kvm: KVM_CAP_IOMMU only available with device assignment
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         u64 value;
193         unsigned int cpu = smp_processor_id();
194         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         unsigned int cpu = smp_processor_id();
228         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230         if (((value ^ smsr->values[slot].curr) & mask) == 0)
231                 return;
232         smsr->values[slot].curr = value;
233         wrmsrl(shared_msrs_global.msrs[slot], value);
234         if (!smsr->registered) {
235                 smsr->urn.on_user_return = kvm_on_user_return;
236                 user_return_notifier_register(&smsr->urn);
237                 smsr->registered = true;
238         }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266         /* Fault while not rebooting.  We want the trace. */
267         BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code,
294                 bool reinject)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301         if (!vcpu->arch.exception.pending) {
302         queue:
303                 vcpu->arch.exception.pending = true;
304                 vcpu->arch.exception.has_error_code = has_error;
305                 vcpu->arch.exception.nr = nr;
306                 vcpu->arch.exception.error_code = error_code;
307                 vcpu->arch.exception.reinject = reinject;
308                 return;
309         }
310
311         /* to check exception */
312         prev_nr = vcpu->arch.exception.nr;
313         if (prev_nr == DF_VECTOR) {
314                 /* triple fault -> shutdown */
315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316                 return;
317         }
318         class1 = exception_class(prev_nr);
319         class2 = exception_class(nr);
320         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322                 /* generate double fault per SDM Table 5-5 */
323                 vcpu->arch.exception.pending = true;
324                 vcpu->arch.exception.has_error_code = true;
325                 vcpu->arch.exception.nr = DF_VECTOR;
326                 vcpu->arch.exception.error_code = 0;
327         } else
328                 /* replace previous exception with a new one in a hope
329                    that instruction re-execution will regenerate lost
330                    exception */
331                 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342         kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348         if (err)
349                 kvm_inject_gp(vcpu, 0);
350         else
351                 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357         ++vcpu->stat.pf_guest;
358         vcpu->arch.cr2 = fault->address;
359         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367         else
368                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373         atomic_inc(&vcpu->arch.nmi_queued);
374         kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386         kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397                 return true;
398         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399         return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409                             gfn_t ngfn, void *data, int offset, int len,
410                             u32 access)
411 {
412         gfn_t real_gfn;
413         gpa_t ngpa;
414
415         ngpa     = gfn_to_gpa(ngfn);
416         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417         if (real_gfn == UNMAPPED_GVA)
418                 return -EFAULT;
419
420         real_gfn = gpa_to_gfn(real_gfn);
421
422         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427                                void *data, int offset, int len, u32 access)
428 {
429         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430                                        data, offset, len, access);
431 }
432
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440         int i;
441         int ret;
442         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445                                       offset * sizeof(u64), sizeof(pdpte),
446                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
447         if (ret < 0) {
448                 ret = 0;
449                 goto out;
450         }
451         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452                 if (is_present_gpte(pdpte[i]) &&
453                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458         ret = 1;
459
460         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461         __set_bit(VCPU_EXREG_PDPTR,
462                   (unsigned long *)&vcpu->arch.regs_avail);
463         __set_bit(VCPU_EXREG_PDPTR,
464                   (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474         bool changed = true;
475         int offset;
476         gfn_t gfn;
477         int r;
478
479         if (is_long_mode(vcpu) || !is_pae(vcpu))
480                 return false;
481
482         if (!test_bit(VCPU_EXREG_PDPTR,
483                       (unsigned long *)&vcpu->arch.regs_avail))
484                 return true;
485
486         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
490         if (r < 0)
491                 goto out;
492         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495         return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500         unsigned long old_cr0 = kvm_read_cr0(vcpu);
501         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502                                     X86_CR0_CD | X86_CR0_NW;
503
504         cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507         if (cr0 & 0xffffffff00000000UL)
508                 return 1;
509 #endif
510
511         cr0 &= ~CR0_RESERVED_BITS;
512
513         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514                 return 1;
515
516         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517                 return 1;
518
519         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521                 if ((vcpu->arch.efer & EFER_LME)) {
522                         int cs_db, cs_l;
523
524                         if (!is_pae(vcpu))
525                                 return 1;
526                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527                         if (cs_l)
528                                 return 1;
529                 } else
530 #endif
531                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532                                                  kvm_read_cr3(vcpu)))
533                         return 1;
534         }
535
536         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537                 return 1;
538
539         kvm_x86_ops->set_cr0(vcpu, cr0);
540
541         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542                 kvm_clear_async_pf_completion_queue(vcpu);
543                 kvm_async_pf_hash_reset(vcpu);
544         }
545
546         if ((cr0 ^ old_cr0) & update_bits)
547                 kvm_mmu_reset_context(vcpu);
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
559 {
560         u64 xcr0;
561
562         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
563         if (index != XCR_XFEATURE_ENABLED_MASK)
564                 return 1;
565         xcr0 = xcr;
566         if (kvm_x86_ops->get_cpl(vcpu) != 0)
567                 return 1;
568         if (!(xcr0 & XSTATE_FP))
569                 return 1;
570         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
571                 return 1;
572         if (xcr0 & ~host_xcr0)
573                 return 1;
574         vcpu->arch.xcr0 = xcr0;
575         vcpu->guest_xcr0_loaded = 0;
576         return 0;
577 }
578
579 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
580 {
581         if (__kvm_set_xcr(vcpu, index, xcr)) {
582                 kvm_inject_gp(vcpu, 0);
583                 return 1;
584         }
585         return 0;
586 }
587 EXPORT_SYMBOL_GPL(kvm_set_xcr);
588
589 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
590 {
591         unsigned long old_cr4 = kvm_read_cr4(vcpu);
592         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
593                                    X86_CR4_PAE | X86_CR4_SMEP;
594         if (cr4 & CR4_RESERVED_BITS)
595                 return 1;
596
597         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
598                 return 1;
599
600         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
601                 return 1;
602
603         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
604                 return 1;
605
606         if (is_long_mode(vcpu)) {
607                 if (!(cr4 & X86_CR4_PAE))
608                         return 1;
609         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
610                    && ((cr4 ^ old_cr4) & pdptr_bits)
611                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
612                                    kvm_read_cr3(vcpu)))
613                 return 1;
614
615         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
616                 if (!guest_cpuid_has_pcid(vcpu))
617                         return 1;
618
619                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
620                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
621                         return 1;
622         }
623
624         if (kvm_x86_ops->set_cr4(vcpu, cr4))
625                 return 1;
626
627         if (((cr4 ^ old_cr4) & pdptr_bits) ||
628             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
629                 kvm_mmu_reset_context(vcpu);
630
631         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
632                 kvm_update_cpuid(vcpu);
633
634         return 0;
635 }
636 EXPORT_SYMBOL_GPL(kvm_set_cr4);
637
638 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
639 {
640         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
641                 kvm_mmu_sync_roots(vcpu);
642                 kvm_mmu_flush_tlb(vcpu);
643                 return 0;
644         }
645
646         if (is_long_mode(vcpu)) {
647                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
648                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
649                                 return 1;
650                 } else
651                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
652                                 return 1;
653         } else {
654                 if (is_pae(vcpu)) {
655                         if (cr3 & CR3_PAE_RESERVED_BITS)
656                                 return 1;
657                         if (is_paging(vcpu) &&
658                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
659                                 return 1;
660                 }
661                 /*
662                  * We don't check reserved bits in nonpae mode, because
663                  * this isn't enforced, and VMware depends on this.
664                  */
665         }
666
667         /*
668          * Does the new cr3 value map to physical memory? (Note, we
669          * catch an invalid cr3 even in real-mode, because it would
670          * cause trouble later on when we turn on paging anyway.)
671          *
672          * A real CPU would silently accept an invalid cr3 and would
673          * attempt to use it - with largely undefined (and often hard
674          * to debug) behavior on the guest side.
675          */
676         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
677                 return 1;
678         vcpu->arch.cr3 = cr3;
679         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
680         vcpu->arch.mmu.new_cr3(vcpu);
681         return 0;
682 }
683 EXPORT_SYMBOL_GPL(kvm_set_cr3);
684
685 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
686 {
687         if (cr8 & CR8_RESERVED_BITS)
688                 return 1;
689         if (irqchip_in_kernel(vcpu->kvm))
690                 kvm_lapic_set_tpr(vcpu, cr8);
691         else
692                 vcpu->arch.cr8 = cr8;
693         return 0;
694 }
695 EXPORT_SYMBOL_GPL(kvm_set_cr8);
696
697 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
698 {
699         if (irqchip_in_kernel(vcpu->kvm))
700                 return kvm_lapic_get_cr8(vcpu);
701         else
702                 return vcpu->arch.cr8;
703 }
704 EXPORT_SYMBOL_GPL(kvm_get_cr8);
705
706 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
707 {
708         unsigned long dr7;
709
710         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
711                 dr7 = vcpu->arch.guest_debug_dr7;
712         else
713                 dr7 = vcpu->arch.dr7;
714         kvm_x86_ops->set_dr7(vcpu, dr7);
715         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
716 }
717
718 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
719 {
720         switch (dr) {
721         case 0 ... 3:
722                 vcpu->arch.db[dr] = val;
723                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
724                         vcpu->arch.eff_db[dr] = val;
725                 break;
726         case 4:
727                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
728                         return 1; /* #UD */
729                 /* fall through */
730         case 6:
731                 if (val & 0xffffffff00000000ULL)
732                         return -1; /* #GP */
733                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
734                 break;
735         case 5:
736                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
737                         return 1; /* #UD */
738                 /* fall through */
739         default: /* 7 */
740                 if (val & 0xffffffff00000000ULL)
741                         return -1; /* #GP */
742                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
743                 kvm_update_dr7(vcpu);
744                 break;
745         }
746
747         return 0;
748 }
749
750 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
751 {
752         int res;
753
754         res = __kvm_set_dr(vcpu, dr, val);
755         if (res > 0)
756                 kvm_queue_exception(vcpu, UD_VECTOR);
757         else if (res < 0)
758                 kvm_inject_gp(vcpu, 0);
759
760         return res;
761 }
762 EXPORT_SYMBOL_GPL(kvm_set_dr);
763
764 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
765 {
766         switch (dr) {
767         case 0 ... 3:
768                 *val = vcpu->arch.db[dr];
769                 break;
770         case 4:
771                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
772                         return 1;
773                 /* fall through */
774         case 6:
775                 *val = vcpu->arch.dr6;
776                 break;
777         case 5:
778                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
779                         return 1;
780                 /* fall through */
781         default: /* 7 */
782                 *val = vcpu->arch.dr7;
783                 break;
784         }
785
786         return 0;
787 }
788
789 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
790 {
791         if (_kvm_get_dr(vcpu, dr, val)) {
792                 kvm_queue_exception(vcpu, UD_VECTOR);
793                 return 1;
794         }
795         return 0;
796 }
797 EXPORT_SYMBOL_GPL(kvm_get_dr);
798
799 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
800 {
801         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
802         u64 data;
803         int err;
804
805         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
806         if (err)
807                 return err;
808         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
809         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
810         return err;
811 }
812 EXPORT_SYMBOL_GPL(kvm_rdpmc);
813
814 /*
815  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
816  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
817  *
818  * This list is modified at module load time to reflect the
819  * capabilities of the host cpu. This capabilities test skips MSRs that are
820  * kvm-specific. Those are put in the beginning of the list.
821  */
822
823 #define KVM_SAVE_MSRS_BEGIN     10
824 static u32 msrs_to_save[] = {
825         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
826         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
827         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
828         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
829         MSR_KVM_PV_EOI_EN,
830         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
831         MSR_STAR,
832 #ifdef CONFIG_X86_64
833         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
834 #endif
835         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
836 };
837
838 static unsigned num_msrs_to_save;
839
840 static const u32 emulated_msrs[] = {
841         MSR_IA32_TSC_ADJUST,
842         MSR_IA32_TSCDEADLINE,
843         MSR_IA32_MISC_ENABLE,
844         MSR_IA32_MCG_STATUS,
845         MSR_IA32_MCG_CTL,
846 };
847
848 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
849 {
850         if (efer & efer_reserved_bits)
851                 return false;
852
853         if (efer & EFER_FFXSR) {
854                 struct kvm_cpuid_entry2 *feat;
855
856                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
857                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
858                         return false;
859         }
860
861         if (efer & EFER_SVME) {
862                 struct kvm_cpuid_entry2 *feat;
863
864                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
865                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
866                         return false;
867         }
868
869         return true;
870 }
871 EXPORT_SYMBOL_GPL(kvm_valid_efer);
872
873 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
874 {
875         u64 old_efer = vcpu->arch.efer;
876
877         if (!kvm_valid_efer(vcpu, efer))
878                 return 1;
879
880         if (is_paging(vcpu)
881             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
882                 return 1;
883
884         efer &= ~EFER_LMA;
885         efer |= vcpu->arch.efer & EFER_LMA;
886
887         kvm_x86_ops->set_efer(vcpu, efer);
888
889         /* Update reserved bits */
890         if ((efer ^ old_efer) & EFER_NX)
891                 kvm_mmu_reset_context(vcpu);
892
893         return 0;
894 }
895
896 void kvm_enable_efer_bits(u64 mask)
897 {
898        efer_reserved_bits &= ~mask;
899 }
900 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
901
902
903 /*
904  * Writes msr value into into the appropriate "register".
905  * Returns 0 on success, non-0 otherwise.
906  * Assumes vcpu_load() was already called.
907  */
908 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
909 {
910         return kvm_x86_ops->set_msr(vcpu, msr);
911 }
912
913 /*
914  * Adapt set_msr() to msr_io()'s calling convention
915  */
916 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
917 {
918         struct msr_data msr;
919
920         msr.data = *data;
921         msr.index = index;
922         msr.host_initiated = true;
923         return kvm_set_msr(vcpu, &msr);
924 }
925
926 #ifdef CONFIG_X86_64
927 struct pvclock_gtod_data {
928         seqcount_t      seq;
929
930         struct { /* extract of a clocksource struct */
931                 int vclock_mode;
932                 cycle_t cycle_last;
933                 cycle_t mask;
934                 u32     mult;
935                 u32     shift;
936         } clock;
937
938         /* open coded 'struct timespec' */
939         u64             monotonic_time_snsec;
940         time_t          monotonic_time_sec;
941 };
942
943 static struct pvclock_gtod_data pvclock_gtod_data;
944
945 static void update_pvclock_gtod(struct timekeeper *tk)
946 {
947         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
948
949         write_seqcount_begin(&vdata->seq);
950
951         /* copy pvclock gtod data */
952         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
953         vdata->clock.cycle_last         = tk->clock->cycle_last;
954         vdata->clock.mask               = tk->clock->mask;
955         vdata->clock.mult               = tk->mult;
956         vdata->clock.shift              = tk->shift;
957
958         vdata->monotonic_time_sec       = tk->xtime_sec
959                                         + tk->wall_to_monotonic.tv_sec;
960         vdata->monotonic_time_snsec     = tk->xtime_nsec
961                                         + (tk->wall_to_monotonic.tv_nsec
962                                                 << tk->shift);
963         while (vdata->monotonic_time_snsec >=
964                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
965                 vdata->monotonic_time_snsec -=
966                                         ((u64)NSEC_PER_SEC) << tk->shift;
967                 vdata->monotonic_time_sec++;
968         }
969
970         write_seqcount_end(&vdata->seq);
971 }
972 #endif
973
974
975 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
976 {
977         int version;
978         int r;
979         struct pvclock_wall_clock wc;
980         struct timespec boot;
981
982         if (!wall_clock)
983                 return;
984
985         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
986         if (r)
987                 return;
988
989         if (version & 1)
990                 ++version;  /* first time write, random junk */
991
992         ++version;
993
994         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
995
996         /*
997          * The guest calculates current wall clock time by adding
998          * system time (updated by kvm_guest_time_update below) to the
999          * wall clock specified here.  guest system time equals host
1000          * system time for us, thus we must fill in host boot time here.
1001          */
1002         getboottime(&boot);
1003
1004         if (kvm->arch.kvmclock_offset) {
1005                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1006                 boot = timespec_sub(boot, ts);
1007         }
1008         wc.sec = boot.tv_sec;
1009         wc.nsec = boot.tv_nsec;
1010         wc.version = version;
1011
1012         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1013
1014         version++;
1015         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1016 }
1017
1018 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1019 {
1020         uint32_t quotient, remainder;
1021
1022         /* Don't try to replace with do_div(), this one calculates
1023          * "(dividend << 32) / divisor" */
1024         __asm__ ( "divl %4"
1025                   : "=a" (quotient), "=d" (remainder)
1026                   : "0" (0), "1" (dividend), "r" (divisor) );
1027         return quotient;
1028 }
1029
1030 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1031                                s8 *pshift, u32 *pmultiplier)
1032 {
1033         uint64_t scaled64;
1034         int32_t  shift = 0;
1035         uint64_t tps64;
1036         uint32_t tps32;
1037
1038         tps64 = base_khz * 1000LL;
1039         scaled64 = scaled_khz * 1000LL;
1040         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1041                 tps64 >>= 1;
1042                 shift--;
1043         }
1044
1045         tps32 = (uint32_t)tps64;
1046         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1047                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1048                         scaled64 >>= 1;
1049                 else
1050                         tps32 <<= 1;
1051                 shift++;
1052         }
1053
1054         *pshift = shift;
1055         *pmultiplier = div_frac(scaled64, tps32);
1056
1057         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1058                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1059 }
1060
1061 static inline u64 get_kernel_ns(void)
1062 {
1063         struct timespec ts;
1064
1065         WARN_ON(preemptible());
1066         ktime_get_ts(&ts);
1067         monotonic_to_bootbased(&ts);
1068         return timespec_to_ns(&ts);
1069 }
1070
1071 #ifdef CONFIG_X86_64
1072 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1073 #endif
1074
1075 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1076 unsigned long max_tsc_khz;
1077
1078 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1079 {
1080         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1081                                    vcpu->arch.virtual_tsc_shift);
1082 }
1083
1084 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1085 {
1086         u64 v = (u64)khz * (1000000 + ppm);
1087         do_div(v, 1000000);
1088         return v;
1089 }
1090
1091 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1092 {
1093         u32 thresh_lo, thresh_hi;
1094         int use_scaling = 0;
1095
1096         /* tsc_khz can be zero if TSC calibration fails */
1097         if (this_tsc_khz == 0)
1098                 return;
1099
1100         /* Compute a scale to convert nanoseconds in TSC cycles */
1101         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1102                            &vcpu->arch.virtual_tsc_shift,
1103                            &vcpu->arch.virtual_tsc_mult);
1104         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1105
1106         /*
1107          * Compute the variation in TSC rate which is acceptable
1108          * within the range of tolerance and decide if the
1109          * rate being applied is within that bounds of the hardware
1110          * rate.  If so, no scaling or compensation need be done.
1111          */
1112         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1113         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1114         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1115                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1116                 use_scaling = 1;
1117         }
1118         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1119 }
1120
1121 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1122 {
1123         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1124                                       vcpu->arch.virtual_tsc_mult,
1125                                       vcpu->arch.virtual_tsc_shift);
1126         tsc += vcpu->arch.this_tsc_write;
1127         return tsc;
1128 }
1129
1130 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1131 {
1132 #ifdef CONFIG_X86_64
1133         bool vcpus_matched;
1134         bool do_request = false;
1135         struct kvm_arch *ka = &vcpu->kvm->arch;
1136         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1137
1138         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1139                          atomic_read(&vcpu->kvm->online_vcpus));
1140
1141         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1142                 if (!ka->use_master_clock)
1143                         do_request = 1;
1144
1145         if (!vcpus_matched && ka->use_master_clock)
1146                         do_request = 1;
1147
1148         if (do_request)
1149                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1150
1151         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1152                             atomic_read(&vcpu->kvm->online_vcpus),
1153                             ka->use_master_clock, gtod->clock.vclock_mode);
1154 #endif
1155 }
1156
1157 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1158 {
1159         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1160         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1161 }
1162
1163 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1164 {
1165         struct kvm *kvm = vcpu->kvm;
1166         u64 offset, ns, elapsed;
1167         unsigned long flags;
1168         s64 usdiff;
1169         bool matched;
1170         u64 data = msr->data;
1171
1172         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1173         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1174         ns = get_kernel_ns();
1175         elapsed = ns - kvm->arch.last_tsc_nsec;
1176
1177         if (vcpu->arch.virtual_tsc_khz) {
1178                 /* n.b - signed multiplication and division required */
1179                 usdiff = data - kvm->arch.last_tsc_write;
1180 #ifdef CONFIG_X86_64
1181                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1182 #else
1183                 /* do_div() only does unsigned */
1184                 asm("idivl %2; xor %%edx, %%edx"
1185                 : "=A"(usdiff)
1186                 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1187 #endif
1188                 do_div(elapsed, 1000);
1189                 usdiff -= elapsed;
1190                 if (usdiff < 0)
1191                         usdiff = -usdiff;
1192         } else
1193                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1194
1195         /*
1196          * Special case: TSC write with a small delta (1 second) of virtual
1197          * cycle time against real time is interpreted as an attempt to
1198          * synchronize the CPU.
1199          *
1200          * For a reliable TSC, we can match TSC offsets, and for an unstable
1201          * TSC, we add elapsed time in this computation.  We could let the
1202          * compensation code attempt to catch up if we fall behind, but
1203          * it's better to try to match offsets from the beginning.
1204          */
1205         if (usdiff < USEC_PER_SEC &&
1206             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1207                 if (!check_tsc_unstable()) {
1208                         offset = kvm->arch.cur_tsc_offset;
1209                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1210                 } else {
1211                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1212                         data += delta;
1213                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1214                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1215                 }
1216                 matched = true;
1217         } else {
1218                 /*
1219                  * We split periods of matched TSC writes into generations.
1220                  * For each generation, we track the original measured
1221                  * nanosecond time, offset, and write, so if TSCs are in
1222                  * sync, we can match exact offset, and if not, we can match
1223                  * exact software computation in compute_guest_tsc()
1224                  *
1225                  * These values are tracked in kvm->arch.cur_xxx variables.
1226                  */
1227                 kvm->arch.cur_tsc_generation++;
1228                 kvm->arch.cur_tsc_nsec = ns;
1229                 kvm->arch.cur_tsc_write = data;
1230                 kvm->arch.cur_tsc_offset = offset;
1231                 matched = false;
1232                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1233                          kvm->arch.cur_tsc_generation, data);
1234         }
1235
1236         /*
1237          * We also track th most recent recorded KHZ, write and time to
1238          * allow the matching interval to be extended at each write.
1239          */
1240         kvm->arch.last_tsc_nsec = ns;
1241         kvm->arch.last_tsc_write = data;
1242         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1243
1244         /* Reset of TSC must disable overshoot protection below */
1245         vcpu->arch.hv_clock.tsc_timestamp = 0;
1246         vcpu->arch.last_guest_tsc = data;
1247
1248         /* Keep track of which generation this VCPU has synchronized to */
1249         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1250         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1251         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1252
1253         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1254                 update_ia32_tsc_adjust_msr(vcpu, offset);
1255         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1256         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1257
1258         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1259         if (matched)
1260                 kvm->arch.nr_vcpus_matched_tsc++;
1261         else
1262                 kvm->arch.nr_vcpus_matched_tsc = 0;
1263
1264         kvm_track_tsc_matching(vcpu);
1265         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1266 }
1267
1268 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1269
1270 #ifdef CONFIG_X86_64
1271
1272 static cycle_t read_tsc(void)
1273 {
1274         cycle_t ret;
1275         u64 last;
1276
1277         /*
1278          * Empirically, a fence (of type that depends on the CPU)
1279          * before rdtsc is enough to ensure that rdtsc is ordered
1280          * with respect to loads.  The various CPU manuals are unclear
1281          * as to whether rdtsc can be reordered with later loads,
1282          * but no one has ever seen it happen.
