KVM: VMX: Add list of potentially locally cached vcpus
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29
30 #include <asm/io.h>
31 #include <asm/desc.h>
32
33 #define __ex(x) __kvm_handle_fault_on_reboot(x)
34
35 MODULE_AUTHOR("Qumranet");
36 MODULE_LICENSE("GPL");
37
38 static int bypass_guest_pf = 1;
39 module_param(bypass_guest_pf, bool, 0);
40
41 static int enable_vpid = 1;
42 module_param(enable_vpid, bool, 0);
43
44 static int flexpriority_enabled = 1;
45 module_param(flexpriority_enabled, bool, 0);
46
47 static int enable_ept = 1;
48 module_param(enable_ept, bool, 0);
49
50 struct vmcs {
51         u32 revision_id;
52         u32 abort;
53         char data[0];
54 };
55
56 struct vcpu_vmx {
57         struct kvm_vcpu       vcpu;
58         struct list_head      local_vcpus_link;
59         int                   launched;
60         u8                    fail;
61         u32                   idt_vectoring_info;
62         struct kvm_msr_entry *guest_msrs;
63         struct kvm_msr_entry *host_msrs;
64         int                   nmsrs;
65         int                   save_nmsrs;
66         int                   msr_offset_efer;
67 #ifdef CONFIG_X86_64
68         int                   msr_offset_kernel_gs_base;
69 #endif
70         struct vmcs          *vmcs;
71         struct {
72                 int           loaded;
73                 u16           fs_sel, gs_sel, ldt_sel;
74                 int           gs_ldt_reload_needed;
75                 int           fs_reload_needed;
76                 int           guest_efer_loaded;
77         } host_state;
78         struct {
79                 struct {
80                         bool pending;
81                         u8 vector;
82                         unsigned rip;
83                 } irq;
84         } rmode;
85         int vpid;
86 };
87
88 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
89 {
90         return container_of(vcpu, struct vcpu_vmx, vcpu);
91 }
92
93 static int init_rmode(struct kvm *kvm);
94
95 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
96 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
97 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
98
99 static struct page *vmx_io_bitmap_a;
100 static struct page *vmx_io_bitmap_b;
101 static struct page *vmx_msr_bitmap;
102
103 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
104 static DEFINE_SPINLOCK(vmx_vpid_lock);
105
106 static struct vmcs_config {
107         int size;
108         int order;
109         u32 revision_id;
110         u32 pin_based_exec_ctrl;
111         u32 cpu_based_exec_ctrl;
112         u32 cpu_based_2nd_exec_ctrl;
113         u32 vmexit_ctrl;
114         u32 vmentry_ctrl;
115 } vmcs_config;
116
117 struct vmx_capability {
118         u32 ept;
119         u32 vpid;
120 } vmx_capability;
121
122 #define VMX_SEGMENT_FIELD(seg)                                  \
123         [VCPU_SREG_##seg] = {                                   \
124                 .selector = GUEST_##seg##_SELECTOR,             \
125                 .base = GUEST_##seg##_BASE,                     \
126                 .limit = GUEST_##seg##_LIMIT,                   \
127                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
128         }
129
130 static struct kvm_vmx_segment_field {
131         unsigned selector;
132         unsigned base;
133         unsigned limit;
134         unsigned ar_bytes;
135 } kvm_vmx_segment_fields[] = {
136         VMX_SEGMENT_FIELD(CS),
137         VMX_SEGMENT_FIELD(DS),
138         VMX_SEGMENT_FIELD(ES),
139         VMX_SEGMENT_FIELD(FS),
140         VMX_SEGMENT_FIELD(GS),
141         VMX_SEGMENT_FIELD(SS),
142         VMX_SEGMENT_FIELD(TR),
143         VMX_SEGMENT_FIELD(LDTR),
144 };
145
146 /*
147  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
148  * away by decrementing the array size.
149  */
150 static const u32 vmx_msr_index[] = {
151 #ifdef CONFIG_X86_64
152         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
153 #endif
154         MSR_EFER, MSR_K6_STAR,
155 };
156 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
157
158 static void load_msrs(struct kvm_msr_entry *e, int n)
159 {
160         int i;
161
162         for (i = 0; i < n; ++i)
163                 wrmsrl(e[i].index, e[i].data);
164 }
165
166 static void save_msrs(struct kvm_msr_entry *e, int n)
167 {
168         int i;
169
170         for (i = 0; i < n; ++i)
171                 rdmsrl(e[i].index, e[i].data);
172 }
173
174 static inline int is_page_fault(u32 intr_info)
175 {
176         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
177                              INTR_INFO_VALID_MASK)) ==
178                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
179 }
180
181 static inline int is_no_device(u32 intr_info)
182 {
183         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
184                              INTR_INFO_VALID_MASK)) ==
185                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
186 }
187
188 static inline int is_invalid_opcode(u32 intr_info)
189 {
190         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
191                              INTR_INFO_VALID_MASK)) ==
192                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
193 }
194
195 static inline int is_external_interrupt(u32 intr_info)
196 {
197         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
198                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
199 }
200
201 static inline int cpu_has_vmx_msr_bitmap(void)
202 {
203         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
204 }
205
206 static inline int cpu_has_vmx_tpr_shadow(void)
207 {
208         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
209 }
210
211 static inline int vm_need_tpr_shadow(struct kvm *kvm)
212 {
213         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
214 }
215
216 static inline int cpu_has_secondary_exec_ctrls(void)
217 {
218         return (vmcs_config.cpu_based_exec_ctrl &
219                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
220 }
221
222 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
223 {
224         return flexpriority_enabled
225                 && (vmcs_config.cpu_based_2nd_exec_ctrl &
226                     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
227 }
228
229 static inline int cpu_has_vmx_invept_individual_addr(void)
230 {
231         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
232 }
233
234 static inline int cpu_has_vmx_invept_context(void)
235 {
236         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
237 }
238
239 static inline int cpu_has_vmx_invept_global(void)
240 {
241         return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
242 }
243
244 static inline int cpu_has_vmx_ept(void)
245 {
246         return (vmcs_config.cpu_based_2nd_exec_ctrl &
247                 SECONDARY_EXEC_ENABLE_EPT);
248 }
249
250 static inline int vm_need_ept(void)
251 {
252         return (cpu_has_vmx_ept() && enable_ept);
253 }
254
255 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
256 {
257         return ((cpu_has_vmx_virtualize_apic_accesses()) &&
258                 (irqchip_in_kernel(kvm)));
259 }
260
261 static inline int cpu_has_vmx_vpid(void)
262 {
263         return (vmcs_config.cpu_based_2nd_exec_ctrl &
264                 SECONDARY_EXEC_ENABLE_VPID);
265 }
266
267 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
268 {
269         int i;
270
271         for (i = 0; i < vmx->nmsrs; ++i)
272                 if (vmx->guest_msrs[i].index == msr)
273                         return i;
274         return -1;
275 }
276
277 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
278 {
279     struct {
280         u64 vpid : 16;
281         u64 rsvd : 48;
282         u64 gva;
283     } operand = { vpid, 0, gva };
284
285     asm volatile (__ex(ASM_VMX_INVVPID)
286                   /* CF==1 or ZF==1 --> rc = -1 */
287                   "; ja 1f ; ud2 ; 1:"
288                   : : "a"(&operand), "c"(ext) : "cc", "memory");
289 }
290
291 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
292 {
293         struct {
294                 u64 eptp, gpa;
295         } operand = {eptp, gpa};
296
297         asm volatile (__ex(ASM_VMX_INVEPT)
298                         /* CF==1 or ZF==1 --> rc = -1 */
299                         "; ja 1f ; ud2 ; 1:\n"
300                         : : "a" (&operand), "c" (ext) : "cc", "memory");
301 }
302
303 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
304 {
305         int i;
306
307         i = __find_msr_index(vmx, msr);
308         if (i >= 0)
309                 return &vmx->guest_msrs[i];
310         return NULL;
311 }
312
313 static void vmcs_clear(struct vmcs *vmcs)
314 {
315         u64 phys_addr = __pa(vmcs);
316         u8 error;
317
318         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
319                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
320                       : "cc", "memory");
321         if (error)
322                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
323                        vmcs, phys_addr);
324 }
325
326 static void __vcpu_clear(void *arg)
327 {
328         struct vcpu_vmx *vmx = arg;
329         int cpu = raw_smp_processor_id();
330
331         if (vmx->vcpu.cpu == cpu)
332                 vmcs_clear(vmx->vmcs);
333         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
334                 per_cpu(current_vmcs, cpu) = NULL;
335         rdtscll(vmx->vcpu.arch.host_tsc);
336         list_del(&vmx->local_vcpus_link);
337         vmx->vcpu.cpu = -1;
338         vmx->launched = 0;
339 }
340
341 static void vcpu_clear(struct vcpu_vmx *vmx)
342 {
343         if (vmx->vcpu.cpu == -1)
344                 return;
345         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
346 }
347
348 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
349 {
350         if (vmx->vpid == 0)
351                 return;
352
353         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
354 }
355
356 static inline void ept_sync_global(void)
357 {
358         if (cpu_has_vmx_invept_global())
359                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
360 }
361
362 static inline void ept_sync_context(u64 eptp)
363 {
364         if (vm_need_ept()) {
365                 if (cpu_has_vmx_invept_context())
366                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
367                 else
368                         ept_sync_global();
369         }
370 }
371
372 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
373 {
374         if (vm_need_ept()) {
375                 if (cpu_has_vmx_invept_individual_addr())
376                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
377                                         eptp, gpa);
378                 else
379                         ept_sync_context(eptp);
380         }
381 }
382
383 static unsigned long vmcs_readl(unsigned long field)
384 {
385         unsigned long value;
386
387         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
388                       : "=a"(value) : "d"(field) : "cc");
389         return value;
390 }
391
392 static u16 vmcs_read16(unsigned long field)
393 {
394         return vmcs_readl(field);
395 }
396
397 static u32 vmcs_read32(unsigned long field)
398 {
399         return vmcs_readl(field);
400 }
401
402 static u64 vmcs_read64(unsigned long field)
403 {
404 #ifdef CONFIG_X86_64
405         return vmcs_readl(field);
406 #else
407         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
408 #endif
409 }
410
411 static noinline void vmwrite_error(unsigned long field, unsigned long value)
412 {
413         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
414                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
415         dump_stack();
416 }
417
418 static void vmcs_writel(unsigned long field, unsigned long value)
419 {
420         u8 error;
421
422         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
423                        : "=q"(error) : "a"(value), "d"(field) : "cc");
424         if (unlikely(error))
425                 vmwrite_error(field, value);
426 }
427
428 static void vmcs_write16(unsigned long field, u16 value)
429 {
430         vmcs_writel(field, value);
431 }
432
433 static void vmcs_write32(unsigned long field, u32 value)
434 {
435         vmcs_writel(field, value);
436 }
437
438 static void vmcs_write64(unsigned long field, u64 value)
439 {
440         vmcs_writel(field, value);
441 #ifndef CONFIG_X86_64
442         asm volatile ("");
443         vmcs_writel(field+1, value >> 32);
444 #endif
445 }
446
447 static void vmcs_clear_bits(unsigned long field, u32 mask)
448 {
449         vmcs_writel(field, vmcs_readl(field) & ~mask);
450 }
451
452 static void vmcs_set_bits(unsigned long field, u32 mask)
453 {
454         vmcs_writel(field, vmcs_readl(field) | mask);
455 }
456
457 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
458 {
459         u32 eb;
460
461         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
462         if (!vcpu->fpu_active)
463                 eb |= 1u << NM_VECTOR;
464         if (vcpu->guest_debug.enabled)
465                 eb |= 1u << 1;
466         if (vcpu->arch.rmode.active)
467                 eb = ~0;
468         if (vm_need_ept())
469                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
470         vmcs_write32(EXCEPTION_BITMAP, eb);
471 }
472
473 static void reload_tss(void)
474 {
475         /*
476          * VT restores TR but not its size.  Useless.
