KVM: Add cpuid_update() callback to kvm_x86_ops
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "mmu.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
31
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
37
38 #include "trace.h"
39
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
44
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
47
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
50
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
53
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
56
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59                         enable_unrestricted_guest, bool, S_IRUGO);
60
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
63
64 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
65         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
66 #define KVM_GUEST_CR0_MASK                                              \
67         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
68 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
69         (X86_CR0_WP | X86_CR0_NE | X86_CR0_TS | X86_CR0_MP)
70 #define KVM_VM_CR0_ALWAYS_ON                                            \
71         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
72 #define KVM_CR4_GUEST_OWNED_BITS                                      \
73         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
74          | X86_CR4_OSXMMEXCPT)
75
76 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
77 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
78
79 /*
80  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
81  * ple_gap:    upper bound on the amount of time between two successive
82  *             executions of PAUSE in a loop. Also indicate if ple enabled.
83  *             According to test, this time is usually small than 41 cycles.
84  * ple_window: upper bound on the amount of time a guest is allowed to execute
85  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
86  *             less than 2^12 cycles
87  * Time is measured based on a counter that runs at the same rate as the TSC,
88  * refer SDM volume 3b section 21.6.13 & 22.1.3.
89  */
90 #define KVM_VMX_DEFAULT_PLE_GAP    41
91 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
92 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
93 module_param(ple_gap, int, S_IRUGO);
94
95 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
96 module_param(ple_window, int, S_IRUGO);
97
98 struct vmcs {
99         u32 revision_id;
100         u32 abort;
101         char data[0];
102 };
103
104 struct shared_msr_entry {
105         unsigned index;
106         u64 data;
107         u64 mask;
108 };
109
110 struct vcpu_vmx {
111         struct kvm_vcpu       vcpu;
112         struct list_head      local_vcpus_link;
113         unsigned long         host_rsp;
114         int                   launched;
115         u8                    fail;
116         u32                   idt_vectoring_info;
117         struct shared_msr_entry *guest_msrs;
118         int                   nmsrs;
119         int                   save_nmsrs;
120 #ifdef CONFIG_X86_64
121         u64                   msr_host_kernel_gs_base;
122         u64                   msr_guest_kernel_gs_base;
123 #endif
124         struct vmcs          *vmcs;
125         struct {
126                 int           loaded;
127                 u16           fs_sel, gs_sel, ldt_sel;
128                 int           gs_ldt_reload_needed;
129                 int           fs_reload_needed;
130         } host_state;
131         struct {
132                 int vm86_active;
133                 u8 save_iopl;
134                 struct kvm_save_segment {
135                         u16 selector;
136                         unsigned long base;
137                         u32 limit;
138                         u32 ar;
139                 } tr, es, ds, fs, gs;
140                 struct {
141                         bool pending;
142                         u8 vector;
143                         unsigned rip;
144                 } irq;
145         } rmode;
146         int vpid;
147         bool emulation_required;
148
149         /* Support for vnmi-less CPUs */
150         int soft_vnmi_blocked;
151         ktime_t entry_time;
152         s64 vnmi_blocked_time;
153         u32 exit_reason;
154 };
155
156 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
157 {
158         return container_of(vcpu, struct vcpu_vmx, vcpu);
159 }
160
161 static int init_rmode(struct kvm *kvm);
162 static u64 construct_eptp(unsigned long root_hpa);
163
164 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
165 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
166 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
167
168 static unsigned long *vmx_io_bitmap_a;
169 static unsigned long *vmx_io_bitmap_b;
170 static unsigned long *vmx_msr_bitmap_legacy;
171 static unsigned long *vmx_msr_bitmap_longmode;
172
173 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
174 static DEFINE_SPINLOCK(vmx_vpid_lock);
175
176 static struct vmcs_config {
177         int size;
178         int order;
179         u32 revision_id;
180         u32 pin_based_exec_ctrl;
181         u32 cpu_based_exec_ctrl;
182         u32 cpu_based_2nd_exec_ctrl;
183         u32 vmexit_ctrl;
184         u32 vmentry_ctrl;
185 } vmcs_config;
186
187 static struct vmx_capability {
188         u32 ept;
189         u32 vpid;
190 } vmx_capability;
191
192 #define VMX_SEGMENT_FIELD(seg)                                  \
193         [VCPU_SREG_##seg] = {                                   \
194                 .selector = GUEST_##seg##_SELECTOR,             \
195                 .base = GUEST_##seg##_BASE,                     \
196                 .limit = GUEST_##seg##_LIMIT,                   \
197                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
198         }
199
200 static struct kvm_vmx_segment_field {
201         unsigned selector;
202         unsigned base;
203         unsigned limit;
204         unsigned ar_bytes;
205 } kvm_vmx_segment_fields[] = {
206         VMX_SEGMENT_FIELD(CS),
207         VMX_SEGMENT_FIELD(DS),
208         VMX_SEGMENT_FIELD(ES),
209         VMX_SEGMENT_FIELD(FS),
210         VMX_SEGMENT_FIELD(GS),
211         VMX_SEGMENT_FIELD(SS),
212         VMX_SEGMENT_FIELD(TR),
213         VMX_SEGMENT_FIELD(LDTR),
214 };
215
216 static u64 host_efer;
217
218 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
219
220 /*
221  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
222  * away by decrementing the array size.
223  */
224 static const u32 vmx_msr_index[] = {
225 #ifdef CONFIG_X86_64
226         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
227 #endif
228         MSR_EFER, MSR_K6_STAR,
229 };
230 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
231
232 static inline int is_page_fault(u32 intr_info)
233 {
234         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
235                              INTR_INFO_VALID_MASK)) ==
236                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
237 }
238
239 static inline int is_no_device(u32 intr_info)
240 {
241         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
242                              INTR_INFO_VALID_MASK)) ==
243                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
244 }
245
246 static inline int is_invalid_opcode(u32 intr_info)
247 {
248         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
249                              INTR_INFO_VALID_MASK)) ==
250                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
251 }
252
253 static inline int is_external_interrupt(u32 intr_info)
254 {
255         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
256                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
257 }
258
259 static inline int is_machine_check(u32 intr_info)
260 {
261         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
262                              INTR_INFO_VALID_MASK)) ==
263                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
264 }
265
266 static inline int cpu_has_vmx_msr_bitmap(void)
267 {
268         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
269 }
270
271 static inline int cpu_has_vmx_tpr_shadow(void)
272 {
273         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
274 }
275
276 static inline int vm_need_tpr_shadow(struct kvm *kvm)
277 {
278         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
279 }
280
281 static inline int cpu_has_secondary_exec_ctrls(void)
282 {
283         return vmcs_config.cpu_based_exec_ctrl &
284                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
285 }
286
287 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
288 {
289         return vmcs_config.cpu_based_2nd_exec_ctrl &
290                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
291 }
292
293 static inline bool cpu_has_vmx_flexpriority(void)
294 {
295         return cpu_has_vmx_tpr_shadow() &&
296                 cpu_has_vmx_virtualize_apic_accesses();
297 }
298
299 static inline bool cpu_has_vmx_ept_execute_only(void)
300 {
301         return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
302 }
303
304 static inline bool cpu_has_vmx_eptp_uncacheable(void)
305 {
306         return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
307 }
308
309 static inline bool cpu_has_vmx_eptp_writeback(void)
310 {
311         return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
312 }
313
314 static inline bool cpu_has_vmx_ept_2m_page(void)
315 {
316         return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
317 }
318
319 static inline int cpu_has_vmx_invept_individual_addr(void)
320 {
321         return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
322 }
323
324 static inline int cpu_has_vmx_invept_context(void)
325 {
326         return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
327 }
328
329 static inline int cpu_has_vmx_invept_global(void)
330 {
331         return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
332 }
333
334 static inline int cpu_has_vmx_ept(void)
335 {
336         return vmcs_config.cpu_based_2nd_exec_ctrl &
337                 SECONDARY_EXEC_ENABLE_EPT;
338 }
339
340 static inline int cpu_has_vmx_unrestricted_guest(void)
341 {
342         return vmcs_config.cpu_based_2nd_exec_ctrl &
343                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
344 }
345
346 static inline int cpu_has_vmx_ple(void)
347 {
348         return vmcs_config.cpu_based_2nd_exec_ctrl &
349                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
350 }
351
352 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
353 {
354         return flexpriority_enabled &&
355                 (cpu_has_vmx_virtualize_apic_accesses()) &&
356                 (irqchip_in_kernel(kvm));
357 }
358
359 static inline int cpu_has_vmx_vpid(void)
360 {
361         return vmcs_config.cpu_based_2nd_exec_ctrl &
362                 SECONDARY_EXEC_ENABLE_VPID;
363 }
364
365 static inline int cpu_has_virtual_nmis(void)
366 {
367         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
368 }
369
370 static inline bool report_flexpriority(void)
371 {
372         return flexpriority_enabled;
373 }
374
375 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
376 {
377         int i;
378
379         for (i = 0; i < vmx->nmsrs; ++i)
380                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
381                         return i;
382         return -1;
383 }
384
385 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
386 {
387     struct {
388         u64 vpid : 16;
389         u64 rsvd : 48;
390         u64 gva;
391     } operand = { vpid, 0, gva };
392
393     asm volatile (__ex(ASM_VMX_INVVPID)
394                   /* CF==1 or ZF==1 --> rc = -1 */
395                   "; ja 1f ; ud2 ; 1:"
396                   : : "a"(&operand), "c"(ext) : "cc", "memory");
397 }
398
399 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
400 {
401         struct {
402                 u64 eptp, gpa;
403         } operand = {eptp, gpa};
404
405         asm volatile (__ex(ASM_VMX_INVEPT)
406                         /* CF==1 or ZF==1 --> rc = -1 */
407                         "; ja 1f ; ud2 ; 1:\n"
408                         : : "a" (&operand), "c" (ext) : "cc", "memory");
409 }
410
411 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
412 {
413         int i;
414
415         i = __find_msr_index(vmx, msr);
416         if (i >= 0)
417                 return &vmx->guest_msrs[i];
418         return NULL;
419 }
420
421 static void vmcs_clear(struct vmcs *vmcs)
422 {
423         u64 phys_addr = __pa(vmcs);
424         u8 error;
425
426         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
427                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
428                       : "cc", "memory");
429         if (error)
430                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
431                        vmcs, phys_addr);
432 }
433
434 static void __vcpu_clear(void *arg)
435 {
436         struct vcpu_vmx *vmx = arg;
437         int cpu = raw_smp_processor_id();
438
439         if (vmx->vcpu.cpu == cpu)
440                 vmcs_clear(vmx->vmcs);
441         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
442                 per_cpu(current_vmcs, cpu) = NULL;
443         rdtscll(vmx->vcpu.arch.host_tsc);
444         list_del(&vmx->local_vcpus_link);
445         vmx->vcpu.cpu = -1;
446         vmx->launched = 0;
447 }
448
449 static void vcpu_clear(struct vcpu_vmx *vmx)
450 {
451         if (vmx->vcpu.cpu == -1)
452                 return;
453         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
454 }
455
456 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
457 {
458         if (vmx->vpid == 0)
459                 return;
460
461         __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
462 }
463
464 static inline void ept_sync_global(void)
465 {
466         if (cpu_has_vmx_invept_global())
467                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
468 }
469
470 static inline void ept_sync_context(u64 eptp)
471 {
472         if (enable_ept) {
473                 if (cpu_has_vmx_invept_context())
474                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
475                 else
476                         ept_sync_global();
477         }
478 }
479
480 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
481 {
482         if (enable_ept) {
483                 if (cpu_has_vmx_invept_individual_addr())
484                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
485                                         eptp, gpa);
486                 else
487                         ept_sync_context(eptp);
488         }
489 }
490
491 static unsigned long vmcs_readl(unsigned long field)
492 {
493         unsigned long value;
494
495         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
496                       : "=a"(value) : "d"(field) : "cc");
497         return value;
498 }
499
500 static u16 vmcs_read16(unsigned long field)
501 {
502         return vmcs_readl(field);
503 }
504
505 static u32 vmcs_read32(unsigned long field)
506 {
507         return vmcs_readl(field);
508 }
509
510 static u64 vmcs_read64(unsigned long field)
511 {
512 #ifdef CONFIG_X86_64
513         return vmcs_readl(field);
514 #else
515         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
516 #endif
517 }
518
519 static noinline void vmwrite_error(unsigned long field, unsigned long value)
520 {
521         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
522                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
523         dump_stack();
524 }
525
526 static void vmcs_writel(unsigned long field, unsigned long value)
527 {
528         u8 error;
529
530         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
531                        : "=q"(error) : "a"(value), "d"(field) : "cc");
532         if (unlikely(error))
533                 vmwrite_error(field, value);
534 }
535
536 static void vmcs_write16(unsigned long field, u16 value)
537 {
538         vmcs_writel(field, value);
539 }
540
541 static void vmcs_write32(unsigned long field, u32 value)
542 {
543         vmcs_writel(field, value);
544 }
545
546 static void vmcs_write64(unsigned long field, u64 value)
547 {
548         vmcs_writel(field, value);
549 #ifndef CONFIG_X86_64
550         asm volatile ("");
551         vmcs_writel(field+1, value >> 32);
552 #endif
553 }
554
555 static void vmcs_clear_bits(unsigned long field, u32 mask)
556 {
557         vmcs_writel(field, vmcs_readl(field) & ~mask);
558 }
559
560 static void vmcs_set_bits(unsigned long field, u32 mask)
561 {
562         vmcs_writel(field, vmcs_readl(field) | mask);
563 }
564
565 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
566 {
567         u32 eb;
568
569         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
570         if (!vcpu->fpu_active)
571                 eb |= 1u << NM_VECTOR;
572         /*
573          * Unconditionally intercept #DB so we can maintain dr6 without
574          * reading it every exit.
575          */
576         eb |= 1u << DB_VECTOR;
577         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
578                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
579                         eb |= 1u << BP_VECTOR;
580         }
581         if (to_vmx(vcpu)->rmode.vm86_active)
582                 eb = ~0;
583         if (enable_ept)
584                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
585         vmcs_write32(EXCEPTION_BITMAP, eb);
586 }
587
588 static void reload_tss(void)
589 {
590         /*
591          * VT restores TR but not its size.  Useless.
