KVM: nVMX: nested TPR shadow/threshold emulation
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52 #define __ex_clear(x, reg) \
53         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id vmx_cpu_id[] = {
59         X86_FEATURE_MATCH(X86_FEATURE_VMX),
60         {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64 static bool __read_mostly enable_vpid = 1;
65 module_param_named(vpid, enable_vpid, bool, 0444);
66
67 static bool __read_mostly flexpriority_enabled = 1;
68 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70 static bool __read_mostly enable_ept = 1;
71 module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73 static bool __read_mostly enable_unrestricted_guest = 1;
74 module_param_named(unrestricted_guest,
75                         enable_unrestricted_guest, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept_ad_bits = 1;
78 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80 static bool __read_mostly emulate_invalid_guest_state = true;
81 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83 static bool __read_mostly vmm_exclusive = 1;
84 module_param(vmm_exclusive, bool, S_IRUGO);
85
86 static bool __read_mostly fasteoi = 1;
87 module_param(fasteoi, bool, S_IRUGO);
88
89 static bool __read_mostly enable_apicv = 1;
90 module_param(enable_apicv, bool, S_IRUGO);
91
92 static bool __read_mostly enable_shadow_vmcs = 1;
93 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94 /*
95  * If nested=1, nested virtualization is supported, i.e., guests may use
96  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97  * use VMX instructions.
98  */
99 static bool __read_mostly nested = 0;
100 module_param(nested, bool, S_IRUGO);
101
102 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104 #define KVM_VM_CR0_ALWAYS_ON                                            \
105         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106 #define KVM_CR4_GUEST_OWNED_BITS                                      \
107         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
108          | X86_CR4_OSXMMEXCPT)
109
110 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
113 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
115 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
117 /*
118  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119  * ple_gap:    upper bound on the amount of time between two successive
120  *             executions of PAUSE in a loop. Also indicate if ple enabled.
121  *             According to test, this time is usually smaller than 128 cycles.
122  * ple_window: upper bound on the amount of time a guest is allowed to execute
123  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
124  *             less than 2^12 cycles
125  * Time is measured based on a counter that runs at the same rate as the TSC,
126  * refer SDM volume 3b section 21.6.13 & 22.1.3.
127  */
128 #define KVM_VMX_DEFAULT_PLE_GAP           128
129 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
130 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
131 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
132 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
133                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
134
135 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
136 module_param(ple_gap, int, S_IRUGO);
137
138 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
139 module_param(ple_window, int, S_IRUGO);
140
141 /* Default doubles per-vcpu window every exit. */
142 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
143 module_param(ple_window_grow, int, S_IRUGO);
144
145 /* Default resets per-vcpu window every exit to ple_window. */
146 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
147 module_param(ple_window_shrink, int, S_IRUGO);
148
149 /* Default is to compute the maximum so we can never overflow. */
150 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
151 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
152 module_param(ple_window_max, int, S_IRUGO);
153
154 extern const ulong vmx_return;
155
156 #define NR_AUTOLOAD_MSRS 8
157 #define VMCS02_POOL_SIZE 1
158
159 struct vmcs {
160         u32 revision_id;
161         u32 abort;
162         char data[0];
163 };
164
165 /*
166  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
167  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
168  * loaded on this CPU (so we can clear them if the CPU goes down).
169  */
170 struct loaded_vmcs {
171         struct vmcs *vmcs;
172         int cpu;
173         int launched;
174         struct list_head loaded_vmcss_on_cpu_link;
175 };
176
177 struct shared_msr_entry {
178         unsigned index;
179         u64 data;
180         u64 mask;
181 };
182
183 /*
184  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
185  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
186  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
187  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
188  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
189  * More than one of these structures may exist, if L1 runs multiple L2 guests.
190  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
191  * underlying hardware which will be used to run L2.
192  * This structure is packed to ensure that its layout is identical across
193  * machines (necessary for live migration).
194  * If there are changes in this struct, VMCS12_REVISION must be changed.
195  */
196 typedef u64 natural_width;
197 struct __packed vmcs12 {
198         /* According to the Intel spec, a VMCS region must start with the
199          * following two fields. Then follow implementation-specific data.
200          */
201         u32 revision_id;
202         u32 abort;
203
204         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
205         u32 padding[7]; /* room for future expansion */
206
207         u64 io_bitmap_a;
208         u64 io_bitmap_b;
209         u64 msr_bitmap;
210         u64 vm_exit_msr_store_addr;
211         u64 vm_exit_msr_load_addr;
212         u64 vm_entry_msr_load_addr;
213         u64 tsc_offset;
214         u64 virtual_apic_page_addr;
215         u64 apic_access_addr;
216         u64 ept_pointer;
217         u64 guest_physical_address;
218         u64 vmcs_link_pointer;
219         u64 guest_ia32_debugctl;
220         u64 guest_ia32_pat;
221         u64 guest_ia32_efer;
222         u64 guest_ia32_perf_global_ctrl;
223         u64 guest_pdptr0;
224         u64 guest_pdptr1;
225         u64 guest_pdptr2;
226         u64 guest_pdptr3;
227         u64 guest_bndcfgs;
228         u64 host_ia32_pat;
229         u64 host_ia32_efer;
230         u64 host_ia32_perf_global_ctrl;
231         u64 padding64[8]; /* room for future expansion */
232         /*
233          * To allow migration of L1 (complete with its L2 guests) between
234          * machines of different natural widths (32 or 64 bit), we cannot have
235          * unsigned long fields with no explict size. We use u64 (aliased
236          * natural_width) instead. Luckily, x86 is little-endian.
237          */
238         natural_width cr0_guest_host_mask;
239         natural_width cr4_guest_host_mask;
240         natural_width cr0_read_shadow;
241         natural_width cr4_read_shadow;
242         natural_width cr3_target_value0;
243         natural_width cr3_target_value1;
244         natural_width cr3_target_value2;
245         natural_width cr3_target_value3;
246         natural_width exit_qualification;
247         natural_width guest_linear_address;
248         natural_width guest_cr0;
249         natural_width guest_cr3;
250         natural_width guest_cr4;
251         natural_width guest_es_base;
252         natural_width guest_cs_base;
253         natural_width guest_ss_base;
254         natural_width guest_ds_base;
255         natural_width guest_fs_base;
256         natural_width guest_gs_base;
257         natural_width guest_ldtr_base;
258         natural_width guest_tr_base;
259         natural_width guest_gdtr_base;
260         natural_width guest_idtr_base;
261         natural_width guest_dr7;
262         natural_width guest_rsp;
263         natural_width guest_rip;
264         natural_width guest_rflags;
265         natural_width guest_pending_dbg_exceptions;
266         natural_width guest_sysenter_esp;
267         natural_width guest_sysenter_eip;
268         natural_width host_cr0;
269         natural_width host_cr3;
270         natural_width host_cr4;
271         natural_width host_fs_base;
272         natural_width host_gs_base;
273         natural_width host_tr_base;
274         natural_width host_gdtr_base;
275         natural_width host_idtr_base;
276         natural_width host_ia32_sysenter_esp;
277         natural_width host_ia32_sysenter_eip;
278         natural_width host_rsp;
279         natural_width host_rip;
280         natural_width paddingl[8]; /* room for future expansion */
281         u32 pin_based_vm_exec_control;
282         u32 cpu_based_vm_exec_control;
283         u32 exception_bitmap;
284         u32 page_fault_error_code_mask;
285         u32 page_fault_error_code_match;
286         u32 cr3_target_count;
287         u32 vm_exit_controls;
288         u32 vm_exit_msr_store_count;
289         u32 vm_exit_msr_load_count;
290         u32 vm_entry_controls;
291         u32 vm_entry_msr_load_count;
292         u32 vm_entry_intr_info_field;
293         u32 vm_entry_exception_error_code;
294         u32 vm_entry_instruction_len;
295         u32 tpr_threshold;
296         u32 secondary_vm_exec_control;
297         u32 vm_instruction_error;
298         u32 vm_exit_reason;
299         u32 vm_exit_intr_info;
300         u32 vm_exit_intr_error_code;
301         u32 idt_vectoring_info_field;
302         u32 idt_vectoring_error_code;
303         u32 vm_exit_instruction_len;
304         u32 vmx_instruction_info;
305         u32 guest_es_limit;
306         u32 guest_cs_limit;
307         u32 guest_ss_limit;
308         u32 guest_ds_limit;
309         u32 guest_fs_limit;
310         u32 guest_gs_limit;
311         u32 guest_ldtr_limit;
312         u32 guest_tr_limit;
313         u32 guest_gdtr_limit;
314         u32 guest_idtr_limit;
315         u32 guest_es_ar_bytes;
316         u32 guest_cs_ar_bytes;
317         u32 guest_ss_ar_bytes;
318         u32 guest_ds_ar_bytes;
319         u32 guest_fs_ar_bytes;
320         u32 guest_gs_ar_bytes;
321         u32 guest_ldtr_ar_bytes;
322         u32 guest_tr_ar_bytes;
323         u32 guest_interruptibility_info;
324         u32 guest_activity_state;
325         u32 guest_sysenter_cs;
326         u32 host_ia32_sysenter_cs;
327         u32 vmx_preemption_timer_value;
328         u32 padding32[7]; /* room for future expansion */
329         u16 virtual_processor_id;
330         u16 guest_es_selector;
331         u16 guest_cs_selector;
332         u16 guest_ss_selector;
333         u16 guest_ds_selector;
334         u16 guest_fs_selector;
335         u16 guest_gs_selector;
336         u16 guest_ldtr_selector;
337         u16 guest_tr_selector;
338         u16 host_es_selector;
339         u16 host_cs_selector;
340         u16 host_ss_selector;
341         u16 host_ds_selector;
342         u16 host_fs_selector;
343         u16 host_gs_selector;
344         u16 host_tr_selector;
345 };
346
347 /*
348  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
349  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
350  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
351  */
352 #define VMCS12_REVISION 0x11e57ed0
353
354 /*
355  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
356  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
357  * current implementation, 4K are reserved to avoid future complications.
358  */
359 #define VMCS12_SIZE 0x1000
360
361 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
362 struct vmcs02_list {
363         struct list_head list;
364         gpa_t vmptr;
365         struct loaded_vmcs vmcs02;
366 };
367
368 /*
369  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
370  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
371  */
372 struct nested_vmx {
373         /* Has the level1 guest done vmxon? */
374         bool vmxon;
375         gpa_t vmxon_ptr;
376
377         /* The guest-physical address of the current VMCS L1 keeps for L2 */
378         gpa_t current_vmptr;
379         /* The host-usable pointer to the above */
380         struct page *current_vmcs12_page;
381         struct vmcs12 *current_vmcs12;
382         struct vmcs *current_shadow_vmcs;
383         /*
384          * Indicates if the shadow vmcs must be updated with the
385          * data hold by vmcs12
386          */
387         bool sync_shadow_vmcs;
388
389         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
390         struct list_head vmcs02_pool;
391         int vmcs02_num;
392         u64 vmcs01_tsc_offset;
393         /* L2 must run next, and mustn't decide to exit to L1. */
394         bool nested_run_pending;
395         /*
396          * Guest pages referred to in vmcs02 with host-physical pointers, so
397          * we must keep them pinned while L2 runs.
398          */
399         struct page *apic_access_page;
400         struct page *virtual_apic_page;
401         u64 msr_ia32_feature_control;
402
403         struct hrtimer preemption_timer;
404         bool preemption_timer_expired;
405
406         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
407         u64 vmcs01_debugctl;
408 };
409
410 #define POSTED_INTR_ON  0
411 /* Posted-Interrupt Descriptor */
412 struct pi_desc {
413         u32 pir[8];     /* Posted interrupt requested */
414         u32 control;    /* bit 0 of control is outstanding notification bit */
415         u32 rsvd[7];
416 } __aligned(64);
417
418 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
419 {
420         return test_and_set_bit(POSTED_INTR_ON,
421                         (unsigned long *)&pi_desc->control);
422 }
423
424 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
425 {
426         return test_and_clear_bit(POSTED_INTR_ON,
427                         (unsigned long *)&pi_desc->control);
428 }
429
430 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
431 {
432         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
433 }
434
435 struct vcpu_vmx {
436         struct kvm_vcpu       vcpu;
437         unsigned long         host_rsp;
438         u8                    fail;
439         bool                  nmi_known_unmasked;
440         u32                   exit_intr_info;
441         u32                   idt_vectoring_info;
442         ulong                 rflags;
443         struct shared_msr_entry *guest_msrs;
444         int                   nmsrs;
445         int                   save_nmsrs;
446         unsigned long         host_idt_base;
447 #ifdef CONFIG_X86_64
448         u64                   msr_host_kernel_gs_base;
449         u64                   msr_guest_kernel_gs_base;
450 #endif
451         u32 vm_entry_controls_shadow;
452         u32 vm_exit_controls_shadow;
453         /*
454          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
455          * non-nested (L1) guest, it always points to vmcs01. For a nested
456          * guest (L2), it points to a different VMCS.
457          */
458         struct loaded_vmcs    vmcs01;
459         struct loaded_vmcs   *loaded_vmcs;
460         bool                  __launched; /* temporary, used in vmx_vcpu_run */
461         struct msr_autoload {
462                 unsigned nr;
463                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
464                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
465         } msr_autoload;
466         struct {
467                 int           loaded;
468                 u16           fs_sel, gs_sel, ldt_sel;
469 #ifdef CONFIG_X86_64
470                 u16           ds_sel, es_sel;
471 #endif
472                 int           gs_ldt_reload_needed;
473                 int           fs_reload_needed;
474                 u64           msr_host_bndcfgs;
475         } host_state;
476         struct {
477                 int vm86_active;
478                 ulong save_rflags;
479                 struct kvm_segment segs[8];
480         } rmode;
481         struct {
482                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
483                 struct kvm_save_segment {
484                         u16 selector;
485                         unsigned long base;
486                         u32 limit;
487                         u32 ar;
488                 } seg[8];
489         } segment_cache;
490         int vpid;
491         bool emulation_required;
492
493         /* Support for vnmi-less CPUs */
494         int soft_vnmi_blocked;
495         ktime_t entry_time;
496         s64 vnmi_blocked_time;
497         u32 exit_reason;
498
499         bool rdtscp_enabled;
500
501         /* Posted interrupt descriptor */
502         struct pi_desc pi_desc;
503
504         /* Support for a guest hypervisor (nested VMX) */
505         struct nested_vmx nested;
506
507         /* Dynamic PLE window. */
508         int ple_window;
509         bool ple_window_dirty;
510 };
511
512 enum segment_cache_field {
513         SEG_FIELD_SEL = 0,
514         SEG_FIELD_BASE = 1,
515         SEG_FIELD_LIMIT = 2,
516         SEG_FIELD_AR = 3,
517
518         SEG_FIELD_NR = 4
519 };
520
521 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
522 {
523         return container_of(vcpu, struct vcpu_vmx, vcpu);
524 }
525
526 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
527 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
528 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
529                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
530
531
532 static unsigned long shadow_read_only_fields[] = {
533         /*
534          * We do NOT shadow fields that are modified when L0
535          * traps and emulates any vmx instruction (e.g. VMPTRLD,
536          * VMXON...) executed by L1.
537          * For example, VM_INSTRUCTION_ERROR is read
538          * by L1 if a vmx instruction fails (part of the error path).
539          * Note the code assumes this logic. If for some reason
540          * we start shadowing these fields then we need to
541          * force a shadow sync when L0 emulates vmx instructions
542          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
543          * by nested_vmx_failValid)
544          */
545         VM_EXIT_REASON,
546         VM_EXIT_INTR_INFO,
547         VM_EXIT_INSTRUCTION_LEN,
548         IDT_VECTORING_INFO_FIELD,
549         IDT_VECTORING_ERROR_CODE,
550         VM_EXIT_INTR_ERROR_CODE,
551         EXIT_QUALIFICATION,
552         GUEST_LINEAR_ADDRESS,
553         GUEST_PHYSICAL_ADDRESS
554 };
555 static int max_shadow_read_only_fields =
556         ARRAY_SIZE(shadow_read_only_fields);
557
558 static unsigned long shadow_read_write_fields[] = {
559         TPR_THRESHOLD,
560         GUEST_RIP,
561         GUEST_RSP,
562         GUEST_CR0,
563         GUEST_CR3,
564         GUEST_CR4,
565         GUEST_INTERRUPTIBILITY_INFO,
566         GUEST_RFLAGS,
567         GUEST_CS_SELECTOR,
568         GUEST_CS_AR_BYTES,
569         GUEST_CS_LIMIT,
570         GUEST_CS_BASE,
571         GUEST_ES_BASE,
572         GUEST_BNDCFGS,
573         CR0_GUEST_HOST_MASK,
574         CR0_READ_SHADOW,
575         CR4_READ_SHADOW,
576         TSC_OFFSET,
577         EXCEPTION_BITMAP,
578         CPU_BASED_VM_EXEC_CONTROL,
579         VM_ENTRY_EXCEPTION_ERROR_CODE,
580         VM_ENTRY_INTR_INFO_FIELD,
581         VM_ENTRY_INSTRUCTION_LEN,
582         VM_ENTRY_EXCEPTION_ERROR_CODE,
583         HOST_FS_BASE,
584         HOST_GS_BASE,
585         HOST_FS_SELECTOR,
586         HOST_GS_SELECTOR
587 };
588 static int max_shadow_read_write_fields =
589         ARRAY_SIZE(shadow_read_write_fields);
590
591 static const unsigned short vmcs_field_to_offset_table[] = {
592         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
593         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
594         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
595         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
596         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
597         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
598         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
599         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
600         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
601         FIELD(HOST_ES_SELECTOR, host_es_selector),
602         FIELD(HOST_CS_SELECTOR, host_cs_selector),
603         FIELD(HOST_SS_SELECTOR, host_ss_selector),
604         FIELD(HOST_DS_SELECTOR, host_ds_selector),
605         FIELD(HOST_FS_SELECTOR, host_fs_selector),
606         FIELD(HOST_GS_SELECTOR, host_gs_selector),
607         FIELD(HOST_TR_SELECTOR, host_tr_selector),
608         FIELD64(IO_BITMAP_A, io_bitmap_a),
609         FIELD64(IO_BITMAP_B, io_bitmap_b),
610         FIELD64(MSR_BITMAP, msr_bitmap),
611         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
612         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
613         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
614         FIELD64(TSC_OFFSET, tsc_offset),
615         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
616         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
617         FIELD64(EPT_POINTER, ept_pointer),
618         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
619         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
620         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
621         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
622         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
623         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
624         FIELD64(GUEST_PDPTR0, guest_pdptr0),
625         FIELD64(GUEST_PDPTR1, guest_pdptr1),
626         FIELD64(GUEST_PDPTR2, guest_pdptr2),
627         FIELD64(GUEST_PDPTR3, guest_pdptr3),
628         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
629         FIELD64(HOST_IA32_PAT, host_ia32_pat),
630         FIELD64(HOST_IA32_EFER, host_ia32_efer),
631         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
632         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
633         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
634         FIELD(EXCEPTION_BITMAP, exception_bitmap),
635         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
636         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
637         FIELD(CR3_TARGET_COUNT, cr3_target_count),
638         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
639         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
640         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
641         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
642         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
643         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
644         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
645         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
646         FIELD(TPR_THRESHOLD, tpr_threshold),
647         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
648         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
649         FIELD(VM_EXIT_REASON, vm_exit_reason),
650         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
651         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
652         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
653         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
654         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
655         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
656         FIELD(GUEST_ES_LIMIT, guest_es_limit),
657         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
658         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
659         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
660         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
661         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
662         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
663         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
664         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
665         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
666         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
667         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
668         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
669         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
670         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
671         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
672         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
673         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
674         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
675         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
676         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
677         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
678         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
679         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
680         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
681         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
682         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
683         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
684         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
685         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
686         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
687         FIELD(EXIT_QUALIFICATION, exit_qualification),
688         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
689         FIELD(GUEST_CR0, guest_cr0),
690         FIELD(GUEST_CR3, guest_cr3),
691         FIELD(GUEST_CR4, guest_cr4),
692         FIELD(GUEST_ES_BASE, guest_es_base),
693         FIELD(GUEST_CS_BASE, guest_cs_base),
694         FIELD(GUEST_SS_BASE, guest_ss_base),
695         FIELD(GUEST_DS_BASE, guest_ds_base),
696         FIELD(GUEST_FS_BASE, guest_fs_base),
697         FIELD(GUEST_GS_BASE, guest_gs_base),
698         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
699         FIELD(GUEST_TR_BASE, guest_tr_base),
700         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
701         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
702         FIELD(GUEST_DR7, guest_dr7),
703         FIELD(GUEST_RSP, guest_rsp),
704         FIELD(GUEST_RIP, guest_rip),
705         FIELD(GUEST_RFLAGS, guest_rflags),
706         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
707         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
708         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
709         FIELD(HOST_CR0, host_cr0),
710         FIELD(HOST_CR3, host_cr3),
711         FIELD(HOST_CR4, host_cr4),
712         FIELD(HOST_FS_BASE, host_fs_base),
713         FIELD(HOST_GS_BASE, host_gs_base),
714         FIELD(HOST_TR_BASE, host_tr_base),
715         FIELD(HOST_GDTR_BASE, host_gdtr_base),
716         FIELD(HOST_IDTR_BASE, host_idtr_base),
717         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
718         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
719         FIELD(HOST_RSP, host_rsp),
720         FIELD(HOST_RIP, host_rip),
721 };
722 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
723
724 static inline short vmcs_field_to_offset(unsigned long field)
725 {
726         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
727                 return -1;
728         return vmcs_field_to_offset_table[field];
729 }
730
731 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
732 {
733         return to_vmx(vcpu)->nested.current_vmcs12;
734 }
735
736 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
737 {
738         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
739         if (is_error_page(page))
740                 return NULL;
741
742         return page;
743 }
744
745 static void nested_release_page(struct page *page)
746 {
747         kvm_release_page_dirty(page);
748 }
749
750 static void nested_release_page_clean(struct page *page)
751 {
752         kvm_release_page_clean(page);
753 }
754
755 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
756 static u64 construct_eptp(unsigned long root_hpa);
757 static void kvm_cpu_vmxon(u64 addr);
758 static void kvm_cpu_vmxoff(void);
759 static bool vmx_mpx_supported(void);
760 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
761 static void vmx_set_segment(struct kvm_vcpu *vcpu,
762                             struct kvm_segment *var, int seg);
763 static void vmx_get_segment(struct kvm_vcpu *vcpu,
764                             struct kvm_segment *var, int seg);
765 static bool guest_state_valid(struct kvm_vcpu *vcpu);
766 static u32 vmx_segment_access_rights(struct kvm_segment *var);
767 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
768 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
769 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
770
771 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
772 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
773 /*
774  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
775  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
776  */
777 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
778 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
779
780 static unsigned long *vmx_io_bitmap_a;
781 static unsigned long *vmx_io_bitmap_b;
782 static unsigned long *vmx_msr_bitmap_legacy;
783 static unsigned long *vmx_msr_bitmap_longmode;
784 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
785 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
786 static unsigned long *vmx_vmread_bitmap;
787 static unsigned long *vmx_vmwrite_bitmap;
788
789 static bool cpu_has_load_ia32_efer;
790 static bool cpu_has_load_perf_global_ctrl;
791
792 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
793 static DEFINE_SPINLOCK(vmx_vpid_lock);
794
795 static struct vmcs_config {
796         int size;
797         int order;
798         u32 revision_id;
799         u32 pin_based_exec_ctrl;
800         u32 cpu_based_exec_ctrl;
801         u32 cpu_based_2nd_exec_ctrl;
802         u32 vmexit_ctrl;
803         u32 vmentry_ctrl;
804 } vmcs_config;
805
806 static struct vmx_capability {
807         u32 ept;
808         u32 vpid;
809 } vmx_capability;
810
811 #define VMX_SEGMENT_FIELD(seg)                                  \
812         [VCPU_SREG_##seg] = {                                   \
813                 .selector = GUEST_##seg##_SELECTOR,             \
814                 .base = GUEST_##seg##_BASE,                     \
815                 .limit = GUEST_##seg##_LIMIT,                   \
816                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
817         }
818
819 static const struct kvm_vmx_segment_field {
820         unsigned selector;
821         unsigned base;
822         unsigned limit;
823         unsigned ar_bytes;
824 } kvm_vmx_segment_fields[] = {
825         VMX_SEGMENT_FIELD(CS),
826         VMX_SEGMENT_FIELD(DS),
827         VMX_SEGMENT_FIELD(ES),
828         VMX_SEGMENT_FIELD(FS),
829         VMX_SEGMENT_FIELD(GS),
830         VMX_SEGMENT_FIELD(SS),
831         VMX_SEGMENT_FIELD(TR),
832         VMX_SEGMENT_FIELD(LDTR),
833 };
834
835 static u64 host_efer;
836
837 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
838
839 /*
840  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
841  * away by decrementing the array size.