477          */
478         struct descriptor_table gdt;
479         struct desc_struct *descs;
480
481         get_gdt(&gdt);
482         descs = (void *)gdt.base;
483         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
484         load_TR_desc();
485 }
486
487 static void load_transition_efer(struct vcpu_vmx *vmx)
488 {
489         int efer_offset = vmx->msr_offset_efer;
490         u64 host_efer = vmx->host_msrs[efer_offset].data;
491         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
492         u64 ignore_bits;
493
494         if (efer_offset < 0)
495                 return;
496         /*
497          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
498          * outside long mode
499          */
500         ignore_bits = EFER_NX | EFER_SCE;
501 #ifdef CONFIG_X86_64
502         ignore_bits |= EFER_LMA | EFER_LME;
503         /* SCE is meaningful only in long mode on Intel */
504         if (guest_efer & EFER_LMA)
505                 ignore_bits &= ~(u64)EFER_SCE;
506 #endif
507         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
508                 return;
509
510         vmx->host_state.guest_efer_loaded = 1;
511         guest_efer &= ~ignore_bits;
512         guest_efer |= host_efer & ignore_bits;
513         wrmsrl(MSR_EFER, guest_efer);
514         vmx->vcpu.stat.efer_reload++;
515 }
516
517 static void reload_host_efer(struct vcpu_vmx *vmx)
518 {
519         if (vmx->host_state.guest_efer_loaded) {
520                 vmx->host_state.guest_efer_loaded = 0;
521                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
522         }
523 }
524
525 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
526 {
527         struct vcpu_vmx *vmx = to_vmx(vcpu);
528
529         if (vmx->host_state.loaded)
530                 return;
531
532         vmx->host_state.loaded = 1;
533         /*
534          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
535          * allow segment selectors with cpl > 0 or ti == 1.
536          */
537         vmx->host_state.ldt_sel = read_ldt();
538         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
539         vmx->host_state.fs_sel = read_fs();
540         if (!(vmx->host_state.fs_sel & 7)) {
541                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
542                 vmx->host_state.fs_reload_needed = 0;
543         } else {
544                 vmcs_write16(HOST_FS_SELECTOR, 0);
545                 vmx->host_state.fs_reload_needed = 1;
546         }
547         vmx->host_state.gs_sel = read_gs();
548         if (!(vmx->host_state.gs_sel & 7))
549                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
550         else {
551                 vmcs_write16(HOST_GS_SELECTOR, 0);
552                 vmx->host_state.gs_ldt_reload_needed = 1;
553         }
554
555 #ifdef CONFIG_X86_64
556         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
557         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
558 #else
559         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
560         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
561 #endif
562
563 #ifdef CONFIG_X86_64
564         if (is_long_mode(&vmx->vcpu))
565                 save_msrs(vmx->host_msrs +
566                           vmx->msr_offset_kernel_gs_base, 1);
567
568 #endif
569         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
570         load_transition_efer(vmx);
571 }
572
573 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
574 {
575         unsigned long flags;
576
577         if (!vmx->host_state.loaded)
578                 return;
579
580         ++vmx->vcpu.stat.host_state_reload;
581         vmx->host_state.loaded = 0;
582         if (vmx->host_state.fs_reload_needed)
583                 load_fs(vmx->host_state.fs_sel);
584         if (vmx->host_state.gs_ldt_reload_needed) {
585                 load_ldt(vmx->host_state.ldt_sel);
586                 /*
587                  * If we have to reload gs, we must take care to
588                  * preserve our gs base.
589                  */
590                 local_irq_save(flags);
591                 load_gs(vmx->host_state.gs_sel);
592 #ifdef CONFIG_X86_64
593                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
594 #endif
595                 local_irq_restore(flags);
596         }
597         reload_tss();
598         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
599         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
600         reload_host_efer(vmx);
601 }
602
603 static void vmx_load_host_state(struct vcpu_vmx *vmx)
604 {
605         preempt_disable();
606         __vmx_load_host_state(vmx);
607         preempt_enable();
608 }
609
610 /*
611  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
612  * vcpu mutex is already taken.
613  */
614 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
615 {
616         struct vcpu_vmx *vmx = to_vmx(vcpu);
617         u64 phys_addr = __pa(vmx->vmcs);
618         u64 tsc_this, delta, new_offset;
619
620         if (vcpu->cpu != cpu) {
621                 vcpu_clear(vmx);
622                 kvm_migrate_timers(vcpu);
623                 vpid_sync_vcpu_all(vmx);
624                 local_irq_disable();
625                 list_add(&vmx->local_vcpus_link,
626                          &per_cpu(vcpus_on_cpu, cpu));
627                 local_irq_enable();
628         }
629
630         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
631                 u8 error;
632
633                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
634                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
635                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
636                               : "cc");
637                 if (error)
638                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
639                                vmx->vmcs, phys_addr);
640         }
641
642         if (vcpu->cpu != cpu) {
643                 struct descriptor_table dt;
644                 unsigned long sysenter_esp;
645
646                 vcpu->cpu = cpu;
647                 /*
648                  * Linux uses per-cpu TSS and GDT, so set these when switching
649                  * processors.
650                  */
651                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
652                 get_gdt(&dt);
653                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
654
655                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
656                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
657
658                 /*
659                  * Make sure the time stamp counter is monotonous.
660                  */
661                 rdtscll(tsc_this);
662                 if (tsc_this < vcpu->arch.host_tsc) {
663                         delta = vcpu->arch.host_tsc - tsc_this;
664                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
665                         vmcs_write64(TSC_OFFSET, new_offset);
666                 }
667         }
668 }
669
670 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
671 {
672         __vmx_load_host_state(to_vmx(vcpu));
673 }
674
675 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
676 {
677         if (vcpu->fpu_active)
678                 return;
679         vcpu->fpu_active = 1;
680         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
681         if (vcpu->arch.cr0 & X86_CR0_TS)
682                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
683         update_exception_bitmap(vcpu);
684 }
685
686 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
687 {
688         if (!vcpu->fpu_active)
689                 return;
690         vcpu->fpu_active = 0;
691         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
692         update_exception_bitmap(vcpu);
693 }
694
695 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
696 {
697         vcpu_clear(to_vmx(vcpu));
698 }
699
700 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
701 {
702         return vmcs_readl(GUEST_RFLAGS);
703 }
704
705 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
706 {
707         if (vcpu->arch.rmode.active)
708                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
709         vmcs_writel(GUEST_RFLAGS, rflags);
710 }
711
712 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
713 {
714         unsigned long rip;
715         u32 interruptibility;
716
717         rip = vmcs_readl(GUEST_RIP);
718         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
719         vmcs_writel(GUEST_RIP, rip);
720
721         /*
722          * We emulated an instruction, so temporary interrupt blocking
723          * should be removed, if set.
724          */
725         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
726         if (interruptibility & 3)
727                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
728                              interruptibility & ~3);
729         vcpu->arch.interrupt_window_open = 1;
730 }
731
732 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
733                                 bool has_error_code, u32 error_code)
734 {
735         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
736                      nr | INTR_TYPE_EXCEPTION
737                      | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
738                      | INTR_INFO_VALID_MASK);
739         if (has_error_code)
740                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
741 }
742
743 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
744 {
745         struct vcpu_vmx *vmx = to_vmx(vcpu);
746
747         return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
748 }
749
750 /*
751  * Swap MSR entry in host/guest MSR entry array.
752  */
753 #ifdef CONFIG_X86_64
754 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
755 {
756         struct kvm_msr_entry tmp;
757
758         tmp = vmx->guest_msrs[to];
759         vmx->guest_msrs[to] = vmx->guest_msrs[from];
760         vmx->guest_msrs[from] = tmp;
761         tmp = vmx->host_msrs[to];
762         vmx->host_msrs[to] = vmx->host_msrs[from];
763         vmx->host_msrs[from] = tmp;
764 }
765 #endif
766
767 /*
768  * Set up the vmcs to automatically save and restore system
769  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
770  * mode, as fiddling with msrs is very expensive.
771  */
772 static void setup_msrs(struct vcpu_vmx *vmx)
773 {
774         int save_nmsrs;
775
776         vmx_load_host_state(vmx);
777         save_nmsrs = 0;
778 #ifdef CONFIG_X86_64
779         if (is_long_mode(&vmx->vcpu)) {
780                 int index;
781
782                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
783                 if (index >= 0)
784                         move_msr_up(vmx, index, save_nmsrs++);
785                 index = __find_msr_index(vmx, MSR_LSTAR);
786                 if (index >= 0)
787                         move_msr_up(vmx, index, save_nmsrs++);
788                 index = __find_msr_index(vmx, MSR_CSTAR);
789                 if (index >= 0)
790                         move_msr_up(vmx, index, save_nmsrs++);
791                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
792                 if (index >= 0)
793                         move_msr_up(vmx, index, save_nmsrs++);
794                 /*
795                  * MSR_K6_STAR is only needed on long mode guests, and only
796                  * if efer.sce is enabled.
797                  */
798                 index = __find_msr_index(vmx, MSR_K6_STAR);
799                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
800                         move_msr_up(vmx, index, save_nmsrs++);
801         }
802 #endif
803         vmx->save_nmsrs = save_nmsrs;
804
805 #ifdef CONFIG_X86_64
806         vmx->msr_offset_kernel_gs_base =
807                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
808 #endif
809         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
810 }
811
812 /*
813  * reads and returns guest's timestamp counter "register"
814  * guest_tsc = host_tsc + tsc_offset    -- 21.3
815  */
816 static u64 guest_read_tsc(void)
817 {
818         u64 host_tsc, tsc_offset;
819
820         rdtscll(host_tsc);
821         tsc_offset = vmcs_read64(TSC_OFFSET);
822         return host_tsc + tsc_offset;
823 }
824
825 /*
826  * writes 'guest_tsc' into guest's timestamp counter "register"
827  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
828  */
829 static void guest_write_tsc(u64 guest_tsc)
830 {
831         u64 host_tsc;
832
833         rdtscll(host_tsc);
834         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
835 }
836
837 /*
838  * Reads an msr value (of 'msr_index') into 'pdata'.
839  * Returns 0 on success, non-0 otherwise.
840  * Assumes vcpu_load() was already called.
