2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
41 #include <asm/uaccess.h>
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72 struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74 u32 function, u32 index);
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed) },
81 { "pf_guest", VCPU_STAT(pf_guest) },
82 { "tlb_flush", VCPU_STAT(tlb_flush) },
83 { "invlpg", VCPU_STAT(invlpg) },
84 { "exits", VCPU_STAT(exits) },
85 { "io_exits", VCPU_STAT(io_exits) },
86 { "mmio_exits", VCPU_STAT(mmio_exits) },
87 { "signal_exits", VCPU_STAT(signal_exits) },
88 { "irq_window", VCPU_STAT(irq_window_exits) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits) },
90 { "halt_exits", VCPU_STAT(halt_exits) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92 { "hypercalls", VCPU_STAT(hypercalls) },
93 { "request_irq", VCPU_STAT(request_irq_exits) },
94 { "irq_exits", VCPU_STAT(irq_exits) },
95 { "host_state_reload", VCPU_STAT(host_state_reload) },
96 { "efer_reload", VCPU_STAT(efer_reload) },
97 { "fpu_reload", VCPU_STAT(fpu_reload) },
98 { "insn_emulation", VCPU_STAT(insn_emulation) },
99 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
100 { "irq_injections", VCPU_STAT(irq_injections) },
101 { "nmi_injections", VCPU_STAT(nmi_injections) },
102 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
103 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
104 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
105 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
106 { "mmu_flooded", VM_STAT(mmu_flooded) },
107 { "mmu_recycled", VM_STAT(mmu_recycled) },
108 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
109 { "mmu_unsync", VM_STAT(mmu_unsync) },
110 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
111 { "largepages", VM_STAT(lpages) },
115 unsigned long segment_base(u16 selector)
117 struct descriptor_table gdt;
118 struct desc_struct *d;
119 unsigned long table_base;
125 asm("sgdt %0" : "=m"(gdt));
126 table_base = gdt.base;
128 if (selector & 4) { /* from ldt */
131 asm("sldt %0" : "=g"(ldt_selector));
132 table_base = segment_base(ldt_selector);
134 d = (struct desc_struct *)(table_base + (selector & ~7));
135 v = d->base0 | ((unsigned long)d->base1 << 16) |
136 ((unsigned long)d->base2 << 24);
138 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
139 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
143 EXPORT_SYMBOL_GPL(segment_base);
145 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
147 if (irqchip_in_kernel(vcpu->kvm))
148 return vcpu->arch.apic_base;
150 return vcpu->arch.apic_base;
152 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
154 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
156 /* TODO: reserve bits check */
157 if (irqchip_in_kernel(vcpu->kvm))
158 kvm_lapic_set_base(vcpu, data);
160 vcpu->arch.apic_base = data;
162 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
164 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
166 WARN_ON(vcpu->arch.exception.pending);
167 vcpu->arch.exception.pending = true;
168 vcpu->arch.exception.has_error_code = false;
169 vcpu->arch.exception.nr = nr;
171 EXPORT_SYMBOL_GPL(kvm_queue_exception);
173 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
176 ++vcpu->stat.pf_guest;
178 if (vcpu->arch.exception.pending) {
179 if (vcpu->arch.exception.nr == PF_VECTOR) {
180 printk(KERN_DEBUG "kvm: inject_page_fault:"
181 " double fault 0x%lx\n", addr);
182 vcpu->arch.exception.nr = DF_VECTOR;
183 vcpu->arch.exception.error_code = 0;
184 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
185 /* triple fault -> shutdown */
186 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
190 vcpu->arch.cr2 = addr;
191 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
194 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
196 vcpu->arch.nmi_pending = 1;
198 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
200 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
202 WARN_ON(vcpu->arch.exception.pending);
203 vcpu->arch.exception.pending = true;
204 vcpu->arch.exception.has_error_code = true;
205 vcpu->arch.exception.nr = nr;
206 vcpu->arch.exception.error_code = error_code;
208 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
210 static void __queue_exception(struct kvm_vcpu *vcpu)
212 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
213 vcpu->arch.exception.has_error_code,
214 vcpu->arch.exception.error_code);
218 * Load the pae pdptrs. Return true is they are all valid.
220 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
222 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
223 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
226 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
228 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
229 offset * sizeof(u64), sizeof(pdpte));
234 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
235 if (is_present_pte(pdpte[i]) &&
236 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
243 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
248 EXPORT_SYMBOL_GPL(load_pdptrs);
250 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
252 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
256 if (is_long_mode(vcpu) || !is_pae(vcpu))
259 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
262 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
268 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
270 if (cr0 & CR0_RESERVED_BITS) {
271 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272 cr0, vcpu->arch.cr0);
273 kvm_inject_gp(vcpu, 0);
277 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
278 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
279 kvm_inject_gp(vcpu, 0);
283 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
284 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
285 "and a clear PE flag\n");
286 kvm_inject_gp(vcpu, 0);
290 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
292 if ((vcpu->arch.shadow_efer & EFER_LME)) {
296 printk(KERN_DEBUG "set_cr0: #GP, start paging "
297 "in long mode while PAE is disabled\n");
298 kvm_inject_gp(vcpu, 0);
301 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
303 printk(KERN_DEBUG "set_cr0: #GP, start paging "
304 "in long mode while CS.L == 1\n");
305 kvm_inject_gp(vcpu, 0);
311 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
312 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
314 kvm_inject_gp(vcpu, 0);
320 kvm_x86_ops->set_cr0(vcpu, cr0);
321 vcpu->arch.cr0 = cr0;
323 kvm_mmu_reset_context(vcpu);
326 EXPORT_SYMBOL_GPL(kvm_set_cr0);
328 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
330 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
331 KVMTRACE_1D(LMSW, vcpu,
332 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
335 EXPORT_SYMBOL_GPL(kvm_lmsw);
337 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
339 unsigned long old_cr4 = vcpu->arch.cr4;
340 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
342 if (cr4 & CR4_RESERVED_BITS) {
343 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
344 kvm_inject_gp(vcpu, 0);
348 if (is_long_mode(vcpu)) {
349 if (!(cr4 & X86_CR4_PAE)) {
350 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
352 kvm_inject_gp(vcpu, 0);
355 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
356 && ((cr4 ^ old_cr4) & pdptr_bits)
357 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
358 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
359 kvm_inject_gp(vcpu, 0);
363 if (cr4 & X86_CR4_VMXE) {
364 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
365 kvm_inject_gp(vcpu, 0);
368 kvm_x86_ops->set_cr4(vcpu, cr4);
369 vcpu->arch.cr4 = cr4;
370 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
371 kvm_mmu_reset_context(vcpu);
373 EXPORT_SYMBOL_GPL(kvm_set_cr4);
375 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
377 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
378 kvm_mmu_sync_roots(vcpu);
379 kvm_mmu_flush_tlb(vcpu);
383 if (is_long_mode(vcpu)) {
384 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
385 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
386 kvm_inject_gp(vcpu, 0);
391 if (cr3 & CR3_PAE_RESERVED_BITS) {
393 "set_cr3: #GP, reserved bits\n");
394 kvm_inject_gp(vcpu, 0);
397 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
398 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
400 kvm_inject_gp(vcpu, 0);
405 * We don't check reserved bits in nonpae mode, because
406 * this isn't enforced, and VMware depends on this.
411 * Does the new cr3 value map to physical memory? (Note, we
412 * catch an invalid cr3 even in real-mode, because it would
413 * cause trouble later on when we turn on paging anyway.)
415 * A real CPU would silently accept an invalid cr3 and would
416 * attempt to use it - with largely undefined (and often hard
417 * to debug) behavior on the guest side.
419 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
420 kvm_inject_gp(vcpu, 0);
422 vcpu->arch.cr3 = cr3;
423 vcpu->arch.mmu.new_cr3(vcpu);
426 EXPORT_SYMBOL_GPL(kvm_set_cr3);
428 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
430 if (cr8 & CR8_RESERVED_BITS) {
431 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
432 kvm_inject_gp(vcpu, 0);
435 if (irqchip_in_kernel(vcpu->kvm))
436 kvm_lapic_set_tpr(vcpu, cr8);
438 vcpu->arch.cr8 = cr8;
440 EXPORT_SYMBOL_GPL(kvm_set_cr8);
442 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
444 if (irqchip_in_kernel(vcpu->kvm))
445 return kvm_lapic_get_cr8(vcpu);
447 return vcpu->arch.cr8;
449 EXPORT_SYMBOL_GPL(kvm_get_cr8);
451 static inline u32 bit(int bitno)
453 return 1 << (bitno & 31);
457 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
458 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
460 * This list is modified at module load time to reflect the
461 * capabilities of the host cpu.
463 static u32 msrs_to_save[] = {
464 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
467 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
469 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
470 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
473 static unsigned num_msrs_to_save;
475 static u32 emulated_msrs[] = {
476 MSR_IA32_MISC_ENABLE,
479 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
481 if (efer & efer_reserved_bits) {
482 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
484 kvm_inject_gp(vcpu, 0);
489 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
490 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
491 kvm_inject_gp(vcpu, 0);
495 if (efer & EFER_FFXSR) {
496 struct kvm_cpuid_entry2 *feat;
498 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
499 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
500 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
501 kvm_inject_gp(vcpu, 0);
506 if (efer & EFER_SVME) {
507 struct kvm_cpuid_entry2 *feat;
509 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
510 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
511 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
512 kvm_inject_gp(vcpu, 0);
517 kvm_x86_ops->set_efer(vcpu, efer);
520 efer |= vcpu->arch.shadow_efer & EFER_LMA;
522 vcpu->arch.shadow_efer = efer;
524 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
525 kvm_mmu_reset_context(vcpu);
528 void kvm_enable_efer_bits(u64 mask)
530 efer_reserved_bits &= ~mask;
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
536 * Writes msr value into into the appropriate "register".
537 * Returns 0 on success, non-0 otherwise.
538 * Assumes vcpu_load() was already called.
540 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
542 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
546 * Adapt set_msr() to msr_io()'s calling convention
548 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
550 return kvm_set_msr(vcpu, index, *data);
553 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
556 struct pvclock_wall_clock wc;
557 struct timespec now, sys, boot;
564 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
567 * The guest calculates current wall clock time by adding
568 * system time (updated by kvm_write_guest_time below) to the
569 * wall clock specified here. guest system time equals host
570 * system time for us, thus we must fill in host boot time here.