842  */
843 static const u32 vmx_msr_index[] = {
844 #ifdef CONFIG_X86_64
845         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
846 #endif
847         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
848 };
849
850 static inline bool is_page_fault(u32 intr_info)
851 {
852         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
853                              INTR_INFO_VALID_MASK)) ==
854                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
855 }
856
857 static inline bool is_no_device(u32 intr_info)
858 {
859         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
860                              INTR_INFO_VALID_MASK)) ==
861                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
862 }
863
864 static inline bool is_invalid_opcode(u32 intr_info)
865 {
866         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
867                              INTR_INFO_VALID_MASK)) ==
868                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
869 }
870
871 static inline bool is_external_interrupt(u32 intr_info)
872 {
873         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
874                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
875 }
876
877 static inline bool is_machine_check(u32 intr_info)
878 {
879         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
880                              INTR_INFO_VALID_MASK)) ==
881                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
882 }
883
884 static inline bool cpu_has_vmx_msr_bitmap(void)
885 {
886         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
887 }
888
889 static inline bool cpu_has_vmx_tpr_shadow(void)
890 {
891         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
892 }
893
894 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
895 {
896         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
897 }
898
899 static inline bool cpu_has_secondary_exec_ctrls(void)
900 {
901         return vmcs_config.cpu_based_exec_ctrl &
902                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
903 }
904
905 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
906 {
907         return vmcs_config.cpu_based_2nd_exec_ctrl &
908                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
909 }
910
911 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
912 {
913         return vmcs_config.cpu_based_2nd_exec_ctrl &
914                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
915 }
916
917 static inline bool cpu_has_vmx_apic_register_virt(void)
918 {
919         return vmcs_config.cpu_based_2nd_exec_ctrl &
920                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
921 }
922
923 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
924 {
925         return vmcs_config.cpu_based_2nd_exec_ctrl &
926                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
927 }
928
929 static inline bool cpu_has_vmx_posted_intr(void)
930 {
931         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
932 }
933
934 static inline bool cpu_has_vmx_apicv(void)
935 {
936         return cpu_has_vmx_apic_register_virt() &&
937                 cpu_has_vmx_virtual_intr_delivery() &&
938                 cpu_has_vmx_posted_intr();
939 }
940
941 static inline bool cpu_has_vmx_flexpriority(void)
942 {
943         return cpu_has_vmx_tpr_shadow() &&
944                 cpu_has_vmx_virtualize_apic_accesses();
945 }
946
947 static inline bool cpu_has_vmx_ept_execute_only(void)
948 {
949         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
950 }
951
952 static inline bool cpu_has_vmx_eptp_uncacheable(void)
953 {
954         return vmx_capability.ept & VMX_EPTP_UC_BIT;
955 }
956
957 static inline bool cpu_has_vmx_eptp_writeback(void)
958 {
959         return vmx_capability.ept & VMX_EPTP_WB_BIT;
960 }
961
962 static inline bool cpu_has_vmx_ept_2m_page(void)
963 {
964         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
965 }
966
967 static inline bool cpu_has_vmx_ept_1g_page(void)
968 {
969         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
970 }
971
972 static inline bool cpu_has_vmx_ept_4levels(void)
973 {
974         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
975 }
976
977 static inline bool cpu_has_vmx_ept_ad_bits(void)
978 {
979         return vmx_capability.ept & VMX_EPT_AD_BIT;
980 }
981
982 static inline bool cpu_has_vmx_invept_context(void)
983 {
984         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
985 }
986
987 static inline bool cpu_has_vmx_invept_global(void)
988 {
989         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
990 }
991
992 static inline bool cpu_has_vmx_invvpid_single(void)
993 {
994         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
995 }
996
997 static inline bool cpu_has_vmx_invvpid_global(void)
998 {
999         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1000 }
1001
1002 static inline bool cpu_has_vmx_ept(void)
1003 {
1004         return vmcs_config.cpu_based_2nd_exec_ctrl &
1005                 SECONDARY_EXEC_ENABLE_EPT;
1006 }
1007
1008 static inline bool cpu_has_vmx_unrestricted_guest(void)
1009 {
1010         return vmcs_config.cpu_based_2nd_exec_ctrl &
1011                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1012 }
1013
1014 static inline bool cpu_has_vmx_ple(void)
1015 {
1016         return vmcs_config.cpu_based_2nd_exec_ctrl &
1017                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1018 }
1019
1020 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1021 {
1022         return flexpriority_enabled && irqchip_in_kernel(kvm);
1023 }
1024
1025 static inline bool cpu_has_vmx_vpid(void)
1026 {
1027         return vmcs_config.cpu_based_2nd_exec_ctrl &
1028                 SECONDARY_EXEC_ENABLE_VPID;
1029 }
1030
1031 static inline bool cpu_has_vmx_rdtscp(void)
1032 {
1033         return vmcs_config.cpu_based_2nd_exec_ctrl &
1034                 SECONDARY_EXEC_RDTSCP;
1035 }
1036
1037 static inline bool cpu_has_vmx_invpcid(void)
1038 {
1039         return vmcs_config.cpu_based_2nd_exec_ctrl &
1040                 SECONDARY_EXEC_ENABLE_INVPCID;
1041 }
1042
1043 static inline bool cpu_has_virtual_nmis(void)
1044 {
1045         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1046 }
1047
1048 static inline bool cpu_has_vmx_wbinvd_exit(void)
1049 {
1050         return vmcs_config.cpu_based_2nd_exec_ctrl &
1051                 SECONDARY_EXEC_WBINVD_EXITING;
1052 }
1053
1054 static inline bool cpu_has_vmx_shadow_vmcs(void)
1055 {
1056         u64 vmx_msr;
1057         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1058         /* check if the cpu supports writing r/o exit information fields */
1059         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1060                 return false;
1061
1062         return vmcs_config.cpu_based_2nd_exec_ctrl &
1063                 SECONDARY_EXEC_SHADOW_VMCS;
1064 }
1065
1066 static inline bool report_flexpriority(void)
1067 {
1068         return flexpriority_enabled;
1069 }
1070
1071 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1072 {
1073         return vmcs12->cpu_based_vm_exec_control & bit;
1074 }
1075
1076 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1077 {
1078         return (vmcs12->cpu_based_vm_exec_control &
1079                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1080                 (vmcs12->secondary_vm_exec_control & bit);
1081 }
1082
1083 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1084 {
1085         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1086 }
1087
1088 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1089 {
1090         return vmcs12->pin_based_vm_exec_control &
1091                 PIN_BASED_VMX_PREEMPTION_TIMER;
1092 }
1093
1094 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1095 {
1096         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1097 }
1098
1099 static inline bool is_exception(u32 intr_info)
1100 {
1101         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1102                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1103 }
1104
1105 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1106                               u32 exit_intr_info,
1107                               unsigned long exit_qualification);
1108 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1109                         struct vmcs12 *vmcs12,
1110                         u32 reason, unsigned long qualification);
1111
1112 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1113 {
1114         int i;
1115
1116         for (i = 0; i < vmx->nmsrs; ++i)
1117                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1118                         return i;
1119         return -1;
1120 }
1121
1122 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1123 {
1124     struct {
1125         u64 vpid : 16;
1126         u64 rsvd : 48;
1127         u64 gva;
1128     } operand = { vpid, 0, gva };
1129
1130     asm volatile (__ex(ASM_VMX_INVVPID)
1131                   /* CF==1 or ZF==1 --> rc = -1 */
1132                   "; ja 1f ; ud2 ; 1:"
1133                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1134 }
1135
1136 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1137 {
1138         struct {
1139                 u64 eptp, gpa;
1140         } operand = {eptp, gpa};
1141
1142         asm volatile (__ex(ASM_VMX_INVEPT)
1143                         /* CF==1 or ZF==1 --> rc = -1 */
1144                         "; ja 1f ; ud2 ; 1:\n"
1145                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1146 }
1147
1148 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1149 {
1150         int i;
1151
1152         i = __find_msr_index(vmx, msr);
1153         if (i >= 0)
1154                 return &vmx->guest_msrs[i];
1155         return NULL;
1156 }
1157
1158 static void vmcs_clear(struct vmcs *vmcs)
1159 {
1160         u64 phys_addr = __pa(vmcs);
1161         u8 error;
1162
1163         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1164                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1165                       : "cc", "memory");
1166         if (error)
1167                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1168                        vmcs, phys_addr);
1169 }
1170
1171 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1172 {
1173         vmcs_clear(loaded_vmcs->vmcs);
1174         loaded_vmcs->cpu = -1;
1175         loaded_vmcs->launched = 0;
1176 }
1177
1178 static void vmcs_load(struct vmcs *vmcs)
1179 {
1180         u64 phys_addr = __pa(vmcs);
1181         u8 error;
1182
1183         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1184                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1185                         : "cc", "memory");
1186         if (error)
1187                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1188                        vmcs, phys_addr);
1189 }
1190
1191 #ifdef CONFIG_KEXEC
1192 /*
1193  * This bitmap is used to indicate whether the vmclear
1194  * operation is enabled on all cpus. All disabled by
1195  * default.
1196  */
1197 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1198
1199 static inline void crash_enable_local_vmclear(int cpu)
1200 {
1201         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1202 }
1203
1204 static inline void crash_disable_local_vmclear(int cpu)
1205 {
1206         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1207 }
1208
1209 static inline int crash_local_vmclear_enabled(int cpu)
1210 {
1211         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1212 }
1213
1214 static void crash_vmclear_local_loaded_vmcss(void)
1215 {
1216         int cpu = raw_smp_processor_id();
1217         struct loaded_vmcs *v;
1218
1219         if (!crash_local_vmclear_enabled(cpu))
1220                 return;
1221
1222         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1223                             loaded_vmcss_on_cpu_link)
1224                 vmcs_clear(v->vmcs);
1225 }
1226 #else
1227 static inline void crash_enable_local_vmclear(int cpu) { }
1228 static inline void crash_disable_local_vmclear(int cpu) { }
1229 #endif /* CONFIG_KEXEC */
1230
1231 static void __loaded_vmcs_clear(void *arg)
1232 {
1233         struct loaded_vmcs *loaded_vmcs = arg;
1234         int cpu = raw_smp_processor_id();
1235
1236         if (loaded_vmcs->cpu != cpu)
1237                 return; /* vcpu migration can race with cpu offline */
1238         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1239                 per_cpu(current_vmcs, cpu) = NULL;
1240         crash_disable_local_vmclear(cpu);
1241         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1242
1243         /*
1244          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1245          * is before setting loaded_vmcs->vcpu to -1 which is done in
1246          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1247          * then adds the vmcs into percpu list before it is deleted.
1248          */
1249         smp_wmb();
1250
1251         loaded_vmcs_init(loaded_vmcs);
1252         crash_enable_local_vmclear(cpu);
1253 }
1254
1255 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1256 {
1257         int cpu = loaded_vmcs->cpu;
1258
1259         if (cpu != -1)
1260                 smp_call_function_single(cpu,
1261                          __loaded_vmcs_clear, loaded_vmcs, 1);
1262 }
1263
1264 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1265 {
1266         if (vmx->vpid == 0)
1267                 return;
1268
1269         if (cpu_has_vmx_invvpid_single())
1270                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1271 }
1272
1273 static inline void vpid_sync_vcpu_global(void)
1274 {
1275         if (cpu_has_vmx_invvpid_global())
1276                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1277 }
1278
1279 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1280 {
1281         if (cpu_has_vmx_invvpid_single())
1282                 vpid_sync_vcpu_single(vmx);
1283         else
1284                 vpid_sync_vcpu_global();
1285 }
1286
1287 static inline void ept_sync_global(void)
1288 {
1289         if (cpu_has_vmx_invept_global())
1290                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1291 }
1292
1293 static inline void ept_sync_context(u64 eptp)
1294 {
1295         if (enable_ept) {
1296                 if (cpu_has_vmx_invept_context())
1297                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1298                 else
1299                         ept_sync_global();
1300         }
1301 }
1302
1303 static __always_inline unsigned long vmcs_readl(unsigned long field)
1304 {
1305         unsigned long value;
1306
1307         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1308                       : "=a"(value) : "d"(field) : "cc");
1309         return value;
1310 }
1311
1312 static __always_inline u16 vmcs_read16(unsigned long field)
1313 {
1314         return vmcs_readl(field);
1315 }
1316
1317 static __always_inline u32 vmcs_read32(unsigned long field)
1318 {
1319         return vmcs_readl(field);
1320 }
1321
1322 static __always_inline u64 vmcs_read64(unsigned long field)
1323 {
1324 #ifdef CONFIG_X86_64
1325         return vmcs_readl(field);
1326 #else
1327         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1328 #endif
1329 }
1330
1331 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1332 {
1333         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1334                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1335         dump_stack();
1336 }
1337
1338 static void vmcs_writel(unsigned long field, unsigned long value)
1339 {
1340         u8 error;
1341
1342         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1343                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1344         if (unlikely(error))
1345                 vmwrite_error(field, value);
1346 }
1347
1348 static void vmcs_write16(unsigned long field, u16 value)
1349 {
1350         vmcs_writel(field, value);
1351 }
1352
1353 static void vmcs_write32(unsigned long field, u32 value)
1354 {
1355         vmcs_writel(field, value);
1356 }
1357
1358 static void vmcs_write64(unsigned long field, u64 value)
1359 {
1360         vmcs_writel(field, value);
1361 #ifndef CONFIG_X86_64
1362         asm volatile ("");
1363         vmcs_writel(field+1, value >> 32);
1364 #endif
1365 }
1366
1367 static void vmcs_clear_bits(unsigned long field, u32 mask)
1368 {
1369         vmcs_writel(field, vmcs_readl(field) & ~mask);
1370 }
1371
1372 static void vmcs_set_bits(unsigned long field, u32 mask)
1373 {
1374         vmcs_writel(field, vmcs_readl(field) | mask);
1375 }
1376
1377 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1378 {
1379         vmcs_write32(VM_ENTRY_CONTROLS, val);
1380         vmx->vm_entry_controls_shadow = val;
1381 }
1382
1383 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1384 {
1385         if (vmx->vm_entry_controls_shadow != val)
1386                 vm_entry_controls_init(vmx, val);
1387 }
1388
1389 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1390 {
1391         return vmx->vm_entry_controls_shadow;
1392 }
1393
1394
1395 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1396 {
1397         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1398 }
1399
1400 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1401 {
1402         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1403 }
1404
1405 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1406 {
1407         vmcs_write32(VM_EXIT_CONTROLS, val);
1408         vmx->vm_exit_controls_shadow = val;
1409 }
1410
1411 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1412 {
1413         if (vmx->vm_exit_controls_shadow != val)
1414                 vm_exit_controls_init(vmx, val);
1415 }
1416
1417 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1418 {
1419         return vmx->vm_exit_controls_shadow;
1420 }
1421
1422
1423 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1424 {
1425         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1426 }
1427
1428 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1429 {
1430         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1431 }
1432
1433 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1434 {
1435         vmx->segment_cache.bitmask = 0;
1436 }
1437
1438 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1439                                        unsigned field)
1440 {
1441         bool ret;
1442         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1443
1444         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1445                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1446                 vmx->segment_cache.bitmask = 0;
1447         }
1448         ret = vmx->segment_cache.bitmask & mask;
1449         vmx->segment_cache.bitmask |= mask;
1450         return ret;
1451 }
1452
1453 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1454 {
1455         u16 *p = &vmx->segment_cache.seg[seg].selector;
1456
1457         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1458                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1459         return *p;
1460 }
1461
1462 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1463 {
1464         ulong *p = &vmx->segment_cache.seg[seg].base;
1465
1466         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1467                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1468         return *p;
1469 }
1470
1471 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1472 {
1473         u32 *p = &vmx->segment_cache.seg[seg].limit;
1474
1475         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1476                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1477         return *p;
1478 }
1479
1480 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1481 {
1482         u32 *p = &vmx->segment_cache.seg[seg].ar;
1483
1484         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1485                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1486         return *p;
1487 }
1488
1489 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1490 {
1491         u32 eb;
1492
1493         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1494              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1495         if ((vcpu->guest_debug &
1496              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1497             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1498                 eb |= 1u << BP_VECTOR;
1499         if (to_vmx(vcpu)->rmode.vm86_active)
1500                 eb = ~0;
1501         if (enable_ept)
1502                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1503         if (vcpu->fpu_active)
1504                 eb &= ~(1u << NM_VECTOR);
1505
1506         /* When we are running a nested L2 guest and L1 specified for it a
1507          * certain exception bitmap, we must trap the same exceptions and pass
1508          * them to L1. When running L2, we will only handle the exceptions
1509          * specified above if L1 did not want them.