1283          */
1284         rdtsc_barrier();
1285         ret = (cycle_t)vget_cycles();
1286
1287         last = pvclock_gtod_data.clock.cycle_last;
1288
1289         if (likely(ret >= last))
1290                 return ret;
1291
1292         /*
1293          * GCC likes to generate cmov here, but this branch is extremely
1294          * predictable (it's just a funciton of time and the likely is
1295          * very likely) and there's a data dependence, so force GCC
1296          * to generate a branch instead.  I don't barrier() because
1297          * we don't actually need a barrier, and if this function
1298          * ever gets inlined it will generate worse code.
1299          */
1300         asm volatile ("");
1301         return last;
1302 }
1303
1304 static inline u64 vgettsc(cycle_t *cycle_now)
1305 {
1306         long v;
1307         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1308
1309         *cycle_now = read_tsc();
1310
1311         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1312         return v * gtod->clock.mult;
1313 }
1314
1315 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1316 {
1317         unsigned long seq;
1318         u64 ns;
1319         int mode;
1320         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1321
1322         ts->tv_nsec = 0;
1323         do {
1324                 seq = read_seqcount_begin(&gtod->seq);
1325                 mode = gtod->clock.vclock_mode;
1326                 ts->tv_sec = gtod->monotonic_time_sec;
1327                 ns = gtod->monotonic_time_snsec;
1328                 ns += vgettsc(cycle_now);
1329                 ns >>= gtod->clock.shift;
1330         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1331         timespec_add_ns(ts, ns);
1332
1333         return mode;
1334 }
1335
1336 /* returns true if host is using tsc clocksource */
1337 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1338 {
1339         struct timespec ts;
1340
1341         /* checked again under seqlock below */
1342         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1343                 return false;
1344
1345         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1346                 return false;
1347
1348         monotonic_to_bootbased(&ts);
1349         *kernel_ns = timespec_to_ns(&ts);
1350
1351         return true;
1352 }
1353 #endif
1354
1355 /*
1356  *
1357  * Assuming a stable TSC across physical CPUS, and a stable TSC
1358  * across virtual CPUs, the following condition is possible.
1359  * Each numbered line represents an event visible to both
1360  * CPUs at the next numbered event.
1361  *
1362  * "timespecX" represents host monotonic time. "tscX" represents
1363  * RDTSC value.
1364  *
1365  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1366  *
1367  * 1.  read timespec0,tsc0
1368  * 2.                                   | timespec1 = timespec0 + N
1369  *                                      | tsc1 = tsc0 + M
1370  * 3. transition to guest               | transition to guest
1371  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1372  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1373  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1374  *
1375  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1376  *
1377  *      - ret0 < ret1
1378  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1379  *              ...
1380  *      - 0 < N - M => M < N
1381  *
1382  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1383  * always the case (the difference between two distinct xtime instances
1384  * might be smaller then the difference between corresponding TSC reads,
1385  * when updating guest vcpus pvclock areas).
1386  *
1387  * To avoid that problem, do not allow visibility of distinct
1388  * system_timestamp/tsc_timestamp values simultaneously: use a master
1389  * copy of host monotonic time values. Update that master copy
1390  * in lockstep.
1391  *
1392  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1393  *
1394  */
1395
1396 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1397 {
1398 #ifdef CONFIG_X86_64
1399         struct kvm_arch *ka = &kvm->arch;
1400         int vclock_mode;
1401         bool host_tsc_clocksource, vcpus_matched;
1402
1403         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1404                         atomic_read(&kvm->online_vcpus));
1405
1406         /*
1407          * If the host uses TSC clock, then passthrough TSC as stable
1408          * to the guest.
1409          */
1410         host_tsc_clocksource = kvm_get_time_and_clockread(
1411                                         &ka->master_kernel_ns,
1412                                         &ka->master_cycle_now);
1413
1414         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1415
1416         if (ka->use_master_clock)
1417                 atomic_set(&kvm_guest_has_master_clock, 1);
1418
1419         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1420         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1421                                         vcpus_matched);
1422 #endif
1423 }
1424
1425 static int kvm_guest_time_update(struct kvm_vcpu *v)
1426 {
1427         unsigned long flags, this_tsc_khz;
1428         struct kvm_vcpu_arch *vcpu = &v->arch;
1429         struct kvm_arch *ka = &v->kvm->arch;
1430         s64 kernel_ns, max_kernel_ns;
1431         u64 tsc_timestamp, host_tsc;
1432         struct pvclock_vcpu_time_info guest_hv_clock;
1433         u8 pvclock_flags;
1434         bool use_master_clock;
1435
1436         kernel_ns = 0;
1437         host_tsc = 0;
1438
1439         /*
1440          * If the host uses TSC clock, then passthrough TSC as stable
1441          * to the guest.
1442          */
1443         spin_lock(&ka->pvclock_gtod_sync_lock);
1444         use_master_clock = ka->use_master_clock;
1445         if (use_master_clock) {
1446                 host_tsc = ka->master_cycle_now;
1447                 kernel_ns = ka->master_kernel_ns;
1448         }
1449         spin_unlock(&ka->pvclock_gtod_sync_lock);
1450
1451         /* Keep irq disabled to prevent changes to the clock */
1452         local_irq_save(flags);
1453         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1454         if (unlikely(this_tsc_khz == 0)) {
1455                 local_irq_restore(flags);
1456                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1457                 return 1;
1458         }
1459         if (!use_master_clock) {
1460                 host_tsc = native_read_tsc();
1461                 kernel_ns = get_kernel_ns();
1462         }
1463
1464         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1465
1466         /*
1467          * We may have to catch up the TSC to match elapsed wall clock
1468          * time for two reasons, even if kvmclock is used.
1469          *   1) CPU could have been running below the maximum TSC rate
1470          *   2) Broken TSC compensation resets the base at each VCPU
1471          *      entry to avoid unknown leaps of TSC even when running
1472          *      again on the same CPU.  This may cause apparent elapsed
1473          *      time to disappear, and the guest to stand still or run
1474          *      very slowly.
1475          */
1476         if (vcpu->tsc_catchup) {
1477                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1478                 if (tsc > tsc_timestamp) {
1479                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1480                         tsc_timestamp = tsc;
1481                 }
1482         }
1483
1484         local_irq_restore(flags);
1485
1486         if (!vcpu->pv_time_enabled)
1487                 return 0;
1488
1489         /*
1490          * Time as measured by the TSC may go backwards when resetting the base
1491          * tsc_timestamp.  The reason for this is that the TSC resolution is
1492          * higher than the resolution of the other clock scales.  Thus, many
1493          * possible measurments of the TSC correspond to one measurement of any
1494          * other clock, and so a spread of values is possible.  This is not a
1495          * problem for the computation of the nanosecond clock; with TSC rates
1496          * around 1GHZ, there can only be a few cycles which correspond to one
1497          * nanosecond value, and any path through this code will inevitably
1498          * take longer than that.  However, with the kernel_ns value itself,
1499          * the precision may be much lower, down to HZ granularity.  If the
1500          * first sampling of TSC against kernel_ns ends in the low part of the
1501          * range, and the second in the high end of the range, we can get:
1502          *
1503          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1504          *
1505          * As the sampling errors potentially range in the thousands of cycles,
1506          * it is possible such a time value has already been observed by the
1507          * guest.  To protect against this, we must compute the system time as
1508          * observed by the guest and ensure the new system time is greater.
1509          */
1510         max_kernel_ns = 0;
1511         if (vcpu->hv_clock.tsc_timestamp) {
1512                 max_kernel_ns = vcpu->last_guest_tsc -
1513                                 vcpu->hv_clock.tsc_timestamp;
1514                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1515                                     vcpu->hv_clock.tsc_to_system_mul,
1516                                     vcpu->hv_clock.tsc_shift);
1517                 max_kernel_ns += vcpu->last_kernel_ns;
1518         }
1519
1520         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1521                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1522                                    &vcpu->hv_clock.tsc_shift,
1523                                    &vcpu->hv_clock.tsc_to_system_mul);
1524                 vcpu->hw_tsc_khz = this_tsc_khz;
1525         }
1526
1527         /* with a master <monotonic time, tsc value> tuple,
1528          * pvclock clock reads always increase at the (scaled) rate
1529          * of guest TSC - no need to deal with sampling errors.
1530          */
1531         if (!use_master_clock) {
1532                 if (max_kernel_ns > kernel_ns)
1533                         kernel_ns = max_kernel_ns;
1534         }
1535         /* With all the info we got, fill in the values */
1536         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1537         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1538         vcpu->last_kernel_ns = kernel_ns;
1539         vcpu->last_guest_tsc = tsc_timestamp;
1540
1541         /*
1542          * The interface expects us to write an even number signaling that the
1543          * update is finished. Since the guest won't see the intermediate
1544          * state, we just increase by 2 at the end.
1545          */
1546         vcpu->hv_clock.version += 2;
1547
1548         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1549                 &guest_hv_clock, sizeof(guest_hv_clock))))
1550                 return 0;
1551
1552         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1553         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1554
1555         if (vcpu->pvclock_set_guest_stopped_request) {
1556                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1557                 vcpu->pvclock_set_guest_stopped_request = false;
1558         }
1559
1560         /* If the host uses TSC clocksource, then it is stable */
1561         if (use_master_clock)
1562                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1563
1564         vcpu->hv_clock.flags = pvclock_flags;
1565
1566         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1567                                 &vcpu->hv_clock,
1568                                 sizeof(vcpu->hv_clock));
1569         return 0;
1570 }
1571
1572 static bool msr_mtrr_valid(unsigned msr)
1573 {
1574         switch (msr) {
1575         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1576         case MSR_MTRRfix64K_00000:
1577         case MSR_MTRRfix16K_80000:
1578         case MSR_MTRRfix16K_A0000:
1579         case MSR_MTRRfix4K_C0000:
1580         case MSR_MTRRfix4K_C8000:
1581         case MSR_MTRRfix4K_D0000:
1582         case MSR_MTRRfix4K_D8000:
1583         case MSR_MTRRfix4K_E0000:
1584         case MSR_MTRRfix4K_E8000:
1585         case MSR_MTRRfix4K_F0000:
1586         case MSR_MTRRfix4K_F8000:
1587         case MSR_MTRRdefType:
1588         case MSR_IA32_CR_PAT:
1589                 return true;
1590         case 0x2f8:
1591                 return true;
1592         }
1593         return false;
1594 }
1595
1596 static bool valid_pat_type(unsigned t)
1597 {
1598         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1599 }
1600
1601 static bool valid_mtrr_type(unsigned t)
1602 {
1603         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1604 }
1605
1606 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1607 {
1608         int i;
1609
1610         if (!msr_mtrr_valid(msr))
1611                 return false;
1612
1613         if (msr == MSR_IA32_CR_PAT) {
1614                 for (i = 0; i < 8; i++)
1615                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1616                                 return false;
1617                 return true;
1618         } else if (msr == MSR_MTRRdefType) {
1619                 if (data & ~0xcff)
1620                         return false;
1621                 return valid_mtrr_type(data & 0xff);
1622         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1623                 for (i = 0; i < 8 ; i++)
1624                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1625                                 return false;
1626                 return true;
1627         }
1628
1629         /* variable MTRRs */
1630         return valid_mtrr_type(data & 0xff);
1631 }
1632
1633 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1634 {
1635         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1636
1637         if (!mtrr_valid(vcpu, msr, data))
1638                 return 1;
1639
1640         if (msr == MSR_MTRRdefType) {
1641                 vcpu->arch.mtrr_state.def_type = data;
1642                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1643         } else if (msr == MSR_MTRRfix64K_00000)
1644                 p[0] = data;
1645         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1646                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1647         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1648                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1649         else if (msr == MSR_IA32_CR_PAT)
1650                 vcpu->arch.pat = data;
1651         else {  /* Variable MTRRs */
1652                 int idx, is_mtrr_mask;
1653                 u64 *pt;
1654
1655                 idx = (msr - 0x200) / 2;
1656                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1657                 if (!is_mtrr_mask)
1658                         pt =
1659                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1660                 else
1661                         pt =
1662                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1663                 *pt = data;
1664         }
1665
1666         kvm_mmu_reset_context(vcpu);
1667         return 0;
1668 }
1669
1670 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1671 {
1672         u64 mcg_cap = vcpu->arch.mcg_cap;
1673         unsigned bank_num = mcg_cap & 0xff;
1674
1675         switch (msr) {
1676         case MSR_IA32_MCG_STATUS:
1677                 vcpu->arch.mcg_status = data;
1678                 break;
1679         case MSR_IA32_MCG_CTL:
1680                 if (!(mcg_cap & MCG_CTL_P))
1681                         return 1;
1682                 if (data != 0 && data != ~(u64)0)
1683                         return -1;
1684                 vcpu->arch.mcg_ctl = data;
1685                 break;
1686         default:
1687                 if (msr >= MSR_IA32_MC0_CTL &&
1688                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1689                         u32 offset = msr - MSR_IA32_MC0_CTL;
1690                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1691                          * some Linux kernels though clear bit 10 in bank 4 to
1692                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1693                          * this to avoid an uncatched #GP in the guest
1694                          */
1695                         if ((offset & 0x3) == 0 &&
1696                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1697                                 return -1;
1698                         vcpu->arch.mce_banks[offset] = data;
1699                         break;
1700                 }
1701                 return 1;
1702         }
1703         return 0;
1704 }
1705
1706 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1707 {
1708         struct kvm *kvm = vcpu->kvm;
1709         int lm = is_long_mode(vcpu);
1710         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1711                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1712         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1713                 : kvm->arch.xen_hvm_config.blob_size_32;
1714         u32 page_num = data & ~PAGE_MASK;
1715         u64 page_addr = data & PAGE_MASK;
1716         u8 *page;
1717         int r;
1718
1719         r = -E2BIG;
1720         if (page_num >= blob_size)
1721                 goto out;
1722         r = -ENOMEM;
1723         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1724         if (IS_ERR(page)) {
1725                 r = PTR_ERR(page);
1726                 goto out;
1727         }
1728         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1729                 goto out_free;
1730         r = 0;
1731 out_free:
1732         kfree(page);
1733 out:
1734         return r;
1735 }
1736
1737 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1738 {
1739         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1740 }
1741
1742 static bool kvm_hv_msr_partition_wide(u32 msr)
1743 {
1744         bool r = false;
1745         switch (msr) {
1746         case HV_X64_MSR_GUEST_OS_ID:
1747         case HV_X64_MSR_HYPERCALL:
1748                 r = true;
1749                 break;
1750         }
1751
1752         return r;
1753 }
1754
1755 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1756 {
1757         struct kvm *kvm = vcpu->kvm;
1758
1759         switch (msr) {
1760         case HV_X64_MSR_GUEST_OS_ID:
1761                 kvm->arch.hv_guest_os_id = data;
1762                 /* setting guest os id to zero disables hypercall page */
1763                 if (!kvm->arch.hv_guest_os_id)
1764                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1765                 break;
1766         case HV_X64_MSR_HYPERCALL: {
1767                 u64 gfn;
1768                 unsigned long addr;
1769                 u8 instructions[4];
1770
1771                 /* if guest os id is not set hypercall should remain disabled */
1772                 if (!kvm->arch.hv_guest_os_id)
1773                         break;
1774                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1775                         kvm->arch.hv_hypercall = data;
1776                         break;
1777                 }
1778                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1779                 addr = gfn_to_hva(kvm, gfn);
1780                 if (kvm_is_error_hva(addr))
1781                         return 1;
1782                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1783                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1784                 if (__copy_to_user((void __user *)addr, instructions, 4))
1785                         return 1;
1786                 kvm->arch.hv_hypercall = data;
1787                 break;
1788         }
1789         default:
1790                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1791                             "data 0x%llx\n", msr, data);
1792                 return 1;
1793         }
1794         return 0;
1795 }
1796
1797 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1798 {
1799         switch (msr) {
1800         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1801                 unsigned long addr;
1802
1803                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1804                         vcpu->arch.hv_vapic = data;
1805                         break;
1806                 }
1807                 addr = gfn_to_hva(vcpu->kvm, data >>
1808                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1809                 if (kvm_is_error_hva(addr))
1810                         return 1;
1811                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1812                         return 1;
1813                 vcpu->arch.hv_vapic = data;
1814                 break;
1815         }
1816         case HV_X64_MSR_EOI:
1817                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1818         case HV_X64_MSR_ICR:
1819                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1820         case HV_X64_MSR_TPR:
1821                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1822         default:
1823                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1824                             "data 0x%llx\n", msr, data);
1825                 return 1;
1826         }
1827
1828         return 0;
1829 }
1830
1831 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1832 {
1833         gpa_t gpa = data & ~0x3f;
1834
1835         /* Bits 2:5 are reserved, Should be zero */
1836         if (data & 0x3c)
1837                 return 1;
1838
1839         vcpu->arch.apf.msr_val = data;
1840
1841         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1842                 kvm_clear_async_pf_completion_queue(vcpu);
1843                 kvm_async_pf_hash_reset(vcpu);
1844                 return 0;
1845         }
1846
1847         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1848                 return 1;
1849
1850         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1851         kvm_async_pf_wakeup_all(vcpu);
1852         return 0;
1853 }
1854
1855 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1856 {
1857         vcpu->arch.pv_time_enabled = false;
1858 }
1859
1860 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1861 {
1862         u64 delta;
1863
1864         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1865                 return;
1866
1867         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1868         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1869         vcpu->arch.st.accum_steal = delta;
1870 }
1871
1872 static void record_steal_time(struct kvm_vcpu *vcpu)
1873 {
1874         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1875                 return;
1876
1877         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1878                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1879                 return;
1880
1881         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1882         vcpu->arch.st.steal.version += 2;
1883         vcpu->arch.st.accum_steal = 0;
1884
1885         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1886                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1887 }
1888
1889 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1890 {
1891         bool pr = false;
1892         u32 msr = msr_info->index;
1893         u64 data = msr_info->data;
1894
1895         switch (msr) {
1896         case MSR_AMD64_NB_CFG:
1897         case MSR_IA32_UCODE_REV:
1898         case MSR_IA32_UCODE_WRITE:
1899         case MSR_VM_HSAVE_PA:
1900         case MSR_AMD64_PATCH_LOADER:
1901         case MSR_AMD64_BU_CFG2:
1902                 break;
1903
1904         case MSR_EFER:
1905                 return set_efer(vcpu, data);
1906         case MSR_K7_HWCR:
1907                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1908                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1909                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1910                 if (data != 0) {
1911                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1912                                     data);
1913                         return 1;
1914                 }
1915                 break;
1916         case MSR_FAM10H_MMIO_CONF_BASE:
1917                 if (data != 0) {
1918                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1919                                     "0x%llx\n", data);
1920                         return 1;
1921                 }
1922                 break;
1923         case MSR_IA32_DEBUGCTLMSR:
1924                 if (!data) {
1925                         /* We support the non-activated case already */
1926                         break;
1927                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1928                         /* Values other than LBR and BTF are vendor-specific,
1929                            thus reserved and should throw a #GP */
1930                         return 1;
1931                 }
1932                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1933                             __func__, data);
1934                 break;
1935         case 0x200 ... 0x2ff:
1936                 return set_msr_mtrr(vcpu, msr, data);
1937         case MSR_IA32_APICBASE:
1938                 kvm_set_apic_base(vcpu, data);
1939                 break;
1940         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1941                 return kvm_x2apic_msr_write(vcpu, msr, data);
1942         case MSR_IA32_TSCDEADLINE:
1943                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1944                 break;
1945         case MSR_IA32_TSC_ADJUST:
1946                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1947                         if (!msr_info->host_initiated) {
1948                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1949                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1950                         }
1951                         vcpu->arch.ia32_tsc_adjust_msr = data;
1952                 }
1953                 break;
1954         case MSR_IA32_MISC_ENABLE:
1955                 vcpu->arch.ia32_misc_enable_msr = data;
1956                 break;
1957         case MSR_KVM_WALL_CLOCK_NEW:
1958         case MSR_KVM_WALL_CLOCK:
1959                 vcpu->kvm->arch.wall_clock = data;
1960                 kvm_write_wall_clock(vcpu->kvm, data);
1961                 break;
1962         case MSR_KVM_SYSTEM_TIME_NEW:
1963         case MSR_KVM_SYSTEM_TIME: {
1964                 u64 gpa_offset;
1965                 kvmclock_reset(vcpu);
1966
1967                 vcpu->arch.time = data;
1968                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1969
1970                 /* we verify if the enable bit is set... */
1971                 if (!(data & 1))
1972                         break;
1973
1974                 gpa_offset = data & ~(PAGE_MASK | 1);
1975
1976                 /* Check that the address is 32-byte aligned. */
1977                 if (gpa_offset & (sizeof(struct pvclock_vcpu_time_info) - 1))
1978                         break;
1979
1980                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
1981                      &vcpu->arch.pv_time, data & ~1ULL))
1982                         vcpu->arch.pv_time_enabled = false;
1983                 else
1984                         vcpu->arch.pv_time_enabled = true;
1985
1986                 break;
1987         }
1988         case MSR_KVM_ASYNC_PF_EN:
1989                 if (kvm_pv_enable_async_pf(vcpu, data))
1990                         return 1;
1991                 break;
1992         case MSR_KVM_STEAL_TIME:
1993
1994                 if (unlikely(!sched_info_on()))
1995                         return 1;
1996
1997                 if (data & KVM_STEAL_RESERVED_MASK)
1998                         return 1;
1999
2000                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2001                                                         data & KVM_STEAL_VALID_BITS))
2002                         return 1;
2003
2004                 vcpu->arch.st.msr_val = data;
2005
2006                 if (!(data & KVM_MSR_ENABLED))
2007                         break;
2008
2009                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2010
2011                 preempt_disable();
2012                 accumulate_steal_time(vcpu);
2013                 preempt_enable();
2014
2015                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2016
2017                 break;
2018         case MSR_KVM_PV_EOI_EN:
2019                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2020                         return 1;
2021                 break;
2022
2023         case MSR_IA32_MCG_CTL:
2024         case MSR_IA32_MCG_STATUS:
2025         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2026                 return set_msr_mce(vcpu, msr, data);
2027
2028         /* Performance counters are not protected by a CPUID bit,
2029          * so we should check all of them in the generic path for the sake of
2030          * cross vendor migration.
2031          * Writing a zero into the event select MSRs disables them,
2032          * which we perfectly emulate ;-). Any other value should be at least
2033          * reported, some guests depend on them.
2034          */
2035         case MSR_K7_EVNTSEL0:
2036         case MSR_K7_EVNTSEL1:
2037         case MSR_K7_EVNTSEL2:
2038         case MSR_K7_EVNTSEL3:
2039                 if (data != 0)
2040                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2041                                     "0x%x data 0x%llx\n", msr, data);
2042                 break;
2043         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2044          * so we ignore writes to make it happy.
2045          */
2046         case MSR_K7_PERFCTR0:
2047         case MSR_K7_PERFCTR1:
2048         case MSR_K7_PERFCTR2:
2049         case MSR_K7_PERFCTR3:
2050                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2051                             "0x%x data 0x%llx\n", msr, data);
2052                 break;
2053         case MSR_P6_PERFCTR0:
2054         case MSR_P6_PERFCTR1:
2055                 pr = true;
2056         case MSR_P6_EVNTSEL0:
2057         case MSR_P6_EVNTSEL1:
2058                 if (kvm_pmu_msr(vcpu, msr))
2059                         return kvm_pmu_set_msr(vcpu, msr_info);
2060
2061                 if (pr || data != 0)
2062                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2063                                     "0x%x data 0x%llx\n", msr, data);
2064                 break;
2065         case MSR_K7_CLK_CTL:
2066                 /*
2067                  * Ignore all writes to this no longer documented MSR.
2068                  * Writes are only relevant for old K7 processors,
2069                  * all pre-dating SVM, but a recommended workaround from
2070                  * AMD for these chips. It is possible to specify the
2071                  * affected processor models on the command line, hence
2072                  * the need to ignore the workaround.