841  */
842 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
843 {
844         u64 data;
845         struct kvm_msr_entry *msr;
846
847         if (!pdata) {
848                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
849                 return -EINVAL;
850         }
851
852         switch (msr_index) {
853 #ifdef CONFIG_X86_64
854         case MSR_FS_BASE:
855                 data = vmcs_readl(GUEST_FS_BASE);
856                 break;
857         case MSR_GS_BASE:
858                 data = vmcs_readl(GUEST_GS_BASE);
859                 break;
860         case MSR_EFER:
861                 return kvm_get_msr_common(vcpu, msr_index, pdata);
862 #endif
863         case MSR_IA32_TIME_STAMP_COUNTER:
864                 data = guest_read_tsc();
865                 break;
866         case MSR_IA32_SYSENTER_CS:
867                 data = vmcs_read32(GUEST_SYSENTER_CS);
868                 break;
869         case MSR_IA32_SYSENTER_EIP:
870                 data = vmcs_readl(GUEST_SYSENTER_EIP);
871                 break;
872         case MSR_IA32_SYSENTER_ESP:
873                 data = vmcs_readl(GUEST_SYSENTER_ESP);
874                 break;
875         default:
876                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
877                 if (msr) {
878                         data = msr->data;
879                         break;
880                 }
881                 return kvm_get_msr_common(vcpu, msr_index, pdata);
882         }
883
884         *pdata = data;
885         return 0;
886 }
887
888 /*
889  * Writes msr value into into the appropriate "register".
890  * Returns 0 on success, non-0 otherwise.
891  * Assumes vcpu_load() was already called.
892  */
893 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
894 {
895         struct vcpu_vmx *vmx = to_vmx(vcpu);
896         struct kvm_msr_entry *msr;
897         int ret = 0;
898
899         switch (msr_index) {
900 #ifdef CONFIG_X86_64
901         case MSR_EFER:
902                 vmx_load_host_state(vmx);
903                 ret = kvm_set_msr_common(vcpu, msr_index, data);
904                 break;
905         case MSR_FS_BASE:
906                 vmcs_writel(GUEST_FS_BASE, data);
907                 break;
908         case MSR_GS_BASE:
909                 vmcs_writel(GUEST_GS_BASE, data);
910                 break;
911 #endif
912         case MSR_IA32_SYSENTER_CS:
913                 vmcs_write32(GUEST_SYSENTER_CS, data);
914                 break;
915         case MSR_IA32_SYSENTER_EIP:
916                 vmcs_writel(GUEST_SYSENTER_EIP, data);
917                 break;
918         case MSR_IA32_SYSENTER_ESP:
919                 vmcs_writel(GUEST_SYSENTER_ESP, data);
920                 break;
921         case MSR_IA32_TIME_STAMP_COUNTER:
922                 guest_write_tsc(data);
923                 break;
924         default:
925                 vmx_load_host_state(vmx);
926                 msr = find_msr_entry(vmx, msr_index);
927                 if (msr) {
928                         msr->data = data;
929                         break;
930                 }
931                 ret = kvm_set_msr_common(vcpu, msr_index, data);
932         }
933
934         return ret;
935 }
936
937 /*
938  * Sync the rsp and rip registers into the vcpu structure.  This allows
939  * registers to be accessed by indexing vcpu->arch.regs.
940  */
941 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
942 {
943         vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
944         vcpu->arch.rip = vmcs_readl(GUEST_RIP);
945 }
946
947 /*
948  * Syncs rsp and rip back into the vmcs.  Should be called after possible
949  * modification.
950  */
951 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
952 {
953         vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
954         vmcs_writel(GUEST_RIP, vcpu->arch.rip);
955 }
956
957 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
958 {
959         unsigned long dr7 = 0x400;
960         int old_singlestep;
961
962         old_singlestep = vcpu->guest_debug.singlestep;
963
964         vcpu->guest_debug.enabled = dbg->enabled;
965         if (vcpu->guest_debug.enabled) {
966                 int i;
967
968                 dr7 |= 0x200;  /* exact */
969                 for (i = 0; i < 4; ++i) {
970                         if (!dbg->breakpoints[i].enabled)
971                                 continue;
972                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
973                         dr7 |= 2 << (i*2);    /* global enable */
974                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
975                 }
976
977                 vcpu->guest_debug.singlestep = dbg->singlestep;
978         } else
979                 vcpu->guest_debug.singlestep = 0;
980
981         if (old_singlestep && !vcpu->guest_debug.singlestep) {
982                 unsigned long flags;
983
984                 flags = vmcs_readl(GUEST_RFLAGS);
985                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
986                 vmcs_writel(GUEST_RFLAGS, flags);
987         }
988
989         update_exception_bitmap(vcpu);
990         vmcs_writel(GUEST_DR7, dr7);
991
992         return 0;
993 }
994
995 static int vmx_get_irq(struct kvm_vcpu *vcpu)
996 {
997         struct vcpu_vmx *vmx = to_vmx(vcpu);
998         u32 idtv_info_field;
999
1000         idtv_info_field = vmx->idt_vectoring_info;
1001         if (idtv_info_field & INTR_INFO_VALID_MASK) {
1002                 if (is_external_interrupt(idtv_info_field))
1003                         return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
1004                 else
1005                         printk(KERN_DEBUG "pending exception: not handled yet\n");
1006         }
1007         return -1;
1008 }
1009
1010 static __init int cpu_has_kvm_support(void)
1011 {
1012         unsigned long ecx = cpuid_ecx(1);
1013         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1014 }
1015
1016 static __init int vmx_disabled_by_bios(void)
1017 {
1018         u64 msr;
1019
1020         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1021         return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1022                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1023             == MSR_IA32_FEATURE_CONTROL_LOCKED;
1024         /* locked but not enabled */
1025 }
1026
1027 static void hardware_enable(void *garbage)
1028 {
1029         int cpu = raw_smp_processor_id();
1030         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1031         u64 old;
1032
1033         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1034         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1035         if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
1036                     MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1037             != (MSR_IA32_FEATURE_CONTROL_LOCKED |
1038                 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
1039                 /* enable and lock */
1040                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1041                        MSR_IA32_FEATURE_CONTROL_LOCKED |
1042                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
1043         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1044         asm volatile (ASM_VMX_VMXON_RAX
1045                       : : "a"(&phys_addr), "m"(phys_addr)
1046                       : "memory", "cc");
1047 }
1048
1049 static void vmclear_local_vcpus(void)
1050 {
1051         int cpu = raw_smp_processor_id();
1052         struct vcpu_vmx *vmx, *n;
1053
1054         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1055                                  local_vcpus_link)
1056                 __vcpu_clear(vmx);
1057 }
1058
1059 static void hardware_disable(void *garbage)
1060 {
1061         vmclear_local_vcpus();
1062         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1063         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1064 }
1065
1066 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1067                                       u32 msr, u32 *result)
1068 {
1069         u32 vmx_msr_low, vmx_msr_high;
1070         u32 ctl = ctl_min | ctl_opt;
1071
1072         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1073
1074         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1075         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1076
1077         /* Ensure minimum (required) set of control bits are supported. */
1078         if (ctl_min & ~ctl)
1079                 return -EIO;
1080
1081         *result = ctl;
1082         return 0;
1083 }
1084
1085 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1086 {
1087         u32 vmx_msr_low, vmx_msr_high;
1088         u32 min, opt, min2, opt2;
1089         u32 _pin_based_exec_control = 0;
1090         u32 _cpu_based_exec_control = 0;
1091         u32 _cpu_based_2nd_exec_control = 0;
1092         u32 _vmexit_control = 0;
1093         u32 _vmentry_control = 0;
1094
1095         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1096         opt = 0;
1097         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1098                                 &_pin_based_exec_control) < 0)
1099                 return -EIO;
1100
1101         min = CPU_BASED_HLT_EXITING |
1102 #ifdef CONFIG_X86_64
1103               CPU_BASED_CR8_LOAD_EXITING |
1104               CPU_BASED_CR8_STORE_EXITING |
1105 #endif
1106               CPU_BASED_CR3_LOAD_EXITING |
1107               CPU_BASED_CR3_STORE_EXITING |
1108               CPU_BASED_USE_IO_BITMAPS |
1109               CPU_BASED_MOV_DR_EXITING |
1110               CPU_BASED_USE_TSC_OFFSETING;
1111         opt = CPU_BASED_TPR_SHADOW |
1112               CPU_BASED_USE_MSR_BITMAPS |
1113               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1114         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1115                                 &_cpu_based_exec_control) < 0)
1116                 return -EIO;
1117 #ifdef CONFIG_X86_64
1118         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1119                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1120                                            ~CPU_BASED_CR8_STORE_EXITING;
1121 #endif
1122         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1123                 min2 = 0;
1124                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1125                         SECONDARY_EXEC_WBINVD_EXITING |
1126                         SECONDARY_EXEC_ENABLE_VPID |
1127                         SECONDARY_EXEC_ENABLE_EPT;
1128                 if (adjust_vmx_controls(min2, opt2,
1129                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1130                                         &_cpu_based_2nd_exec_control) < 0)
1131                         return -EIO;
1132         }
1133 #ifndef CONFIG_X86_64
1134         if (!(_cpu_based_2nd_exec_control &
1135                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1136                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1137 #endif
1138         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1139                 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1140                 min &= ~(CPU_BASED_CR3_LOAD_EXITING |
1141                          CPU_BASED_CR3_STORE_EXITING);
1142                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1143                                         &_cpu_based_exec_control) < 0)
1144                         return -EIO;
1145                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1146                       vmx_capability.ept, vmx_capability.vpid);
1147         }
1148
1149         min = 0;
1150 #ifdef CONFIG_X86_64
1151         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1152 #endif
1153         opt = 0;
1154         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1155                                 &_vmexit_control) < 0)
1156                 return -EIO;
1157
1158         min = opt = 0;
1159         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1160                                 &_vmentry_control) < 0)
1161                 return -EIO;
1162
1163         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1164
1165         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1166         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1167                 return -EIO;
1168
1169 #ifdef CONFIG_X86_64
1170         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1171         if (vmx_msr_high & (1u<<16))
1172                 return -EIO;
1173 #endif
1174
1175         /* Require Write-Back (WB) memory type for VMCS accesses. */
1176         if (((vmx_msr_high >> 18) & 15) != 6)
1177                 return -EIO;
1178
1179         vmcs_conf->size = vmx_msr_high & 0x1fff;
1180         vmcs_conf->order = get_order(vmcs_config.size);
1181         vmcs_conf->revision_id = vmx_msr_low;
1182
1183         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1184         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1185         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1186         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1187         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1188
1189         return 0;
1190 }
1191
1192 static struct vmcs *alloc_vmcs_cpu(int cpu)
1193 {
1194         int node = cpu_to_node(cpu);
1195         struct page *pages;
1196         struct vmcs *vmcs;
1197
1198         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1199         if (!pages)
1200                 return NULL;
1201         vmcs = page_address(pages);
1202         memset(vmcs, 0, vmcs_config.size);
1203         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1204         return vmcs;
1205 }
1206
1207 static struct vmcs *alloc_vmcs(void)
1208 {
1209         return alloc_vmcs_cpu(raw_smp_processor_id());
1210 }
1211
1212 static void free_vmcs(struct vmcs *vmcs)
1213 {
1214         free_pages((unsigned long)vmcs, vmcs_config.order);
1215 }
1216
1217 static void free_kvm_area(void)
1218 {
1219         int cpu;
1220
1221         for_each_online_cpu(cpu)
1222                 free_vmcs(per_cpu(vmxarea, cpu));
1223 }
1224
1225 static __init int alloc_kvm_area(void)
1226 {
1227         int cpu;
1228
1229         for_each_online_cpu(cpu) {
1230                 struct vmcs *vmcs;
1231
1232                 vmcs = alloc_vmcs_cpu(cpu);
1233                 if (!vmcs) {
1234                         free_kvm_area();
1235                         return -ENOMEM;
1236                 }
1237
1238                 per_cpu(vmxarea, cpu) = vmcs;
1239         }
1240         return 0;
1241 }
1242
1243 static __init int hardware_setup(void)
1244 {
1245         if (setup_vmcs_config(&vmcs_config) < 0)
1246                 return -EIO;
1247
1248         if (boot_cpu_has(X86_FEATURE_NX))
1249                 kvm_enable_efer_bits(EFER_NX);
1250
1251         return alloc_kvm_area();
1252 }
1253
1254 static __exit void hardware_unsetup(void)
1255 {
1256         free_kvm_area();
1257 }
1258
1259 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1260 {
1261         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1262