572 now = current_kernel_time();
574 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
576 wc.sec = boot.tv_sec;
577 wc.nsec = boot.tv_nsec;
578 wc.version = version;
580 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
583 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
586 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
588 uint32_t quotient, remainder;
590 /* Don't try to replace with do_div(), this one calculates
591 * "(dividend << 32) / divisor" */
593 : "=a" (quotient), "=d" (remainder)
594 : "0" (0), "1" (dividend), "r" (divisor) );
598 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
600 uint64_t nsecs = 1000000000LL;
605 tps64 = tsc_khz * 1000LL;
606 while (tps64 > nsecs*2) {
611 tps32 = (uint32_t)tps64;
612 while (tps32 <= (uint32_t)nsecs) {
617 hv_clock->tsc_shift = shift;
618 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
620 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621 __func__, tsc_khz, hv_clock->tsc_shift,
622 hv_clock->tsc_to_system_mul);
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
627 static void kvm_write_guest_time(struct kvm_vcpu *v)
631 struct kvm_vcpu_arch *vcpu = &v->arch;
633 unsigned long this_tsc_khz;
635 if ((!vcpu->time_page))
638 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
639 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
640 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
641 vcpu->hv_clock_tsc_khz = this_tsc_khz;
643 put_cpu_var(cpu_tsc_khz);
645 /* Keep irq disabled to prevent changes to the clock */
646 local_irq_save(flags);
647 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
648 &vcpu->hv_clock.tsc_timestamp);
650 local_irq_restore(flags);
652 /* With all the info we got, fill in the values */
654 vcpu->hv_clock.system_time = ts.tv_nsec +
655 (NSEC_PER_SEC * (u64)ts.tv_sec);
657 * The interface expects us to write an even number signaling that the
658 * update is finished. Since the guest won't see the intermediate
659 * state, we just increase by 2 at the end.
661 vcpu->hv_clock.version += 2;
663 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
665 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
666 sizeof(vcpu->hv_clock));
668 kunmap_atomic(shared_kaddr, KM_USER0);
670 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
673 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
675 struct kvm_vcpu_arch *vcpu = &v->arch;
677 if (!vcpu->time_page)
679 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
683 static bool msr_mtrr_valid(unsigned msr)
686 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
687 case MSR_MTRRfix64K_00000:
688 case MSR_MTRRfix16K_80000:
689 case MSR_MTRRfix16K_A0000:
690 case MSR_MTRRfix4K_C0000:
691 case MSR_MTRRfix4K_C8000:
692 case MSR_MTRRfix4K_D0000:
693 case MSR_MTRRfix4K_D8000:
694 case MSR_MTRRfix4K_E0000:
695 case MSR_MTRRfix4K_E8000:
696 case MSR_MTRRfix4K_F0000:
697 case MSR_MTRRfix4K_F8000:
698 case MSR_MTRRdefType:
699 case MSR_IA32_CR_PAT:
707 static bool valid_pat_type(unsigned t)
709 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
712 static bool valid_mtrr_type(unsigned t)
714 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
717 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
721 if (!msr_mtrr_valid(msr))
724 if (msr == MSR_IA32_CR_PAT) {
725 for (i = 0; i < 8; i++)
726 if (!valid_pat_type((data >> (i * 8)) & 0xff))
729 } else if (msr == MSR_MTRRdefType) {
732 return valid_mtrr_type(data & 0xff);
733 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
734 for (i = 0; i < 8 ; i++)
735 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
741 return valid_mtrr_type(data & 0xff);
744 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
746 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
748 if (!mtrr_valid(vcpu, msr, data))
751 if (msr == MSR_MTRRdefType) {
752 vcpu->arch.mtrr_state.def_type = data;
753 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
754 } else if (msr == MSR_MTRRfix64K_00000)
756 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
757 p[1 + msr - MSR_MTRRfix16K_80000] = data;
758 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
759 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
760 else if (msr == MSR_IA32_CR_PAT)
761 vcpu->arch.pat = data;
762 else { /* Variable MTRRs */
763 int idx, is_mtrr_mask;
766 idx = (msr - 0x200) / 2;
767 is_mtrr_mask = msr - 0x200 - 2 * idx;
770 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
773 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
777 kvm_mmu_reset_context(vcpu);
781 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
785 set_efer(vcpu, data);
787 case MSR_IA32_MC0_STATUS:
788 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
791 case MSR_IA32_MCG_STATUS:
792 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
795 case MSR_IA32_MCG_CTL:
796 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
799 case MSR_IA32_DEBUGCTLMSR:
801 /* We support the non-activated case already */
803 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
804 /* Values other than LBR and BTF are vendor-specific,
805 thus reserved and should throw a #GP */
808 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
811 case MSR_IA32_UCODE_REV:
812 case MSR_IA32_UCODE_WRITE:
813 case MSR_VM_HSAVE_PA:
815 case 0x200 ... 0x2ff:
816 return set_msr_mtrr(vcpu, msr, data);
817 case MSR_IA32_APICBASE:
818 kvm_set_apic_base(vcpu, data);
820 case MSR_IA32_MISC_ENABLE:
821 vcpu->arch.ia32_misc_enable_msr = data;
823 case MSR_KVM_WALL_CLOCK:
824 vcpu->kvm->arch.wall_clock = data;
825 kvm_write_wall_clock(vcpu->kvm, data);
827 case MSR_KVM_SYSTEM_TIME: {
828 if (vcpu->arch.time_page) {
829 kvm_release_page_dirty(vcpu->arch.time_page);
830 vcpu->arch.time_page = NULL;
833 vcpu->arch.time = data;
835 /* we verify if the enable bit is set... */
839 /* ...but clean it before doing the actual write */
840 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
842 vcpu->arch.time_page =
843 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
845 if (is_error_page(vcpu->arch.time_page)) {
846 kvm_release_page_clean(vcpu->arch.time_page);
847 vcpu->arch.time_page = NULL;
850 kvm_request_guest_time_update(vcpu);
854 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
859 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
863 * Reads an msr value (of 'msr_index') into 'pdata'.
864 * Returns 0 on success, non-0 otherwise.
865 * Assumes vcpu_load() was already called.
867 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
869 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
872 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
874 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
876 if (!msr_mtrr_valid(msr))
879 if (msr == MSR_MTRRdefType)
880 *pdata = vcpu->arch.mtrr_state.def_type +
881 (vcpu->arch.mtrr_state.enabled << 10);
882 else if (msr == MSR_MTRRfix64K_00000)
884 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
885 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
886 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
887 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
888 else if (msr == MSR_IA32_CR_PAT)
889 *pdata = vcpu->arch.pat;
890 else { /* Variable MTRRs */
891 int idx, is_mtrr_mask;
894 idx = (msr - 0x200) / 2;
895 is_mtrr_mask = msr - 0x200 - 2 * idx;
898 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
901 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
908 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
913 case 0xc0010010: /* SYSCFG */
914 case 0xc0010015: /* HWCR */
915 case MSR_IA32_PLATFORM_ID:
916 case MSR_IA32_P5_MC_ADDR:
917 case MSR_IA32_P5_MC_TYPE:
918 case MSR_IA32_MC0_CTL:
919 case MSR_IA32_MCG_STATUS:
920 case MSR_IA32_MCG_CAP:
921 case MSR_IA32_MCG_CTL:
922 case MSR_IA32_MC0_MISC:
923 case MSR_IA32_MC0_MISC+4:
924 case MSR_IA32_MC0_MISC+8:
925 case MSR_IA32_MC0_MISC+12:
926 case MSR_IA32_MC0_MISC+16:
927 case MSR_IA32_MC0_MISC+20:
928 case MSR_IA32_UCODE_REV:
929 case MSR_IA32_EBL_CR_POWERON:
930 case MSR_IA32_DEBUGCTLMSR:
931 case MSR_IA32_LASTBRANCHFROMIP:
932 case MSR_IA32_LASTBRANCHTOIP:
933 case MSR_IA32_LASTINTFROMIP:
934 case MSR_IA32_LASTINTTOIP:
935 case MSR_VM_HSAVE_PA:
936 case MSR_P6_EVNTSEL0:
937 case MSR_P6_EVNTSEL1:
938 case MSR_K7_EVNTSEL0:
942 data = 0x500 | KVM_NR_VAR_MTRR;
944 case 0x200 ... 0x2ff:
945 return get_msr_mtrr(vcpu, msr, pdata);
946 case 0xcd: /* fsb frequency */
949 case MSR_IA32_APICBASE:
950 data = kvm_get_apic_base(vcpu);
952 case MSR_IA32_MISC_ENABLE:
953 data = vcpu->arch.ia32_misc_enable_msr;
955 case MSR_IA32_PERF_STATUS:
956 /* TSC increment by tick */
959 data |= (((uint64_t)4ULL) << 40);
962 data = vcpu->arch.shadow_efer;
964 case MSR_KVM_WALL_CLOCK:
965 data = vcpu->kvm->arch.wall_clock;
967 case MSR_KVM_SYSTEM_TIME:
968 data = vcpu->arch.time;
971 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
977 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
980 * Read or write a bunch of msrs. All parameters are kernel addresses.
982 * @return number of msrs set successfully.
984 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
985 struct kvm_msr_entry *entries,
986 int (*do_msr)(struct kvm_vcpu *vcpu,
987 unsigned index, u64 *data))
993 down_read(&vcpu->kvm->slots_lock);
994 for (i = 0; i < msrs->nmsrs; ++i)
995 if (do_msr(vcpu, entries[i].index, &entries[i].data))
997 up_read(&vcpu->kvm->slots_lock);
1005 * Read or write a bunch of msrs. Parameters are user addresses.
1007 * @return number of msrs set successfully.