592          */
593         struct descriptor_table gdt;
594         struct desc_struct *descs;
595
596         kvm_get_gdt(&gdt);
597         descs = (void *)gdt.base;
598         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
599         load_TR_desc();
600 }
601
602 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
603 {
604         u64 guest_efer;
605         u64 ignore_bits;
606
607         guest_efer = vmx->vcpu.arch.shadow_efer;
608
609         /*
610          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
611          * outside long mode
612          */
613         ignore_bits = EFER_NX | EFER_SCE;
614 #ifdef CONFIG_X86_64
615         ignore_bits |= EFER_LMA | EFER_LME;
616         /* SCE is meaningful only in long mode on Intel */
617         if (guest_efer & EFER_LMA)
618                 ignore_bits &= ~(u64)EFER_SCE;
619 #endif
620         guest_efer &= ~ignore_bits;
621         guest_efer |= host_efer & ignore_bits;
622         vmx->guest_msrs[efer_offset].data = guest_efer;
623         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
624         return true;
625 }
626
627 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
628 {
629         struct vcpu_vmx *vmx = to_vmx(vcpu);
630         int i;
631
632         if (vmx->host_state.loaded)
633                 return;
634
635         vmx->host_state.loaded = 1;
636         /*
637          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
638          * allow segment selectors with cpl > 0 or ti == 1.
639          */
640         vmx->host_state.ldt_sel = kvm_read_ldt();
641         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
642         vmx->host_state.fs_sel = kvm_read_fs();
643         if (!(vmx->host_state.fs_sel & 7)) {
644                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
645                 vmx->host_state.fs_reload_needed = 0;
646         } else {
647                 vmcs_write16(HOST_FS_SELECTOR, 0);
648                 vmx->host_state.fs_reload_needed = 1;
649         }
650         vmx->host_state.gs_sel = kvm_read_gs();
651         if (!(vmx->host_state.gs_sel & 7))
652                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
653         else {
654                 vmcs_write16(HOST_GS_SELECTOR, 0);
655                 vmx->host_state.gs_ldt_reload_needed = 1;
656         }
657
658 #ifdef CONFIG_X86_64
659         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
660         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
661 #else
662         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
663         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
664 #endif
665
666 #ifdef CONFIG_X86_64
667         if (is_long_mode(&vmx->vcpu)) {
668                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
669                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
670         }
671 #endif
672         for (i = 0; i < vmx->save_nmsrs; ++i)
673                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
674                                    vmx->guest_msrs[i].data,
675                                    vmx->guest_msrs[i].mask);
676 }
677
678 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
679 {
680         unsigned long flags;
681
682         if (!vmx->host_state.loaded)
683                 return;
684
685         ++vmx->vcpu.stat.host_state_reload;
686         vmx->host_state.loaded = 0;
687         if (vmx->host_state.fs_reload_needed)
688                 kvm_load_fs(vmx->host_state.fs_sel);
689         if (vmx->host_state.gs_ldt_reload_needed) {
690                 kvm_load_ldt(vmx->host_state.ldt_sel);
691                 /*
692                  * If we have to reload gs, we must take care to
693                  * preserve our gs base.
694                  */
695                 local_irq_save(flags);
696                 kvm_load_gs(vmx->host_state.gs_sel);
697 #ifdef CONFIG_X86_64
698                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
699 #endif
700                 local_irq_restore(flags);
701         }
702         reload_tss();
703 #ifdef CONFIG_X86_64
704         if (is_long_mode(&vmx->vcpu)) {
705                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
706                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
707         }
708 #endif
709 }
710
711 static void vmx_load_host_state(struct vcpu_vmx *vmx)
712 {
713         preempt_disable();
714         __vmx_load_host_state(vmx);
715         preempt_enable();
716 }
717
718 /*
719  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
720  * vcpu mutex is already taken.
721  */
722 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
723 {
724         struct vcpu_vmx *vmx = to_vmx(vcpu);
725         u64 phys_addr = __pa(vmx->vmcs);
726         u64 tsc_this, delta, new_offset;
727
728         if (vcpu->cpu != cpu) {
729                 vcpu_clear(vmx);
730                 kvm_migrate_timers(vcpu);
731                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
732                 local_irq_disable();
733                 list_add(&vmx->local_vcpus_link,
734                          &per_cpu(vcpus_on_cpu, cpu));
735                 local_irq_enable();
736         }
737
738         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
739                 u8 error;
740
741                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
742                 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
743                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
744                               : "cc");
745                 if (error)
746                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
747                                vmx->vmcs, phys_addr);
748         }
749
750         if (vcpu->cpu != cpu) {
751                 struct descriptor_table dt;
752                 unsigned long sysenter_esp;
753
754                 vcpu->cpu = cpu;
755                 /*
756                  * Linux uses per-cpu TSS and GDT, so set these when switching
757                  * processors.
758                  */
759                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
760                 kvm_get_gdt(&dt);
761                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
762
763                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
764                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
765
766                 /*
767                  * Make sure the time stamp counter is monotonous.
768                  */
769                 rdtscll(tsc_this);
770                 if (tsc_this < vcpu->arch.host_tsc) {
771                         delta = vcpu->arch.host_tsc - tsc_this;
772                         new_offset = vmcs_read64(TSC_OFFSET) + delta;
773                         vmcs_write64(TSC_OFFSET, new_offset);
774                 }
775         }
776 }
777
778 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
779 {
780         __vmx_load_host_state(to_vmx(vcpu));
781 }
782
783 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
784 {
785         if (vcpu->fpu_active)
786                 return;
787         vcpu->fpu_active = 1;
788         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
789         if (vcpu->arch.cr0 & X86_CR0_TS)
790                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
791         update_exception_bitmap(vcpu);
792 }
793
794 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
795 {
796         if (!vcpu->fpu_active)
797                 return;
798         vcpu->fpu_active = 0;
799         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
800         update_exception_bitmap(vcpu);
801 }
802
803 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
804 {
805         unsigned long rflags;
806
807         rflags = vmcs_readl(GUEST_RFLAGS);
808         if (to_vmx(vcpu)->rmode.vm86_active)
809                 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
810         return rflags;
811 }
812
813 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
814 {
815         if (to_vmx(vcpu)->rmode.vm86_active)
816                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
817         vmcs_writel(GUEST_RFLAGS, rflags);
818 }
819
820 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
821 {
822         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
823         int ret = 0;
824
825         if (interruptibility & GUEST_INTR_STATE_STI)
826                 ret |= X86_SHADOW_INT_STI;
827         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
828                 ret |= X86_SHADOW_INT_MOV_SS;
829
830         return ret & mask;
831 }
832
833 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
834 {
835         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
836         u32 interruptibility = interruptibility_old;
837
838         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
839
840         if (mask & X86_SHADOW_INT_MOV_SS)
841                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
842         if (mask & X86_SHADOW_INT_STI)
843                 interruptibility |= GUEST_INTR_STATE_STI;
844
845         if ((interruptibility != interruptibility_old))
846                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
847 }
848
849 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
850 {
851         unsigned long rip;
852
853         rip = kvm_rip_read(vcpu);
854         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
855         kvm_rip_write(vcpu, rip);
856
857         /* skipping an emulated instruction also counts */
858         vmx_set_interrupt_shadow(vcpu, 0);
859 }
860
861 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
862                                 bool has_error_code, u32 error_code)
863 {
864         struct vcpu_vmx *vmx = to_vmx(vcpu);
865         u32 intr_info = nr | INTR_INFO_VALID_MASK;
866
867         if (has_error_code) {
868                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
869                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
870         }
871
872         if (vmx->rmode.vm86_active) {
873                 vmx->rmode.irq.pending = true;
874                 vmx->rmode.irq.vector = nr;
875                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
876                 if (kvm_exception_is_soft(nr))
877                         vmx->rmode.irq.rip +=
878                                 vmx->vcpu.arch.event_exit_inst_len;
879                 intr_info |= INTR_TYPE_SOFT_INTR;
880                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
881                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
882                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
883                 return;
884         }
885
886         if (kvm_exception_is_soft(nr)) {
887                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
888                              vmx->vcpu.arch.event_exit_inst_len);
889                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
890         } else
891                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
892
893         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
894 }
895
896 /*
897  * Swap MSR entry in host/guest MSR entry array.
898  */
899 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
900 {
901         struct shared_msr_entry tmp;
902
903         tmp = vmx->guest_msrs[to];
904         vmx->guest_msrs[to] = vmx->guest_msrs[from];
905         vmx->guest_msrs[from] = tmp;
906 }
907
908 /*
909  * Set up the vmcs to automatically save and restore system
910  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
911  * mode, as fiddling with msrs is very expensive.
912  */
913 static void setup_msrs(struct vcpu_vmx *vmx)
914 {
915         int save_nmsrs, index;
916         unsigned long *msr_bitmap;
917
918         vmx_load_host_state(vmx);
919         save_nmsrs = 0;
920 #ifdef CONFIG_X86_64
921         if (is_long_mode(&vmx->vcpu)) {
922                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
923                 if (index >= 0)
924                         move_msr_up(vmx, index, save_nmsrs++);
925                 index = __find_msr_index(vmx, MSR_LSTAR);
926                 if (index >= 0)
927                         move_msr_up(vmx, index, save_nmsrs++);
928                 index = __find_msr_index(vmx, MSR_CSTAR);
929                 if (index >= 0)
930                         move_msr_up(vmx, index, save_nmsrs++);
931                 /*
932                  * MSR_K6_STAR is only needed on long mode guests, and only
933                  * if efer.sce is enabled.
934                  */
935                 index = __find_msr_index(vmx, MSR_K6_STAR);
936                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
937                         move_msr_up(vmx, index, save_nmsrs++);
938         }
939 #endif
940         index = __find_msr_index(vmx, MSR_EFER);
941         if (index >= 0 && update_transition_efer(vmx, index))
942                 move_msr_up(vmx, index, save_nmsrs++);
943
944         vmx->save_nmsrs = save_nmsrs;
945
946         if (cpu_has_vmx_msr_bitmap()) {
947                 if (is_long_mode(&vmx->vcpu))
948                         msr_bitmap = vmx_msr_bitmap_longmode;
949                 else
950                         msr_bitmap = vmx_msr_bitmap_legacy;
951
952                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
953         }
954 }
955
956 /*
957  * reads and returns guest's timestamp counter "register"
958  * guest_tsc = host_tsc + tsc_offset    -- 21.3
959  */
960 static u64 guest_read_tsc(void)
961 {
962         u64 host_tsc, tsc_offset;
963
964         rdtscll(host_tsc);
965         tsc_offset = vmcs_read64(TSC_OFFSET);
966         return host_tsc + tsc_offset;
967 }
968
969 /*
970  * writes 'guest_tsc' into guest's timestamp counter "register"
971  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
972  */
973 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
974 {
975         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
976 }
977
978 /*
979  * Reads an msr value (of 'msr_index') into 'pdata'.
980  * Returns 0 on success, non-0 otherwise.
981  * Assumes vcpu_load() was already called.
982  */
983 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
984 {
985         u64 data;
986         struct shared_msr_entry *msr;
987
988         if (!pdata) {
989                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
990                 return -EINVAL;
991         }
992
993         switch (msr_index) {
994 #ifdef CONFIG_X86_64
995         case MSR_FS_BASE:
996                 data = vmcs_readl(GUEST_FS_BASE);
997                 break;
998         case MSR_GS_BASE:
999                 data = vmcs_readl(GUEST_GS_BASE);
1000                 break;
1001         case MSR_KERNEL_GS_BASE:
1002                 vmx_load_host_state(to_vmx(vcpu));
1003                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1004                 break;
1005 #endif
1006         case MSR_EFER:
1007                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1008         case MSR_IA32_TSC:
1009                 data = guest_read_tsc();
1010                 break;
1011         case MSR_IA32_SYSENTER_CS:
1012                 data = vmcs_read32(GUEST_SYSENTER_CS);
1013                 break;
1014         case MSR_IA32_SYSENTER_EIP:
1015                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1016                 break;
1017         case MSR_IA32_SYSENTER_ESP:
1018                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1019                 break;
1020         default:
1021                 vmx_load_host_state(to_vmx(vcpu));
1022                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1023                 if (msr) {
1024                         vmx_load_host_state(to_vmx(vcpu));
1025                         data = msr->data;
1026                         break;
1027                 }
1028                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1029         }
1030
1031         *pdata = data;
1032         return 0;
1033 }
1034
1035 /*
1036  * Writes msr value into into the appropriate "register".
1037  * Returns 0 on success, non-0 otherwise.
1038  * Assumes vcpu_load() was already called.