1263         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1264                 vmcs_write16(sf->selector, save->selector);
1265                 vmcs_writel(sf->base, save->base);
1266                 vmcs_write32(sf->limit, save->limit);
1267                 vmcs_write32(sf->ar_bytes, save->ar);
1268         } else {
1269                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1270                         << AR_DPL_SHIFT;
1271                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1272         }
1273 }
1274
1275 static void enter_pmode(struct kvm_vcpu *vcpu)
1276 {
1277         unsigned long flags;
1278
1279         vcpu->arch.rmode.active = 0;
1280
1281         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1282         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1283         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1284
1285         flags = vmcs_readl(GUEST_RFLAGS);
1286         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1287         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1288         vmcs_writel(GUEST_RFLAGS, flags);
1289
1290         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1291                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1292
1293         update_exception_bitmap(vcpu);
1294
1295         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1296         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1297         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1298         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1299
1300         vmcs_write16(GUEST_SS_SELECTOR, 0);
1301         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1302
1303         vmcs_write16(GUEST_CS_SELECTOR,
1304                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1305         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1306 }
1307
1308 static gva_t rmode_tss_base(struct kvm *kvm)
1309 {
1310         if (!kvm->arch.tss_addr) {
1311                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1312                                  kvm->memslots[0].npages - 3;
1313                 return base_gfn << PAGE_SHIFT;
1314         }
1315         return kvm->arch.tss_addr;
1316 }
1317
1318 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1319 {
1320         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1321
1322         save->selector = vmcs_read16(sf->selector);
1323         save->base = vmcs_readl(sf->base);
1324         save->limit = vmcs_read32(sf->limit);
1325         save->ar = vmcs_read32(sf->ar_bytes);
1326         vmcs_write16(sf->selector, save->base >> 4);
1327         vmcs_write32(sf->base, save->base & 0xfffff);
1328         vmcs_write32(sf->limit, 0xffff);
1329         vmcs_write32(sf->ar_bytes, 0xf3);
1330 }
1331
1332 static void enter_rmode(struct kvm_vcpu *vcpu)
1333 {
1334         unsigned long flags;
1335
1336         vcpu->arch.rmode.active = 1;
1337
1338         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1339         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1340
1341         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1342         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1343
1344         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1345         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1346
1347         flags = vmcs_readl(GUEST_RFLAGS);
1348         vcpu->arch.rmode.save_iopl
1349                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1350
1351         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1352
1353         vmcs_writel(GUEST_RFLAGS, flags);
1354         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1355         update_exception_bitmap(vcpu);
1356
1357         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1358         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1359         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1360
1361         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1362         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1363         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1364                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1365         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1366
1367         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1368         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1369         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1370         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1371
1372         kvm_mmu_reset_context(vcpu);
1373         init_rmode(vcpu->kvm);
1374 }
1375
1376 #ifdef CONFIG_X86_64
1377
1378 static void enter_lmode(struct kvm_vcpu *vcpu)
1379 {
1380         u32 guest_tr_ar;
1381
1382         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1383         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1384                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1385                        __func__);
1386                 vmcs_write32(GUEST_TR_AR_BYTES,
1387                              (guest_tr_ar & ~AR_TYPE_MASK)
1388                              | AR_TYPE_BUSY_64_TSS);
1389         }
1390
1391         vcpu->arch.shadow_efer |= EFER_LMA;
1392
1393         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1394         vmcs_write32(VM_ENTRY_CONTROLS,
1395                      vmcs_read32(VM_ENTRY_CONTROLS)
1396                      | VM_ENTRY_IA32E_MODE);
1397 }
1398
1399 static void exit_lmode(struct kvm_vcpu *vcpu)
1400 {
1401         vcpu->arch.shadow_efer &= ~EFER_LMA;
1402
1403         vmcs_write32(VM_ENTRY_CONTROLS,
1404                      vmcs_read32(VM_ENTRY_CONTROLS)
1405                      & ~VM_ENTRY_IA32E_MODE);
1406 }
1407
1408 #endif
1409
1410 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1411 {
1412         vpid_sync_vcpu_all(to_vmx(vcpu));
1413 }
1414
1415 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1416 {
1417         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1418         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1419 }
1420
1421 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1422 {
1423         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1424                 if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1425                         printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
1426                         return;
1427                 }
1428                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1429                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1430                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1431                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1432         }
1433 }
1434
1435 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1436
1437 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1438                                         unsigned long cr0,
1439                                         struct kvm_vcpu *vcpu)
1440 {
1441         if (!(cr0 & X86_CR0_PG)) {
1442                 /* From paging/starting to nonpaging */
1443                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1444                              vmcs_config.cpu_based_exec_ctrl |
1445                              (CPU_BASED_CR3_LOAD_EXITING |
1446                               CPU_BASED_CR3_STORE_EXITING));
1447                 vcpu->arch.cr0 = cr0;
1448                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1449                 *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
1450                 *hw_cr0 &= ~X86_CR0_WP;
1451         } else if (!is_paging(vcpu)) {
1452                 /* From nonpaging to paging */
1453                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1454                              vmcs_config.cpu_based_exec_ctrl &
1455                              ~(CPU_BASED_CR3_LOAD_EXITING |
1456                                CPU_BASED_CR3_STORE_EXITING));
1457                 vcpu->arch.cr0 = cr0;
1458                 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1459                 if (!(vcpu->arch.cr0 & X86_CR0_WP))
1460                         *hw_cr0 &= ~X86_CR0_WP;
1461         }
1462 }
1463
1464 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1465                                         struct kvm_vcpu *vcpu)
1466 {
1467         if (!is_paging(vcpu)) {
1468                 *hw_cr4 &= ~X86_CR4_PAE;
1469                 *hw_cr4 |= X86_CR4_PSE;
1470         } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1471                 *hw_cr4 &= ~X86_CR4_PAE;
1472 }
1473
1474 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1475 {
1476         unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
1477                                 KVM_VM_CR0_ALWAYS_ON;
1478
1479         vmx_fpu_deactivate(vcpu);
1480
1481         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1482                 enter_pmode(vcpu);
1483
1484         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1485                 enter_rmode(vcpu);
1486
1487 #ifdef CONFIG_X86_64
1488         if (vcpu->arch.shadow_efer & EFER_LME) {
1489                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1490                         enter_lmode(vcpu);
1491                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1492                         exit_lmode(vcpu);
1493         }
1494 #endif
1495
1496         if (vm_need_ept())
1497                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1498
1499         vmcs_writel(CR0_READ_SHADOW, cr0);
1500         vmcs_writel(GUEST_CR0, hw_cr0);
1501         vcpu->arch.cr0 = cr0;
1502
1503         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1504                 vmx_fpu_activate(vcpu);
1505 }
1506
1507 static u64 construct_eptp(unsigned long root_hpa)
1508 {
1509         u64 eptp;
1510
1511         /* TODO write the value reading from MSR */
1512         eptp = VMX_EPT_DEFAULT_MT |
1513                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1514         eptp |= (root_hpa & PAGE_MASK);
1515
1516         return eptp;
1517 }
1518
1519 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1520 {
1521         unsigned long guest_cr3;
1522         u64 eptp;
1523
1524         guest_cr3 = cr3;
1525         if (vm_need_ept()) {
1526                 eptp = construct_eptp(cr3);
1527                 vmcs_write64(EPT_POINTER, eptp);
1528                 ept_sync_context(eptp);
1529                 ept_load_pdptrs(vcpu);
1530                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1531                         VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1532         }
1533
1534         vmx_flush_tlb(vcpu);
1535         vmcs_writel(GUEST_CR3, guest_cr3);
1536         if (vcpu->arch.cr0 & X86_CR0_PE)
1537                 vmx_fpu_deactivate(vcpu);
1538 }
1539
1540 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1541 {
1542         unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
1543                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1544
1545         vcpu->arch.cr4 = cr4;
1546         if (vm_need_ept())
1547                 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1548
1549         vmcs_writel(CR4_READ_SHADOW, cr4);
1550         vmcs_writel(GUEST_CR4, hw_cr4);
1551 }
1552
1553 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1554 {
1555         struct vcpu_vmx *vmx = to_vmx(vcpu);
1556         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1557
1558         vcpu->arch.shadow_efer = efer;
1559         if (!msr)
1560                 return;
1561         if (efer & EFER_LMA) {
1562                 vmcs_write32(VM_ENTRY_CONTROLS,
1563                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1564                                      VM_ENTRY_IA32E_MODE);
1565                 msr->data = efer;
1566
1567         } else {
1568                 vmcs_write32(VM_ENTRY_CONTROLS,
1569                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1570                                      ~VM_ENTRY_IA32E_MODE);
1571
1572                 msr->data = efer & ~EFER_LME;
1573         }
1574         setup_msrs(vmx);
1575 }
1576
1577 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1578 {
1579         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1580
1581         return vmcs_readl(sf->base);
1582 }
1583
1584 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1585                             struct kvm_segment *var, int seg)
1586 {
1587         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1588         u32 ar;
1589
1590         var->base = vmcs_readl(sf->base);
1591         var->limit = vmcs_read32(sf->limit);
1592         var->selector = vmcs_read16(sf->selector);
1593         ar = vmcs_read32(sf->ar_bytes);
1594         if (ar & AR_UNUSABLE_MASK)
1595                 ar = 0;
1596         var->type = ar & 15;
1597         var->s = (ar >> 4) & 1;
1598         var->dpl = (ar >> 5) & 3;
1599         var->present = (ar >> 7) & 1;
1600         var->avl = (ar >> 12) & 1;
1601         var->l = (ar >> 13) & 1;
1602         var->db = (ar >> 14) & 1;
1603         var->g = (ar >> 15) & 1;
1604         var->unusable = (ar >> 16) & 1;
1605 }
1606
1607 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1608 {
1609         struct kvm_segment kvm_seg;
1610
1611         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1612                 return 0;
1613
1614         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1615                 return 3;
1616
1617         vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
1618         return kvm_seg.selector & 3;
1619 }
1620
1621 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1622 {
1623         u32 ar;
1624
1625         if (var->unusable)
1626                 ar = 1 << 16;
1627         else {
1628                 ar = var->type & 15;
1629                 ar |= (var->s & 1) << 4;
1630                 ar |= (var->dpl & 3) << 5;
1631                 ar |= (var->present & 1) << 7;
1632                 ar |= (var->avl & 1) << 12;
1633                 ar |= (var->l & 1) << 13;
1634                 ar |= (var->db & 1) << 14;
1635                 ar |= (var->g & 1) << 15;
1636         }
1637         if (ar == 0) /* a 0 value means unusable */
1638                 ar = AR_UNUSABLE_MASK;
1639
1640         return ar;
1641 }
1642
1643 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1644                             struct kvm_segment *var, int seg)
1645 {
1646         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1647         u32 ar;
1648
1649         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1650                 vcpu->arch.rmode.tr.selector = var->selector;
1651                 vcpu->arch.rmode.tr.base = var->base;
1652                 vcpu->arch.rmode.tr.limit = var->limit;
1653                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1654                 return;
1655         }
1656         vmcs_writel(sf->base, var->base);
1657         vmcs_write32(sf->limit, var->limit);
1658         vmcs_write16(sf->selector, var->selector);
1659         if (vcpu->arch.rmode.active && var->s) {
1660                 /*
1661                  * Hack real-mode segments into vm86 compatibility.