1009 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1010 int (*do_msr)(struct kvm_vcpu *vcpu,
1011 unsigned index, u64 *data),
1014 struct kvm_msrs msrs;
1015 struct kvm_msr_entry *entries;
1020 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1024 if (msrs.nmsrs >= MAX_IO_MSRS)
1028 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1029 entries = vmalloc(size);
1034 if (copy_from_user(entries, user_msrs->entries, size))
1037 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1042 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1053 int kvm_dev_ioctl_check_extension(long ext)
1058 case KVM_CAP_IRQCHIP:
1060 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1061 case KVM_CAP_SET_TSS_ADDR:
1062 case KVM_CAP_EXT_CPUID:
1063 case KVM_CAP_CLOCKSOURCE:
1065 case KVM_CAP_NOP_IO_DELAY:
1066 case KVM_CAP_MP_STATE:
1067 case KVM_CAP_SYNC_MMU:
1068 case KVM_CAP_REINJECT_CONTROL:
1069 case KVM_CAP_IRQ_INJECT_STATUS:
1070 case KVM_CAP_ASSIGN_DEV_IRQ:
1073 case KVM_CAP_COALESCED_MMIO:
1074 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1077 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1079 case KVM_CAP_NR_VCPUS:
1082 case KVM_CAP_NR_MEMSLOTS:
1083 r = KVM_MEMORY_SLOTS;
1085 case KVM_CAP_PV_MMU:
1099 long kvm_arch_dev_ioctl(struct file *filp,
1100 unsigned int ioctl, unsigned long arg)
1102 void __user *argp = (void __user *)arg;
1106 case KVM_GET_MSR_INDEX_LIST: {
1107 struct kvm_msr_list __user *user_msr_list = argp;
1108 struct kvm_msr_list msr_list;
1112 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1115 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1116 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1119 if (n < msr_list.nmsrs)
1122 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1123 num_msrs_to_save * sizeof(u32)))
1125 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1127 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1132 case KVM_GET_SUPPORTED_CPUID: {
1133 struct kvm_cpuid2 __user *cpuid_arg = argp;
1134 struct kvm_cpuid2 cpuid;
1137 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1139 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1140 cpuid_arg->entries);
1145 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1157 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1159 kvm_x86_ops->vcpu_load(vcpu, cpu);
1160 kvm_request_guest_time_update(vcpu);
1163 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1165 kvm_x86_ops->vcpu_put(vcpu);
1166 kvm_put_guest_fpu(vcpu);
1169 static int is_efer_nx(void)
1171 unsigned long long efer = 0;
1173 rdmsrl_safe(MSR_EFER, &efer);
1174 return efer & EFER_NX;
1177 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1180 struct kvm_cpuid_entry2 *e, *entry;
1183 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1184 e = &vcpu->arch.cpuid_entries[i];
1185 if (e->function == 0x80000001) {
1190 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1191 entry->edx &= ~(1 << 20);
1192 printk(KERN_INFO "kvm: guest NX capability removed\n");
1196 /* when an old userspace process fills a new kernel module */
1197 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1198 struct kvm_cpuid *cpuid,
1199 struct kvm_cpuid_entry __user *entries)
1202 struct kvm_cpuid_entry *cpuid_entries;
1205 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1208 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1212 if (copy_from_user(cpuid_entries, entries,
1213 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1215 for (i = 0; i < cpuid->nent; i++) {
1216 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1217 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1218 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1219 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1220 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1221 vcpu->arch.cpuid_entries[i].index = 0;
1222 vcpu->arch.cpuid_entries[i].flags = 0;
1223 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1224 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1225 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1227 vcpu->arch.cpuid_nent = cpuid->nent;
1228 cpuid_fix_nx_cap(vcpu);
1232 vfree(cpuid_entries);
1237 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1238 struct kvm_cpuid2 *cpuid,
1239 struct kvm_cpuid_entry2 __user *entries)
1244 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1247 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1248 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1250 vcpu->arch.cpuid_nent = cpuid->nent;
1257 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1258 struct kvm_cpuid2 *cpuid,
1259 struct kvm_cpuid_entry2 __user *entries)
1264 if (cpuid->nent < vcpu->arch.cpuid_nent)
1267 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1268 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1273 cpuid->nent = vcpu->arch.cpuid_nent;
1277 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1280 entry->function = function;
1281 entry->index = index;
1282 cpuid_count(entry->function, entry->index,
1283 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1287 #define F(x) bit(X86_FEATURE_##x)
1289 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1290 u32 index, int *nent, int maxnent)
1292 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1293 #ifdef CONFIG_X86_64
1294 unsigned f_lm = F(LM);
1300 const u32 kvm_supported_word0_x86_features =
1301 F(FPU) | F(VME) | F(DE) | F(PSE) |
1302 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1303 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1304 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1305 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1306 0 /* Reserved, DS, ACPI */ | F(MMX) |
1307 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1308 0 /* HTT, TM, Reserved, PBE */;
1309 /* cpuid 0x80000001.edx */
1310 const u32 kvm_supported_word1_x86_features =
1311 F(FPU) | F(VME) | F(DE) | F(PSE) |
1312 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1313 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1314 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1315 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1316 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1317 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1318 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1320 const u32 kvm_supported_word4_x86_features =
1321 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1322 0 /* DS-CPL, VMX, SMX, EST */ |
1323 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1324 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1325 0 /* Reserved, DCA */ | F(XMM4_1) |
1326 F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
1327 0 /* Reserved, XSAVE, OSXSAVE */;
1328 /* cpuid 0x80000001.ecx */
1329 const u32 kvm_supported_word6_x86_features =
1330 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1331 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1332 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1333 0 /* SKINIT */ | 0 /* WDT */;
1335 /* all calls to cpuid_count() should be made on the same cpu */
1337 do_cpuid_1_ent(entry, function, index);
1342 entry->eax = min(entry->eax, (u32)0xb);
1345 entry->edx &= kvm_supported_word0_x86_features;
1346 entry->ecx &= kvm_supported_word4_x86_features;
1348 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1349 * may return different values. This forces us to get_cpu() before
1350 * issuing the first command, and also to emulate this annoying behavior
1351 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1353 int t, times = entry->eax & 0xff;
1355 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1356 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1357 for (t = 1; t < times && *nent < maxnent; ++t) {
1358 do_cpuid_1_ent(&entry[t], function, 0);
1359 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1364 /* function 4 and 0xb have additional index. */
1368 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1369 /* read more entries until cache_type is zero */
1370 for (i = 1; *nent < maxnent; ++i) {
1371 cache_type = entry[i - 1].eax & 0x1f;
1374 do_cpuid_1_ent(&entry[i], function, i);
1376 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1384 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1385 /* read more entries until level_type is zero */
1386 for (i = 1; *nent < maxnent; ++i) {
1387 level_type = entry[i - 1].ecx & 0xff00;
1390 do_cpuid_1_ent(&entry[i], function, i);
1392 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1398 entry->eax = min(entry->eax, 0x8000001a);
1401 entry->edx &= kvm_supported_word1_x86_features;
1402 entry->ecx &= kvm_supported_word6_x86_features;
1410 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1411 struct kvm_cpuid_entry2 __user *entries)
1413 struct kvm_cpuid_entry2 *cpuid_entries;
1414 int limit, nent = 0, r = -E2BIG;
1417 if (cpuid->nent < 1)
1420 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1424 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1425 limit = cpuid_entries[0].eax;
1426 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1427 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1428 &nent, cpuid->nent);
1430 if (nent >= cpuid->nent)
1433 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1434 limit = cpuid_entries[nent - 1].eax;
1435 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1436 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1437 &nent, cpuid->nent);
1439 if (copy_to_user(entries, cpuid_entries,
1440 nent * sizeof(struct kvm_cpuid_entry2)))
1446 vfree(cpuid_entries);
1451 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1452 struct kvm_lapic_state *s)
1455 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1461 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1462 struct kvm_lapic_state *s)
1465 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1466 kvm_apic_post_state_restore(vcpu);
1472 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1473 struct kvm_interrupt *irq)
1475 if (irq->irq < 0 || irq->irq >= 256)
1477 if (irqchip_in_kernel(vcpu->kvm))
1481 kvm_queue_interrupt(vcpu, irq->irq, false);
1488 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1491 kvm_inject_nmi(vcpu);
1497 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1498 struct kvm_tpr_access_ctl *tac)
1502 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1506 long kvm_arch_vcpu_ioctl(struct file *filp,
1507 unsigned int ioctl, unsigned long arg)
1509 struct kvm_vcpu *vcpu = filp->private_data;
1510 void __user *argp = (void __user *)arg;
1512 struct kvm_lapic_state *lapic = NULL;
1515 case KVM_GET_LAPIC: {
1516 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1521 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1525 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1530 case KVM_SET_LAPIC: {
1531 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1536 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1538 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1544 case KVM_INTERRUPT: {
1545 struct kvm_interrupt irq;
1548 if (copy_from_user(&irq, argp, sizeof irq))
1550 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1557 r = kvm_vcpu_ioctl_nmi(vcpu);
1563 case KVM_SET_CPUID: {
1564 struct kvm_cpuid __user *cpuid_arg = argp;
1565 struct kvm_cpuid cpuid;
1568 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1570 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1575 case KVM_SET_CPUID2: {
1576 struct kvm_cpuid2 __user *cpuid_arg = argp;
1577 struct kvm_cpuid2 cpuid;
1580 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1582 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1583 cpuid_arg->entries);
1588 case KVM_GET_CPUID2: {
1589 struct kvm_cpuid2 __user *cpuid_arg = argp;
1590 struct kvm_cpuid2 cpuid;
1593 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1595 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1596 cpuid_arg->entries);
1600 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1606 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1609 r = msr_io(vcpu, argp, do_set_msr, 0);
1611 case KVM_TPR_ACCESS_REPORTING: {
1612 struct kvm_tpr_access_ctl tac;
1615 if (copy_from_user(&tac, argp, sizeof tac))
1617 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1621 if (copy_to_user(argp, &tac, sizeof tac))
1626 case KVM_SET_VAPIC_ADDR: {
1627 struct kvm_vapic_addr va;
1630 if (!irqchip_in_kernel(vcpu->kvm))
1633 if (copy_from_user(&va, argp, sizeof va))
1636 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1647 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1651 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1653 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1657 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1658 u32 kvm_nr_mmu_pages)
1660 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1663 down_write(&kvm->slots_lock);
1664 spin_lock(&kvm->mmu_lock);
1666 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1667 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1669 spin_unlock(&kvm->mmu_lock);
1670 up_write(&kvm->slots_lock);
1674 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1676 return kvm->arch.n_alloc_mmu_pages;
1679 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1682 struct kvm_mem_alias *alias;
1684 for (i = 0; i < kvm->arch.naliases; ++i) {
1685 alias = &kvm->arch.aliases[i];
1686 if (gfn >= alias->base_gfn
1687 && gfn < alias->base_gfn + alias->npages)
1688 return alias->target_gfn + gfn - alias->base_gfn;
1694 * Set a new alias region. Aliases map a portion of physical memory into
1695 * another portion. This is useful for memory windows, for example the PC
1698 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1699 struct kvm_memory_alias *alias)
1702 struct kvm_mem_alias *p;
1705 /* General sanity checks */
1706 if (alias->memory_size & (PAGE_SIZE - 1))
1708 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1710 if (alias->slot >= KVM_ALIAS_SLOTS)
1712 if (alias->guest_phys_addr + alias->memory_size
1713 < alias->guest_phys_addr)
1715 if (alias->target_phys_addr + alias->memory_size
1716 < alias->target_phys_addr)
1719 down_write(&kvm->slots_lock);
1720 spin_lock(&kvm->mmu_lock);
1722 p = &kvm->arch.aliases[alias->slot];
1723 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1724 p->npages = alias->memory_size >> PAGE_SHIFT;
1725 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1727 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1728 if (kvm->arch.aliases[n - 1].npages)
1730 kvm->arch.naliases = n;
1732 spin_unlock(&kvm->mmu_lock);
1733 kvm_mmu_zap_all(kvm);
1735 up_write(&kvm->slots_lock);
1743 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1748 switch (chip->chip_id) {
1749 case KVM_IRQCHIP_PIC_MASTER:
1750 memcpy(&chip->chip.pic,
1751 &pic_irqchip(kvm)->pics[0],
1752 sizeof(struct kvm_pic_state));
1754 case KVM_IRQCHIP_PIC_SLAVE:
1755 memcpy(&chip->chip.pic,
1756 &pic_irqchip(kvm)->pics[1],
1757 sizeof(struct kvm_pic_state));
1759 case KVM_IRQCHIP_IOAPIC:
1760 memcpy(&chip->chip.ioapic,
1761 ioapic_irqchip(kvm),
1762 sizeof(struct kvm_ioapic_state));
1771 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1776 switch (chip->chip_id) {
1777 case KVM_IRQCHIP_PIC_MASTER:
1778 memcpy(&pic_irqchip(kvm)->pics[0],
1780 sizeof(struct kvm_pic_state));
1782 case KVM_IRQCHIP_PIC_SLAVE:
1783 memcpy(&pic_irqchip(kvm)->pics[1],
1785 sizeof(struct kvm_pic_state));
1787 case KVM_IRQCHIP_IOAPIC:
1788 memcpy(ioapic_irqchip(kvm),
1790 sizeof(struct kvm_ioapic_state));
1796 kvm_pic_update_irq(pic_irqchip(kvm));
1800 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1804 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1808 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1812 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1813 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1817 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1818 struct kvm_reinject_control *control)
1820 if (!kvm->arch.vpit)
1822 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1827 * Get (and clear) the dirty memory log for a memory slot.