1039  */
1040 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1041 {
1042         struct vcpu_vmx *vmx = to_vmx(vcpu);
1043         struct shared_msr_entry *msr;
1044         u64 host_tsc;
1045         int ret = 0;
1046
1047         switch (msr_index) {
1048         case MSR_EFER:
1049                 vmx_load_host_state(vmx);
1050                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1051                 break;
1052 #ifdef CONFIG_X86_64
1053         case MSR_FS_BASE:
1054                 vmcs_writel(GUEST_FS_BASE, data);
1055                 break;
1056         case MSR_GS_BASE:
1057                 vmcs_writel(GUEST_GS_BASE, data);
1058                 break;
1059         case MSR_KERNEL_GS_BASE:
1060                 vmx_load_host_state(vmx);
1061                 vmx->msr_guest_kernel_gs_base = data;
1062                 break;
1063 #endif
1064         case MSR_IA32_SYSENTER_CS:
1065                 vmcs_write32(GUEST_SYSENTER_CS, data);
1066                 break;
1067         case MSR_IA32_SYSENTER_EIP:
1068                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1069                 break;
1070         case MSR_IA32_SYSENTER_ESP:
1071                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1072                 break;
1073         case MSR_IA32_TSC:
1074                 rdtscll(host_tsc);
1075                 guest_write_tsc(data, host_tsc);
1076                 break;
1077         case MSR_IA32_CR_PAT:
1078                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1079                         vmcs_write64(GUEST_IA32_PAT, data);
1080                         vcpu->arch.pat = data;
1081                         break;
1082                 }
1083                 /* Otherwise falls through to kvm_set_msr_common */
1084         default:
1085                 msr = find_msr_entry(vmx, msr_index);
1086                 if (msr) {
1087                         vmx_load_host_state(vmx);
1088                         msr->data = data;
1089                         break;
1090                 }
1091                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1092         }
1093
1094         return ret;
1095 }
1096
1097 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1098 {
1099         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1100         switch (reg) {
1101         case VCPU_REGS_RSP:
1102                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1103                 break;
1104         case VCPU_REGS_RIP:
1105                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1106                 break;
1107         case VCPU_EXREG_PDPTR:
1108                 if (enable_ept)
1109                         ept_save_pdptrs(vcpu);
1110                 break;
1111         default:
1112                 break;
1113         }
1114 }
1115
1116 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1117 {
1118         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1119                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1120         else
1121                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1122
1123         update_exception_bitmap(vcpu);
1124 }
1125
1126 static __init int cpu_has_kvm_support(void)
1127 {
1128         return cpu_has_vmx();
1129 }
1130
1131 static __init int vmx_disabled_by_bios(void)
1132 {
1133         u64 msr;
1134
1135         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1136         return (msr & (FEATURE_CONTROL_LOCKED |
1137                        FEATURE_CONTROL_VMXON_ENABLED))
1138             == FEATURE_CONTROL_LOCKED;
1139         /* locked but not enabled */
1140 }
1141
1142 static int hardware_enable(void *garbage)
1143 {
1144         int cpu = raw_smp_processor_id();
1145         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1146         u64 old;
1147
1148         if (read_cr4() & X86_CR4_VMXE)
1149                 return -EBUSY;
1150
1151         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1152         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1153         if ((old & (FEATURE_CONTROL_LOCKED |
1154                     FEATURE_CONTROL_VMXON_ENABLED))
1155             != (FEATURE_CONTROL_LOCKED |
1156                 FEATURE_CONTROL_VMXON_ENABLED))
1157                 /* enable and lock */
1158                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1159                        FEATURE_CONTROL_LOCKED |
1160                        FEATURE_CONTROL_VMXON_ENABLED);
1161         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1162         asm volatile (ASM_VMX_VMXON_RAX
1163                       : : "a"(&phys_addr), "m"(phys_addr)
1164                       : "memory", "cc");
1165
1166         ept_sync_global();
1167
1168         return 0;
1169 }
1170
1171 static void vmclear_local_vcpus(void)
1172 {
1173         int cpu = raw_smp_processor_id();
1174         struct vcpu_vmx *vmx, *n;
1175
1176         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1177                                  local_vcpus_link)
1178                 __vcpu_clear(vmx);
1179 }
1180
1181
1182 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1183  * tricks.
1184  */
1185 static void kvm_cpu_vmxoff(void)
1186 {
1187         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1188         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1189 }
1190
1191 static void hardware_disable(void *garbage)
1192 {
1193         vmclear_local_vcpus();
1194         kvm_cpu_vmxoff();
1195 }
1196
1197 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1198                                       u32 msr, u32 *result)
1199 {
1200         u32 vmx_msr_low, vmx_msr_high;
1201         u32 ctl = ctl_min | ctl_opt;
1202
1203         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1204
1205         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1206         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1207
1208         /* Ensure minimum (required) set of control bits are supported. */
1209         if (ctl_min & ~ctl)
1210                 return -EIO;
1211
1212         *result = ctl;
1213         return 0;
1214 }
1215
1216 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1217 {
1218         u32 vmx_msr_low, vmx_msr_high;
1219         u32 min, opt, min2, opt2;
1220         u32 _pin_based_exec_control = 0;
1221         u32 _cpu_based_exec_control = 0;
1222         u32 _cpu_based_2nd_exec_control = 0;
1223         u32 _vmexit_control = 0;
1224         u32 _vmentry_control = 0;
1225
1226         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1227         opt = PIN_BASED_VIRTUAL_NMIS;
1228         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1229                                 &_pin_based_exec_control) < 0)
1230                 return -EIO;
1231
1232         min = CPU_BASED_HLT_EXITING |
1233 #ifdef CONFIG_X86_64
1234               CPU_BASED_CR8_LOAD_EXITING |
1235               CPU_BASED_CR8_STORE_EXITING |
1236 #endif
1237               CPU_BASED_CR3_LOAD_EXITING |
1238               CPU_BASED_CR3_STORE_EXITING |
1239               CPU_BASED_USE_IO_BITMAPS |
1240               CPU_BASED_MOV_DR_EXITING |
1241               CPU_BASED_USE_TSC_OFFSETING |
1242               CPU_BASED_MWAIT_EXITING |
1243               CPU_BASED_MONITOR_EXITING |
1244               CPU_BASED_INVLPG_EXITING;
1245         opt = CPU_BASED_TPR_SHADOW |
1246               CPU_BASED_USE_MSR_BITMAPS |
1247               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1248         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1249                                 &_cpu_based_exec_control) < 0)
1250                 return -EIO;
1251 #ifdef CONFIG_X86_64
1252         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1253                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1254                                            ~CPU_BASED_CR8_STORE_EXITING;
1255 #endif
1256         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1257                 min2 = 0;
1258                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1259                         SECONDARY_EXEC_WBINVD_EXITING |
1260                         SECONDARY_EXEC_ENABLE_VPID |
1261                         SECONDARY_EXEC_ENABLE_EPT |
1262                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1263                         SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1264                 if (adjust_vmx_controls(min2, opt2,
1265                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1266                                         &_cpu_based_2nd_exec_control) < 0)
1267                         return -EIO;
1268         }
1269 #ifndef CONFIG_X86_64
1270         if (!(_cpu_based_2nd_exec_control &
1271                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1272                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1273 #endif
1274         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1275                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1276                    enabled */
1277                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1278                                              CPU_BASED_CR3_STORE_EXITING |
1279                                              CPU_BASED_INVLPG_EXITING);
1280                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1281                       vmx_capability.ept, vmx_capability.vpid);
1282         }
1283
1284         min = 0;
1285 #ifdef CONFIG_X86_64
1286         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1287 #endif
1288         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1289         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1290                                 &_vmexit_control) < 0)
1291                 return -EIO;
1292
1293         min = 0;
1294         opt = VM_ENTRY_LOAD_IA32_PAT;
1295         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1296                                 &_vmentry_control) < 0)
1297                 return -EIO;
1298
1299         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1300
1301         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1302         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1303                 return -EIO;
1304
1305 #ifdef CONFIG_X86_64
1306         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1307         if (vmx_msr_high & (1u<<16))
1308                 return -EIO;
1309 #endif
1310
1311         /* Require Write-Back (WB) memory type for VMCS accesses. */
1312         if (((vmx_msr_high >> 18) & 15) != 6)
1313                 return -EIO;
1314
1315         vmcs_conf->size = vmx_msr_high & 0x1fff;
1316         vmcs_conf->order = get_order(vmcs_config.size);
1317         vmcs_conf->revision_id = vmx_msr_low;
1318
1319         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1320         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1321         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1322         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1323         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1324
1325         return 0;
1326 }
1327
1328 static struct vmcs *alloc_vmcs_cpu(int cpu)
1329 {
1330         int node = cpu_to_node(cpu);
1331         struct page *pages;
1332         struct vmcs *vmcs;
1333
1334         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1335         if (!pages)
1336                 return NULL;
1337         vmcs = page_address(pages);
1338         memset(vmcs, 0, vmcs_config.size);
1339         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1340         return vmcs;
1341 }
1342
1343 static struct vmcs *alloc_vmcs(void)
1344 {
1345         return alloc_vmcs_cpu(raw_smp_processor_id());
1346 }
1347
1348 static void free_vmcs(struct vmcs *vmcs)
1349 {
1350         free_pages((unsigned long)vmcs, vmcs_config.order);
1351 }
1352
1353 static void free_kvm_area(void)
1354 {
1355         int cpu;
1356
1357         for_each_possible_cpu(cpu) {
1358                 free_vmcs(per_cpu(vmxarea, cpu));
1359                 per_cpu(vmxarea, cpu) = NULL;
1360         }
1361 }
1362
1363 static __init int alloc_kvm_area(void)
1364 {
1365         int cpu;
1366
1367         for_each_possible_cpu(cpu) {
1368                 struct vmcs *vmcs;
1369
1370                 vmcs = alloc_vmcs_cpu(cpu);
1371                 if (!vmcs) {
1372                         free_kvm_area();
1373                         return -ENOMEM;
1374                 }
1375
1376                 per_cpu(vmxarea, cpu) = vmcs;
1377         }
1378         return 0;
1379 }
1380
1381 static __init int hardware_setup(void)
1382 {
1383         if (setup_vmcs_config(&vmcs_config) < 0)
1384                 return -EIO;
1385
1386         if (boot_cpu_has(X86_FEATURE_NX))
1387                 kvm_enable_efer_bits(EFER_NX);
1388
1389         if (!cpu_has_vmx_vpid())
1390                 enable_vpid = 0;
1391
1392         if (!cpu_has_vmx_ept()) {
1393                 enable_ept = 0;
1394                 enable_unrestricted_guest = 0;
1395         }
1396
1397         if (!cpu_has_vmx_unrestricted_guest())
1398                 enable_unrestricted_guest = 0;
1399
1400         if (!cpu_has_vmx_flexpriority())
1401                 flexpriority_enabled = 0;
1402
1403         if (!cpu_has_vmx_tpr_shadow())
1404                 kvm_x86_ops->update_cr8_intercept = NULL;
1405
1406         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1407                 kvm_disable_largepages();
1408
1409         if (!cpu_has_vmx_ple())
1410                 ple_gap = 0;
1411
1412         return alloc_kvm_area();
1413 }
1414
1415 static __exit void hardware_unsetup(void)
1416 {
1417         free_kvm_area();
1418 }
1419
1420 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1421 {
1422         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1423
1424         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1425                 vmcs_write16(sf->selector, save->selector);
1426                 vmcs_writel(sf->base, save->base);
1427                 vmcs_write32(sf->limit, save->limit);
1428                 vmcs_write32(sf->ar_bytes, save->ar);
1429         } else {
1430                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1431                         << AR_DPL_SHIFT;
1432                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1433         }
1434 }
1435
1436 static void enter_pmode(struct kvm_vcpu *vcpu)
1437 {
1438         unsigned long flags;
1439         struct vcpu_vmx *vmx = to_vmx(vcpu);
1440
1441         vmx->emulation_required = 1;
1442         vmx->rmode.vm86_active = 0;
1443
1444         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1445         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1446         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1447
1448         flags = vmcs_readl(GUEST_RFLAGS);
1449         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1450         flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1451         vmcs_writel(GUEST_RFLAGS, flags);
1452
1453         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1454                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1455
1456         update_exception_bitmap(vcpu);
1457
1458         if (emulate_invalid_guest_state)
1459                 return;
1460
1461         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1462         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1463         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1464         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1465
1466         vmcs_write16(GUEST_SS_SELECTOR, 0);
1467         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1468
1469         vmcs_write16(GUEST_CS_SELECTOR,
1470                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1471         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1472 }
1473
1474 static gva_t rmode_tss_base(struct kvm *kvm)
1475 {
1476         if (!kvm->arch.tss_addr) {
1477                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1478                                  kvm->memslots[0].npages - 3;
1479                 return base_gfn << PAGE_SHIFT;
1480         }
1481         return kvm->arch.tss_addr;
1482 }
1483
1484 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1485 {
1486         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1487
1488         save->selector = vmcs_read16(sf->selector);
1489         save->base = vmcs_readl(sf->base);
1490         save->limit = vmcs_read32(sf->limit);
1491         save->ar = vmcs_read32(sf->ar_bytes);
1492         vmcs_write16(sf->selector, save->base >> 4);
1493         vmcs_write32(sf->base, save->base & 0xfffff);
1494         vmcs_write32(sf->limit, 0xffff);
1495         vmcs_write32(sf->ar_bytes, 0xf3);
1496 }
1497
1498 static void enter_rmode(struct kvm_vcpu *vcpu)
1499 {
1500         unsigned long flags;
1501         struct vcpu_vmx *vmx = to_vmx(vcpu);
1502
1503         if (enable_unrestricted_guest)
1504                 return;
1505
1506         vmx->emulation_required = 1;
1507         vmx->rmode.vm86_active = 1;
1508
1509         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1510         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1511
1512         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1513         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1514
1515         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1516         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1517
1518         flags = vmcs_readl(GUEST_RFLAGS);
1519         vmx->rmode.save_iopl
1520                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1521
1522         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1523
1524         vmcs_writel(GUEST_RFLAGS, flags);
1525         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1526         update_exception_bitmap(vcpu);
1527
1528         if (emulate_invalid_guest_state)
1529                 goto continue_rmode;
1530
1531         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1532         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1533         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1534
1535         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1536         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1537         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1538                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1539         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1540
1541         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1542         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1543         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1544         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1545
1546 continue_rmode:
1547         kvm_mmu_reset_context(vcpu);
1548         init_rmode(vcpu->kvm);
1549 }
1550
1551 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1552 {
1553         struct vcpu_vmx *vmx = to_vmx(vcpu);
1554         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1555
1556         if (!msr)
1557                 return;
1558
1559         /*
1560          * Force kernel_gs_base reloading before EFER changes, as control
1561          * of this msr depends on is_long_mode().
