1650
1651 long kvm_arch_vcpu_ioctl(struct file *filp,
1652                          unsigned int ioctl, unsigned long arg)
1653 {
1654         struct kvm_vcpu *vcpu = filp->private_data;
1655         void __user *argp = (void __user *)arg;
1656         int r;
1657         struct kvm_lapic_state *lapic = NULL;
1658
1659         switch (ioctl) {
1660         case KVM_GET_LAPIC: {
1661                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1662
1663                 r = -ENOMEM;
1664                 if (!lapic)
1665                         goto out;
1666                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1667                 if (r)
1668                         goto out;
1669                 r = -EFAULT;
1670                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1671                         goto out;
1672                 r = 0;
1673                 break;
1674         }
1675         case KVM_SET_LAPIC: {
1676                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1677                 r = -ENOMEM;
1678                 if (!lapic)
1679                         goto out;
1680                 r = -EFAULT;
1681                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1682                         goto out;
1683                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1684                 if (r)
1685                         goto out;
1686                 r = 0;
1687                 break;
1688         }
1689         case KVM_INTERRUPT: {
1690                 struct kvm_interrupt irq;
1691
1692                 r = -EFAULT;
1693                 if (copy_from_user(&irq, argp, sizeof irq))
1694                         goto out;
1695                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1696                 if (r)
1697                         goto out;
1698                 r = 0;
1699                 break;
1700         }
1701         case KVM_NMI: {
1702                 r = kvm_vcpu_ioctl_nmi(vcpu);
1703                 if (r)
1704                         goto out;
1705                 r = 0;
1706                 break;
1707         }
1708         case KVM_SET_CPUID: {
1709                 struct kvm_cpuid __user *cpuid_arg = argp;
1710                 struct kvm_cpuid cpuid;
1711
1712                 r = -EFAULT;
1713                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1714                         goto out;
1715                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1716                 if (r)
1717                         goto out;
1718                 break;
1719         }
1720         case KVM_SET_CPUID2: {
1721                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1722                 struct kvm_cpuid2 cpuid;
1723
1724                 r = -EFAULT;
1725                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1726                         goto out;
1727                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1728                                               cpuid_arg->entries);
1729                 if (r)
1730                         goto out;
1731                 break;
1732         }
1733         case KVM_GET_CPUID2: {
1734                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1735                 struct kvm_cpuid2 cpuid;
1736
1737                 r = -EFAULT;
1738                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1739                         goto out;
1740                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1741                                               cpuid_arg->entries);
1742                 if (r)
1743                         goto out;
1744                 r = -EFAULT;
1745                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1746                         goto out;
1747                 r = 0;
1748                 break;
1749         }
1750         case KVM_GET_MSRS:
1751                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1752                 break;
1753         case KVM_SET_MSRS:
1754                 r = msr_io(vcpu, argp, do_set_msr, 0);
1755                 break;
1756         case KVM_TPR_ACCESS_REPORTING: {
1757                 struct kvm_tpr_access_ctl tac;
1758
1759                 r = -EFAULT;
1760                 if (copy_from_user(&tac, argp, sizeof tac))
1761                         goto out;
1762                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1763                 if (r)
1764                         goto out;
1765                 r = -EFAULT;
1766                 if (copy_to_user(argp, &tac, sizeof tac))
1767                         goto out;
1768                 r = 0;
1769                 break;
1770         };
1771         case KVM_SET_VAPIC_ADDR: {
1772                 struct kvm_vapic_addr va;
1773
1774                 r = -EINVAL;
1775                 if (!irqchip_in_kernel(vcpu->kvm))
1776                         goto out;
1777                 r = -EFAULT;
1778                 if (copy_from_user(&va, argp, sizeof va))
1779                         goto out;
1780                 r = 0;
1781                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1782                 break;
1783         }
1784         case KVM_X86_SETUP_MCE: {
1785                 u64 mcg_cap;
1786
1787                 r = -EFAULT;
1788                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1789                         goto out;
1790                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1791                 break;
1792         }
1793         case KVM_X86_SET_MCE: {
1794                 struct kvm_x86_mce mce;
1795
1796                 r = -EFAULT;
1797                 if (copy_from_user(&mce, argp, sizeof mce))
1798                         goto out;
1799                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1800                 break;
1801         }
1802         default:
1803                 r = -EINVAL;
1804         }
1805 out:
1806         kfree(lapic);
1807         return r;
1808 }
1809
1810 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1811 {
1812         int ret;
1813
1814         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1815                 return -1;
1816         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1817         return ret;
1818 }
1819
1820 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1821                                           u32 kvm_nr_mmu_pages)
1822 {
1823         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1824                 return -EINVAL;
1825
1826         down_write(&kvm->slots_lock);
1827         spin_lock(&kvm->mmu_lock);
1828
1829         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1830         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1831
1832         spin_unlock(&kvm->mmu_lock);
1833         up_write(&kvm->slots_lock);
1834         return 0;
1835 }
1836
1837 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1838 {
1839         return kvm->arch.n_alloc_mmu_pages;
1840 }
1841
1842 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1843 {
1844         int i;
1845         struct kvm_mem_alias *alias;
1846
1847         for (i = 0; i < kvm->arch.naliases; ++i) {
1848                 alias = &kvm->arch.aliases[i];
1849                 if (gfn >= alias->base_gfn
1850                     && gfn < alias->base_gfn + alias->npages)
1851                         return alias->target_gfn + gfn - alias->base_gfn;
1852         }
1853         return gfn;
1854 }
1855
1856 /*
1857  * Set a new alias region.  Aliases map a portion of physical memory into
1858  * another portion.  This is useful for memory windows, for example the PC
1859  * VGA region.
1860  */
1861 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1862                                          struct kvm_memory_alias *alias)
1863 {
1864         int r, n;
1865         struct kvm_mem_alias *p;
1866
1867         r = -EINVAL;
1868         /* General sanity checks */
1869         if (alias->memory_size & (PAGE_SIZE - 1))
1870                 goto out;
1871         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1872                 goto out;
1873         if (alias->slot >= KVM_ALIAS_SLOTS)
1874                 goto out;
1875         if (alias->guest_phys_addr + alias->memory_size
1876             < alias->guest_phys_addr)
1877                 goto out;
1878         if (alias->target_phys_addr + alias->memory_size
1879             < alias->target_phys_addr)
1880                 goto out;
1881
1882         down_write(&kvm->slots_lock);
1883         spin_lock(&kvm->mmu_lock);
1884
1885         p = &kvm->arch.aliases[alias->slot];
1886         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1887         p->npages = alias->memory_size >> PAGE_SHIFT;
1888         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1889
1890         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1891                 if (kvm->arch.aliases[n - 1].npages)
1892                         break;
1893         kvm->arch.naliases = n;
1894
1895         spin_unlock(&kvm->mmu_lock);
1896         kvm_mmu_zap_all(kvm);
1897
1898         up_write(&kvm->slots_lock);
1899
1900         return 0;
1901
1902 out:
1903         return r;
1904 }
1905
1906 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1907 {
1908         int r;
1909
1910         r = 0;
1911         switch (chip->chip_id) {
1912         case KVM_IRQCHIP_PIC_MASTER:
1913                 memcpy(&chip->chip.pic,
1914                         &pic_irqchip(kvm)->pics[0],
1915                         sizeof(struct kvm_pic_state));
1916                 break;
1917         case KVM_IRQCHIP_PIC_SLAVE:
1918                 memcpy(&chip->chip.pic,
1919                         &pic_irqchip(kvm)->pics[1],
1920                         sizeof(struct kvm_pic_state));
1921                 break;
1922         case KVM_IRQCHIP_IOAPIC:
1923                 memcpy(&chip->chip.ioapic,
1924                         ioapic_irqchip(kvm),
1925                         sizeof(struct kvm_ioapic_state));
1926                 break;
1927         default:
1928                 r = -EINVAL;
1929                 break;
1930         }
1931         return r;
1932 }
1933
1934 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1935 {
1936         int r;
1937
1938         r = 0;
1939         switch (chip->chip_id) {
1940         case KVM_IRQCHIP_PIC_MASTER:
1941                 memcpy(&pic_irqchip(kvm)->pics[0],
1942                         &chip->chip.pic,
1943                         sizeof(struct kvm_pic_state));
1944                 break;
1945         case KVM_IRQCHIP_PIC_SLAVE:
1946                 memcpy(&pic_irqchip(kvm)->pics[1],
1947                         &chip->chip.pic,
1948                         sizeof(struct kvm_pic_state));
1949                 break;
1950         case KVM_IRQCHIP_IOAPIC:
1951                 memcpy(ioapic_irqchip(kvm),
1952                         &chip->chip.ioapic,
1953                         sizeof(struct kvm_ioapic_state));
1954                 break;
1955         default:
1956                 r = -EINVAL;
1957                 break;
1958         }
1959         kvm_pic_update_irq(pic_irqchip(kvm));
1960         return r;
1961 }
1962
1963 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1964 {
1965         int r = 0;
1966
1967         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1968         return r;
1969 }
1970
1971 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1972 {
1973         int r = 0;
1974
1975         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1976         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1977         return r;
1978 }
1979
1980 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1981                                  struct kvm_reinject_control *control)
1982 {
1983         if (!kvm->arch.vpit)
1984                 return -ENXIO;
1985         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1986         return 0;
1987 }
1988
1989 /*
1990  * Get (and clear) the dirty memory log for a memory slot.
1991  */
1992 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1993                                       struct kvm_dirty_log *log)
1994 {
1995         int r;
1996         int n;
1997         struct kvm_memory_slot *memslot;
1998         int is_dirty = 0;
1999
2000         down_write(&kvm->slots_lock);
2001
2002         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2003         if (r)
2004                 goto out;
2005
2006         /* If nothing is dirty, don't bother messing with page tables. */
2007         if (is_dirty) {
2008                 spin_lock(&kvm->mmu_lock);
2009                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2010                 spin_unlock(&kvm->mmu_lock);
2011                 kvm_flush_remote_tlbs(kvm);
2012                 memslot = &kvm->memslots[log->slot];
2013                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2014                 memset(memslot->dirty_bitmap, 0, n);
2015         }
2016         r = 0;
2017 out:
2018         up_write(&kvm->slots_lock);
2019         return r;
2020 }
2021
2022 long kvm_arch_vm_ioctl(struct file *filp,
2023                        unsigned int ioctl, unsigned long arg)
2024 {
2025         struct kvm *kvm = filp->private_data;
2026         void __user *argp = (void __user *)arg;
2027         int r = -EINVAL;
2028         /*
2029          * This union makes it completely explicit to gcc-3.x
2030          * that these two variables' stack usage should be
2031          * combined, not added together.