2073                  */
2074                 break;
2075         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2076                 if (kvm_hv_msr_partition_wide(msr)) {
2077                         int r;
2078                         mutex_lock(&vcpu->kvm->lock);
2079                         r = set_msr_hyperv_pw(vcpu, msr, data);
2080                         mutex_unlock(&vcpu->kvm->lock);
2081                         return r;
2082                 } else
2083                         return set_msr_hyperv(vcpu, msr, data);
2084                 break;
2085         case MSR_IA32_BBL_CR_CTL3:
2086                 /* Drop writes to this legacy MSR -- see rdmsr
2087                  * counterpart for further detail.
2088                  */
2089                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2090                 break;
2091         case MSR_AMD64_OSVW_ID_LENGTH:
2092                 if (!guest_cpuid_has_osvw(vcpu))
2093                         return 1;
2094                 vcpu->arch.osvw.length = data;
2095                 break;
2096         case MSR_AMD64_OSVW_STATUS:
2097                 if (!guest_cpuid_has_osvw(vcpu))
2098                         return 1;
2099                 vcpu->arch.osvw.status = data;
2100                 break;
2101         default:
2102                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2103                         return xen_hvm_config(vcpu, data);
2104                 if (kvm_pmu_msr(vcpu, msr))
2105                         return kvm_pmu_set_msr(vcpu, msr_info);
2106                 if (!ignore_msrs) {
2107                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2108                                     msr, data);
2109                         return 1;
2110                 } else {
2111                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2112                                     msr, data);
2113                         break;
2114                 }
2115         }
2116         return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2119
2120
2121 /*
2122  * Reads an msr value (of 'msr_index') into 'pdata'.
2123  * Returns 0 on success, non-0 otherwise.
2124  * Assumes vcpu_load() was already called.
2125  */
2126 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2127 {
2128         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2129 }
2130
2131 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2132 {
2133         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2134
2135         if (!msr_mtrr_valid(msr))
2136                 return 1;
2137
2138         if (msr == MSR_MTRRdefType)
2139                 *pdata = vcpu->arch.mtrr_state.def_type +
2140                          (vcpu->arch.mtrr_state.enabled << 10);
2141         else if (msr == MSR_MTRRfix64K_00000)
2142                 *pdata = p[0];
2143         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2144                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2145         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2146                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2147         else if (msr == MSR_IA32_CR_PAT)
2148                 *pdata = vcpu->arch.pat;
2149         else {  /* Variable MTRRs */
2150                 int idx, is_mtrr_mask;
2151                 u64 *pt;
2152
2153                 idx = (msr - 0x200) / 2;
2154                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2155                 if (!is_mtrr_mask)
2156                         pt =
2157                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2158                 else
2159                         pt =
2160                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2161                 *pdata = *pt;
2162         }
2163
2164         return 0;
2165 }
2166
2167 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2168 {
2169         u64 data;
2170         u64 mcg_cap = vcpu->arch.mcg_cap;
2171         unsigned bank_num = mcg_cap & 0xff;
2172
2173         switch (msr) {
2174         case MSR_IA32_P5_MC_ADDR:
2175         case MSR_IA32_P5_MC_TYPE:
2176                 data = 0;
2177                 break;
2178         case MSR_IA32_MCG_CAP:
2179                 data = vcpu->arch.mcg_cap;
2180                 break;
2181         case MSR_IA32_MCG_CTL:
2182                 if (!(mcg_cap & MCG_CTL_P))
2183                         return 1;
2184                 data = vcpu->arch.mcg_ctl;
2185                 break;
2186         case MSR_IA32_MCG_STATUS:
2187                 data = vcpu->arch.mcg_status;
2188                 break;
2189         default:
2190                 if (msr >= MSR_IA32_MC0_CTL &&
2191                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2192                         u32 offset = msr - MSR_IA32_MC0_CTL;
2193                         data = vcpu->arch.mce_banks[offset];
2194                         break;
2195                 }
2196                 return 1;
2197         }
2198         *pdata = data;
2199         return 0;
2200 }
2201
2202 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2203 {
2204         u64 data = 0;
2205         struct kvm *kvm = vcpu->kvm;
2206
2207         switch (msr) {
2208         case HV_X64_MSR_GUEST_OS_ID:
2209                 data = kvm->arch.hv_guest_os_id;
2210                 break;
2211         case HV_X64_MSR_HYPERCALL:
2212                 data = kvm->arch.hv_hypercall;
2213                 break;
2214         default:
2215                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2216                 return 1;
2217         }
2218
2219         *pdata = data;
2220         return 0;
2221 }
2222
2223 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2224 {
2225         u64 data = 0;
2226
2227         switch (msr) {
2228         case HV_X64_MSR_VP_INDEX: {
2229                 int r;
2230                 struct kvm_vcpu *v;
2231                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2232                         if (v == vcpu)
2233                                 data = r;
2234                 break;
2235         }
2236         case HV_X64_MSR_EOI:
2237                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2238         case HV_X64_MSR_ICR:
2239                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2240         case HV_X64_MSR_TPR:
2241                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2242         case HV_X64_MSR_APIC_ASSIST_PAGE:
2243                 data = vcpu->arch.hv_vapic;
2244                 break;
2245         default:
2246                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2247                 return 1;
2248         }
2249         *pdata = data;
2250         return 0;
2251 }
2252
2253 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2254 {
2255         u64 data;
2256
2257         switch (msr) {
2258         case MSR_IA32_PLATFORM_ID:
2259         case MSR_IA32_EBL_CR_POWERON:
2260         case MSR_IA32_DEBUGCTLMSR:
2261         case MSR_IA32_LASTBRANCHFROMIP:
2262         case MSR_IA32_LASTBRANCHTOIP:
2263         case MSR_IA32_LASTINTFROMIP:
2264         case MSR_IA32_LASTINTTOIP:
2265         case MSR_K8_SYSCFG:
2266         case MSR_K7_HWCR:
2267         case MSR_VM_HSAVE_PA:
2268         case MSR_K7_EVNTSEL0:
2269         case MSR_K7_PERFCTR0:
2270         case MSR_K8_INT_PENDING_MSG:
2271         case MSR_AMD64_NB_CFG:
2272         case MSR_FAM10H_MMIO_CONF_BASE:
2273         case MSR_AMD64_BU_CFG2:
2274                 data = 0;
2275                 break;
2276         case MSR_P6_PERFCTR0:
2277         case MSR_P6_PERFCTR1:
2278         case MSR_P6_EVNTSEL0:
2279         case MSR_P6_EVNTSEL1:
2280                 if (kvm_pmu_msr(vcpu, msr))
2281                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2282                 data = 0;
2283                 break;
2284         case MSR_IA32_UCODE_REV:
2285                 data = 0x100000000ULL;
2286                 break;
2287         case MSR_MTRRcap:
2288                 data = 0x500 | KVM_NR_VAR_MTRR;
2289                 break;
2290         case 0x200 ... 0x2ff:
2291                 return get_msr_mtrr(vcpu, msr, pdata);
2292         case 0xcd: /* fsb frequency */
2293                 data = 3;
2294                 break;
2295                 /*
2296                  * MSR_EBC_FREQUENCY_ID
2297                  * Conservative value valid for even the basic CPU models.
2298                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2299                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2300                  * and 266MHz for model 3, or 4. Set Core Clock
2301                  * Frequency to System Bus Frequency Ratio to 1 (bits
2302                  * 31:24) even though these are only valid for CPU
2303                  * models > 2, however guests may end up dividing or
2304                  * multiplying by zero otherwise.
2305                  */
2306         case MSR_EBC_FREQUENCY_ID:
2307                 data = 1 << 24;
2308                 break;
2309         case MSR_IA32_APICBASE:
2310                 data = kvm_get_apic_base(vcpu);
2311                 break;
2312         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2313                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2314                 break;
2315         case MSR_IA32_TSCDEADLINE:
2316                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2317                 break;
2318         case MSR_IA32_TSC_ADJUST:
2319                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2320                 break;
2321         case MSR_IA32_MISC_ENABLE:
2322                 data = vcpu->arch.ia32_misc_enable_msr;
2323                 break;
2324         case MSR_IA32_PERF_STATUS:
2325                 /* TSC increment by tick */
2326                 data = 1000ULL;
2327                 /* CPU multiplier */
2328                 data |= (((uint64_t)4ULL) << 40);
2329                 break;
2330         case MSR_EFER:
2331                 data = vcpu->arch.efer;
2332                 break;
2333         case MSR_KVM_WALL_CLOCK:
2334         case MSR_KVM_WALL_CLOCK_NEW:
2335                 data = vcpu->kvm->arch.wall_clock;
2336                 break;
2337         case MSR_KVM_SYSTEM_TIME:
2338         case MSR_KVM_SYSTEM_TIME_NEW:
2339                 data = vcpu->arch.time;
2340                 break;
2341         case MSR_KVM_ASYNC_PF_EN:
2342                 data = vcpu->arch.apf.msr_val;
2343                 break;
2344         case MSR_KVM_STEAL_TIME:
2345                 data = vcpu->arch.st.msr_val;
2346                 break;
2347         case MSR_KVM_PV_EOI_EN:
2348                 data = vcpu->arch.pv_eoi.msr_val;
2349                 break;
2350         case MSR_IA32_P5_MC_ADDR:
2351         case MSR_IA32_P5_MC_TYPE:
2352         case MSR_IA32_MCG_CAP:
2353         case MSR_IA32_MCG_CTL:
2354         case MSR_IA32_MCG_STATUS:
2355         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2356                 return get_msr_mce(vcpu, msr, pdata);
2357         case MSR_K7_CLK_CTL:
2358                 /*
2359                  * Provide expected ramp-up count for K7. All other
2360                  * are set to zero, indicating minimum divisors for
2361                  * every field.
2362                  *
2363                  * This prevents guest kernels on AMD host with CPU
2364                  * type 6, model 8 and higher from exploding due to
2365                  * the rdmsr failing.
2366                  */
2367                 data = 0x20000000;
2368                 break;
2369         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2370                 if (kvm_hv_msr_partition_wide(msr)) {
2371                         int r;
2372                         mutex_lock(&vcpu->kvm->lock);
2373                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2374                         mutex_unlock(&vcpu->kvm->lock);
2375                         return r;
2376                 } else
2377                         return get_msr_hyperv(vcpu, msr, pdata);
2378                 break;
2379         case MSR_IA32_BBL_CR_CTL3:
2380                 /* This legacy MSR exists but isn't fully documented in current
2381                  * silicon.  It is however accessed by winxp in very narrow
2382                  * scenarios where it sets bit #19, itself documented as
2383                  * a "reserved" bit.  Best effort attempt to source coherent
2384                  * read data here should the balance of the register be
2385                  * interpreted by the guest:
2386                  *
2387                  * L2 cache control register 3: 64GB range, 256KB size,
2388                  * enabled, latency 0x1, configured
2389                  */
2390                 data = 0xbe702111;
2391                 break;
2392         case MSR_AMD64_OSVW_ID_LENGTH:
2393                 if (!guest_cpuid_has_osvw(vcpu))
2394                         return 1;
2395                 data = vcpu->arch.osvw.length;
2396                 break;
2397         case MSR_AMD64_OSVW_STATUS:
2398                 if (!guest_cpuid_has_osvw(vcpu))
2399                         return 1;
2400                 data = vcpu->arch.osvw.status;
2401                 break;
2402         default:
2403                 if (kvm_pmu_msr(vcpu, msr))
2404                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2405                 if (!ignore_msrs) {
2406                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2407                         return 1;
2408                 } else {
2409                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2410                         data = 0;
2411                 }
2412                 break;
2413         }
2414         *pdata = data;
2415         return 0;
2416 }
2417 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2418
2419 /*
2420  * Read or write a bunch of msrs. All parameters are kernel addresses.
2421  *
2422  * @return number of msrs set successfully.
2423  */
2424 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2425                     struct kvm_msr_entry *entries,
2426                     int (*do_msr)(struct kvm_vcpu *vcpu,
2427                                   unsigned index, u64 *data))
2428 {
2429         int i, idx;
2430
2431         idx = srcu_read_lock(&vcpu->kvm->srcu);
2432         for (i = 0; i < msrs->nmsrs; ++i)
2433                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2434                         break;
2435         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2436
2437         return i;
2438 }
2439
2440 /*
2441  * Read or write a bunch of msrs. Parameters are user addresses.
2442  *
2443  * @return number of msrs set successfully.
2444  */
2445 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2446                   int (*do_msr)(struct kvm_vcpu *vcpu,
2447                                 unsigned index, u64 *data),
2448                   int writeback)
2449 {
2450         struct kvm_msrs msrs;
2451         struct kvm_msr_entry *entries;
2452         int r, n;
2453         unsigned size;
2454
2455         r = -EFAULT;
2456         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2457                 goto out;
2458
2459         r = -E2BIG;
2460         if (msrs.nmsrs >= MAX_IO_MSRS)
2461                 goto out;
2462
2463         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2464         entries = memdup_user(user_msrs->entries, size);
2465         if (IS_ERR(entries)) {
2466                 r = PTR_ERR(entries);
2467                 goto out;
2468         }
2469
2470         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2471         if (r < 0)
2472                 goto out_free;
2473
2474         r = -EFAULT;
2475         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2476                 goto out_free;
2477
2478         r = n;
2479
2480 out_free:
2481         kfree(entries);
2482 out:
2483         return r;
2484 }
2485
2486 int kvm_dev_ioctl_check_extension(long ext)
2487 {
2488         int r;
2489
2490         switch (ext) {
2491         case KVM_CAP_IRQCHIP:
2492         case KVM_CAP_HLT:
2493         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2494         case KVM_CAP_SET_TSS_ADDR:
2495         case KVM_CAP_EXT_CPUID:
2496         case KVM_CAP_CLOCKSOURCE:
2497         case KVM_CAP_PIT:
2498         case KVM_CAP_NOP_IO_DELAY:
2499         case KVM_CAP_MP_STATE:
2500         case KVM_CAP_SYNC_MMU:
2501         case KVM_CAP_USER_NMI:
2502         case KVM_CAP_REINJECT_CONTROL:
2503         case KVM_CAP_IRQ_INJECT_STATUS:
2504         case KVM_CAP_IRQFD:
2505         case KVM_CAP_IOEVENTFD:
2506         case KVM_CAP_PIT2:
2507         case KVM_CAP_PIT_STATE2:
2508         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2509         case KVM_CAP_XEN_HVM:
2510         case KVM_CAP_ADJUST_CLOCK:
2511         case KVM_CAP_VCPU_EVENTS:
2512         case KVM_CAP_HYPERV:
2513         case KVM_CAP_HYPERV_VAPIC:
2514         case KVM_CAP_HYPERV_SPIN:
2515         case KVM_CAP_PCI_SEGMENT:
2516         case KVM_CAP_DEBUGREGS:
2517         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2518         case KVM_CAP_XSAVE:
2519         case KVM_CAP_ASYNC_PF:
2520         case KVM_CAP_GET_TSC_KHZ:
2521         case KVM_CAP_KVMCLOCK_CTRL:
2522         case KVM_CAP_READONLY_MEM:
2523 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2524         case KVM_CAP_ASSIGN_DEV_IRQ:
2525         case KVM_CAP_PCI_2_3:
2526 #endif
2527                 r = 1;
2528                 break;
2529         case KVM_CAP_COALESCED_MMIO:
2530                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2531                 break;
2532         case KVM_CAP_VAPIC:
2533                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2534                 break;
2535         case KVM_CAP_NR_VCPUS:
2536                 r = KVM_SOFT_MAX_VCPUS;
2537                 break;
2538         case KVM_CAP_MAX_VCPUS:
2539                 r = KVM_MAX_VCPUS;
2540                 break;
2541         case KVM_CAP_NR_MEMSLOTS:
2542                 r = KVM_USER_MEM_SLOTS;
2543                 break;
2544         case KVM_CAP_PV_MMU:    /* obsolete */
2545                 r = 0;
2546                 break;
2547 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2548         case KVM_CAP_IOMMU:
2549                 r = iommu_present(&pci_bus_type);
2550                 break;
2551 #endif
2552         case KVM_CAP_MCE:
2553                 r = KVM_MAX_MCE_BANKS;
2554                 break;
2555         case KVM_CAP_XCRS:
2556                 r = cpu_has_xsave;
2557                 break;
2558         case KVM_CAP_TSC_CONTROL:
2559                 r = kvm_has_tsc_control;
2560                 break;
2561         case KVM_CAP_TSC_DEADLINE_TIMER:
2562                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2563                 break;
2564         default:
2565                 r = 0;
2566                 break;
2567         }
2568         return r;
2569
2570 }
2571
2572 long kvm_arch_dev_ioctl(struct file *filp,
2573                         unsigned int ioctl, unsigned long arg)
2574 {
2575         void __user *argp = (void __user *)arg;
2576         long r;
2577
2578         switch (ioctl) {
2579         case KVM_GET_MSR_INDEX_LIST: {
2580                 struct kvm_msr_list __user *user_msr_list = argp;
2581                 struct kvm_msr_list msr_list;
2582                 unsigned n;
2583
2584                 r = -EFAULT;
2585                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2586                         goto out;
2587                 n = msr_list.nmsrs;
2588                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2589                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2590                         goto out;
2591                 r = -E2BIG;
2592                 if (n < msr_list.nmsrs)
2593                         goto out;
2594                 r = -EFAULT;
2595                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2596                                  num_msrs_to_save * sizeof(u32)))
2597                         goto out;
2598                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2599                                  &emulated_msrs,
2600                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2601                         goto out;
2602                 r = 0;
2603                 break;
2604         }
2605         case KVM_GET_SUPPORTED_CPUID: {
2606                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2607                 struct kvm_cpuid2 cpuid;
2608
2609                 r = -EFAULT;
2610                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2611                         goto out;
2612                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2613                                                       cpuid_arg->entries);
2614                 if (r)
2615                         goto out;
2616
2617                 r = -EFAULT;
2618                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2619                         goto out;
2620                 r = 0;
2621                 break;
2622         }
2623         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2624                 u64 mce_cap;
2625
2626                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2627                 r = -EFAULT;
2628                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2629                         goto out;
2630                 r = 0;
2631                 break;
2632         }
2633         default:
2634                 r = -EINVAL;
2635         }
2636 out:
2637         return r;
2638 }
2639
2640 static void wbinvd_ipi(void *garbage)
2641 {
2642         wbinvd();
2643 }
2644
2645 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2646 {
2647         return vcpu->kvm->arch.iommu_domain &&
2648                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2649 }
2650
2651 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2652 {
2653         /* Address WBINVD may be executed by guest */
2654         if (need_emulate_wbinvd(vcpu)) {
2655                 if (kvm_x86_ops->has_wbinvd_exit())
2656                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2657                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2658                         smp_call_function_single(vcpu->cpu,
2659                                         wbinvd_ipi, NULL, 1);
2660         }
2661
2662         kvm_x86_ops->vcpu_load(vcpu, cpu);
2663
2664         /* Apply any externally detected TSC adjustments (due to suspend) */
2665         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2666                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2667                 vcpu->arch.tsc_offset_adjustment = 0;
2668                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2669         }
2670
2671         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2672                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2673                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2674                 if (tsc_delta < 0)
2675                         mark_tsc_unstable("KVM discovered backwards TSC");
2676                 if (check_tsc_unstable()) {
2677                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2678                                                 vcpu->arch.last_guest_tsc);
2679                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2680                         vcpu->arch.tsc_catchup = 1;
2681                 }
2682                 /*
2683                  * On a host with synchronized TSC, there is no need to update
2684                  * kvmclock on vcpu->cpu migration
2685                  */
2686                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2687                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2688                 if (vcpu->cpu != cpu)
2689                         kvm_migrate_timers(vcpu);
2690                 vcpu->cpu = cpu;
2691         }
2692
2693         accumulate_steal_time(vcpu);
2694         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2695 }
2696
2697 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2698 {
2699         kvm_x86_ops->vcpu_put(vcpu);
2700         kvm_put_guest_fpu(vcpu);
2701         vcpu->arch.last_host_tsc = native_read_tsc();
2702 }
2703
2704 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2705                                     struct kvm_lapic_state *s)
2706 {
2707         kvm_x86_ops->sync_pir_to_irr(vcpu);
2708         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2709
2710         return 0;
2711 }
2712
2713 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2714                                     struct kvm_lapic_state *s)
2715 {
2716         kvm_apic_post_state_restore(vcpu, s);
2717         update_cr8_intercept(vcpu);
2718
2719         return 0;
2720 }
2721
2722 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2723                                     struct kvm_interrupt *irq)
2724 {
2725         if (irq->irq >= KVM_NR_INTERRUPTS)
2726                 return -EINVAL;
2727         if (irqchip_in_kernel(vcpu->kvm))
2728                 return -ENXIO;
2729
2730         kvm_queue_interrupt(vcpu, irq->irq, false);
2731         kvm_make_request(KVM_REQ_EVENT, vcpu);
2732
2733         return 0;
2734 }
2735
2736 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2737 {
2738         kvm_inject_nmi(vcpu);
2739
2740         return 0;
2741 }
2742
2743 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2744                                            struct kvm_tpr_access_ctl *tac)
2745 {
2746         if (tac->flags)
2747                 return -EINVAL;
2748         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2749         return 0;
2750 }
2751
2752 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2753                                         u64 mcg_cap)
2754 {
2755         int r;
2756         unsigned bank_num = mcg_cap & 0xff, bank;
2757
2758         r = -EINVAL;
2759         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2760                 goto out;
2761         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2762                 goto out;
2763         r = 0;
2764         vcpu->arch.mcg_cap = mcg_cap;
2765         /* Init IA32_MCG_CTL to all 1s */
2766         if (mcg_cap & MCG_CTL_P)
2767                 vcpu->arch.mcg_ctl = ~(u64)0;
2768         /* Init IA32_MCi_CTL to all 1s */
2769         for (bank = 0; bank < bank_num; bank++)
2770                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2771 out:
2772         return r;
2773 }
2774
2775 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2776                                       struct kvm_x86_mce *mce)
2777 {
2778         u64 mcg_cap = vcpu->arch.mcg_cap;
2779         unsigned bank_num = mcg_cap & 0xff;
2780         u64 *banks = vcpu->arch.mce_banks;
2781
2782         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2783                 return -EINVAL;
2784         /*
2785          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2786          * reporting is disabled
2787          */
2788         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2789             vcpu->arch.mcg_ctl != ~(u64)0)
2790                 return 0;
2791         banks += 4 * mce->bank;
2792         /*
2793          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2794          * reporting is disabled for the bank
2795          */
2796         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2797                 return 0;
2798         if (mce->status & MCI_STATUS_UC) {
2799                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2800                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2801                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2802                         return 0;
2803                 }
2804                 if (banks[1] & MCI_STATUS_VAL)
2805                         mce->status |= MCI_STATUS_OVER;
2806                 banks[2] = mce->addr;
2807                 banks[3] = mce->misc;
2808                 vcpu->arch.mcg_status = mce->mcg_status;
2809                 banks[1] = mce->status;
2810                 kvm_queue_exception(vcpu, MC_VECTOR);
2811         } else if (!(banks[1] & MCI_STATUS_VAL)
2812                    || !(banks[1] & MCI_STATUS_UC)) {
2813                 if (banks[1] & MCI_STATUS_VAL)
2814                         mce->status |= MCI_STATUS_OVER;
2815                 banks[2] = mce->addr;
2816                 banks[3] = mce->misc;
2817                 banks[1] = mce->status;
2818         } else
2819                 banks[1] |= MCI_STATUS_OVER;
2820         return 0;
2821 }
2822
2823 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2824                                                struct kvm_vcpu_events *events)
2825 {
2826         process_nmi(vcpu);
2827         events->exception.injected =
2828                 vcpu->arch.exception.pending &&
2829                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2830         events->exception.nr = vcpu->arch.exception.nr;
2831         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2832         events->exception.pad = 0;
2833         events->exception.error_code = vcpu->arch.exception.error_code;
2834
2835         events->interrupt.injected =
2836                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2837         events->interrupt.nr = vcpu->arch.interrupt.nr;
2838         events->interrupt.soft = 0;
2839         events->interrupt.shadow =
2840                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2841                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2842
2843         events->nmi.injected = vcpu->arch.nmi_injected;
2844         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2845         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2846         events->nmi.pad = 0;
2847
2848         events->sipi_vector = 0; /* never valid when reporting to user space */
2849
2850         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2851                          | KVM_VCPUEVENT_VALID_SHADOW);
2852         memset(&events->reserved, 0, sizeof(events->reserved));
2853 }
2854
2855 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2856                                               struct kvm_vcpu_events *events)
2857 {
2858         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2859                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2860                               | KVM_VCPUEVENT_VALID_SHADOW))
2861                 return -EINVAL;
2862
2863         process_nmi(vcpu);
2864         vcpu->arch.exception.pending = events->exception.injected;
2865         vcpu->arch.exception.nr = events->exception.nr;
2866         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2867         vcpu->arch.exception.error_code = events->exception.error_code;
2868
2869         vcpu->arch.interrupt.pending = events->interrupt.injected;
2870         vcpu->arch.interrupt.nr = events->interrupt.nr;
2871         vcpu->arch.interrupt.soft = events->interrupt.soft;
2872         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2873                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2874                                                   events->interrupt.shadow);
2875
2876         vcpu->arch.nmi_injected = events->nmi.injected;
2877         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2878                 vcpu->arch.nmi_pending = events->nmi.pending;
2879         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2880
2881         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2882             kvm_vcpu_has_lapic(vcpu))
2883                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2884
2885         kvm_make_request(KVM_REQ_EVENT, vcpu);
2886
2887         return 0;
2888 }
2889
2890 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2891                                              struct kvm_debugregs *dbgregs)
2892 {
2893         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2894         dbgregs->dr6 = vcpu->arch.dr6;
2895         dbgregs->dr7 = vcpu->arch.dr7;
2896         dbgregs->flags = 0;
2897         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2898 }
2899
2900 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2901                                             struct kvm_debugregs *dbgregs)
2902 {
2903         if (dbgregs->flags)
2904                 return -EINVAL;
2905
2906         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2907         vcpu->arch.dr6 = dbgregs->dr6;
2908         vcpu->arch.dr7 = dbgregs->dr7;
2909
2910         return 0;
2911 }
2912
2913 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2914                                          struct kvm_xsave *guest_xsave)
2915 {
2916         if (cpu_has_xsave)
2917                 memcpy(guest_xsave->region,
2918                         &vcpu->arch.guest_fpu.state->xsave,
2919                         xstate_size);
2920         else {
2921                 memcpy(guest_xsave->region,
2922                         &vcpu->arch.guest_fpu.state->fxsave,
2923                         sizeof(struct i387_fxsave_struct));
2924                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2925                         XSTATE_FPSSE;
2926         }
2927 }
2928
2929 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2930                                         struct kvm_xsave *guest_xsave)
2931 {
2932         u64 xstate_bv =
2933                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2934
2935         if (cpu_has_xsave)
2936                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2937                         guest_xsave->region, xstate_size);
2938         else {
2939                 if (xstate_bv & ~XSTATE_FPSSE)
2940                         return -EINVAL;
2941                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2942                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2943         }
2944         return 0;
2945 }
2946
2947 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2948                                         struct kvm_xcrs *guest_xcrs)
2949 {
2950         if (!cpu_has_xsave) {
2951                 guest_xcrs->nr_xcrs = 0;
2952                 return;
2953         }
2954
2955         guest_xcrs->nr_xcrs = 1;
2956         guest_xcrs->flags = 0;
2957         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2958         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2959 }
2960
2961 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2962                                        struct kvm_xcrs *guest_xcrs)
2963 {
2964         int i, r = 0;
2965
2966         if (!cpu_has_xsave)
2967                 return -EINVAL;
2968
2969         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2970                 return -EINVAL;
2971
2972         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2973                 /* Only support XCR0 currently */
2974                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2975                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2976                                 guest_xcrs->xcrs[0].value);
2977                         break;
2978                 }
2979         if (r)
2980                 r = -EINVAL;
2981         return r;
2982 }
2983
2984 /*
2985  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2986  * stopped by the hypervisor.  This function will be called from the host only.