1829 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1830 struct kvm_dirty_log *log)
1834 struct kvm_memory_slot *memslot;
1837 down_write(&kvm->slots_lock);
1839 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1843 /* If nothing is dirty, don't bother messing with page tables. */
1845 spin_lock(&kvm->mmu_lock);
1846 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1847 spin_unlock(&kvm->mmu_lock);
1848 kvm_flush_remote_tlbs(kvm);
1849 memslot = &kvm->memslots[log->slot];
1850 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1851 memset(memslot->dirty_bitmap, 0, n);
1855 up_write(&kvm->slots_lock);
1859 long kvm_arch_vm_ioctl(struct file *filp,
1860 unsigned int ioctl, unsigned long arg)
1862 struct kvm *kvm = filp->private_data;
1863 void __user *argp = (void __user *)arg;
1866 * This union makes it completely explicit to gcc-3.x
1867 * that these two variables' stack usage should be
1868 * combined, not added together.
1871 struct kvm_pit_state ps;
1872 struct kvm_memory_alias alias;
1876 case KVM_SET_TSS_ADDR:
1877 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1881 case KVM_SET_MEMORY_REGION: {
1882 struct kvm_memory_region kvm_mem;
1883 struct kvm_userspace_memory_region kvm_userspace_mem;
1886 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1888 kvm_userspace_mem.slot = kvm_mem.slot;
1889 kvm_userspace_mem.flags = kvm_mem.flags;
1890 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1891 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1892 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1897 case KVM_SET_NR_MMU_PAGES:
1898 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1902 case KVM_GET_NR_MMU_PAGES:
1903 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1905 case KVM_SET_MEMORY_ALIAS:
1907 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1909 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1913 case KVM_CREATE_IRQCHIP:
1915 kvm->arch.vpic = kvm_create_pic(kvm);
1916 if (kvm->arch.vpic) {
1917 r = kvm_ioapic_init(kvm);
1919 kfree(kvm->arch.vpic);
1920 kvm->arch.vpic = NULL;
1925 r = kvm_setup_default_irq_routing(kvm);
1927 kfree(kvm->arch.vpic);
1928 kfree(kvm->arch.vioapic);
1932 case KVM_CREATE_PIT:
1933 mutex_lock(&kvm->lock);
1936 goto create_pit_unlock;
1938 kvm->arch.vpit = kvm_create_pit(kvm);
1942 mutex_unlock(&kvm->lock);
1944 case KVM_IRQ_LINE_STATUS:
1945 case KVM_IRQ_LINE: {
1946 struct kvm_irq_level irq_event;
1949 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1951 if (irqchip_in_kernel(kvm)) {
1953 mutex_lock(&kvm->lock);
1954 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1955 irq_event.irq, irq_event.level);
1956 mutex_unlock(&kvm->lock);
1957 if (ioctl == KVM_IRQ_LINE_STATUS) {
1958 irq_event.status = status;
1959 if (copy_to_user(argp, &irq_event,
1967 case KVM_GET_IRQCHIP: {
1968 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1969 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1975 if (copy_from_user(chip, argp, sizeof *chip))
1976 goto get_irqchip_out;
1978 if (!irqchip_in_kernel(kvm))
1979 goto get_irqchip_out;
1980 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1982 goto get_irqchip_out;
1984 if (copy_to_user(argp, chip, sizeof *chip))
1985 goto get_irqchip_out;
1993 case KVM_SET_IRQCHIP: {
1994 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1995 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2001 if (copy_from_user(chip, argp, sizeof *chip))
2002 goto set_irqchip_out;
2004 if (!irqchip_in_kernel(kvm))
2005 goto set_irqchip_out;
2006 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2008 goto set_irqchip_out;
2018 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2021 if (!kvm->arch.vpit)
2023 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2027 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2034 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2037 if (!kvm->arch.vpit)
2039 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2045 case KVM_REINJECT_CONTROL: {
2046 struct kvm_reinject_control control;
2048 if (copy_from_user(&control, argp, sizeof(control)))
2050 r = kvm_vm_ioctl_reinject(kvm, &control);
2063 static void kvm_init_msr_list(void)
2068 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2069 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2072 msrs_to_save[j] = msrs_to_save[i];
2075 num_msrs_to_save = j;
2079 * Only apic need an MMIO device hook, so shortcut now..
2081 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2082 gpa_t addr, int len,
2085 struct kvm_io_device *dev;
2087 if (vcpu->arch.apic) {
2088 dev = &vcpu->arch.apic->dev;
2089 if (dev->in_range(dev, addr, len, is_write))
2096 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2097 gpa_t addr, int len,
2100 struct kvm_io_device *dev;
2102 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2104 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2109 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2110 struct kvm_vcpu *vcpu)
2113 int r = X86EMUL_CONTINUE;
2116 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2117 unsigned offset = addr & (PAGE_SIZE-1);
2118 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2121 if (gpa == UNMAPPED_GVA) {
2122 r = X86EMUL_PROPAGATE_FAULT;
2125 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2127 r = X86EMUL_UNHANDLEABLE;
2139 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2140 struct kvm_vcpu *vcpu)
2143 int r = X86EMUL_CONTINUE;
2146 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2147 unsigned offset = addr & (PAGE_SIZE-1);
2148 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2151 if (gpa == UNMAPPED_GVA) {
2152 r = X86EMUL_PROPAGATE_FAULT;
2155 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2157 r = X86EMUL_UNHANDLEABLE;
2170 static int emulator_read_emulated(unsigned long addr,
2173 struct kvm_vcpu *vcpu)
2175 struct kvm_io_device *mmio_dev;
2178 if (vcpu->mmio_read_completed) {
2179 memcpy(val, vcpu->mmio_data, bytes);
2180 vcpu->mmio_read_completed = 0;
2181 return X86EMUL_CONTINUE;
2184 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2186 /* For APIC access vmexit */
2187 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2190 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2191 == X86EMUL_CONTINUE)
2192 return X86EMUL_CONTINUE;
2193 if (gpa == UNMAPPED_GVA)
2194 return X86EMUL_PROPAGATE_FAULT;
2198 * Is this MMIO handled locally?
2200 mutex_lock(&vcpu->kvm->lock);
2201 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2203 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2204 mutex_unlock(&vcpu->kvm->lock);
2205 return X86EMUL_CONTINUE;
2207 mutex_unlock(&vcpu->kvm->lock);
2209 vcpu->mmio_needed = 1;
2210 vcpu->mmio_phys_addr = gpa;
2211 vcpu->mmio_size = bytes;
2212 vcpu->mmio_is_write = 0;
2214 return X86EMUL_UNHANDLEABLE;
2217 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2218 const void *val, int bytes)
2222 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2225 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2229 static int emulator_write_emulated_onepage(unsigned long addr,
2232 struct kvm_vcpu *vcpu)
2234 struct kvm_io_device *mmio_dev;
2237 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2239 if (gpa == UNMAPPED_GVA) {
2240 kvm_inject_page_fault(vcpu, addr, 2);
2241 return X86EMUL_PROPAGATE_FAULT;
2244 /* For APIC access vmexit */
2245 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2248 if (emulator_write_phys(vcpu, gpa, val, bytes))
2249 return X86EMUL_CONTINUE;
2253 * Is this MMIO handled locally?