2032          */
2033         union {
2034                 struct kvm_pit_state ps;
2035                 struct kvm_memory_alias alias;
2036         } u;
2037
2038         switch (ioctl) {
2039         case KVM_SET_TSS_ADDR:
2040                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2041                 if (r < 0)
2042                         goto out;
2043                 break;
2044         case KVM_SET_MEMORY_REGION: {
2045                 struct kvm_memory_region kvm_mem;
2046                 struct kvm_userspace_memory_region kvm_userspace_mem;
2047
2048                 r = -EFAULT;
2049                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2050                         goto out;
2051                 kvm_userspace_mem.slot = kvm_mem.slot;
2052                 kvm_userspace_mem.flags = kvm_mem.flags;
2053                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2054                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2055                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2056                 if (r)
2057                         goto out;
2058                 break;
2059         }
2060         case KVM_SET_NR_MMU_PAGES:
2061                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2062                 if (r)
2063                         goto out;
2064                 break;
2065         case KVM_GET_NR_MMU_PAGES:
2066                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2067                 break;
2068         case KVM_SET_MEMORY_ALIAS:
2069                 r = -EFAULT;
2070                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2071                         goto out;
2072                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2073                 if (r)
2074                         goto out;
2075                 break;
2076         case KVM_CREATE_IRQCHIP:
2077                 r = -ENOMEM;
2078                 kvm->arch.vpic = kvm_create_pic(kvm);
2079                 if (kvm->arch.vpic) {
2080                         r = kvm_ioapic_init(kvm);
2081                         if (r) {
2082                                 kfree(kvm->arch.vpic);
2083                                 kvm->arch.vpic = NULL;
2084                                 goto out;
2085                         }
2086                 } else
2087                         goto out;
2088                 r = kvm_setup_default_irq_routing(kvm);
2089                 if (r) {
2090                         kfree(kvm->arch.vpic);
2091                         kfree(kvm->arch.vioapic);
2092                         goto out;
2093                 }
2094                 break;
2095         case KVM_CREATE_PIT:
2096                 mutex_lock(&kvm->lock);
2097                 r = -EEXIST;
2098                 if (kvm->arch.vpit)
2099                         goto create_pit_unlock;
2100                 r = -ENOMEM;
2101                 kvm->arch.vpit = kvm_create_pit(kvm);
2102                 if (kvm->arch.vpit)
2103                         r = 0;
2104         create_pit_unlock:
2105                 mutex_unlock(&kvm->lock);
2106                 break;
2107         case KVM_IRQ_LINE_STATUS:
2108         case KVM_IRQ_LINE: {
2109                 struct kvm_irq_level irq_event;
2110
2111                 r = -EFAULT;
2112                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2113                         goto out;
2114                 if (irqchip_in_kernel(kvm)) {
2115                         __s32 status;
2116                         mutex_lock(&kvm->lock);
2117                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2118                                         irq_event.irq, irq_event.level);
2119                         mutex_unlock(&kvm->lock);
2120                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2121                                 irq_event.status = status;
2122                                 if (copy_to_user(argp, &irq_event,
2123                                                         sizeof irq_event))
2124                                         goto out;
2125                         }
2126                         r = 0;
2127                 }
2128                 break;
2129         }
2130         case KVM_GET_IRQCHIP: {
2131                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2132                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2133
2134                 r = -ENOMEM;
2135                 if (!chip)
2136                         goto out;
2137                 r = -EFAULT;
2138                 if (copy_from_user(chip, argp, sizeof *chip))
2139                         goto get_irqchip_out;
2140                 r = -ENXIO;
2141                 if (!irqchip_in_kernel(kvm))
2142                         goto get_irqchip_out;
2143                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2144                 if (r)
2145                         goto get_irqchip_out;
2146                 r = -EFAULT;
2147                 if (copy_to_user(argp, chip, sizeof *chip))
2148                         goto get_irqchip_out;
2149                 r = 0;
2150         get_irqchip_out:
2151                 kfree(chip);
2152                 if (r)
2153                         goto out;
2154                 break;
2155         }
2156         case KVM_SET_IRQCHIP: {
2157                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2158                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2159
2160                 r = -ENOMEM;
2161                 if (!chip)
2162                         goto out;
2163                 r = -EFAULT;
2164                 if (copy_from_user(chip, argp, sizeof *chip))
2165                         goto set_irqchip_out;
2166                 r = -ENXIO;
2167                 if (!irqchip_in_kernel(kvm))
2168                         goto set_irqchip_out;
2169                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2170                 if (r)
2171                         goto set_irqchip_out;
2172                 r = 0;
2173         set_irqchip_out:
2174                 kfree(chip);
2175                 if (r)
2176                         goto out;
2177                 break;
2178         }
2179         case KVM_GET_PIT: {
2180                 r = -EFAULT;
2181                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2182                         goto out;
2183                 r = -ENXIO;
2184                 if (!kvm->arch.vpit)
2185                         goto out;
2186                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2187                 if (r)
2188                         goto out;
2189                 r = -EFAULT;
2190                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2191                         goto out;
2192                 r = 0;
2193                 break;
2194         }
2195         case KVM_SET_PIT: {
2196                 r = -EFAULT;
2197                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2198                         goto out;
2199                 r = -ENXIO;
2200                 if (!kvm->arch.vpit)
2201                         goto out;
2202                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2203                 if (r)
2204                         goto out;
2205                 r = 0;
2206                 break;
2207         }
2208         case KVM_REINJECT_CONTROL: {
2209                 struct kvm_reinject_control control;
2210                 r =  -EFAULT;
2211                 if (copy_from_user(&control, argp, sizeof(control)))
2212                         goto out;
2213                 r = kvm_vm_ioctl_reinject(kvm, &control);
2214                 if (r)
2215                         goto out;
2216                 r = 0;
2217                 break;
2218         }
2219         default:
2220                 ;
2221         }
2222 out:
2223         return r;
2224 }
2225
2226 static void kvm_init_msr_list(void)
2227 {
2228         u32 dummy[2];
2229         unsigned i, j;
2230
2231         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2232                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2233                         continue;
2234                 if (j < i)
2235                         msrs_to_save[j] = msrs_to_save[i];
2236                 j++;
2237         }
2238         num_msrs_to_save = j;
2239 }
2240
2241 /*
2242  * Only apic need an MMIO device hook, so shortcut now..
2243  */
2244 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2245                                                 gpa_t addr, int len,
2246                                                 int is_write)
2247 {
2248         struct kvm_io_device *dev;
2249
2250         if (vcpu->arch.apic) {
2251                 dev = &vcpu->arch.apic->dev;
2252                 if (dev->in_range(dev, addr, len, is_write))
2253                         return dev;
2254         }
2255         return NULL;
2256 }
2257
2258
2259 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2260                                                 gpa_t addr, int len,
2261                                                 int is_write)
2262 {
2263         struct kvm_io_device *dev;
2264
2265         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2266         if (dev == NULL)
2267                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2268                                           is_write);
2269         return dev;
2270 }
2271
2272 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2273                                struct kvm_vcpu *vcpu)
2274 {
2275         void *data = val;
2276         int r = X86EMUL_CONTINUE;
2277
2278         while (bytes) {
2279                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2280                 unsigned offset = addr & (PAGE_SIZE-1);
2281                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2282                 int ret;
2283
2284                 if (gpa == UNMAPPED_GVA) {
2285                         r = X86EMUL_PROPAGATE_FAULT;
2286                         goto out;
2287                 }
2288                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2289                 if (ret < 0) {
2290                         r = X86EMUL_UNHANDLEABLE;
2291                         goto out;
2292                 }
2293
2294                 bytes -= toread;
2295                 data += toread;
2296                 addr += toread;
2297         }
2298 out:
2299         return r;
2300 }
2301
2302 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2303                                 struct kvm_vcpu *vcpu)
2304 {
2305         void *data = val;
2306         int r = X86EMUL_CONTINUE;
2307
2308         while (bytes) {
2309                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2310                 unsigned offset = addr & (PAGE_SIZE-1);
2311                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2312                 int ret;
2313
2314                 if (gpa == UNMAPPED_GVA) {
2315                         r = X86EMUL_PROPAGATE_FAULT;
2316                         goto out;
2317                 }
2318                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2319                 if (ret < 0) {
2320                         r = X86EMUL_UNHANDLEABLE;
2321                         goto out;
2322                 }
2323
2324                 bytes -= towrite;
2325                 data += towrite;
2326                 addr += towrite;
2327         }
2328 out:
2329         return r;
2330 }
2331
2332
2333 static int emulator_read_emulated(unsigned long addr,
2334                                   void *val,
2335                                   unsigned int bytes,
2336                                   struct kvm_vcpu *vcpu)
2337 {
2338         struct kvm_io_device *mmio_dev;
2339         gpa_t                 gpa;
2340
2341         if (vcpu->mmio_read_completed) {
2342                 memcpy(val, vcpu->mmio_data, bytes);
2343                 vcpu->mmio_read_completed = 0;
2344                 return X86EMUL_CONTINUE;
2345         }
2346
2347         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2348
2349         /* For APIC access vmexit */
2350         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2351                 goto mmio;
2352
2353         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2354                                 == X86EMUL_CONTINUE)
2355                 return X86EMUL_CONTINUE;
2356         if (gpa == UNMAPPED_GVA)
2357                 return X86EMUL_PROPAGATE_FAULT;
2358
2359 mmio:
2360         /*
2361          * Is this MMIO handled locally?
2362          */
2363         mutex_lock(&vcpu->kvm->lock);
2364         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2365         if (mmio_dev) {
2366                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2367                 mutex_unlock(&vcpu->kvm->lock);
2368                 return X86EMUL_CONTINUE;
2369         }
2370         mutex_unlock(&vcpu->kvm->lock);
2371
2372         vcpu->mmio_needed = 1;
2373         vcpu->mmio_phys_addr = gpa;
2374         vcpu->mmio_size = bytes;
2375         vcpu->mmio_is_write = 0;
2376
2377         return X86EMUL_UNHANDLEABLE;
2378 }
2379
2380 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2381                           const void *val, int bytes)
2382 {
2383         int ret;
2384
2385         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2386         if (ret < 0)
2387                 return 0;
2388         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2389         return 1;
2390 }
2391
2392 static int emulator_write_emulated_onepage(unsigned long addr,
2393                                            const void *val,
2394                                            unsigned int bytes,
2395                                            struct kvm_vcpu *vcpu)
2396 {
2397         struct kvm_io_device *mmio_dev;
2398         gpa_t                 gpa;
2399
2400         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2401
2402         if (gpa == UNMAPPED_GVA) {
2403                 kvm_inject_page_fault(vcpu, addr, 2);
2404                 return X86EMUL_PROPAGATE_FAULT;
2405         }
2406
2407         /* For APIC access vmexit */
2408         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2409                 goto mmio;
2410
2411         if (emulator_write_phys(vcpu, gpa, val, bytes))
2412                 return X86EMUL_CONTINUE;
2413
2414 mmio:
2415         /*
2416          * Is this MMIO handled locally?