2987  * EINVAL is returned when the host attempts to set the flag for a guest that
2988  * does not support pv clocks.
2989  */
2990 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2991 {
2992         if (!vcpu->arch.pv_time_enabled)
2993                 return -EINVAL;
2994         vcpu->arch.pvclock_set_guest_stopped_request = true;
2995         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2996         return 0;
2997 }
2998
2999 long kvm_arch_vcpu_ioctl(struct file *filp,
3000                          unsigned int ioctl, unsigned long arg)
3001 {
3002         struct kvm_vcpu *vcpu = filp->private_data;
3003         void __user *argp = (void __user *)arg;
3004         int r;
3005         union {
3006                 struct kvm_lapic_state *lapic;
3007                 struct kvm_xsave *xsave;
3008                 struct kvm_xcrs *xcrs;
3009                 void *buffer;
3010         } u;
3011
3012         u.buffer = NULL;
3013         switch (ioctl) {
3014         case KVM_GET_LAPIC: {
3015                 r = -EINVAL;
3016                 if (!vcpu->arch.apic)
3017                         goto out;
3018                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3019
3020                 r = -ENOMEM;
3021                 if (!u.lapic)
3022                         goto out;
3023                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3024                 if (r)
3025                         goto out;
3026                 r = -EFAULT;
3027                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3028                         goto out;
3029                 r = 0;
3030                 break;
3031         }
3032         case KVM_SET_LAPIC: {
3033                 r = -EINVAL;
3034                 if (!vcpu->arch.apic)
3035                         goto out;
3036                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3037                 if (IS_ERR(u.lapic))
3038                         return PTR_ERR(u.lapic);
3039
3040                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3041                 break;
3042         }
3043         case KVM_INTERRUPT: {
3044                 struct kvm_interrupt irq;
3045
3046                 r = -EFAULT;
3047                 if (copy_from_user(&irq, argp, sizeof irq))
3048                         goto out;
3049                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3050                 break;
3051         }
3052         case KVM_NMI: {
3053                 r = kvm_vcpu_ioctl_nmi(vcpu);
3054                 break;
3055         }
3056         case KVM_SET_CPUID: {
3057                 struct kvm_cpuid __user *cpuid_arg = argp;
3058                 struct kvm_cpuid cpuid;
3059
3060                 r = -EFAULT;
3061                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3062                         goto out;
3063                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3064                 break;
3065         }
3066         case KVM_SET_CPUID2: {
3067                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3068                 struct kvm_cpuid2 cpuid;
3069
3070                 r = -EFAULT;
3071                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3072                         goto out;
3073                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3074                                               cpuid_arg->entries);
3075                 break;
3076         }
3077         case KVM_GET_CPUID2: {
3078                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3079                 struct kvm_cpuid2 cpuid;
3080
3081                 r = -EFAULT;
3082                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3083                         goto out;
3084                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3085                                               cpuid_arg->entries);
3086                 if (r)
3087                         goto out;
3088                 r = -EFAULT;
3089                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3090                         goto out;
3091                 r = 0;
3092                 break;
3093         }
3094         case KVM_GET_MSRS:
3095                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3096                 break;
3097         case KVM_SET_MSRS:
3098                 r = msr_io(vcpu, argp, do_set_msr, 0);
3099                 break;
3100         case KVM_TPR_ACCESS_REPORTING: {
3101                 struct kvm_tpr_access_ctl tac;
3102
3103                 r = -EFAULT;
3104                 if (copy_from_user(&tac, argp, sizeof tac))
3105                         goto out;
3106                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3107                 if (r)
3108                         goto out;
3109                 r = -EFAULT;
3110                 if (copy_to_user(argp, &tac, sizeof tac))
3111                         goto out;
3112                 r = 0;
3113                 break;
3114         };
3115         case KVM_SET_VAPIC_ADDR: {
3116                 struct kvm_vapic_addr va;
3117
3118                 r = -EINVAL;
3119                 if (!irqchip_in_kernel(vcpu->kvm))
3120                         goto out;
3121                 r = -EFAULT;
3122                 if (copy_from_user(&va, argp, sizeof va))
3123                         goto out;
3124                 r = 0;
3125                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3126                 break;
3127         }
3128         case KVM_X86_SETUP_MCE: {
3129                 u64 mcg_cap;
3130
3131                 r = -EFAULT;
3132                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3133                         goto out;
3134                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3135                 break;
3136         }
3137         case KVM_X86_SET_MCE: {
3138                 struct kvm_x86_mce mce;
3139
3140                 r = -EFAULT;
3141                 if (copy_from_user(&mce, argp, sizeof mce))
3142                         goto out;
3143                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3144                 break;
3145         }
3146         case KVM_GET_VCPU_EVENTS: {
3147                 struct kvm_vcpu_events events;
3148
3149                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3150
3151                 r = -EFAULT;
3152                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3153                         break;
3154                 r = 0;
3155                 break;
3156         }
3157         case KVM_SET_VCPU_EVENTS: {
3158                 struct kvm_vcpu_events events;
3159
3160                 r = -EFAULT;
3161                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3162                         break;
3163
3164                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3165                 break;
3166         }
3167         case KVM_GET_DEBUGREGS: {
3168                 struct kvm_debugregs dbgregs;
3169
3170                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3171
3172                 r = -EFAULT;
3173                 if (copy_to_user(argp, &dbgregs,
3174                                  sizeof(struct kvm_debugregs)))
3175                         break;
3176                 r = 0;
3177                 break;
3178         }
3179         case KVM_SET_DEBUGREGS: {
3180                 struct kvm_debugregs dbgregs;
3181
3182                 r = -EFAULT;
3183                 if (copy_from_user(&dbgregs, argp,
3184                                    sizeof(struct kvm_debugregs)))
3185                         break;
3186
3187                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3188                 break;
3189         }
3190         case KVM_GET_XSAVE: {
3191                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3192                 r = -ENOMEM;
3193                 if (!u.xsave)
3194                         break;
3195
3196                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3197
3198                 r = -EFAULT;
3199                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3200                         break;
3201                 r = 0;
3202                 break;
3203         }
3204         case KVM_SET_XSAVE: {
3205                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3206                 if (IS_ERR(u.xsave))
3207                         return PTR_ERR(u.xsave);
3208
3209                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3210                 break;
3211         }
3212         case KVM_GET_XCRS: {
3213                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3214                 r = -ENOMEM;
3215                 if (!u.xcrs)
3216                         break;
3217
3218                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3219
3220                 r = -EFAULT;
3221                 if (copy_to_user(argp, u.xcrs,
3222                                  sizeof(struct kvm_xcrs)))
3223                         break;
3224                 r = 0;
3225                 break;
3226         }
3227         case KVM_SET_XCRS: {
3228                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3229                 if (IS_ERR(u.xcrs))
3230                         return PTR_ERR(u.xcrs);
3231
3232                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3233                 break;
3234         }
3235         case KVM_SET_TSC_KHZ: {
3236                 u32 user_tsc_khz;
3237
3238                 r = -EINVAL;
3239                 user_tsc_khz = (u32)arg;
3240
3241                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3242                         goto out;
3243
3244                 if (user_tsc_khz == 0)
3245                         user_tsc_khz = tsc_khz;
3246
3247                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3248
3249                 r = 0;
3250                 goto out;
3251         }
3252         case KVM_GET_TSC_KHZ: {
3253                 r = vcpu->arch.virtual_tsc_khz;
3254                 goto out;
3255         }
3256         case KVM_KVMCLOCK_CTRL: {
3257                 r = kvm_set_guest_paused(vcpu);
3258                 goto out;
3259         }
3260         default:
3261                 r = -EINVAL;
3262         }
3263 out:
3264         kfree(u.buffer);
3265         return r;
3266 }
3267
3268 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3269 {
3270         return VM_FAULT_SIGBUS;
3271 }
3272
3273 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3274 {
3275         int ret;
3276
3277         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3278                 return -EINVAL;
3279         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3280         return ret;
3281 }
3282
3283 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3284                                               u64 ident_addr)
3285 {
3286         kvm->arch.ept_identity_map_addr = ident_addr;
3287         return 0;
3288 }
3289
3290 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3291                                           u32 kvm_nr_mmu_pages)
3292 {
3293         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3294                 return -EINVAL;
3295
3296         mutex_lock(&kvm->slots_lock);
3297
3298         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3299         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3300
3301         mutex_unlock(&kvm->slots_lock);
3302         return 0;
3303 }
3304
3305 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3306 {
3307         return kvm->arch.n_max_mmu_pages;
3308 }
3309
3310 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3311 {
3312         int r;
3313
3314         r = 0;
3315         switch (chip->chip_id) {
3316         case KVM_IRQCHIP_PIC_MASTER:
3317                 memcpy(&chip->chip.pic,
3318                         &pic_irqchip(kvm)->pics[0],
3319                         sizeof(struct kvm_pic_state));
3320                 break;
3321         case KVM_IRQCHIP_PIC_SLAVE:
3322                 memcpy(&chip->chip.pic,
3323                         &pic_irqchip(kvm)->pics[1],
3324                         sizeof(struct kvm_pic_state));
3325                 break;
3326         case KVM_IRQCHIP_IOAPIC:
3327                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3328                 break;
3329         default:
3330                 r = -EINVAL;
3331                 break;
3332         }
3333         return r;
3334 }
3335
3336 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3337 {
3338         int r;
3339
3340         r = 0;
3341         switch (chip->chip_id) {
3342         case KVM_IRQCHIP_PIC_MASTER:
3343                 spin_lock(&pic_irqchip(kvm)->lock);
3344                 memcpy(&pic_irqchip(kvm)->pics[0],
3345                         &chip->chip.pic,
3346                         sizeof(struct kvm_pic_state));
3347                 spin_unlock(&pic_irqchip(kvm)->lock);
3348                 break;
3349         case KVM_IRQCHIP_PIC_SLAVE:
3350                 spin_lock(&pic_irqchip(kvm)->lock);
3351                 memcpy(&pic_irqchip(kvm)->pics[1],
3352                         &chip->chip.pic,
3353                         sizeof(struct kvm_pic_state));
3354                 spin_unlock(&pic_irqchip(kvm)->lock);
3355                 break;
3356         case KVM_IRQCHIP_IOAPIC:
3357                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3358                 break;
3359         default:
3360                 r = -EINVAL;
3361                 break;
3362         }
3363         kvm_pic_update_irq(pic_irqchip(kvm));
3364         return r;
3365 }
3366
3367 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3368 {
3369         int r = 0;
3370
3371         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3372         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3373         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3374         return r;
3375 }
3376
3377 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3378 {
3379         int r = 0;
3380
3381         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3382         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3383         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3384         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3385         return r;
3386 }
3387
3388 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3389 {
3390         int r = 0;
3391
3392         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3393         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3394                 sizeof(ps->channels));
3395         ps->flags = kvm->arch.vpit->pit_state.flags;
3396         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3397         memset(&ps->reserved, 0, sizeof(ps->reserved));
3398         return r;
3399 }
3400
3401 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3402 {
3403         int r = 0, start = 0;
3404         u32 prev_legacy, cur_legacy;
3405         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3406         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3407         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3408         if (!prev_legacy && cur_legacy)
3409                 start = 1;
3410         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3411                sizeof(kvm->arch.vpit->pit_state.channels));
3412         kvm->arch.vpit->pit_state.flags = ps->flags;
3413         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3414         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3415         return r;
3416 }
3417
3418 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3419                                  struct kvm_reinject_control *control)
3420 {
3421         if (!kvm->arch.vpit)
3422                 return -ENXIO;
3423         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3424         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3425         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3426         return 0;
3427 }
3428
3429 /**
3430  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3431  * @kvm: kvm instance
3432  * @log: slot id and address to which we copy the log
3433  *
3434  * We need to keep it in mind that VCPU threads can write to the bitmap
3435  * concurrently.  So, to avoid losing data, we keep the following order for
3436  * each bit:
3437  *
3438  *   1. Take a snapshot of the bit and clear it if needed.
3439  *   2. Write protect the corresponding page.
3440  *   3. Flush TLB's if needed.
3441  *   4. Copy the snapshot to the userspace.
3442  *
3443  * Between 2 and 3, the guest may write to the page using the remaining TLB
3444  * entry.  This is not a problem because the page will be reported dirty at
3445  * step 4 using the snapshot taken before and step 3 ensures that successive
3446  * writes will be logged for the next call.
3447  */
3448 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3449 {
3450         int r;
3451         struct kvm_memory_slot *memslot;
3452         unsigned long n, i;
3453         unsigned long *dirty_bitmap;
3454         unsigned long *dirty_bitmap_buffer;
3455         bool is_dirty = false;
3456
3457         mutex_lock(&kvm->slots_lock);
3458
3459         r = -EINVAL;
3460         if (log->slot >= KVM_USER_MEM_SLOTS)
3461                 goto out;
3462
3463         memslot = id_to_memslot(kvm->memslots, log->slot);
3464
3465         dirty_bitmap = memslot->dirty_bitmap;
3466         r = -ENOENT;
3467         if (!dirty_bitmap)
3468                 goto out;
3469
3470         n = kvm_dirty_bitmap_bytes(memslot);
3471
3472         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3473         memset(dirty_bitmap_buffer, 0, n);
3474
3475         spin_lock(&kvm->mmu_lock);
3476
3477         for (i = 0; i < n / sizeof(long); i++) {
3478                 unsigned long mask;
3479                 gfn_t offset;
3480
3481                 if (!dirty_bitmap[i])
3482                         continue;
3483
3484                 is_dirty = true;
3485
3486                 mask = xchg(&dirty_bitmap[i], 0);
3487                 dirty_bitmap_buffer[i] = mask;
3488
3489                 offset = i * BITS_PER_LONG;
3490                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3491         }
3492         if (is_dirty)
3493                 kvm_flush_remote_tlbs(kvm);
3494
3495         spin_unlock(&kvm->mmu_lock);
3496
3497         r = -EFAULT;
3498         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3499                 goto out;
3500
3501         r = 0;
3502 out:
3503         mutex_unlock(&kvm->slots_lock);
3504         return r;
3505 }
3506
3507 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3508                         bool line_status)
3509 {
3510         if (!irqchip_in_kernel(kvm))
3511                 return -ENXIO;
3512
3513         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3514                                         irq_event->irq, irq_event->level,
3515                                         line_status);
3516         return 0;
3517 }
3518
3519 long kvm_arch_vm_ioctl(struct file *filp,
3520                        unsigned int ioctl, unsigned long arg)
3521 {
3522         struct kvm *kvm = filp->private_data;
3523         void __user *argp = (void __user *)arg;
3524         int r = -ENOTTY;
3525         /*
3526          * This union makes it completely explicit to gcc-3.x
3527          * that these two variables' stack usage should be
3528          * combined, not added together.