2255 mutex_lock(&vcpu->kvm->lock);
2256 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2258 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2259 mutex_unlock(&vcpu->kvm->lock);
2260 return X86EMUL_CONTINUE;
2262 mutex_unlock(&vcpu->kvm->lock);
2264 vcpu->mmio_needed = 1;
2265 vcpu->mmio_phys_addr = gpa;
2266 vcpu->mmio_size = bytes;
2267 vcpu->mmio_is_write = 1;
2268 memcpy(vcpu->mmio_data, val, bytes);
2270 return X86EMUL_CONTINUE;
2273 int emulator_write_emulated(unsigned long addr,
2276 struct kvm_vcpu *vcpu)
2278 /* Crossing a page boundary? */
2279 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2282 now = -addr & ~PAGE_MASK;
2283 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2284 if (rc != X86EMUL_CONTINUE)
2290 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2292 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2294 static int emulator_cmpxchg_emulated(unsigned long addr,
2298 struct kvm_vcpu *vcpu)
2300 static int reported;
2304 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2306 #ifndef CONFIG_X86_64
2307 /* guests cmpxchg8b have to be emulated atomically */
2314 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2316 if (gpa == UNMAPPED_GVA ||
2317 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2320 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2325 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2327 kaddr = kmap_atomic(page, KM_USER0);
2328 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2329 kunmap_atomic(kaddr, KM_USER0);
2330 kvm_release_page_dirty(page);
2335 return emulator_write_emulated(addr, new, bytes, vcpu);
2338 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2340 return kvm_x86_ops->get_segment_base(vcpu, seg);
2343 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2345 kvm_mmu_invlpg(vcpu, address);
2346 return X86EMUL_CONTINUE;
2349 int emulate_clts(struct kvm_vcpu *vcpu)
2351 KVMTRACE_0D(CLTS, vcpu, handler);
2352 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2353 return X86EMUL_CONTINUE;
2356 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2358 struct kvm_vcpu *vcpu = ctxt->vcpu;
2362 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2363 return X86EMUL_CONTINUE;
2365 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2366 return X86EMUL_UNHANDLEABLE;
2370 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2372 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2375 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2377 /* FIXME: better handling */
2378 return X86EMUL_UNHANDLEABLE;
2380 return X86EMUL_CONTINUE;
2383 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2386 unsigned long rip = kvm_rip_read(vcpu);
2387 unsigned long rip_linear;
2389 if (!printk_ratelimit())
2392 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2394 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2396 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2397 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2399 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2401 static struct x86_emulate_ops emulate_ops = {
2402 .read_std = kvm_read_guest_virt,
2403 .read_emulated = emulator_read_emulated,
2404 .write_emulated = emulator_write_emulated,
2405 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2408 static void cache_all_regs(struct kvm_vcpu *vcpu)
2410 kvm_register_read(vcpu, VCPU_REGS_RAX);
2411 kvm_register_read(vcpu, VCPU_REGS_RSP);
2412 kvm_register_read(vcpu, VCPU_REGS_RIP);
2413 vcpu->arch.regs_dirty = ~0;
2416 int emulate_instruction(struct kvm_vcpu *vcpu,
2417 struct kvm_run *run,
2423 struct decode_cache *c;
2425 kvm_clear_exception_queue(vcpu);
2426 vcpu->arch.mmio_fault_cr2 = cr2;
2428 * TODO: fix x86_emulate.c to use guest_read/write_register
2429 * instead of direct ->regs accesses, can save hundred cycles
2430 * on Intel for instructions that don't read/change RSP, for
2433 cache_all_regs(vcpu);
2435 vcpu->mmio_is_write = 0;
2436 vcpu->arch.pio.string = 0;
2438 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2440 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2442 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2443 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2444 vcpu->arch.emulate_ctxt.mode =
2445 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2446 ? X86EMUL_MODE_REAL : cs_l
2447 ? X86EMUL_MODE_PROT64 : cs_db
2448 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2450 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2452 /* Reject the instructions other than VMCALL/VMMCALL when
2453 * try to emulate invalid opcode */
2454 c = &vcpu->arch.emulate_ctxt.decode;
2455 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2456 (!(c->twobyte && c->b == 0x01 &&
2457 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2458 c->modrm_mod == 3 && c->modrm_rm == 1)))
2459 return EMULATE_FAIL;
2461 ++vcpu->stat.insn_emulation;
2463 ++vcpu->stat.insn_emulation_fail;
2464 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2465 return EMULATE_DONE;
2466 return EMULATE_FAIL;
2470 if (emulation_type & EMULTYPE_SKIP) {
2471 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2472 return EMULATE_DONE;
2475 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2476 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2479 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2481 if (vcpu->arch.pio.string)
2482 return EMULATE_DO_MMIO;
2484 if ((r || vcpu->mmio_is_write) && run) {
2485 run->exit_reason = KVM_EXIT_MMIO;
2486 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2487 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2488 run->mmio.len = vcpu->mmio_size;
2489 run->mmio.is_write = vcpu->mmio_is_write;
2493 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2494 return EMULATE_DONE;
2495 if (!vcpu->mmio_needed) {
2496 kvm_report_emulation_failure(vcpu, "mmio");
2497 return EMULATE_FAIL;
2499 return EMULATE_DO_MMIO;
2502 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2504 if (vcpu->mmio_is_write) {
2505 vcpu->mmio_needed = 0;
2506 return EMULATE_DO_MMIO;
2509 return EMULATE_DONE;
2511 EXPORT_SYMBOL_GPL(emulate_instruction);
2513 static int pio_copy_data(struct kvm_vcpu *vcpu)
2515 void *p = vcpu->arch.pio_data;
2516 gva_t q = vcpu->arch.pio.guest_gva;
2520 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2521 if (vcpu->arch.pio.in)
2522 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2524 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2528 int complete_pio(struct kvm_vcpu *vcpu)
2530 struct kvm_pio_request *io = &vcpu->arch.pio;
2537 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2538 memcpy(&val, vcpu->arch.pio_data, io->size);
2539 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2543 r = pio_copy_data(vcpu);
2550 delta *= io->cur_count;
2552 * The size of the register should really depend on
2553 * current address size.
2555 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2557 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2563 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2565 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2567 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2569 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2573 io->count -= io->cur_count;
2579 static void kernel_pio(struct kvm_io_device *pio_dev,
2580 struct kvm_vcpu *vcpu,
2583 /* TODO: String I/O for in kernel device */
2585 mutex_lock(&vcpu->kvm->lock);
2586 if (vcpu->arch.pio.in)
2587 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2588 vcpu->arch.pio.size,
2591 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2592 vcpu->arch.pio.size,
2594 mutex_unlock(&vcpu->kvm->lock);
2597 static void pio_string_write(struct kvm_io_device *pio_dev,
2598 struct kvm_vcpu *vcpu)
2600 struct kvm_pio_request *io = &vcpu->arch.pio;
2601 void *pd = vcpu->arch.pio_data;
2604 mutex_lock(&vcpu->kvm->lock);
2605 for (i = 0; i < io->cur_count; i++) {
2606 kvm_iodevice_write(pio_dev, io->port,
2611 mutex_unlock(&vcpu->kvm->lock);
2614 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2615 gpa_t addr, int len,
2618 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2621 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2622 int size, unsigned port)
2624 struct kvm_io_device *pio_dev;
2627 vcpu->run->exit_reason = KVM_EXIT_IO;
2628 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2629 vcpu->run->io.size = vcpu->arch.pio.size = size;
2630 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2631 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2632 vcpu->run->io.port = vcpu->arch.pio.port = port;
2633 vcpu->arch.pio.in = in;
2634 vcpu->arch.pio.string = 0;
2635 vcpu->arch.pio.down = 0;
2636 vcpu->arch.pio.rep = 0;
2638 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2639 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2642 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2645 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2646 memcpy(vcpu->arch.pio_data, &val, 4);
2648 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2650 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2656 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2658 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2659 int size, unsigned long count, int down,
2660 gva_t address, int rep, unsigned port)
2662 unsigned now, in_page;
2664 struct kvm_io_device *pio_dev;
2666 vcpu->run->exit_reason = KVM_EXIT_IO;
2667 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2668 vcpu->run->io.size = vcpu->arch.pio.size = size;
2669 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2670 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2671 vcpu->run->io.port = vcpu->arch.pio.port = port;
2672 vcpu->arch.pio.in = in;
2673 vcpu->arch.pio.string = 1;
2674 vcpu->arch.pio.down = down;
2675 vcpu->arch.pio.rep = rep;
2677 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2678 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2681 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2685 kvm_x86_ops->skip_emulated_instruction(vcpu);
2690 in_page = PAGE_SIZE - offset_in_page(address);
2692 in_page = offset_in_page(address) + size;
2693 now = min(count, (unsigned long)in_page / size);
2698 * String I/O in reverse. Yuck. Kill the guest, fix later.
2700 pr_unimpl(vcpu, "guest string pio down\n");
2701 kvm_inject_gp(vcpu, 0);
2704 vcpu->run->io.count = now;
2705 vcpu->arch.pio.cur_count = now;
2707 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2708 kvm_x86_ops->skip_emulated_instruction(vcpu);
2710 vcpu->arch.pio.guest_gva = address;
2712 pio_dev = vcpu_find_pio_dev(vcpu, port,
2713 vcpu->arch.pio.cur_count,
2714 !vcpu->arch.pio.in);
2715 if (!vcpu->arch.pio.in) {
2716 /* string PIO write */
2717 ret = pio_copy_data(vcpu);
2718 if (ret == X86EMUL_PROPAGATE_FAULT) {
2719 kvm_inject_gp(vcpu, 0);
2722 if (ret == 0 && pio_dev) {
2723 pio_string_write(pio_dev, vcpu);
2725 if (vcpu->arch.pio.count == 0)
2729 pr_unimpl(vcpu, "no string pio read support yet, "
2730 "port %x size %d count %ld\n",
2735 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2737 static void bounce_off(void *info)
2742 static unsigned int ref_freq;
2743 static unsigned long tsc_khz_ref;
2745 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2748 struct cpufreq_freqs *freq = data;
2750 struct kvm_vcpu *vcpu;
2751 int i, send_ipi = 0;
2754 ref_freq = freq->old;
2756 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2758 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2760 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2762 spin_lock(&kvm_lock);
2763 list_for_each_entry(kvm, &vm_list, vm_list) {
2764 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2765 vcpu = kvm->vcpus[i];
2768 if (vcpu->cpu != freq->cpu)
2770 if (!kvm_request_guest_time_update(vcpu))
2772 if (vcpu->cpu != smp_processor_id())
2776 spin_unlock(&kvm_lock);
2778 if (freq->old < freq->new && send_ipi) {
2780 * We upscale the frequency. Must make the guest
2781 * doesn't see old kvmclock values while running with
2782 * the new frequency, otherwise we risk the guest sees
2783 * time go backwards.
2785 * In case we update the frequency for another cpu
2786 * (which might be in guest context) send an interrupt
2787 * to kick the cpu out of guest context. Next time
2788 * guest context is entered kvmclock will be updated,
2789 * so the guest will not see stale values.