2417          */
2418         mutex_lock(&vcpu->kvm->lock);
2419         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2420         if (mmio_dev) {
2421                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2422                 mutex_unlock(&vcpu->kvm->lock);
2423                 return X86EMUL_CONTINUE;
2424         }
2425         mutex_unlock(&vcpu->kvm->lock);
2426
2427         vcpu->mmio_needed = 1;
2428         vcpu->mmio_phys_addr = gpa;
2429         vcpu->mmio_size = bytes;
2430         vcpu->mmio_is_write = 1;
2431         memcpy(vcpu->mmio_data, val, bytes);
2432
2433         return X86EMUL_CONTINUE;
2434 }
2435
2436 int emulator_write_emulated(unsigned long addr,
2437                                    const void *val,
2438                                    unsigned int bytes,
2439                                    struct kvm_vcpu *vcpu)
2440 {
2441         /* Crossing a page boundary? */
2442         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2443                 int rc, now;
2444
2445                 now = -addr & ~PAGE_MASK;
2446                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2447                 if (rc != X86EMUL_CONTINUE)
2448                         return rc;
2449                 addr += now;
2450                 val += now;
2451                 bytes -= now;
2452         }
2453         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2454 }
2455 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2456
2457 static int emulator_cmpxchg_emulated(unsigned long addr,
2458                                      const void *old,
2459                                      const void *new,
2460                                      unsigned int bytes,
2461                                      struct kvm_vcpu *vcpu)
2462 {
2463         static int reported;
2464
2465         if (!reported) {
2466                 reported = 1;
2467                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2468         }
2469 #ifndef CONFIG_X86_64
2470         /* guests cmpxchg8b have to be emulated atomically */
2471         if (bytes == 8) {
2472                 gpa_t gpa;
2473                 struct page *page;
2474                 char *kaddr;
2475                 u64 val;
2476
2477                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2478
2479                 if (gpa == UNMAPPED_GVA ||
2480                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2481                         goto emul_write;
2482
2483                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2484                         goto emul_write;
2485
2486                 val = *(u64 *)new;
2487
2488                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2489
2490                 kaddr = kmap_atomic(page, KM_USER0);
2491                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2492                 kunmap_atomic(kaddr, KM_USER0);
2493                 kvm_release_page_dirty(page);
2494         }
2495 emul_write:
2496 #endif
2497
2498         return emulator_write_emulated(addr, new, bytes, vcpu);
2499 }
2500
2501 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2502 {
2503         return kvm_x86_ops->get_segment_base(vcpu, seg);
2504 }
2505
2506 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2507 {
2508         kvm_mmu_invlpg(vcpu, address);
2509         return X86EMUL_CONTINUE;
2510 }
2511
2512 int emulate_clts(struct kvm_vcpu *vcpu)
2513 {
2514         KVMTRACE_0D(CLTS, vcpu, handler);
2515         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2516         return X86EMUL_CONTINUE;
2517 }
2518
2519 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2520 {
2521         struct kvm_vcpu *vcpu = ctxt->vcpu;
2522
2523         switch (dr) {
2524         case 0 ... 3:
2525                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2526                 return X86EMUL_CONTINUE;
2527         default:
2528                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2529                 return X86EMUL_UNHANDLEABLE;
2530         }
2531 }
2532
2533 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2534 {
2535         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2536         int exception;
2537
2538         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2539         if (exception) {
2540                 /* FIXME: better handling */
2541                 return X86EMUL_UNHANDLEABLE;
2542         }
2543         return X86EMUL_CONTINUE;
2544 }
2545
2546 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2547 {
2548         u8 opcodes[4];
2549         unsigned long rip = kvm_rip_read(vcpu);
2550         unsigned long rip_linear;
2551
2552         if (!printk_ratelimit())
2553                 return;
2554
2555         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2556
2557         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2558
2559         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2560                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2561 }
2562 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2563
2564 static struct x86_emulate_ops emulate_ops = {
2565         .read_std            = kvm_read_guest_virt,
2566         .read_emulated       = emulator_read_emulated,
2567         .write_emulated      = emulator_write_emulated,
2568         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2569 };
2570
2571 static void cache_all_regs(struct kvm_vcpu *vcpu)
2572 {
2573         kvm_register_read(vcpu, VCPU_REGS_RAX);
2574         kvm_register_read(vcpu, VCPU_REGS_RSP);
2575         kvm_register_read(vcpu, VCPU_REGS_RIP);
2576         vcpu->arch.regs_dirty = ~0;
2577 }
2578
2579 int emulate_instruction(struct kvm_vcpu *vcpu,
2580                         struct kvm_run *run,
2581                         unsigned long cr2,
2582                         u16 error_code,
2583                         int emulation_type)
2584 {
2585         int r, shadow_mask;
2586         struct decode_cache *c;
2587
2588         kvm_clear_exception_queue(vcpu);
2589         vcpu->arch.mmio_fault_cr2 = cr2;
2590         /*
2591          * TODO: fix x86_emulate.c to use guest_read/write_register
2592          * instead of direct ->regs accesses, can save hundred cycles
2593          * on Intel for instructions that don't read/change RSP, for
2594          * for example.
2595          */
2596         cache_all_regs(vcpu);
2597
2598         vcpu->mmio_is_write = 0;
2599         vcpu->arch.pio.string = 0;
2600
2601         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2602                 int cs_db, cs_l;
2603                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2604
2605                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2606                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2607                 vcpu->arch.emulate_ctxt.mode =
2608                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2609                         ? X86EMUL_MODE_REAL : cs_l
2610                         ? X86EMUL_MODE_PROT64 : cs_db
2611                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2612
2613                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2614
2615                 /* Reject the instructions other than VMCALL/VMMCALL when
2616                  * try to emulate invalid opcode */
2617                 c = &vcpu->arch.emulate_ctxt.decode;
2618                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2619                     (!(c->twobyte && c->b == 0x01 &&
2620                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2621                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2622                         return EMULATE_FAIL;
2623
2624                 ++vcpu->stat.insn_emulation;
2625                 if (r)  {
2626                         ++vcpu->stat.insn_emulation_fail;
2627                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2628                                 return EMULATE_DONE;
2629                         return EMULATE_FAIL;
2630                 }
2631         }
2632
2633         if (emulation_type & EMULTYPE_SKIP) {
2634                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2635                 return EMULATE_DONE;
2636         }
2637
2638         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2639         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2640
2641         if (r == 0)
2642                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2643
2644         if (vcpu->arch.pio.string)
2645                 return EMULATE_DO_MMIO;
2646
2647         if ((r || vcpu->mmio_is_write) && run) {
2648                 run->exit_reason = KVM_EXIT_MMIO;
2649                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2650                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2651                 run->mmio.len = vcpu->mmio_size;
2652                 run->mmio.is_write = vcpu->mmio_is_write;
2653         }
2654
2655         if (r) {
2656                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2657                         return EMULATE_DONE;
2658                 if (!vcpu->mmio_needed) {
2659                         kvm_report_emulation_failure(vcpu, "mmio");
2660                         return EMULATE_FAIL;
2661                 }
2662                 return EMULATE_DO_MMIO;
2663         }
2664
2665         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2666
2667         if (vcpu->mmio_is_write) {
2668                 vcpu->mmio_needed = 0;
2669                 return EMULATE_DO_MMIO;
2670         }
2671
2672         return EMULATE_DONE;
2673 }
2674 EXPORT_SYMBOL_GPL(emulate_instruction);
2675
2676 static int pio_copy_data(struct kvm_vcpu *vcpu)
2677 {
2678         void *p = vcpu->arch.pio_data;
2679         gva_t q = vcpu->arch.pio.guest_gva;
2680         unsigned bytes;
2681         int ret;
2682
2683         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2684         if (vcpu->arch.pio.in)
2685                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2686         else
2687                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2688         return ret;
2689 }
2690
2691 int complete_pio(struct kvm_vcpu *vcpu)
2692 {
2693         struct kvm_pio_request *io = &vcpu->arch.pio;
2694         long delta;
2695         int r;
2696         unsigned long val;
2697
2698         if (!io->string) {
2699                 if (io->in) {
2700                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2701                         memcpy(&val, vcpu->arch.pio_data, io->size);
2702                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2703                 }
2704         } else {
2705                 if (io->in) {
2706                         r = pio_copy_data(vcpu);
2707                         if (r)
2708                                 return r;
2709                 }
2710
2711                 delta = 1;
2712                 if (io->rep) {
2713                         delta *= io->cur_count;
2714                         /*
2715                          * The size of the register should really depend on
2716                          * current address size.