1510          */
1511         if (is_guest_mode(vcpu))
1512                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1513
1514         vmcs_write32(EXCEPTION_BITMAP, eb);
1515 }
1516
1517 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1518                 unsigned long entry, unsigned long exit)
1519 {
1520         vm_entry_controls_clearbit(vmx, entry);
1521         vm_exit_controls_clearbit(vmx, exit);
1522 }
1523
1524 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1525 {
1526         unsigned i;
1527         struct msr_autoload *m = &vmx->msr_autoload;
1528
1529         switch (msr) {
1530         case MSR_EFER:
1531                 if (cpu_has_load_ia32_efer) {
1532                         clear_atomic_switch_msr_special(vmx,
1533                                         VM_ENTRY_LOAD_IA32_EFER,
1534                                         VM_EXIT_LOAD_IA32_EFER);
1535                         return;
1536                 }
1537                 break;
1538         case MSR_CORE_PERF_GLOBAL_CTRL:
1539                 if (cpu_has_load_perf_global_ctrl) {
1540                         clear_atomic_switch_msr_special(vmx,
1541                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1542                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1543                         return;
1544                 }
1545                 break;
1546         }
1547
1548         for (i = 0; i < m->nr; ++i)
1549                 if (m->guest[i].index == msr)
1550                         break;
1551
1552         if (i == m->nr)
1553                 return;
1554         --m->nr;
1555         m->guest[i] = m->guest[m->nr];
1556         m->host[i] = m->host[m->nr];
1557         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1558         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1559 }
1560
1561 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1562                 unsigned long entry, unsigned long exit,
1563                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1564                 u64 guest_val, u64 host_val)
1565 {
1566         vmcs_write64(guest_val_vmcs, guest_val);
1567         vmcs_write64(host_val_vmcs, host_val);
1568         vm_entry_controls_setbit(vmx, entry);
1569         vm_exit_controls_setbit(vmx, exit);
1570 }
1571
1572 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1573                                   u64 guest_val, u64 host_val)
1574 {
1575         unsigned i;
1576         struct msr_autoload *m = &vmx->msr_autoload;
1577
1578         switch (msr) {
1579         case MSR_EFER:
1580                 if (cpu_has_load_ia32_efer) {
1581                         add_atomic_switch_msr_special(vmx,
1582                                         VM_ENTRY_LOAD_IA32_EFER,
1583                                         VM_EXIT_LOAD_IA32_EFER,
1584                                         GUEST_IA32_EFER,
1585                                         HOST_IA32_EFER,
1586                                         guest_val, host_val);
1587                         return;
1588                 }
1589                 break;
1590         case MSR_CORE_PERF_GLOBAL_CTRL:
1591                 if (cpu_has_load_perf_global_ctrl) {
1592                         add_atomic_switch_msr_special(vmx,
1593                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1594                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1595                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1596                                         HOST_IA32_PERF_GLOBAL_CTRL,
1597                                         guest_val, host_val);
1598                         return;
1599                 }
1600                 break;
1601         }
1602
1603         for (i = 0; i < m->nr; ++i)
1604                 if (m->guest[i].index == msr)
1605                         break;
1606
1607         if (i == NR_AUTOLOAD_MSRS) {
1608                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1609                                 "Can't add msr %x\n", msr);
1610                 return;
1611         } else if (i == m->nr) {
1612                 ++m->nr;
1613                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1614                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1615         }
1616
1617         m->guest[i].index = msr;
1618         m->guest[i].value = guest_val;
1619         m->host[i].index = msr;
1620         m->host[i].value = host_val;
1621 }
1622
1623 static void reload_tss(void)
1624 {
1625         /*
1626          * VT restores TR but not its size.  Useless.
1627          */
1628         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1629         struct desc_struct *descs;
1630
1631         descs = (void *)gdt->address;
1632         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1633         load_TR_desc();
1634 }
1635
1636 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1637 {
1638         u64 guest_efer;
1639         u64 ignore_bits;
1640
1641         guest_efer = vmx->vcpu.arch.efer;
1642
1643         /*
1644          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1645          * outside long mode
1646          */
1647         ignore_bits = EFER_NX | EFER_SCE;
1648 #ifdef CONFIG_X86_64
1649         ignore_bits |= EFER_LMA | EFER_LME;
1650         /* SCE is meaningful only in long mode on Intel */
1651         if (guest_efer & EFER_LMA)
1652                 ignore_bits &= ~(u64)EFER_SCE;
1653 #endif
1654         guest_efer &= ~ignore_bits;
1655         guest_efer |= host_efer & ignore_bits;
1656         vmx->guest_msrs[efer_offset].data = guest_efer;
1657         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1658
1659         clear_atomic_switch_msr(vmx, MSR_EFER);
1660         /* On ept, can't emulate nx, and must switch nx atomically */
1661         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1662                 guest_efer = vmx->vcpu.arch.efer;
1663                 if (!(guest_efer & EFER_LMA))
1664                         guest_efer &= ~EFER_LME;
1665                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1666                 return false;
1667         }
1668
1669         return true;
1670 }
1671
1672 static unsigned long segment_base(u16 selector)
1673 {
1674         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1675         struct desc_struct *d;
1676         unsigned long table_base;
1677         unsigned long v;
1678
1679         if (!(selector & ~3))
1680                 return 0;
1681
1682         table_base = gdt->address;
1683
1684         if (selector & 4) {           /* from ldt */
1685                 u16 ldt_selector = kvm_read_ldt();
1686
1687                 if (!(ldt_selector & ~3))
1688                         return 0;
1689
1690                 table_base = segment_base(ldt_selector);
1691         }
1692         d = (struct desc_struct *)(table_base + (selector & ~7));
1693         v = get_desc_base(d);
1694 #ifdef CONFIG_X86_64
1695        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1696                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1697 #endif
1698         return v;
1699 }
1700
1701 static inline unsigned long kvm_read_tr_base(void)
1702 {
1703         u16 tr;
1704         asm("str %0" : "=g"(tr));
1705         return segment_base(tr);
1706 }
1707
1708 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1709 {
1710         struct vcpu_vmx *vmx = to_vmx(vcpu);
1711         int i;
1712
1713         if (vmx->host_state.loaded)
1714                 return;
1715
1716         vmx->host_state.loaded = 1;
1717         /*
1718          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1719          * allow segment selectors with cpl > 0 or ti == 1.
1720          */
1721         vmx->host_state.ldt_sel = kvm_read_ldt();
1722         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1723         savesegment(fs, vmx->host_state.fs_sel);
1724         if (!(vmx->host_state.fs_sel & 7)) {
1725                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1726                 vmx->host_state.fs_reload_needed = 0;
1727         } else {
1728                 vmcs_write16(HOST_FS_SELECTOR, 0);
1729                 vmx->host_state.fs_reload_needed = 1;
1730         }
1731         savesegment(gs, vmx->host_state.gs_sel);
1732         if (!(vmx->host_state.gs_sel & 7))
1733                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1734         else {
1735                 vmcs_write16(HOST_GS_SELECTOR, 0);
1736                 vmx->host_state.gs_ldt_reload_needed = 1;
1737         }
1738
1739 #ifdef CONFIG_X86_64
1740         savesegment(ds, vmx->host_state.ds_sel);
1741         savesegment(es, vmx->host_state.es_sel);
1742 #endif
1743
1744 #ifdef CONFIG_X86_64
1745         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1746         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1747 #else
1748         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1749         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1750 #endif
1751
1752 #ifdef CONFIG_X86_64
1753         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1754         if (is_long_mode(&vmx->vcpu))
1755                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1756 #endif
1757         if (boot_cpu_has(X86_FEATURE_MPX))
1758                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1759         for (i = 0; i < vmx->save_nmsrs; ++i)
1760                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1761                                    vmx->guest_msrs[i].data,
1762                                    vmx->guest_msrs[i].mask);
1763 }
1764
1765 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1766 {
1767         if (!vmx->host_state.loaded)
1768                 return;
1769
1770         ++vmx->vcpu.stat.host_state_reload;
1771         vmx->host_state.loaded = 0;
1772 #ifdef CONFIG_X86_64
1773         if (is_long_mode(&vmx->vcpu))
1774                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1775 #endif
1776         if (vmx->host_state.gs_ldt_reload_needed) {
1777                 kvm_load_ldt(vmx->host_state.ldt_sel);
1778 #ifdef CONFIG_X86_64
1779                 load_gs_index(vmx->host_state.gs_sel);
1780 #else
1781                 loadsegment(gs, vmx->host_state.gs_sel);
1782 #endif
1783         }
1784         if (vmx->host_state.fs_reload_needed)
1785                 loadsegment(fs, vmx->host_state.fs_sel);
1786 #ifdef CONFIG_X86_64
1787         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1788                 loadsegment(ds, vmx->host_state.ds_sel);
1789                 loadsegment(es, vmx->host_state.es_sel);
1790         }
1791 #endif
1792         reload_tss();
1793 #ifdef CONFIG_X86_64
1794         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1795 #endif
1796         if (vmx->host_state.msr_host_bndcfgs)
1797                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1798         /*
1799          * If the FPU is not active (through the host task or
1800          * the guest vcpu), then restore the cr0.TS bit.
1801          */
1802         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1803                 stts();
1804         load_gdt(&__get_cpu_var(host_gdt));
1805 }
1806
1807 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1808 {
1809         preempt_disable();
1810         __vmx_load_host_state(vmx);
1811         preempt_enable();
1812 }
1813
1814 /*
1815  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1816  * vcpu mutex is already taken.
1817  */
1818 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1819 {
1820         struct vcpu_vmx *vmx = to_vmx(vcpu);
1821         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1822
1823         if (!vmm_exclusive)
1824                 kvm_cpu_vmxon(phys_addr);
1825         else if (vmx->loaded_vmcs->cpu != cpu)
1826                 loaded_vmcs_clear(vmx->loaded_vmcs);
1827
1828         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1829                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1830                 vmcs_load(vmx->loaded_vmcs->vmcs);
1831         }
1832
1833         if (vmx->loaded_vmcs->cpu != cpu) {
1834                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1835                 unsigned long sysenter_esp;
1836
1837                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1838                 local_irq_disable();
1839                 crash_disable_local_vmclear(cpu);
1840
1841                 /*
1842                  * Read loaded_vmcs->cpu should be before fetching
1843                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1844                  * See the comments in __loaded_vmcs_clear().
1845                  */
1846                 smp_rmb();
1847
1848                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1849                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1850                 crash_enable_local_vmclear(cpu);
1851                 local_irq_enable();
1852
1853                 /*
1854                  * Linux uses per-cpu TSS and GDT, so set these when switching
1855                  * processors.
1856                  */
1857                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1858                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1859
1860                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1861                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1862                 vmx->loaded_vmcs->cpu = cpu;
1863         }
1864 }
1865
1866 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1867 {
1868         __vmx_load_host_state(to_vmx(vcpu));
1869         if (!vmm_exclusive) {
1870                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1871                 vcpu->cpu = -1;
1872                 kvm_cpu_vmxoff();
1873         }
1874 }
1875
1876 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1877 {
1878         ulong cr0;
1879
1880         if (vcpu->fpu_active)
1881                 return;
1882         vcpu->fpu_active = 1;
1883         cr0 = vmcs_readl(GUEST_CR0);
1884         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1885         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1886         vmcs_writel(GUEST_CR0, cr0);
1887         update_exception_bitmap(vcpu);
1888         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1889         if (is_guest_mode(vcpu))
1890                 vcpu->arch.cr0_guest_owned_bits &=
1891                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1892         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1893 }
1894
1895 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1896
1897 /*
1898  * Return the cr0 value that a nested guest would read. This is a combination
1899  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1900  * its hypervisor (cr0_read_shadow).
1901  */
1902 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1903 {
1904         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1905                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1906 }
1907 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1908 {
1909         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1910                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1911 }
1912
1913 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1914 {
1915         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1916          * set this *before* calling this function.
1917          */
1918         vmx_decache_cr0_guest_bits(vcpu);
1919         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1920         update_exception_bitmap(vcpu);
1921         vcpu->arch.cr0_guest_owned_bits = 0;
1922         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1923         if (is_guest_mode(vcpu)) {
1924                 /*
1925                  * L1's specified read shadow might not contain the TS bit,
1926                  * so now that we turned on shadowing of this bit, we need to
1927                  * set this bit of the shadow. Like in nested_vmx_run we need
1928                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1929                  * up-to-date here because we just decached cr0.TS (and we'll
1930                  * only update vmcs12->guest_cr0 on nested exit).
1931                  */
1932                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1933                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1934                         (vcpu->arch.cr0 & X86_CR0_TS);
1935                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1936         } else
1937                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1938 }
1939
1940 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1941 {
1942         unsigned long rflags, save_rflags;
1943
1944         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1945                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1946                 rflags = vmcs_readl(GUEST_RFLAGS);
1947                 if (to_vmx(vcpu)->rmode.vm86_active) {
1948                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1949                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1950                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1951                 }
1952                 to_vmx(vcpu)->rflags = rflags;
1953         }
1954         return to_vmx(vcpu)->rflags;
1955 }
1956
1957 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1958 {
1959         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1960         to_vmx(vcpu)->rflags = rflags;
1961         if (to_vmx(vcpu)->rmode.vm86_active) {
1962                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1963                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1964         }
1965         vmcs_writel(GUEST_RFLAGS, rflags);
1966 }
1967
1968 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1969 {
1970         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1971         int ret = 0;
1972
1973         if (interruptibility & GUEST_INTR_STATE_STI)
1974                 ret |= KVM_X86_SHADOW_INT_STI;
1975         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1976                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1977
1978         return ret;
1979 }
1980
1981 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1982 {
1983         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1984         u32 interruptibility = interruptibility_old;
1985
1986         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1987
1988         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1989                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1990         else if (mask & KVM_X86_SHADOW_INT_STI)
1991                 interruptibility |= GUEST_INTR_STATE_STI;
1992
1993         if ((interruptibility != interruptibility_old))
1994                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1995 }
1996
1997 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1998 {
1999         unsigned long rip;
2000
2001         rip = kvm_rip_read(vcpu);
2002         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2003         kvm_rip_write(vcpu, rip);
2004
2005         /* skipping an emulated instruction also counts */
2006         vmx_set_interrupt_shadow(vcpu, 0);
2007 }
2008
2009 /*
2010  * KVM wants to inject page-faults which it got to the guest. This function
2011  * checks whether in a nested guest, we need to inject them to L1 or L2.
2012  */
2013 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2014 {
2015         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2016
2017         if (!(vmcs12->exception_bitmap & (1u << nr)))
2018                 return 0;
2019
2020         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2021                           vmcs_read32(VM_EXIT_INTR_INFO),
2022                           vmcs_readl(EXIT_QUALIFICATION));
2023         return 1;
2024 }
2025
2026 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2027                                 bool has_error_code, u32 error_code,
2028                                 bool reinject)
2029 {
2030         struct vcpu_vmx *vmx = to_vmx(vcpu);
2031         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2032
2033         if (!reinject && is_guest_mode(vcpu) &&
2034             nested_vmx_check_exception(vcpu, nr))
2035                 return;
2036
2037         if (has_error_code) {
2038                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2039                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2040         }
2041
2042         if (vmx->rmode.vm86_active) {
2043                 int inc_eip = 0;
2044                 if (kvm_exception_is_soft(nr))
2045                         inc_eip = vcpu->arch.event_exit_inst_len;
2046                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2047                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2048                 return;
2049         }
2050
2051         if (kvm_exception_is_soft(nr)) {
2052                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2053                              vmx->vcpu.arch.event_exit_inst_len);
2054                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2055         } else
2056                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2057
2058         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2059 }
2060
2061 static bool vmx_rdtscp_supported(void)
2062 {
2063         return cpu_has_vmx_rdtscp();
2064 }
2065
2066 static bool vmx_invpcid_supported(void)
2067 {
2068         return cpu_has_vmx_invpcid() && enable_ept;
2069 }
2070
2071 /*
2072  * Swap MSR entry in host/guest MSR entry array.
2073  */
2074 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2075 {
2076         struct shared_msr_entry tmp;
2077
2078         tmp = vmx->guest_msrs[to];
2079         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2080         vmx->guest_msrs[from] = tmp;
2081 }
2082
2083 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2084 {
2085         unsigned long *msr_bitmap;
2086
2087         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2088                 if (is_long_mode(vcpu))
2089                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2090                 else
2091                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2092         } else {
2093                 if (is_long_mode(vcpu))
2094                         msr_bitmap = vmx_msr_bitmap_longmode;
2095                 else
2096                         msr_bitmap = vmx_msr_bitmap_legacy;
2097         }
2098
2099         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2100 }
2101
2102 /*
2103  * Set up the vmcs to automatically save and restore system
2104  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2105  * mode, as fiddling with msrs is very expensive.
2106  */
2107 static void setup_msrs(struct vcpu_vmx *vmx)
2108 {
2109         int save_nmsrs, index;
2110
2111         save_nmsrs = 0;
2112 #ifdef CONFIG_X86_64
2113         if (is_long_mode(&vmx->vcpu)) {
2114                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2115                 if (index >= 0)
2116                         move_msr_up(vmx, index, save_nmsrs++);
2117                 index = __find_msr_index(vmx, MSR_LSTAR);
2118                 if (index >= 0)
2119                         move_msr_up(vmx, index, save_nmsrs++);
2120                 index = __find_msr_index(vmx, MSR_CSTAR);
2121                 if (index >= 0)
2122                         move_msr_up(vmx, index, save_nmsrs++);
2123                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2124                 if (index >= 0 && vmx->rdtscp_enabled)
2125                         move_msr_up(vmx, index, save_nmsrs++);
2126                 /*
2127                  * MSR_STAR is only needed on long mode guests, and only
2128                  * if efer.sce is enabled.
2129                  */
2130                 index = __find_msr_index(vmx, MSR_STAR);
2131                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2132                         move_msr_up(vmx, index, save_nmsrs++);
2133         }
2134 #endif
2135         index = __find_msr_index(vmx, MSR_EFER);
2136         if (index >= 0 && update_transition_efer(vmx, index))
2137                 move_msr_up(vmx, index, save_nmsrs++);
2138
2139         vmx->save_nmsrs = save_nmsrs;
2140
2141         if (cpu_has_vmx_msr_bitmap())
2142                 vmx_set_msr_bitmap(&vmx->vcpu);
2143 }
2144
2145 /*
2146  * reads and returns guest's timestamp counter "register"
2147  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2148  */
2149 static u64 guest_read_tsc(void)
2150 {
2151         u64 host_tsc, tsc_offset;
2152
2153         rdtscll(host_tsc);
2154         tsc_offset = vmcs_read64(TSC_OFFSET);
2155         return host_tsc + tsc_offset;
2156 }
2157
2158 /*
2159  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2160  * counter, even if a nested guest (L2) is currently running.
2161  */
2162 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2163 {
2164         u64 tsc_offset;
2165
2166         tsc_offset = is_guest_mode(vcpu) ?
2167                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2168                 vmcs_read64(TSC_OFFSET);
2169         return host_tsc + tsc_offset;
2170 }
2171
2172 /*
2173  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2174  * software catchup for faster rates on slower CPUs.
2175  */
2176 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2177 {
2178         if (!scale)
2179                 return;
2180
2181         if (user_tsc_khz > tsc_khz) {
2182                 vcpu->arch.tsc_catchup = 1;
2183                 vcpu->arch.tsc_always_catchup = 1;
2184         } else
2185                 WARN(1, "user requested TSC rate below hardware speed\n");
2186 }
2187
2188 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2189 {
2190         return vmcs_read64(TSC_OFFSET);
2191 }
2192
2193 /*
2194  * writes 'offset' into guest's timestamp counter offset register
2195  */
2196 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2197 {
2198         if (is_guest_mode(vcpu)) {
2199                 /*
2200                  * We're here if L1 chose not to trap WRMSR to TSC. According
2201                  * to the spec, this should set L1's TSC; The offset that L1
2202                  * set for L2 remains unchanged, and still needs to be added
2203                  * to the newly set TSC to get L2's TSC.
2204                  */
2205                 struct vmcs12 *vmcs12;
2206                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2207                 /* recalculate vmcs02.TSC_OFFSET: */
2208                 vmcs12 = get_vmcs12(vcpu);
2209                 vmcs_write64(TSC_OFFSET, offset +
2210                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2211                          vmcs12->tsc_offset : 0));
2212         } else {
2213                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2214                                            vmcs_read64(TSC_OFFSET), offset);
2215                 vmcs_write64(TSC_OFFSET, offset);
2216         }
2217 }
2218
2219 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2220 {
2221         u64 offset = vmcs_read64(TSC_OFFSET);
2222
2223         vmcs_write64(TSC_OFFSET, offset + adjustment);
2224         if (is_guest_mode(vcpu)) {
2225                 /* Even when running L2, the adjustment needs to apply to L1 */
2226                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2227         } else
2228                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2229                                            offset + adjustment);
2230 }
2231
2232 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2233 {
2234         return target_tsc - native_read_tsc();
2235 }
2236
2237 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2238 {
2239         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2240         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2241 }
2242
2243 /*
2244  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2245  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2246  * all guests if the "nested" module option is off, and can also be disabled
2247  * for a single guest by disabling its VMX cpuid bit.