1562          */
1563         vmx_load_host_state(to_vmx(vcpu));
1564         vcpu->arch.shadow_efer = efer;
1565         if (!msr)
1566                 return;
1567         if (efer & EFER_LMA) {
1568                 vmcs_write32(VM_ENTRY_CONTROLS,
1569                              vmcs_read32(VM_ENTRY_CONTROLS) |
1570                              VM_ENTRY_IA32E_MODE);
1571                 msr->data = efer;
1572         } else {
1573                 vmcs_write32(VM_ENTRY_CONTROLS,
1574                              vmcs_read32(VM_ENTRY_CONTROLS) &
1575                              ~VM_ENTRY_IA32E_MODE);
1576
1577                 msr->data = efer & ~EFER_LME;
1578         }
1579         setup_msrs(vmx);
1580 }
1581
1582 #ifdef CONFIG_X86_64
1583
1584 static void enter_lmode(struct kvm_vcpu *vcpu)
1585 {
1586         u32 guest_tr_ar;
1587
1588         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1589         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1590                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1591                        __func__);
1592                 vmcs_write32(GUEST_TR_AR_BYTES,
1593                              (guest_tr_ar & ~AR_TYPE_MASK)
1594                              | AR_TYPE_BUSY_64_TSS);
1595         }
1596         vcpu->arch.shadow_efer |= EFER_LMA;
1597         vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1598 }
1599
1600 static void exit_lmode(struct kvm_vcpu *vcpu)
1601 {
1602         vcpu->arch.shadow_efer &= ~EFER_LMA;
1603
1604         vmcs_write32(VM_ENTRY_CONTROLS,
1605                      vmcs_read32(VM_ENTRY_CONTROLS)
1606                      & ~VM_ENTRY_IA32E_MODE);
1607 }
1608
1609 #endif
1610
1611 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1612 {
1613         vpid_sync_vcpu_all(to_vmx(vcpu));
1614         if (enable_ept)
1615                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1616 }
1617
1618 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1619 {
1620         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1621
1622         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1623         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1624 }
1625
1626 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1627 {
1628         if (!test_bit(VCPU_EXREG_PDPTR,
1629                       (unsigned long *)&vcpu->arch.regs_dirty))
1630                 return;
1631
1632         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1633                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1634                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1635                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1636                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1637         }
1638 }
1639
1640 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1641 {
1642         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1643                 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1644                 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1645                 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1646                 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1647         }
1648
1649         __set_bit(VCPU_EXREG_PDPTR,
1650                   (unsigned long *)&vcpu->arch.regs_avail);
1651         __set_bit(VCPU_EXREG_PDPTR,
1652                   (unsigned long *)&vcpu->arch.regs_dirty);
1653 }
1654
1655 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1656
1657 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1658                                         unsigned long cr0,
1659                                         struct kvm_vcpu *vcpu)
1660 {
1661         if (!(cr0 & X86_CR0_PG)) {
1662                 /* From paging/starting to nonpaging */
1663                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1664                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1665                              (CPU_BASED_CR3_LOAD_EXITING |
1666                               CPU_BASED_CR3_STORE_EXITING));
1667                 vcpu->arch.cr0 = cr0;
1668                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1669         } else if (!is_paging(vcpu)) {
1670                 /* From nonpaging to paging */
1671                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1672                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1673                              ~(CPU_BASED_CR3_LOAD_EXITING |
1674                                CPU_BASED_CR3_STORE_EXITING));
1675                 vcpu->arch.cr0 = cr0;
1676                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1677         }
1678
1679         if (!(cr0 & X86_CR0_WP))
1680                 *hw_cr0 &= ~X86_CR0_WP;
1681 }
1682
1683 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1684 {
1685         struct vcpu_vmx *vmx = to_vmx(vcpu);
1686         unsigned long hw_cr0;
1687
1688         if (enable_unrestricted_guest)
1689                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1690                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1691         else
1692                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1693
1694         vmx_fpu_deactivate(vcpu);
1695
1696         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1697                 enter_pmode(vcpu);
1698
1699         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1700                 enter_rmode(vcpu);
1701
1702 #ifdef CONFIG_X86_64
1703         if (vcpu->arch.shadow_efer & EFER_LME) {
1704                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1705                         enter_lmode(vcpu);
1706                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1707                         exit_lmode(vcpu);
1708         }
1709 #endif
1710
1711         if (enable_ept)
1712                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1713
1714         vmcs_writel(CR0_READ_SHADOW, cr0);
1715         vmcs_writel(GUEST_CR0, hw_cr0);
1716         vcpu->arch.cr0 = cr0;
1717
1718         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1719                 vmx_fpu_activate(vcpu);
1720 }
1721
1722 static u64 construct_eptp(unsigned long root_hpa)
1723 {
1724         u64 eptp;
1725
1726         /* TODO write the value reading from MSR */
1727         eptp = VMX_EPT_DEFAULT_MT |
1728                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1729         eptp |= (root_hpa & PAGE_MASK);
1730
1731         return eptp;
1732 }
1733
1734 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1735 {
1736         unsigned long guest_cr3;
1737         u64 eptp;
1738
1739         guest_cr3 = cr3;
1740         if (enable_ept) {
1741                 eptp = construct_eptp(cr3);
1742                 vmcs_write64(EPT_POINTER, eptp);
1743                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1744                         vcpu->kvm->arch.ept_identity_map_addr;
1745                 ept_load_pdptrs(vcpu);
1746         }
1747
1748         vmx_flush_tlb(vcpu);
1749         vmcs_writel(GUEST_CR3, guest_cr3);
1750         if (vcpu->arch.cr0 & X86_CR0_PE)
1751                 vmx_fpu_deactivate(vcpu);
1752 }
1753
1754 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1755 {
1756         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1757                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1758
1759         vcpu->arch.cr4 = cr4;
1760         if (enable_ept) {
1761                 if (!is_paging(vcpu)) {
1762                         hw_cr4 &= ~X86_CR4_PAE;
1763                         hw_cr4 |= X86_CR4_PSE;
1764                 } else if (!(cr4 & X86_CR4_PAE)) {
1765                         hw_cr4 &= ~X86_CR4_PAE;
1766                 }
1767         }
1768
1769         vmcs_writel(CR4_READ_SHADOW, cr4);
1770         vmcs_writel(GUEST_CR4, hw_cr4);
1771 }
1772
1773 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1774 {
1775         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1776
1777         return vmcs_readl(sf->base);
1778 }
1779
1780 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1781                             struct kvm_segment *var, int seg)
1782 {
1783         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1784         u32 ar;
1785
1786         var->base = vmcs_readl(sf->base);
1787         var->limit = vmcs_read32(sf->limit);
1788         var->selector = vmcs_read16(sf->selector);
1789         ar = vmcs_read32(sf->ar_bytes);
1790         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1791                 ar = 0;
1792         var->type = ar & 15;
1793         var->s = (ar >> 4) & 1;
1794         var->dpl = (ar >> 5) & 3;
1795         var->present = (ar >> 7) & 1;
1796         var->avl = (ar >> 12) & 1;
1797         var->l = (ar >> 13) & 1;
1798         var->db = (ar >> 14) & 1;
1799         var->g = (ar >> 15) & 1;
1800         var->unusable = (ar >> 16) & 1;
1801 }
1802
1803 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1804 {
1805         if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1806                 return 0;
1807
1808         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1809                 return 3;
1810
1811         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1812 }
1813
1814 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1815 {
1816         u32 ar;
1817
1818         if (var->unusable)
1819                 ar = 1 << 16;
1820         else {
1821                 ar = var->type & 15;
1822                 ar |= (var->s & 1) << 4;
1823                 ar |= (var->dpl & 3) << 5;
1824                 ar |= (var->present & 1) << 7;
1825                 ar |= (var->avl & 1) << 12;
1826                 ar |= (var->l & 1) << 13;
1827                 ar |= (var->db & 1) << 14;
1828                 ar |= (var->g & 1) << 15;
1829         }
1830         if (ar == 0) /* a 0 value means unusable */
1831                 ar = AR_UNUSABLE_MASK;
1832
1833         return ar;
1834 }
1835
1836 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1837                             struct kvm_segment *var, int seg)
1838 {
1839         struct vcpu_vmx *vmx = to_vmx(vcpu);
1840         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1841         u32 ar;
1842
1843         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1844                 vmx->rmode.tr.selector = var->selector;
1845                 vmx->rmode.tr.base = var->base;
1846                 vmx->rmode.tr.limit = var->limit;
1847                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1848                 return;
1849         }
1850         vmcs_writel(sf->base, var->base);
1851         vmcs_write32(sf->limit, var->limit);
1852         vmcs_write16(sf->selector, var->selector);
1853         if (vmx->rmode.vm86_active && var->s) {
1854                 /*
1855                  * Hack real-mode segments into vm86 compatibility.
1856                  */
1857                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1858                         vmcs_writel(sf->base, 0xf0000);
1859                 ar = 0xf3;
1860         } else
1861                 ar = vmx_segment_access_rights(var);
1862
1863         /*
1864          *   Fix the "Accessed" bit in AR field of segment registers for older
1865          * qemu binaries.
1866          *   IA32 arch specifies that at the time of processor reset the
1867          * "Accessed" bit in the AR field of segment registers is 1. And qemu
1868          * is setting it to 0 in the usedland code. This causes invalid guest
1869          * state vmexit when "unrestricted guest" mode is turned on.
1870          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
1871          * tree. Newer qemu binaries with that qemu fix would not need this
1872          * kvm hack.
1873          */
1874         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1875                 ar |= 0x1; /* Accessed */
1876
1877         vmcs_write32(sf->ar_bytes, ar);
1878 }
1879
1880 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1881 {
1882         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1883
1884         *db = (ar >> 14) & 1;
1885         *l = (ar >> 13) & 1;
1886 }
1887
1888 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1889 {
1890         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1891         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1892 }
1893
1894 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1895 {
1896         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1897         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1898 }
1899
1900 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1901 {
1902         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1903         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1904 }
1905
1906 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1907 {
1908         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1909         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1910 }
1911
1912 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1913 {
1914         struct kvm_segment var;
1915         u32 ar;
1916
1917         vmx_get_segment(vcpu, &var, seg);
1918         ar = vmx_segment_access_rights(&var);
1919
1920         if (var.base != (var.selector << 4))
1921                 return false;
1922         if (var.limit != 0xffff)
1923                 return false;
1924         if (ar != 0xf3)
1925                 return false;
1926
1927         return true;
1928 }
1929
1930 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1931 {
1932         struct kvm_segment cs;
1933         unsigned int cs_rpl;
1934
1935         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1936         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1937
1938         if (cs.unusable)
1939                 return false;
1940         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1941                 return false;
1942         if (!cs.s)
1943                 return false;
1944         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1945                 if (cs.dpl > cs_rpl)
1946                         return false;
1947         } else {
1948                 if (cs.dpl != cs_rpl)
1949                         return false;
1950         }
1951         if (!cs.present)
1952                 return false;
1953
1954         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1955         return true;
1956 }
1957
1958 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1959 {
1960         struct kvm_segment ss;
1961         unsigned int ss_rpl;
1962
1963         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1964         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1965
1966         if (ss.unusable)
1967                 return true;
1968         if (ss.type != 3 && ss.type != 7)
1969                 return false;
1970         if (!ss.s)
1971                 return false;
1972         if (ss.dpl != ss_rpl) /* DPL != RPL */
1973                 return false;
1974         if (!ss.present)
1975                 return false;
1976
1977         return true;
1978 }
1979
1980 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1981 {
1982         struct kvm_segment var;
1983         unsigned int rpl;
1984
1985         vmx_get_segment(vcpu, &var, seg);
1986         rpl = var.selector & SELECTOR_RPL_MASK;
1987
1988         if (var.unusable)
1989                 return true;
1990         if (!var.s)
1991                 return false;
1992         if (!var.present)
1993                 return false;
1994         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1995                 if (var.dpl < rpl) /* DPL < RPL */
1996                         return false;
1997         }
1998
1999         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2000          * rights flags
2001          */
2002         return true;
2003 }
2004
2005 static bool tr_valid(struct kvm_vcpu *vcpu)
2006 {
2007         struct kvm_segment tr;
2008
2009         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2010
2011         if (tr.unusable)
2012                 return false;
2013         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2014                 return false;
2015         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2016                 return false;
2017         if (!tr.present)
2018                 return false;
2019
2020         return true;
2021 }
2022
2023 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2024 {
2025         struct kvm_segment ldtr;
2026
2027         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2028
2029         if (ldtr.unusable)
2030                 return true;
2031         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2032                 return false;
2033         if (ldtr.type != 2)
2034                 return false;
2035         if (!ldtr.present)
2036                 return false;
2037
2038         return true;
2039 }
2040
2041 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2042 {
2043         struct kvm_segment cs, ss;
2044
2045         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2046         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2047
2048         return ((cs.selector & SELECTOR_RPL_MASK) ==
2049                  (ss.selector & SELECTOR_RPL_MASK));
2050 }
2051
2052 /*
2053  * Check if guest state is valid. Returns true if valid, false if
2054  * not.
2055  * We assume that registers are always usable
2056  */
2057 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2058 {
2059         /* real mode guest state checks */
2060         if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2061                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2062                         return false;
2063                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2064                         return false;
2065                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2066                         return false;
2067                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2068                         return false;
2069                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2070                         return false;
2071                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2072                         return false;
2073         } else {
2074         /* protected mode guest state checks */
2075                 if (!cs_ss_rpl_check(vcpu))
2076                         return false;
2077                 if (!code_segment_valid(vcpu))
2078                         return false;
2079                 if (!stack_segment_valid(vcpu))
2080                         return false;
2081                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2082                         return false;
2083                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2084                         return false;
2085                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2086                         return false;
2087                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2088                         return false;
2089                 if (!tr_valid(vcpu))
2090                         return false;
2091                 if (!ldtr_valid(vcpu))
2092                         return false;
2093         }
2094         /* TODO:
2095          * - Add checks on RIP
2096          * - Add checks on RFLAGS
2097          */
2098
2099         return true;
2100 }
2101
2102 static int init_rmode_tss(struct kvm *kvm)
2103 {
2104         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2105         u16 data = 0;
2106         int ret = 0;
2107         int r;
2108
2109         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2110         if (r < 0)
2111                 goto out;
2112         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2113         r = kvm_write_guest_page(kvm, fn++, &data,
2114                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2115         if (r < 0)
2116                 goto out;
2117         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2118         if (r < 0)
2119                 goto out;
2120         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2121         if (r < 0)
2122                 goto out;
2123         data = ~0;
2124         r = kvm_write_guest_page(kvm, fn, &data,
2125                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2126                                  sizeof(u8));
2127         if (r < 0)
2128                 goto out;
2129
2130         ret = 1;
2131 out:
2132         return ret;
2133 }
2134
2135 static int init_rmode_identity_map(struct kvm *kvm)
2136 {
2137         int i, r, ret;
2138         pfn_t identity_map_pfn;
2139         u32 tmp;
2140
2141         if (!enable_ept)
2142                 return 1;
2143         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2144                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2145                         "haven't been allocated!\n");
2146                 return 0;
2147         }
2148         if (likely(kvm->arch.ept_identity_pagetable_done))
2149                 return 1;
2150         ret = 0;
2151         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2152         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2153         if (r < 0)
2154                 goto out;
2155         /* Set up identity-mapping pagetable for EPT in real mode */
2156         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2157                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2158                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2159                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2160                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2161                 if (r < 0)
2162                         goto out;
2163         }
2164         kvm->arch.ept_identity_pagetable_done = true;
2165         ret = 1;
2166 out:
2167         return ret;
2168 }
2169
2170 static void seg_setup(int seg)
2171 {
2172         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2173         unsigned int ar;
2174
2175         vmcs_write16(sf->selector, 0);
2176         vmcs_writel(sf->base, 0);
2177         vmcs_write32(sf->limit, 0xffff);
2178         if (enable_unrestricted_guest) {
2179                 ar = 0x93;
2180                 if (seg == VCPU_SREG_CS)
2181                         ar |= 0x08; /* code segment */
2182         } else
2183                 ar = 0xf3;
2184
2185         vmcs_write32(sf->ar_bytes, ar);
2186 }
2187
2188 static int alloc_apic_access_page(struct kvm *kvm)
2189 {
2190         struct kvm_userspace_memory_region kvm_userspace_mem;
2191         int r = 0;
2192
2193         down_write(&kvm->slots_lock);
2194         if (kvm->arch.apic_access_page)
2195                 goto out;
2196         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2197         kvm_userspace_mem.flags = 0;
2198         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2199         kvm_userspace_mem.memory_size = PAGE_SIZE;
2200         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2201         if (r)
2202                 goto out;
2203
2204         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2205 out:
2206         up_write(&kvm->slots_lock);
2207         return r;
2208 }
2209
2210 static int alloc_identity_pagetable(struct kvm *kvm)
2211 {
2212         struct kvm_userspace_memory_region kvm_userspace_mem;
2213         int r = 0;
2214
2215         down_write(&kvm->slots_lock);
2216         if (kvm->arch.ept_identity_pagetable)
2217                 goto out;
2218         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2219         kvm_userspace_mem.flags = 0;
2220         kvm_userspace_mem.guest_phys_addr =
2221                 kvm->arch.ept_identity_map_addr;
2222         kvm_userspace_mem.memory_size = PAGE_SIZE;
2223         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2224         if (r)
2225                 goto out;
2226
2227         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2228                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2229 out:
2230         up_write(&kvm->slots_lock);
2231         return r;
2232 }
2233
2234 static void allocate_vpid(struct vcpu_vmx *vmx)
2235 {
2236         int vpid;
2237
2238         vmx->vpid = 0;
2239         if (!enable_vpid)
2240                 return;
2241         spin_lock(&vmx_vpid_lock);
2242         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2243         if (vpid < VMX_NR_VPIDS) {
2244                 vmx->vpid = vpid;
2245                 __set_bit(vpid, vmx_vpid_bitmap);
2246         }
2247         spin_unlock(&vmx_vpid_lock);
2248 }
2249
2250 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2251 {
2252         int f = sizeof(unsigned long);
2253
2254         if (!cpu_has_vmx_msr_bitmap())
2255                 return;
2256
2257         /*
2258          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2259          * have the write-low and read-high bitmap offsets the wrong way round.