2717                          */
2718                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2719                         val -= delta;
2720                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2721                 }
2722                 if (io->down)
2723                         delta = -delta;
2724                 delta *= io->size;
2725                 if (io->in) {
2726                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2727                         val += delta;
2728                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2729                 } else {
2730                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2731                         val += delta;
2732                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2733                 }
2734         }
2735
2736         io->count -= io->cur_count;
2737         io->cur_count = 0;
2738
2739         return 0;
2740 }
2741
2742 static void kernel_pio(struct kvm_io_device *pio_dev,
2743                        struct kvm_vcpu *vcpu,
2744                        void *pd)
2745 {
2746         /* TODO: String I/O for in kernel device */
2747
2748         mutex_lock(&vcpu->kvm->lock);
2749         if (vcpu->arch.pio.in)
2750                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2751                                   vcpu->arch.pio.size,
2752                                   pd);
2753         else
2754                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2755                                    vcpu->arch.pio.size,
2756                                    pd);
2757         mutex_unlock(&vcpu->kvm->lock);
2758 }
2759
2760 static void pio_string_write(struct kvm_io_device *pio_dev,
2761                              struct kvm_vcpu *vcpu)
2762 {
2763         struct kvm_pio_request *io = &vcpu->arch.pio;
2764         void *pd = vcpu->arch.pio_data;
2765         int i;
2766
2767         mutex_lock(&vcpu->kvm->lock);
2768         for (i = 0; i < io->cur_count; i++) {
2769                 kvm_iodevice_write(pio_dev, io->port,
2770                                    io->size,
2771                                    pd);
2772                 pd += io->size;
2773         }
2774         mutex_unlock(&vcpu->kvm->lock);
2775 }
2776
2777 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2778                                                gpa_t addr, int len,
2779                                                int is_write)
2780 {
2781         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2782 }
2783
2784 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2785                   int size, unsigned port)
2786 {
2787         struct kvm_io_device *pio_dev;
2788         unsigned long val;
2789
2790         vcpu->run->exit_reason = KVM_EXIT_IO;
2791         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2792         vcpu->run->io.size = vcpu->arch.pio.size = size;
2793         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2794         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2795         vcpu->run->io.port = vcpu->arch.pio.port = port;
2796         vcpu->arch.pio.in = in;
2797         vcpu->arch.pio.string = 0;
2798         vcpu->arch.pio.down = 0;
2799         vcpu->arch.pio.rep = 0;
2800
2801         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2802                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2803                             handler);
2804         else
2805                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2806                             handler);
2807
2808         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2809         memcpy(vcpu->arch.pio_data, &val, 4);
2810
2811         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2812         if (pio_dev) {
2813                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2814                 complete_pio(vcpu);
2815                 return 1;
2816         }
2817         return 0;
2818 }
2819 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2820
2821 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2822                   int size, unsigned long count, int down,
2823                   gva_t address, int rep, unsigned port)
2824 {
2825         unsigned now, in_page;
2826         int ret = 0;
2827         struct kvm_io_device *pio_dev;
2828
2829         vcpu->run->exit_reason = KVM_EXIT_IO;
2830         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2831         vcpu->run->io.size = vcpu->arch.pio.size = size;
2832         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2833         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2834         vcpu->run->io.port = vcpu->arch.pio.port = port;
2835         vcpu->arch.pio.in = in;
2836         vcpu->arch.pio.string = 1;
2837         vcpu->arch.pio.down = down;
2838         vcpu->arch.pio.rep = rep;
2839
2840         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2841                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2842                             handler);
2843         else
2844                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2845                             handler);
2846
2847         if (!count) {
2848                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2849                 return 1;
2850         }
2851
2852         if (!down)
2853                 in_page = PAGE_SIZE - offset_in_page(address);
2854         else
2855                 in_page = offset_in_page(address) + size;
2856         now = min(count, (unsigned long)in_page / size);
2857         if (!now)
2858                 now = 1;
2859         if (down) {
2860                 /*
2861                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2862                  */
2863                 pr_unimpl(vcpu, "guest string pio down\n");
2864                 kvm_inject_gp(vcpu, 0);
2865                 return 1;
2866         }
2867         vcpu->run->io.count = now;
2868         vcpu->arch.pio.cur_count = now;
2869
2870         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2871                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2872
2873         vcpu->arch.pio.guest_gva = address;
2874
2875         pio_dev = vcpu_find_pio_dev(vcpu, port,
2876                                     vcpu->arch.pio.cur_count,
2877                                     !vcpu->arch.pio.in);
2878         if (!vcpu->arch.pio.in) {
2879                 /* string PIO write */
2880                 ret = pio_copy_data(vcpu);
2881                 if (ret == X86EMUL_PROPAGATE_FAULT) {
2882                         kvm_inject_gp(vcpu, 0);
2883                         return 1;
2884                 }
2885                 if (ret == 0 && pio_dev) {
2886                         pio_string_write(pio_dev, vcpu);
2887                         complete_pio(vcpu);
2888                         if (vcpu->arch.pio.count == 0)
2889                                 ret = 1;
2890                 }
2891         } else if (pio_dev)
2892                 pr_unimpl(vcpu, "no string pio read support yet, "
2893                        "port %x size %d count %ld\n",
2894                         port, size, count);
2895
2896         return ret;
2897 }
2898 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2899
2900 static void bounce_off(void *info)
2901 {
2902         /* nothing */
2903 }
2904
2905 static unsigned int  ref_freq;
2906 static unsigned long tsc_khz_ref;
2907
2908 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2909                                      void *data)
2910 {
2911         struct cpufreq_freqs *freq = data;
2912         struct kvm *kvm;
2913         struct kvm_vcpu *vcpu;
2914         int i, send_ipi = 0;
2915
2916         if (!ref_freq)
2917                 ref_freq = freq->old;
2918
2919         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2920                 return 0;
2921         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2922                 return 0;
2923         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2924
2925         spin_lock(&kvm_lock);
2926         list_for_each_entry(kvm, &vm_list, vm_list) {
2927                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2928                         vcpu = kvm->vcpus[i];
2929                         if (!vcpu)
2930                                 continue;
2931                         if (vcpu->cpu != freq->cpu)
2932                                 continue;
2933                         if (!kvm_request_guest_time_update(vcpu))
2934                                 continue;
2935                         if (vcpu->cpu != smp_processor_id())
2936                                 send_ipi++;
2937                 }
2938         }
2939         spin_unlock(&kvm_lock);
2940
2941         if (freq->old < freq->new && send_ipi) {
2942                 /*
2943                  * We upscale the frequency.  Must make the guest
2944                  * doesn't see old kvmclock values while running with
2945                  * the new frequency, otherwise we risk the guest sees
2946                  * time go backwards.
2947                  *
2948                  * In case we update the frequency for another cpu
2949                  * (which might be in guest context) send an interrupt
2950                  * to kick the cpu out of guest context.  Next time
2951                  * guest context is entered kvmclock will be updated,
2952                  * so the guest will not see stale values.
2953                  */
2954                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2955         }
2956         return 0;
2957 }
2958
2959 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2960         .notifier_call  = kvmclock_cpufreq_notifier
2961 };
2962
2963 int kvm_arch_init(void *opaque)
2964 {
2965         int r, cpu;
2966         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2967
2968         if (kvm_x86_ops) {
2969                 printk(KERN_ERR "kvm: already loaded the other module\n");
2970                 r = -EEXIST;
2971                 goto out;
2972         }
2973
2974         if (!ops->cpu_has_kvm_support()) {
2975                 printk(KERN_ERR "kvm: no hardware support\n");
2976                 r = -EOPNOTSUPP;
2977                 goto out;
2978         }
2979         if (ops->disabled_by_bios()) {
2980                 printk(KERN_ERR "kvm: disabled by bios\n");
2981                 r = -EOPNOTSUPP;
2982                 goto out;
2983         }
2984
2985         r = kvm_mmu_module_init();
2986         if (r)
2987                 goto out;
2988
2989         kvm_init_msr_list();
2990
2991         kvm_x86_ops = ops;
2992         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2993         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2994         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2995                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
2996
2997         for_each_possible_cpu(cpu)
2998                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2999         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3000                 tsc_khz_ref = tsc_khz;
3001                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3002                                           CPUFREQ_TRANSITION_NOTIFIER);
3003         }
3004
3005         return 0;
3006
3007 out:
3008         return r;
3009 }
3010
3011 void kvm_arch_exit(void)
3012 {
3013         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3014                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3015                                             CPUFREQ_TRANSITION_NOTIFIER);
3016         kvm_x86_ops = NULL;
3017         kvm_mmu_module_exit();
3018 }
3019
3020 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3021 {
3022         ++vcpu->stat.halt_exits;
3023         KVMTRACE_0D(HLT, vcpu, handler);
3024         if (irqchip_in_kernel(vcpu->kvm)) {
3025                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3026                 return 1;
3027         } else {
3028                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3029                 return 0;
3030         }
3031 }
3032 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3033
3034 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3035                            unsigned long a1)
3036 {
3037         if (is_long_mode(vcpu))
3038                 return a0;
3039         else
3040                 return a0 | ((gpa_t)a1 << 32);
3041 }
3042
3043 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3044 {
3045         unsigned long nr, a0, a1, a2, a3, ret;
3046         int r = 1;
3047
3048         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3049         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3050         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3051         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3052         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3053
3054         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
3055
3056         if (!is_long_mode(vcpu)) {
3057                 nr &= 0xFFFFFFFF;
3058                 a0 &= 0xFFFFFFFF;
3059                 a1 &= 0xFFFFFFFF;
3060                 a2 &= 0xFFFFFFFF;
3061                 a3 &= 0xFFFFFFFF;
3062         }
3063
3064         switch (nr) {
3065         case KVM_HC_VAPIC_POLL_IRQ:
3066                 ret = 0;
3067                 break;
3068         case KVM_HC_MMU_OP:
3069                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3070                 break;
3071         default:
3072                 ret = -KVM_ENOSYS;
3073                 break;
3074         }
3075         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3076         ++vcpu->stat.hypercalls;
3077         return r;
3078 }
3079 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3080
3081 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3082 {
3083         char instruction[3];
3084         int ret = 0;
3085         unsigned long rip = kvm_rip_read(vcpu);
3086
3087
3088         /*
3089          * Blow out the MMU to ensure that no other VCPU has an active mapping
3090          * to ensure that the updated hypercall appears atomically across all
3091          * VCPUs.
3092          */
3093         kvm_mmu_zap_all(vcpu->kvm);
3094
3095         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3096         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3097             != X86EMUL_CONTINUE)
3098                 ret = -EFAULT;
3099
3100         return ret;
3101 }
3102
3103 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3104 {
3105         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3106 }
3107
3108 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3109 {
3110         struct descriptor_table dt = { limit, base };
3111
3112         kvm_x86_ops->set_gdt(vcpu, &dt);
3113 }
3114
3115 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3116 {
3117         struct descriptor_table dt = { limit, base };
3118
3119         kvm_x86_ops->set_idt(vcpu, &dt);
3120 }
3121
3122 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3123                    unsigned long *rflags)
3124 {
3125         kvm_lmsw(vcpu, msw);
3126         *rflags = kvm_x86_ops->get_rflags(vcpu);
3127 }
3128
3129 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3130 {
3131         unsigned long value;
3132
3133         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3134         switch (cr) {
3135         case 0:
3136                 value = vcpu->arch.cr0;
3137                 break;
3138         case 2:
3139                 value = vcpu->arch.cr2;
3140                 break;
3141         case 3:
3142                 value = vcpu->arch.cr3;
3143                 break;
3144         case 4:
3145                 value = vcpu->arch.cr4;
3146                 break;
3147         case 8:
3148                 value = kvm_get_cr8(vcpu);
3149                 break;
3150         default:
3151                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3152                 return 0;
3153         }
3154         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
3155                     (u32)((u64)value >> 32), handler);
3156
3157         return value;
3158 }
3159
3160 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3161                      unsigned long *rflags)
3162 {
3163         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
3164                     (u32)((u64)val >> 32), handler);
3165
3166         switch (cr) {
3167         case 0:
3168                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3169                 *rflags = kvm_x86_ops->get_rflags(vcpu);
3170                 break;
3171         case 2:
3172                 vcpu->arch.cr2 = val;
3173                 break;
3174         case 3:
3175                 kvm_set_cr3(vcpu, val);
3176                 break;
3177         case 4:
3178                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3179                 break;
3180         case 8:
3181                 kvm_set_cr8(vcpu, val & 0xfUL);
3182                 break;
3183         default:
3184                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3185         }
3186 }
3187
3188 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3189 {
3190         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3191         int j, nent = vcpu->arch.cpuid_nent;
3192
3193         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3194         /* when no next entry is found, the current entry[i] is reselected */
3195         for (j = i + 1; ; j = (j + 1) % nent) {
3196                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3197                 if (ej->function == e->function) {
3198                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3199                         return j;
3200                 }
3201         }
3202         return 0; /* silence gcc, even though control never reaches here */
3203 }
3204
3205 /* find an entry with matching function, matching index (if needed), and that
3206  * should be read next (if it's stateful) */
3207 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3208         u32 function, u32 index)
3209 {
3210         if (e->function != function)
3211                 return 0;
3212         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3213                 return 0;
3214         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3215             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3216                 return 0;
3217         return 1;
3218 }
3219
3220 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3221                                               u32 function, u32 index)
3222 {
3223         int i;
3224         struct kvm_cpuid_entry2 *best = NULL;
3225
3226         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3227                 struct kvm_cpuid_entry2 *e;
3228
3229                 e = &vcpu->arch.cpuid_entries[i];
3230                 if (is_matching_cpuid_entry(e, function, index)) {
3231                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3232                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3233                         best = e;
3234                         break;
3235                 }
3236                 /*
3237                  * Both basic or both extended?