3529          */
3530         union {
3531                 struct kvm_pit_state ps;
3532                 struct kvm_pit_state2 ps2;
3533                 struct kvm_pit_config pit_config;
3534         } u;
3535
3536         switch (ioctl) {
3537         case KVM_SET_TSS_ADDR:
3538                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3539                 break;
3540         case KVM_SET_IDENTITY_MAP_ADDR: {
3541                 u64 ident_addr;
3542
3543                 r = -EFAULT;
3544                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3545                         goto out;
3546                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3547                 break;
3548         }
3549         case KVM_SET_NR_MMU_PAGES:
3550                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3551                 break;
3552         case KVM_GET_NR_MMU_PAGES:
3553                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3554                 break;
3555         case KVM_CREATE_IRQCHIP: {
3556                 struct kvm_pic *vpic;
3557
3558                 mutex_lock(&kvm->lock);
3559                 r = -EEXIST;
3560                 if (kvm->arch.vpic)
3561                         goto create_irqchip_unlock;
3562                 r = -EINVAL;
3563                 if (atomic_read(&kvm->online_vcpus))
3564                         goto create_irqchip_unlock;
3565                 r = -ENOMEM;
3566                 vpic = kvm_create_pic(kvm);
3567                 if (vpic) {
3568                         r = kvm_ioapic_init(kvm);
3569                         if (r) {
3570                                 mutex_lock(&kvm->slots_lock);
3571                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3572                                                           &vpic->dev_master);
3573                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3574                                                           &vpic->dev_slave);
3575                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3576                                                           &vpic->dev_eclr);
3577                                 mutex_unlock(&kvm->slots_lock);
3578                                 kfree(vpic);
3579                                 goto create_irqchip_unlock;
3580                         }
3581                 } else
3582                         goto create_irqchip_unlock;
3583                 smp_wmb();
3584                 kvm->arch.vpic = vpic;
3585                 smp_wmb();
3586                 r = kvm_setup_default_irq_routing(kvm);
3587                 if (r) {
3588                         mutex_lock(&kvm->slots_lock);
3589                         mutex_lock(&kvm->irq_lock);
3590                         kvm_ioapic_destroy(kvm);
3591                         kvm_destroy_pic(kvm);
3592                         mutex_unlock(&kvm->irq_lock);
3593                         mutex_unlock(&kvm->slots_lock);
3594                 }
3595         create_irqchip_unlock:
3596                 mutex_unlock(&kvm->lock);
3597                 break;
3598         }
3599         case KVM_CREATE_PIT:
3600                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3601                 goto create_pit;
3602         case KVM_CREATE_PIT2:
3603                 r = -EFAULT;
3604                 if (copy_from_user(&u.pit_config, argp,
3605                                    sizeof(struct kvm_pit_config)))
3606                         goto out;
3607         create_pit:
3608                 mutex_lock(&kvm->slots_lock);
3609                 r = -EEXIST;
3610                 if (kvm->arch.vpit)
3611                         goto create_pit_unlock;
3612                 r = -ENOMEM;
3613                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3614                 if (kvm->arch.vpit)
3615                         r = 0;
3616         create_pit_unlock:
3617                 mutex_unlock(&kvm->slots_lock);
3618                 break;
3619         case KVM_GET_IRQCHIP: {
3620                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3621                 struct kvm_irqchip *chip;
3622
3623                 chip = memdup_user(argp, sizeof(*chip));
3624                 if (IS_ERR(chip)) {
3625                         r = PTR_ERR(chip);
3626                         goto out;
3627                 }
3628
3629                 r = -ENXIO;
3630                 if (!irqchip_in_kernel(kvm))
3631                         goto get_irqchip_out;
3632                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3633                 if (r)
3634                         goto get_irqchip_out;
3635                 r = -EFAULT;
3636                 if (copy_to_user(argp, chip, sizeof *chip))
3637                         goto get_irqchip_out;
3638                 r = 0;
3639         get_irqchip_out:
3640                 kfree(chip);
3641                 break;
3642         }
3643         case KVM_SET_IRQCHIP: {
3644                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3645                 struct kvm_irqchip *chip;
3646
3647                 chip = memdup_user(argp, sizeof(*chip));
3648                 if (IS_ERR(chip)) {
3649                         r = PTR_ERR(chip);
3650                         goto out;
3651                 }
3652
3653                 r = -ENXIO;
3654                 if (!irqchip_in_kernel(kvm))
3655                         goto set_irqchip_out;
3656                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3657                 if (r)
3658                         goto set_irqchip_out;
3659                 r = 0;
3660         set_irqchip_out:
3661                 kfree(chip);
3662                 break;
3663         }
3664         case KVM_GET_PIT: {
3665                 r = -EFAULT;
3666                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3667                         goto out;
3668                 r = -ENXIO;
3669                 if (!kvm->arch.vpit)
3670                         goto out;
3671                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3672                 if (r)
3673                         goto out;
3674                 r = -EFAULT;
3675                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3676                         goto out;
3677                 r = 0;
3678                 break;
3679         }
3680         case KVM_SET_PIT: {
3681                 r = -EFAULT;
3682                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3683                         goto out;
3684                 r = -ENXIO;
3685                 if (!kvm->arch.vpit)
3686                         goto out;
3687                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3688                 break;
3689         }
3690         case KVM_GET_PIT2: {
3691                 r = -ENXIO;
3692                 if (!kvm->arch.vpit)
3693                         goto out;
3694                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3695                 if (r)
3696                         goto out;
3697                 r = -EFAULT;
3698                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3699                         goto out;
3700                 r = 0;
3701                 break;
3702         }
3703         case KVM_SET_PIT2: {
3704                 r = -EFAULT;
3705                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3706                         goto out;
3707                 r = -ENXIO;
3708                 if (!kvm->arch.vpit)
3709                         goto out;
3710                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3711                 break;
3712         }
3713         case KVM_REINJECT_CONTROL: {
3714                 struct kvm_reinject_control control;
3715                 r =  -EFAULT;
3716                 if (copy_from_user(&control, argp, sizeof(control)))
3717                         goto out;
3718                 r = kvm_vm_ioctl_reinject(kvm, &control);
3719                 break;
3720         }
3721         case KVM_XEN_HVM_CONFIG: {
3722                 r = -EFAULT;
3723                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3724                                    sizeof(struct kvm_xen_hvm_config)))
3725                         goto out;
3726                 r = -EINVAL;
3727                 if (kvm->arch.xen_hvm_config.flags)
3728                         goto out;
3729                 r = 0;
3730                 break;
3731         }
3732         case KVM_SET_CLOCK: {
3733                 struct kvm_clock_data user_ns;
3734                 u64 now_ns;
3735                 s64 delta;
3736
3737                 r = -EFAULT;
3738                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3739                         goto out;
3740
3741                 r = -EINVAL;
3742                 if (user_ns.flags)
3743                         goto out;
3744
3745                 r = 0;
3746                 local_irq_disable();
3747                 now_ns = get_kernel_ns();
3748                 delta = user_ns.clock - now_ns;
3749                 local_irq_enable();
3750                 kvm->arch.kvmclock_offset = delta;
3751                 break;
3752         }
3753         case KVM_GET_CLOCK: {
3754                 struct kvm_clock_data user_ns;
3755                 u64 now_ns;
3756
3757                 local_irq_disable();
3758                 now_ns = get_kernel_ns();
3759                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3760                 local_irq_enable();
3761                 user_ns.flags = 0;
3762                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3763
3764                 r = -EFAULT;
3765                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3766                         goto out;
3767                 r = 0;
3768                 break;
3769         }
3770
3771         default:
3772                 ;
3773         }
3774 out:
3775         return r;
3776 }
3777
3778 static void kvm_init_msr_list(void)
3779 {
3780         u32 dummy[2];
3781         unsigned i, j;
3782
3783         /* skip the first msrs in the list. KVM-specific */
3784         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3785                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3786                         continue;
3787                 if (j < i)
3788                         msrs_to_save[j] = msrs_to_save[i];
3789                 j++;
3790         }
3791         num_msrs_to_save = j;
3792 }
3793
3794 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3795                            const void *v)
3796 {
3797         int handled = 0;
3798         int n;
3799
3800         do {
3801                 n = min(len, 8);
3802                 if (!(vcpu->arch.apic &&
3803                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3804                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3805                         break;
3806                 handled += n;
3807                 addr += n;
3808                 len -= n;
3809                 v += n;
3810         } while (len);
3811
3812         return handled;
3813 }
3814
3815 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3816 {
3817         int handled = 0;
3818         int n;
3819
3820         do {
3821                 n = min(len, 8);
3822                 if (!(vcpu->arch.apic &&
3823                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3824                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3825                         break;
3826                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3827                 handled += n;
3828                 addr += n;
3829                 len -= n;
3830                 v += n;
3831         } while (len);
3832
3833         return handled;
3834 }
3835
3836 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3837                         struct kvm_segment *var, int seg)
3838 {
3839         kvm_x86_ops->set_segment(vcpu, var, seg);
3840 }
3841
3842 void kvm_get_segment(struct kvm_vcpu *vcpu,
3843                      struct kvm_segment *var, int seg)
3844 {
3845         kvm_x86_ops->get_segment(vcpu, var, seg);
3846 }
3847
3848 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3849 {
3850         gpa_t t_gpa;
3851         struct x86_exception exception;
3852
3853         BUG_ON(!mmu_is_nested(vcpu));
3854
3855         /* NPT walks are always user-walks */
3856         access |= PFERR_USER_MASK;
3857         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3858
3859         return t_gpa;
3860 }
3861
3862 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3863                               struct x86_exception *exception)
3864 {
3865         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3866         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3867 }
3868
3869  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3870                                 struct x86_exception *exception)
3871 {
3872         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3873         access |= PFERR_FETCH_MASK;
3874         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3875 }
3876
3877 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3878                                struct x86_exception *exception)
3879 {
3880         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3881         access |= PFERR_WRITE_MASK;
3882         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3883 }
3884
3885 /* uses this to access any guest's mapped memory without checking CPL */
3886 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3887                                 struct x86_exception *exception)
3888 {
3889         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3890 }
3891
3892 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3893                                       struct kvm_vcpu *vcpu, u32 access,
3894                                       struct x86_exception *exception)
3895 {
3896         void *data = val;
3897         int r = X86EMUL_CONTINUE;
3898
3899         while (bytes) {
3900                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3901                                                             exception);
3902                 unsigned offset = addr & (PAGE_SIZE-1);
3903                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3904                 int ret;
3905
3906                 if (gpa == UNMAPPED_GVA)
3907                         return X86EMUL_PROPAGATE_FAULT;
3908                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3909                 if (ret < 0) {
3910                         r = X86EMUL_IO_NEEDED;
3911                         goto out;
3912                 }
3913
3914                 bytes -= toread;
3915                 data += toread;
3916                 addr += toread;
3917         }
3918 out:
3919         return r;
3920 }
3921
3922 /* used for instruction fetching */
3923 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3924                                 gva_t addr, void *val, unsigned int bytes,
3925                                 struct x86_exception *exception)
3926 {
3927         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3928         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3929
3930         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3931                                           access | PFERR_FETCH_MASK,
3932                                           exception);
3933 }
3934
3935 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3936                                gva_t addr, void *val, unsigned int bytes,
3937                                struct x86_exception *exception)
3938 {
3939         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3940         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3941
3942         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3943                                           exception);
3944 }
3945 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3946
3947 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3948                                       gva_t addr, void *val, unsigned int bytes,
3949                                       struct x86_exception *exception)
3950 {
3951         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3952         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3953 }
3954
3955 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3956                                        gva_t addr, void *val,
3957                                        unsigned int bytes,
3958                                        struct x86_exception *exception)
3959 {
3960         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3961         void *data = val;
3962         int r = X86EMUL_CONTINUE;
3963
3964         while (bytes) {
3965                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3966                                                              PFERR_WRITE_MASK,
3967                                                              exception);
3968                 unsigned offset = addr & (PAGE_SIZE-1);
3969                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3970                 int ret;
3971
3972                 if (gpa == UNMAPPED_GVA)
3973                         return X86EMUL_PROPAGATE_FAULT;
3974                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3975                 if (ret < 0) {
3976                         r = X86EMUL_IO_NEEDED;
3977                         goto out;
3978                 }
3979
3980                 bytes -= towrite;
3981                 data += towrite;
3982                 addr += towrite;
3983         }
3984 out:
3985         return r;
3986 }
3987 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3988
3989 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3990                                 gpa_t *gpa, struct x86_exception *exception,
3991                                 bool write)
3992 {
3993         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3994                 | (write ? PFERR_WRITE_MASK : 0);
3995
3996         if (vcpu_match_mmio_gva(vcpu, gva)
3997             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3998                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3999                                         (gva & (PAGE_SIZE - 1));
4000                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4001                 return 1;
4002         }
4003
4004         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4005
4006         if (*gpa == UNMAPPED_GVA)
4007                 return -1;
4008
4009         /* For APIC access vmexit */
4010         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4011                 return 1;
4012
4013         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4014                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4015                 return 1;
4016         }
4017
4018         return 0;
4019 }
4020
4021 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4022                         const void *val, int bytes)
4023 {
4024         int ret;
4025
4026         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4027         if (ret < 0)
4028                 return 0;
4029         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4030         return 1;
4031 }
4032
4033 struct read_write_emulator_ops {
4034         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4035                                   int bytes);
4036         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4037                                   void *val, int bytes);
4038         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4039                                int bytes, void *val);
4040         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4041                                     void *val, int bytes);
4042         bool write;
4043 };
4044
4045 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4046 {
4047         if (vcpu->mmio_read_completed) {
4048                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4049                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4050                 vcpu->mmio_read_completed = 0;
4051                 return 1;
4052         }
4053
4054         return 0;
4055 }
4056
4057 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4058                         void *val, int bytes)
4059 {
4060         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4061 }
4062
4063 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4064                          void *val, int bytes)
4065 {
4066         return emulator_write_phys(vcpu, gpa, val, bytes);
4067 }
4068
4069 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4070 {
4071         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4072         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4073 }
4074
4075 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4076                           void *val, int bytes)
4077 {
4078         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4079         return X86EMUL_IO_NEEDED;
4080 }
4081
4082 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4083                            void *val, int bytes)
4084 {
4085         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4086
4087         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4088         return X86EMUL_CONTINUE;
4089 }
4090
4091 static const struct read_write_emulator_ops read_emultor = {
4092         .read_write_prepare = read_prepare,
4093         .read_write_emulate = read_emulate,
4094         .read_write_mmio = vcpu_mmio_read,
4095         .read_write_exit_mmio = read_exit_mmio,
4096 };
4097
4098 static const struct read_write_emulator_ops write_emultor = {
4099         .read_write_emulate = write_emulate,
4100         .read_write_mmio = write_mmio,
4101         .read_write_exit_mmio = write_exit_mmio,
4102         .write = true,
4103 };
4104
4105 static int emulator_read_write_onepage(unsigned long addr, void *val,
4106                                        unsigned int bytes,
4107                                        struct x86_exception *exception,
4108                                        struct kvm_vcpu *vcpu,
4109                                        const struct read_write_emulator_ops *ops)
4110 {
4111         gpa_t gpa;
4112         int handled, ret;
4113         bool write = ops->write;
4114         struct kvm_mmio_fragment *frag;
4115
4116         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4117
4118         if (ret < 0)
4119                 return X86EMUL_PROPAGATE_FAULT;
4120
4121         /* For APIC access vmexit */
4122         if (ret)
4123                 goto mmio;
4124
4125         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4126                 return X86EMUL_CONTINUE;
4127
4128 mmio:
4129         /*
4130          * Is this MMIO handled locally?
4131          */
4132         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4133         if (handled == bytes)
4134                 return X86EMUL_CONTINUE;
4135
4136         gpa += handled;
4137         bytes -= handled;
4138         val += handled;
4139
4140         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4141         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4142         frag->gpa = gpa;
4143         frag->data = val;
4144         frag->len = bytes;
4145         return X86EMUL_CONTINUE;
4146 }
4147
4148 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4149                         void *val, unsigned int bytes,
4150                         struct x86_exception *exception,
4151                         const struct read_write_emulator_ops *ops)
4152 {
4153         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4154         gpa_t gpa;
4155         int rc;
4156
4157         if (ops->read_write_prepare &&
4158                   ops->read_write_prepare(vcpu, val, bytes))
4159                 return X86EMUL_CONTINUE;
4160
4161         vcpu->mmio_nr_fragments = 0;
4162
4163         /* Crossing a page boundary? */
4164         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4165                 int now;
4166
4167                 now = -addr & ~PAGE_MASK;
4168                 rc = emulator_read_write_onepage(addr, val, now, exception,
4169                                                  vcpu, ops);
4170
4171                 if (rc != X86EMUL_CONTINUE)
4172                         return rc;
4173                 addr += now;
4174                 val += now;
4175                 bytes -= now;
4176         }
4177
4178         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4179                                          vcpu, ops);
4180         if (rc != X86EMUL_CONTINUE)
4181                 return rc;
4182
4183         if (!vcpu->mmio_nr_fragments)
4184                 return rc;
4185
4186         gpa = vcpu->mmio_fragments[0].gpa;
4187
4188         vcpu->mmio_needed = 1;
4189         vcpu->mmio_cur_fragment = 0;
4190
4191         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4192         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4193         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4194         vcpu->run->mmio.phys_addr = gpa;
4195
4196         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4197 }
4198
4199 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4200                                   unsigned long addr,
4201                                   void *val,
4202                                   unsigned int bytes,
4203                                   struct x86_exception *exception)
4204 {
4205         return emulator_read_write(ctxt, addr, val, bytes,
4206                                    exception, &read_emultor);
4207 }
4208
4209 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4210                             unsigned long addr,
4211                             const void *val,
4212                             unsigned int bytes,
4213                             struct x86_exception *exception)
4214 {
4215         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4216                                    exception, &write_emultor);
4217 }
4218
4219 #define CMPXCHG_TYPE(t, ptr, old, new) \
4220         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4221
4222 #ifdef CONFIG_X86_64
4223 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4224 #else
4225 #  define CMPXCHG64(ptr, old, new) \
4226         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4227 #endif
4228
4229 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4230                                      unsigned long addr,
4231                                      const void *old,
4232                                      const void *new,
4233                                      unsigned int bytes,
4234                                      struct x86_exception *exception)
4235 {
4236         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4237         gpa_t gpa;
4238         struct page *page;
4239         char *kaddr;
4240         bool exchanged;
4241
4242         /* guests cmpxchg8b have to be emulated atomically */
4243         if (bytes > 8 || (bytes & (bytes - 1)))
4244                 goto emul_write;
4245
4246         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4247
4248         if (gpa == UNMAPPED_GVA ||
4249             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4250                 goto emul_write;
4251
4252         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4253                 goto emul_write;
4254
4255         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4256         if (is_error_page(page))
4257                 goto emul_write;
4258
4259         kaddr = kmap_atomic(page);
4260         kaddr += offset_in_page(gpa);
4261         switch (bytes) {
4262         case 1:
4263                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4264                 break;
4265         case 2:
4266                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4267                 break;
4268         case 4:
4269                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4270                 break;
4271         case 8:
4272                 exchanged = CMPXCHG64(kaddr, old, new);
4273                 break;
4274         default:
4275                 BUG();
4276         }
4277         kunmap_atomic(kaddr);
4278         kvm_release_page_dirty(page);
4279
4280         if (!exchanged)
4281                 return X86EMUL_CMPXCHG_FAILED;
4282
4283         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4284
4285         return X86EMUL_CONTINUE;
4286
4287 emul_write:
4288         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4289
4290         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4291 }
4292
4293 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4294 {
4295         /* TODO: String I/O for in kernel device */
4296         int r;
4297
4298         if (vcpu->arch.pio.in)
4299                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4300                                     vcpu->arch.pio.size, pd);
4301         else
4302                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4303                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4304                                      pd);
4305         return r;
4306 }
4307
4308 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4309                                unsigned short port, void *val,
4310                                unsigned int count, bool in)
4311 {
4312         trace_kvm_pio(!in, port, size, count);
4313
4314         vcpu->arch.pio.port = port;
4315         vcpu->arch.pio.in = in;
4316         vcpu->arch.pio.count  = count;
4317         vcpu->arch.pio.size = size;
4318
4319         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4320                 vcpu->arch.pio.count = 0;
4321                 return 1;
4322         }
4323
4324         vcpu->run->exit_reason = KVM_EXIT_IO;
4325         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4326         vcpu->run->io.size = size;
4327         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4328         vcpu->run->io.count = count;
4329         vcpu->run->io.port = port;
4330
4331         return 0;
4332 }
4333
4334 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4335                                     int size, unsigned short port, void *val,
4336                                     unsigned int count)
4337 {
4338         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4339         int ret;
4340
4341         if (vcpu->arch.pio.count)
4342                 goto data_avail;
4343
4344         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4345         if (ret) {
4346 data_avail:
4347                 memcpy(val, vcpu->arch.pio_data, size * count);
4348                 vcpu->arch.pio.count = 0;
4349                 return 1;
4350         }
4351
4352         return 0;
4353 }
4354
4355 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4356                                      int size, unsigned short port,
4357                                      const void *val, unsigned int count)
4358 {
4359         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4360
4361         memcpy(vcpu->arch.pio_data, val, size * count);
4362         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4363 }
4364
4365 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4366 {
4367         return kvm_x86_ops->get_segment_base(vcpu, seg);
4368 }
4369
4370 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4371 {
4372         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4373 }
4374
4375 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4376 {
4377         if (!need_emulate_wbinvd(vcpu))
4378                 return X86EMUL_CONTINUE;
4379
4380         if (kvm_x86_ops->has_wbinvd_exit()) {
4381                 int cpu = get_cpu();
4382
4383                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4384                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4385                                 wbinvd_ipi, NULL, 1);
4386                 put_cpu();
4387                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4388         } else
4389                 wbinvd();
4390         return X86EMUL_CONTINUE;
4391 }
4392 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4393
4394 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4395 {
4396         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4397 }
4398
4399 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4400 {
4401         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4402 }
4403
4404 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4405 {
4406
4407         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4408 }
4409
4410 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4411 {
4412         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4413 }
4414
4415 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4416 {
4417         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4418         unsigned long value;
4419
4420         switch (cr) {
4421         case 0:
4422                 value = kvm_read_cr0(vcpu);
4423                 break;
4424         case 2:
4425                 value = vcpu->arch.cr2;
4426                 break;
4427         case 3:
4428                 value = kvm_read_cr3(vcpu);
4429                 break;
4430         case 4:
4431                 value = kvm_read_cr4(vcpu);
4432                 break;
4433         case 8:
4434                 value = kvm_get_cr8(vcpu);
4435                 break;
4436         default:
4437                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4438                 return 0;
4439         }
4440
4441         return value;
4442 }
4443
4444 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4445 {
4446         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4447         int res = 0;
4448
4449         switch (cr) {
4450         case 0:
4451                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4452                 break;
4453         case 2:
4454                 vcpu->arch.cr2 = val;
4455                 break;
4456         case 3:
4457                 res = kvm_set_cr3(vcpu, val);
4458                 break;
4459         case 4:
4460                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4461                 break;
4462         case 8:
4463                 res = kvm_set_cr8(vcpu, val);
4464                 break;
4465         default:
4466                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4467                 res = -1;
4468         }
4469
4470         return res;
4471 }
4472
4473 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4474 {
4475         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4476 }
4477
4478 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4479 {
4480         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4481 }
4482
4483 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4484 {
4485         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4486 }
4487
4488 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4489 {
4490         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4491 }
4492
4493 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4494 {
4495         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4496 }
4497
4498 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4499 {
4500         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4501 }
4502
4503 static unsigned long emulator_get_cached_segment_base(
4504         struct x86_emulate_ctxt *ctxt, int seg)
4505 {
4506         return get_segment_base(emul_to_vcpu(ctxt), seg);
4507 }
4508
4509 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4510                                  struct desc_struct *desc, u32 *base3,
4511                                  int seg)
4512 {
4513         struct kvm_segment var;
4514
4515         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4516         *selector = var.selector;
4517
4518         if (var.unusable) {
4519                 memset(desc, 0, sizeof(*desc));
4520                 return false;
4521         }
4522
4523         if (var.g)
4524                 var.limit >>= 12;
4525         set_desc_limit(desc, var.limit);
4526         set_desc_base(desc, (unsigned long)var.base);
4527 #ifdef CONFIG_X86_64
4528         if (base3)
4529                 *base3 = var.base >> 32;
4530 #endif
4531         desc->type = var.type;
4532         desc->s = var.s;
4533         desc->dpl = var.dpl;
4534         desc->p = var.present;
4535         desc->avl = var.avl;
4536         desc->l = var.l;
4537         desc->d = var.db;
4538         desc->g = var.g;
4539
4540         return true;
4541 }
4542
4543 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4544                                  struct desc_struct *desc, u32 base3,
4545                                  int seg)
4546 {
4547         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4548         struct kvm_segment var;
4549
4550         var.selector = selector;
4551         var.base = get_desc_base(desc);
4552 #ifdef CONFIG_X86_64
4553         var.base |= ((u64)base3) << 32;
4554 #endif
4555         var.limit = get_desc_limit(desc);
4556         if (desc->g)
4557                 var.limit = (var.limit << 12) | 0xfff;
4558         var.type = desc->type;
4559         var.present = desc->p;
4560         var.dpl = desc->dpl;
4561         var.db = desc->d;
4562         var.s = desc->s;
4563         var.l = desc->l;
4564         var.g = desc->g;
4565         var.avl = desc->avl;
4566         var.present = desc->p;
4567         var.unusable = !var.present;
4568         var.padding = 0;
4569
4570         kvm_set_segment(vcpu, &var, seg);
4571         return;
4572 }
4573
4574 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4575                             u32 msr_index, u64 *pdata)
4576 {
4577         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4578 }
4579
4580 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4581                             u32 msr_index, u64 data)
4582 {
4583         struct msr_data msr;
4584
4585         msr.data = data;
4586         msr.index = msr_index;
4587         msr.host_initiated = false;
4588         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4589 }
4590
4591 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4592                              u32 pmc, u64 *pdata)
4593 {
4594         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4595 }
4596
4597 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4598 {
4599         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4600 }
4601
4602 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4603 {
4604         preempt_disable();
4605         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4606         /*
4607          * CR0.TS may reference the host fpu state, not the guest fpu state,
4608          * so it may be clear at this point.
4609          */
4610         clts();
4611 }
4612
4613 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4614 {
4615         preempt_enable();
4616 }
4617
4618 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4619                               struct x86_instruction_info *info,
4620                               enum x86_intercept_stage stage)
4621 {
4622         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4623 }
4624
4625 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4626                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4627 {
4628         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4629 }
4630
4631 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4632 {
4633         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4634 }
4635
4636 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4637 {
4638         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4639 }
4640
4641 static const struct x86_emulate_ops emulate_ops = {
4642         .read_gpr            = emulator_read_gpr,
4643         .write_gpr           = emulator_write_gpr,
4644         .read_std            = kvm_read_guest_virt_system,
4645         .write_std           = kvm_write_guest_virt_system,
4646         .fetch               = kvm_fetch_guest_virt,
4647         .read_emulated       = emulator_read_emulated,
4648         .write_emulated      = emulator_write_emulated,
4649         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4650         .invlpg              = emulator_invlpg,
4651         .pio_in_emulated     = emulator_pio_in_emulated,
4652         .pio_out_emulated    = emulator_pio_out_emulated,
4653         .get_segment         = emulator_get_segment,
4654         .set_segment         = emulator_set_segment,
4655         .get_cached_segment_base = emulator_get_cached_segment_base,
4656         .get_gdt             = emulator_get_gdt,
4657         .get_idt             = emulator_get_idt,
4658         .set_gdt             = emulator_set_gdt,
4659         .set_idt             = emulator_set_idt,
4660         .get_cr              = emulator_get_cr,
4661         .set_cr              = emulator_set_cr,
4662         .set_rflags          = emulator_set_rflags,
4663         .cpl                 = emulator_get_cpl,
4664         .get_dr              = emulator_get_dr,
4665         .set_dr              = emulator_set_dr,
4666         .set_msr             = emulator_set_msr,
4667         .get_msr             = emulator_get_msr,
4668         .read_pmc            = emulator_read_pmc,
4669         .halt                = emulator_halt,
4670         .wbinvd              = emulator_wbinvd,
4671         .fix_hypercall       = emulator_fix_hypercall,
4672         .get_fpu             = emulator_get_fpu,
4673         .put_fpu             = emulator_put_fpu,
4674         .intercept           = emulator_intercept,
4675         .get_cpuid           = emulator_get_cpuid,
4676 };
4677
4678 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4679 {
4680         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4681         /*
4682          * an sti; sti; sequence only disable interrupts for the first
4683          * instruction. So, if the last instruction, be it emulated or
4684          * not, left the system with the INT_STI flag enabled, it
4685          * means that the last instruction is an sti. We should not
4686          * leave the flag on in this case. The same goes for mov ss
4687          */
4688         if (!(int_shadow & mask))
4689                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4690 }
4691
4692 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4693 {
4694         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4695         if (ctxt->exception.vector == PF_VECTOR)
4696                 kvm_propagate_fault(vcpu, &ctxt->exception);
4697         else if (ctxt->exception.error_code_valid)
4698                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4699                                       ctxt->exception.error_code);
4700         else
4701                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4702 }
4703
4704 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4705 {
4706         memset(&ctxt->twobyte, 0,
4707                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4708
4709         ctxt->fetch.start = 0;
4710         ctxt->fetch.end = 0;
4711         ctxt->io_read.pos = 0;
4712         ctxt->io_read.end = 0;
4713         ctxt->mem_read.pos = 0;
4714         ctxt->mem_read.end = 0;
4715 }
4716
4717 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4718 {
4719         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4720         int cs_db, cs_l;
4721
4722         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4723
4724         ctxt->eflags = kvm_get_rflags(vcpu);
4725         ctxt->eip = kvm_rip_read(vcpu);
4726         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4727                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4728                      cs_l                               ? X86EMUL_MODE_PROT64 :
4729                      cs_db                              ? X86EMUL_MODE_PROT32 :
4730                                                           X86EMUL_MODE_PROT16;
4731         ctxt->guest_mode = is_guest_mode(vcpu);
4732
4733         init_decode_cache(ctxt);
4734         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4735 }
4736
4737 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4738 {
4739         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4740         int ret;
4741
4742         init_emulate_ctxt(vcpu);
4743
4744         ctxt->op_bytes = 2;
4745         ctxt->ad_bytes = 2;
4746         ctxt->_eip = ctxt->eip + inc_eip;
4747         ret = emulate_int_real(ctxt, irq);
4748
4749         if (ret != X86EMUL_CONTINUE)
4750                 return EMULATE_FAIL;
4751
4752         ctxt->eip = ctxt->_eip;
4753         kvm_rip_write(vcpu, ctxt->eip);
4754         kvm_set_rflags(vcpu, ctxt->eflags);
4755
4756         if (irq == NMI_VECTOR)
4757                 vcpu->arch.nmi_pending = 0;
4758         else
4759                 vcpu->arch.interrupt.pending = false;
4760
4761         return EMULATE_DONE;
4762 }
4763 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4764
4765 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4766 {
4767         int r = EMULATE_DONE;
4768
4769         ++vcpu->stat.insn_emulation_fail;
4770         trace_kvm_emulate_insn_failed(vcpu);
4771         if (!is_guest_mode(vcpu)) {
4772                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4773                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4774                 vcpu->run->internal.ndata = 0;
4775                 r = EMULATE_FAIL;
4776         }
4777         kvm_queue_exception(vcpu, UD_VECTOR);
4778
4779         return r;
4780 }
4781
4782 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4783                                   bool write_fault_to_shadow_pgtable,
4784                                   int emulation_type)
4785 {
4786         gpa_t gpa = cr2;
4787         pfn_t pfn;
4788
4789         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4790                 return false;
4791
4792         if (!vcpu->arch.mmu.direct_map) {
4793                 /*
4794                  * Write permission should be allowed since only
4795                  * write access need to be emulated.