1662                  */
1663                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1664                         vmcs_writel(sf->base, 0xf0000);
1665                 ar = 0xf3;
1666         } else
1667                 ar = vmx_segment_access_rights(var);
1668         vmcs_write32(sf->ar_bytes, ar);
1669 }
1670
1671 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1672 {
1673         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1674
1675         *db = (ar >> 14) & 1;
1676         *l = (ar >> 13) & 1;
1677 }
1678
1679 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1680 {
1681         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1682         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1683 }
1684
1685 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1686 {
1687         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1688         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1689 }
1690
1691 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1692 {
1693         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1694         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1695 }
1696
1697 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1698 {
1699         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1700         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1701 }
1702
1703 static int init_rmode_tss(struct kvm *kvm)
1704 {
1705         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1706         u16 data = 0;
1707         int ret = 0;
1708         int r;
1709
1710         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1711         if (r < 0)
1712                 goto out;
1713         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1714         r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1715         if (r < 0)
1716                 goto out;
1717         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1718         if (r < 0)
1719                 goto out;
1720         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1721         if (r < 0)
1722                 goto out;
1723         data = ~0;
1724         r = kvm_write_guest_page(kvm, fn, &data,
1725                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1726                                  sizeof(u8));
1727         if (r < 0)
1728                 goto out;
1729
1730         ret = 1;
1731 out:
1732         return ret;
1733 }
1734
1735 static int init_rmode_identity_map(struct kvm *kvm)
1736 {
1737         int i, r, ret;
1738         pfn_t identity_map_pfn;
1739         u32 tmp;
1740
1741         if (!vm_need_ept())
1742                 return 1;
1743         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
1744                 printk(KERN_ERR "EPT: identity-mapping pagetable "
1745                         "haven't been allocated!\n");
1746                 return 0;
1747         }
1748         if (likely(kvm->arch.ept_identity_pagetable_done))
1749                 return 1;
1750         ret = 0;
1751         identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
1752         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
1753         if (r < 0)
1754                 goto out;
1755         /* Set up identity-mapping pagetable for EPT in real mode */
1756         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
1757                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
1758                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
1759                 r = kvm_write_guest_page(kvm, identity_map_pfn,
1760                                 &tmp, i * sizeof(tmp), sizeof(tmp));
1761                 if (r < 0)
1762                         goto out;
1763         }
1764         kvm->arch.ept_identity_pagetable_done = true;
1765         ret = 1;
1766 out:
1767         return ret;
1768 }
1769
1770 static void seg_setup(int seg)
1771 {
1772         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1773
1774         vmcs_write16(sf->selector, 0);
1775         vmcs_writel(sf->base, 0);
1776         vmcs_write32(sf->limit, 0xffff);
1777         vmcs_write32(sf->ar_bytes, 0x93);
1778 }
1779
1780 static int alloc_apic_access_page(struct kvm *kvm)
1781 {
1782         struct kvm_userspace_memory_region kvm_userspace_mem;
1783         int r = 0;
1784
1785         down_write(&kvm->slots_lock);
1786         if (kvm->arch.apic_access_page)
1787                 goto out;
1788         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1789         kvm_userspace_mem.flags = 0;
1790         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1791         kvm_userspace_mem.memory_size = PAGE_SIZE;
1792         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1793         if (r)
1794                 goto out;
1795
1796         down_read(&current->mm->mmap_sem);
1797         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1798         up_read(&current->mm->mmap_sem);
1799 out:
1800         up_write(&kvm->slots_lock);
1801         return r;
1802 }
1803
1804 static int alloc_identity_pagetable(struct kvm *kvm)
1805 {
1806         struct kvm_userspace_memory_region kvm_userspace_mem;
1807         int r = 0;
1808
1809         down_write(&kvm->slots_lock);
1810         if (kvm->arch.ept_identity_pagetable)
1811                 goto out;
1812         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
1813         kvm_userspace_mem.flags = 0;
1814         kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
1815         kvm_userspace_mem.memory_size = PAGE_SIZE;
1816         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1817         if (r)
1818                 goto out;
1819
1820         down_read(&current->mm->mmap_sem);
1821         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
1822                         VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
1823         up_read(&current->mm->mmap_sem);
1824 out:
1825         up_write(&kvm->slots_lock);
1826         return r;
1827 }
1828
1829 static void allocate_vpid(struct vcpu_vmx *vmx)
1830 {
1831         int vpid;
1832
1833         vmx->vpid = 0;
1834         if (!enable_vpid || !cpu_has_vmx_vpid())
1835                 return;
1836         spin_lock(&vmx_vpid_lock);
1837         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
1838         if (vpid < VMX_NR_VPIDS) {
1839                 vmx->vpid = vpid;
1840                 __set_bit(vpid, vmx_vpid_bitmap);
1841         }
1842         spin_unlock(&vmx_vpid_lock);
1843 }
1844
1845 static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
1846 {
1847         void *va;
1848
1849         if (!cpu_has_vmx_msr_bitmap())
1850                 return;
1851
1852         /*
1853          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1854          * have the write-low and read-high bitmap offsets the wrong way round.
1855          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1856          */
1857         va = kmap(msr_bitmap);
1858         if (msr <= 0x1fff) {
1859                 __clear_bit(msr, va + 0x000); /* read-low */
1860                 __clear_bit(msr, va + 0x800); /* write-low */
1861         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1862                 msr &= 0x1fff;
1863                 __clear_bit(msr, va + 0x400); /* read-high */
1864                 __clear_bit(msr, va + 0xc00); /* write-high */
1865         }
1866         kunmap(msr_bitmap);
1867 }
1868
1869 /*
1870  * Sets up the vmcs for emulated real mode.
1871  */
1872 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1873 {
1874         u32 host_sysenter_cs;
1875         u32 junk;
1876         unsigned long a;
1877         struct descriptor_table dt;
1878         int i;
1879         unsigned long kvm_vmx_return;
1880         u32 exec_control;
1881
1882         /* I/O */
1883         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1884         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1885
1886         if (cpu_has_vmx_msr_bitmap())
1887                 vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
1888
1889         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1890
1891         /* Control */
1892         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1893                 vmcs_config.pin_based_exec_ctrl);
1894
1895         exec_control = vmcs_config.cpu_based_exec_ctrl;
1896         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1897                 exec_control &= ~CPU_BASED_TPR_SHADOW;
1898 #ifdef CONFIG_X86_64
1899                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1900                                 CPU_BASED_CR8_LOAD_EXITING;
1901 #endif
1902         }
1903         if (!vm_need_ept())
1904                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
1905                                 CPU_BASED_CR3_LOAD_EXITING;
1906         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1907
1908         if (cpu_has_secondary_exec_ctrls()) {
1909                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1910                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1911                         exec_control &=
1912                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1913                 if (vmx->vpid == 0)
1914                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
1915                 if (!vm_need_ept())
1916                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
1917                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1918         }
1919
1920         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1921         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1922         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1923
1924         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1925         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1926         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1927
1928         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1929         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1930         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1931         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1932         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1933         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1934 #ifdef CONFIG_X86_64
1935         rdmsrl(MSR_FS_BASE, a);
1936         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1937         rdmsrl(MSR_GS_BASE, a);
1938         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1939 #else
1940         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1941         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1942 #endif
1943
1944         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1945
1946         get_idt(&dt);
1947         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1948
1949         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1950         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1951         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1952         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1953         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1954
1955         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1956         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1957         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1958         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1959         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1960         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1961
1962         for (i = 0; i < NR_VMX_MSR; ++i) {
1963                 u32 index = vmx_msr_index[i];
1964                 u32 data_low, data_high;
1965                 u64 data;
1966                 int j = vmx->nmsrs;
1967
1968                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1969                         continue;
1970                 if (wrmsr_safe(index, data_low, data_high) < 0)
1971                         continue;
1972                 data = data_low | ((u64)data_high << 32);
1973                 vmx->host_msrs[j].index = index;
1974                 vmx->host_msrs[j].reserved = 0;
1975                 vmx->host_msrs[j].data = data;
1976                 vmx->guest_msrs[j] = vmx->host_msrs[j];
1977                 ++vmx->nmsrs;
1978         }
1979
1980         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1981
1982         /* 22.2.1, 20.8.1 */
1983         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1984
1985         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1986         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1987
1988
1989         return 0;
1990 }
1991
1992 static int init_rmode(struct kvm *kvm)
1993 {
1994         if (!init_rmode_tss(kvm))
1995                 return 0;
1996         if (!init_rmode_identity_map(kvm))
1997                 return 0;
1998         return 1;
1999 }
2000
2001 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2002 {
2003         struct vcpu_vmx *vmx = to_vmx(vcpu);
2004         u64 msr;
2005         int ret;
2006
2007         down_read(&vcpu->kvm->slots_lock);
2008         if (!init_rmode(vmx->vcpu.kvm)) {
2009                 ret = -ENOMEM;
2010                 goto out;
2011         }
2012
2013         vmx->vcpu.arch.rmode.active = 0;
2014
2015         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2016         kvm_set_cr8(&vmx->vcpu, 0);
2017         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2018         if (vmx->vcpu.vcpu_id == 0)
2019                 msr |= MSR_IA32_APICBASE_BSP;
2020         kvm_set_apic_base(&vmx->vcpu, msr);
2021
2022         fx_init(&vmx->vcpu);
2023
2024         /*
2025          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2026          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2027          */
2028         if (vmx->vcpu.vcpu_id == 0) {
2029                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2030                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2031         } else {
2032                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2033                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2034         }
2035         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2036         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2037
2038         seg_setup(VCPU_SREG_DS);
2039         seg_setup(VCPU_SREG_ES);
2040         seg_setup(VCPU_SREG_FS);
2041         seg_setup(VCPU_SREG_GS);
2042         seg_setup(VCPU_SREG_SS);
2043
2044         vmcs_write16(GUEST_TR_SELECTOR, 0);
2045         vmcs_writel(GUEST_TR_BASE, 0);
2046         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2047         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2048
2049         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2050         vmcs_writel(GUEST_LDTR_BASE, 0);
2051         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2052         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2053
2054         vmcs_write32(GUEST_SYSENTER_CS, 0);
2055         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2056         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2057
2058         vmcs_writel(GUEST_RFLAGS, 0x02);
2059         if (vmx->vcpu.vcpu_id == 0)
2060                 vmcs_writel(GUEST_RIP, 0xfff0);
2061         else
2062                 vmcs_writel(GUEST_RIP, 0);
2063         vmcs_writel(GUEST_RSP, 0);
2064
2065         /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2066         vmcs_writel(GUEST_DR7, 0x400);
2067
2068         vmcs_writel(GUEST_GDTR_BASE, 0);
2069         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2070
2071         vmcs_writel(GUEST_IDTR_BASE, 0);
2072         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2073
2074         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2075         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2076         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2077
2078         guest_write_tsc(0);
2079
2080         /* Special registers */
2081         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2082
2083         setup_msrs(vmx);
2084
2085         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2086
2087         if (cpu_has_vmx_tpr_shadow()) {
2088                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2089                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2090                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2091                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2092                 vmcs_write32(TPR_THRESHOLD, 0);
2093         }
2094
2095         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2096                 vmcs_write64(APIC_ACCESS_ADDR,
2097                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2098
2099         if (vmx->vpid != 0)
2100                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2101
2102         vmx->vcpu.arch.cr0 = 0x60000010;
2103         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2104         vmx_set_cr4(&vmx->vcpu, 0);
2105         vmx_set_efer(&vmx->vcpu, 0);
2106         vmx_fpu_activate(&vmx->vcpu);
2107         update_exception_bitmap(&vmx->vcpu);
2108
2109         vpid_sync_vcpu_all(vmx);
2110
2111         ret = 0;
2112
2113 out:
2114         up_read(&vcpu->kvm->slots_lock);
2115         return ret;
2116 }
2117
2118 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
2119 {
2120         struct vcpu_vmx *vmx = to_vmx(vcpu);
2121
2122         KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
2123
2124         if (vcpu->arch.rmode.active) {
2125                 vmx->rmode.irq.pending = true;
2126                 vmx->rmode.irq.vector = irq;
2127                 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
2128                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2129                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2130                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2131                 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
2132                 return;
2133         }
2134         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2135                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
2136 }
2137
2138 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
2139 {
2140         int word_index = __ffs(vcpu->arch.irq_summary);
2141         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
2142         int irq = word_index * BITS_PER_LONG + bit_index;
2143
2144         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
2145         if (!vcpu->arch.irq_pending[word_index])
2146                 clear_bit(word_index, &vcpu->arch.irq_summary);
2147         vmx_inject_irq(vcpu, irq);
2148 }
2149
2150
2151 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
2152                                        struct kvm_run *kvm_run)
2153 {
2154         u32 cpu_based_vm_exec_control;
2155
2156         vcpu->arch.interrupt_window_open =
2157                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2158                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2159
2160         if (vcpu->arch.interrupt_window_open &&
2161             vcpu->arch.irq_summary &&
2162             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
2163                 /*
2164                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
2165                  */
2166                 kvm_do_inject_irq(vcpu);
2167
2168         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2169         if (!vcpu->arch.interrupt_window_open &&
2170             (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
2171                 /*
2172                  * Interrupts blocked.  Wait for unblock.