3238                  */
3239                 if (((e->function ^ function) & 0x80000000) == 0)
3240                         if (!best || e->function > best->function)
3241                                 best = e;
3242         }
3243         return best;
3244 }
3245
3246 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3247 {
3248         struct kvm_cpuid_entry2 *best;
3249
3250         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3251         if (best)
3252                 return best->eax & 0xff;
3253         return 36;
3254 }
3255
3256 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3257 {
3258         u32 function, index;
3259         struct kvm_cpuid_entry2 *best;
3260
3261         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3262         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3263         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3264         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3265         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3266         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3267         best = kvm_find_cpuid_entry(vcpu, function, index);
3268         if (best) {
3269                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3270                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3271                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3272                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3273         }
3274         kvm_x86_ops->skip_emulated_instruction(vcpu);
3275         KVMTRACE_5D(CPUID, vcpu, function,
3276                     (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3277                     (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3278                     (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3279                     (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3280 }
3281 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3282
3283 /*
3284  * Check if userspace requested an interrupt window, and that the
3285  * interrupt window is open.
3286  *
3287  * No need to exit to userspace if we already have an interrupt queued.
3288  */
3289 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3290                                           struct kvm_run *kvm_run)
3291 {
3292         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3293                 kvm_run->request_interrupt_window &&
3294                 kvm_arch_interrupt_allowed(vcpu));
3295 }
3296
3297 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3298                               struct kvm_run *kvm_run)
3299 {
3300         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3301         kvm_run->cr8 = kvm_get_cr8(vcpu);
3302         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3303         if (irqchip_in_kernel(vcpu->kvm))
3304                 kvm_run->ready_for_interrupt_injection = 1;
3305         else
3306                 kvm_run->ready_for_interrupt_injection =
3307                         kvm_arch_interrupt_allowed(vcpu) &&
3308                         !kvm_cpu_has_interrupt(vcpu) &&
3309                         !kvm_event_needs_reinjection(vcpu);
3310 }
3311
3312 static void vapic_enter(struct kvm_vcpu *vcpu)
3313 {
3314         struct kvm_lapic *apic = vcpu->arch.apic;
3315         struct page *page;
3316
3317         if (!apic || !apic->vapic_addr)
3318                 return;
3319
3320         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3321
3322         vcpu->arch.apic->vapic_page = page;
3323 }
3324
3325 static void vapic_exit(struct kvm_vcpu *vcpu)
3326 {
3327         struct kvm_lapic *apic = vcpu->arch.apic;
3328
3329         if (!apic || !apic->vapic_addr)
3330                 return;
3331
3332         down_read(&vcpu->kvm->slots_lock);
3333         kvm_release_page_dirty(apic->vapic_page);
3334         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3335         up_read(&vcpu->kvm->slots_lock);
3336 }
3337
3338 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3339 {
3340         int max_irr, tpr;
3341
3342         if (!kvm_x86_ops->update_cr8_intercept)
3343                 return;
3344
3345         if (!vcpu->arch.apic->vapic_addr)
3346                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3347         else
3348                 max_irr = -1;
3349
3350         if (max_irr != -1)
3351                 max_irr >>= 4;
3352
3353         tpr = kvm_lapic_get_cr8(vcpu);
3354
3355         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3356 }
3357
3358 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3359 {
3360         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3361                 kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
3362
3363         /* try to reinject previous events if any */
3364         if (vcpu->arch.nmi_injected) {
3365                 kvm_x86_ops->set_nmi(vcpu);
3366                 return;
3367         }
3368
3369         if (vcpu->arch.interrupt.pending) {
3370                 kvm_x86_ops->set_irq(vcpu);
3371                 return;
3372         }
3373
3374         /* try to inject new event if pending */
3375         if (vcpu->arch.nmi_pending) {
3376                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3377                         vcpu->arch.nmi_pending = false;
3378                         vcpu->arch.nmi_injected = true;
3379                         kvm_x86_ops->set_nmi(vcpu);
3380                 }
3381         } else if (kvm_cpu_has_interrupt(vcpu)) {
3382                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3383                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3384                                             false);
3385                         kvm_x86_ops->set_irq(vcpu);
3386                 }
3387         }
3388 }
3389
3390 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3391 {
3392         int r;
3393         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3394                 kvm_run->request_interrupt_window;
3395
3396         if (vcpu->requests)
3397                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3398                         kvm_mmu_unload(vcpu);
3399
3400         r = kvm_mmu_reload(vcpu);
3401         if (unlikely(r))
3402                 goto out;
3403
3404         if (vcpu->requests) {
3405                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3406                         __kvm_migrate_timers(vcpu);
3407                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3408                         kvm_write_guest_time(vcpu);
3409                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3410                         kvm_mmu_sync_roots(vcpu);
3411                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3412                         kvm_x86_ops->tlb_flush(vcpu);
3413                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3414                                        &vcpu->requests)) {
3415                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3416                         r = 0;
3417                         goto out;
3418                 }
3419                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3420                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3421                         r = 0;
3422                         goto out;
3423                 }
3424         }
3425
3426         preempt_disable();
3427
3428         kvm_x86_ops->prepare_guest_switch(vcpu);
3429         kvm_load_guest_fpu(vcpu);
3430
3431         local_irq_disable();
3432
3433         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3434         smp_mb__after_clear_bit();
3435
3436         if (vcpu->requests || need_resched() || signal_pending(current)) {
3437                 local_irq_enable();
3438                 preempt_enable();
3439                 r = 1;
3440                 goto out;
3441         }
3442
3443         if (vcpu->arch.exception.pending)
3444                 __queue_exception(vcpu);
3445         else
3446                 inject_pending_irq(vcpu, kvm_run);
3447
3448         /* enable NMI/IRQ window open exits if needed */
3449         if (vcpu->arch.nmi_pending)
3450                 kvm_x86_ops->enable_nmi_window(vcpu);
3451         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3452                 kvm_x86_ops->enable_irq_window(vcpu);
3453
3454         if (kvm_lapic_enabled(vcpu)) {
3455                 update_cr8_intercept(vcpu);
3456                 kvm_lapic_sync_to_vapic(vcpu);
3457         }
3458
3459         up_read(&vcpu->kvm->slots_lock);
3460
3461         kvm_guest_enter();
3462
3463         get_debugreg(vcpu->arch.host_dr6, 6);
3464         get_debugreg(vcpu->arch.host_dr7, 7);
3465         if (unlikely(vcpu->arch.switch_db_regs)) {
3466                 get_debugreg(vcpu->arch.host_db[0], 0);
3467                 get_debugreg(vcpu->arch.host_db[1], 1);
3468                 get_debugreg(vcpu->arch.host_db[2], 2);
3469                 get_debugreg(vcpu->arch.host_db[3], 3);
3470
3471                 set_debugreg(0, 7);
3472                 set_debugreg(vcpu->arch.eff_db[0], 0);
3473                 set_debugreg(vcpu->arch.eff_db[1], 1);
3474                 set_debugreg(vcpu->arch.eff_db[2], 2);
3475                 set_debugreg(vcpu->arch.eff_db[3], 3);
3476         }
3477
3478         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3479         kvm_x86_ops->run(vcpu, kvm_run);
3480
3481         if (unlikely(vcpu->arch.switch_db_regs)) {
3482                 set_debugreg(0, 7);
3483                 set_debugreg(vcpu->arch.host_db[0], 0);
3484                 set_debugreg(vcpu->arch.host_db[1], 1);
3485                 set_debugreg(vcpu->arch.host_db[2], 2);
3486                 set_debugreg(vcpu->arch.host_db[3], 3);
3487         }
3488         set_debugreg(vcpu->arch.host_dr6, 6);
3489         set_debugreg(vcpu->arch.host_dr7, 7);
3490
3491         set_bit(KVM_REQ_KICK, &vcpu->requests);
3492         local_irq_enable();
3493
3494         ++vcpu->stat.exits;
3495
3496         /*
3497          * We must have an instruction between local_irq_enable() and
3498          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3499          * the interrupt shadow.  The stat.exits increment will do nicely.