2260          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2261          */
2262         if (msr <= 0x1fff) {
2263                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2264                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2265         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2266                 msr &= 0x1fff;
2267                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2268                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2269         }
2270 }
2271
2272 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2273 {
2274         if (!longmode_only)
2275                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2276         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2277 }
2278
2279 /*
2280  * Sets up the vmcs for emulated real mode.
2281  */
2282 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2283 {
2284         u32 host_sysenter_cs, msr_low, msr_high;
2285         u32 junk;
2286         u64 host_pat, tsc_this, tsc_base;
2287         unsigned long a;
2288         struct descriptor_table dt;
2289         int i;
2290         unsigned long kvm_vmx_return;
2291         u32 exec_control;
2292
2293         /* I/O */
2294         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2295         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2296
2297         if (cpu_has_vmx_msr_bitmap())
2298                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2299
2300         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2301
2302         /* Control */
2303         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2304                 vmcs_config.pin_based_exec_ctrl);
2305
2306         exec_control = vmcs_config.cpu_based_exec_ctrl;
2307         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2308                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2309 #ifdef CONFIG_X86_64
2310                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2311                                 CPU_BASED_CR8_LOAD_EXITING;
2312 #endif
2313         }
2314         if (!enable_ept)
2315                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2316                                 CPU_BASED_CR3_LOAD_EXITING  |
2317                                 CPU_BASED_INVLPG_EXITING;
2318         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2319
2320         if (cpu_has_secondary_exec_ctrls()) {
2321                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2322                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2323                         exec_control &=
2324                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2325                 if (vmx->vpid == 0)
2326                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2327                 if (!enable_ept) {
2328                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2329                         enable_unrestricted_guest = 0;
2330                 }
2331                 if (!enable_unrestricted_guest)
2332                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2333                 if (!ple_gap)
2334                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2335                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2336         }
2337
2338         if (ple_gap) {
2339                 vmcs_write32(PLE_GAP, ple_gap);
2340                 vmcs_write32(PLE_WINDOW, ple_window);
2341         }
2342
2343         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2344         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2345         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2346
2347         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
2348         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2349         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2350
2351         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2352         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2353         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2354         vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs());    /* 22.2.4 */
2355         vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs());    /* 22.2.4 */
2356         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2357 #ifdef CONFIG_X86_64
2358         rdmsrl(MSR_FS_BASE, a);
2359         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2360         rdmsrl(MSR_GS_BASE, a);
2361         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2362 #else
2363         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2364         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2365 #endif
2366
2367         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2368
2369         kvm_get_idt(&dt);
2370         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
2371
2372         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2373         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2374         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2375         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2376         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2377
2378         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2379         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2380         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2381         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2382         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2383         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2384
2385         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2386                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2387                 host_pat = msr_low | ((u64) msr_high << 32);
2388                 vmcs_write64(HOST_IA32_PAT, host_pat);
2389         }
2390         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2391                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2392                 host_pat = msr_low | ((u64) msr_high << 32);
2393                 /* Write the default value follow host pat */
2394                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2395                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2396                 vmx->vcpu.arch.pat = host_pat;
2397         }
2398
2399         for (i = 0; i < NR_VMX_MSR; ++i) {
2400                 u32 index = vmx_msr_index[i];
2401                 u32 data_low, data_high;
2402                 int j = vmx->nmsrs;
2403
2404                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2405                         continue;
2406                 if (wrmsr_safe(index, data_low, data_high) < 0)
2407                         continue;
2408                 vmx->guest_msrs[j].index = i;
2409                 vmx->guest_msrs[j].data = 0;
2410                 vmx->guest_msrs[j].mask = -1ull;
2411                 ++vmx->nmsrs;
2412         }
2413
2414         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2415
2416         /* 22.2.1, 20.8.1 */
2417         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2418
2419         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2420         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2421         if (enable_ept)
2422                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2423         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2424
2425         tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2426         rdtscll(tsc_this);
2427         if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2428                 tsc_base = tsc_this;
2429
2430         guest_write_tsc(0, tsc_base);
2431
2432         return 0;
2433 }
2434
2435 static int init_rmode(struct kvm *kvm)
2436 {
2437         if (!init_rmode_tss(kvm))
2438                 return 0;
2439         if (!init_rmode_identity_map(kvm))
2440                 return 0;
2441         return 1;
2442 }
2443
2444 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2445 {
2446         struct vcpu_vmx *vmx = to_vmx(vcpu);
2447         u64 msr;
2448         int ret;
2449
2450         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2451         down_read(&vcpu->kvm->slots_lock);
2452         if (!init_rmode(vmx->vcpu.kvm)) {
2453                 ret = -ENOMEM;
2454                 goto out;
2455         }
2456
2457         vmx->rmode.vm86_active = 0;
2458
2459         vmx->soft_vnmi_blocked = 0;
2460
2461         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2462         kvm_set_cr8(&vmx->vcpu, 0);
2463         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2464         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2465                 msr |= MSR_IA32_APICBASE_BSP;
2466         kvm_set_apic_base(&vmx->vcpu, msr);
2467
2468         fx_init(&vmx->vcpu);
2469
2470         seg_setup(VCPU_SREG_CS);
2471         /*
2472          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2473          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2474          */
2475         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2476                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2477                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2478         } else {
2479                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2480                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2481         }
2482
2483         seg_setup(VCPU_SREG_DS);
2484         seg_setup(VCPU_SREG_ES);
2485         seg_setup(VCPU_SREG_FS);
2486         seg_setup(VCPU_SREG_GS);
2487         seg_setup(VCPU_SREG_SS);
2488
2489         vmcs_write16(GUEST_TR_SELECTOR, 0);
2490         vmcs_writel(GUEST_TR_BASE, 0);
2491         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2492         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2493
2494         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2495         vmcs_writel(GUEST_LDTR_BASE, 0);
2496         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2497         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2498
2499         vmcs_write32(GUEST_SYSENTER_CS, 0);
2500         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2501         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2502
2503         vmcs_writel(GUEST_RFLAGS, 0x02);
2504         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2505                 kvm_rip_write(vcpu, 0xfff0);
2506         else
2507                 kvm_rip_write(vcpu, 0);
2508         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2509
2510         vmcs_writel(GUEST_DR7, 0x400);
2511
2512         vmcs_writel(GUEST_GDTR_BASE, 0);
2513         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2514
2515         vmcs_writel(GUEST_IDTR_BASE, 0);
2516         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2517
2518         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2519         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2520         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2521
2522         /* Special registers */
2523         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2524
2525         setup_msrs(vmx);
2526
2527         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2528
2529         if (cpu_has_vmx_tpr_shadow()) {
2530                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2531                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2532                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2533                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2534                 vmcs_write32(TPR_THRESHOLD, 0);
2535         }
2536
2537         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2538                 vmcs_write64(APIC_ACCESS_ADDR,
2539                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2540
2541         if (vmx->vpid != 0)
2542                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2543
2544         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2545         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2546         vmx_set_cr4(&vmx->vcpu, 0);
2547         vmx_set_efer(&vmx->vcpu, 0);
2548         vmx_fpu_activate(&vmx->vcpu);
2549         update_exception_bitmap(&vmx->vcpu);
2550
2551         vpid_sync_vcpu_all(vmx);
2552
2553         ret = 0;
2554
2555         /* HACK: Don't enable emulation on guest boot/reset */
2556         vmx->emulation_required = 0;
2557
2558 out:
2559         up_read(&vcpu->kvm->slots_lock);
2560         return ret;
2561 }
2562
2563 static void enable_irq_window(struct kvm_vcpu *vcpu)
2564 {
2565         u32 cpu_based_vm_exec_control;
2566
2567         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2568         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2569         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2570 }
2571
2572 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2573 {
2574         u32 cpu_based_vm_exec_control;
2575
2576         if (!cpu_has_virtual_nmis()) {
2577                 enable_irq_window(vcpu);
2578                 return;
2579         }
2580
2581         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2582         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2583         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2584 }
2585
2586 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2587 {
2588         struct vcpu_vmx *vmx = to_vmx(vcpu);
2589         uint32_t intr;
2590         int irq = vcpu->arch.interrupt.nr;
2591
2592         trace_kvm_inj_virq(irq);
2593
2594         ++vcpu->stat.irq_injections;
2595         if (vmx->rmode.vm86_active) {
2596                 vmx->rmode.irq.pending = true;
2597                 vmx->rmode.irq.vector = irq;
2598                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2599                 if (vcpu->arch.interrupt.soft)
2600                         vmx->rmode.irq.rip +=
2601                                 vmx->vcpu.arch.event_exit_inst_len;
2602                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2603                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2604                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2605                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2606                 return;
2607         }
2608         intr = irq | INTR_INFO_VALID_MASK;
2609         if (vcpu->arch.interrupt.soft) {
2610                 intr |= INTR_TYPE_SOFT_INTR;
2611                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2612                              vmx->vcpu.arch.event_exit_inst_len);
2613         } else
2614                 intr |= INTR_TYPE_EXT_INTR;
2615         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2616 }
2617
2618 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2619 {
2620         struct vcpu_vmx *vmx = to_vmx(vcpu);
2621
2622         if (!cpu_has_virtual_nmis()) {
2623                 /*
2624                  * Tracking the NMI-blocked state in software is built upon
2625                  * finding the next open IRQ window. This, in turn, depends on
2626                  * well-behaving guests: They have to keep IRQs disabled at
2627                  * least as long as the NMI handler runs. Otherwise we may
2628                  * cause NMI nesting, maybe breaking the guest. But as this is
2629                  * highly unlikely, we can live with the residual risk.
2630                  */
2631                 vmx->soft_vnmi_blocked = 1;
2632                 vmx->vnmi_blocked_time = 0;
2633         }
2634
2635         ++vcpu->stat.nmi_injections;
2636         if (vmx->rmode.vm86_active) {
2637                 vmx->rmode.irq.pending = true;
2638                 vmx->rmode.irq.vector = NMI_VECTOR;
2639                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2640                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2641                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2642                              INTR_INFO_VALID_MASK);
2643                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2644                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2645                 return;
2646         }
2647         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2648                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2649 }
2650
2651 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2652 {
2653         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2654                 return 0;
2655
2656         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2657                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2658                                 GUEST_INTR_STATE_NMI));
2659 }
2660
2661 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2662 {
2663         if (!cpu_has_virtual_nmis())
2664                 return to_vmx(vcpu)->soft_vnmi_blocked;
2665         else
2666                 return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2667                           GUEST_INTR_STATE_NMI);
2668 }
2669
2670 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2671 {
2672         struct vcpu_vmx *vmx = to_vmx(vcpu);
2673
2674         if (!cpu_has_virtual_nmis()) {
2675                 if (vmx->soft_vnmi_blocked != masked) {
2676                         vmx->soft_vnmi_blocked = masked;
2677                         vmx->vnmi_blocked_time = 0;
2678                 }
2679         } else {
2680                 if (masked)
2681                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2682                                       GUEST_INTR_STATE_NMI);
2683                 else
2684                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2685                                         GUEST_INTR_STATE_NMI);
2686         }
2687 }
2688
2689 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2690 {
2691         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2692                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2693                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2694 }
2695
2696 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2697 {
2698         int ret;
2699         struct kvm_userspace_memory_region tss_mem = {
2700                 .slot = TSS_PRIVATE_MEMSLOT,
2701                 .guest_phys_addr = addr,
2702                 .memory_size = PAGE_SIZE * 3,
2703                 .flags = 0,
2704         };
2705
2706         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2707         if (ret)
2708                 return ret;
2709         kvm->arch.tss_addr = addr;
2710         return 0;
2711 }
2712
2713 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2714                                   int vec, u32 err_code)
2715 {
2716         /*
2717          * Instruction with address size override prefix opcode 0x67
2718          * Cause the #SS fault with 0 error code in VM86 mode.
2719          */
2720         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2721                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2722                         return 1;
2723         /*
2724          * Forward all other exceptions that are valid in real mode.
2725          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2726          *        the required debugging infrastructure rework.