2248  */
2249 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2250 {
2251         return nested && guest_cpuid_has_vmx(vcpu);
2252 }
2253
2254 /*
2255  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2256  * returned for the various VMX controls MSRs when nested VMX is enabled.
2257  * The same values should also be used to verify that vmcs12 control fields are
2258  * valid during nested entry from L1 to L2.
2259  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2260  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2261  * bit in the high half is on if the corresponding bit in the control field
2262  * may be on. See also vmx_control_verify().
2263  * TODO: allow these variables to be modified (downgraded) by module options
2264  * or other means.
2265  */
2266 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2267 static u32 nested_vmx_true_procbased_ctls_low;
2268 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2269 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2270 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2271 static u32 nested_vmx_true_exit_ctls_low;
2272 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2273 static u32 nested_vmx_true_entry_ctls_low;
2274 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2275 static u32 nested_vmx_ept_caps;
2276 static __init void nested_vmx_setup_ctls_msrs(void)
2277 {
2278         /*
2279          * Note that as a general rule, the high half of the MSRs (bits in
2280          * the control fields which may be 1) should be initialized by the
2281          * intersection of the underlying hardware's MSR (i.e., features which
2282          * can be supported) and the list of features we want to expose -
2283          * because they are known to be properly supported in our code.
2284          * Also, usually, the low half of the MSRs (bits which must be 1) can
2285          * be set to 0, meaning that L1 may turn off any of these bits. The
2286          * reason is that if one of these bits is necessary, it will appear
2287          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2288          * fields of vmcs01 and vmcs02, will turn these bits off - and
2289          * nested_vmx_exit_handled() will not pass related exits to L1.
2290          * These rules have exceptions below.
2291          */
2292
2293         /* pin-based controls */
2294         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2295               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2296         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2297         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2298                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2299         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2300                 PIN_BASED_VMX_PREEMPTION_TIMER;
2301
2302         /* exit controls */
2303         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2304                 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2305         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2306
2307         nested_vmx_exit_ctls_high &=
2308 #ifdef CONFIG_X86_64
2309                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2310 #endif
2311                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2312         nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2313                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2314                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2315
2316         if (vmx_mpx_supported())
2317                 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2318
2319         /* We support free control of debug control saving. */
2320         nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2321                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2322
2323         /* entry controls */
2324         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2325                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2326         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2327         nested_vmx_entry_ctls_high &=
2328 #ifdef CONFIG_X86_64
2329                 VM_ENTRY_IA32E_MODE |
2330 #endif
2331                 VM_ENTRY_LOAD_IA32_PAT;
2332         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2333                                        VM_ENTRY_LOAD_IA32_EFER);
2334         if (vmx_mpx_supported())
2335                 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2336
2337         /* We support free control of debug control loading. */
2338         nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2339                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2340
2341         /* cpu-based controls */
2342         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2343                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2344         nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2345         nested_vmx_procbased_ctls_high &=
2346                 CPU_BASED_VIRTUAL_INTR_PENDING |
2347                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2348                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2349                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2350                 CPU_BASED_CR3_STORE_EXITING |
2351 #ifdef CONFIG_X86_64
2352                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2353 #endif
2354                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2355                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2356                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2357                 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2358                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2359         /*
2360          * We can allow some features even when not supported by the
2361          * hardware. For example, L1 can specify an MSR bitmap - and we
2362          * can use it to avoid exits to L1 - even when L0 runs L2
2363          * without MSR bitmaps.
2364          */
2365         nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2366                 CPU_BASED_USE_MSR_BITMAPS;
2367
2368         /* We support free control of CR3 access interception. */
2369         nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2370                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2371
2372         /* secondary cpu-based controls */
2373         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2374                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2375         nested_vmx_secondary_ctls_low = 0;
2376         nested_vmx_secondary_ctls_high &=
2377                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2378                 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2379                 SECONDARY_EXEC_WBINVD_EXITING;
2380
2381         if (enable_ept) {
2382                 /* nested EPT: emulate EPT also to L1 */
2383                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2384                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2385                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2386                          VMX_EPT_INVEPT_BIT;
2387                 nested_vmx_ept_caps &= vmx_capability.ept;
2388                 /*
2389                  * For nested guests, we don't do anything specific
2390                  * for single context invalidation. Hence, only advertise
2391                  * support for global context invalidation.
2392                  */
2393                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2394         } else
2395                 nested_vmx_ept_caps = 0;
2396
2397         /* miscellaneous data */
2398         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2399         nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2400         nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2401                 VMX_MISC_ACTIVITY_HLT;
2402         nested_vmx_misc_high = 0;
2403 }
2404
2405 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2406 {
2407         /*
2408          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2409          */
2410         return ((control & high) | low) == control;
2411 }
2412
2413 static inline u64 vmx_control_msr(u32 low, u32 high)
2414 {
2415         return low | ((u64)high << 32);
2416 }
2417
2418 /* Returns 0 on success, non-0 otherwise. */
2419 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2420 {
2421         switch (msr_index) {
2422         case MSR_IA32_VMX_BASIC:
2423                 /*
2424                  * This MSR reports some information about VMX support. We
2425                  * should return information about the VMX we emulate for the
2426                  * guest, and the VMCS structure we give it - not about the
2427                  * VMX support of the underlying hardware.
2428                  */
2429                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2430                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2431                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2432                 break;
2433         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2434         case MSR_IA32_VMX_PINBASED_CTLS:
2435                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2436                                         nested_vmx_pinbased_ctls_high);
2437                 break;
2438         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2439                 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2440                                         nested_vmx_procbased_ctls_high);
2441                 break;
2442         case MSR_IA32_VMX_PROCBASED_CTLS:
2443                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2444                                         nested_vmx_procbased_ctls_high);
2445                 break;
2446         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2447                 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2448                                         nested_vmx_exit_ctls_high);
2449                 break;
2450         case MSR_IA32_VMX_EXIT_CTLS:
2451                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2452                                         nested_vmx_exit_ctls_high);
2453                 break;
2454         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2455                 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2456                                         nested_vmx_entry_ctls_high);
2457                 break;
2458         case MSR_IA32_VMX_ENTRY_CTLS:
2459                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2460                                         nested_vmx_entry_ctls_high);
2461                 break;
2462         case MSR_IA32_VMX_MISC:
2463                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2464                                          nested_vmx_misc_high);
2465                 break;
2466         /*
2467          * These MSRs specify bits which the guest must keep fixed (on or off)
2468          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2469          * We picked the standard core2 setting.
2470          */
2471 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2472 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2473         case MSR_IA32_VMX_CR0_FIXED0:
2474                 *pdata = VMXON_CR0_ALWAYSON;
2475                 break;
2476         case MSR_IA32_VMX_CR0_FIXED1:
2477                 *pdata = -1ULL;
2478                 break;
2479         case MSR_IA32_VMX_CR4_FIXED0:
2480                 *pdata = VMXON_CR4_ALWAYSON;
2481                 break;
2482         case MSR_IA32_VMX_CR4_FIXED1:
2483                 *pdata = -1ULL;
2484                 break;
2485         case MSR_IA32_VMX_VMCS_ENUM:
2486                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2487                 break;
2488         case MSR_IA32_VMX_PROCBASED_CTLS2:
2489                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2490                                         nested_vmx_secondary_ctls_high);
2491                 break;
2492         case MSR_IA32_VMX_EPT_VPID_CAP:
2493                 /* Currently, no nested vpid support */
2494                 *pdata = nested_vmx_ept_caps;
2495                 break;
2496         default:
2497                 return 1;
2498         }
2499
2500         return 0;
2501 }
2502
2503 /*
2504  * Reads an msr value (of 'msr_index') into 'pdata'.
2505  * Returns 0 on success, non-0 otherwise.
2506  * Assumes vcpu_load() was already called.
2507  */
2508 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2509 {
2510         u64 data;
2511         struct shared_msr_entry *msr;
2512
2513         if (!pdata) {
2514                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2515                 return -EINVAL;
2516         }
2517
2518         switch (msr_index) {
2519 #ifdef CONFIG_X86_64
2520         case MSR_FS_BASE:
2521                 data = vmcs_readl(GUEST_FS_BASE);
2522                 break;
2523         case MSR_GS_BASE:
2524                 data = vmcs_readl(GUEST_GS_BASE);
2525                 break;
2526         case MSR_KERNEL_GS_BASE:
2527                 vmx_load_host_state(to_vmx(vcpu));
2528                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2529                 break;
2530 #endif
2531         case MSR_EFER:
2532                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2533         case MSR_IA32_TSC:
2534                 data = guest_read_tsc();
2535                 break;
2536         case MSR_IA32_SYSENTER_CS:
2537                 data = vmcs_read32(GUEST_SYSENTER_CS);
2538                 break;
2539         case MSR_IA32_SYSENTER_EIP:
2540                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2541                 break;
2542         case MSR_IA32_SYSENTER_ESP:
2543                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2544                 break;
2545         case MSR_IA32_BNDCFGS:
2546                 if (!vmx_mpx_supported())
2547                         return 1;
2548                 data = vmcs_read64(GUEST_BNDCFGS);
2549                 break;
2550         case MSR_IA32_FEATURE_CONTROL:
2551                 if (!nested_vmx_allowed(vcpu))
2552                         return 1;
2553                 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2554                 break;
2555         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2556                 if (!nested_vmx_allowed(vcpu))
2557                         return 1;
2558                 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2559         case MSR_TSC_AUX:
2560                 if (!to_vmx(vcpu)->rdtscp_enabled)
2561                         return 1;
2562                 /* Otherwise falls through */
2563         default:
2564                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2565                 if (msr) {
2566                         data = msr->data;
2567                         break;
2568                 }
2569                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2570         }
2571
2572         *pdata = data;
2573         return 0;
2574 }
2575
2576 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2577
2578 /*
2579  * Writes msr value into into the appropriate "register".
2580  * Returns 0 on success, non-0 otherwise.
2581  * Assumes vcpu_load() was already called.
2582  */
2583 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2584 {
2585         struct vcpu_vmx *vmx = to_vmx(vcpu);
2586         struct shared_msr_entry *msr;
2587         int ret = 0;
2588         u32 msr_index = msr_info->index;
2589         u64 data = msr_info->data;
2590
2591         switch (msr_index) {
2592         case MSR_EFER:
2593                 ret = kvm_set_msr_common(vcpu, msr_info);
2594                 break;
2595 #ifdef CONFIG_X86_64
2596         case MSR_FS_BASE:
2597                 vmx_segment_cache_clear(vmx);
2598                 vmcs_writel(GUEST_FS_BASE, data);
2599                 break;
2600         case MSR_GS_BASE:
2601                 vmx_segment_cache_clear(vmx);
2602                 vmcs_writel(GUEST_GS_BASE, data);
2603                 break;
2604         case MSR_KERNEL_GS_BASE:
2605                 vmx_load_host_state(vmx);
2606                 vmx->msr_guest_kernel_gs_base = data;
2607                 break;
2608 #endif
2609         case MSR_IA32_SYSENTER_CS:
2610                 vmcs_write32(GUEST_SYSENTER_CS, data);
2611                 break;
2612         case MSR_IA32_SYSENTER_EIP:
2613                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2614                 break;
2615         case MSR_IA32_SYSENTER_ESP:
2616                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2617                 break;
2618         case MSR_IA32_BNDCFGS:
2619                 if (!vmx_mpx_supported())
2620                         return 1;
2621                 vmcs_write64(GUEST_BNDCFGS, data);
2622                 break;
2623         case MSR_IA32_TSC:
2624                 kvm_write_tsc(vcpu, msr_info);
2625                 break;
2626         case MSR_IA32_CR_PAT:
2627                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2628                         vmcs_write64(GUEST_IA32_PAT, data);
2629                         vcpu->arch.pat = data;
2630                         break;
2631                 }
2632                 ret = kvm_set_msr_common(vcpu, msr_info);
2633                 break;
2634         case MSR_IA32_TSC_ADJUST:
2635                 ret = kvm_set_msr_common(vcpu, msr_info);
2636                 break;
2637         case MSR_IA32_FEATURE_CONTROL:
2638                 if (!nested_vmx_allowed(vcpu) ||
2639                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2640                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2641                         return 1;
2642                 vmx->nested.msr_ia32_feature_control = data;
2643                 if (msr_info->host_initiated && data == 0)
2644                         vmx_leave_nested(vcpu);
2645                 break;
2646         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2647                 return 1; /* they are read-only */
2648         case MSR_TSC_AUX:
2649                 if (!vmx->rdtscp_enabled)
2650                         return 1;
2651                 /* Check reserved bit, higher 32 bits should be zero */
2652                 if ((data >> 32) != 0)
2653                         return 1;
2654                 /* Otherwise falls through */
2655         default:
2656                 msr = find_msr_entry(vmx, msr_index);
2657                 if (msr) {
2658                         msr->data = data;
2659                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2660                                 preempt_disable();
2661                                 kvm_set_shared_msr(msr->index, msr->data,
2662                                                    msr->mask);
2663                                 preempt_enable();
2664                         }
2665                         break;
2666                 }
2667                 ret = kvm_set_msr_common(vcpu, msr_info);
2668         }
2669
2670         return ret;
2671 }
2672
2673 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2674 {
2675         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2676         switch (reg) {
2677         case VCPU_REGS_RSP:
2678                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2679                 break;
2680         case VCPU_REGS_RIP:
2681                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2682                 break;
2683         case VCPU_EXREG_PDPTR:
2684                 if (enable_ept)
2685                         ept_save_pdptrs(vcpu);
2686                 break;
2687         default:
2688                 break;
2689         }
2690 }
2691
2692 static __init int cpu_has_kvm_support(void)
2693 {
2694         return cpu_has_vmx();
2695 }
2696
2697 static __init int vmx_disabled_by_bios(void)
2698 {
2699         u64 msr;
2700
2701         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2702         if (msr & FEATURE_CONTROL_LOCKED) {
2703                 /* launched w/ TXT and VMX disabled */
2704                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2705                         && tboot_enabled())
2706                         return 1;
2707                 /* launched w/o TXT and VMX only enabled w/ TXT */
2708                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2709                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2710                         && !tboot_enabled()) {
2711                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2712                                 "activate TXT before enabling KVM\n");
2713                         return 1;
2714                 }
2715                 /* launched w/o TXT and VMX disabled */
2716                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2717                         && !tboot_enabled())
2718                         return 1;
2719         }
2720
2721         return 0;
2722 }
2723
2724 static void kvm_cpu_vmxon(u64 addr)
2725 {
2726         asm volatile (ASM_VMX_VMXON_RAX
2727                         : : "a"(&addr), "m"(addr)
2728                         : "memory", "cc");
2729 }
2730
2731 static int hardware_enable(void *garbage)
2732 {
2733         int cpu = raw_smp_processor_id();
2734         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2735         u64 old, test_bits;
2736
2737         if (read_cr4() & X86_CR4_VMXE)
2738                 return -EBUSY;
2739
2740         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2741
2742         /*
2743          * Now we can enable the vmclear operation in kdump
2744          * since the loaded_vmcss_on_cpu list on this cpu
2745          * has been initialized.
2746          *
2747          * Though the cpu is not in VMX operation now, there
2748          * is no problem to enable the vmclear operation
2749          * for the loaded_vmcss_on_cpu list is empty!
2750          */
2751         crash_enable_local_vmclear(cpu);
2752
2753         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2754
2755         test_bits = FEATURE_CONTROL_LOCKED;
2756         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2757         if (tboot_enabled())
2758                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2759
2760         if ((old & test_bits) != test_bits) {
2761                 /* enable and lock */
2762                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2763         }
2764         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2765
2766         if (vmm_exclusive) {
2767                 kvm_cpu_vmxon(phys_addr);
2768                 ept_sync_global();
2769         }
2770
2771         native_store_gdt(&__get_cpu_var(host_gdt));
2772
2773         return 0;
2774 }
2775
2776 static void vmclear_local_loaded_vmcss(void)
2777 {
2778         int cpu = raw_smp_processor_id();
2779         struct loaded_vmcs *v, *n;
2780
2781         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2782                                  loaded_vmcss_on_cpu_link)
2783                 __loaded_vmcs_clear(v);
2784 }
2785
2786
2787 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2788  * tricks.