2791 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2796 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2797 .notifier_call = kvmclock_cpufreq_notifier
2800 int kvm_arch_init(void *opaque)
2803 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2806 printk(KERN_ERR "kvm: already loaded the other module\n");
2811 if (!ops->cpu_has_kvm_support()) {
2812 printk(KERN_ERR "kvm: no hardware support\n");
2816 if (ops->disabled_by_bios()) {
2817 printk(KERN_ERR "kvm: disabled by bios\n");
2822 r = kvm_mmu_module_init();
2826 kvm_init_msr_list();
2829 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2830 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2831 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2832 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2834 for_each_possible_cpu(cpu)
2835 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2836 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2837 tsc_khz_ref = tsc_khz;
2838 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2839 CPUFREQ_TRANSITION_NOTIFIER);
2848 void kvm_arch_exit(void)
2850 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2851 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2852 CPUFREQ_TRANSITION_NOTIFIER);
2854 kvm_mmu_module_exit();
2857 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2859 ++vcpu->stat.halt_exits;
2860 KVMTRACE_0D(HLT, vcpu, handler);
2861 if (irqchip_in_kernel(vcpu->kvm)) {
2862 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2865 vcpu->run->exit_reason = KVM_EXIT_HLT;
2869 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2871 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2874 if (is_long_mode(vcpu))
2877 return a0 | ((gpa_t)a1 << 32);
2880 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2882 unsigned long nr, a0, a1, a2, a3, ret;
2885 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2886 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2887 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2888 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2889 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2891 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2893 if (!is_long_mode(vcpu)) {
2902 case KVM_HC_VAPIC_POLL_IRQ:
2906 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2912 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2913 ++vcpu->stat.hypercalls;
2916 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2918 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2920 char instruction[3];
2922 unsigned long rip = kvm_rip_read(vcpu);
2926 * Blow out the MMU to ensure that no other VCPU has an active mapping
2927 * to ensure that the updated hypercall appears atomically across all
2930 kvm_mmu_zap_all(vcpu->kvm);
2932 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2933 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2934 != X86EMUL_CONTINUE)
2940 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2942 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2945 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2947 struct descriptor_table dt = { limit, base };
2949 kvm_x86_ops->set_gdt(vcpu, &dt);
2952 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2954 struct descriptor_table dt = { limit, base };
2956 kvm_x86_ops->set_idt(vcpu, &dt);
2959 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2960 unsigned long *rflags)
2962 kvm_lmsw(vcpu, msw);
2963 *rflags = kvm_x86_ops->get_rflags(vcpu);
2966 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2968 unsigned long value;
2970 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2973 value = vcpu->arch.cr0;
2976 value = vcpu->arch.cr2;
2979 value = vcpu->arch.cr3;
2982 value = vcpu->arch.cr4;
2985 value = kvm_get_cr8(vcpu);
2988 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2991 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2992 (u32)((u64)value >> 32), handler);
2997 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2998 unsigned long *rflags)
3000 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
3001 (u32)((u64)val >> 32), handler);
3005 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3006 *rflags = kvm_x86_ops->get_rflags(vcpu);
3009 vcpu->arch.cr2 = val;
3012 kvm_set_cr3(vcpu, val);
3015 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3018 kvm_set_cr8(vcpu, val & 0xfUL);
3021 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3025 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3027 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3028 int j, nent = vcpu->arch.cpuid_nent;
3030 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3031 /* when no next entry is found, the current entry[i] is reselected */
3032 for (j = i + 1; ; j = (j + 1) % nent) {
3033 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3034 if (ej->function == e->function) {
3035 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3039 return 0; /* silence gcc, even though control never reaches here */
3042 /* find an entry with matching function, matching index (if needed), and that
3043 * should be read next (if it's stateful) */
3044 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3045 u32 function, u32 index)
3047 if (e->function != function)
3049 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3051 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3052 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3057 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3058 u32 function, u32 index)
3061 struct kvm_cpuid_entry2 *best = NULL;
3063 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3064 struct kvm_cpuid_entry2 *e;
3066 e = &vcpu->arch.cpuid_entries[i];
3067 if (is_matching_cpuid_entry(e, function, index)) {
3068 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3069 move_to_next_stateful_cpuid_entry(vcpu, i);
3074 * Both basic or both extended?
3076 if (((e->function ^ function) & 0x80000000) == 0)
3077 if (!best || e->function > best->function)
3083 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3085 struct kvm_cpuid_entry2 *best;
3087 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3089 return best->eax & 0xff;
3093 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3095 u32 function, index;
3096 struct kvm_cpuid_entry2 *best;
3098 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3099 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3100 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3101 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3102 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3103 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3104 best = kvm_find_cpuid_entry(vcpu, function, index);
3106 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3107 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3108 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3109 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3111 kvm_x86_ops->skip_emulated_instruction(vcpu);
3112 KVMTRACE_5D(CPUID, vcpu, function,
3113 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3114 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3115 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3116 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3118 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3121 * Check if userspace requested an interrupt window, and that the
3122 * interrupt window is open.
3124 * No need to exit to userspace if we already have an interrupt queued.
3126 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3127 struct kvm_run *kvm_run)
3129 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3130 kvm_run->request_interrupt_window &&
3131 kvm_arch_interrupt_allowed(vcpu));
3134 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3135 struct kvm_run *kvm_run)
3137 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3138 kvm_run->cr8 = kvm_get_cr8(vcpu);
3139 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3140 if (irqchip_in_kernel(vcpu->kvm))
3141 kvm_run->ready_for_interrupt_injection = 1;
3143 kvm_run->ready_for_interrupt_injection =
3144 kvm_arch_interrupt_allowed(vcpu) &&
3145 !kvm_cpu_has_interrupt(vcpu) &&
3146 !kvm_event_needs_reinjection(vcpu);
3149 static void vapic_enter(struct kvm_vcpu *vcpu)
3151 struct kvm_lapic *apic = vcpu->arch.apic;
3154 if (!apic || !apic->vapic_addr)
3157 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3159 vcpu->arch.apic->vapic_page = page;
3162 static void vapic_exit(struct kvm_vcpu *vcpu)
3164 struct kvm_lapic *apic = vcpu->arch.apic;
3166 if (!apic || !apic->vapic_addr)
3169 down_read(&vcpu->kvm->slots_lock);
3170 kvm_release_page_dirty(apic->vapic_page);
3171 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3172 up_read(&vcpu->kvm->slots_lock);
3175 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3179 if (!kvm_x86_ops->update_cr8_intercept)
3182 if (!vcpu->arch.apic->vapic_addr)
3183 max_irr = kvm_lapic_find_highest_irr(vcpu);
3190 tpr = kvm_lapic_get_cr8(vcpu);
3192 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3195 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3197 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3198 kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
3200 /* try to reinject previous events if any */
3201 if (vcpu->arch.nmi_injected) {
3202 kvm_x86_ops->set_nmi(vcpu);
3206 if (vcpu->arch.interrupt.pending) {
3207 kvm_x86_ops->set_irq(vcpu);
3211 /* try to inject new event if pending */
3212 if (vcpu->arch.nmi_pending) {
3213 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3214 vcpu->arch.nmi_pending = false;
3215 vcpu->arch.nmi_injected = true;
3216 kvm_x86_ops->set_nmi(vcpu);
3218 } else if (kvm_cpu_has_interrupt(vcpu)) {
3219 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3220 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3222 kvm_x86_ops->set_irq(vcpu);
3227 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3230 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3231 kvm_run->request_interrupt_window;
3234 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3235 kvm_mmu_unload(vcpu);
3237 r = kvm_mmu_reload(vcpu);
3241 if (vcpu->requests) {
3242 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3243 __kvm_migrate_timers(vcpu);
3244 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3245 kvm_write_guest_time(vcpu);
3246 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3247 kvm_mmu_sync_roots(vcpu);
3248 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3249 kvm_x86_ops->tlb_flush(vcpu);
3250 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3252 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3256 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3257 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3265 kvm_x86_ops->prepare_guest_switch(vcpu);
3266 kvm_load_guest_fpu(vcpu);
3268 local_irq_disable();
3270 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3271 smp_mb__after_clear_bit();
3273 if (vcpu->requests || need_resched() || signal_pending(current)) {
3280 if (vcpu->arch.exception.pending)
3281 __queue_exception(vcpu);
3283 inject_pending_irq(vcpu, kvm_run);
3285 /* enable NMI/IRQ window open exits if needed */
3286 if (vcpu->arch.nmi_pending)
3287 kvm_x86_ops->enable_nmi_window(vcpu);
3288 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3289 kvm_x86_ops->enable_irq_window(vcpu);
3291 if (kvm_lapic_enabled(vcpu)) {
3292 update_cr8_intercept(vcpu);
3293 kvm_lapic_sync_to_vapic(vcpu);
3296 up_read(&vcpu->kvm->slots_lock);
3300 get_debugreg(vcpu->arch.host_dr6, 6);
3301 get_debugreg(vcpu->arch.host_dr7, 7);
3302 if (unlikely(vcpu->arch.switch_db_regs)) {
3303 get_debugreg(vcpu->arch.host_db[0], 0);
3304 get_debugreg(vcpu->arch.host_db[1], 1);
3305 get_debugreg(vcpu->arch.host_db[2], 2);
3306 get_debugreg(vcpu->arch.host_db[3], 3);
3309 set_debugreg(vcpu->arch.eff_db[0], 0);
3310 set_debugreg(vcpu->arch.eff_db[1], 1);
3311 set_debugreg(vcpu->arch.eff_db[2], 2);
3312 set_debugreg(vcpu->arch.eff_db[3], 3);
3315 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3316 kvm_x86_ops->run(vcpu, kvm_run);
3318 if (unlikely(vcpu->arch.switch_db_regs)) {
3320 set_debugreg(vcpu->arch.host_db[0], 0);
3321 set_debugreg(vcpu->arch.host_db[1], 1);
3322 set_debugreg(vcpu->arch.host_db[2], 2);
3323 set_debugreg(vcpu->arch.host_db[3], 3);
3325 set_debugreg(vcpu->arch.host_dr6, 6);
3326 set_debugreg(vcpu->arch.host_dr7, 7);
3328 set_bit(KVM_REQ_KICK, &vcpu->requests);
3334 * We must have an instruction between local_irq_enable() and
3335 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3336 * the interrupt shadow. The stat.exits increment will do nicely.
3337 * But we need to prevent reordering, hence this barrier():
3345 down_read(&vcpu->kvm->slots_lock);
3348 * Profile KVM exit RIPs:
3350 if (unlikely(prof_on == KVM_PROFILING)) {
3351 unsigned long rip = kvm_rip_read(vcpu);
3352 profile_hit(KVM_PROFILING, (void *)rip);
3356 kvm_lapic_sync_from_vapic(vcpu);
3358 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3364 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3368 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3369 pr_debug("vcpu %d received sipi with vector # %x\n",
3370 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3371 kvm_lapic_reset(vcpu);
3372 r = kvm_arch_vcpu_reset(vcpu);
3375 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3378 down_read(&vcpu->kvm->slots_lock);
3383 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3384 r = vcpu_enter_guest(vcpu, kvm_run);
3386 up_read(&vcpu->kvm->slots_lock);
3387 kvm_vcpu_block(vcpu);
3388 down_read(&vcpu->kvm->slots_lock);
3389 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3391 switch(vcpu->arch.mp_state) {
3392 case KVM_MP_STATE_HALTED:
3393 vcpu->arch.mp_state =
3394 KVM_MP_STATE_RUNNABLE;
3395 case KVM_MP_STATE_RUNNABLE:
3397 case KVM_MP_STATE_SIPI_RECEIVED:
3408 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3409 if (kvm_cpu_has_pending_timer(vcpu))
3410 kvm_inject_pending_timer_irqs(vcpu);
3412 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3414 kvm_run->exit_reason = KVM_EXIT_INTR;
3415 ++vcpu->stat.request_irq_exits;
3417 if (signal_pending(current)) {
3419 kvm_run->exit_reason = KVM_EXIT_INTR;
3420 ++vcpu->stat.signal_exits;
3422 if (need_resched()) {
3423 up_read(&vcpu->kvm->slots_lock);
3425 down_read(&vcpu->kvm->slots_lock);
3429 up_read(&vcpu->kvm->slots_lock);
3430 post_kvm_run_save(vcpu, kvm_run);
3437 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3444 if (vcpu->sigset_active)
3445 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3447 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3448 kvm_vcpu_block(vcpu);
3449 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3454 /* re-sync apic's tpr */
3455 if (!irqchip_in_kernel(vcpu->kvm))
3456 kvm_set_cr8(vcpu, kvm_run->cr8);
3458 if (vcpu->arch.pio.cur_count) {
3459 r = complete_pio(vcpu);
3463 #if CONFIG_HAS_IOMEM
3464 if (vcpu->mmio_needed) {
3465 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3466 vcpu->mmio_read_completed = 1;
3467 vcpu->mmio_needed = 0;
3469 down_read(&vcpu->kvm->slots_lock);
3470 r = emulate_instruction(vcpu, kvm_run,
3471 vcpu->arch.mmio_fault_cr2, 0,
3472 EMULTYPE_NO_DECODE);
3473 up_read(&vcpu->kvm->slots_lock);
3474 if (r == EMULATE_DO_MMIO) {
3476 * Read-modify-write. Back to userspace.