3500          * But we need to prevent reordering, hence this barrier():
3501          */
3502         barrier();
3503
3504         kvm_guest_exit();
3505
3506         preempt_enable();
3507
3508         down_read(&vcpu->kvm->slots_lock);
3509
3510         /*
3511          * Profile KVM exit RIPs:
3512          */
3513         if (unlikely(prof_on == KVM_PROFILING)) {
3514                 unsigned long rip = kvm_rip_read(vcpu);
3515                 profile_hit(KVM_PROFILING, (void *)rip);
3516         }
3517
3518
3519         kvm_lapic_sync_from_vapic(vcpu);
3520
3521         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3522 out:
3523         return r;
3524 }
3525
3526
3527 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3528 {
3529         int r;
3530
3531         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3532                 pr_debug("vcpu %d received sipi with vector # %x\n",
3533                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3534                 kvm_lapic_reset(vcpu);
3535                 r = kvm_arch_vcpu_reset(vcpu);
3536                 if (r)
3537                         return r;
3538                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3539         }
3540
3541         down_read(&vcpu->kvm->slots_lock);
3542         vapic_enter(vcpu);
3543
3544         r = 1;
3545         while (r > 0) {
3546                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3547                         r = vcpu_enter_guest(vcpu, kvm_run);
3548                 else {
3549                         up_read(&vcpu->kvm->slots_lock);
3550                         kvm_vcpu_block(vcpu);
3551                         down_read(&vcpu->kvm->slots_lock);
3552                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3553                         {
3554                                 switch(vcpu->arch.mp_state) {
3555                                 case KVM_MP_STATE_HALTED:
3556                                         vcpu->arch.mp_state =
3557                                                 KVM_MP_STATE_RUNNABLE;
3558                                 case KVM_MP_STATE_RUNNABLE:
3559                                         break;
3560                                 case KVM_MP_STATE_SIPI_RECEIVED:
3561                                 default:
3562                                         r = -EINTR;
3563                                         break;
3564                                 }
3565                         }
3566                 }
3567
3568                 if (r <= 0)
3569                         break;
3570
3571                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3572                 if (kvm_cpu_has_pending_timer(vcpu))
3573                         kvm_inject_pending_timer_irqs(vcpu);
3574
3575                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3576                         r = -EINTR;
3577                         kvm_run->exit_reason = KVM_EXIT_INTR;
3578                         ++vcpu->stat.request_irq_exits;
3579                 }
3580                 if (signal_pending(current)) {
3581                         r = -EINTR;
3582                         kvm_run->exit_reason = KVM_EXIT_INTR;
3583                         ++vcpu->stat.signal_exits;
3584                 }
3585                 if (need_resched()) {
3586                         up_read(&vcpu->kvm->slots_lock);
3587                         kvm_resched(vcpu);
3588                         down_read(&vcpu->kvm->slots_lock);
3589                 }
3590         }
3591
3592         up_read(&vcpu->kvm->slots_lock);
3593         post_kvm_run_save(vcpu, kvm_run);
3594
3595         vapic_exit(vcpu);
3596
3597         return r;
3598 }
3599
3600 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3601 {
3602         int r;
3603         sigset_t sigsaved;
3604
3605         vcpu_load(vcpu);
3606
3607         if (vcpu->sigset_active)
3608                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3609
3610         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3611                 kvm_vcpu_block(vcpu);
3612                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3613                 r = -EAGAIN;
3614                 goto out;
3615         }
3616
3617         /* re-sync apic's tpr */
3618         if (!irqchip_in_kernel(vcpu->kvm))
3619                 kvm_set_cr8(vcpu, kvm_run->cr8);
3620
3621         if (vcpu->arch.pio.cur_count) {
3622                 r = complete_pio(vcpu);
3623                 if (r)
3624                         goto out;
3625         }
3626 #if CONFIG_HAS_IOMEM
3627         if (vcpu->mmio_needed) {
3628                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3629                 vcpu->mmio_read_completed = 1;
3630                 vcpu->mmio_needed = 0;
3631
3632                 down_read(&vcpu->kvm->slots_lock);
3633                 r = emulate_instruction(vcpu, kvm_run,
3634                                         vcpu->arch.mmio_fault_cr2, 0,
3635                                         EMULTYPE_NO_DECODE);
3636                 up_read(&vcpu->kvm->slots_lock);
3637                 if (r == EMULATE_DO_MMIO) {
3638                         /*
3639                          * Read-modify-write.  Back to userspace.
3640                          */
3641                         r = 0;
3642                         goto out;
3643                 }
3644         }
3645 #endif
3646         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3647                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3648                                      kvm_run->hypercall.ret);
3649
3650         r = __vcpu_run(vcpu, kvm_run);
3651
3652 out:
3653         if (vcpu->sigset_active)
3654                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3655
3656         vcpu_put(vcpu);
3657         return r;
3658 }
3659
3660 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3661 {
3662         vcpu_load(vcpu);
3663
3664         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3665         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3666         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3667         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3668         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3669         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3670         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3671         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3672 #ifdef CONFIG_X86_64
3673         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3674         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3675         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3676         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3677         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3678         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3679         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3680         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3681 #endif
3682
3683         regs->rip = kvm_rip_read(vcpu);
3684         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3685
3686         /*
3687          * Don't leak debug flags in case they were set for guest debugging
3688          */
3689         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3690                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3691
3692         vcpu_put(vcpu);
3693
3694         return 0;
3695 }
3696
3697 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3698 {
3699         vcpu_load(vcpu);
3700
3701         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3702         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3703         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3704         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3705         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3706         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3707         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3708         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3709 #ifdef CONFIG_X86_64
3710         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3711         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3712         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3713         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3714         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3715         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3716         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3717         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3718
3719 #endif
3720
3721         kvm_rip_write(vcpu, regs->rip);
3722         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3723
3724
3725         vcpu->arch.exception.pending = false;
3726
3727         vcpu_put(vcpu);
3728
3729         return 0;
3730 }
3731
3732 void kvm_get_segment(struct kvm_vcpu *vcpu,
3733                      struct kvm_segment *var, int seg)
3734 {
3735         kvm_x86_ops->get_segment(vcpu, var, seg);
3736 }
3737
3738 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3739 {
3740         struct kvm_segment cs;
3741
3742         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3743         *db = cs.db;
3744         *l = cs.l;
3745 }
3746 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3747
3748 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3749                                   struct kvm_sregs *sregs)
3750 {
3751         struct descriptor_table dt;
3752
3753         vcpu_load(vcpu);
3754
3755         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3756         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3757         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3758         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3759         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3760         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3761
3762         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3763         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3764
3765         kvm_x86_ops->get_idt(vcpu, &dt);
3766         sregs->idt.limit = dt.limit;
3767         sregs->idt.base = dt.base;
3768         kvm_x86_ops->get_gdt(vcpu, &dt);
3769         sregs->gdt.limit = dt.limit;
3770         sregs->gdt.base = dt.base;
3771
3772         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3773         sregs->cr0 = vcpu->arch.cr0;
3774         sregs->cr2 = vcpu->arch.cr2;
3775         sregs->cr3 = vcpu->arch.cr3;
3776         sregs->cr4 = vcpu->arch.cr4;
3777         sregs->cr8 = kvm_get_cr8(vcpu);
3778         sregs->efer = vcpu->arch.shadow_efer;
3779         sregs->apic_base = kvm_get_apic_base(vcpu);
3780
3781         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3782
3783         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3784                 set_bit(vcpu->arch.interrupt.nr,
3785                         (unsigned long *)sregs->interrupt_bitmap);
3786
3787         vcpu_put(vcpu);
3788
3789         return 0;
3790 }
3791
3792 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3793                                     struct kvm_mp_state *mp_state)
3794 {
3795         vcpu_load(vcpu);
3796         mp_state->mp_state = vcpu->arch.mp_state;
3797         vcpu_put(vcpu);
3798         return 0;
3799 }
3800
3801 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3802                                     struct kvm_mp_state *mp_state)
3803 {
3804         vcpu_load(vcpu);
3805         vcpu->arch.mp_state = mp_state->mp_state;
3806         vcpu_put(vcpu);
3807         return 0;
3808 }
3809
3810 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3811                         struct kvm_segment *var, int seg)
3812 {
3813         kvm_x86_ops->set_segment(vcpu, var, seg);
3814 }
3815
3816 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3817                                    struct kvm_segment *kvm_desct)
3818 {
3819         kvm_desct->base = seg_desc->base0;
3820         kvm_desct->base |= seg_desc->base1 << 16;
3821         kvm_desct->base |= seg_desc->base2 << 24;
3822         kvm_desct->limit = seg_desc->limit0;
3823         kvm_desct->limit |= seg_desc->limit << 16;
3824         if (seg_desc->g) {
3825                 kvm_desct->limit <<= 12;
3826                 kvm_desct->limit |= 0xfff;
3827         }
3828         kvm_desct->selector = selector;
3829         kvm_desct->type = seg_desc->type;
3830         kvm_desct->present = seg_desc->p;
3831         kvm_desct->dpl = seg_desc->dpl;
3832         kvm_desct->db = seg_desc->d;
3833         kvm_desct->s = seg_desc->s;
3834         kvm_desct->l = seg_desc->l;
3835         kvm_desct->g = seg_desc->g;
3836         kvm_desct->avl = seg_desc->avl;
3837         if (!selector)
3838                 kvm_desct->unusable = 1;
3839         else
3840                 kvm_desct->unusable = 0;
3841         kvm_desct->padding = 0;
3842 }
3843
3844 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3845                                           u16 selector,
3846                                           struct descriptor_table *dtable)
3847 {
3848         if (selector & 1 << 2) {
3849                 struct kvm_segment kvm_seg;
3850
3851                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3852
3853                 if (kvm_seg.unusable)
3854                         dtable->limit = 0;
3855                 else
3856                         dtable->limit = kvm_seg.limit;
3857                 dtable->base = kvm_seg.base;
3858         }
3859         else
3860                 kvm_x86_ops->get_gdt(vcpu, dtable);
3861 }
3862
3863 /* allowed just for 8 bytes segments */
3864 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3865                                          struct desc_struct *seg_desc)
3866 {
3867         gpa_t gpa;
3868         struct descriptor_table dtable;
3869         u16 index = selector >> 3;
3870
3871         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3872
3873         if (dtable.limit < index * 8 + 7) {
3874                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3875                 return 1;
3876         }
3877         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3878         gpa += index * 8;
3879         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3880 }
3881
3882 /* allowed just for 8 bytes segments */
3883 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3884                                          struct desc_struct *seg_desc)
3885 {
3886         gpa_t gpa;
3887         struct descriptor_table dtable;
3888         u16 index = selector >> 3;
3889
3890         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3891
3892         if (dtable.limit < index * 8 + 7)
3893                 return 1;
3894         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3895         gpa += index * 8;
3896         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3897 }
3898
3899 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3900                              struct desc_struct *seg_desc)
3901 {
3902         u32 base_addr;
3903
3904         base_addr = seg_desc->base0;
3905         base_addr |= (seg_desc->base1 << 16);
3906         base_addr |= (seg_desc->base2 << 24);
3907
3908         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3909 }
3910
3911 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3912 {
3913         struct kvm_segment kvm_seg;
3914
3915         kvm_get_segment(vcpu, &kvm_seg, seg);
3916         return kvm_seg.selector;
3917 }
3918
3919 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3920                                                 u16 selector,
3921                                                 struct kvm_segment *kvm_seg)
3922 {
3923         struct desc_struct seg_desc;
3924
3925         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3926                 return 1;
3927         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3928         return 0;
3929 }
3930
3931 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3932 {
3933         struct kvm_segment segvar = {
3934                 .base = selector << 4,
3935                 .limit = 0xffff,
3936                 .selector = selector,
3937                 .type = 3,
3938                 .present = 1,
3939                 .dpl = 3,
3940                 .db = 0,
3941                 .s = 1,
3942                 .l = 0,
3943                 .g = 0,
3944                 .avl = 0,
3945                 .unusable = 0,
3946         };
3947         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3948         return 0;
3949 }
3950
3951 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3952                                 int type_bits, int seg)
3953 {
3954         struct kvm_segment kvm_seg;
3955
3956         if (!(vcpu->arch.cr0 & X86_CR0_PE))
3957                 return kvm_load_realmode_segment(vcpu, selector, seg);
3958         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3959                 return 1;
3960         kvm_seg.type |= type_bits;
3961
3962         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3963             seg != VCPU_SREG_LDTR)
3964                 if (!kvm_seg.s)
3965                         kvm_seg.unusable = 1;
3966
3967         kvm_set_segment(vcpu, &kvm_seg, seg);
3968         return 0;
3969 }
3970
3971 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3972                                 struct tss_segment_32 *tss)
3973 {
3974         tss->cr3 = vcpu->arch.cr3;
3975         tss->eip = kvm_rip_read(vcpu);
3976         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3977         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3978         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3979         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3980         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3981         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3982         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3983         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3984         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3985         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3986         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3987         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3988         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3989         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3990         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3991         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3992 }