2727          */
2728         switch (vec) {
2729         case DB_VECTOR:
2730                 if (vcpu->guest_debug &
2731                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2732                         return 0;
2733                 kvm_queue_exception(vcpu, vec);
2734                 return 1;
2735         case BP_VECTOR:
2736                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2737                         return 0;
2738                 /* fall through */
2739         case DE_VECTOR:
2740         case OF_VECTOR:
2741         case BR_VECTOR:
2742         case UD_VECTOR:
2743         case DF_VECTOR:
2744         case SS_VECTOR:
2745         case GP_VECTOR:
2746         case MF_VECTOR:
2747                 kvm_queue_exception(vcpu, vec);
2748                 return 1;
2749         }
2750         return 0;
2751 }
2752
2753 /*
2754  * Trigger machine check on the host. We assume all the MSRs are already set up
2755  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2756  * We pass a fake environment to the machine check handler because we want
2757  * the guest to be always treated like user space, no matter what context
2758  * it used internally.
2759  */
2760 static void kvm_machine_check(void)
2761 {
2762 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2763         struct pt_regs regs = {
2764                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2765                 .flags = X86_EFLAGS_IF,
2766         };
2767
2768         do_machine_check(&regs, 0);
2769 #endif
2770 }
2771
2772 static int handle_machine_check(struct kvm_vcpu *vcpu)
2773 {
2774         /* already handled by vcpu_run */
2775         return 1;
2776 }
2777
2778 static int handle_exception(struct kvm_vcpu *vcpu)
2779 {
2780         struct vcpu_vmx *vmx = to_vmx(vcpu);
2781         struct kvm_run *kvm_run = vcpu->run;
2782         u32 intr_info, ex_no, error_code;
2783         unsigned long cr2, rip, dr6;
2784         u32 vect_info;
2785         enum emulation_result er;
2786
2787         vect_info = vmx->idt_vectoring_info;
2788         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2789
2790         if (is_machine_check(intr_info))
2791                 return handle_machine_check(vcpu);
2792
2793         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2794             !is_page_fault(intr_info)) {
2795                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2796                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
2797                 vcpu->run->internal.ndata = 2;
2798                 vcpu->run->internal.data[0] = vect_info;
2799                 vcpu->run->internal.data[1] = intr_info;
2800                 return 0;
2801         }
2802
2803         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2804                 return 1;  /* already handled by vmx_vcpu_run() */
2805
2806         if (is_no_device(intr_info)) {
2807                 vmx_fpu_activate(vcpu);
2808                 return 1;
2809         }
2810
2811         if (is_invalid_opcode(intr_info)) {
2812                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2813                 if (er != EMULATE_DONE)
2814                         kvm_queue_exception(vcpu, UD_VECTOR);
2815                 return 1;
2816         }
2817
2818         error_code = 0;
2819         rip = kvm_rip_read(vcpu);
2820         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2821                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2822         if (is_page_fault(intr_info)) {
2823                 /* EPT won't cause page fault directly */
2824                 if (enable_ept)
2825                         BUG();
2826                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2827                 trace_kvm_page_fault(cr2, error_code);
2828
2829                 if (kvm_event_needs_reinjection(vcpu))
2830                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
2831                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2832         }
2833
2834         if (vmx->rmode.vm86_active &&
2835             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2836                                                                 error_code)) {
2837                 if (vcpu->arch.halt_request) {
2838                         vcpu->arch.halt_request = 0;
2839                         return kvm_emulate_halt(vcpu);
2840                 }
2841                 return 1;
2842         }
2843
2844         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2845         switch (ex_no) {
2846         case DB_VECTOR:
2847                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2848                 if (!(vcpu->guest_debug &
2849                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2850                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2851                         kvm_queue_exception(vcpu, DB_VECTOR);
2852                         return 1;
2853                 }
2854                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2855                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2856                 /* fall through */
2857         case BP_VECTOR:
2858                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2859                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2860                 kvm_run->debug.arch.exception = ex_no;
2861                 break;
2862         default:
2863                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2864                 kvm_run->ex.exception = ex_no;
2865                 kvm_run->ex.error_code = error_code;
2866                 break;
2867         }
2868         return 0;
2869 }
2870
2871 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2872 {
2873         ++vcpu->stat.irq_exits;
2874         return 1;
2875 }
2876
2877 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2878 {
2879         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2880         return 0;
2881 }
2882
2883 static int handle_io(struct kvm_vcpu *vcpu)
2884 {
2885         unsigned long exit_qualification;
2886         int size, in, string;
2887         unsigned port;
2888
2889         ++vcpu->stat.io_exits;
2890         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2891         string = (exit_qualification & 16) != 0;
2892
2893         if (string) {
2894                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2895                         return 0;
2896                 return 1;
2897         }
2898
2899         size = (exit_qualification & 7) + 1;
2900         in = (exit_qualification & 8) != 0;
2901         port = exit_qualification >> 16;
2902
2903         skip_emulated_instruction(vcpu);
2904         return kvm_emulate_pio(vcpu, in, size, port);
2905 }
2906
2907 static void
2908 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2909 {
2910         /*
2911          * Patch in the VMCALL instruction:
2912          */
2913         hypercall[0] = 0x0f;
2914         hypercall[1] = 0x01;
2915         hypercall[2] = 0xc1;
2916 }
2917
2918 static int handle_cr(struct kvm_vcpu *vcpu)
2919 {
2920         unsigned long exit_qualification, val;
2921         int cr;
2922         int reg;
2923
2924         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2925         cr = exit_qualification & 15;
2926         reg = (exit_qualification >> 8) & 15;
2927         switch ((exit_qualification >> 4) & 3) {
2928         case 0: /* mov to cr */
2929                 val = kvm_register_read(vcpu, reg);
2930                 trace_kvm_cr_write(cr, val);
2931                 switch (cr) {
2932                 case 0:
2933                         kvm_set_cr0(vcpu, val);
2934                         skip_emulated_instruction(vcpu);
2935                         return 1;
2936                 case 3:
2937                         kvm_set_cr3(vcpu, val);
2938                         skip_emulated_instruction(vcpu);
2939                         return 1;
2940                 case 4:
2941                         kvm_set_cr4(vcpu, val);
2942                         skip_emulated_instruction(vcpu);
2943                         return 1;
2944                 case 8: {
2945                                 u8 cr8_prev = kvm_get_cr8(vcpu);
2946                                 u8 cr8 = kvm_register_read(vcpu, reg);
2947                                 kvm_set_cr8(vcpu, cr8);
2948                                 skip_emulated_instruction(vcpu);
2949                                 if (irqchip_in_kernel(vcpu->kvm))
2950                                         return 1;
2951                                 if (cr8_prev <= cr8)
2952                                         return 1;
2953                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2954                                 return 0;
2955                         }
2956                 };
2957                 break;
2958         case 2: /* clts */
2959                 vmx_fpu_deactivate(vcpu);
2960                 vcpu->arch.cr0 &= ~X86_CR0_TS;
2961                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2962                 vmx_fpu_activate(vcpu);
2963                 skip_emulated_instruction(vcpu);
2964                 return 1;
2965         case 1: /*mov from cr*/
2966                 switch (cr) {
2967                 case 3:
2968                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2969                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
2970                         skip_emulated_instruction(vcpu);
2971                         return 1;
2972                 case 8:
2973                         val = kvm_get_cr8(vcpu);
2974                         kvm_register_write(vcpu, reg, val);
2975                         trace_kvm_cr_read(cr, val);
2976                         skip_emulated_instruction(vcpu);
2977                         return 1;
2978                 }
2979                 break;
2980         case 3: /* lmsw */
2981                 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2982
2983                 skip_emulated_instruction(vcpu);
2984                 return 1;
2985         default:
2986                 break;
2987         }
2988         vcpu->run->exit_reason = 0;
2989         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2990                (int)(exit_qualification >> 4) & 3, cr);
2991         return 0;
2992 }
2993
2994 static int handle_dr(struct kvm_vcpu *vcpu)
2995 {
2996         unsigned long exit_qualification;
2997         unsigned long val;
2998         int dr, reg;
2999
3000         if (!kvm_require_cpl(vcpu, 0))
3001                 return 1;
3002         dr = vmcs_readl(GUEST_DR7);
3003         if (dr & DR7_GD) {
3004                 /*
3005                  * As the vm-exit takes precedence over the debug trap, we
3006                  * need to emulate the latter, either for the host or the
3007                  * guest debugging itself.
3008                  */
3009                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3010                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3011                         vcpu->run->debug.arch.dr7 = dr;
3012                         vcpu->run->debug.arch.pc =
3013                                 vmcs_readl(GUEST_CS_BASE) +
3014                                 vmcs_readl(GUEST_RIP);
3015                         vcpu->run->debug.arch.exception = DB_VECTOR;
3016                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3017                         return 0;
3018                 } else {
3019                         vcpu->arch.dr7 &= ~DR7_GD;
3020                         vcpu->arch.dr6 |= DR6_BD;
3021                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3022                         kvm_queue_exception(vcpu, DB_VECTOR);
3023                         return 1;
3024                 }
3025         }
3026
3027         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3028         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3029         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3030         if (exit_qualification & TYPE_MOV_FROM_DR) {
3031                 switch (dr) {
3032                 case 0 ... 3:
3033                         val = vcpu->arch.db[dr];
3034                         break;
3035                 case 6:
3036                         val = vcpu->arch.dr6;
3037                         break;
3038                 case 7:
3039                         val = vcpu->arch.dr7;
3040                         break;
3041                 default:
3042                         val = 0;
3043                 }
3044                 kvm_register_write(vcpu, reg, val);
3045         } else {
3046                 val = vcpu->arch.regs[reg];
3047                 switch (dr) {
3048                 case 0 ... 3:
3049                         vcpu->arch.db[dr] = val;
3050                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3051                                 vcpu->arch.eff_db[dr] = val;
3052                         break;
3053                 case 4 ... 5:
3054                         if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
3055                                 kvm_queue_exception(vcpu, UD_VECTOR);
3056                         break;
3057                 case 6:
3058                         if (val & 0xffffffff00000000ULL) {
3059                                 kvm_queue_exception(vcpu, GP_VECTOR);
3060                                 break;
3061                         }
3062                         vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3063                         break;
3064                 case 7:
3065                         if (val & 0xffffffff00000000ULL) {
3066                                 kvm_queue_exception(vcpu, GP_VECTOR);
3067                                 break;
3068                         }
3069                         vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3070                         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3071                                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3072                                 vcpu->arch.switch_db_regs =
3073                                         (val & DR7_BP_EN_MASK);
3074                         }
3075                         break;
3076                 }
3077         }
3078         skip_emulated_instruction(vcpu);
3079         return 1;
3080 }
3081
3082 static int handle_cpuid(struct kvm_vcpu *vcpu)
3083 {
3084         kvm_emulate_cpuid(vcpu);
3085         return 1;
3086 }
3087
3088 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3089 {
3090         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3091         u64 data;
3092
3093         if (vmx_get_msr(vcpu, ecx, &data)) {
3094                 kvm_inject_gp(vcpu, 0);
3095                 return 1;
3096         }
3097
3098         trace_kvm_msr_read(ecx, data);
3099
3100         /* FIXME: handling of bits 32:63 of rax, rdx */
3101         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3102         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3103         skip_emulated_instruction(vcpu);
3104         return 1;
3105 }
3106
3107 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3108 {
3109         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3110         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3111                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3112
3113         trace_kvm_msr_write(ecx, data);
3114
3115         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3116                 kvm_inject_gp(vcpu, 0);
3117                 return 1;
3118         }
3119
3120         skip_emulated_instruction(vcpu);
3121         return 1;
3122 }
3123
3124 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3125 {
3126         return 1;
3127 }
3128
3129 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3130 {
3131         u32 cpu_based_vm_exec_control;
3132
3133         /* clear pending irq */
3134         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3135         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3136         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3137
3138         ++vcpu->stat.irq_window_exits;
3139
3140         /*
3141          * If the user space waits to inject interrupts, exit as soon as
3142          * possible
3143          */
3144         if (!irqchip_in_kernel(vcpu->kvm) &&
3145             vcpu->run->request_interrupt_window &&
3146             !kvm_cpu_has_interrupt(vcpu)) {
3147                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3148                 return 0;
3149         }
3150         return 1;
3151 }
3152
3153 static int handle_halt(struct kvm_vcpu *vcpu)
3154 {
3155         skip_emulated_instruction(vcpu);
3156         return kvm_emulate_halt(vcpu);
3157 }
3158
3159 static int handle_vmcall(struct kvm_vcpu *vcpu)
3160 {
3161         skip_emulated_instruction(vcpu);
3162         kvm_emulate_hypercall(vcpu);
3163         return 1;
3164 }
3165
3166 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3167 {
3168         kvm_queue_exception(vcpu, UD_VECTOR);
3169         return 1;
3170 }
3171
3172 static int handle_invlpg(struct kvm_vcpu *vcpu)
3173 {
3174         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3175
3176         kvm_mmu_invlpg(vcpu, exit_qualification);
3177         skip_emulated_instruction(vcpu);
3178         return 1;
3179 }
3180
3181 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3182 {
3183         skip_emulated_instruction(vcpu);
3184         /* TODO: Add support for VT-d/pass-through device */
3185         return 1;
3186 }
3187
3188 static int handle_apic_access(struct kvm_vcpu *vcpu)
3189 {
3190         unsigned long exit_qualification;
3191         enum emulation_result er;
3192         unsigned long offset;
3193
3194         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3195         offset = exit_qualification & 0xffful;
3196
3197         er = emulate_instruction(vcpu, 0, 0, 0);
3198
3199         if (er !=  EMULATE_DONE) {
3200                 printk(KERN_ERR
3201                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3202                        offset);
3203                 return -ENOEXEC;
3204         }
3205         return 1;
3206 }
3207
3208 static int handle_task_switch(struct kvm_vcpu *vcpu)
3209 {
3210         struct vcpu_vmx *vmx = to_vmx(vcpu);
3211         unsigned long exit_qualification;
3212         u16 tss_selector;
3213         int reason, type, idt_v;
3214
3215         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3216         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3217
3218         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3219
3220         reason = (u32)exit_qualification >> 30;
3221         if (reason == TASK_SWITCH_GATE && idt_v) {
3222                 switch (type) {
3223                 case INTR_TYPE_NMI_INTR:
3224                         vcpu->arch.nmi_injected = false;
3225                         if (cpu_has_virtual_nmis())
3226                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3227                                               GUEST_INTR_STATE_NMI);
3228                         break;
3229                 case INTR_TYPE_EXT_INTR:
3230                 case INTR_TYPE_SOFT_INTR:
3231                         kvm_clear_interrupt_queue(vcpu);
3232                         break;
3233                 case INTR_TYPE_HARD_EXCEPTION:
3234                 case INTR_TYPE_SOFT_EXCEPTION:
3235                         kvm_clear_exception_queue(vcpu);
3236                         break;
3237                 default:
3238                         break;
3239                 }
3240         }
3241         tss_selector = exit_qualification;
3242
3243         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3244                        type != INTR_TYPE_EXT_INTR &&
3245                        type != INTR_TYPE_NMI_INTR))
3246                 skip_emulated_instruction(vcpu);
3247
3248         if (!kvm_task_switch(vcpu, tss_selector, reason))
3249                 return 0;
3250
3251         /* clear all local breakpoint enable flags */
3252         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3253
3254         /*
3255          * TODO: What about debug traps on tss switch?