3483 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3484 kvm_register_write(vcpu, VCPU_REGS_RAX,
3485 kvm_run->hypercall.ret);
3487 r = __vcpu_run(vcpu, kvm_run);
3490 if (vcpu->sigset_active)
3491 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3497 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3501 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3502 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3503 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3504 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3505 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3506 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3507 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3508 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3509 #ifdef CONFIG_X86_64
3510 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3511 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3512 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3513 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3514 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3515 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3516 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3517 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3520 regs->rip = kvm_rip_read(vcpu);
3521 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3524 * Don't leak debug flags in case they were set for guest debugging
3526 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3527 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3534 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3538 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3539 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3540 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3541 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3542 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3543 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3544 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3545 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3546 #ifdef CONFIG_X86_64
3547 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3548 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3549 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3550 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3551 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3552 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3553 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3554 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3558 kvm_rip_write(vcpu, regs->rip);
3559 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3562 vcpu->arch.exception.pending = false;
3569 void kvm_get_segment(struct kvm_vcpu *vcpu,
3570 struct kvm_segment *var, int seg)
3572 kvm_x86_ops->get_segment(vcpu, var, seg);
3575 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3577 struct kvm_segment cs;
3579 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3583 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3585 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3586 struct kvm_sregs *sregs)
3588 struct descriptor_table dt;
3592 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3593 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3594 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3595 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3596 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3597 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3599 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3600 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3602 kvm_x86_ops->get_idt(vcpu, &dt);
3603 sregs->idt.limit = dt.limit;
3604 sregs->idt.base = dt.base;
3605 kvm_x86_ops->get_gdt(vcpu, &dt);
3606 sregs->gdt.limit = dt.limit;
3607 sregs->gdt.base = dt.base;
3609 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3610 sregs->cr0 = vcpu->arch.cr0;
3611 sregs->cr2 = vcpu->arch.cr2;
3612 sregs->cr3 = vcpu->arch.cr3;
3613 sregs->cr4 = vcpu->arch.cr4;
3614 sregs->cr8 = kvm_get_cr8(vcpu);
3615 sregs->efer = vcpu->arch.shadow_efer;
3616 sregs->apic_base = kvm_get_apic_base(vcpu);
3618 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3620 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3621 set_bit(vcpu->arch.interrupt.nr,
3622 (unsigned long *)sregs->interrupt_bitmap);
3629 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3630 struct kvm_mp_state *mp_state)
3633 mp_state->mp_state = vcpu->arch.mp_state;
3638 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3639 struct kvm_mp_state *mp_state)
3642 vcpu->arch.mp_state = mp_state->mp_state;
3647 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3648 struct kvm_segment *var, int seg)
3650 kvm_x86_ops->set_segment(vcpu, var, seg);
3653 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3654 struct kvm_segment *kvm_desct)
3656 kvm_desct->base = seg_desc->base0;
3657 kvm_desct->base |= seg_desc->base1 << 16;
3658 kvm_desct->base |= seg_desc->base2 << 24;
3659 kvm_desct->limit = seg_desc->limit0;
3660 kvm_desct->limit |= seg_desc->limit << 16;
3662 kvm_desct->limit <<= 12;
3663 kvm_desct->limit |= 0xfff;
3665 kvm_desct->selector = selector;
3666 kvm_desct->type = seg_desc->type;
3667 kvm_desct->present = seg_desc->p;
3668 kvm_desct->dpl = seg_desc->dpl;
3669 kvm_desct->db = seg_desc->d;
3670 kvm_desct->s = seg_desc->s;
3671 kvm_desct->l = seg_desc->l;
3672 kvm_desct->g = seg_desc->g;
3673 kvm_desct->avl = seg_desc->avl;
3675 kvm_desct->unusable = 1;
3677 kvm_desct->unusable = 0;
3678 kvm_desct->padding = 0;
3681 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3683 struct descriptor_table *dtable)
3685 if (selector & 1 << 2) {
3686 struct kvm_segment kvm_seg;
3688 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3690 if (kvm_seg.unusable)
3693 dtable->limit = kvm_seg.limit;
3694 dtable->base = kvm_seg.base;
3697 kvm_x86_ops->get_gdt(vcpu, dtable);
3700 /* allowed just for 8 bytes segments */
3701 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3702 struct desc_struct *seg_desc)
3705 struct descriptor_table dtable;
3706 u16 index = selector >> 3;
3708 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3710 if (dtable.limit < index * 8 + 7) {
3711 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3714 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3716 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3719 /* allowed just for 8 bytes segments */
3720 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3721 struct desc_struct *seg_desc)
3724 struct descriptor_table dtable;
3725 u16 index = selector >> 3;
3727 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3729 if (dtable.limit < index * 8 + 7)
3731 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3733 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3736 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3737 struct desc_struct *seg_desc)
3741 base_addr = seg_desc->base0;
3742 base_addr |= (seg_desc->base1 << 16);
3743 base_addr |= (seg_desc->base2 << 24);
3745 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3748 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3750 struct kvm_segment kvm_seg;
3752 kvm_get_segment(vcpu, &kvm_seg, seg);
3753 return kvm_seg.selector;
3756 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3758 struct kvm_segment *kvm_seg)
3760 struct desc_struct seg_desc;
3762 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3764 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3768 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3770 struct kvm_segment segvar = {
3771 .base = selector << 4,
3773 .selector = selector,
3784 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3788 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3789 int type_bits, int seg)
3791 struct kvm_segment kvm_seg;
3793 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3794 return kvm_load_realmode_segment(vcpu, selector, seg);
3795 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3797 kvm_seg.type |= type_bits;
3799 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3800 seg != VCPU_SREG_LDTR)
3802 kvm_seg.unusable = 1;
3804 kvm_set_segment(vcpu, &kvm_seg, seg);
3808 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3809 struct tss_segment_32 *tss)
3811 tss->cr3 = vcpu->arch.cr3;
3812 tss->eip = kvm_rip_read(vcpu);
3813 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3814 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3815 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3816 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3817 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3818 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3819 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3820 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3821 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3822 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3823 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3824 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3825 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3826 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3827 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3828 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3831 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3832 struct tss_segment_32 *tss)
3834 kvm_set_cr3(vcpu, tss->cr3);
3836 kvm_rip_write(vcpu, tss->eip);
3837 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3839 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3840 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3841 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3842 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3843 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3844 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3845 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3846 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3848 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3851 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3854 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3857 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3860 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3863 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3866 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3871 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3872 struct tss_segment_16 *tss)
3874 tss->ip = kvm_rip_read(vcpu);
3875 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3876 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3877 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3878 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3879 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3880 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3881 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3882 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3883 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3885 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3886 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3887 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3888 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3889 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3890 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3893 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3894 struct tss_segment_16 *tss)
3896 kvm_rip_write(vcpu, tss->ip);
3897 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3898 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3899 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3900 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3901 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3902 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3903 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3904 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3905 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3907 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3910 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3913 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3916 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3919 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3924 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3925 u16 old_tss_sel, u32 old_tss_base,
3926 struct desc_struct *nseg_desc)
3928 struct tss_segment_16 tss_segment_16;
3931 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3932 sizeof tss_segment_16))
3935 save_state_to_tss16(vcpu, &tss_segment_16);
3937 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3938 sizeof tss_segment_16))
3941 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3942 &tss_segment_16, sizeof tss_segment_16))
3945 if (old_tss_sel != 0xffff) {
3946 tss_segment_16.prev_task_link = old_tss_sel;
3948 if (kvm_write_guest(vcpu->kvm,
3949 get_tss_base_addr(vcpu, nseg_desc),
3950 &tss_segment_16.prev_task_link,
3951 sizeof tss_segment_16.prev_task_link))
3955 if (load_state_from_tss16(vcpu, &tss_segment_16))
3963 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3964 u16 old_tss_sel, u32 old_tss_base,
3965 struct desc_struct *nseg_desc)
3967 struct tss_segment_32 tss_segment_32;
3970 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3971 sizeof tss_segment_32))
3974 save_state_to_tss32(vcpu, &tss_segment_32);
3976 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3977 sizeof tss_segment_32))
3980 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3981 &tss_segment_32, sizeof tss_segment_32))
3984 if (old_tss_sel != 0xffff) {
3985 tss_segment_32.prev_task_link = old_tss_sel;
3987 if (kvm_write_guest(vcpu->kvm,
3988 get_tss_base_addr(vcpu, nseg_desc),
3989 &tss_segment_32.prev_task_link,
3990 sizeof tss_segment_32.prev_task_link))
3994 if (load_state_from_tss32(vcpu, &tss_segment_32))
4002 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4004 struct kvm_segment tr_seg;
4005 struct desc_struct cseg_desc;
4006 struct desc_struct nseg_desc;
4008 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4009 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4011 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4013 /* FIXME: Handle errors. Failure to read either TSS or their
4014 * descriptors should generate a pagefault.