3993
3994 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3995                                   struct tss_segment_32 *tss)
3996 {
3997         kvm_set_cr3(vcpu, tss->cr3);
3998
3999         kvm_rip_write(vcpu, tss->eip);
4000         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4001
4002         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4003         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4004         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4005         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4006         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4007         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4008         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4009         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4010
4011         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4012                 return 1;
4013
4014         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4015                 return 1;
4016
4017         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4018                 return 1;
4019
4020         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4021                 return 1;
4022
4023         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4024                 return 1;
4025
4026         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4027                 return 1;
4028
4029         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4030                 return 1;
4031         return 0;
4032 }
4033
4034 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4035                                 struct tss_segment_16 *tss)
4036 {
4037         tss->ip = kvm_rip_read(vcpu);
4038         tss->flag = kvm_x86_ops->get_rflags(vcpu);
4039         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4040         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4041         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4042         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4043         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4044         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4045         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4046         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4047
4048         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4049         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4050         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4051         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4052         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4053         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4054 }
4055
4056 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4057                                  struct tss_segment_16 *tss)
4058 {
4059         kvm_rip_write(vcpu, tss->ip);
4060         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4061         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4062         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4063         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4064         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4065         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4066         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4067         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4068         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4069
4070         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4071                 return 1;
4072
4073         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4074                 return 1;
4075
4076         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4077                 return 1;
4078
4079         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4080                 return 1;
4081
4082         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4083                 return 1;
4084         return 0;
4085 }
4086
4087 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4088                               u16 old_tss_sel, u32 old_tss_base,
4089                               struct desc_struct *nseg_desc)
4090 {
4091         struct tss_segment_16 tss_segment_16;
4092         int ret = 0;
4093
4094         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4095                            sizeof tss_segment_16))
4096                 goto out;
4097
4098         save_state_to_tss16(vcpu, &tss_segment_16);
4099
4100         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4101                             sizeof tss_segment_16))
4102                 goto out;
4103
4104         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4105                            &tss_segment_16, sizeof tss_segment_16))
4106                 goto out;
4107
4108         if (old_tss_sel != 0xffff) {
4109                 tss_segment_16.prev_task_link = old_tss_sel;
4110
4111                 if (kvm_write_guest(vcpu->kvm,
4112                                     get_tss_base_addr(vcpu, nseg_desc),
4113                                     &tss_segment_16.prev_task_link,
4114                                     sizeof tss_segment_16.prev_task_link))
4115                         goto out;
4116         }
4117
4118         if (load_state_from_tss16(vcpu, &tss_segment_16))
4119                 goto out;
4120
4121         ret = 1;
4122 out:
4123         return ret;
4124 }
4125
4126 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4127                        u16 old_tss_sel, u32 old_tss_base,
4128                        struct desc_struct *nseg_desc)
4129 {
4130         struct tss_segment_32 tss_segment_32;
4131         int ret = 0;
4132
4133         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4134                            sizeof tss_segment_32))
4135                 goto out;
4136
4137         save_state_to_tss32(vcpu, &tss_segment_32);
4138
4139         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4140                             sizeof tss_segment_32))
4141                 goto out;
4142
4143         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4144                            &tss_segment_32, sizeof tss_segment_32))
4145                 goto out;
4146
4147         if (old_tss_sel != 0xffff) {
4148                 tss_segment_32.prev_task_link = old_tss_sel;
4149
4150                 if (kvm_write_guest(vcpu->kvm,
4151                                     get_tss_base_addr(vcpu, nseg_desc),
4152                                     &tss_segment_32.prev_task_link,
4153                                     sizeof tss_segment_32.prev_task_link))
4154                         goto out;
4155         }
4156
4157         if (load_state_from_tss32(vcpu, &tss_segment_32))
4158                 goto out;
4159
4160         ret = 1;
4161 out:
4162         return ret;
4163 }
4164
4165 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4166 {
4167         struct kvm_segment tr_seg;
4168         struct desc_struct cseg_desc;
4169         struct desc_struct nseg_desc;
4170         int ret = 0;
4171         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4172         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4173
4174         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4175
4176         /* FIXME: Handle errors. Failure to read either TSS or their
4177          * descriptors should generate a pagefault.
4178          */
4179         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4180                 goto out;
4181
4182         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4183                 goto out;
4184
4185         if (reason != TASK_SWITCH_IRET) {
4186                 int cpl;
4187
4188                 cpl = kvm_x86_ops->get_cpl(vcpu);
4189                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4190                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4191                         return 1;
4192                 }
4193         }
4194
4195         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
4196                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4197                 return 1;
4198         }
4199
4200         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4201                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4202                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4203         }
4204
4205         if (reason == TASK_SWITCH_IRET) {
4206                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4207                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4208         }
4209
4210         /* set back link to prev task only if NT bit is set in eflags
4211            note that old_tss_sel is not used afetr this point */
4212         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4213                 old_tss_sel = 0xffff;
4214
4215         /* set back link to prev task only if NT bit is set in eflags
4216            note that old_tss_sel is not used afetr this point */
4217         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4218                 old_tss_sel = 0xffff;
4219
4220         if (nseg_desc.type & 8)
4221                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4222                                          old_tss_base, &nseg_desc);
4223         else
4224                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4225                                          old_tss_base, &nseg_desc);
4226
4227         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4228                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4229                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4230         }
4231
4232         if (reason != TASK_SWITCH_IRET) {
4233                 nseg_desc.type |= (1 << 1);
4234                 save_guest_segment_descriptor(vcpu, tss_selector,
4235                                               &nseg_desc);
4236         }
4237
4238         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4239         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4240         tr_seg.type = 11;
4241         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4242 out:
4243         return ret;
4244 }
4245 EXPORT_SYMBOL_GPL(kvm_task_switch);
4246
4247 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4248                                   struct kvm_sregs *sregs)
4249 {
4250         int mmu_reset_needed = 0;
4251         int pending_vec, max_bits;
4252         struct descriptor_table dt;
4253
4254         vcpu_load(vcpu);
4255
4256         dt.limit = sregs->idt.limit;
4257         dt.base = sregs->idt.base;
4258         kvm_x86_ops->set_idt(vcpu, &dt);
4259         dt.limit = sregs->gdt.limit;
4260         dt.base = sregs->gdt.base;
4261         kvm_x86_ops->set_gdt(vcpu, &dt);
4262
4263         vcpu->arch.cr2 = sregs->cr2;
4264         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4265
4266         down_read(&vcpu->kvm->slots_lock);
4267         if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4268                 vcpu->arch.cr3 = sregs->cr3;
4269         else
4270                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4271         up_read(&vcpu->kvm->slots_lock);
4272
4273         kvm_set_cr8(vcpu, sregs->cr8);
4274
4275         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4276         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4277         kvm_set_apic_base(vcpu, sregs->apic_base);
4278
4279         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4280
4281         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4282         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4283         vcpu->arch.cr0 = sregs->cr0;
4284
4285         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4286         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4287         if (!is_long_mode(vcpu) && is_pae(vcpu))
4288                 load_pdptrs(vcpu, vcpu->arch.cr3);
4289
4290         if (mmu_reset_needed)
4291                 kvm_mmu_reset_context(vcpu);
4292
4293         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4294         pending_vec = find_first_bit(
4295                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4296         if (pending_vec < max_bits) {
4297                 kvm_queue_interrupt(vcpu, pending_vec, false);
4298                 pr_debug("Set back pending irq %d\n", pending_vec);
4299                 if (irqchip_in_kernel(vcpu->kvm))
4300                         kvm_pic_clear_isr_ack(vcpu->kvm);
4301         }
4302
4303         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4304         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4305         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4306         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4307         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4308         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4309
4310         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4311         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4312
4313         /* Older userspace won't unhalt the vcpu on reset. */
4314         if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4315             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4316             !(vcpu->arch.cr0 & X86_CR0_PE))
4317                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4318
4319         vcpu_put(vcpu);
4320
4321         return 0;
4322 }
4323
4324 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4325                                         struct kvm_guest_debug *dbg)
4326 {
4327         int i, r;
4328
4329         vcpu_load(vcpu);
4330
4331         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4332             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4333                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4334                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4335                 vcpu->arch.switch_db_regs =
4336                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4337         } else {
4338                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4339                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4340                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4341         }
4342
4343         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4344
4345         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4346                 kvm_queue_exception(vcpu, DB_VECTOR);
4347         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4348                 kvm_queue_exception(vcpu, BP_VECTOR);
4349
4350         vcpu_put(vcpu);
4351
4352         return r;
4353 }
4354
4355 /*
4356  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4357  * we have asm/x86/processor.h
4358  */
4359 struct fxsave {
4360         u16     cwd;
4361         u16     swd;
4362         u16     twd;
4363         u16     fop;
4364         u64     rip;
4365         u64     rdp;
4366         u32     mxcsr;
4367         u32     mxcsr_mask;
4368         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4369 #ifdef CONFIG_X86_64
4370         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4371 #else
4372         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4373 #endif
4374 };
4375
4376 /*
4377  * Translate a guest virtual address to a guest physical address.
4378  */
4379 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4380                                     struct kvm_translation *tr)
4381 {
4382         unsigned long vaddr = tr->linear_address;
4383         gpa_t gpa;
4384
4385         vcpu_load(vcpu);
4386         down_read(&vcpu->kvm->slots_lock);
4387         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4388         up_read(&vcpu->kvm->slots_lock);
4389         tr->physical_address = gpa;
4390         tr->valid = gpa != UNMAPPED_GVA;
4391         tr->writeable = 1;
4392         tr->usermode = 0;
4393         vcpu_put(vcpu);
4394
4395         return 0;
4396 }
4397
4398 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4399 {
4400         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4401
4402         vcpu_load(vcpu);
4403
4404         memcpy(fpu->fpr, fxsave->st_space, 128);
4405         fpu->fcw = fxsave->cwd;
4406         fpu->fsw = fxsave->swd;
4407         fpu->ftwx = fxsave->twd;
4408         fpu->last_opcode = fxsave->fop;
4409         fpu->last_ip = fxsave->rip;
4410         fpu->last_dp = fxsave->rdp;
4411         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4412
4413         vcpu_put(vcpu);
4414
4415         return 0;
4416 }
4417
4418 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4419 {
4420         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4421
4422         vcpu_load(vcpu);
4423
4424         memcpy(fxsave->st_space, fpu->fpr, 128);
4425         fxsave->cwd = fpu->fcw;
4426         fxsave->swd = fpu->fsw;
4427         fxsave->twd = fpu->ftwx;
4428         fxsave->fop = fpu->last_opcode;
4429         fxsave->rip = fpu->last_ip;
4430         fxsave->rdp = fpu->last_dp;
4431         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4432
4433         vcpu_put(vcpu);
4434
4435         return 0;
4436 }
4437
4438 void fx_init(struct kvm_vcpu *vcpu)
4439 {
4440         unsigned after_mxcsr_mask;
4441
4442         /*
4443          * Touch the fpu the first time in non atomic context as if
4444          * this is the first fpu instruction the exception handler
4445          * will fire before the instruction returns and it'll have to
4446          * allocate ram with GFP_KERNEL.