3256          *       Are we supposed to inject them and update dr6?
3257          */
3258
3259         return 1;
3260 }
3261
3262 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3263 {
3264         unsigned long exit_qualification;
3265         gpa_t gpa;
3266         int gla_validity;
3267
3268         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3269
3270         if (exit_qualification & (1 << 6)) {
3271                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3272                 return -EINVAL;
3273         }
3274
3275         gla_validity = (exit_qualification >> 7) & 0x3;
3276         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3277                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3278                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3279                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3280                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3281                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3282                         (long unsigned int)exit_qualification);
3283                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3284                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3285                 return 0;
3286         }
3287
3288         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3289         trace_kvm_page_fault(gpa, exit_qualification);
3290         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3291 }
3292
3293 static u64 ept_rsvd_mask(u64 spte, int level)
3294 {
3295         int i;
3296         u64 mask = 0;
3297
3298         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3299                 mask |= (1ULL << i);
3300
3301         if (level > 2)
3302                 /* bits 7:3 reserved */
3303                 mask |= 0xf8;
3304         else if (level == 2) {
3305                 if (spte & (1ULL << 7))
3306                         /* 2MB ref, bits 20:12 reserved */
3307                         mask |= 0x1ff000;
3308                 else
3309                         /* bits 6:3 reserved */
3310                         mask |= 0x78;
3311         }
3312
3313         return mask;
3314 }
3315
3316 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3317                                        int level)
3318 {
3319         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3320
3321         /* 010b (write-only) */
3322         WARN_ON((spte & 0x7) == 0x2);
3323
3324         /* 110b (write/execute) */
3325         WARN_ON((spte & 0x7) == 0x6);
3326
3327         /* 100b (execute-only) and value not supported by logical processor */
3328         if (!cpu_has_vmx_ept_execute_only())
3329                 WARN_ON((spte & 0x7) == 0x4);
3330
3331         /* not 000b */
3332         if ((spte & 0x7)) {
3333                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3334
3335                 if (rsvd_bits != 0) {
3336                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3337                                          __func__, rsvd_bits);
3338                         WARN_ON(1);
3339                 }
3340
3341                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3342                         u64 ept_mem_type = (spte & 0x38) >> 3;
3343
3344                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3345                             ept_mem_type == 7) {
3346                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3347                                                 __func__, ept_mem_type);
3348                                 WARN_ON(1);
3349                         }
3350                 }
3351         }
3352 }
3353
3354 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3355 {
3356         u64 sptes[4];
3357         int nr_sptes, i;
3358         gpa_t gpa;
3359
3360         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3361
3362         printk(KERN_ERR "EPT: Misconfiguration.\n");
3363         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3364
3365         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3366
3367         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3368                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3369
3370         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3371         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3372
3373         return 0;
3374 }
3375
3376 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3377 {
3378         u32 cpu_based_vm_exec_control;
3379
3380         /* clear pending NMI */
3381         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3382         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3383         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3384         ++vcpu->stat.nmi_window_exits;
3385
3386         return 1;
3387 }
3388
3389 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3390 {
3391         struct vcpu_vmx *vmx = to_vmx(vcpu);
3392         enum emulation_result err = EMULATE_DONE;
3393         int ret = 1;
3394
3395         while (!guest_state_valid(vcpu)) {
3396                 err = emulate_instruction(vcpu, 0, 0, 0);
3397
3398                 if (err == EMULATE_DO_MMIO) {
3399                         ret = 0;
3400                         goto out;
3401                 }
3402
3403                 if (err != EMULATE_DONE) {
3404                         kvm_report_emulation_failure(vcpu, "emulation failure");
3405                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3406                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3407                         vcpu->run->internal.ndata = 0;
3408                         ret = 0;
3409                         goto out;
3410                 }
3411
3412                 if (signal_pending(current))
3413                         goto out;
3414                 if (need_resched())
3415                         schedule();
3416         }
3417
3418         vmx->emulation_required = 0;
3419 out:
3420         return ret;
3421 }
3422
3423 /*
3424  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3425  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3426  */
3427 static int handle_pause(struct kvm_vcpu *vcpu)
3428 {
3429         skip_emulated_instruction(vcpu);
3430         kvm_vcpu_on_spin(vcpu);
3431
3432         return 1;
3433 }
3434
3435 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3436 {
3437         kvm_queue_exception(vcpu, UD_VECTOR);
3438         return 1;
3439 }
3440
3441 /*
3442  * The exit handlers return 1 if the exit was handled fully and guest execution
3443  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3444  * to be done to userspace and return 0.
3445  */
3446 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3447         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3448         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3449         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3450         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3451         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3452         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3453         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3454         [EXIT_REASON_CPUID]                   = handle_cpuid,
3455         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3456         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3457         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3458         [EXIT_REASON_HLT]                     = handle_halt,
3459         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3460         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3461         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3462         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3463         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3464         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3465         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3466         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3467         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3468         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3469         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3470         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3471         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3472         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3473         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3474         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3475         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3476         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3477         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3478         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3479         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3480 };
3481
3482 static const int kvm_vmx_max_exit_handlers =
3483         ARRAY_SIZE(kvm_vmx_exit_handlers);
3484
3485 /*
3486  * The guest has exited.  See if we can fix it or if we need userspace
3487  * assistance.
3488  */
3489 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3490 {
3491         struct vcpu_vmx *vmx = to_vmx(vcpu);
3492         u32 exit_reason = vmx->exit_reason;
3493         u32 vectoring_info = vmx->idt_vectoring_info;
3494
3495         trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3496
3497         /* If guest state is invalid, start emulating */
3498         if (vmx->emulation_required && emulate_invalid_guest_state)
3499                 return handle_invalid_guest_state(vcpu);
3500
3501         /* Access CR3 don't cause VMExit in paging mode, so we need
3502          * to sync with guest real CR3. */
3503         if (enable_ept && is_paging(vcpu))
3504                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3505
3506         if (unlikely(vmx->fail)) {
3507                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3508                 vcpu->run->fail_entry.hardware_entry_failure_reason
3509                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3510                 return 0;
3511         }
3512
3513         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3514                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3515                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3516                         exit_reason != EXIT_REASON_TASK_SWITCH))
3517                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3518                        "(0x%x) and exit reason is 0x%x\n",
3519                        __func__, vectoring_info, exit_reason);
3520
3521         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3522                 if (vmx_interrupt_allowed(vcpu)) {
3523                         vmx->soft_vnmi_blocked = 0;
3524                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3525                            vcpu->arch.nmi_pending) {
3526                         /*
3527                          * This CPU don't support us in finding the end of an
3528                          * NMI-blocked window if the guest runs with IRQs
3529                          * disabled. So we pull the trigger after 1 s of
3530                          * futile waiting, but inform the user about this.
3531                          */
3532                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3533                                "state on VCPU %d after 1 s timeout\n",
3534                                __func__, vcpu->vcpu_id);
3535                         vmx->soft_vnmi_blocked = 0;
3536                 }
3537         }
3538
3539         if (exit_reason < kvm_vmx_max_exit_handlers
3540             && kvm_vmx_exit_handlers[exit_reason])
3541                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3542         else {
3543                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3544                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3545         }
3546         return 0;
3547 }
3548
3549 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3550 {
3551         if (irr == -1 || tpr < irr) {
3552                 vmcs_write32(TPR_THRESHOLD, 0);
3553                 return;
3554         }
3555
3556         vmcs_write32(TPR_THRESHOLD, irr);
3557 }
3558
3559 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3560 {
3561         u32 exit_intr_info;
3562         u32 idt_vectoring_info = vmx->idt_vectoring_info;
3563         bool unblock_nmi;
3564         u8 vector;
3565         int type;
3566         bool idtv_info_valid;
3567
3568         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3569
3570         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3571
3572         /* Handle machine checks before interrupts are enabled */
3573         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3574             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3575                 && is_machine_check(exit_intr_info)))
3576                 kvm_machine_check();
3577
3578         /* We need to handle NMIs before interrupts are enabled */
3579         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3580             (exit_intr_info & INTR_INFO_VALID_MASK))
3581                 asm("int $2");
3582
3583         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3584
3585         if (cpu_has_virtual_nmis()) {
3586                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3587                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3588                 /*
3589                  * SDM 3: 27.7.1.2 (September 2008)
3590                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3591                  * a guest IRET fault.
3592                  * SDM 3: 23.2.2 (September 2008)
3593                  * Bit 12 is undefined in any of the following cases:
3594                  *  If the VM exit sets the valid bit in the IDT-vectoring
3595                  *   information field.
3596                  *  If the VM exit is due to a double fault.
3597                  */
3598                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3599                     vector != DF_VECTOR && !idtv_info_valid)
3600                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3601                                       GUEST_INTR_STATE_NMI);
3602         } else if (unlikely(vmx->soft_vnmi_blocked))
3603                 vmx->vnmi_blocked_time +=
3604                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3605
3606         vmx->vcpu.arch.nmi_injected = false;
3607         kvm_clear_exception_queue(&vmx->vcpu);
3608         kvm_clear_interrupt_queue(&vmx->vcpu);
3609
3610         if (!idtv_info_valid)
3611                 return;
3612
3613         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3614         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3615
3616         switch (type) {
3617         case INTR_TYPE_NMI_INTR:
3618                 vmx->vcpu.arch.nmi_injected = true;
3619                 /*
3620                  * SDM 3: 27.7.1.2 (September 2008)
3621                  * Clear bit "block by NMI" before VM entry if a NMI
3622                  * delivery faulted.
3623                  */
3624                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3625                                 GUEST_INTR_STATE_NMI);
3626                 break;
3627         case INTR_TYPE_SOFT_EXCEPTION:
3628                 vmx->vcpu.arch.event_exit_inst_len =
3629                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3630                 /* fall through */
3631         case INTR_TYPE_HARD_EXCEPTION:
3632                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3633                         u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3634                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3635                 } else
3636                         kvm_queue_exception(&vmx->vcpu, vector);
3637                 break;
3638         case INTR_TYPE_SOFT_INTR:
3639                 vmx->vcpu.arch.event_exit_inst_len =
3640                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3641                 /* fall through */
3642         case INTR_TYPE_EXT_INTR:
3643                 kvm_queue_interrupt(&vmx->vcpu, vector,
3644                         type == INTR_TYPE_SOFT_INTR);
3645                 break;
3646         default:
3647                 break;
3648         }
3649 }
3650
3651 /*
3652  * Failure to inject an interrupt should give us the information
3653  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3654  * when fetching the interrupt redirection bitmap in the real-mode
3655  * tss, this doesn't happen.  So we do it ourselves.