2173                  */
2174                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2175         else
2176                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2177         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2178 }
2179
2180 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2181 {
2182         int ret;
2183         struct kvm_userspace_memory_region tss_mem = {
2184                 .slot = 8,
2185                 .guest_phys_addr = addr,
2186                 .memory_size = PAGE_SIZE * 3,
2187                 .flags = 0,
2188         };
2189
2190         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2191         if (ret)
2192                 return ret;
2193         kvm->arch.tss_addr = addr;
2194         return 0;
2195 }
2196
2197 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
2198 {
2199         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
2200
2201         set_debugreg(dbg->bp[0], 0);
2202         set_debugreg(dbg->bp[1], 1);
2203         set_debugreg(dbg->bp[2], 2);
2204         set_debugreg(dbg->bp[3], 3);
2205
2206         if (dbg->singlestep) {
2207                 unsigned long flags;
2208
2209                 flags = vmcs_readl(GUEST_RFLAGS);
2210                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
2211                 vmcs_writel(GUEST_RFLAGS, flags);
2212         }
2213 }
2214
2215 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2216                                   int vec, u32 err_code)
2217 {
2218         if (!vcpu->arch.rmode.active)
2219                 return 0;
2220
2221         /*
2222          * Instruction with address size override prefix opcode 0x67
2223          * Cause the #SS fault with 0 error code in VM86 mode.
2224          */
2225         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2226                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
2227                         return 1;
2228         return 0;
2229 }
2230
2231 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2232 {
2233         struct vcpu_vmx *vmx = to_vmx(vcpu);
2234         u32 intr_info, error_code;
2235         unsigned long cr2, rip;
2236         u32 vect_info;
2237         enum emulation_result er;
2238
2239         vect_info = vmx->idt_vectoring_info;
2240         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2241
2242         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2243                                                 !is_page_fault(intr_info))
2244                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2245                        "intr info 0x%x\n", __func__, vect_info, intr_info);
2246
2247         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
2248                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
2249                 set_bit(irq, vcpu->arch.irq_pending);
2250                 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
2251         }
2252
2253         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2254                 return 1;  /* already handled by vmx_vcpu_run() */
2255
2256         if (is_no_device(intr_info)) {
2257                 vmx_fpu_activate(vcpu);
2258                 return 1;
2259         }
2260
2261         if (is_invalid_opcode(intr_info)) {
2262                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
2263                 if (er != EMULATE_DONE)
2264                         kvm_queue_exception(vcpu, UD_VECTOR);
2265                 return 1;
2266         }
2267
2268         error_code = 0;
2269         rip = vmcs_readl(GUEST_RIP);
2270         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2271                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2272         if (is_page_fault(intr_info)) {
2273                 /* EPT won't cause page fault directly */
2274                 if (vm_need_ept())
2275                         BUG();
2276                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2277                 KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
2278                             (u32)((u64)cr2 >> 32), handler);
2279                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2280         }
2281
2282         if (vcpu->arch.rmode.active &&
2283             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2284                                                                 error_code)) {
2285                 if (vcpu->arch.halt_request) {
2286                         vcpu->arch.halt_request = 0;
2287                         return kvm_emulate_halt(vcpu);
2288                 }
2289                 return 1;
2290         }
2291
2292         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
2293             (INTR_TYPE_EXCEPTION | 1)) {
2294                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2295                 return 0;
2296         }
2297         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2298         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
2299         kvm_run->ex.error_code = error_code;
2300         return 0;
2301 }
2302
2303 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
2304                                      struct kvm_run *kvm_run)
2305 {
2306         ++vcpu->stat.irq_exits;
2307         KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
2308         return 1;
2309 }
2310
2311 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2312 {
2313         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2314         return 0;
2315 }
2316
2317 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2318 {
2319         unsigned long exit_qualification;
2320         int size, down, in, string, rep;
2321         unsigned port;
2322
2323         ++vcpu->stat.io_exits;
2324         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2325         string = (exit_qualification & 16) != 0;
2326
2327         if (string) {
2328                 if (emulate_instruction(vcpu,
2329                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
2330                         return 0;
2331                 return 1;
2332         }
2333
2334         size = (exit_qualification & 7) + 1;
2335         in = (exit_qualification & 8) != 0;
2336         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
2337         rep = (exit_qualification & 32) != 0;
2338         port = exit_qualification >> 16;
2339
2340         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
2341 }
2342
2343 static void
2344 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2345 {
2346         /*
2347          * Patch in the VMCALL instruction:
2348          */
2349         hypercall[0] = 0x0f;
2350         hypercall[1] = 0x01;
2351         hypercall[2] = 0xc1;
2352 }
2353
2354 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2355 {
2356         unsigned long exit_qualification;
2357         int cr;
2358         int reg;
2359
2360         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2361         cr = exit_qualification & 15;
2362         reg = (exit_qualification >> 8) & 15;
2363         switch ((exit_qualification >> 4) & 3) {
2364         case 0: /* mov to cr */
2365                 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
2366                             (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
2367                 switch (cr) {
2368                 case 0:
2369                         vcpu_load_rsp_rip(vcpu);
2370                         kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
2371                         skip_emulated_instruction(vcpu);
2372                         return 1;
2373                 case 3:
2374                         vcpu_load_rsp_rip(vcpu);
2375                         kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
2376                         skip_emulated_instruction(vcpu);
2377                         return 1;
2378                 case 4:
2379                         vcpu_load_rsp_rip(vcpu);
2380                         kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
2381                         skip_emulated_instruction(vcpu);
2382                         return 1;
2383                 case 8:
2384                         vcpu_load_rsp_rip(vcpu);
2385                         kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
2386                         skip_emulated_instruction(vcpu);
2387                         if (irqchip_in_kernel(vcpu->kvm))
2388                                 return 1;
2389                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2390                         return 0;
2391                 };
2392                 break;
2393         case 2: /* clts */
2394                 vcpu_load_rsp_rip(vcpu);
2395                 vmx_fpu_deactivate(vcpu);
2396                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2397                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2398                 vmx_fpu_activate(vcpu);
2399                 KVMTRACE_0D(CLTS, vcpu, handler);
2400                 skip_emulated_instruction(vcpu);
2401                 return 1;
2402         case 1: /*mov from cr*/
2403                 switch (cr) {
2404                 case 3:
2405                         vcpu_load_rsp_rip(vcpu);
2406                         vcpu->arch.regs[reg] = vcpu->arch.cr3;
2407                         vcpu_put_rsp_rip(vcpu);
2408                         KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
2409                                     (u32)vcpu->arch.regs[reg],
2410                                     (u32)((u64)vcpu->arch.regs[reg] >> 32),
2411                                     handler);
2412                         skip_emulated_instruction(vcpu);
2413                         return 1;
2414                 case 8:
2415                         vcpu_load_rsp_rip(vcpu);
2416                         vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
2417                         vcpu_put_rsp_rip(vcpu);
2418                         KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
2419                                     (u32)vcpu->arch.regs[reg], handler);
2420                         skip_emulated_instruction(vcpu);
2421                         return 1;
2422                 }
2423                 break;
2424         case 3: /* lmsw */
2425                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2426
2427                 skip_emulated_instruction(vcpu);
2428                 return 1;
2429         default:
2430                 break;
2431         }
2432         kvm_run->exit_reason = 0;
2433         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2434                (int)(exit_qualification >> 4) & 3, cr);
2435         return 0;
2436 }
2437
2438 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2439 {
2440         unsigned long exit_qualification;
2441         unsigned long val;
2442         int dr, reg;
2443
2444         /*
2445          * FIXME: this code assumes the host is debugging the guest.
2446          *        need to deal with guest debugging itself too.