4447          */
4448         if (!used_math())
4449                 kvm_fx_save(&vcpu->arch.host_fx_image);
4450
4451         /* Initialize guest FPU by resetting ours and saving into guest's */
4452         preempt_disable();
4453         kvm_fx_save(&vcpu->arch.host_fx_image);
4454         kvm_fx_finit();
4455         kvm_fx_save(&vcpu->arch.guest_fx_image);
4456         kvm_fx_restore(&vcpu->arch.host_fx_image);
4457         preempt_enable();
4458
4459         vcpu->arch.cr0 |= X86_CR0_ET;
4460         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4461         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4462         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4463                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4464 }
4465 EXPORT_SYMBOL_GPL(fx_init);
4466
4467 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4468 {
4469         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4470                 return;
4471
4472         vcpu->guest_fpu_loaded = 1;
4473         kvm_fx_save(&vcpu->arch.host_fx_image);
4474         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4475 }
4476 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4477
4478 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4479 {
4480         if (!vcpu->guest_fpu_loaded)
4481                 return;
4482
4483         vcpu->guest_fpu_loaded = 0;
4484         kvm_fx_save(&vcpu->arch.guest_fx_image);
4485         kvm_fx_restore(&vcpu->arch.host_fx_image);
4486         ++vcpu->stat.fpu_reload;
4487 }
4488 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4489
4490 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4491 {
4492         if (vcpu->arch.time_page) {
4493                 kvm_release_page_dirty(vcpu->arch.time_page);
4494                 vcpu->arch.time_page = NULL;
4495         }
4496
4497         kvm_x86_ops->vcpu_free(vcpu);
4498 }
4499
4500 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4501                                                 unsigned int id)
4502 {
4503         return kvm_x86_ops->vcpu_create(kvm, id);
4504 }
4505
4506 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4507 {
4508         int r;
4509
4510         /* We do fxsave: this must be aligned. */
4511         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4512
4513         vcpu->arch.mtrr_state.have_fixed = 1;
4514         vcpu_load(vcpu);
4515         r = kvm_arch_vcpu_reset(vcpu);
4516         if (r == 0)
4517                 r = kvm_mmu_setup(vcpu);
4518         vcpu_put(vcpu);
4519         if (r < 0)
4520                 goto free_vcpu;
4521
4522         return 0;
4523 free_vcpu:
4524         kvm_x86_ops->vcpu_free(vcpu);
4525         return r;
4526 }
4527
4528 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4529 {
4530         vcpu_load(vcpu);
4531         kvm_mmu_unload(vcpu);
4532         vcpu_put(vcpu);
4533
4534         kvm_x86_ops->vcpu_free(vcpu);
4535 }
4536
4537 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4538 {
4539         vcpu->arch.nmi_pending = false;
4540         vcpu->arch.nmi_injected = false;
4541
4542         vcpu->arch.switch_db_regs = 0;
4543         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4544         vcpu->arch.dr6 = DR6_FIXED_1;
4545         vcpu->arch.dr7 = DR7_FIXED_1;
4546
4547         return kvm_x86_ops->vcpu_reset(vcpu);
4548 }
4549
4550 void kvm_arch_hardware_enable(void *garbage)
4551 {
4552         kvm_x86_ops->hardware_enable(garbage);
4553 }
4554
4555 void kvm_arch_hardware_disable(void *garbage)
4556 {
4557         kvm_x86_ops->hardware_disable(garbage);
4558 }
4559
4560 int kvm_arch_hardware_setup(void)
4561 {
4562         return kvm_x86_ops->hardware_setup();
4563 }
4564
4565 void kvm_arch_hardware_unsetup(void)
4566 {
4567         kvm_x86_ops->hardware_unsetup();
4568 }
4569
4570 void kvm_arch_check_processor_compat(void *rtn)
4571 {
4572         kvm_x86_ops->check_processor_compatibility(rtn);
4573 }
4574
4575 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4576 {
4577         struct page *page;
4578         struct kvm *kvm;
4579         int r;
4580
4581         BUG_ON(vcpu->kvm == NULL);
4582         kvm = vcpu->kvm;
4583
4584         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4585         if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4586                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4587         else
4588                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4589
4590         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4591         if (!page) {
4592                 r = -ENOMEM;
4593                 goto fail;
4594         }
4595         vcpu->arch.pio_data = page_address(page);
4596
4597         r = kvm_mmu_create(vcpu);
4598         if (r < 0)
4599                 goto fail_free_pio_data;
4600
4601         if (irqchip_in_kernel(kvm)) {
4602                 r = kvm_create_lapic(vcpu);
4603                 if (r < 0)
4604                         goto fail_mmu_destroy;
4605         }
4606
4607         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4608                                        GFP_KERNEL);
4609         if (!vcpu->arch.mce_banks) {
4610                 r = -ENOMEM;
4611                 goto fail_mmu_destroy;
4612         }
4613         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4614
4615         return 0;
4616
4617 fail_mmu_destroy:
4618         kvm_mmu_destroy(vcpu);
4619 fail_free_pio_data:
4620         free_page((unsigned long)vcpu->arch.pio_data);
4621 fail:
4622         return r;
4623 }
4624
4625 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4626 {
4627         kvm_free_lapic(vcpu);
4628         down_read(&vcpu->kvm->slots_lock);
4629         kvm_mmu_destroy(vcpu);
4630         up_read(&vcpu->kvm->slots_lock);
4631         free_page((unsigned long)vcpu->arch.pio_data);
4632 }
4633
4634 struct  kvm *kvm_arch_create_vm(void)
4635 {
4636         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4637
4638         if (!kvm)
4639                 return ERR_PTR(-ENOMEM);
4640
4641         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4642         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4643
4644         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4645         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4646
4647         rdtscll(kvm->arch.vm_init_tsc);
4648
4649         return kvm;
4650 }
4651
4652 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4653 {
4654         vcpu_load(vcpu);
4655         kvm_mmu_unload(vcpu);
4656         vcpu_put(vcpu);
4657 }
4658
4659 static void kvm_free_vcpus(struct kvm *kvm)
4660 {
4661         unsigned int i;
4662
4663         /*
4664          * Unpin any mmu pages first.
4665          */
4666         for (i = 0; i < KVM_MAX_VCPUS; ++i)
4667                 if (kvm->vcpus[i])
4668                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4669         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4670                 if (kvm->vcpus[i]) {
4671                         kvm_arch_vcpu_free(kvm->vcpus[i]);
4672                         kvm->vcpus[i] = NULL;
4673                 }
4674         }
4675
4676 }
4677
4678 void kvm_arch_sync_events(struct kvm *kvm)
4679 {
4680         kvm_free_all_assigned_devices(kvm);
4681 }
4682
4683 void kvm_arch_destroy_vm(struct kvm *kvm)
4684 {
4685         kvm_iommu_unmap_guest(kvm);
4686         kvm_free_pit(kvm);
4687         kfree(kvm->arch.vpic);
4688         kfree(kvm->arch.vioapic);
4689         kvm_free_vcpus(kvm);
4690         kvm_free_physmem(kvm);
4691         if (kvm->arch.apic_access_page)
4692                 put_page(kvm->arch.apic_access_page);
4693         if (kvm->arch.ept_identity_pagetable)
4694                 put_page(kvm->arch.ept_identity_pagetable);
4695         kfree(kvm);
4696 }
4697
4698 int kvm_arch_set_memory_region(struct kvm *kvm,
4699                                 struct kvm_userspace_memory_region *mem,
4700                                 struct kvm_memory_slot old,
4701                                 int user_alloc)
4702 {
4703         int npages = mem->memory_size >> PAGE_SHIFT;
4704         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4705
4706         /*To keep backward compatibility with older userspace,
4707          *x86 needs to hanlde !user_alloc case.
4708          */
4709         if (!user_alloc) {
4710                 if (npages && !old.rmap) {
4711                         unsigned long userspace_addr;
4712
4713                         down_write(&current->mm->mmap_sem);
4714                         userspace_addr = do_mmap(NULL, 0,
4715                                                  npages * PAGE_SIZE,
4716                                                  PROT_READ | PROT_WRITE,
4717                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4718                                                  0);
4719                         up_write(&current->mm->mmap_sem);
4720
4721                         if (IS_ERR((void *)userspace_addr))
4722                                 return PTR_ERR((void *)userspace_addr);
4723
4724                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4725                         spin_lock(&kvm->mmu_lock);
4726                         memslot->userspace_addr = userspace_addr;
4727                         spin_unlock(&kvm->mmu_lock);
4728                 } else {
4729                         if (!old.user_alloc && old.rmap) {
4730                                 int ret;
4731
4732                                 down_write(&current->mm->mmap_sem);
4733                                 ret = do_munmap(current->mm, old.userspace_addr,
4734                                                 old.npages * PAGE_SIZE);
4735                                 up_write(&current->mm->mmap_sem);
4736                                 if (ret < 0)
4737                                         printk(KERN_WARNING
4738                                        "kvm_vm_ioctl_set_memory_region: "
4739                                        "failed to munmap memory\n");
4740                         }
4741                 }
4742         }
4743
4744         spin_lock(&kvm->mmu_lock);
4745         if (!kvm->arch.n_requested_mmu_pages) {
4746                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4747                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4748         }
4749
4750         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4751         spin_unlock(&kvm->mmu_lock);
4752         kvm_flush_remote_tlbs(kvm);
4753
4754         return 0;
4755 }
4756
4757 void kvm_arch_flush_shadow(struct kvm *kvm)
4758 {
4759         kvm_mmu_zap_all(kvm);
4760         kvm_reload_remote_mmus(kvm);
4761 }
4762
4763 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4764 {
4765         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4766                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4767                || vcpu->arch.nmi_pending;
4768 }
4769
4770 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4771 {
4772         int me;
4773         int cpu = vcpu->cpu;
4774
4775         if (waitqueue_active(&vcpu->wq)) {
4776                 wake_up_interruptible(&vcpu->wq);
4777                 ++vcpu->stat.halt_wakeup;
4778         }
4779
4780         me = get_cpu();
4781         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4782                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4783                         smp_send_reschedule(cpu);
4784         put_cpu();
4785 }
4786
4787 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4788 {
4789         return kvm_x86_ops->interrupt_allowed(vcpu);
4790 }