2789  */
2790 static void kvm_cpu_vmxoff(void)
2791 {
2792         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2793 }
2794
2795 static void hardware_disable(void *garbage)
2796 {
2797         if (vmm_exclusive) {
2798                 vmclear_local_loaded_vmcss();
2799                 kvm_cpu_vmxoff();
2800         }
2801         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2802 }
2803
2804 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2805                                       u32 msr, u32 *result)
2806 {
2807         u32 vmx_msr_low, vmx_msr_high;
2808         u32 ctl = ctl_min | ctl_opt;
2809
2810         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2811
2812         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2813         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2814
2815         /* Ensure minimum (required) set of control bits are supported. */
2816         if (ctl_min & ~ctl)
2817                 return -EIO;
2818
2819         *result = ctl;
2820         return 0;
2821 }
2822
2823 static __init bool allow_1_setting(u32 msr, u32 ctl)
2824 {
2825         u32 vmx_msr_low, vmx_msr_high;
2826
2827         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2828         return vmx_msr_high & ctl;
2829 }
2830
2831 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2832 {
2833         u32 vmx_msr_low, vmx_msr_high;
2834         u32 min, opt, min2, opt2;
2835         u32 _pin_based_exec_control = 0;
2836         u32 _cpu_based_exec_control = 0;
2837         u32 _cpu_based_2nd_exec_control = 0;
2838         u32 _vmexit_control = 0;
2839         u32 _vmentry_control = 0;
2840
2841         min = CPU_BASED_HLT_EXITING |
2842 #ifdef CONFIG_X86_64
2843               CPU_BASED_CR8_LOAD_EXITING |
2844               CPU_BASED_CR8_STORE_EXITING |
2845 #endif
2846               CPU_BASED_CR3_LOAD_EXITING |
2847               CPU_BASED_CR3_STORE_EXITING |
2848               CPU_BASED_USE_IO_BITMAPS |
2849               CPU_BASED_MOV_DR_EXITING |
2850               CPU_BASED_USE_TSC_OFFSETING |
2851               CPU_BASED_MWAIT_EXITING |
2852               CPU_BASED_MONITOR_EXITING |
2853               CPU_BASED_INVLPG_EXITING |
2854               CPU_BASED_RDPMC_EXITING;
2855
2856         opt = CPU_BASED_TPR_SHADOW |
2857               CPU_BASED_USE_MSR_BITMAPS |
2858               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2859         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2860                                 &_cpu_based_exec_control) < 0)
2861                 return -EIO;
2862 #ifdef CONFIG_X86_64
2863         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2864                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2865                                            ~CPU_BASED_CR8_STORE_EXITING;
2866 #endif
2867         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2868                 min2 = 0;
2869                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2870                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2871                         SECONDARY_EXEC_WBINVD_EXITING |
2872                         SECONDARY_EXEC_ENABLE_VPID |
2873                         SECONDARY_EXEC_ENABLE_EPT |
2874                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2875                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2876                         SECONDARY_EXEC_RDTSCP |
2877                         SECONDARY_EXEC_ENABLE_INVPCID |
2878                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2879                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2880                         SECONDARY_EXEC_SHADOW_VMCS;
2881                 if (adjust_vmx_controls(min2, opt2,
2882                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2883                                         &_cpu_based_2nd_exec_control) < 0)
2884                         return -EIO;
2885         }
2886 #ifndef CONFIG_X86_64
2887         if (!(_cpu_based_2nd_exec_control &
2888                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2889                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2890 #endif
2891
2892         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2893                 _cpu_based_2nd_exec_control &= ~(
2894                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2895                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2896                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2897
2898         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2899                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2900                    enabled */
2901                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2902                                              CPU_BASED_CR3_STORE_EXITING |
2903                                              CPU_BASED_INVLPG_EXITING);
2904                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2905                       vmx_capability.ept, vmx_capability.vpid);
2906         }
2907
2908         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2909 #ifdef CONFIG_X86_64
2910         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2911 #endif
2912         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2913                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2914         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2915                                 &_vmexit_control) < 0)
2916                 return -EIO;
2917
2918         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2919         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2920         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2921                                 &_pin_based_exec_control) < 0)
2922                 return -EIO;
2923
2924         if (!(_cpu_based_2nd_exec_control &
2925                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2926                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2927                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2928
2929         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2930         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2931         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2932                                 &_vmentry_control) < 0)
2933                 return -EIO;
2934
2935         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2936
2937         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2938         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2939                 return -EIO;
2940
2941 #ifdef CONFIG_X86_64
2942         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2943         if (vmx_msr_high & (1u<<16))
2944                 return -EIO;
2945 #endif
2946
2947         /* Require Write-Back (WB) memory type for VMCS accesses. */
2948         if (((vmx_msr_high >> 18) & 15) != 6)
2949                 return -EIO;
2950
2951         vmcs_conf->size = vmx_msr_high & 0x1fff;
2952         vmcs_conf->order = get_order(vmcs_config.size);
2953         vmcs_conf->revision_id = vmx_msr_low;
2954
2955         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2956         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2957         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2958         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2959         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2960
2961         cpu_has_load_ia32_efer =
2962                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2963                                 VM_ENTRY_LOAD_IA32_EFER)
2964                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2965                                    VM_EXIT_LOAD_IA32_EFER);
2966
2967         cpu_has_load_perf_global_ctrl =
2968                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2969                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2970                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2971                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2972
2973         /*
2974          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2975          * but due to arrata below it can't be used. Workaround is to use
2976          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2977          *
2978          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2979          *
2980          * AAK155             (model 26)
2981          * AAP115             (model 30)
2982          * AAT100             (model 37)
2983          * BC86,AAY89,BD102   (model 44)
2984          * BA97               (model 46)
2985          *
2986          */
2987         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2988                 switch (boot_cpu_data.x86_model) {
2989                 case 26:
2990                 case 30:
2991                 case 37:
2992                 case 44:
2993                 case 46:
2994                         cpu_has_load_perf_global_ctrl = false;
2995                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2996                                         "does not work properly. Using workaround\n");
2997                         break;
2998                 default:
2999                         break;
3000                 }
3001         }
3002
3003         return 0;
3004 }
3005
3006 static struct vmcs *alloc_vmcs_cpu(int cpu)
3007 {
3008         int node = cpu_to_node(cpu);
3009         struct page *pages;
3010         struct vmcs *vmcs;
3011
3012         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3013         if (!pages)
3014                 return NULL;
3015         vmcs = page_address(pages);
3016         memset(vmcs, 0, vmcs_config.size);
3017         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3018         return vmcs;
3019 }
3020
3021 static struct vmcs *alloc_vmcs(void)
3022 {
3023         return alloc_vmcs_cpu(raw_smp_processor_id());
3024 }
3025
3026 static void free_vmcs(struct vmcs *vmcs)
3027 {
3028         free_pages((unsigned long)vmcs, vmcs_config.order);
3029 }
3030
3031 /*
3032  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3033  */
3034 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3035 {
3036         if (!loaded_vmcs->vmcs)
3037                 return;
3038         loaded_vmcs_clear(loaded_vmcs);
3039         free_vmcs(loaded_vmcs->vmcs);
3040         loaded_vmcs->vmcs = NULL;
3041 }
3042
3043 static void free_kvm_area(void)
3044 {
3045         int cpu;
3046
3047         for_each_possible_cpu(cpu) {
3048                 free_vmcs(per_cpu(vmxarea, cpu));
3049                 per_cpu(vmxarea, cpu) = NULL;
3050         }
3051 }
3052
3053 static void init_vmcs_shadow_fields(void)
3054 {
3055         int i, j;
3056
3057         /* No checks for read only fields yet */
3058
3059         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3060                 switch (shadow_read_write_fields[i]) {
3061                 case GUEST_BNDCFGS:
3062                         if (!vmx_mpx_supported())
3063                                 continue;
3064                         break;
3065                 default:
3066                         break;
3067                 }
3068
3069                 if (j < i)
3070                         shadow_read_write_fields[j] =
3071                                 shadow_read_write_fields[i];
3072                 j++;
3073         }
3074         max_shadow_read_write_fields = j;
3075
3076         /* shadowed fields guest access without vmexit */
3077         for (i = 0; i < max_shadow_read_write_fields; i++) {
3078                 clear_bit(shadow_read_write_fields[i],
3079                           vmx_vmwrite_bitmap);
3080                 clear_bit(shadow_read_write_fields[i],
3081                           vmx_vmread_bitmap);
3082         }
3083         for (i = 0; i < max_shadow_read_only_fields; i++)
3084                 clear_bit(shadow_read_only_fields[i],
3085                           vmx_vmread_bitmap);
3086 }
3087
3088 static __init int alloc_kvm_area(void)
3089 {
3090         int cpu;
3091
3092         for_each_possible_cpu(cpu) {
3093                 struct vmcs *vmcs;
3094
3095                 vmcs = alloc_vmcs_cpu(cpu);
3096                 if (!vmcs) {
3097                         free_kvm_area();
3098                         return -ENOMEM;
3099                 }
3100
3101                 per_cpu(vmxarea, cpu) = vmcs;
3102         }
3103         return 0;
3104 }
3105
3106 static __init int hardware_setup(void)
3107 {
3108         if (setup_vmcs_config(&vmcs_config) < 0)
3109                 return -EIO;
3110
3111         if (boot_cpu_has(X86_FEATURE_NX))
3112                 kvm_enable_efer_bits(EFER_NX);
3113
3114         if (!cpu_has_vmx_vpid())
3115                 enable_vpid = 0;
3116         if (!cpu_has_vmx_shadow_vmcs())
3117                 enable_shadow_vmcs = 0;
3118         if (enable_shadow_vmcs)
3119                 init_vmcs_shadow_fields();
3120
3121         if (!cpu_has_vmx_ept() ||
3122             !cpu_has_vmx_ept_4levels()) {
3123                 enable_ept = 0;
3124                 enable_unrestricted_guest = 0;
3125                 enable_ept_ad_bits = 0;
3126         }
3127
3128         if (!cpu_has_vmx_ept_ad_bits())
3129                 enable_ept_ad_bits = 0;
3130
3131         if (!cpu_has_vmx_unrestricted_guest())
3132                 enable_unrestricted_guest = 0;
3133
3134         if (!cpu_has_vmx_flexpriority())
3135                 flexpriority_enabled = 0;
3136
3137         if (!cpu_has_vmx_tpr_shadow())
3138                 kvm_x86_ops->update_cr8_intercept = NULL;
3139
3140         if (enable_ept && !cpu_has_vmx_ept_2m_page())
3141                 kvm_disable_largepages();
3142
3143         if (!cpu_has_vmx_ple())
3144                 ple_gap = 0;
3145
3146         if (!cpu_has_vmx_apicv())
3147                 enable_apicv = 0;
3148
3149         if (enable_apicv)
3150                 kvm_x86_ops->update_cr8_intercept = NULL;
3151         else {
3152                 kvm_x86_ops->hwapic_irr_update = NULL;
3153                 kvm_x86_ops->deliver_posted_interrupt = NULL;
3154                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3155         }
3156
3157         if (nested)
3158                 nested_vmx_setup_ctls_msrs();
3159
3160         return alloc_kvm_area();
3161 }
3162
3163 static __exit void hardware_unsetup(void)
3164 {
3165         free_kvm_area();
3166 }
3167
3168 static bool emulation_required(struct kvm_vcpu *vcpu)
3169 {
3170         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3171 }
3172
3173 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3174                 struct kvm_segment *save)
3175 {
3176         if (!emulate_invalid_guest_state) {
3177                 /*
3178                  * CS and SS RPL should be equal during guest entry according
3179                  * to VMX spec, but in reality it is not always so. Since vcpu
3180                  * is in the middle of the transition from real mode to
3181                  * protected mode it is safe to assume that RPL 0 is a good
3182                  * default value.
3183                  */
3184                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3185                         save->selector &= ~SELECTOR_RPL_MASK;
3186                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3187                 save->s = 1;
3188         }
3189         vmx_set_segment(vcpu, save, seg);
3190 }
3191
3192 static void enter_pmode(struct kvm_vcpu *vcpu)
3193 {
3194         unsigned long flags;
3195         struct vcpu_vmx *vmx = to_vmx(vcpu);
3196
3197         /*
3198          * Update real mode segment cache. It may be not up-to-date if sement
3199          * register was written while vcpu was in a guest mode.
3200          */
3201         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3202         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3203         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3204         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3205         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3206         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3207
3208         vmx->rmode.vm86_active = 0;
3209
3210         vmx_segment_cache_clear(vmx);
3211
3212         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3213
3214         flags = vmcs_readl(GUEST_RFLAGS);
3215         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3216         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3217         vmcs_writel(GUEST_RFLAGS, flags);
3218
3219         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3220                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3221
3222         update_exception_bitmap(vcpu);
3223
3224         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3225         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3226         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3227         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3228         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3229         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3230 }
3231
3232 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3233 {
3234         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3235         struct kvm_segment var = *save;
3236
3237         var.dpl = 0x3;
3238         if (seg == VCPU_SREG_CS)
3239                 var.type = 0x3;
3240
3241         if (!emulate_invalid_guest_state) {
3242                 var.selector = var.base >> 4;
3243                 var.base = var.base & 0xffff0;
3244                 var.limit = 0xffff;
3245                 var.g = 0;
3246                 var.db = 0;
3247                 var.present = 1;
3248                 var.s = 1;
3249                 var.l = 0;
3250                 var.unusable = 0;
3251                 var.type = 0x3;
3252                 var.avl = 0;
3253                 if (save->base & 0xf)
3254                         printk_once(KERN_WARNING "kvm: segment base is not "
3255                                         "paragraph aligned when entering "
3256                                         "protected mode (seg=%d)", seg);
3257         }
3258
3259         vmcs_write16(sf->selector, var.selector);
3260         vmcs_write32(sf->base, var.base);
3261         vmcs_write32(sf->limit, var.limit);
3262         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3263 }
3264
3265 static void enter_rmode(struct kvm_vcpu *vcpu)
3266 {
3267         unsigned long flags;
3268         struct vcpu_vmx *vmx = to_vmx(vcpu);
3269
3270         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3271         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3272         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3273         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3274         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3275         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3276         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3277
3278         vmx->rmode.vm86_active = 1;
3279
3280         /*
3281          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3282          * vcpu. Warn the user that an update is overdue.
3283          */
3284         if (!vcpu->kvm->arch.tss_addr)
3285                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3286                              "called before entering vcpu\n");
3287
3288         vmx_segment_cache_clear(vmx);
3289
3290         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3291         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3292         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3293
3294         flags = vmcs_readl(GUEST_RFLAGS);
3295         vmx->rmode.save_rflags = flags;
3296
3297         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3298
3299         vmcs_writel(GUEST_RFLAGS, flags);
3300         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3301         update_exception_bitmap(vcpu);
3302
3303         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3304         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3305         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3306         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3307         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3308         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3309
3310         kvm_mmu_reset_context(vcpu);
3311 }
3312
3313 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3314 {
3315         struct vcpu_vmx *vmx = to_vmx(vcpu);
3316         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3317
3318         if (!msr)
3319                 return;
3320
3321         /*
3322          * Force kernel_gs_base reloading before EFER changes, as control
3323          * of this msr depends on is_long_mode().
3324          */
3325         vmx_load_host_state(to_vmx(vcpu));
3326         vcpu->arch.efer = efer;
3327         if (efer & EFER_LMA) {
3328                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3329                 msr->data = efer;
3330         } else {
3331                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3332
3333                 msr->data = efer & ~EFER_LME;
3334         }
3335         setup_msrs(vmx);
3336 }
3337
3338 #ifdef CONFIG_X86_64
3339
3340 static void enter_lmode(struct kvm_vcpu *vcpu)
3341 {
3342         u32 guest_tr_ar;
3343
3344         vmx_segment_cache_clear(to_vmx(vcpu));
3345
3346         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3347         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3348                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3349                                      __func__);
3350                 vmcs_write32(GUEST_TR_AR_BYTES,
3351                              (guest_tr_ar & ~AR_TYPE_MASK)
3352                              | AR_TYPE_BUSY_64_TSS);
3353         }
3354         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3355 }
3356
3357 static void exit_lmode(struct kvm_vcpu *vcpu)
3358 {
3359         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3360         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3361 }
3362
3363 #endif
3364
3365 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3366 {
3367         vpid_sync_context(to_vmx(vcpu));
3368         if (enable_ept) {
3369                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3370                         return;
3371                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3372         }
3373 }
3374
3375 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3376 {
3377         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3378
3379         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3380         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3381 }
3382
3383 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3384 {
3385         if (enable_ept && is_paging(vcpu))
3386                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3387         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3388 }
3389
3390 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3391 {
3392         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3393
3394         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3395         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3396 }
3397
3398 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3399 {
3400         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3401
3402         if (!test_bit(VCPU_EXREG_PDPTR,
3403                       (unsigned long *)&vcpu->arch.regs_dirty))
3404                 return;
3405
3406         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3407                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3408                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3409                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3410                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3411         }
3412 }
3413
3414 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3415 {
3416         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3417
3418         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3419                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3420                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3421                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3422                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3423         }
3424
3425         __set_bit(VCPU_EXREG_PDPTR,
3426                   (unsigned long *)&vcpu->arch.regs_avail);
3427         __set_bit(VCPU_EXREG_PDPTR,
3428                   (unsigned long *)&vcpu->arch.regs_dirty);
3429 }
3430
3431 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3432
3433 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3434                                         unsigned long cr0,
3435                                         struct kvm_vcpu *vcpu)
3436 {
3437         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3438                 vmx_decache_cr3(vcpu);
3439         if (!(cr0 & X86_CR0_PG)) {
3440                 /* From paging/starting to nonpaging */
3441                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3442                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3443                              (CPU_BASED_CR3_LOAD_EXITING |
3444                               CPU_BASED_CR3_STORE_EXITING));
3445                 vcpu->arch.cr0 = cr0;
3446                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3447         } else if (!is_paging(vcpu)) {
3448                 /* From nonpaging to paging */
3449                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3450                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3451                              ~(CPU_BASED_CR3_LOAD_EXITING |
3452                                CPU_BASED_CR3_STORE_EXITING));
3453                 vcpu->arch.cr0 = cr0;
3454                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3455         }
3456
3457         if (!(cr0 & X86_CR0_WP))
3458                 *hw_cr0 &= ~X86_CR0_WP;
3459 }
3460
3461 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3462 {
3463         struct vcpu_vmx *vmx = to_vmx(vcpu);
3464         unsigned long hw_cr0;
3465
3466         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3467         if (enable_unrestricted_guest)
3468                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3469         else {
3470                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3471
3472                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3473                         enter_pmode(vcpu);
3474
3475                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3476                         enter_rmode(vcpu);
3477         }
3478
3479 #ifdef CONFIG_X86_64
3480         if (vcpu->arch.efer & EFER_LME) {
3481                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3482                         enter_lmode(vcpu);
3483                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3484                         exit_lmode(vcpu);
3485         }
3486 #endif
3487
3488         if (enable_ept)
3489                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3490
3491         if (!vcpu->fpu_active)
3492                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3493
3494         vmcs_writel(CR0_READ_SHADOW, cr0);
3495         vmcs_writel(GUEST_CR0, hw_cr0);
3496         vcpu->arch.cr0 = cr0;
3497
3498         /* depends on vcpu->arch.cr0 to be set to a new value */
3499         vmx->emulation_required = emulation_required(vcpu);
3500 }
3501
3502 static u64 construct_eptp(unsigned long root_hpa)
3503 {
3504         u64 eptp;
3505
3506         /* TODO write the value reading from MSR */
3507         eptp = VMX_EPT_DEFAULT_MT |
3508                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3509         if (enable_ept_ad_bits)
3510                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3511         eptp |= (root_hpa & PAGE_MASK);
3512
3513         return eptp;
3514 }
3515
3516 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3517 {
3518         unsigned long guest_cr3;
3519         u64 eptp;
3520
3521         guest_cr3 = cr3;
3522         if (enable_ept) {
3523                 eptp = construct_eptp(cr3);
3524                 vmcs_write64(EPT_POINTER, eptp);
3525                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3526                         guest_cr3 = kvm_read_cr3(vcpu);
3527                 else
3528                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3529                 ept_load_pdptrs(vcpu);
3530         }
3531
3532         vmx_flush_tlb(vcpu);
3533         vmcs_writel(GUEST_CR3, guest_cr3);
3534 }
3535
3536 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3537 {
3538         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3539                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3540
3541         if (cr4 & X86_CR4_VMXE) {
3542                 /*
3543                  * To use VMXON (and later other VMX instructions), a guest
3544                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3545                  * So basically the check on whether to allow nested VMX
3546                  * is here.
3547                  */
3548                 if (!nested_vmx_allowed(vcpu))
3549                         return 1;
3550         }
3551         if (to_vmx(vcpu)->nested.vmxon &&
3552             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3553                 return 1;
3554
3555         vcpu->arch.cr4 = cr4;
3556         if (enable_ept) {
3557                 if (!is_paging(vcpu)) {
3558                         hw_cr4 &= ~X86_CR4_PAE;
3559                         hw_cr4 |= X86_CR4_PSE;
3560                         /*
3561                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3562                          * in hardware. However KVM always uses paging mode to
3563                          * emulate guest non-paging mode with TDP.
3564                          * To emulate this behavior, SMEP/SMAP needs to be
3565                          * manually disabled when guest switches to non-paging
3566                          * mode.
3567                          */
3568                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3569                 } else if (!(cr4 & X86_CR4_PAE)) {
3570                         hw_cr4 &= ~X86_CR4_PAE;
3571                 }
3572         }
3573
3574         vmcs_writel(CR4_READ_SHADOW, cr4);
3575         vmcs_writel(GUEST_CR4, hw_cr4);
3576         return 0;
3577 }
3578
3579 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3580                             struct kvm_segment *var, int seg)
3581 {
3582         struct vcpu_vmx *vmx = to_vmx(vcpu);
3583         u32 ar;
3584
3585         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3586                 *var = vmx->rmode.segs[seg];
3587                 if (seg == VCPU_SREG_TR
3588                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3589                         return;
3590                 var->base = vmx_read_guest_seg_base(vmx, seg);
3591                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3592                 return;
3593         }
3594         var->base = vmx_read_guest_seg_base(vmx, seg);
3595         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3596         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3597         ar = vmx_read_guest_seg_ar(vmx, seg);
3598         var->unusable = (ar >> 16) & 1;
3599         var->type = ar & 15;
3600         var->s = (ar >> 4) & 1;
3601         var->dpl = (ar >> 5) & 3;
3602         /*
3603          * Some userspaces do not preserve unusable property. Since usable
3604          * segment has to be present according to VMX spec we can use present
3605          * property to amend userspace bug by making unusable segment always
3606          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3607          * segment as unusable.
3608          */
3609         var->present = !var->unusable;
3610         var->avl = (ar >> 12) & 1;
3611         var->l = (ar >> 13) & 1;
3612         var->db = (ar >> 14) & 1;
3613         var->g = (ar >> 15) & 1;
3614 }
3615
3616 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3617 {
3618         struct kvm_segment s;
3619
3620         if (to_vmx(vcpu)->rmode.vm86_active) {
3621                 vmx_get_segment(vcpu, &s, seg);
3622                 return s.base;
3623         }
3624         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3625 }
3626
3627 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3628 {
3629         struct vcpu_vmx *vmx = to_vmx(vcpu);
3630
3631         if (unlikely(vmx->rmode.vm86_active))
3632                 return 0;
3633         else {
3634                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3635                 return AR_DPL(ar);
3636         }
3637 }
3638
3639 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3640 {
3641         u32 ar;
3642
3643         if (var->unusable || !var->present)
3644                 ar = 1 << 16;
3645         else {
3646                 ar = var->type & 15;
3647                 ar |= (var->s & 1) << 4;
3648                 ar |= (var->dpl & 3) << 5;
3649                 ar |= (var->present & 1) << 7;
3650                 ar |= (var->avl & 1) << 12;
3651                 ar |= (var->l & 1) << 13;
3652                 ar |= (var->db & 1) << 14;
3653                 ar |= (var->g & 1) << 15;
3654         }
3655
3656         return ar;
3657 }
3658
3659 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3660                             struct kvm_segment *var, int seg)
3661 {
3662         struct vcpu_vmx *vmx = to_vmx(vcpu);
3663         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3664
3665         vmx_segment_cache_clear(vmx);
3666
3667         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3668                 vmx->rmode.segs[seg] = *var;
3669                 if (seg == VCPU_SREG_TR)
3670                         vmcs_write16(sf->selector, var->selector);
3671                 else if (var->s)
3672                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3673                 goto out;
3674         }
3675
3676         vmcs_writel(sf->base, var->base);
3677         vmcs_write32(sf->limit, var->limit);
3678         vmcs_write16(sf->selector, var->selector);
3679
3680         /*
3681          *   Fix the "Accessed" bit in AR field of segment registers for older
3682          * qemu binaries.
3683          *   IA32 arch specifies that at the time of processor reset the
3684          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3685          * is setting it to 0 in the userland code. This causes invalid guest
3686          * state vmexit when "unrestricted guest" mode is turned on.