2447          */
2448         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2449         dr = exit_qualification & 7;
2450         reg = (exit_qualification >> 8) & 15;
2451         vcpu_load_rsp_rip(vcpu);
2452         if (exit_qualification & 16) {
2453                 /* mov from dr */
2454                 switch (dr) {
2455                 case 6:
2456                         val = 0xffff0ff0;
2457                         break;
2458                 case 7:
2459                         val = 0x400;
2460                         break;
2461                 default:
2462                         val = 0;
2463                 }
2464                 vcpu->arch.regs[reg] = val;
2465                 KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
2466         } else {
2467                 /* mov to dr */
2468         }
2469         vcpu_put_rsp_rip(vcpu);
2470         skip_emulated_instruction(vcpu);
2471         return 1;
2472 }
2473
2474 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2475 {
2476         kvm_emulate_cpuid(vcpu);
2477         return 1;
2478 }
2479
2480 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2481 {
2482         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2483         u64 data;
2484
2485         if (vmx_get_msr(vcpu, ecx, &data)) {
2486                 kvm_inject_gp(vcpu, 0);
2487                 return 1;
2488         }
2489
2490         KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
2491                     handler);
2492
2493         /* FIXME: handling of bits 32:63 of rax, rdx */
2494         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2495         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2496         skip_emulated_instruction(vcpu);
2497         return 1;
2498 }
2499
2500 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2501 {
2502         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2503         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2504                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2505
2506         KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
2507                     handler);
2508
2509         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2510                 kvm_inject_gp(vcpu, 0);
2511                 return 1;
2512         }
2513
2514         skip_emulated_instruction(vcpu);
2515         return 1;
2516 }
2517
2518 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2519                                       struct kvm_run *kvm_run)
2520 {
2521         return 1;
2522 }
2523
2524 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2525                                    struct kvm_run *kvm_run)
2526 {
2527         u32 cpu_based_vm_exec_control;
2528
2529         /* clear pending irq */
2530         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2531         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2532         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2533
2534         KVMTRACE_0D(PEND_INTR, vcpu, handler);
2535
2536         /*
2537          * If the user space waits to inject interrupts, exit as soon as
2538          * possible
2539          */
2540         if (kvm_run->request_interrupt_window &&
2541             !vcpu->arch.irq_summary) {
2542                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2543                 ++vcpu->stat.irq_window_exits;
2544                 return 0;
2545         }
2546         return 1;
2547 }
2548
2549 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2550 {
2551         skip_emulated_instruction(vcpu);
2552         return kvm_emulate_halt(vcpu);
2553 }
2554
2555 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2556 {
2557         skip_emulated_instruction(vcpu);
2558         kvm_emulate_hypercall(vcpu);
2559         return 1;
2560 }
2561
2562 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2563 {
2564         skip_emulated_instruction(vcpu);
2565         /* TODO: Add support for VT-d/pass-through device */
2566         return 1;
2567 }
2568
2569 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2570 {
2571         u64 exit_qualification;
2572         enum emulation_result er;
2573         unsigned long offset;
2574
2575         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2576         offset = exit_qualification & 0xffful;
2577
2578         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2579
2580         if (er !=  EMULATE_DONE) {
2581                 printk(KERN_ERR
2582                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2583                        offset);
2584                 return -ENOTSUPP;
2585         }
2586         return 1;
2587 }
2588
2589 static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2590 {
2591         unsigned long exit_qualification;
2592         u16 tss_selector;
2593         int reason;
2594
2595         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2596
2597         reason = (u32)exit_qualification >> 30;
2598         tss_selector = exit_qualification;
2599
2600         return kvm_task_switch(vcpu, tss_selector, reason);
2601 }
2602
2603 static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2604 {
2605         u64 exit_qualification;
2606         enum emulation_result er;
2607         gpa_t gpa;
2608         unsigned long hva;
2609         int gla_validity;
2610         int r;
2611
2612         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2613
2614         if (exit_qualification & (1 << 6)) {
2615                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
2616                 return -ENOTSUPP;
2617         }
2618
2619         gla_validity = (exit_qualification >> 7) & 0x3;
2620         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
2621                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
2622                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2623                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2624                         (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2625                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2626                         (long unsigned int)exit_qualification);
2627                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2628                 kvm_run->hw.hardware_exit_reason = 0;
2629                 return -ENOTSUPP;
2630         }
2631
2632         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
2633         hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
2634         if (!kvm_is_error_hva(hva)) {
2635                 r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
2636                 if (r < 0) {
2637                         printk(KERN_ERR "EPT: Not enough memory!\n");
2638                         return -ENOMEM;
2639                 }
2640                 return 1;
2641         } else {
2642                 /* must be MMIO */
2643                 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2644
2645                 if (er == EMULATE_FAIL) {
2646                         printk(KERN_ERR
2647                          "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2648                          er);
2649                         printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2650                          (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
2651                          (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
2652                         printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
2653                                 (long unsigned int)exit_qualification);
2654                         return -ENOTSUPP;
2655                 } else if (er == EMULATE_DO_MMIO)
2656                         return 0;
2657         }
2658         return 1;
2659 }
2660
2661 /*
2662  * The exit handlers return 1 if the exit was handled fully and guest execution
2663  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2664  * to be done to userspace and return 0.
2665  */
2666 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2667                                       struct kvm_run *kvm_run) = {
2668         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2669         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2670         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2671         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2672         [EXIT_REASON_CR_ACCESS]               = handle_cr,
2673         [EXIT_REASON_DR_ACCESS]               = handle_dr,
2674         [EXIT_REASON_CPUID]                   = handle_cpuid,
2675         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2676         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2677         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2678         [EXIT_REASON_HLT]                     = handle_halt,
2679         [EXIT_REASON_VMCALL]                  = handle_vmcall,
2680         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
2681         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
2682         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
2683         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
2684         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
2685 };
2686
2687 static const int kvm_vmx_max_exit_handlers =
2688         ARRAY_SIZE(kvm_vmx_exit_handlers);
2689
2690 /*
2691  * The guest has exited.  See if we can fix it or if we need userspace
2692  * assistance.
2693  */
2694 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2695 {
2696         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2697         struct vcpu_vmx *vmx = to_vmx(vcpu);
2698         u32 vectoring_info = vmx->idt_vectoring_info;
2699
2700         KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
2701                     (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
2702
2703         /* Access CR3 don't cause VMExit in paging mode, so we need
2704          * to sync with guest real CR3. */
2705         if (vm_need_ept() && is_paging(vcpu)) {
2706                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2707                 ept_load_pdptrs(vcpu);
2708         }
2709
2710         if (unlikely(vmx->fail)) {
2711                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2712                 kvm_run->fail_entry.hardware_entry_failure_reason
2713                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2714                 return 0;
2715         }
2716
2717         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2718                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
2719                         exit_reason != EXIT_REASON_EPT_VIOLATION))
2720                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2721                        "exit reason is 0x%x\n", __func__, exit_reason);
2722         if (exit_reason < kvm_vmx_max_exit_handlers
2723             && kvm_vmx_exit_handlers[exit_reason])
2724                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2725         else {
2726                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2727                 kvm_run->hw.hardware_exit_reason = exit_reason;
2728         }
2729         return 0;
2730 }
2731
2732 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2733 {
2734         int max_irr, tpr;
2735
2736         if (!vm_need_tpr_shadow(vcpu->kvm))
2737                 return;
2738
2739         if (!kvm_lapic_enabled(vcpu) ||
2740             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2741                 vmcs_write32(TPR_THRESHOLD, 0);
2742                 return;
2743         }
2744
2745         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2746         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2747 }
2748
2749 static void enable_irq_window(struct kvm_vcpu *vcpu)
2750 {
2751         u32 cpu_based_vm_exec_control;
2752
2753         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2754         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2755         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2756 }
2757
2758 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2759 {
2760         struct vcpu_vmx *vmx = to_vmx(vcpu);
2761         u32 idtv_info_field, intr_info_field;
2762         int has_ext_irq, interrupt_window_open;
2763         int vector;
2764
2765         update_tpr_threshold(vcpu);
2766
2767         has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2768         intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2769         idtv_info_field = vmx->idt_vectoring_info;
2770         if (intr_info_field & INTR_INFO_VALID_MASK) {
2771                 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2772                         /* TODO: fault when IDT_Vectoring */
2773                         if (printk_ratelimit())
2774                                 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2775                 }
2776                 if (has_ext_irq)
2777                         enable_irq_window(vcpu);
2778                 return;
2779         }
2780         if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2781                 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2782                     == INTR_TYPE_EXT_INTR
2783                     && vcpu->arch.rmode.active) {
2784                         u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2785
2786                         vmx_inject_irq(vcpu, vect);
2787                         if (unlikely(has_ext_irq))
2788                                 enable_irq_window(vcpu);
2789                         return;
2790                 }
2791
2792                 KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
2793
2794                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2795                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2796                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2797
2798                 if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
2799                         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2800                                 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2801                 if (unlikely(has_ext_irq))
2802                         enable_irq_window(vcpu);
2803                 return;
2804         }
2805         if (!has_ext_irq)
2806                 return;
2807         interrupt_window_open =
2808                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2809                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2810         if (interrupt_window_open) {
2811                 vector = kvm_cpu_get_interrupt(vcpu);
2812                 vmx_inject_irq(vcpu, vector);
2813                 kvm_timer_intr_post(vcpu, vector);
2814         } else
2815                 enable_irq_window(vcpu);
2816 }
2817
2818 /*
2819  * Failure to inject an interrupt should give us the information
2820  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
2821  * when fetching the interrupt redirection bitmap in the real-mode
2822  * tss, this doesn't happen.  So we do it ourselves.