4796                  */
4797                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4798
4799                 /*
4800                  * If the mapping is invalid in guest, let cpu retry
4801                  * it to generate fault.
4802                  */
4803                 if (gpa == UNMAPPED_GVA)
4804                         return true;
4805         }
4806
4807         /*
4808          * Do not retry the unhandleable instruction if it faults on the
4809          * readonly host memory, otherwise it will goto a infinite loop:
4810          * retry instruction -> write #PF -> emulation fail -> retry
4811          * instruction -> ...
4812          */
4813         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4814
4815         /*
4816          * If the instruction failed on the error pfn, it can not be fixed,
4817          * report the error to userspace.
4818          */
4819         if (is_error_noslot_pfn(pfn))
4820                 return false;
4821
4822         kvm_release_pfn_clean(pfn);
4823
4824         /* The instructions are well-emulated on direct mmu. */
4825         if (vcpu->arch.mmu.direct_map) {
4826                 unsigned int indirect_shadow_pages;
4827
4828                 spin_lock(&vcpu->kvm->mmu_lock);
4829                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4830                 spin_unlock(&vcpu->kvm->mmu_lock);
4831
4832                 if (indirect_shadow_pages)
4833                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4834
4835                 return true;
4836         }
4837
4838         /*
4839          * if emulation was due to access to shadowed page table
4840          * and it failed try to unshadow page and re-enter the
4841          * guest to let CPU execute the instruction.
4842          */
4843         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4844
4845         /*
4846          * If the access faults on its page table, it can not
4847          * be fixed by unprotecting shadow page and it should
4848          * be reported to userspace.
4849          */
4850         return !write_fault_to_shadow_pgtable;
4851 }
4852
4853 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4854                               unsigned long cr2,  int emulation_type)
4855 {
4856         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4857         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4858
4859         last_retry_eip = vcpu->arch.last_retry_eip;
4860         last_retry_addr = vcpu->arch.last_retry_addr;
4861
4862         /*
4863          * If the emulation is caused by #PF and it is non-page_table
4864          * writing instruction, it means the VM-EXIT is caused by shadow
4865          * page protected, we can zap the shadow page and retry this
4866          * instruction directly.
4867          *
4868          * Note: if the guest uses a non-page-table modifying instruction
4869          * on the PDE that points to the instruction, then we will unmap
4870          * the instruction and go to an infinite loop. So, we cache the
4871          * last retried eip and the last fault address, if we meet the eip
4872          * and the address again, we can break out of the potential infinite
4873          * loop.
4874          */
4875         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4876
4877         if (!(emulation_type & EMULTYPE_RETRY))
4878                 return false;
4879
4880         if (x86_page_table_writing_insn(ctxt))
4881                 return false;
4882
4883         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4884                 return false;
4885
4886         vcpu->arch.last_retry_eip = ctxt->eip;
4887         vcpu->arch.last_retry_addr = cr2;
4888
4889         if (!vcpu->arch.mmu.direct_map)
4890                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4891
4892         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4893
4894         return true;
4895 }
4896
4897 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4898 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4899
4900 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4901                             unsigned long cr2,
4902                             int emulation_type,
4903                             void *insn,
4904                             int insn_len)
4905 {
4906         int r;
4907         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4908         bool writeback = true;
4909         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4910
4911         /*
4912          * Clear write_fault_to_shadow_pgtable here to ensure it is
4913          * never reused.
4914          */
4915         vcpu->arch.write_fault_to_shadow_pgtable = false;
4916         kvm_clear_exception_queue(vcpu);
4917
4918         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4919                 init_emulate_ctxt(vcpu);
4920                 ctxt->interruptibility = 0;
4921                 ctxt->have_exception = false;
4922                 ctxt->perm_ok = false;
4923
4924                 ctxt->only_vendor_specific_insn
4925                         = emulation_type & EMULTYPE_TRAP_UD;
4926
4927                 r = x86_decode_insn(ctxt, insn, insn_len);
4928
4929                 trace_kvm_emulate_insn_start(vcpu);
4930                 ++vcpu->stat.insn_emulation;
4931                 if (r != EMULATION_OK)  {
4932                         if (emulation_type & EMULTYPE_TRAP_UD)
4933                                 return EMULATE_FAIL;
4934                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4935                                                 emulation_type))
4936                                 return EMULATE_DONE;
4937                         if (emulation_type & EMULTYPE_SKIP)
4938                                 return EMULATE_FAIL;
4939                         return handle_emulation_failure(vcpu);
4940                 }
4941         }
4942
4943         if (emulation_type & EMULTYPE_SKIP) {
4944                 kvm_rip_write(vcpu, ctxt->_eip);
4945                 return EMULATE_DONE;
4946         }
4947
4948         if (retry_instruction(ctxt, cr2, emulation_type))
4949                 return EMULATE_DONE;
4950
4951         /* this is needed for vmware backdoor interface to work since it
4952            changes registers values  during IO operation */
4953         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4954                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4955                 emulator_invalidate_register_cache(ctxt);
4956         }
4957
4958 restart:
4959         r = x86_emulate_insn(ctxt);
4960
4961         if (r == EMULATION_INTERCEPTED)
4962                 return EMULATE_DONE;
4963
4964         if (r == EMULATION_FAILED) {
4965                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4966                                         emulation_type))
4967                         return EMULATE_DONE;
4968
4969                 return handle_emulation_failure(vcpu);
4970         }
4971
4972         if (ctxt->have_exception) {
4973                 inject_emulated_exception(vcpu);
4974                 r = EMULATE_DONE;
4975         } else if (vcpu->arch.pio.count) {
4976                 if (!vcpu->arch.pio.in)
4977                         vcpu->arch.pio.count = 0;
4978                 else {
4979                         writeback = false;
4980                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4981                 }
4982                 r = EMULATE_DO_MMIO;
4983         } else if (vcpu->mmio_needed) {
4984                 if (!vcpu->mmio_is_write)
4985                         writeback = false;
4986                 r = EMULATE_DO_MMIO;
4987                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4988         } else if (r == EMULATION_RESTART)
4989                 goto restart;
4990         else
4991                 r = EMULATE_DONE;
4992
4993         if (writeback) {
4994                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4995                 kvm_set_rflags(vcpu, ctxt->eflags);
4996                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4997                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4998                 kvm_rip_write(vcpu, ctxt->eip);
4999         } else
5000                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5001
5002         return r;
5003 }
5004 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5005
5006 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5007 {
5008         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5009         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5010                                             size, port, &val, 1);
5011         /* do not return to emulator after return from userspace */
5012         vcpu->arch.pio.count = 0;
5013         return ret;
5014 }
5015 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5016
5017 static void tsc_bad(void *info)
5018 {
5019         __this_cpu_write(cpu_tsc_khz, 0);
5020 }
5021
5022 static void tsc_khz_changed(void *data)
5023 {
5024         struct cpufreq_freqs *freq = data;
5025         unsigned long khz = 0;
5026
5027         if (data)
5028                 khz = freq->new;
5029         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5030                 khz = cpufreq_quick_get(raw_smp_processor_id());
5031         if (!khz)
5032                 khz = tsc_khz;
5033         __this_cpu_write(cpu_tsc_khz, khz);
5034 }
5035
5036 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5037                                      void *data)
5038 {
5039         struct cpufreq_freqs *freq = data;
5040         struct kvm *kvm;
5041         struct kvm_vcpu *vcpu;
5042         int i, send_ipi = 0;
5043
5044         /*
5045          * We allow guests to temporarily run on slowing clocks,
5046          * provided we notify them after, or to run on accelerating
5047          * clocks, provided we notify them before.  Thus time never
5048          * goes backwards.
5049          *
5050          * However, we have a problem.  We can't atomically update
5051          * the frequency of a given CPU from this function; it is
5052          * merely a notifier, which can be called from any CPU.
5053          * Changing the TSC frequency at arbitrary points in time
5054          * requires a recomputation of local variables related to
5055          * the TSC for each VCPU.  We must flag these local variables
5056          * to be updated and be sure the update takes place with the
5057          * new frequency before any guests proceed.
5058          *
5059          * Unfortunately, the combination of hotplug CPU and frequency
5060          * change creates an intractable locking scenario; the order
5061          * of when these callouts happen is undefined with respect to
5062          * CPU hotplug, and they can race with each other.  As such,
5063          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5064          * undefined; you can actually have a CPU frequency change take
5065          * place in between the computation of X and the setting of the
5066          * variable.  To protect against this problem, all updates of
5067          * the per_cpu tsc_khz variable are done in an interrupt
5068          * protected IPI, and all callers wishing to update the value
5069          * must wait for a synchronous IPI to complete (which is trivial
5070          * if the caller is on the CPU already).  This establishes the
5071          * necessary total order on variable updates.
5072          *
5073          * Note that because a guest time update may take place
5074          * anytime after the setting of the VCPU's request bit, the
5075          * correct TSC value must be set before the request.  However,
5076          * to ensure the update actually makes it to any guest which
5077          * starts running in hardware virtualization between the set
5078          * and the acquisition of the spinlock, we must also ping the
5079          * CPU after setting the request bit.
5080          *
5081          */
5082
5083         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5084                 return 0;
5085         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5086                 return 0;
5087
5088         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5089
5090         raw_spin_lock(&kvm_lock);
5091         list_for_each_entry(kvm, &vm_list, vm_list) {
5092                 kvm_for_each_vcpu(i, vcpu, kvm) {
5093                         if (vcpu->cpu != freq->cpu)
5094                                 continue;
5095                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5096                         if (vcpu->cpu != smp_processor_id())
5097                                 send_ipi = 1;
5098                 }
5099         }
5100         raw_spin_unlock(&kvm_lock);
5101
5102         if (freq->old < freq->new && send_ipi) {
5103                 /*
5104                  * We upscale the frequency.  Must make the guest
5105                  * doesn't see old kvmclock values while running with
5106                  * the new frequency, otherwise we risk the guest sees
5107                  * time go backwards.
5108                  *
5109                  * In case we update the frequency for another cpu
5110                  * (which might be in guest context) send an interrupt
5111                  * to kick the cpu out of guest context.  Next time
5112                  * guest context is entered kvmclock will be updated,
5113                  * so the guest will not see stale values.
5114                  */
5115                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5116         }
5117         return 0;
5118 }
5119
5120 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5121         .notifier_call  = kvmclock_cpufreq_notifier
5122 };
5123
5124 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5125                                         unsigned long action, void *hcpu)
5126 {
5127         unsigned int cpu = (unsigned long)hcpu;
5128
5129         switch (action) {
5130                 case CPU_ONLINE:
5131                 case CPU_DOWN_FAILED:
5132                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5133                         break;
5134                 case CPU_DOWN_PREPARE:
5135                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5136                         break;
5137         }
5138         return NOTIFY_OK;
5139 }
5140
5141 static struct notifier_block kvmclock_cpu_notifier_block = {
5142         .notifier_call  = kvmclock_cpu_notifier,
5143         .priority = -INT_MAX
5144 };
5145
5146 static void kvm_timer_init(void)
5147 {
5148         int cpu;
5149
5150         max_tsc_khz = tsc_khz;
5151         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5152         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5153 #ifdef CONFIG_CPU_FREQ
5154                 struct cpufreq_policy policy;
5155                 memset(&policy, 0, sizeof(policy));
5156                 cpu = get_cpu();
5157                 cpufreq_get_policy(&policy, cpu);
5158                 if (policy.cpuinfo.max_freq)
5159                         max_tsc_khz = policy.cpuinfo.max_freq;
5160                 put_cpu();
5161 #endif
5162                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5163                                           CPUFREQ_TRANSITION_NOTIFIER);
5164         }
5165         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5166         for_each_online_cpu(cpu)
5167                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5168 }
5169
5170 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5171
5172 int kvm_is_in_guest(void)
5173 {
5174         return __this_cpu_read(current_vcpu) != NULL;
5175 }
5176
5177 static int kvm_is_user_mode(void)
5178 {
5179         int user_mode = 3;
5180
5181         if (__this_cpu_read(current_vcpu))
5182                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5183
5184         return user_mode != 0;
5185 }
5186
5187 static unsigned long kvm_get_guest_ip(void)
5188 {
5189         unsigned long ip = 0;
5190
5191         if (__this_cpu_read(current_vcpu))
5192                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5193
5194         return ip;
5195 }
5196
5197 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5198         .is_in_guest            = kvm_is_in_guest,
5199         .is_user_mode           = kvm_is_user_mode,
5200         .get_guest_ip           = kvm_get_guest_ip,
5201 };
5202
5203 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5204 {
5205         __this_cpu_write(current_vcpu, vcpu);
5206 }
5207 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5208
5209 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5210 {
5211         __this_cpu_write(current_vcpu, NULL);
5212 }
5213 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5214
5215 static void kvm_set_mmio_spte_mask(void)
5216 {
5217         u64 mask;
5218         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5219
5220         /*
5221          * Set the reserved bits and the present bit of an paging-structure
5222          * entry to generate page fault with PFER.RSV = 1.
5223          */
5224         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5225         mask |= 1ull;
5226
5227 #ifdef CONFIG_X86_64
5228         /*
5229          * If reserved bit is not supported, clear the present bit to disable
5230          * mmio page fault.
5231          */
5232         if (maxphyaddr == 52)
5233                 mask &= ~1ull;
5234 #endif
5235
5236         kvm_mmu_set_mmio_spte_mask(mask);
5237 }
5238
5239 #ifdef CONFIG_X86_64
5240 static void pvclock_gtod_update_fn(struct work_struct *work)
5241 {
5242         struct kvm *kvm;
5243
5244         struct kvm_vcpu *vcpu;
5245         int i;
5246
5247         raw_spin_lock(&kvm_lock);
5248         list_for_each_entry(kvm, &vm_list, vm_list)
5249                 kvm_for_each_vcpu(i, vcpu, kvm)
5250                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5251         atomic_set(&kvm_guest_has_master_clock, 0);
5252         raw_spin_unlock(&kvm_lock);
5253 }
5254
5255 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5256
5257 /*
5258  * Notification about pvclock gtod data update.
5259  */
5260 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5261                                void *priv)
5262 {
5263         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5264         struct timekeeper *tk = priv;
5265
5266         update_pvclock_gtod(tk);
5267
5268         /* disable master clock if host does not trust, or does not
5269          * use, TSC clocksource
5270          */
5271         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5272             atomic_read(&kvm_guest_has_master_clock) != 0)
5273                 queue_work(system_long_wq, &pvclock_gtod_work);
5274
5275         return 0;
5276 }
5277
5278 static struct notifier_block pvclock_gtod_notifier = {
5279         .notifier_call = pvclock_gtod_notify,
5280 };
5281 #endif
5282
5283 int kvm_arch_init(void *opaque)
5284 {
5285         int r;
5286         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5287
5288         if (kvm_x86_ops) {
5289                 printk(KERN_ERR "kvm: already loaded the other module\n");
5290                 r = -EEXIST;
5291                 goto out;
5292         }
5293
5294         if (!ops->cpu_has_kvm_support()) {
5295                 printk(KERN_ERR "kvm: no hardware support\n");
5296                 r = -EOPNOTSUPP;
5297                 goto out;
5298         }
5299         if (ops->disabled_by_bios()) {
5300                 printk(KERN_ERR "kvm: disabled by bios\n");
5301                 r = -EOPNOTSUPP;
5302                 goto out;
5303         }
5304
5305         r = -ENOMEM;
5306         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5307         if (!shared_msrs) {
5308                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5309                 goto out;
5310         }
5311
5312         r = kvm_mmu_module_init();
5313         if (r)
5314                 goto out_free_percpu;
5315
5316         kvm_set_mmio_spte_mask();
5317         kvm_init_msr_list();
5318
5319         kvm_x86_ops = ops;
5320         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5321                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5322
5323         kvm_timer_init();
5324
5325         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5326
5327         if (cpu_has_xsave)
5328                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5329
5330         kvm_lapic_init();
5331 #ifdef CONFIG_X86_64
5332         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5333 #endif
5334
5335         return 0;
5336
5337 out_free_percpu:
5338         free_percpu(shared_msrs);
5339 out:
5340         return r;
5341 }
5342
5343 void kvm_arch_exit(void)
5344 {
5345         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5346
5347         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5348                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5349                                             CPUFREQ_TRANSITION_NOTIFIER);
5350         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5351 #ifdef CONFIG_X86_64
5352         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5353 #endif
5354         kvm_x86_ops = NULL;
5355         kvm_mmu_module_exit();
5356         free_percpu(shared_msrs);
5357 }
5358
5359 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5360 {
5361         ++vcpu->stat.halt_exits;
5362         if (irqchip_in_kernel(vcpu->kvm)) {
5363                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5364                 return 1;
5365         } else {
5366                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5367                 return 0;
5368         }
5369 }
5370 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5371
5372 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5373 {
5374         u64 param, ingpa, outgpa, ret;
5375         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5376         bool fast, longmode;
5377         int cs_db, cs_l;
5378
5379         /*
5380          * hypercall generates UD from non zero cpl and real mode
5381          * per HYPER-V spec
5382          */
5383         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5384                 kvm_queue_exception(vcpu, UD_VECTOR);
5385                 return 0;
5386         }
5387
5388         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5389         longmode = is_long_mode(vcpu) && cs_l == 1;
5390
5391         if (!longmode) {
5392                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5393                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5394                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5395                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5396                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5397                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5398         }
5399 #ifdef CONFIG_X86_64
5400         else {
5401                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5402                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5403                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5404         }
5405 #endif
5406
5407         code = param & 0xffff;
5408         fast = (param >> 16) & 0x1;
5409         rep_cnt = (param >> 32) & 0xfff;
5410         rep_idx = (param >> 48) & 0xfff;
5411
5412         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5413
5414         switch (code) {
5415         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5416                 kvm_vcpu_on_spin(vcpu);
5417                 break;
5418         default:
5419                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5420                 break;
5421         }
5422
5423         ret = res | (((u64)rep_done & 0xfff) << 32);
5424         if (longmode) {
5425                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5426         } else {
5427                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5428                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5429         }
5430
5431         return 1;
5432 }
5433
5434 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5435 {
5436         unsigned long nr, a0, a1, a2, a3, ret;
5437         int r = 1;
5438
5439         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5440                 return kvm_hv_hypercall(vcpu);
5441
5442         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5443         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5444         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5445         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5446         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5447
5448         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5449
5450         if (!is_long_mode(vcpu)) {
5451                 nr &= 0xFFFFFFFF;
5452                 a0 &= 0xFFFFFFFF;
5453                 a1 &= 0xFFFFFFFF;
5454                 a2 &= 0xFFFFFFFF;
5455                 a3 &= 0xFFFFFFFF;
5456         }
5457
5458         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5459                 ret = -KVM_EPERM;
5460                 goto out;
5461         }
5462
5463         switch (nr) {
5464         case KVM_HC_VAPIC_POLL_IRQ:
5465                 ret = 0;
5466                 break;
5467         default:
5468                 ret = -KVM_ENOSYS;
5469                 break;
5470         }
5471 out:
5472         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5473         ++vcpu->stat.hypercalls;
5474         return r;
5475 }
5476 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5477
5478 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5479 {
5480         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5481         char instruction[3];
5482         unsigned long rip = kvm_rip_read(vcpu);
5483
5484         /*
5485          * Blow out the MMU to ensure that no other VCPU has an active mapping
5486          * to ensure that the updated hypercall appears atomically across all
5487          * VCPUs.
5488          */
5489         kvm_mmu_zap_all(vcpu->kvm);
5490
5491         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5492
5493         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5494 }
5495
5496 /*
5497  * Check if userspace requested an interrupt window, and that the
5498  * interrupt window is open.
5499  *
5500  * No need to exit to userspace if we already have an interrupt queued.