3687          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3688          * tree. Newer qemu binaries with that qemu fix would not need this
3689          * kvm hack.
3690          */
3691         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3692                 var->type |= 0x1; /* Accessed */
3693
3694         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3695
3696 out:
3697         vmx->emulation_required = emulation_required(vcpu);
3698 }
3699
3700 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3701 {
3702         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3703
3704         *db = (ar >> 14) & 1;
3705         *l = (ar >> 13) & 1;
3706 }
3707
3708 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3709 {
3710         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3711         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3712 }
3713
3714 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3715 {
3716         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3717         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3718 }
3719
3720 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3721 {
3722         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3723         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3724 }
3725
3726 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3727 {
3728         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3729         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3730 }
3731
3732 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3733 {
3734         struct kvm_segment var;
3735         u32 ar;
3736
3737         vmx_get_segment(vcpu, &var, seg);
3738         var.dpl = 0x3;
3739         if (seg == VCPU_SREG_CS)
3740                 var.type = 0x3;
3741         ar = vmx_segment_access_rights(&var);
3742
3743         if (var.base != (var.selector << 4))
3744                 return false;
3745         if (var.limit != 0xffff)
3746                 return false;
3747         if (ar != 0xf3)
3748                 return false;
3749
3750         return true;
3751 }
3752
3753 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3754 {
3755         struct kvm_segment cs;
3756         unsigned int cs_rpl;
3757
3758         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3759         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3760
3761         if (cs.unusable)
3762                 return false;
3763         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3764                 return false;
3765         if (!cs.s)
3766                 return false;
3767         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3768                 if (cs.dpl > cs_rpl)
3769                         return false;
3770         } else {
3771                 if (cs.dpl != cs_rpl)
3772                         return false;
3773         }
3774         if (!cs.present)
3775                 return false;
3776
3777         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3778         return true;
3779 }
3780
3781 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3782 {
3783         struct kvm_segment ss;
3784         unsigned int ss_rpl;
3785
3786         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3787         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3788
3789         if (ss.unusable)
3790                 return true;
3791         if (ss.type != 3 && ss.type != 7)
3792                 return false;
3793         if (!ss.s)
3794                 return false;
3795         if (ss.dpl != ss_rpl) /* DPL != RPL */
3796                 return false;
3797         if (!ss.present)
3798                 return false;
3799
3800         return true;
3801 }
3802
3803 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3804 {
3805         struct kvm_segment var;
3806         unsigned int rpl;
3807
3808         vmx_get_segment(vcpu, &var, seg);
3809         rpl = var.selector & SELECTOR_RPL_MASK;
3810
3811         if (var.unusable)
3812                 return true;
3813         if (!var.s)
3814                 return false;
3815         if (!var.present)
3816                 return false;
3817         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3818                 if (var.dpl < rpl) /* DPL < RPL */
3819                         return false;
3820         }
3821
3822         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3823          * rights flags
3824          */
3825         return true;
3826 }
3827
3828 static bool tr_valid(struct kvm_vcpu *vcpu)
3829 {
3830         struct kvm_segment tr;
3831
3832         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3833
3834         if (tr.unusable)
3835                 return false;
3836         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3837                 return false;
3838         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3839                 return false;
3840         if (!tr.present)
3841                 return false;
3842
3843         return true;
3844 }
3845
3846 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3847 {
3848         struct kvm_segment ldtr;
3849
3850         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3851
3852         if (ldtr.unusable)
3853                 return true;
3854         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3855                 return false;
3856         if (ldtr.type != 2)
3857                 return false;
3858         if (!ldtr.present)
3859                 return false;
3860
3861         return true;
3862 }
3863
3864 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3865 {
3866         struct kvm_segment cs, ss;
3867
3868         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3869         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3870
3871         return ((cs.selector & SELECTOR_RPL_MASK) ==
3872                  (ss.selector & SELECTOR_RPL_MASK));
3873 }
3874
3875 /*
3876  * Check if guest state is valid. Returns true if valid, false if
3877  * not.
3878  * We assume that registers are always usable
3879  */
3880 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3881 {
3882         if (enable_unrestricted_guest)
3883                 return true;
3884
3885         /* real mode guest state checks */
3886         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3887                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3888                         return false;
3889                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3890                         return false;
3891                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3892                         return false;
3893                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3894                         return false;
3895                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3896                         return false;
3897                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3898                         return false;
3899         } else {
3900         /* protected mode guest state checks */
3901                 if (!cs_ss_rpl_check(vcpu))
3902                         return false;
3903                 if (!code_segment_valid(vcpu))
3904                         return false;
3905                 if (!stack_segment_valid(vcpu))
3906                         return false;
3907                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3908                         return false;
3909                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3910                         return false;
3911                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3912                         return false;
3913                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3914                         return false;
3915                 if (!tr_valid(vcpu))
3916                         return false;
3917                 if (!ldtr_valid(vcpu))
3918                         return false;
3919         }
3920         /* TODO:
3921          * - Add checks on RIP
3922          * - Add checks on RFLAGS
3923          */
3924
3925         return true;
3926 }
3927
3928 static int init_rmode_tss(struct kvm *kvm)
3929 {
3930         gfn_t fn;
3931         u16 data = 0;
3932         int r, idx, ret = 0;
3933
3934         idx = srcu_read_lock(&kvm->srcu);
3935         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3936         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3937         if (r < 0)
3938                 goto out;
3939         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3940         r = kvm_write_guest_page(kvm, fn++, &data,
3941                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3942         if (r < 0)
3943                 goto out;
3944         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3945         if (r < 0)
3946                 goto out;
3947         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3948         if (r < 0)
3949                 goto out;
3950         data = ~0;
3951         r = kvm_write_guest_page(kvm, fn, &data,
3952                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3953                                  sizeof(u8));
3954         if (r < 0)
3955                 goto out;
3956
3957         ret = 1;
3958 out:
3959         srcu_read_unlock(&kvm->srcu, idx);
3960         return ret;
3961 }
3962
3963 static int init_rmode_identity_map(struct kvm *kvm)
3964 {
3965         int i, idx, r, ret;
3966         pfn_t identity_map_pfn;
3967         u32 tmp;
3968
3969         if (!enable_ept)
3970                 return 1;
3971         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3972                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3973                         "haven't been allocated!\n");
3974                 return 0;
3975         }
3976         if (likely(kvm->arch.ept_identity_pagetable_done))
3977                 return 1;
3978         ret = 0;
3979         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3980         idx = srcu_read_lock(&kvm->srcu);
3981         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3982         if (r < 0)
3983                 goto out;
3984         /* Set up identity-mapping pagetable for EPT in real mode */
3985         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3986                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3987                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3988                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3989                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3990                 if (r < 0)
3991                         goto out;
3992         }
3993         kvm->arch.ept_identity_pagetable_done = true;
3994         ret = 1;
3995 out:
3996         srcu_read_unlock(&kvm->srcu, idx);
3997         return ret;
3998 }
3999
4000 static void seg_setup(int seg)
4001 {
4002         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4003         unsigned int ar;
4004
4005         vmcs_write16(sf->selector, 0);
4006         vmcs_writel(sf->base, 0);
4007         vmcs_write32(sf->limit, 0xffff);
4008         ar = 0x93;
4009         if (seg == VCPU_SREG_CS)
4010                 ar |= 0x08; /* code segment */
4011
4012         vmcs_write32(sf->ar_bytes, ar);
4013 }
4014
4015 static int alloc_apic_access_page(struct kvm *kvm)
4016 {
4017         struct page *page;
4018         struct kvm_userspace_memory_region kvm_userspace_mem;
4019         int r = 0;
4020
4021         mutex_lock(&kvm->slots_lock);
4022         if (kvm->arch.apic_access_page)
4023                 goto out;
4024         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4025         kvm_userspace_mem.flags = 0;
4026         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
4027         kvm_userspace_mem.memory_size = PAGE_SIZE;
4028         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4029         if (r)
4030                 goto out;
4031
4032         page = gfn_to_page(kvm, 0xfee00);
4033         if (is_error_page(page)) {
4034                 r = -EFAULT;
4035                 goto out;
4036         }
4037
4038         kvm->arch.apic_access_page = page;
4039 out:
4040         mutex_unlock(&kvm->slots_lock);
4041         return r;
4042 }
4043
4044 static int alloc_identity_pagetable(struct kvm *kvm)
4045 {
4046         struct page *page;
4047         struct kvm_userspace_memory_region kvm_userspace_mem;
4048         int r = 0;
4049
4050         mutex_lock(&kvm->slots_lock);
4051         if (kvm->arch.ept_identity_pagetable)
4052                 goto out;
4053         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4054         kvm_userspace_mem.flags = 0;
4055         kvm_userspace_mem.guest_phys_addr =
4056                 kvm->arch.ept_identity_map_addr;
4057         kvm_userspace_mem.memory_size = PAGE_SIZE;
4058         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4059         if (r)
4060                 goto out;
4061
4062         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
4063         if (is_error_page(page)) {
4064                 r = -EFAULT;
4065                 goto out;
4066         }
4067
4068         kvm->arch.ept_identity_pagetable = page;
4069 out:
4070         mutex_unlock(&kvm->slots_lock);
4071         return r;
4072 }
4073
4074 static void allocate_vpid(struct vcpu_vmx *vmx)
4075 {
4076         int vpid;
4077
4078         vmx->vpid = 0;
4079         if (!enable_vpid)
4080                 return;
4081         spin_lock(&vmx_vpid_lock);
4082         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4083         if (vpid < VMX_NR_VPIDS) {
4084                 vmx->vpid = vpid;
4085                 __set_bit(vpid, vmx_vpid_bitmap);
4086         }
4087         spin_unlock(&vmx_vpid_lock);
4088 }
4089
4090 static void free_vpid(struct vcpu_vmx *vmx)
4091 {
4092         if (!enable_vpid)
4093                 return;
4094         spin_lock(&vmx_vpid_lock);
4095         if (vmx->vpid != 0)
4096                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4097         spin_unlock(&vmx_vpid_lock);
4098 }
4099
4100 #define MSR_TYPE_R      1
4101 #define MSR_TYPE_W      2
4102 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4103                                                 u32 msr, int type)
4104 {
4105         int f = sizeof(unsigned long);
4106
4107         if (!cpu_has_vmx_msr_bitmap())
4108                 return;
4109
4110         /*
4111          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4112          * have the write-low and read-high bitmap offsets the wrong way round.
4113          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4114          */
4115         if (msr <= 0x1fff) {
4116                 if (type & MSR_TYPE_R)
4117                         /* read-low */
4118                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4119
4120                 if (type & MSR_TYPE_W)
4121                         /* write-low */
4122                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4123
4124         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4125                 msr &= 0x1fff;
4126                 if (type & MSR_TYPE_R)
4127                         /* read-high */
4128                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4129
4130                 if (type & MSR_TYPE_W)
4131                         /* write-high */
4132                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4133
4134         }
4135 }
4136
4137 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4138                                                 u32 msr, int type)
4139 {
4140         int f = sizeof(unsigned long);
4141
4142         if (!cpu_has_vmx_msr_bitmap())
4143                 return;
4144
4145         /*
4146          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4147          * have the write-low and read-high bitmap offsets the wrong way round.
4148          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4149          */
4150         if (msr <= 0x1fff) {
4151                 if (type & MSR_TYPE_R)
4152                         /* read-low */
4153                         __set_bit(msr, msr_bitmap + 0x000 / f);
4154
4155                 if (type & MSR_TYPE_W)
4156                         /* write-low */
4157                         __set_bit(msr, msr_bitmap + 0x800 / f);
4158
4159         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4160                 msr &= 0x1fff;
4161                 if (type & MSR_TYPE_R)
4162                         /* read-high */
4163                         __set_bit(msr, msr_bitmap + 0x400 / f);
4164
4165                 if (type & MSR_TYPE_W)
4166                         /* write-high */
4167                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4168
4169         }
4170 }
4171
4172 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4173 {
4174         if (!longmode_only)
4175                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4176                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4177         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4178                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4179 }
4180
4181 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4182 {
4183         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4184                         msr, MSR_TYPE_R);
4185         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4186                         msr, MSR_TYPE_R);
4187 }
4188
4189 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4190 {
4191         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4192                         msr, MSR_TYPE_R);
4193         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4194                         msr, MSR_TYPE_R);
4195 }
4196
4197 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4198 {
4199         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4200                         msr, MSR_TYPE_W);
4201         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4202                         msr, MSR_TYPE_W);
4203 }
4204
4205 static int vmx_vm_has_apicv(struct kvm *kvm)
4206 {
4207         return enable_apicv && irqchip_in_kernel(kvm);
4208 }
4209
4210 /*
4211  * Send interrupt to vcpu via posted interrupt way.
4212  * 1. If target vcpu is running(non-root mode), send posted interrupt
4213  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4214  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4215  * interrupt from PIR in next vmentry.
4216  */
4217 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4218 {
4219         struct vcpu_vmx *vmx = to_vmx(vcpu);
4220         int r;
4221
4222         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4223                 return;
4224
4225         r = pi_test_and_set_on(&vmx->pi_desc);
4226         kvm_make_request(KVM_REQ_EVENT, vcpu);
4227 #ifdef CONFIG_SMP
4228         if (!r && (vcpu->mode == IN_GUEST_MODE))
4229                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4230                                 POSTED_INTR_VECTOR);
4231         else
4232 #endif
4233                 kvm_vcpu_kick(vcpu);
4234 }
4235
4236 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4237 {
4238         struct vcpu_vmx *vmx = to_vmx(vcpu);
4239
4240         if (!pi_test_and_clear_on(&vmx->pi_desc))
4241                 return;
4242
4243         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4244 }
4245
4246 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4247 {
4248         return;
4249 }
4250
4251 /*
4252  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4253  * will not change in the lifetime of the guest.
4254  * Note that host-state that does change is set elsewhere. E.g., host-state
4255  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4256  */
4257 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4258 {
4259         u32 low32, high32;
4260         unsigned long tmpl;
4261         struct desc_ptr dt;
4262
4263         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4264         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4265         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4266
4267         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4268 #ifdef CONFIG_X86_64
4269         /*
4270          * Load null selectors, so we can avoid reloading them in
4271          * __vmx_load_host_state(), in case userspace uses the null selectors
4272          * too (the expected case).
4273          */
4274         vmcs_write16(HOST_DS_SELECTOR, 0);
4275         vmcs_write16(HOST_ES_SELECTOR, 0);
4276 #else
4277         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4278         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4279 #endif
4280         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4281         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4282
4283         native_store_idt(&dt);
4284         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4285         vmx->host_idt_base = dt.address;
4286
4287         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4288
4289         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4290         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4291         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4292         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4293
4294         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4295                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4296                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4297         }
4298 }
4299
4300 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4301 {
4302         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4303         if (enable_ept)
4304                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4305         if (is_guest_mode(&vmx->vcpu))
4306                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4307                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4308         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4309 }
4310
4311 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4312 {
4313         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4314
4315         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4316                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4317         return pin_based_exec_ctrl;
4318 }
4319
4320 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4321 {
4322         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4323
4324         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4325                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4326
4327         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4328                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4329 #ifdef CONFIG_X86_64
4330                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4331                                 CPU_BASED_CR8_LOAD_EXITING;
4332 #endif
4333         }
4334         if (!enable_ept)
4335                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4336                                 CPU_BASED_CR3_LOAD_EXITING  |
4337                                 CPU_BASED_INVLPG_EXITING;
4338         return exec_control;
4339 }
4340
4341 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4342 {
4343         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4344         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4345                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4346         if (vmx->vpid == 0)
4347                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4348         if (!enable_ept) {
4349                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4350                 enable_unrestricted_guest = 0;
4351                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4352                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4353         }
4354         if (!enable_unrestricted_guest)
4355                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4356         if (!ple_gap)
4357                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4358         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4359                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4360                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4361         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4362         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4363            (handle_vmptrld).
4364            We can NOT enable shadow_vmcs here because we don't have yet
4365            a current VMCS12
4366         */
4367         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4368         return exec_control;
4369 }
4370
4371 static void ept_set_mmio_spte_mask(void)
4372 {
4373         /*
4374          * EPT Misconfigurations can be generated if the value of bits 2:0
4375          * of an EPT paging-structure entry is 110b (write/execute).
4376          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4377          * spte.
4378          */
4379         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4380 }
4381
4382 /*
4383  * Sets up the vmcs for emulated real mode.
4384  */
4385 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4386 {
4387 #ifdef CONFIG_X86_64
4388         unsigned long a;
4389 #endif
4390         int i;
4391
4392         /* I/O */
4393         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4394         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4395
4396         if (enable_shadow_vmcs) {
4397                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4398                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4399         }
4400         if (cpu_has_vmx_msr_bitmap())
4401                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4402
4403         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4404
4405         /* Control */
4406         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4407
4408         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4409
4410         if (cpu_has_secondary_exec_ctrls()) {
4411                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4412                                 vmx_secondary_exec_control(vmx));
4413         }
4414
4415         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4416                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4417                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4418                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4419                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4420
4421                 vmcs_write16(GUEST_INTR_STATUS, 0);
4422
4423                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4424                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4425         }
4426
4427         if (ple_gap) {
4428                 vmcs_write32(PLE_GAP, ple_gap);
4429                 vmx->ple_window = ple_window;
4430                 vmx->ple_window_dirty = true;
4431         }
4432
4433         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4434         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4435         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4436
4437         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4438         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4439         vmx_set_constant_host_state(vmx);
4440 #ifdef CONFIG_X86_64
4441         rdmsrl(MSR_FS_BASE, a);
4442         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4443         rdmsrl(MSR_GS_BASE, a);
4444         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4445 #else
4446         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4447         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4448 #endif
4449
4450         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4451         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4452         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4453         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4454         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4455
4456         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4457                 u32 msr_low, msr_high;
4458                 u64 host_pat;
4459                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4460                 host_pat = msr_low | ((u64) msr_high << 32);
4461                 /* Write the default value follow host pat */
4462                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4463                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4464                 vmx->vcpu.arch.pat = host_pat;
4465         }
4466
4467         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4468                 u32 index = vmx_msr_index[i];
4469                 u32 data_low, data_high;
4470                 int j = vmx->nmsrs;
4471
4472                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4473                         continue;
4474                 if (wrmsr_safe(index, data_low, data_high) < 0)
4475                         continue;
4476                 vmx->guest_msrs[j].index = i;
4477                 vmx->guest_msrs[j].data = 0;
4478                 vmx->guest_msrs[j].mask = -1ull;
4479                 ++vmx->nmsrs;
4480         }
4481
4482
4483         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4484
4485         /* 22.2.1, 20.8.1 */
4486         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4487
4488         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4489         set_cr4_guest_host_mask(vmx);
4490
4491         return 0;
4492 }
4493
4494 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4495 {
4496         struct vcpu_vmx *vmx = to_vmx(vcpu);
4497         struct msr_data apic_base_msr;
4498
4499         vmx->rmode.vm86_active = 0;
4500
4501         vmx->soft_vnmi_blocked = 0;
4502
4503         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4504         kvm_set_cr8(&vmx->vcpu, 0);
4505         apic_base_msr.data = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4506         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4507                 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4508         apic_base_msr.host_initiated = true;
4509         kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4510
4511         vmx_segment_cache_clear(vmx);
4512
4513         seg_setup(VCPU_SREG_CS);
4514         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4515         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4516
4517         seg_setup(VCPU_SREG_DS);
4518         seg_setup(VCPU_SREG_ES);
4519         seg_setup(VCPU_SREG_FS);
4520         seg_setup(VCPU_SREG_GS);
4521         seg_setup(VCPU_SREG_SS);
4522
4523         vmcs_write16(GUEST_TR_SELECTOR, 0);
4524         vmcs_writel(GUEST_TR_BASE, 0);
4525         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4526         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4527
4528         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4529         vmcs_writel(GUEST_LDTR_BASE, 0);
4530         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4531         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4532
4533         vmcs_write32(GUEST_SYSENTER_CS, 0);
4534         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4535         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4536
4537         vmcs_writel(GUEST_RFLAGS, 0x02);
4538         kvm_rip_write(vcpu, 0xfff0);
4539
4540         vmcs_writel(GUEST_GDTR_BASE, 0);
4541         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4542
4543         vmcs_writel(GUEST_IDTR_BASE, 0);
4544         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4545
4546         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4547         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4548         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4549
4550         /* Special registers */
4551         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4552
4553         setup_msrs(vmx);
4554
4555         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4556
4557         if (cpu_has_vmx_tpr_shadow()) {
4558                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4559                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4560                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4561                                      __pa(vmx->vcpu.arch.apic->regs));
4562                 vmcs_write32(TPR_THRESHOLD, 0);
4563         }
4564
4565         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4566                 vmcs_write64(APIC_ACCESS_ADDR,
4567                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4568
4569         if (vmx_vm_has_apicv(vcpu->kvm))
4570                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4571
4572         if (vmx->vpid != 0)
4573                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4574
4575         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4576         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4577         vmx_set_cr4(&vmx->vcpu, 0);
4578         vmx_set_efer(&vmx->vcpu, 0);
4579         vmx_fpu_activate(&vmx->vcpu);
4580         update_exception_bitmap(&vmx->vcpu);
4581
4582         vpid_sync_context(vmx);
4583 }
4584
4585 /*
4586  * In nested virtualization, check if L1 asked to exit on external interrupts.