2823  */
2824 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2825 {
2826         vmx->rmode.irq.pending = 0;
2827         if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2828                 return;
2829         vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2830         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2831                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2832                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2833                 return;
2834         }
2835         vmx->idt_vectoring_info =
2836                 VECTORING_INFO_VALID_MASK
2837                 | INTR_TYPE_EXT_INTR
2838                 | vmx->rmode.irq.vector;
2839 }
2840
2841 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2842 {
2843         struct vcpu_vmx *vmx = to_vmx(vcpu);
2844         u32 intr_info;
2845
2846         /*
2847          * Loading guest fpu may have cleared host cr0.ts
2848          */
2849         vmcs_writel(HOST_CR0, read_cr0());
2850
2851         asm(
2852                 /* Store host registers */
2853 #ifdef CONFIG_X86_64
2854                 "push %%rdx; push %%rbp;"
2855                 "push %%rcx \n\t"
2856 #else
2857                 "push %%edx; push %%ebp;"
2858                 "push %%ecx \n\t"
2859 #endif
2860                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
2861                 /* Check if vmlaunch of vmresume is needed */
2862                 "cmpl $0, %c[launched](%0) \n\t"
2863                 /* Load guest registers.  Don't clobber flags. */
2864 #ifdef CONFIG_X86_64
2865                 "mov %c[cr2](%0), %%rax \n\t"
2866                 "mov %%rax, %%cr2 \n\t"
2867                 "mov %c[rax](%0), %%rax \n\t"
2868                 "mov %c[rbx](%0), %%rbx \n\t"
2869                 "mov %c[rdx](%0), %%rdx \n\t"
2870                 "mov %c[rsi](%0), %%rsi \n\t"
2871                 "mov %c[rdi](%0), %%rdi \n\t"
2872                 "mov %c[rbp](%0), %%rbp \n\t"
2873                 "mov %c[r8](%0),  %%r8  \n\t"
2874                 "mov %c[r9](%0),  %%r9  \n\t"
2875                 "mov %c[r10](%0), %%r10 \n\t"
2876                 "mov %c[r11](%0), %%r11 \n\t"
2877                 "mov %c[r12](%0), %%r12 \n\t"
2878                 "mov %c[r13](%0), %%r13 \n\t"
2879                 "mov %c[r14](%0), %%r14 \n\t"
2880                 "mov %c[r15](%0), %%r15 \n\t"
2881                 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2882 #else
2883                 "mov %c[cr2](%0), %%eax \n\t"
2884                 "mov %%eax,   %%cr2 \n\t"
2885                 "mov %c[rax](%0), %%eax \n\t"
2886                 "mov %c[rbx](%0), %%ebx \n\t"
2887                 "mov %c[rdx](%0), %%edx \n\t"
2888                 "mov %c[rsi](%0), %%esi \n\t"
2889                 "mov %c[rdi](%0), %%edi \n\t"
2890                 "mov %c[rbp](%0), %%ebp \n\t"
2891                 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2892 #endif
2893                 /* Enter guest mode */
2894                 "jne .Llaunched \n\t"
2895                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
2896                 "jmp .Lkvm_vmx_return \n\t"
2897                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
2898                 ".Lkvm_vmx_return: "
2899                 /* Save guest registers, load host registers, keep flags */
2900 #ifdef CONFIG_X86_64
2901                 "xchg %0,     (%%rsp) \n\t"
2902                 "mov %%rax, %c[rax](%0) \n\t"
2903                 "mov %%rbx, %c[rbx](%0) \n\t"
2904                 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2905                 "mov %%rdx, %c[rdx](%0) \n\t"
2906                 "mov %%rsi, %c[rsi](%0) \n\t"
2907                 "mov %%rdi, %c[rdi](%0) \n\t"
2908                 "mov %%rbp, %c[rbp](%0) \n\t"
2909                 "mov %%r8,  %c[r8](%0) \n\t"
2910                 "mov %%r9,  %c[r9](%0) \n\t"
2911                 "mov %%r10, %c[r10](%0) \n\t"
2912                 "mov %%r11, %c[r11](%0) \n\t"
2913                 "mov %%r12, %c[r12](%0) \n\t"
2914                 "mov %%r13, %c[r13](%0) \n\t"
2915                 "mov %%r14, %c[r14](%0) \n\t"
2916                 "mov %%r15, %c[r15](%0) \n\t"
2917                 "mov %%cr2, %%rax   \n\t"
2918                 "mov %%rax, %c[cr2](%0) \n\t"
2919
2920                 "pop  %%rbp; pop  %%rbp; pop  %%rdx \n\t"
2921 #else
2922                 "xchg %0, (%%esp) \n\t"
2923                 "mov %%eax, %c[rax](%0) \n\t"
2924                 "mov %%ebx, %c[rbx](%0) \n\t"
2925                 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2926                 "mov %%edx, %c[rdx](%0) \n\t"
2927                 "mov %%esi, %c[rsi](%0) \n\t"
2928                 "mov %%edi, %c[rdi](%0) \n\t"
2929                 "mov %%ebp, %c[rbp](%0) \n\t"
2930                 "mov %%cr2, %%eax  \n\t"
2931                 "mov %%eax, %c[cr2](%0) \n\t"
2932
2933                 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2934 #endif
2935                 "setbe %c[fail](%0) \n\t"
2936               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2937                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2938                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2939                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2940                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2941                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2942                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2943                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2944                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2945                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2946 #ifdef CONFIG_X86_64
2947                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2948                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2949                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2950                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2951                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2952                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2953                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2954                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2955 #endif
2956                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2957               : "cc", "memory"
2958 #ifdef CONFIG_X86_64
2959                 , "rbx", "rdi", "rsi"
2960                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2961 #else
2962                 , "ebx", "edi", "rsi"
2963 #endif
2964               );
2965
2966         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2967         if (vmx->rmode.irq.pending)
2968                 fixup_rmode_irq(vmx);
2969
2970         vcpu->arch.interrupt_window_open =
2971                 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2972
2973         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2974         vmx->launched = 1;
2975
2976         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2977
2978         /* We need to handle NMIs before interrupts are enabled */
2979         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
2980                 KVMTRACE_0D(NMI, vcpu, handler);
2981                 asm("int $2");
2982         }
2983 }
2984
2985 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2986 {
2987         struct vcpu_vmx *vmx = to_vmx(vcpu);
2988
2989         if (vmx->vmcs) {
2990                 vcpu_clear(vmx);
2991                 free_vmcs(vmx->vmcs);
2992                 vmx->vmcs = NULL;
2993         }
2994 }
2995
2996 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2997 {
2998         struct vcpu_vmx *vmx = to_vmx(vcpu);
2999
3000         spin_lock(&vmx_vpid_lock);
3001         if (vmx->vpid != 0)
3002                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3003         spin_unlock(&vmx_vpid_lock);
3004         vmx_free_vmcs(vcpu);
3005         kfree(vmx->host_msrs);
3006         kfree(vmx->guest_msrs);
3007         kvm_vcpu_uninit(vcpu);
3008         kmem_cache_free(kvm_vcpu_cache, vmx);
3009 }
3010
3011 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3012 {
3013         int err;
3014         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3015         int cpu;
3016
3017         if (!vmx)
3018                 return ERR_PTR(-ENOMEM);
3019
3020         allocate_vpid(vmx);
3021         if (id == 0 && vm_need_ept()) {
3022                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
3023                         VMX_EPT_WRITABLE_MASK |
3024                         VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
3025                 kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK,
3026                                 VMX_EPT_FAKE_DIRTY_MASK, 0ull,
3027                                 VMX_EPT_EXECUTABLE_MASK);
3028                 kvm_enable_tdp();
3029         }
3030
3031         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3032         if (err)
3033                 goto free_vcpu;
3034
3035         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3036         if (!vmx->guest_msrs) {
3037                 err = -ENOMEM;
3038                 goto uninit_vcpu;
3039         }
3040
3041         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3042         if (!vmx->host_msrs)
3043                 goto free_guest_msrs;
3044
3045         vmx->vmcs = alloc_vmcs();
3046         if (!vmx->vmcs)
3047                 goto free_msrs;
3048
3049         vmcs_clear(vmx->vmcs);
3050
3051         cpu = get_cpu();
3052         vmx_vcpu_load(&vmx->vcpu, cpu);
3053         err = vmx_vcpu_setup(vmx);
3054         vmx_vcpu_put(&vmx->vcpu);
3055         put_cpu();
3056         if (err)
3057                 goto free_vmcs;
3058         if (vm_need_virtualize_apic_accesses(kvm))
3059                 if (alloc_apic_access_page(kvm) != 0)
3060                         goto free_vmcs;
3061
3062         if (vm_need_ept())
3063                 if (alloc_identity_pagetable(kvm) != 0)
3064                         goto free_vmcs;
3065
3066         return &vmx->vcpu;
3067
3068 free_vmcs:
3069         free_vmcs(vmx->vmcs);
3070 free_msrs:
3071         kfree(vmx->host_msrs);
3072 free_guest_msrs:
3073         kfree(vmx->guest_msrs);
3074 uninit_vcpu:
3075         kvm_vcpu_uninit(&vmx->vcpu);
3076 free_vcpu:
3077         kmem_cache_free(kvm_vcpu_cache, vmx);
3078         return ERR_PTR(err);
3079 }
3080
3081 static void __init vmx_check_processor_compat(void *rtn)
3082 {
3083         struct vmcs_config vmcs_conf;
3084
3085         *(int *)rtn = 0;
3086         if (setup_vmcs_config(&vmcs_conf) < 0)
3087                 *(int *)rtn = -EIO;
3088         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3089                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3090                                 smp_processor_id());
3091                 *(int *)rtn = -EIO;
3092         }
3093 }
3094
3095 static int get_ept_level(void)
3096 {
3097         return VMX_EPT_DEFAULT_GAW + 1;
3098 }
3099
3100 static struct kvm_x86_ops vmx_x86_ops = {
3101         .cpu_has_kvm_support = cpu_has_kvm_support,
3102         .disabled_by_bios = vmx_disabled_by_bios,
3103         .hardware_setup = hardware_setup,
3104         .hardware_unsetup = hardware_unsetup,
3105         .check_processor_compatibility = vmx_check_processor_compat,
3106         .hardware_enable = hardware_enable,
3107         .hardware_disable = hardware_disable,
3108         .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
3109
3110         .vcpu_create = vmx_create_vcpu,
3111         .vcpu_free = vmx_free_vcpu,
3112         .vcpu_reset = vmx_vcpu_reset,
3113
3114         .prepare_guest_switch = vmx_save_host_state,
3115         .vcpu_load = vmx_vcpu_load,
3116         .vcpu_put = vmx_vcpu_put,
3117         .vcpu_decache = vmx_vcpu_decache,
3118
3119         .set_guest_debug = set_guest_debug,
3120         .guest_debug_pre = kvm_guest_debug_pre,
3121         .get_msr = vmx_get_msr,
3122         .set_msr = vmx_set_msr,
3123         .get_segment_base = vmx_get_segment_base,
3124         .get_segment = vmx_get_segment,
3125         .set_segment = vmx_set_segment,
3126         .get_cpl = vmx_get_cpl,
3127         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3128         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3129         .set_cr0 = vmx_set_cr0,
3130         .set_cr3 = vmx_set_cr3,
3131         .set_cr4 = vmx_set_cr4,
3132         .set_efer = vmx_set_efer,
3133         .get_idt = vmx_get_idt,
3134         .set_idt = vmx_set_idt,
3135         .get_gdt = vmx_get_gdt,
3136         .set_gdt = vmx_set_gdt,
3137         .cache_regs = vcpu_load_rsp_rip,
3138         .decache_regs = vcpu_put_rsp_rip,
3139         .get_rflags = vmx_get_rflags,
3140         .set_rflags = vmx_set_rflags,
3141
3142         .tlb_flush = vmx_flush_tlb,
3143
3144         .run = vmx_vcpu_run,
3145         .handle_exit = kvm_handle_exit,
3146         .skip_emulated_instruction = skip_emulated_instruction,
3147         .patch_hypercall = vmx_patch_hypercall,
3148         .get_irq = vmx_get_irq,
3149         .set_irq = vmx_inject_irq,
3150         .queue_exception = vmx_queue_exception,
3151         .exception_injected = vmx_exception_injected,
3152         .inject_pending_irq = vmx_intr_assist,
3153         .inject_pending_vectors = do_interrupt_requests,
3154
3155         .set_tss_addr = vmx_set_tss_addr,
3156         .get_tdp_level = get_ept_level,
3157 };
3158
3159 static int __init vmx_init(void)
3160 {
3161         void *va;
3162         int r;
3163
3164         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3165         if (!vmx_io_bitmap_a)
3166                 return -ENOMEM;
3167
3168         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3169         if (!vmx_io_bitmap_b) {
3170                 r = -ENOMEM;
3171                 goto out;
3172         }
3173
3174         vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
3175         if (!vmx_msr_bitmap) {
3176                 r = -ENOMEM;
3177                 goto out1;
3178         }
3179
3180         /*
3181          * Allow direct access to the PC debug port (it is often used for I/O
3182          * delays, but the vmexits simply slow things down).
3183          */
3184         va = kmap(vmx_io_bitmap_a);
3185         memset(va, 0xff, PAGE_SIZE);
3186         clear_bit(0x80, va);
3187         kunmap(vmx_io_bitmap_a);
3188
3189         va = kmap(vmx_io_bitmap_b);
3190         memset(va, 0xff, PAGE_SIZE);
3191         kunmap(vmx_io_bitmap_b);
3192
3193         va = kmap(vmx_msr_bitmap);
3194         memset(va, 0xff, PAGE_SIZE);
3195         kunmap(vmx_msr_bitmap);
3196
3197         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
3198
3199         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
3200         if (r)
3201                 goto out2;
3202
3203         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
3204         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
3205         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
3206         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
3207         vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
3208
3209         if (cpu_has_vmx_ept())
3210                 bypass_guest_pf = 0;
3211
3212         if (bypass_guest_pf)
3213                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
3214
3215         ept_sync_global();
3216
3217         return 0;
3218
3219 out2:
3220         __free_page(vmx_msr_bitmap);
3221 out1:
3222         __free_page(vmx_io_bitmap_b);
3223 out:
3224         __free_page(vmx_io_bitmap_a);
3225         return r;
3226 }
3227
3228 static void __exit vmx_exit(void)
3229 {
3230         __free_page(vmx_msr_bitmap);
3231         __free_page(vmx_io_bitmap_b);
3232         __free_page(vmx_io_bitmap_a);
3233
3234         kvm_exit();
3235 }
3236
3237 module_init(vmx_init)
3238 module_exit(vmx_exit)