5501  */
5502 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5503 {
5504         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5505                 vcpu->run->request_interrupt_window &&
5506                 kvm_arch_interrupt_allowed(vcpu));
5507 }
5508
5509 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5510 {
5511         struct kvm_run *kvm_run = vcpu->run;
5512
5513         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5514         kvm_run->cr8 = kvm_get_cr8(vcpu);
5515         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5516         if (irqchip_in_kernel(vcpu->kvm))
5517                 kvm_run->ready_for_interrupt_injection = 1;
5518         else
5519                 kvm_run->ready_for_interrupt_injection =
5520                         kvm_arch_interrupt_allowed(vcpu) &&
5521                         !kvm_cpu_has_interrupt(vcpu) &&
5522                         !kvm_event_needs_reinjection(vcpu);
5523 }
5524
5525 static int vapic_enter(struct kvm_vcpu *vcpu)
5526 {
5527         struct kvm_lapic *apic = vcpu->arch.apic;
5528         struct page *page;
5529
5530         if (!apic || !apic->vapic_addr)
5531                 return 0;
5532
5533         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5534         if (is_error_page(page))
5535                 return -EFAULT;
5536
5537         vcpu->arch.apic->vapic_page = page;
5538         return 0;
5539 }
5540
5541 static void vapic_exit(struct kvm_vcpu *vcpu)
5542 {
5543         struct kvm_lapic *apic = vcpu->arch.apic;
5544         int idx;
5545
5546         if (!apic || !apic->vapic_addr)
5547                 return;
5548
5549         idx = srcu_read_lock(&vcpu->kvm->srcu);
5550         kvm_release_page_dirty(apic->vapic_page);
5551         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5552         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5553 }
5554
5555 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5556 {
5557         int max_irr, tpr;
5558
5559         if (!kvm_x86_ops->update_cr8_intercept)
5560                 return;
5561
5562         if (!vcpu->arch.apic)
5563                 return;
5564
5565         if (!vcpu->arch.apic->vapic_addr)
5566                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5567         else
5568                 max_irr = -1;
5569
5570         if (max_irr != -1)
5571                 max_irr >>= 4;
5572
5573         tpr = kvm_lapic_get_cr8(vcpu);
5574
5575         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5576 }
5577
5578 static void inject_pending_event(struct kvm_vcpu *vcpu)
5579 {
5580         /* try to reinject previous events if any */
5581         if (vcpu->arch.exception.pending) {
5582                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5583                                         vcpu->arch.exception.has_error_code,
5584                                         vcpu->arch.exception.error_code);
5585                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5586                                           vcpu->arch.exception.has_error_code,
5587                                           vcpu->arch.exception.error_code,
5588                                           vcpu->arch.exception.reinject);
5589                 return;
5590         }
5591
5592         if (vcpu->arch.nmi_injected) {
5593                 kvm_x86_ops->set_nmi(vcpu);
5594                 return;
5595         }
5596
5597         if (vcpu->arch.interrupt.pending) {
5598                 kvm_x86_ops->set_irq(vcpu);
5599                 return;
5600         }
5601
5602         /* try to inject new event if pending */
5603         if (vcpu->arch.nmi_pending) {
5604                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5605                         --vcpu->arch.nmi_pending;
5606                         vcpu->arch.nmi_injected = true;
5607                         kvm_x86_ops->set_nmi(vcpu);
5608                 }
5609         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5610                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5611                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5612                                             false);
5613                         kvm_x86_ops->set_irq(vcpu);
5614                 }
5615         }
5616 }
5617
5618 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5619 {
5620         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5621                         !vcpu->guest_xcr0_loaded) {
5622                 /* kvm_set_xcr() also depends on this */
5623                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5624                 vcpu->guest_xcr0_loaded = 1;
5625         }
5626 }
5627
5628 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5629 {
5630         if (vcpu->guest_xcr0_loaded) {
5631                 if (vcpu->arch.xcr0 != host_xcr0)
5632                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5633                 vcpu->guest_xcr0_loaded = 0;
5634         }
5635 }
5636
5637 static void process_nmi(struct kvm_vcpu *vcpu)
5638 {
5639         unsigned limit = 2;
5640
5641         /*
5642          * x86 is limited to one NMI running, and one NMI pending after it.
5643          * If an NMI is already in progress, limit further NMIs to just one.
5644          * Otherwise, allow two (and we'll inject the first one immediately).
5645          */
5646         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5647                 limit = 1;
5648
5649         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5650         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5651         kvm_make_request(KVM_REQ_EVENT, vcpu);
5652 }
5653
5654 static void kvm_gen_update_masterclock(struct kvm *kvm)
5655 {
5656 #ifdef CONFIG_X86_64
5657         int i;
5658         struct kvm_vcpu *vcpu;
5659         struct kvm_arch *ka = &kvm->arch;
5660
5661         spin_lock(&ka->pvclock_gtod_sync_lock);
5662         kvm_make_mclock_inprogress_request(kvm);
5663         /* no guest entries from this point */
5664         pvclock_update_vm_gtod_copy(kvm);
5665
5666         kvm_for_each_vcpu(i, vcpu, kvm)
5667                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5668
5669         /* guest entries allowed */
5670         kvm_for_each_vcpu(i, vcpu, kvm)
5671                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5672
5673         spin_unlock(&ka->pvclock_gtod_sync_lock);
5674 #endif
5675 }
5676
5677 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5678 {
5679         u64 eoi_exit_bitmap[4];
5680         u32 tmr[8];
5681
5682         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5683                 return;
5684
5685         memset(eoi_exit_bitmap, 0, 32);
5686         memset(tmr, 0, 32);
5687
5688         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5689         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5690         kvm_apic_update_tmr(vcpu, tmr);
5691 }
5692
5693 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5694 {
5695         int r;
5696         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5697                 vcpu->run->request_interrupt_window;
5698         bool req_immediate_exit = false;
5699
5700         if (vcpu->requests) {
5701                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5702                         kvm_mmu_unload(vcpu);
5703                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5704                         __kvm_migrate_timers(vcpu);
5705                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5706                         kvm_gen_update_masterclock(vcpu->kvm);
5707                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5708                         r = kvm_guest_time_update(vcpu);
5709                         if (unlikely(r))
5710                                 goto out;
5711                 }
5712                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5713                         kvm_mmu_sync_roots(vcpu);
5714                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5715                         kvm_x86_ops->tlb_flush(vcpu);
5716                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5717                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5718                         r = 0;
5719                         goto out;
5720                 }
5721                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5722                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5723                         r = 0;
5724                         goto out;
5725                 }
5726                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5727                         vcpu->fpu_active = 0;
5728                         kvm_x86_ops->fpu_deactivate(vcpu);
5729                 }
5730                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5731                         /* Page is swapped out. Do synthetic halt */
5732                         vcpu->arch.apf.halted = true;
5733                         r = 1;
5734                         goto out;
5735                 }
5736                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5737                         record_steal_time(vcpu);
5738                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5739                         process_nmi(vcpu);
5740                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5741                         kvm_handle_pmu_event(vcpu);
5742                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5743                         kvm_deliver_pmi(vcpu);
5744                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5745                         vcpu_scan_ioapic(vcpu);
5746         }
5747
5748         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5749                 kvm_apic_accept_events(vcpu);
5750                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5751                         r = 1;
5752                         goto out;
5753                 }
5754
5755                 inject_pending_event(vcpu);
5756
5757                 /* enable NMI/IRQ window open exits if needed */
5758                 if (vcpu->arch.nmi_pending)
5759                         kvm_x86_ops->enable_nmi_window(vcpu);
5760                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5761                         req_immediate_exit =
5762                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5763
5764                 if (kvm_lapic_enabled(vcpu)) {
5765                         /*
5766                          * Update architecture specific hints for APIC
5767                          * virtual interrupt delivery.
5768                          */
5769                         if (kvm_x86_ops->hwapic_irr_update)
5770                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5771                                         kvm_lapic_find_highest_irr(vcpu));
5772                         update_cr8_intercept(vcpu);
5773                         kvm_lapic_sync_to_vapic(vcpu);
5774                 }
5775         }
5776
5777         r = kvm_mmu_reload(vcpu);
5778         if (unlikely(r)) {
5779                 goto cancel_injection;
5780         }
5781
5782         preempt_disable();
5783
5784         kvm_x86_ops->prepare_guest_switch(vcpu);
5785         if (vcpu->fpu_active)
5786                 kvm_load_guest_fpu(vcpu);
5787         kvm_load_guest_xcr0(vcpu);
5788
5789         vcpu->mode = IN_GUEST_MODE;
5790
5791         /* We should set ->mode before check ->requests,
5792          * see the comment in make_all_cpus_request.
5793          */
5794         smp_mb();
5795
5796         local_irq_disable();
5797
5798         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5799             || need_resched() || signal_pending(current)) {
5800                 vcpu->mode = OUTSIDE_GUEST_MODE;
5801                 smp_wmb();
5802                 local_irq_enable();
5803                 preempt_enable();
5804                 r = 1;
5805                 goto cancel_injection;
5806         }
5807
5808         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5809
5810         if (req_immediate_exit)
5811                 smp_send_reschedule(vcpu->cpu);
5812
5813         kvm_guest_enter();
5814
5815         if (unlikely(vcpu->arch.switch_db_regs)) {
5816                 set_debugreg(0, 7);
5817                 set_debugreg(vcpu->arch.eff_db[0], 0);
5818                 set_debugreg(vcpu->arch.eff_db[1], 1);
5819                 set_debugreg(vcpu->arch.eff_db[2], 2);
5820                 set_debugreg(vcpu->arch.eff_db[3], 3);
5821         }
5822
5823         trace_kvm_entry(vcpu->vcpu_id);
5824         kvm_x86_ops->run(vcpu);
5825
5826         /*
5827          * If the guest has used debug registers, at least dr7
5828          * will be disabled while returning to the host.
5829          * If we don't have active breakpoints in the host, we don't
5830          * care about the messed up debug address registers. But if
5831          * we have some of them active, restore the old state.
5832          */
5833         if (hw_breakpoint_active())
5834                 hw_breakpoint_restore();
5835
5836         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5837                                                            native_read_tsc());
5838
5839         vcpu->mode = OUTSIDE_GUEST_MODE;
5840         smp_wmb();
5841
5842         /* Interrupt is enabled by handle_external_intr() */
5843         kvm_x86_ops->handle_external_intr(vcpu);
5844
5845         ++vcpu->stat.exits;
5846
5847         /*
5848          * We must have an instruction between local_irq_enable() and
5849          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5850          * the interrupt shadow.  The stat.exits increment will do nicely.
5851          * But we need to prevent reordering, hence this barrier():
5852          */
5853         barrier();
5854
5855         kvm_guest_exit();
5856
5857         preempt_enable();
5858
5859         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5860
5861         /*
5862          * Profile KVM exit RIPs:
5863          */
5864         if (unlikely(prof_on == KVM_PROFILING)) {
5865                 unsigned long rip = kvm_rip_read(vcpu);
5866                 profile_hit(KVM_PROFILING, (void *)rip);
5867         }
5868
5869         if (unlikely(vcpu->arch.tsc_always_catchup))
5870                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5871
5872         if (vcpu->arch.apic_attention)
5873                 kvm_lapic_sync_from_vapic(vcpu);
5874
5875         r = kvm_x86_ops->handle_exit(vcpu);
5876         return r;
5877
5878 cancel_injection:
5879         kvm_x86_ops->cancel_injection(vcpu);
5880         if (unlikely(vcpu->arch.apic_attention))
5881                 kvm_lapic_sync_from_vapic(vcpu);
5882 out:
5883         return r;
5884 }
5885
5886
5887 static int __vcpu_run(struct kvm_vcpu *vcpu)
5888 {
5889         int r;
5890         struct kvm *kvm = vcpu->kvm;
5891
5892         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5893         r = vapic_enter(vcpu);
5894         if (r) {
5895                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5896                 return r;
5897         }
5898
5899         r = 1;
5900         while (r > 0) {
5901                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5902                     !vcpu->arch.apf.halted)
5903                         r = vcpu_enter_guest(vcpu);
5904                 else {
5905                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5906                         kvm_vcpu_block(vcpu);
5907                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5908                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5909                                 kvm_apic_accept_events(vcpu);
5910                                 switch(vcpu->arch.mp_state) {
5911                                 case KVM_MP_STATE_HALTED:
5912                                         vcpu->arch.mp_state =
5913                                                 KVM_MP_STATE_RUNNABLE;
5914                                 case KVM_MP_STATE_RUNNABLE:
5915                                         vcpu->arch.apf.halted = false;
5916                                         break;
5917                                 case KVM_MP_STATE_INIT_RECEIVED:
5918                                         break;
5919                                 default:
5920                                         r = -EINTR;
5921                                         break;
5922                                 }
5923                         }
5924                 }
5925
5926                 if (r <= 0)
5927                         break;
5928
5929                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5930                 if (kvm_cpu_has_pending_timer(vcpu))
5931                         kvm_inject_pending_timer_irqs(vcpu);
5932
5933                 if (dm_request_for_irq_injection(vcpu)) {
5934                         r = -EINTR;
5935                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5936                         ++vcpu->stat.request_irq_exits;
5937                 }
5938
5939                 kvm_check_async_pf_completion(vcpu);
5940
5941                 if (signal_pending(current)) {
5942                         r = -EINTR;
5943                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5944                         ++vcpu->stat.signal_exits;
5945                 }
5946                 if (need_resched()) {
5947                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5948                         kvm_resched(vcpu);
5949                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5950                 }
5951         }
5952
5953         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5954
5955         vapic_exit(vcpu);
5956
5957         return r;
5958 }
5959
5960 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5961 {
5962         int r;
5963         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5964         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5965         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5966         if (r != EMULATE_DONE)
5967                 return 0;
5968         return 1;
5969 }
5970
5971 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5972 {
5973         BUG_ON(!vcpu->arch.pio.count);
5974
5975         return complete_emulated_io(vcpu);
5976 }
5977
5978 /*
5979  * Implements the following, as a state machine:
5980  *
5981  * read:
5982  *   for each fragment
5983  *     for each mmio piece in the fragment
5984  *       write gpa, len
5985  *       exit
5986  *       copy data
5987  *   execute insn
5988  *
5989  * write:
5990  *   for each fragment
5991  *     for each mmio piece in the fragment
5992  *       write gpa, len
5993  *       copy data
5994  *       exit
5995  */
5996 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5997 {
5998         struct kvm_run *run = vcpu->run;
5999         struct kvm_mmio_fragment *frag;
6000         unsigned len;
6001
6002         BUG_ON(!vcpu->mmio_needed);
6003
6004         /* Complete previous fragment */
6005         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6006         len = min(8u, frag->len);
6007         if (!vcpu->mmio_is_write)
6008                 memcpy(frag->data, run->mmio.data, len);
6009
6010         if (frag->len <= 8) {
6011                 /* Switch to the next fragment. */
6012                 frag++;
6013                 vcpu->mmio_cur_fragment++;
6014         } else {
6015                 /* Go forward to the next mmio piece. */
6016                 frag->data += len;
6017                 frag->gpa += len;
6018                 frag->len -= len;
6019         }
6020
6021         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6022                 vcpu->mmio_needed = 0;
6023                 if (vcpu->mmio_is_write)
6024                         return 1;
6025                 vcpu->mmio_read_completed = 1;
6026                 return complete_emulated_io(vcpu);
6027         }
6028
6029         run->exit_reason = KVM_EXIT_MMIO;
6030         run->mmio.phys_addr = frag->gpa;
6031         if (vcpu->mmio_is_write)
6032                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6033         run->mmio.len = min(8u, frag->len);
6034         run->mmio.is_write = vcpu->mmio_is_write;
6035         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6036         return 0;
6037 }
6038
6039
6040 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6041 {
6042         int r;
6043         sigset_t sigsaved;
6044
6045         if (!tsk_used_math(current) && init_fpu(current))
6046                 return -ENOMEM;
6047
6048         if (vcpu->sigset_active)
6049                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6050
6051         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6052                 kvm_vcpu_block(vcpu);
6053                 kvm_apic_accept_events(vcpu);
6054                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6055                 r = -EAGAIN;
6056                 goto out;
6057         }
6058
6059         /* re-sync apic's tpr */
6060         if (!irqchip_in_kernel(vcpu->kvm)) {
6061                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6062                         r = -EINVAL;
6063                         goto out;
6064                 }
6065         }
6066
6067         if (unlikely(vcpu->arch.complete_userspace_io)) {
6068                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6069                 vcpu->arch.complete_userspace_io = NULL;
6070                 r = cui(vcpu);
6071                 if (r <= 0)
6072                         goto out;
6073         } else
6074                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6075
6076         r = __vcpu_run(vcpu);
6077
6078 out:
6079         post_kvm_run_save(vcpu);
6080         if (vcpu->sigset_active)
6081                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6082
6083         return r;
6084 }
6085
6086 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6087 {
6088         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6089                 /*
6090                  * We are here if userspace calls get_regs() in the middle of
6091                  * instruction emulation. Registers state needs to be copied
6092                  * back from emulation context to vcpu. Userspace shouldn't do
6093                  * that usually, but some bad designed PV devices (vmware
6094                  * backdoor interface) need this to work
6095                  */
6096                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6097                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6098         }
6099         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6100         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6101         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6102         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6103         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6104         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6105         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6106         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6107 #ifdef CONFIG_X86_64
6108         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6109         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6110         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6111         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6112         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6113         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6114         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6115         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6116 #endif
6117
6118         regs->rip = kvm_rip_read(vcpu);
6119         regs->rflags = kvm_get_rflags(vcpu);
6120
6121         return 0;
6122 }
6123
6124 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6125 {
6126         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6127         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6128
6129         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6130         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6131         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6132         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6133         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6134         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6135         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6136         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6137 #ifdef CONFIG_X86_64
6138         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6139         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6140         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6141         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6142         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6143         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6144         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6145         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6146 #endif
6147
6148         kvm_rip_write(vcpu, regs->rip);
6149         kvm_set_rflags(vcpu, regs->rflags);
6150
6151         vcpu->arch.exception.pending = false;
6152
6153         kvm_make_request(KVM_REQ_EVENT, vcpu);
6154
6155         return 0;
6156 }
6157
6158 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6159 {
6160         struct kvm_segment cs;
6161
6162         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6163         *db = cs.db;
6164         *l = cs.l;
6165 }
6166 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6167
6168 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6169                                   struct kvm_sregs *sregs)
6170 {
6171         struct desc_ptr dt;
6172
6173         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6174         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6175         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6176         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6177         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6178         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6179
6180         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6181         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6182
6183         kvm_x86_ops->get_idt(vcpu, &dt);
6184         sregs->idt.limit = dt.size;
6185         sregs->idt.base = dt.address;
6186         kvm_x86_ops->get_gdt(vcpu, &dt);
6187         sregs->gdt.limit = dt.size;
6188         sregs->gdt.base = dt.address;
6189
6190         sregs->cr0 = kvm_read_cr0(vcpu);
6191         sregs->cr2 = vcpu->arch.cr2;
6192         sregs->cr3 = kvm_read_cr3(vcpu);
6193         sregs->cr4 = kvm_read_cr4(vcpu);
6194         sregs->cr8 = kvm_get_cr8(vcpu);
6195         sregs->efer = vcpu->arch.efer;
6196         sregs->apic_base = kvm_get_apic_base(vcpu);
6197
6198         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6199
6200         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6201                 set_bit(vcpu->arch.interrupt.nr,
6202                         (unsigned long *)sregs->interrupt_bitmap);
6203
6204         return 0;
6205 }
6206
6207 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6208                                     struct kvm_mp_state *mp_state)
6209 {
6210         kvm_apic_accept_events(vcpu);
6211         mp_state->mp_state = vcpu->arch.mp_state;
6212         return 0;
6213 }
6214
6215 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6216                                     struct kvm_mp_state *mp_state)
6217 {
6218         if (!kvm_vcpu_has_lapic(vcpu) &&
6219             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6220                 return -EINVAL;
6221
6222         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6223                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6224                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6225         } else
6226                 vcpu->arch.mp_state = mp_state->mp_state;
6227         kvm_make_request(KVM_REQ_EVENT, vcpu);
6228         return 0;
6229 }
6230
6231 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6232                     int reason, bool has_error_code, u32 error_code)
6233 {
6234         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6235         int ret;
6236
6237         init_emulate_ctxt(vcpu);
6238
6239         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6240                                    has_error_code, error_code);
6241
6242         if (ret)
6243                 return EMULATE_FAIL;
6244
6245         kvm_rip_write(vcpu, ctxt->eip);
6246         kvm_set_rflags(vcpu, ctxt->eflags);
6247         kvm_make_request(KVM_REQ_EVENT, vcpu);
6248         return EMULATE_DONE;
6249 }
6250 EXPORT_SYMBOL_GPL(kvm_task_switch);
6251
6252 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6253                                   struct kvm_sregs *sregs)
6254 {
6255         int mmu_reset_needed = 0;
6256         int pending_vec, max_bits, idx;
6257         struct desc_ptr dt;
6258
6259         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6260                 return -EINVAL;
6261
6262         dt.size = sregs->idt.limit;
6263         dt.address = sregs->idt.base;
6264         kvm_x86_ops->set_idt(vcpu, &dt);
6265         dt.size = sregs->gdt.limit;
6266         dt.address = sregs->gdt.base;
6267         kvm_x86_ops->set_gdt(vcpu, &dt);
6268
6269         vcpu->arch.cr2 = sregs->cr2;
6270         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6271         vcpu->arch.cr3 = sregs->cr3;
6272         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6273
6274         kvm_set_cr8(vcpu, sregs->cr8);
6275
6276         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6277         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6278         kvm_set_apic_base(vcpu, sregs->apic_base);
6279
6280         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6281         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6282         vcpu->arch.cr0 = sregs->cr0;
6283
6284         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6285         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6286         if (sregs->cr4 & X86_CR4_OSXSAVE)
6287                 kvm_update_cpuid(vcpu);
6288
6289         idx = srcu_read_lock(&vcpu->kvm->srcu);
6290         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6291                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6292                 mmu_reset_needed = 1;
6293         }
6294         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6295
6296         if (mmu_reset_needed)
6297                 kvm_mmu_reset_context(vcpu);
6298
6299         max_bits = KVM_NR_INTERRUPTS;
6300         pending_vec = find_first_bit(
6301                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6302         if (pending_vec < max_bits) {
6303                 kvm_queue_interrupt(vcpu, pending_vec, false);
6304                 pr_debug("Set back pending irq %d\n", pending_vec);
6305         }
6306
6307         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6308         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6309         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6310         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6311         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6312         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6313
6314         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6315         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6316
6317         update_cr8_intercept(vcpu);
6318
6319         /* Older userspace won't unhalt the vcpu on reset. */
6320         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6321             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6322             !is_protmode(vcpu))
6323                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6324
6325         kvm_make_request(KVM_REQ_EVENT, vcpu);
6326
6327         return 0;
6328 }
6329
6330 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6331                                         struct kvm_guest_debug *dbg)
6332 {
6333         unsigned long rflags;
6334         int i, r;
6335
6336         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6337                 r = -EBUSY;
6338                 if (vcpu->arch.exception.pending)
6339                         goto out;
6340                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6341                         kvm_queue_exception(vcpu, DB_VECTOR);
6342                 else
6343                         kvm_queue_exception(vcpu, BP_VECTOR);
6344         }
6345
6346         /*
6347          * Read rflags as long as potentially injected trace flags are still
6348          * filtered out.
6349          */
6350         rflags = kvm_get_rflags(vcpu);
6351
6352         vcpu->guest_debug = dbg->control;
6353         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6354                 vcpu->guest_debug = 0;
6355
6356         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6357                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6358                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6359                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6360         } else {
6361                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6362                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6363         }
6364         kvm_update_dr7(vcpu);
6365
6366         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6367                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6368                         get_segment_base(vcpu, VCPU_SREG_CS);
6369
6370         /*
6371          * Trigger an rflags update that will inject or remove the trace
6372          * flags.
6373          */
6374         kvm_set_rflags(vcpu, rflags);
6375
6376         kvm_x86_ops->update_db_bp_intercept(vcpu);
6377
6378         r = 0;
6379
6380 out:
6381
6382         return r;
6383 }
6384
6385 /*
6386  * Translate a guest virtual address to a guest physical address.
6387  */
6388 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6389                                     struct kvm_translation *tr)
6390 {
6391         unsigned long vaddr = tr->linear_address;
6392         gpa_t gpa;
6393         int idx;
6394
6395         idx = srcu_read_lock(&vcpu->kvm->srcu);
6396         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6397         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6398         tr->physical_address = gpa;
6399         tr->valid = gpa != UNMAPPED_GVA;
6400         tr->writeable = 1;
6401         tr->usermode = 0;
6402
6403         return 0;
6404 }
6405
6406 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6407 {
6408         struct i387_fxsave_struct *fxsave =
6409                         &vcpu->arch.guest_fpu.state->fxsave;
6410
6411         memcpy(fpu->fpr, fxsave->st_space, 128);
6412         fpu->fcw = fxsave->cwd;
6413         fpu->fsw = fxsave->swd;
6414         fpu->ftwx = fxsave->twd;
6415         fpu->last_opcode = fxsave->fop;
6416         fpu->last_ip = fxsave->rip;
6417         fpu->last_dp = fxsave->rdp;
6418         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6419
6420         return 0;
6421 }
6422
6423 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6424 {
6425         struct i387_fxsave_struct *fxsave =
6426                         &vcpu->arch.guest_fpu.state->fxsave;
6427
6428         memcpy(fxsave->st_space, fpu->fpr, 128);
6429         fxsave->cwd = fpu->fcw;
6430         fxsave->swd = fpu->fsw;
6431         fxsave->twd = fpu->ftwx;
6432         fxsave->fop = fpu->last_opcode;
6433         fxsave->rip = fpu->last_ip;
6434         fxsave->rdp = fpu->last_dp;
6435         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6436
6437         return 0;
6438 }
6439
6440 int fx_init(struct kvm_vcpu *vcpu)
6441 {
6442         int err;
6443
6444         err = fpu_alloc(&vcpu->arch.guest_fpu);
6445         if (err)
6446                 return err;
6447
6448         fpu_finit(&vcpu->arch.guest_fpu);
6449
6450         /*
6451          * Ensure guest xcr0 is valid for loading
6452          */
6453         vcpu->arch.xcr0 = XSTATE_FP;
6454
6455         vcpu->arch.cr0 |= X86_CR0_ET;
6456
6457         return 0;
6458 }
6459 EXPORT_SYMBOL_GPL(fx_init);
6460
6461 static void fx_free(struct kvm_vcpu *vcpu)
6462 {
6463         fpu_free(&vcpu->arch.guest_fpu);
6464 }
6465
6466 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6467 {
6468         if (vcpu->guest_fpu_loaded)
6469                 return;
6470
6471         /*
6472          * Restore all possible states in the guest,
6473          * and assume host would use all available bits.