4587  * For most existing hypervisors, this will always return true.
4588  */
4589 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4590 {
4591         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4592                 PIN_BASED_EXT_INTR_MASK;
4593 }
4594
4595 /*
4596  * In nested virtualization, check if L1 has set
4597  * VM_EXIT_ACK_INTR_ON_EXIT
4598  */
4599 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4600 {
4601         return get_vmcs12(vcpu)->vm_exit_controls &
4602                 VM_EXIT_ACK_INTR_ON_EXIT;
4603 }
4604
4605 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4606 {
4607         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4608                 PIN_BASED_NMI_EXITING;
4609 }
4610
4611 static void enable_irq_window(struct kvm_vcpu *vcpu)
4612 {
4613         u32 cpu_based_vm_exec_control;
4614
4615         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4616         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4617         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4618 }
4619
4620 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4621 {
4622         u32 cpu_based_vm_exec_control;
4623
4624         if (!cpu_has_virtual_nmis() ||
4625             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4626                 enable_irq_window(vcpu);
4627                 return;
4628         }
4629
4630         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4631         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4632         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4633 }
4634
4635 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4636 {
4637         struct vcpu_vmx *vmx = to_vmx(vcpu);
4638         uint32_t intr;
4639         int irq = vcpu->arch.interrupt.nr;
4640
4641         trace_kvm_inj_virq(irq);
4642
4643         ++vcpu->stat.irq_injections;
4644         if (vmx->rmode.vm86_active) {
4645                 int inc_eip = 0;
4646                 if (vcpu->arch.interrupt.soft)
4647                         inc_eip = vcpu->arch.event_exit_inst_len;
4648                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4649                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4650                 return;
4651         }
4652         intr = irq | INTR_INFO_VALID_MASK;
4653         if (vcpu->arch.interrupt.soft) {
4654                 intr |= INTR_TYPE_SOFT_INTR;
4655                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4656                              vmx->vcpu.arch.event_exit_inst_len);
4657         } else
4658                 intr |= INTR_TYPE_EXT_INTR;
4659         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4660 }
4661
4662 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4663 {
4664         struct vcpu_vmx *vmx = to_vmx(vcpu);
4665
4666         if (is_guest_mode(vcpu))
4667                 return;
4668
4669         if (!cpu_has_virtual_nmis()) {
4670                 /*
4671                  * Tracking the NMI-blocked state in software is built upon
4672                  * finding the next open IRQ window. This, in turn, depends on
4673                  * well-behaving guests: They have to keep IRQs disabled at
4674                  * least as long as the NMI handler runs. Otherwise we may
4675                  * cause NMI nesting, maybe breaking the guest. But as this is
4676                  * highly unlikely, we can live with the residual risk.
4677                  */
4678                 vmx->soft_vnmi_blocked = 1;
4679                 vmx->vnmi_blocked_time = 0;
4680         }
4681
4682         ++vcpu->stat.nmi_injections;
4683         vmx->nmi_known_unmasked = false;
4684         if (vmx->rmode.vm86_active) {
4685                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4686                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4687                 return;
4688         }
4689         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4690                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4691 }
4692
4693 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4694 {
4695         if (!cpu_has_virtual_nmis())
4696                 return to_vmx(vcpu)->soft_vnmi_blocked;
4697         if (to_vmx(vcpu)->nmi_known_unmasked)
4698                 return false;
4699         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4700 }
4701
4702 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4703 {
4704         struct vcpu_vmx *vmx = to_vmx(vcpu);
4705
4706         if (!cpu_has_virtual_nmis()) {
4707                 if (vmx->soft_vnmi_blocked != masked) {
4708                         vmx->soft_vnmi_blocked = masked;
4709                         vmx->vnmi_blocked_time = 0;
4710                 }
4711         } else {
4712                 vmx->nmi_known_unmasked = !masked;
4713                 if (masked)
4714                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4715                                       GUEST_INTR_STATE_NMI);
4716                 else
4717                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4718                                         GUEST_INTR_STATE_NMI);
4719         }
4720 }
4721
4722 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4723 {
4724         if (to_vmx(vcpu)->nested.nested_run_pending)
4725                 return 0;
4726
4727         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4728                 return 0;
4729
4730         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4731                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4732                    | GUEST_INTR_STATE_NMI));
4733 }
4734
4735 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4736 {
4737         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4738                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4739                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4740                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4741 }
4742
4743 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4744 {
4745         int ret;
4746         struct kvm_userspace_memory_region tss_mem = {
4747                 .slot = TSS_PRIVATE_MEMSLOT,
4748                 .guest_phys_addr = addr,
4749                 .memory_size = PAGE_SIZE * 3,
4750                 .flags = 0,
4751         };
4752
4753         ret = kvm_set_memory_region(kvm, &tss_mem);
4754         if (ret)
4755                 return ret;
4756         kvm->arch.tss_addr = addr;
4757         if (!init_rmode_tss(kvm))
4758                 return  -ENOMEM;
4759
4760         return 0;
4761 }
4762
4763 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4764 {
4765         switch (vec) {
4766         case BP_VECTOR:
4767                 /*
4768                  * Update instruction length as we may reinject the exception
4769                  * from user space while in guest debugging mode.
4770                  */
4771                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4772                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4773                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4774                         return false;
4775                 /* fall through */
4776         case DB_VECTOR:
4777                 if (vcpu->guest_debug &
4778                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4779                         return false;
4780                 /* fall through */
4781         case DE_VECTOR:
4782         case OF_VECTOR:
4783         case BR_VECTOR:
4784         case UD_VECTOR:
4785         case DF_VECTOR:
4786         case SS_VECTOR:
4787         case GP_VECTOR:
4788         case MF_VECTOR:
4789                 return true;
4790         break;
4791         }
4792         return false;
4793 }
4794
4795 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4796                                   int vec, u32 err_code)
4797 {
4798         /*
4799          * Instruction with address size override prefix opcode 0x67
4800          * Cause the #SS fault with 0 error code in VM86 mode.
4801          */
4802         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4803                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4804                         if (vcpu->arch.halt_request) {
4805                                 vcpu->arch.halt_request = 0;
4806                                 return kvm_emulate_halt(vcpu);
4807                         }
4808                         return 1;
4809                 }
4810                 return 0;
4811         }
4812
4813         /*
4814          * Forward all other exceptions that are valid in real mode.
4815          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4816          *        the required debugging infrastructure rework.
4817          */
4818         kvm_queue_exception(vcpu, vec);
4819         return 1;
4820 }
4821
4822 /*
4823  * Trigger machine check on the host. We assume all the MSRs are already set up
4824  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4825  * We pass a fake environment to the machine check handler because we want
4826  * the guest to be always treated like user space, no matter what context
4827  * it used internally.
4828  */
4829 static void kvm_machine_check(void)
4830 {
4831 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4832         struct pt_regs regs = {
4833                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4834                 .flags = X86_EFLAGS_IF,
4835         };
4836
4837         do_machine_check(&regs, 0);
4838 #endif
4839 }
4840
4841 static int handle_machine_check(struct kvm_vcpu *vcpu)
4842 {
4843         /* already handled by vcpu_run */
4844         return 1;
4845 }
4846
4847 static int handle_exception(struct kvm_vcpu *vcpu)
4848 {
4849         struct vcpu_vmx *vmx = to_vmx(vcpu);
4850         struct kvm_run *kvm_run = vcpu->run;
4851         u32 intr_info, ex_no, error_code;
4852         unsigned long cr2, rip, dr6;
4853         u32 vect_info;
4854         enum emulation_result er;
4855
4856         vect_info = vmx->idt_vectoring_info;
4857         intr_info = vmx->exit_intr_info;
4858
4859         if (is_machine_check(intr_info))
4860                 return handle_machine_check(vcpu);
4861
4862         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4863                 return 1;  /* already handled by vmx_vcpu_run() */
4864
4865         if (is_no_device(intr_info)) {
4866                 vmx_fpu_activate(vcpu);
4867                 return 1;
4868         }
4869
4870         if (is_invalid_opcode(intr_info)) {
4871                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4872                 if (er != EMULATE_DONE)
4873                         kvm_queue_exception(vcpu, UD_VECTOR);
4874                 return 1;
4875         }
4876
4877         error_code = 0;
4878         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4879                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4880
4881         /*
4882          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4883          * MMIO, it is better to report an internal error.
4884          * See the comments in vmx_handle_exit.
4885          */
4886         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4887             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4888                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4889                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4890                 vcpu->run->internal.ndata = 2;
4891                 vcpu->run->internal.data[0] = vect_info;
4892                 vcpu->run->internal.data[1] = intr_info;
4893                 return 0;
4894         }
4895
4896         if (is_page_fault(intr_info)) {
4897                 /* EPT won't cause page fault directly */
4898                 BUG_ON(enable_ept);
4899                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4900                 trace_kvm_page_fault(cr2, error_code);
4901
4902                 if (kvm_event_needs_reinjection(vcpu))
4903                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4904                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4905         }
4906
4907         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4908
4909         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4910                 return handle_rmode_exception(vcpu, ex_no, error_code);
4911
4912         switch (ex_no) {
4913         case DB_VECTOR:
4914                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4915                 if (!(vcpu->guest_debug &
4916                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4917                         vcpu->arch.dr6 &= ~15;
4918                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4919                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4920                                 skip_emulated_instruction(vcpu);
4921
4922                         kvm_queue_exception(vcpu, DB_VECTOR);
4923                         return 1;
4924                 }
4925                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4926                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4927                 /* fall through */
4928         case BP_VECTOR:
4929                 /*
4930                  * Update instruction length as we may reinject #BP from
4931                  * user space while in guest debugging mode. Reading it for
4932                  * #DB as well causes no harm, it is not used in that case.
4933                  */
4934                 vmx->vcpu.arch.event_exit_inst_len =
4935                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4936                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4937                 rip = kvm_rip_read(vcpu);
4938                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4939                 kvm_run->debug.arch.exception = ex_no;
4940                 break;
4941         default:
4942                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4943                 kvm_run->ex.exception = ex_no;
4944                 kvm_run->ex.error_code = error_code;
4945                 break;
4946         }
4947         return 0;
4948 }
4949
4950 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4951 {
4952         ++vcpu->stat.irq_exits;
4953         return 1;
4954 }
4955
4956 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4957 {
4958         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4959         return 0;
4960 }
4961
4962 static int handle_io(struct kvm_vcpu *vcpu)
4963 {
4964         unsigned long exit_qualification;
4965         int size, in, string;
4966         unsigned port;
4967
4968         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4969         string = (exit_qualification & 16) != 0;
4970         in = (exit_qualification & 8) != 0;
4971
4972         ++vcpu->stat.io_exits;
4973
4974         if (string || in)
4975                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4976
4977         port = exit_qualification >> 16;
4978         size = (exit_qualification & 7) + 1;
4979         skip_emulated_instruction(vcpu);
4980
4981         return kvm_fast_pio_out(vcpu, size, port);
4982 }
4983
4984 static void
4985 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4986 {
4987         /*
4988          * Patch in the VMCALL instruction:
4989          */
4990         hypercall[0] = 0x0f;
4991         hypercall[1] = 0x01;
4992         hypercall[2] = 0xc1;
4993 }
4994
4995 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4996 {
4997         unsigned long always_on = VMXON_CR0_ALWAYSON;
4998
4999         if (nested_vmx_secondary_ctls_high &
5000                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5001             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5002                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5003         return (val & always_on) == always_on;
5004 }
5005
5006 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5007 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5008 {
5009         if (is_guest_mode(vcpu)) {
5010                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5011                 unsigned long orig_val = val;
5012
5013                 /*
5014                  * We get here when L2 changed cr0 in a way that did not change
5015                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5016                  * but did change L0 shadowed bits. So we first calculate the
5017                  * effective cr0 value that L1 would like to write into the
5018                  * hardware. It consists of the L2-owned bits from the new
5019                  * value combined with the L1-owned bits from L1's guest_cr0.
5020                  */
5021                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5022                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5023
5024                 if (!nested_cr0_valid(vmcs12, val))
5025                         return 1;
5026
5027                 if (kvm_set_cr0(vcpu, val))
5028                         return 1;
5029                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5030                 return 0;
5031         } else {
5032                 if (to_vmx(vcpu)->nested.vmxon &&
5033                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5034                         return 1;
5035                 return kvm_set_cr0(vcpu, val);
5036         }
5037 }
5038
5039 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5040 {
5041         if (is_guest_mode(vcpu)) {
5042                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5043                 unsigned long orig_val = val;
5044
5045                 /* analogously to handle_set_cr0 */
5046                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5047                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5048                 if (kvm_set_cr4(vcpu, val))
5049                         return 1;
5050                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5051                 return 0;
5052         } else
5053                 return kvm_set_cr4(vcpu, val);
5054 }
5055
5056 /* called to set cr0 as approriate for clts instruction exit. */
5057 static void handle_clts(struct kvm_vcpu *vcpu)
5058 {
5059         if (is_guest_mode(vcpu)) {
5060                 /*
5061                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5062                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5063                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5064                  */
5065                 vmcs_writel(CR0_READ_SHADOW,
5066                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5067                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5068         } else
5069                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5070 }
5071
5072 static int handle_cr(struct kvm_vcpu *vcpu)
5073 {
5074         unsigned long exit_qualification, val;
5075         int cr;
5076         int reg;
5077         int err;
5078
5079         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5080         cr = exit_qualification & 15;
5081         reg = (exit_qualification >> 8) & 15;
5082         switch ((exit_qualification >> 4) & 3) {
5083         case 0: /* mov to cr */
5084                 val = kvm_register_readl(vcpu, reg);
5085                 trace_kvm_cr_write(cr, val);
5086                 switch (cr) {
5087                 case 0:
5088                         err = handle_set_cr0(vcpu, val);
5089                         kvm_complete_insn_gp(vcpu, err);
5090                         return 1;
5091                 case 3:
5092                         err = kvm_set_cr3(vcpu, val);
5093                         kvm_complete_insn_gp(vcpu, err);
5094                         return 1;
5095                 case 4:
5096                         err = handle_set_cr4(vcpu, val);
5097                         kvm_complete_insn_gp(vcpu, err);
5098                         return 1;
5099                 case 8: {
5100                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5101                                 u8 cr8 = (u8)val;
5102                                 err = kvm_set_cr8(vcpu, cr8);
5103                                 kvm_complete_insn_gp(vcpu, err);
5104                                 if (irqchip_in_kernel(vcpu->kvm))
5105                                         return 1;
5106                                 if (cr8_prev <= cr8)
5107                                         return 1;
5108                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5109                                 return 0;
5110                         }
5111                 }
5112                 break;
5113         case 2: /* clts */
5114                 handle_clts(vcpu);
5115                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5116                 skip_emulated_instruction(vcpu);
5117                 vmx_fpu_activate(vcpu);
5118                 return 1;
5119         case 1: /*mov from cr*/
5120                 switch (cr) {
5121                 case 3:
5122                         val = kvm_read_cr3(vcpu);
5123                         kvm_register_write(vcpu, reg, val);
5124                         trace_kvm_cr_read(cr, val);
5125                         skip_emulated_instruction(vcpu);
5126                         return 1;
5127                 case 8:
5128                         val = kvm_get_cr8(vcpu);
5129                         kvm_register_write(vcpu, reg, val);
5130                         trace_kvm_cr_read(cr, val);
5131                         skip_emulated_instruction(vcpu);
5132                         return 1;
5133                 }
5134                 break;
5135         case 3: /* lmsw */
5136                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5137                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5138                 kvm_lmsw(vcpu, val);
5139
5140                 skip_emulated_instruction(vcpu);
5141                 return 1;
5142         default:
5143                 break;
5144         }
5145         vcpu->run->exit_reason = 0;
5146         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5147                (int)(exit_qualification >> 4) & 3, cr);
5148         return 0;
5149 }
5150
5151 static int handle_dr(struct kvm_vcpu *vcpu)
5152 {
5153         unsigned long exit_qualification;
5154         int dr, reg;
5155
5156         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5157         if (!kvm_require_cpl(vcpu, 0))
5158                 return 1;
5159         dr = vmcs_readl(GUEST_DR7);
5160         if (dr & DR7_GD) {
5161                 /*
5162                  * As the vm-exit takes precedence over the debug trap, we
5163                  * need to emulate the latter, either for the host or the
5164                  * guest debugging itself.
5165                  */
5166                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5167                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5168                         vcpu->run->debug.arch.dr7 = dr;
5169                         vcpu->run->debug.arch.pc =
5170                                 vmcs_readl(GUEST_CS_BASE) +
5171                                 vmcs_readl(GUEST_RIP);
5172                         vcpu->run->debug.arch.exception = DB_VECTOR;
5173                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5174                         return 0;
5175                 } else {
5176                         vcpu->arch.dr7 &= ~DR7_GD;
5177                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5178                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5179                         kvm_queue_exception(vcpu, DB_VECTOR);
5180                         return 1;
5181                 }
5182         }
5183
5184         if (vcpu->guest_debug == 0) {
5185                 u32 cpu_based_vm_exec_control;
5186
5187                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5188                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5189                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5190
5191                 /*
5192                  * No more DR vmexits; force a reload of the debug registers
5193                  * and reenter on this instruction.  The next vmexit will
5194                  * retrieve the full state of the debug registers.
5195                  */
5196                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5197                 return 1;
5198         }
5199
5200         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5201         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5202         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5203         if (exit_qualification & TYPE_MOV_FROM_DR) {
5204                 unsigned long val;
5205
5206                 if (kvm_get_dr(vcpu, dr, &val))
5207                         return 1;
5208                 kvm_register_write(vcpu, reg, val);
5209         } else
5210                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5211                         return 1;
5212
5213         skip_emulated_instruction(vcpu);
5214         return 1;
5215 }
5216
5217 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5218 {
5219         return vcpu->arch.dr6;
5220 }
5221
5222 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5223 {
5224 }
5225
5226 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5227 {
5228         u32 cpu_based_vm_exec_control;
5229
5230         get_debugreg(vcpu->arch.db[0], 0);
5231         get_debugreg(vcpu->arch.db[1], 1);
5232         get_debugreg(vcpu->arch.db[2], 2);
5233         get_debugreg(vcpu->arch.db[3], 3);
5234         get_debugreg(vcpu->arch.dr6, 6);
5235         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5236
5237         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5238
5239         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5240         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5241         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5242 }
5243
5244 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5245 {
5246         vmcs_writel(GUEST_DR7, val);
5247 }
5248
5249 static int handle_cpuid(struct kvm_vcpu *vcpu)
5250 {
5251         kvm_emulate_cpuid(vcpu);
5252         return 1;
5253 }
5254
5255 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5256 {
5257         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5258         u64 data;
5259
5260         if (vmx_get_msr(vcpu, ecx, &data)) {
5261                 trace_kvm_msr_read_ex(ecx);
5262                 kvm_inject_gp(vcpu, 0);
5263                 return 1;
5264         }
5265
5266         trace_kvm_msr_read(ecx, data);
5267
5268         /* FIXME: handling of bits 32:63 of rax, rdx */
5269         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5270         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5271         skip_emulated_instruction(vcpu);
5272         return 1;
5273 }
5274
5275 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5276 {
5277         struct msr_data msr;
5278         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5279         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5280                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5281
5282         msr.data = data;
5283         msr.index = ecx;
5284         msr.host_initiated = false;
5285         if (vmx_set_msr(vcpu, &msr) != 0) {
5286                 trace_kvm_msr_write_ex(ecx, data);
5287                 kvm_inject_gp(vcpu, 0);
5288                 return 1;
5289         }
5290
5291         trace_kvm_msr_write(ecx, data);
5292         skip_emulated_instruction(vcpu);
5293         return 1;
5294 }
5295
5296 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5297 {
5298         kvm_make_request(KVM_REQ_EVENT, vcpu);
5299         return 1;
5300 }
5301
5302 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5303 {
5304         u32 cpu_based_vm_exec_control;
5305
5306         /* clear pending irq */
5307         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5308         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5309         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5310
5311         kvm_make_request(KVM_REQ_EVENT, vcpu);
5312
5313         ++vcpu->stat.irq_window_exits;
5314
5315         /*
5316          * If the user space waits to inject interrupts, exit as soon as
5317          * possible
5318          */
5319         if (!irqchip_in_kernel(vcpu->kvm) &&
5320             vcpu->run->request_interrupt_window &&
5321             !kvm_cpu_has_interrupt(vcpu)) {
5322                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5323                 return 0;
5324         }
5325         return 1;
5326 }
5327
5328 static int handle_halt(struct kvm_vcpu *vcpu)
5329 {
5330         skip_emulated_instruction(vcpu);
5331         return kvm_emulate_halt(vcpu);
5332 }
5333
5334 static int handle_vmcall(struct kvm_vcpu *vcpu)
5335 {
5336         skip_emulated_instruction(vcpu);
5337         kvm_emulate_hypercall(vcpu);
5338         return 1;
5339 }
5340
5341 static int handle_invd(struct kvm_vcpu *vcpu)
5342 {
5343         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5344 }
5345
5346 static int handle_invlpg(struct kvm_vcpu *vcpu)
5347 {
5348         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5349
5350         kvm_mmu_invlpg(vcpu, exit_qualification);
5351         skip_emulated_instruction(vcpu);
5352         return 1;
5353 }
5354
5355 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5356 {
5357         int err;
5358
5359         err = kvm_rdpmc(vcpu);
5360         kvm_complete_insn_gp(vcpu, err);
5361
5362         return 1;
5363 }
5364
5365 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5366 {
5367         skip_emulated_instruction(vcpu);
5368         kvm_emulate_wbinvd(vcpu);
5369         return 1;
5370 }
5371
5372 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5373 {
5374         u64 new_bv = kvm_read_edx_eax(vcpu);
5375         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5376
5377         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5378                 skip_emulated_instruction(vcpu);
5379         return 1;
5380 }
5381
5382 static int handle_apic_access(struct kvm_vcpu *vcpu)
5383 {
5384         if (likely(fasteoi)) {
5385                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5386                 int access_type, offset;
5387
5388                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5389                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5390                 /*
5391                  * Sane guest uses MOV to write EOI, with written value
5392                  * not cared. So make a short-circuit here by avoiding
5393                  * heavy instruction emulation.