3656  */
3657 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3658 {
3659         vmx->rmode.irq.pending = 0;
3660         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3661                 return;
3662         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3663         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3664                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3665                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3666                 return;
3667         }
3668         vmx->idt_vectoring_info =
3669                 VECTORING_INFO_VALID_MASK
3670                 | INTR_TYPE_EXT_INTR
3671                 | vmx->rmode.irq.vector;
3672 }
3673
3674 #ifdef CONFIG_X86_64
3675 #define R "r"
3676 #define Q "q"
3677 #else
3678 #define R "e"
3679 #define Q "l"
3680 #endif
3681
3682 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3683 {
3684         struct vcpu_vmx *vmx = to_vmx(vcpu);
3685
3686         /* Record the guest's net vcpu time for enforced NMI injections. */
3687         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3688                 vmx->entry_time = ktime_get();
3689
3690         /* Don't enter VMX if guest state is invalid, let the exit handler
3691            start emulation until we arrive back to a valid state */
3692         if (vmx->emulation_required && emulate_invalid_guest_state)
3693                 return;
3694
3695         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3696                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3697         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3698                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3699
3700         /* When single-stepping over STI and MOV SS, we must clear the
3701          * corresponding interruptibility bits in the guest state. Otherwise
3702          * vmentry fails as it then expects bit 14 (BS) in pending debug
3703          * exceptions being set, but that's not correct for the guest debugging
3704          * case. */
3705         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3706                 vmx_set_interrupt_shadow(vcpu, 0);
3707
3708         /*
3709          * Loading guest fpu may have cleared host cr0.ts
3710          */
3711         vmcs_writel(HOST_CR0, read_cr0());
3712
3713         if (vcpu->arch.switch_db_regs)
3714                 set_debugreg(vcpu->arch.dr6, 6);
3715
3716         asm(
3717                 /* Store host registers */
3718                 "push %%"R"dx; push %%"R"bp;"
3719                 "push %%"R"cx \n\t"
3720                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3721                 "je 1f \n\t"
3722                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3723                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3724                 "1: \n\t"
3725                 /* Reload cr2 if changed */
3726                 "mov %c[cr2](%0), %%"R"ax \n\t"
3727                 "mov %%cr2, %%"R"dx \n\t"
3728                 "cmp %%"R"ax, %%"R"dx \n\t"
3729                 "je 2f \n\t"
3730                 "mov %%"R"ax, %%cr2 \n\t"
3731                 "2: \n\t"
3732                 /* Check if vmlaunch of vmresume is needed */
3733                 "cmpl $0, %c[launched](%0) \n\t"
3734                 /* Load guest registers.  Don't clobber flags. */
3735                 "mov %c[rax](%0), %%"R"ax \n\t"
3736                 "mov %c[rbx](%0), %%"R"bx \n\t"
3737                 "mov %c[rdx](%0), %%"R"dx \n\t"
3738                 "mov %c[rsi](%0), %%"R"si \n\t"
3739                 "mov %c[rdi](%0), %%"R"di \n\t"
3740                 "mov %c[rbp](%0), %%"R"bp \n\t"
3741 #ifdef CONFIG_X86_64
3742                 "mov %c[r8](%0),  %%r8  \n\t"
3743                 "mov %c[r9](%0),  %%r9  \n\t"
3744                 "mov %c[r10](%0), %%r10 \n\t"
3745                 "mov %c[r11](%0), %%r11 \n\t"
3746                 "mov %c[r12](%0), %%r12 \n\t"
3747                 "mov %c[r13](%0), %%r13 \n\t"
3748                 "mov %c[r14](%0), %%r14 \n\t"
3749                 "mov %c[r15](%0), %%r15 \n\t"
3750 #endif
3751                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3752
3753                 /* Enter guest mode */
3754                 "jne .Llaunched \n\t"
3755                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3756                 "jmp .Lkvm_vmx_return \n\t"
3757                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3758                 ".Lkvm_vmx_return: "
3759                 /* Save guest registers, load host registers, keep flags */
3760                 "xchg %0,     (%%"R"sp) \n\t"
3761                 "mov %%"R"ax, %c[rax](%0) \n\t"
3762                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3763                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3764                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3765                 "mov %%"R"si, %c[rsi](%0) \n\t"
3766                 "mov %%"R"di, %c[rdi](%0) \n\t"
3767                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3768 #ifdef CONFIG_X86_64
3769                 "mov %%r8,  %c[r8](%0) \n\t"
3770                 "mov %%r9,  %c[r9](%0) \n\t"
3771                 "mov %%r10, %c[r10](%0) \n\t"
3772                 "mov %%r11, %c[r11](%0) \n\t"
3773                 "mov %%r12, %c[r12](%0) \n\t"
3774                 "mov %%r13, %c[r13](%0) \n\t"
3775                 "mov %%r14, %c[r14](%0) \n\t"
3776                 "mov %%r15, %c[r15](%0) \n\t"
3777 #endif
3778                 "mov %%cr2, %%"R"ax   \n\t"
3779                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3780
3781                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3782                 "setbe %c[fail](%0) \n\t"
3783               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3784                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3785                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3786                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3787                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3788                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3789                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3790                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3791                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3792                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3793                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3794 #ifdef CONFIG_X86_64
3795                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3796                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3797                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3798                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3799                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3800                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3801                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3802                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3803 #endif
3804                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3805               : "cc", "memory"
3806                 , R"bx", R"di", R"si"
3807 #ifdef CONFIG_X86_64
3808                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3809 #endif
3810               );
3811
3812         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3813                                   | (1 << VCPU_EXREG_PDPTR));
3814         vcpu->arch.regs_dirty = 0;
3815
3816         if (vcpu->arch.switch_db_regs)
3817                 get_debugreg(vcpu->arch.dr6, 6);
3818
3819         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3820         if (vmx->rmode.irq.pending)
3821                 fixup_rmode_irq(vmx);
3822
3823         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3824         vmx->launched = 1;
3825
3826         vmx_complete_interrupts(vmx);
3827 }
3828
3829 #undef R
3830 #undef Q
3831
3832 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3833 {
3834         struct vcpu_vmx *vmx = to_vmx(vcpu);
3835
3836         if (vmx->vmcs) {
3837                 vcpu_clear(vmx);
3838                 free_vmcs(vmx->vmcs);
3839                 vmx->vmcs = NULL;
3840         }
3841 }
3842
3843 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3844 {
3845         struct vcpu_vmx *vmx = to_vmx(vcpu);
3846
3847         spin_lock(&vmx_vpid_lock);
3848         if (vmx->vpid != 0)
3849                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3850         spin_unlock(&vmx_vpid_lock);
3851         vmx_free_vmcs(vcpu);
3852         kfree(vmx->guest_msrs);
3853         kvm_vcpu_uninit(vcpu);
3854         kmem_cache_free(kvm_vcpu_cache, vmx);
3855 }
3856
3857 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3858 {
3859         int err;
3860         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3861         int cpu;
3862
3863         if (!vmx)
3864                 return ERR_PTR(-ENOMEM);
3865
3866         allocate_vpid(vmx);
3867
3868         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3869         if (err)
3870                 goto free_vcpu;
3871
3872         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3873         if (!vmx->guest_msrs) {
3874                 err = -ENOMEM;
3875                 goto uninit_vcpu;
3876         }
3877
3878         vmx->vmcs = alloc_vmcs();
3879         if (!vmx->vmcs)
3880                 goto free_msrs;
3881
3882         vmcs_clear(vmx->vmcs);
3883
3884         cpu = get_cpu();
3885         vmx_vcpu_load(&vmx->vcpu, cpu);
3886         err = vmx_vcpu_setup(vmx);
3887         vmx_vcpu_put(&vmx->vcpu);
3888         put_cpu();
3889         if (err)
3890                 goto free_vmcs;
3891         if (vm_need_virtualize_apic_accesses(kvm))
3892                 if (alloc_apic_access_page(kvm) != 0)
3893                         goto free_vmcs;
3894
3895         if (enable_ept) {
3896                 if (!kvm->arch.ept_identity_map_addr)
3897                         kvm->arch.ept_identity_map_addr =
3898                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3899                 if (alloc_identity_pagetable(kvm) != 0)
3900                         goto free_vmcs;
3901         }
3902
3903         return &vmx->vcpu;
3904
3905 free_vmcs:
3906         free_vmcs(vmx->vmcs);
3907 free_msrs:
3908         kfree(vmx->guest_msrs);
3909 uninit_vcpu:
3910         kvm_vcpu_uninit(&vmx->vcpu);
3911 free_vcpu:
3912         kmem_cache_free(kvm_vcpu_cache, vmx);
3913         return ERR_PTR(err);
3914 }
3915
3916 static void __init vmx_check_processor_compat(void *rtn)
3917 {
3918         struct vmcs_config vmcs_conf;
3919
3920         *(int *)rtn = 0;
3921         if (setup_vmcs_config(&vmcs_conf) < 0)
3922                 *(int *)rtn = -EIO;
3923         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3924                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3925                                 smp_processor_id());
3926                 *(int *)rtn = -EIO;
3927         }
3928 }
3929
3930 static int get_ept_level(void)
3931 {
3932         return VMX_EPT_DEFAULT_GAW + 1;
3933 }
3934
3935 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3936 {
3937         u64 ret;
3938
3939         /* For VT-d and EPT combination
3940          * 1. MMIO: always map as UC
3941          * 2. EPT with VT-d:
3942          *   a. VT-d without snooping control feature: can't guarantee the
3943          *      result, try to trust guest.
3944          *   b. VT-d with snooping control feature: snooping control feature of
3945          *      VT-d engine can guarantee the cache correctness. Just set it
3946          *      to WB to keep consistent with host. So the same as item 3.
3947          * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3948          *    consistent with host MTRR
3949          */
3950         if (is_mmio)
3951                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3952         else if (vcpu->kvm->arch.iommu_domain &&
3953                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3954                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3955                       VMX_EPT_MT_EPTE_SHIFT;
3956         else
3957                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3958                         | VMX_EPT_IGMT_BIT;
3959
3960         return ret;
3961 }
3962
3963 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3964         { EXIT_REASON_EXCEPTION_NMI,           "exception" },
3965         { EXIT_REASON_EXTERNAL_INTERRUPT,      "ext_irq" },
3966         { EXIT_REASON_TRIPLE_FAULT,            "triple_fault" },
3967         { EXIT_REASON_NMI_WINDOW,              "nmi_window" },
3968         { EXIT_REASON_IO_INSTRUCTION,          "io_instruction" },
3969         { EXIT_REASON_CR_ACCESS,               "cr_access" },
3970         { EXIT_REASON_DR_ACCESS,               "dr_access" },
3971         { EXIT_REASON_CPUID,                   "cpuid" },
3972         { EXIT_REASON_MSR_READ,                "rdmsr" },
3973         { EXIT_REASON_MSR_WRITE,               "wrmsr" },
3974         { EXIT_REASON_PENDING_INTERRUPT,       "interrupt_window" },
3975         { EXIT_REASON_HLT,                     "halt" },
3976         { EXIT_REASON_INVLPG,                  "invlpg" },
3977         { EXIT_REASON_VMCALL,                  "hypercall" },
3978         { EXIT_REASON_TPR_BELOW_THRESHOLD,     "tpr_below_thres" },
3979         { EXIT_REASON_APIC_ACCESS,             "apic_access" },
3980         { EXIT_REASON_WBINVD,                  "wbinvd" },
3981         { EXIT_REASON_TASK_SWITCH,             "task_switch" },
3982         { EXIT_REASON_EPT_VIOLATION,           "ept_violation" },
3983         { -1, NULL }
3984 };
3985
3986 static bool vmx_gb_page_enable(void)
3987 {
3988         return false;
3989 }
3990
3991 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
3992 {
3993 }
3994
3995 static struct kvm_x86_ops vmx_x86_ops = {
3996         .cpu_has_kvm_support = cpu_has_kvm_support,
3997         .disabled_by_bios = vmx_disabled_by_bios,
3998         .hardware_setup = hardware_setup,
3999         .hardware_unsetup = hardware_unsetup,
4000         .check_processor_compatibility = vmx_check_processor_compat,
4001         .hardware_enable = hardware_enable,
4002         .hardware_disable = hardware_disable,
4003         .cpu_has_accelerated_tpr = report_flexpriority,
4004
4005         .vcpu_create = vmx_create_vcpu,
4006         .vcpu_free = vmx_free_vcpu,
4007         .vcpu_reset = vmx_vcpu_reset,
4008
4009         .prepare_guest_switch = vmx_save_host_state,
4010         .vcpu_load = vmx_vcpu_load,
4011         .vcpu_put = vmx_vcpu_put,
4012
4013         .set_guest_debug = set_guest_debug,
4014         .get_msr = vmx_get_msr,
4015         .set_msr = vmx_set_msr,
4016         .get_segment_base = vmx_get_segment_base,
4017         .get_segment = vmx_get_segment,
4018         .set_segment = vmx_set_segment,
4019         .get_cpl = vmx_get_cpl,
4020         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4021         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4022         .set_cr0 = vmx_set_cr0,
4023         .set_cr3 = vmx_set_cr3,
4024         .set_cr4 = vmx_set_cr4,
4025         .set_efer = vmx_set_efer,
4026         .get_idt = vmx_get_idt,
4027         .set_idt = vmx_set_idt,
4028         .get_gdt = vmx_get_gdt,
4029         .set_gdt = vmx_set_gdt,
4030         .cache_reg = vmx_cache_reg,
4031         .get_rflags = vmx_get_rflags,
4032         .set_rflags = vmx_set_rflags,
4033
4034         .tlb_flush = vmx_flush_tlb,
4035
4036         .run = vmx_vcpu_run,
4037         .handle_exit = vmx_handle_exit,
4038         .skip_emulated_instruction = skip_emulated_instruction,
4039         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4040         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4041         .patch_hypercall = vmx_patch_hypercall,
4042         .set_irq = vmx_inject_irq,
4043         .set_nmi = vmx_inject_nmi,
4044         .queue_exception = vmx_queue_exception,
4045         .interrupt_allowed = vmx_interrupt_allowed,
4046         .nmi_allowed = vmx_nmi_allowed,
4047         .get_nmi_mask = vmx_get_nmi_mask,
4048         .set_nmi_mask = vmx_set_nmi_mask,
4049         .enable_nmi_window = enable_nmi_window,
4050         .enable_irq_window = enable_irq_window,
4051         .update_cr8_intercept = update_cr8_intercept,
4052
4053         .set_tss_addr = vmx_set_tss_addr,
4054         .get_tdp_level = get_ept_level,
4055         .get_mt_mask = vmx_get_mt_mask,
4056
4057         .exit_reasons_str = vmx_exit_reasons_str,
4058         .gb_page_enable = vmx_gb_page_enable,
4059
4060         .cpuid_update = vmx_cpuid_update,
4061 };
4062
4063 static int __init vmx_init(void)
4064 {
4065         int r, i;
4066
4067         rdmsrl_safe(MSR_EFER, &host_efer);
4068
4069         for (i = 0; i < NR_VMX_MSR; ++i)
4070                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4071
4072         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4073         if (!vmx_io_bitmap_a)
4074                 return -ENOMEM;
4075
4076         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4077         if (!vmx_io_bitmap_b) {
4078                 r = -ENOMEM;
4079                 goto out;
4080         }
4081
4082         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4083         if (!vmx_msr_bitmap_legacy) {
4084                 r = -ENOMEM;
4085                 goto out1;
4086         }
4087
4088         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4089         if (!vmx_msr_bitmap_longmode) {
4090                 r = -ENOMEM;
4091                 goto out2;
4092         }
4093
4094         /*
4095          * Allow direct access to the PC debug port (it is often used for I/O
4096          * delays, but the vmexits simply slow things down).
4097          */
4098         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4099         clear_bit(0x80, vmx_io_bitmap_a);
4100
4101         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4102
4103         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4104         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4105
4106         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4107
4108         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4109         if (r)
4110                 goto out3;
4111
4112         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4113         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4114         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4115         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4116         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4117         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4118
4119         if (enable_ept) {
4120                 bypass_guest_pf = 0;
4121                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4122                         VMX_EPT_WRITABLE_MASK);
4123                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4124                                 VMX_EPT_EXECUTABLE_MASK);
4125                 kvm_enable_tdp();
4126         } else
4127                 kvm_disable_tdp();
4128
4129         if (bypass_guest_pf)
4130                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4131
4132         return 0;
4133
4134 out3:
4135         free_page((unsigned long)vmx_msr_bitmap_longmode);
4136 out2:
4137         free_page((unsigned long)vmx_msr_bitmap_legacy);
4138 out1:
4139         free_page((unsigned long)vmx_io_bitmap_b);
4140 out:
4141         free_page((unsigned long)vmx_io_bitmap_a);
4142         return r;
4143 }
4144
4145 static void __exit vmx_exit(void)
4146 {
4147         free_page((unsigned long)vmx_msr_bitmap_legacy);
4148         free_page((unsigned long)vmx_msr_bitmap_longmode);
4149         free_page((unsigned long)vmx_io_bitmap_b);
4150         free_page((unsigned long)vmx_io_bitmap_a);
4151
4152         kvm_exit();
4153 }
4154
4155 module_init(vmx_init)
4156 module_exit(vmx_exit)