6474          * Guest xcr0 would be loaded later.
6475          */
6476         kvm_put_guest_xcr0(vcpu);
6477         vcpu->guest_fpu_loaded = 1;
6478         __kernel_fpu_begin();
6479         fpu_restore_checking(&vcpu->arch.guest_fpu);
6480         trace_kvm_fpu(1);
6481 }
6482
6483 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6484 {
6485         kvm_put_guest_xcr0(vcpu);
6486
6487         if (!vcpu->guest_fpu_loaded)
6488                 return;
6489
6490         vcpu->guest_fpu_loaded = 0;
6491         fpu_save_init(&vcpu->arch.guest_fpu);
6492         __kernel_fpu_end();
6493         ++vcpu->stat.fpu_reload;
6494         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6495         trace_kvm_fpu(0);
6496 }
6497
6498 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6499 {
6500         kvmclock_reset(vcpu);
6501
6502         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6503         fx_free(vcpu);
6504         kvm_x86_ops->vcpu_free(vcpu);
6505 }
6506
6507 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6508                                                 unsigned int id)
6509 {
6510         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6511                 printk_once(KERN_WARNING
6512                 "kvm: SMP vm created on host with unstable TSC; "
6513                 "guest TSC will not be reliable\n");
6514         return kvm_x86_ops->vcpu_create(kvm, id);
6515 }
6516
6517 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6518 {
6519         int r;
6520
6521         vcpu->arch.mtrr_state.have_fixed = 1;
6522         r = vcpu_load(vcpu);
6523         if (r)
6524                 return r;
6525         kvm_vcpu_reset(vcpu);
6526         r = kvm_mmu_setup(vcpu);
6527         vcpu_put(vcpu);
6528
6529         return r;
6530 }
6531
6532 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6533 {
6534         int r;
6535         struct msr_data msr;
6536
6537         r = vcpu_load(vcpu);
6538         if (r)
6539                 return r;
6540         msr.data = 0x0;
6541         msr.index = MSR_IA32_TSC;
6542         msr.host_initiated = true;
6543         kvm_write_tsc(vcpu, &msr);
6544         vcpu_put(vcpu);
6545
6546         return r;
6547 }
6548
6549 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6550 {
6551         int r;
6552         vcpu->arch.apf.msr_val = 0;
6553
6554         r = vcpu_load(vcpu);
6555         BUG_ON(r);
6556         kvm_mmu_unload(vcpu);
6557         vcpu_put(vcpu);
6558
6559         fx_free(vcpu);
6560         kvm_x86_ops->vcpu_free(vcpu);
6561 }
6562
6563 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6564 {
6565         atomic_set(&vcpu->arch.nmi_queued, 0);
6566         vcpu->arch.nmi_pending = 0;
6567         vcpu->arch.nmi_injected = false;
6568
6569         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6570         vcpu->arch.dr6 = DR6_FIXED_1;
6571         vcpu->arch.dr7 = DR7_FIXED_1;
6572         kvm_update_dr7(vcpu);
6573
6574         kvm_make_request(KVM_REQ_EVENT, vcpu);
6575         vcpu->arch.apf.msr_val = 0;
6576         vcpu->arch.st.msr_val = 0;
6577
6578         kvmclock_reset(vcpu);
6579
6580         kvm_clear_async_pf_completion_queue(vcpu);
6581         kvm_async_pf_hash_reset(vcpu);
6582         vcpu->arch.apf.halted = false;
6583
6584         kvm_pmu_reset(vcpu);
6585
6586         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6587         vcpu->arch.regs_avail = ~0;
6588         vcpu->arch.regs_dirty = ~0;
6589
6590         kvm_x86_ops->vcpu_reset(vcpu);
6591 }
6592
6593 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6594 {
6595         struct kvm_segment cs;
6596
6597         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6598         cs.selector = vector << 8;
6599         cs.base = vector << 12;
6600         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6601         kvm_rip_write(vcpu, 0);
6602 }
6603
6604 int kvm_arch_hardware_enable(void *garbage)
6605 {
6606         struct kvm *kvm;
6607         struct kvm_vcpu *vcpu;
6608         int i;
6609         int ret;
6610         u64 local_tsc;
6611         u64 max_tsc = 0;
6612         bool stable, backwards_tsc = false;
6613
6614         kvm_shared_msr_cpu_online();
6615         ret = kvm_x86_ops->hardware_enable(garbage);
6616         if (ret != 0)
6617                 return ret;
6618
6619         local_tsc = native_read_tsc();
6620         stable = !check_tsc_unstable();
6621         list_for_each_entry(kvm, &vm_list, vm_list) {
6622                 kvm_for_each_vcpu(i, vcpu, kvm) {
6623                         if (!stable && vcpu->cpu == smp_processor_id())
6624                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6625                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6626                                 backwards_tsc = true;
6627                                 if (vcpu->arch.last_host_tsc > max_tsc)
6628                                         max_tsc = vcpu->arch.last_host_tsc;
6629                         }
6630                 }
6631         }
6632
6633         /*
6634          * Sometimes, even reliable TSCs go backwards.  This happens on
6635          * platforms that reset TSC during suspend or hibernate actions, but
6636          * maintain synchronization.  We must compensate.  Fortunately, we can
6637          * detect that condition here, which happens early in CPU bringup,
6638          * before any KVM threads can be running.  Unfortunately, we can't
6639          * bring the TSCs fully up to date with real time, as we aren't yet far
6640          * enough into CPU bringup that we know how much real time has actually
6641          * elapsed; our helper function, get_kernel_ns() will be using boot
6642          * variables that haven't been updated yet.
6643          *
6644          * So we simply find the maximum observed TSC above, then record the
6645          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6646          * the adjustment will be applied.  Note that we accumulate
6647          * adjustments, in case multiple suspend cycles happen before some VCPU
6648          * gets a chance to run again.  In the event that no KVM threads get a
6649          * chance to run, we will miss the entire elapsed period, as we'll have
6650          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6651          * loose cycle time.  This isn't too big a deal, since the loss will be
6652          * uniform across all VCPUs (not to mention the scenario is extremely
6653          * unlikely). It is possible that a second hibernate recovery happens
6654          * much faster than a first, causing the observed TSC here to be
6655          * smaller; this would require additional padding adjustment, which is
6656          * why we set last_host_tsc to the local tsc observed here.
6657          *
6658          * N.B. - this code below runs only on platforms with reliable TSC,
6659          * as that is the only way backwards_tsc is set above.  Also note
6660          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6661          * have the same delta_cyc adjustment applied if backwards_tsc
6662          * is detected.  Note further, this adjustment is only done once,
6663          * as we reset last_host_tsc on all VCPUs to stop this from being
6664          * called multiple times (one for each physical CPU bringup).
6665          *
6666          * Platforms with unreliable TSCs don't have to deal with this, they
6667          * will be compensated by the logic in vcpu_load, which sets the TSC to
6668          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6669          * guarantee that they stay in perfect synchronization.
6670          */
6671         if (backwards_tsc) {
6672                 u64 delta_cyc = max_tsc - local_tsc;
6673                 list_for_each_entry(kvm, &vm_list, vm_list) {
6674                         kvm_for_each_vcpu(i, vcpu, kvm) {
6675                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6676                                 vcpu->arch.last_host_tsc = local_tsc;
6677                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6678                                         &vcpu->requests);
6679                         }
6680
6681                         /*
6682                          * We have to disable TSC offset matching.. if you were
6683                          * booting a VM while issuing an S4 host suspend....
6684                          * you may have some problem.  Solving this issue is
6685                          * left as an exercise to the reader.
6686                          */
6687                         kvm->arch.last_tsc_nsec = 0;
6688                         kvm->arch.last_tsc_write = 0;
6689                 }
6690
6691         }
6692         return 0;
6693 }
6694
6695 void kvm_arch_hardware_disable(void *garbage)
6696 {
6697         kvm_x86_ops->hardware_disable(garbage);
6698         drop_user_return_notifiers(garbage);
6699 }
6700
6701 int kvm_arch_hardware_setup(void)
6702 {
6703         return kvm_x86_ops->hardware_setup();
6704 }
6705
6706 void kvm_arch_hardware_unsetup(void)
6707 {
6708         kvm_x86_ops->hardware_unsetup();
6709 }
6710
6711 void kvm_arch_check_processor_compat(void *rtn)
6712 {
6713         kvm_x86_ops->check_processor_compatibility(rtn);
6714 }
6715
6716 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6717 {
6718         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6719 }
6720
6721 struct static_key kvm_no_apic_vcpu __read_mostly;
6722
6723 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6724 {
6725         struct page *page;
6726         struct kvm *kvm;
6727         int r;
6728
6729         BUG_ON(vcpu->kvm == NULL);
6730         kvm = vcpu->kvm;
6731
6732         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6733         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6734                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6735         else
6736                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6737
6738         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6739         if (!page) {
6740                 r = -ENOMEM;
6741                 goto fail;
6742         }
6743         vcpu->arch.pio_data = page_address(page);
6744
6745         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6746
6747         r = kvm_mmu_create(vcpu);
6748         if (r < 0)
6749                 goto fail_free_pio_data;
6750
6751         if (irqchip_in_kernel(kvm)) {
6752                 r = kvm_create_lapic(vcpu);
6753                 if (r < 0)
6754                         goto fail_mmu_destroy;
6755         } else
6756                 static_key_slow_inc(&kvm_no_apic_vcpu);
6757
6758         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6759                                        GFP_KERNEL);
6760         if (!vcpu->arch.mce_banks) {
6761                 r = -ENOMEM;
6762                 goto fail_free_lapic;
6763         }
6764         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6765
6766         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6767                 r = -ENOMEM;
6768                 goto fail_free_mce_banks;
6769         }
6770
6771         r = fx_init(vcpu);
6772         if (r)
6773                 goto fail_free_wbinvd_dirty_mask;
6774
6775         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6776         vcpu->arch.pv_time_enabled = false;
6777         kvm_async_pf_hash_reset(vcpu);
6778         kvm_pmu_init(vcpu);
6779
6780         return 0;
6781 fail_free_wbinvd_dirty_mask:
6782         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6783 fail_free_mce_banks:
6784         kfree(vcpu->arch.mce_banks);
6785 fail_free_lapic:
6786         kvm_free_lapic(vcpu);
6787 fail_mmu_destroy:
6788         kvm_mmu_destroy(vcpu);
6789 fail_free_pio_data:
6790         free_page((unsigned long)vcpu->arch.pio_data);
6791 fail:
6792         return r;
6793 }
6794
6795 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6796 {
6797         int idx;
6798
6799         kvm_pmu_destroy(vcpu);
6800         kfree(vcpu->arch.mce_banks);
6801         kvm_free_lapic(vcpu);
6802         idx = srcu_read_lock(&vcpu->kvm->srcu);
6803         kvm_mmu_destroy(vcpu);
6804         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6805         free_page((unsigned long)vcpu->arch.pio_data);
6806         if (!irqchip_in_kernel(vcpu->kvm))
6807                 static_key_slow_dec(&kvm_no_apic_vcpu);
6808 }
6809
6810 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6811 {
6812         if (type)
6813                 return -EINVAL;
6814
6815         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6816         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6817
6818         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6819         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6820         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6821         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6822                 &kvm->arch.irq_sources_bitmap);
6823
6824         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6825         mutex_init(&kvm->arch.apic_map_lock);
6826         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6827
6828         pvclock_update_vm_gtod_copy(kvm);
6829
6830         return 0;
6831 }
6832
6833 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6834 {
6835         int r;
6836         r = vcpu_load(vcpu);
6837         BUG_ON(r);
6838         kvm_mmu_unload(vcpu);
6839         vcpu_put(vcpu);
6840 }
6841
6842 static void kvm_free_vcpus(struct kvm *kvm)
6843 {
6844         unsigned int i;
6845         struct kvm_vcpu *vcpu;
6846
6847         /*
6848          * Unpin any mmu pages first.
6849          */
6850         kvm_for_each_vcpu(i, vcpu, kvm) {
6851                 kvm_clear_async_pf_completion_queue(vcpu);
6852                 kvm_unload_vcpu_mmu(vcpu);
6853         }
6854         kvm_for_each_vcpu(i, vcpu, kvm)
6855                 kvm_arch_vcpu_free(vcpu);
6856
6857         mutex_lock(&kvm->lock);
6858         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6859                 kvm->vcpus[i] = NULL;
6860
6861         atomic_set(&kvm->online_vcpus, 0);
6862         mutex_unlock(&kvm->lock);
6863 }
6864
6865 void kvm_arch_sync_events(struct kvm *kvm)
6866 {
6867         kvm_free_all_assigned_devices(kvm);
6868         kvm_free_pit(kvm);
6869 }
6870
6871 void kvm_arch_destroy_vm(struct kvm *kvm)
6872 {
6873         if (current->mm == kvm->mm) {
6874                 /*
6875                  * Free memory regions allocated on behalf of userspace,
6876                  * unless the the memory map has changed due to process exit
6877                  * or fd copying.
6878                  */
6879                 struct kvm_userspace_memory_region mem;
6880                 memset(&mem, 0, sizeof(mem));
6881                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6882                 kvm_set_memory_region(kvm, &mem);
6883
6884                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6885                 kvm_set_memory_region(kvm, &mem);
6886
6887                 mem.slot = TSS_PRIVATE_MEMSLOT;
6888                 kvm_set_memory_region(kvm, &mem);
6889         }
6890         kvm_iommu_unmap_guest(kvm);
6891         kfree(kvm->arch.vpic);
6892         kfree(kvm->arch.vioapic);
6893         kvm_free_vcpus(kvm);
6894         if (kvm->arch.apic_access_page)
6895                 put_page(kvm->arch.apic_access_page);
6896         if (kvm->arch.ept_identity_pagetable)
6897                 put_page(kvm->arch.ept_identity_pagetable);
6898         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6899 }
6900
6901 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6902                            struct kvm_memory_slot *dont)
6903 {
6904         int i;
6905
6906         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6907                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6908                         kvm_kvfree(free->arch.rmap[i]);
6909                         free->arch.rmap[i] = NULL;
6910                 }
6911                 if (i == 0)
6912                         continue;
6913
6914                 if (!dont || free->arch.lpage_info[i - 1] !=
6915                              dont->arch.lpage_info[i - 1]) {
6916                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6917                         free->arch.lpage_info[i - 1] = NULL;
6918                 }
6919         }
6920 }
6921
6922 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6923 {
6924         int i;
6925
6926         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6927                 unsigned long ugfn;
6928                 int lpages;
6929                 int level = i + 1;
6930
6931                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6932                                       slot->base_gfn, level) + 1;
6933
6934                 slot->arch.rmap[i] =
6935                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6936                 if (!slot->arch.rmap[i])
6937                         goto out_free;
6938                 if (i == 0)
6939                         continue;
6940
6941                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6942                                         sizeof(*slot->arch.lpage_info[i - 1]));
6943                 if (!slot->arch.lpage_info[i - 1])
6944                         goto out_free;
6945
6946                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6947                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6948                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6949                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6950                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6951                 /*
6952                  * If the gfn and userspace address are not aligned wrt each
6953                  * other, or if explicitly asked to, disable large page
6954                  * support for this slot
6955                  */
6956                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6957                     !kvm_largepages_enabled()) {
6958                         unsigned long j;
6959
6960                         for (j = 0; j < lpages; ++j)
6961                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6962                 }
6963         }
6964
6965         return 0;
6966
6967 out_free:
6968         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6969                 kvm_kvfree(slot->arch.rmap[i]);
6970                 slot->arch.rmap[i] = NULL;
6971                 if (i == 0)
6972                         continue;
6973
6974                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6975                 slot->arch.lpage_info[i - 1] = NULL;
6976         }
6977         return -ENOMEM;
6978 }
6979
6980 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6981                                 struct kvm_memory_slot *memslot,
6982                                 struct kvm_userspace_memory_region *mem,
6983                                 enum kvm_mr_change change)
6984 {
6985         /*
6986          * Only private memory slots need to be mapped here since
6987          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6988          */
6989         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
6990                 unsigned long userspace_addr;
6991
6992                 /*
6993                  * MAP_SHARED to prevent internal slot pages from being moved
6994                  * by fork()/COW.
6995                  */
6996                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
6997                                          PROT_READ | PROT_WRITE,
6998                                          MAP_SHARED | MAP_ANONYMOUS, 0);
6999
7000                 if (IS_ERR((void *)userspace_addr))
7001                         return PTR_ERR((void *)userspace_addr);
7002
7003                 memslot->userspace_addr = userspace_addr;
7004         }
7005
7006         return 0;
7007 }
7008
7009 void kvm_arch_commit_memory_region(struct kvm *kvm,
7010                                 struct kvm_userspace_memory_region *mem,
7011                                 const struct kvm_memory_slot *old,
7012                                 enum kvm_mr_change change)
7013 {
7014
7015         int nr_mmu_pages = 0;
7016
7017         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7018                 int ret;
7019
7020                 ret = vm_munmap(old->userspace_addr,
7021                                 old->npages * PAGE_SIZE);
7022                 if (ret < 0)
7023                         printk(KERN_WARNING
7024                                "kvm_vm_ioctl_set_memory_region: "
7025                                "failed to munmap memory\n");
7026         }
7027
7028         if (!kvm->arch.n_requested_mmu_pages)
7029                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7030
7031         if (nr_mmu_pages)
7032                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7033         /*
7034          * Write protect all pages for dirty logging.
7035          * Existing largepage mappings are destroyed here and new ones will
7036          * not be created until the end of the logging.
7037          */
7038         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7039                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7040         /*
7041          * If memory slot is created, or moved, we need to clear all
7042          * mmio sptes.
7043          */
7044         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
7045                 kvm_mmu_zap_mmio_sptes(kvm);
7046                 kvm_reload_remote_mmus(kvm);
7047         }
7048 }
7049
7050 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7051 {
7052         kvm_mmu_zap_all(kvm);
7053         kvm_reload_remote_mmus(kvm);
7054 }
7055
7056 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7057                                    struct kvm_memory_slot *slot)
7058 {
7059         kvm_arch_flush_shadow_all(kvm);
7060 }
7061
7062 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7063 {
7064         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7065                 !vcpu->arch.apf.halted)
7066                 || !list_empty_careful(&vcpu->async_pf.done)
7067                 || kvm_apic_has_events(vcpu)
7068                 || atomic_read(&vcpu->arch.nmi_queued) ||
7069                 (kvm_arch_interrupt_allowed(vcpu) &&
7070                  kvm_cpu_has_interrupt(vcpu));
7071 }
7072
7073 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7074 {
7075         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7076 }
7077
7078 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7079 {
7080         return kvm_x86_ops->interrupt_allowed(vcpu);
7081 }
7082
7083 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7084 {
7085         unsigned long current_rip = kvm_rip_read(vcpu) +
7086                 get_segment_base(vcpu, VCPU_SREG_CS);
7087
7088         return current_rip == linear_rip;
7089 }
7090 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7091
7092 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7093 {
7094         unsigned long rflags;
7095
7096         rflags = kvm_x86_ops->get_rflags(vcpu);
7097         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7098                 rflags &= ~X86_EFLAGS_TF;
7099         return rflags;
7100 }
7101 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7102
7103 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7104 {
7105         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7106             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7107                 rflags |= X86_EFLAGS_TF;
7108         kvm_x86_ops->set_rflags(vcpu, rflags);
7109         kvm_make_request(KVM_REQ_EVENT, vcpu);
7110 }
7111 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7112
7113 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7114 {
7115         int r;
7116
7117         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7118               is_error_page(work->page))
7119                 return;
7120
7121         r = kvm_mmu_reload(vcpu);
7122         if (unlikely(r))
7123                 return;
7124
7125         if (!vcpu->arch.mmu.direct_map &&
7126               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7127                 return;
7128
7129         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7130 }
7131
7132 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7133 {
7134         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7135 }
7136
7137 static inline u32 kvm_async_pf_next_probe(u32 key)
7138 {
7139         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7140 }
7141
7142 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7143 {
7144         u32 key = kvm_async_pf_hash_fn(gfn);
7145
7146         while (vcpu->arch.apf.gfns[key] != ~0)
7147                 key = kvm_async_pf_next_probe(key);
7148
7149         vcpu->arch.apf.gfns[key] = gfn;
7150 }
7151
7152 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7153 {
7154         int i;
7155         u32 key = kvm_async_pf_hash_fn(gfn);
7156
7157         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7158                      (vcpu->arch.apf.gfns[key] != gfn &&
7159                       vcpu->arch.apf.gfns[key] != ~0); i++)
7160                 key = kvm_async_pf_next_probe(key);
7161
7162         return key;
7163 }
7164
7165 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7166 {
7167         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7168 }
7169
7170 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7171 {
7172         u32 i, j, k;
7173
7174         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7175         while (true) {
7176                 vcpu->arch.apf.gfns[i] = ~0;
7177                 do {
7178                         j = kvm_async_pf_next_probe(j);
7179                         if (vcpu->arch.apf.gfns[j] == ~0)
7180                                 return;
7181                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7182                         /*
7183                          * k lies cyclically in ]i,j]
7184                          * |    i.k.j |
7185                          * |....j i.k.| or  |.k..j i...|
7186                          */
7187                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7188                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7189                 i = j;
7190         }
7191 }
7192
7193 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7194 {
7195
7196         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7197                                       sizeof(val));
7198 }
7199
7200 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7201                                      struct kvm_async_pf *work)
7202 {
7203         struct x86_exception fault;
7204
7205         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7206         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7207
7208         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7209             (vcpu->arch.apf.send_user_only &&
7210              kvm_x86_ops->get_cpl(vcpu) == 0))
7211                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7212         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7213                 fault.vector = PF_VECTOR;
7214                 fault.error_code_valid = true;
7215                 fault.error_code = 0;
7216                 fault.nested_page_fault = false;
7217                 fault.address = work->arch.token;
7218                 kvm_inject_page_fault(vcpu, &fault);
7219         }
7220 }
7221
7222 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7223                                  struct kvm_async_pf *work)
7224 {
7225         struct x86_exception fault;
7226
7227         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7228         if (is_error_page(work->page))
7229                 work->arch.token = ~0; /* broadcast wakeup */
7230         else
7231                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7232
7233         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7234             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7235                 fault.vector = PF_VECTOR;
7236                 fault.error_code_valid = true;
7237                 fault.error_code = 0;
7238                 fault.nested_page_fault = false;
7239                 fault.address = work->arch.token;
7240                 kvm_inject_page_fault(vcpu, &fault);
7241         }
7242         vcpu->arch.apf.halted = false;
7243         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7244 }
7245
7246 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7247 {
7248         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7249                 return true;
7250         else
7251                 return !kvm_event_needs_reinjection(vcpu) &&
7252                         kvm_x86_ops->interrupt_allowed(vcpu);
7253 }
7254
7255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7256 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);