4016 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4019 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4022 if (reason != TASK_SWITCH_IRET) {
4025 cpl = kvm_x86_ops->get_cpl(vcpu);
4026 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4027 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4032 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
4033 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4037 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4038 cseg_desc.type &= ~(1 << 1); //clear the B flag
4039 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4042 if (reason == TASK_SWITCH_IRET) {
4043 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4044 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4047 /* set back link to prev task only if NT bit is set in eflags
4048 note that old_tss_sel is not used afetr this point */
4049 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4050 old_tss_sel = 0xffff;
4052 /* set back link to prev task only if NT bit is set in eflags
4053 note that old_tss_sel is not used afetr this point */
4054 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4055 old_tss_sel = 0xffff;
4057 if (nseg_desc.type & 8)
4058 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4059 old_tss_base, &nseg_desc);
4061 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4062 old_tss_base, &nseg_desc);
4064 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4065 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4066 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4069 if (reason != TASK_SWITCH_IRET) {
4070 nseg_desc.type |= (1 << 1);
4071 save_guest_segment_descriptor(vcpu, tss_selector,
4075 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4076 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4078 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4082 EXPORT_SYMBOL_GPL(kvm_task_switch);
4084 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4085 struct kvm_sregs *sregs)
4087 int mmu_reset_needed = 0;
4088 int pending_vec, max_bits;
4089 struct descriptor_table dt;
4093 dt.limit = sregs->idt.limit;
4094 dt.base = sregs->idt.base;
4095 kvm_x86_ops->set_idt(vcpu, &dt);
4096 dt.limit = sregs->gdt.limit;
4097 dt.base = sregs->gdt.base;
4098 kvm_x86_ops->set_gdt(vcpu, &dt);
4100 vcpu->arch.cr2 = sregs->cr2;
4101 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4103 down_read(&vcpu->kvm->slots_lock);
4104 if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4105 vcpu->arch.cr3 = sregs->cr3;
4107 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4108 up_read(&vcpu->kvm->slots_lock);
4110 kvm_set_cr8(vcpu, sregs->cr8);
4112 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4113 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4114 kvm_set_apic_base(vcpu, sregs->apic_base);
4116 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4118 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4119 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4120 vcpu->arch.cr0 = sregs->cr0;
4122 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4123 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4124 if (!is_long_mode(vcpu) && is_pae(vcpu))
4125 load_pdptrs(vcpu, vcpu->arch.cr3);
4127 if (mmu_reset_needed)
4128 kvm_mmu_reset_context(vcpu);
4130 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4131 pending_vec = find_first_bit(
4132 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4133 if (pending_vec < max_bits) {
4134 kvm_queue_interrupt(vcpu, pending_vec, false);
4135 pr_debug("Set back pending irq %d\n", pending_vec);
4136 if (irqchip_in_kernel(vcpu->kvm))
4137 kvm_pic_clear_isr_ack(vcpu->kvm);
4140 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4141 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4142 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4143 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4144 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4145 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4147 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4148 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4150 /* Older userspace won't unhalt the vcpu on reset. */
4151 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4152 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4153 !(vcpu->arch.cr0 & X86_CR0_PE))
4154 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4161 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4162 struct kvm_guest_debug *dbg)
4168 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4169 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4170 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4171 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4172 vcpu->arch.switch_db_regs =
4173 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4175 for (i = 0; i < KVM_NR_DB_REGS; i++)
4176 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4177 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4180 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4182 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4183 kvm_queue_exception(vcpu, DB_VECTOR);
4184 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4185 kvm_queue_exception(vcpu, BP_VECTOR);
4193 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4194 * we have asm/x86/processor.h
4205 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4206 #ifdef CONFIG_X86_64
4207 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4209 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4214 * Translate a guest virtual address to a guest physical address.
4216 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4217 struct kvm_translation *tr)
4219 unsigned long vaddr = tr->linear_address;
4223 down_read(&vcpu->kvm->slots_lock);
4224 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4225 up_read(&vcpu->kvm->slots_lock);
4226 tr->physical_address = gpa;
4227 tr->valid = gpa != UNMAPPED_GVA;
4235 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4237 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4241 memcpy(fpu->fpr, fxsave->st_space, 128);
4242 fpu->fcw = fxsave->cwd;
4243 fpu->fsw = fxsave->swd;
4244 fpu->ftwx = fxsave->twd;
4245 fpu->last_opcode = fxsave->fop;
4246 fpu->last_ip = fxsave->rip;
4247 fpu->last_dp = fxsave->rdp;
4248 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4255 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4257 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4261 memcpy(fxsave->st_space, fpu->fpr, 128);
4262 fxsave->cwd = fpu->fcw;
4263 fxsave->swd = fpu->fsw;
4264 fxsave->twd = fpu->ftwx;
4265 fxsave->fop = fpu->last_opcode;
4266 fxsave->rip = fpu->last_ip;
4267 fxsave->rdp = fpu->last_dp;
4268 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4275 void fx_init(struct kvm_vcpu *vcpu)
4277 unsigned after_mxcsr_mask;
4280 * Touch the fpu the first time in non atomic context as if
4281 * this is the first fpu instruction the exception handler
4282 * will fire before the instruction returns and it'll have to
4283 * allocate ram with GFP_KERNEL.
4286 kvm_fx_save(&vcpu->arch.host_fx_image);
4288 /* Initialize guest FPU by resetting ours and saving into guest's */
4290 kvm_fx_save(&vcpu->arch.host_fx_image);
4292 kvm_fx_save(&vcpu->arch.guest_fx_image);
4293 kvm_fx_restore(&vcpu->arch.host_fx_image);
4296 vcpu->arch.cr0 |= X86_CR0_ET;
4297 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4298 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4299 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4300 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4302 EXPORT_SYMBOL_GPL(fx_init);
4304 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4306 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4309 vcpu->guest_fpu_loaded = 1;
4310 kvm_fx_save(&vcpu->arch.host_fx_image);
4311 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4313 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4315 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4317 if (!vcpu->guest_fpu_loaded)
4320 vcpu->guest_fpu_loaded = 0;
4321 kvm_fx_save(&vcpu->arch.guest_fx_image);
4322 kvm_fx_restore(&vcpu->arch.host_fx_image);
4323 ++vcpu->stat.fpu_reload;
4325 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4327 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4329 if (vcpu->arch.time_page) {
4330 kvm_release_page_dirty(vcpu->arch.time_page);
4331 vcpu->arch.time_page = NULL;
4334 kvm_x86_ops->vcpu_free(vcpu);
4337 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4340 return kvm_x86_ops->vcpu_create(kvm, id);
4343 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4347 /* We do fxsave: this must be aligned. */
4348 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4350 vcpu->arch.mtrr_state.have_fixed = 1;
4352 r = kvm_arch_vcpu_reset(vcpu);
4354 r = kvm_mmu_setup(vcpu);
4361 kvm_x86_ops->vcpu_free(vcpu);
4365 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4368 kvm_mmu_unload(vcpu);
4371 kvm_x86_ops->vcpu_free(vcpu);
4374 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4376 vcpu->arch.nmi_pending = false;
4377 vcpu->arch.nmi_injected = false;
4379 vcpu->arch.switch_db_regs = 0;
4380 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4381 vcpu->arch.dr6 = DR6_FIXED_1;
4382 vcpu->arch.dr7 = DR7_FIXED_1;
4384 return kvm_x86_ops->vcpu_reset(vcpu);
4387 void kvm_arch_hardware_enable(void *garbage)
4389 kvm_x86_ops->hardware_enable(garbage);
4392 void kvm_arch_hardware_disable(void *garbage)
4394 kvm_x86_ops->hardware_disable(garbage);
4397 int kvm_arch_hardware_setup(void)
4399 return kvm_x86_ops->hardware_setup();
4402 void kvm_arch_hardware_unsetup(void)
4404 kvm_x86_ops->hardware_unsetup();
4407 void kvm_arch_check_processor_compat(void *rtn)
4409 kvm_x86_ops->check_processor_compatibility(rtn);
4412 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4418 BUG_ON(vcpu->kvm == NULL);
4421 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4422 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4423 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4425 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4427 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4432 vcpu->arch.pio_data = page_address(page);
4434 r = kvm_mmu_create(vcpu);
4436 goto fail_free_pio_data;
4438 if (irqchip_in_kernel(kvm)) {
4439 r = kvm_create_lapic(vcpu);
4441 goto fail_mmu_destroy;
4447 kvm_mmu_destroy(vcpu);
4449 free_page((unsigned long)vcpu->arch.pio_data);
4454 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4456 kvm_free_lapic(vcpu);
4457 down_read(&vcpu->kvm->slots_lock);
4458 kvm_mmu_destroy(vcpu);
4459 up_read(&vcpu->kvm->slots_lock);
4460 free_page((unsigned long)vcpu->arch.pio_data);
4463 struct kvm *kvm_arch_create_vm(void)
4465 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4468 return ERR_PTR(-ENOMEM);
4470 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4471 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4473 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4474 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4476 rdtscll(kvm->arch.vm_init_tsc);
4481 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4484 kvm_mmu_unload(vcpu);
4488 static void kvm_free_vcpus(struct kvm *kvm)
4493 * Unpin any mmu pages first.
4495 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4497 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4498 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4499 if (kvm->vcpus[i]) {
4500 kvm_arch_vcpu_free(kvm->vcpus[i]);
4501 kvm->vcpus[i] = NULL;
4507 void kvm_arch_sync_events(struct kvm *kvm)
4509 kvm_free_all_assigned_devices(kvm);
4512 void kvm_arch_destroy_vm(struct kvm *kvm)
4514 kvm_iommu_unmap_guest(kvm);
4516 kfree(kvm->arch.vpic);
4517 kfree(kvm->arch.vioapic);
4518 kvm_free_vcpus(kvm);
4519 kvm_free_physmem(kvm);
4520 if (kvm->arch.apic_access_page)
4521 put_page(kvm->arch.apic_access_page);
4522 if (kvm->arch.ept_identity_pagetable)
4523 put_page(kvm->arch.ept_identity_pagetable);
4527 int kvm_arch_set_memory_region(struct kvm *kvm,
4528 struct kvm_userspace_memory_region *mem,
4529 struct kvm_memory_slot old,
4532 int npages = mem->memory_size >> PAGE_SHIFT;
4533 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4535 /*To keep backward compatibility with older userspace,
4536 *x86 needs to hanlde !user_alloc case.
4539 if (npages && !old.rmap) {
4540 unsigned long userspace_addr;
4542 down_write(¤t->mm->mmap_sem);
4543 userspace_addr = do_mmap(NULL, 0,
4545 PROT_READ | PROT_WRITE,
4546 MAP_PRIVATE | MAP_ANONYMOUS,
4548 up_write(¤t->mm->mmap_sem);
4550 if (IS_ERR((void *)userspace_addr))
4551 return PTR_ERR((void *)userspace_addr);
4553 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4554 spin_lock(&kvm->mmu_lock);
4555 memslot->userspace_addr = userspace_addr;
4556 spin_unlock(&kvm->mmu_lock);
4558 if (!old.user_alloc && old.rmap) {
4561 down_write(¤t->mm->mmap_sem);
4562 ret = do_munmap(current->mm, old.userspace_addr,
4563 old.npages * PAGE_SIZE);
4564 up_write(¤t->mm->mmap_sem);
4567 "kvm_vm_ioctl_set_memory_region: "
4568 "failed to munmap memory\n");
4573 spin_lock(&kvm->mmu_lock);
4574 if (!kvm->arch.n_requested_mmu_pages) {
4575 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4576 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4579 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4580 spin_unlock(&kvm->mmu_lock);
4581 kvm_flush_remote_tlbs(kvm);
4586 void kvm_arch_flush_shadow(struct kvm *kvm)
4588 kvm_mmu_zap_all(kvm);
4589 kvm_reload_remote_mmus(kvm);
4592 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4594 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4595 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4596 || vcpu->arch.nmi_pending;
4599 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4602 int cpu = vcpu->cpu;
4604 if (waitqueue_active(&vcpu->wq)) {
4605 wake_up_interruptible(&vcpu->wq);
4606 ++vcpu->stat.halt_wakeup;
4610 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4611 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4612 smp_send_reschedule(cpu);
4616 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4618 return kvm_x86_ops->interrupt_allowed(vcpu);