5394                  */
5395                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5396                     (offset == APIC_EOI)) {
5397                         kvm_lapic_set_eoi(vcpu);
5398                         skip_emulated_instruction(vcpu);
5399                         return 1;
5400                 }
5401         }
5402         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5403 }
5404
5405 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5406 {
5407         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5408         int vector = exit_qualification & 0xff;
5409
5410         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5411         kvm_apic_set_eoi_accelerated(vcpu, vector);
5412         return 1;
5413 }
5414
5415 static int handle_apic_write(struct kvm_vcpu *vcpu)
5416 {
5417         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418         u32 offset = exit_qualification & 0xfff;
5419
5420         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5421         kvm_apic_write_nodecode(vcpu, offset);
5422         return 1;
5423 }
5424
5425 static int handle_task_switch(struct kvm_vcpu *vcpu)
5426 {
5427         struct vcpu_vmx *vmx = to_vmx(vcpu);
5428         unsigned long exit_qualification;
5429         bool has_error_code = false;
5430         u32 error_code = 0;
5431         u16 tss_selector;
5432         int reason, type, idt_v, idt_index;
5433
5434         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5435         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5436         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5437
5438         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5439
5440         reason = (u32)exit_qualification >> 30;
5441         if (reason == TASK_SWITCH_GATE && idt_v) {
5442                 switch (type) {
5443                 case INTR_TYPE_NMI_INTR:
5444                         vcpu->arch.nmi_injected = false;
5445                         vmx_set_nmi_mask(vcpu, true);
5446                         break;
5447                 case INTR_TYPE_EXT_INTR:
5448                 case INTR_TYPE_SOFT_INTR:
5449                         kvm_clear_interrupt_queue(vcpu);
5450                         break;
5451                 case INTR_TYPE_HARD_EXCEPTION:
5452                         if (vmx->idt_vectoring_info &
5453                             VECTORING_INFO_DELIVER_CODE_MASK) {
5454                                 has_error_code = true;
5455                                 error_code =
5456                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5457                         }
5458                         /* fall through */
5459                 case INTR_TYPE_SOFT_EXCEPTION:
5460                         kvm_clear_exception_queue(vcpu);
5461                         break;
5462                 default:
5463                         break;
5464                 }
5465         }
5466         tss_selector = exit_qualification;
5467
5468         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5469                        type != INTR_TYPE_EXT_INTR &&
5470                        type != INTR_TYPE_NMI_INTR))
5471                 skip_emulated_instruction(vcpu);
5472
5473         if (kvm_task_switch(vcpu, tss_selector,
5474                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5475                             has_error_code, error_code) == EMULATE_FAIL) {
5476                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5477                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5478                 vcpu->run->internal.ndata = 0;
5479                 return 0;
5480         }
5481
5482         /* clear all local breakpoint enable flags */
5483         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
5484
5485         /*
5486          * TODO: What about debug traps on tss switch?
5487          *       Are we supposed to inject them and update dr6?
5488          */
5489
5490         return 1;
5491 }
5492
5493 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5494 {
5495         unsigned long exit_qualification;
5496         gpa_t gpa;
5497         u32 error_code;
5498         int gla_validity;
5499
5500         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5501
5502         gla_validity = (exit_qualification >> 7) & 0x3;
5503         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5504                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5505                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5506                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5507                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5508                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5509                         (long unsigned int)exit_qualification);
5510                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5511                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5512                 return 0;
5513         }
5514
5515         /*
5516          * EPT violation happened while executing iret from NMI,
5517          * "blocked by NMI" bit has to be set before next VM entry.
5518          * There are errata that may cause this bit to not be set:
5519          * AAK134, BY25.
5520          */
5521         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5522                         cpu_has_virtual_nmis() &&
5523                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5524                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5525
5526         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5527         trace_kvm_page_fault(gpa, exit_qualification);
5528
5529         /* It is a write fault? */
5530         error_code = exit_qualification & (1U << 1);
5531         /* It is a fetch fault? */
5532         error_code |= (exit_qualification & (1U << 2)) << 2;
5533         /* ept page table is present? */
5534         error_code |= (exit_qualification >> 3) & 0x1;
5535
5536         vcpu->arch.exit_qualification = exit_qualification;
5537
5538         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5539 }
5540
5541 static u64 ept_rsvd_mask(u64 spte, int level)
5542 {
5543         int i;
5544         u64 mask = 0;
5545
5546         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5547                 mask |= (1ULL << i);
5548
5549         if (level == 4)
5550                 /* bits 7:3 reserved */
5551                 mask |= 0xf8;
5552         else if (spte & (1ULL << 7))
5553                 /*
5554                  * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5555                  * level == 1 if the hypervisor is using the ignored bit 7.
5556                  */
5557                 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5558         else if (level > 1)
5559                 /* bits 6:3 reserved */
5560                 mask |= 0x78;
5561
5562         return mask;
5563 }
5564
5565 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5566                                        int level)
5567 {
5568         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5569
5570         /* 010b (write-only) */
5571         WARN_ON((spte & 0x7) == 0x2);
5572
5573         /* 110b (write/execute) */
5574         WARN_ON((spte & 0x7) == 0x6);
5575
5576         /* 100b (execute-only) and value not supported by logical processor */
5577         if (!cpu_has_vmx_ept_execute_only())
5578                 WARN_ON((spte & 0x7) == 0x4);
5579
5580         /* not 000b */
5581         if ((spte & 0x7)) {
5582                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5583
5584                 if (rsvd_bits != 0) {
5585                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5586                                          __func__, rsvd_bits);
5587                         WARN_ON(1);
5588                 }
5589
5590                 /* bits 5:3 are _not_ reserved for large page or leaf page */
5591                 if ((rsvd_bits & 0x38) == 0) {
5592                         u64 ept_mem_type = (spte & 0x38) >> 3;
5593
5594                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5595                             ept_mem_type == 7) {
5596                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5597                                                 __func__, ept_mem_type);
5598                                 WARN_ON(1);
5599                         }
5600                 }
5601         }
5602 }
5603
5604 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5605 {
5606         u64 sptes[4];
5607         int nr_sptes, i, ret;
5608         gpa_t gpa;
5609
5610         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5611         if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5612                 skip_emulated_instruction(vcpu);
5613                 return 1;
5614         }
5615
5616         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5617         if (likely(ret == RET_MMIO_PF_EMULATE))
5618                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5619                                               EMULATE_DONE;
5620
5621         if (unlikely(ret == RET_MMIO_PF_INVALID))
5622                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5623
5624         if (unlikely(ret == RET_MMIO_PF_RETRY))
5625                 return 1;
5626
5627         /* It is the real ept misconfig */
5628         printk(KERN_ERR "EPT: Misconfiguration.\n");
5629         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5630
5631         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5632
5633         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5634                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5635
5636         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5637         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5638
5639         return 0;
5640 }
5641
5642 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5643 {
5644         u32 cpu_based_vm_exec_control;
5645
5646         /* clear pending NMI */
5647         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5648         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5649         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5650         ++vcpu->stat.nmi_window_exits;
5651         kvm_make_request(KVM_REQ_EVENT, vcpu);
5652
5653         return 1;
5654 }
5655
5656 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5657 {
5658         struct vcpu_vmx *vmx = to_vmx(vcpu);
5659         enum emulation_result err = EMULATE_DONE;
5660         int ret = 1;
5661         u32 cpu_exec_ctrl;
5662         bool intr_window_requested;
5663         unsigned count = 130;
5664
5665         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5666         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5667
5668         while (vmx->emulation_required && count-- != 0) {
5669                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5670                         return handle_interrupt_window(&vmx->vcpu);
5671
5672                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5673                         return 1;
5674
5675                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5676
5677                 if (err == EMULATE_USER_EXIT) {
5678                         ++vcpu->stat.mmio_exits;
5679                         ret = 0;
5680                         goto out;
5681                 }
5682
5683                 if (err != EMULATE_DONE) {
5684                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5685                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5686                         vcpu->run->internal.ndata = 0;
5687                         return 0;
5688                 }
5689
5690                 if (vcpu->arch.halt_request) {
5691                         vcpu->arch.halt_request = 0;
5692                         ret = kvm_emulate_halt(vcpu);
5693                         goto out;
5694                 }
5695
5696                 if (signal_pending(current))
5697                         goto out;
5698                 if (need_resched())
5699                         schedule();
5700         }
5701
5702 out:
5703         return ret;
5704 }
5705
5706 static int __grow_ple_window(int val)
5707 {
5708         if (ple_window_grow < 1)
5709                 return ple_window;
5710
5711         val = min(val, ple_window_actual_max);
5712
5713         if (ple_window_grow < ple_window)
5714                 val *= ple_window_grow;
5715         else
5716                 val += ple_window_grow;
5717
5718         return val;
5719 }
5720
5721 static int __shrink_ple_window(int val, int modifier, int minimum)
5722 {
5723         if (modifier < 1)
5724                 return ple_window;
5725
5726         if (modifier < ple_window)
5727                 val /= modifier;
5728         else
5729                 val -= modifier;
5730
5731         return max(val, minimum);
5732 }
5733
5734 static void grow_ple_window(struct kvm_vcpu *vcpu)
5735 {
5736         struct vcpu_vmx *vmx = to_vmx(vcpu);
5737         int old = vmx->ple_window;
5738
5739         vmx->ple_window = __grow_ple_window(old);
5740
5741         if (vmx->ple_window != old)
5742                 vmx->ple_window_dirty = true;
5743
5744         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5745 }
5746
5747 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5748 {
5749         struct vcpu_vmx *vmx = to_vmx(vcpu);
5750         int old = vmx->ple_window;
5751
5752         vmx->ple_window = __shrink_ple_window(old,
5753                                               ple_window_shrink, ple_window);
5754
5755         if (vmx->ple_window != old)
5756                 vmx->ple_window_dirty = true;
5757
5758         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5759 }
5760
5761 /*
5762  * ple_window_actual_max is computed to be one grow_ple_window() below
5763  * ple_window_max. (See __grow_ple_window for the reason.)
5764  * This prevents overflows, because ple_window_max is int.
5765  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5766  * this process.
5767  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5768  */
5769 static void update_ple_window_actual_max(void)
5770 {
5771         ple_window_actual_max =
5772                         __shrink_ple_window(max(ple_window_max, ple_window),
5773                                             ple_window_grow, INT_MIN);
5774 }
5775
5776 /*
5777  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5778  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5779  */
5780 static int handle_pause(struct kvm_vcpu *vcpu)
5781 {
5782         if (ple_gap)
5783                 grow_ple_window(vcpu);
5784
5785         skip_emulated_instruction(vcpu);
5786         kvm_vcpu_on_spin(vcpu);
5787
5788         return 1;
5789 }
5790
5791 static int handle_nop(struct kvm_vcpu *vcpu)
5792 {
5793         skip_emulated_instruction(vcpu);
5794         return 1;
5795 }
5796
5797 static int handle_mwait(struct kvm_vcpu *vcpu)
5798 {
5799         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5800         return handle_nop(vcpu);
5801 }
5802
5803 static int handle_monitor(struct kvm_vcpu *vcpu)
5804 {
5805         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5806         return handle_nop(vcpu);
5807 }
5808
5809 /*
5810  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5811  * We could reuse a single VMCS for all the L2 guests, but we also want the
5812  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5813  * allows keeping them loaded on the processor, and in the future will allow
5814  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5815  * every entry if they never change.
5816  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5817  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5818  *
5819  * The following functions allocate and free a vmcs02 in this pool.
5820  */
5821
5822 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5823 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5824 {
5825         struct vmcs02_list *item;
5826         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5827                 if (item->vmptr == vmx->nested.current_vmptr) {
5828                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5829                         return &item->vmcs02;
5830                 }
5831
5832         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5833                 /* Recycle the least recently used VMCS. */
5834                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5835                         struct vmcs02_list, list);
5836                 item->vmptr = vmx->nested.current_vmptr;
5837                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5838                 return &item->vmcs02;
5839         }
5840
5841         /* Create a new VMCS */
5842         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5843         if (!item)
5844                 return NULL;
5845         item->vmcs02.vmcs = alloc_vmcs();
5846         if (!item->vmcs02.vmcs) {
5847                 kfree(item);
5848                 return NULL;
5849         }
5850         loaded_vmcs_init(&item->vmcs02);
5851         item->vmptr = vmx->nested.current_vmptr;
5852         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5853         vmx->nested.vmcs02_num++;
5854         return &item->vmcs02;
5855 }
5856
5857 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5858 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5859 {
5860         struct vmcs02_list *item;
5861         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5862                 if (item->vmptr == vmptr) {
5863                         free_loaded_vmcs(&item->vmcs02);
5864                         list_del(&item->list);
5865                         kfree(item);
5866                         vmx->nested.vmcs02_num--;
5867                         return;
5868                 }
5869 }
5870
5871 /*
5872  * Free all VMCSs saved for this vcpu, except the one pointed by
5873  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
5874  * must be &vmx->vmcs01.
5875  */
5876 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5877 {
5878         struct vmcs02_list *item, *n;
5879
5880         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
5881         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5882                 /*
5883                  * Something will leak if the above WARN triggers.  Better than
5884                  * a use-after-free.
5885                  */
5886                 if (vmx->loaded_vmcs == &item->vmcs02)
5887                         continue;
5888
5889                 free_loaded_vmcs(&item->vmcs02);
5890                 list_del(&item->list);
5891                 kfree(item);
5892                 vmx->nested.vmcs02_num--;
5893         }
5894 }
5895
5896 /*
5897  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5898  * set the success or error code of an emulated VMX instruction, as specified
5899  * by Vol 2B, VMX Instruction Reference, "Conventions".
5900  */
5901 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5902 {
5903         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5904                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5905                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5906 }
5907
5908 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5909 {
5910         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5911                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5912                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5913                         | X86_EFLAGS_CF);
5914 }
5915
5916 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5917                                         u32 vm_instruction_error)
5918 {
5919         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5920                 /*
5921                  * failValid writes the error number to the current VMCS, which
5922                  * can't be done there isn't a current VMCS.
5923                  */
5924                 nested_vmx_failInvalid(vcpu);
5925                 return;
5926         }
5927         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5928                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5929                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5930                         | X86_EFLAGS_ZF);
5931         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5932         /*
5933          * We don't need to force a shadow sync because
5934          * VM_INSTRUCTION_ERROR is not shadowed
5935          */
5936 }
5937
5938 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5939 {
5940         struct vcpu_vmx *vmx =
5941                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5942
5943         vmx->nested.preemption_timer_expired = true;
5944         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5945         kvm_vcpu_kick(&vmx->vcpu);
5946
5947         return HRTIMER_NORESTART;
5948 }
5949
5950 /*
5951  * Decode the memory-address operand of a vmx instruction, as recorded on an
5952  * exit caused by such an instruction (run by a guest hypervisor).
5953  * On success, returns 0. When the operand is invalid, returns 1 and throws
5954  * #UD or #GP.
5955  */
5956 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5957                                  unsigned long exit_qualification,
5958                                  u32 vmx_instruction_info, gva_t *ret)
5959 {
5960         /*
5961          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5962          * Execution", on an exit, vmx_instruction_info holds most of the
5963          * addressing components of the operand. Only the displacement part
5964          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5965          * For how an actual address is calculated from all these components,
5966          * refer to Vol. 1, "Operand Addressing".
5967          */
5968         int  scaling = vmx_instruction_info & 3;
5969         int  addr_size = (vmx_instruction_info >> 7) & 7;
5970         bool is_reg = vmx_instruction_info & (1u << 10);
5971         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5972         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5973         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5974         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5975         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5976
5977         if (is_reg) {
5978                 kvm_queue_exception(vcpu, UD_VECTOR);
5979                 return 1;
5980         }
5981
5982         /* Addr = segment_base + offset */
5983         /* offset = base + [index * scale] + displacement */
5984         *ret = vmx_get_segment_base(vcpu, seg_reg);
5985         if (base_is_valid)
5986                 *ret += kvm_register_read(vcpu, base_reg);
5987         if (index_is_valid)
5988                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5989         *ret += exit_qualification; /* holds the displacement */
5990
5991         if (addr_size == 1) /* 32 bit */
5992                 *ret &= 0xffffffff;
5993
5994         /*
5995          * TODO: throw #GP (and return 1) in various cases that the VM*
5996          * instructions require it - e.g., offset beyond segment limit,
5997          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5998          * address, and so on. Currently these are not checked.
5999          */
6000         return 0;
6001 }
6002
6003 /*
6004  * This function performs the various checks including
6005  * - if it's 4KB aligned
6006  * - No bits beyond the physical address width are set
6007  * - Returns 0 on success or else 1
6008  * (Intel SDM Section 30.3)
6009  */
6010 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6011                                   gpa_t *vmpointer)
6012 {
6013         gva_t gva;
6014         gpa_t vmptr;
6015         struct x86_exception e;
6016         struct page *page;
6017         struct vcpu_vmx *vmx = to_vmx(vcpu);
6018         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6019
6020         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6021                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6022                 return 1;
6023
6024         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6025                                 sizeof(vmptr), &e)) {
6026                 kvm_inject_page_fault(vcpu, &e);
6027                 return 1;
6028         }
6029
6030         switch (exit_reason) {
6031         case EXIT_REASON_VMON:
6032                 /*
6033                  * SDM 3: 24.11.5
6034                  * The first 4 bytes of VMXON region contain the supported
6035                  * VMCS revision identifier
6036                  *
6037                  * Note - IA32_VMX_BASIC[48] will never be 1
6038                  * for the nested case;
6039                  * which replaces physical address width with 32
6040                  *
6041                  */
6042                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6043                         nested_vmx_failInvalid(vcpu);
6044                         skip_emulated_instruction(vcpu);
6045                         return 1;
6046                 }
6047
6048                 page = nested_get_page(vcpu, vmptr);
6049                 if (page == NULL ||
6050                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6051                         nested_vmx_failInvalid(vcpu);
6052                         kunmap(page);
6053                         skip_emulated_instruction(vcpu);
6054                         return 1;
6055                 }
6056                 kunmap(page);
6057                 vmx->nested.vmxon_ptr = vmptr;
6058                 break;
6059         case EXIT_REASON_VMCLEAR:
6060                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6061                         nested_vmx_failValid(vcpu,
6062                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6063                         skip_emulated_instruction(vcpu);
6064                         return 1;
6065                 }
6066
6067                 if (vmptr == vmx->nested.vmxon_ptr) {
6068                         nested_vmx_failValid(vcpu,
6069                                              VMXERR_VMCLEAR_VMXON_POINTER);
6070                         skip_emulated_instruction(vcpu);
6071                         return 1;
6072                 }
6073                 break;
6074         case EXIT_REASON_VMPTRLD:
6075                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6076                         nested_vmx_failValid(vcpu,
6077                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6078                         skip_emulated_instruction(vcpu);
6079                         return 1;
6080                 }
6081
6082                 if (vmptr == vmx->nested.vmxon_ptr) {
6083                         nested_vmx_failValid(vcpu,
6084                                              VMXERR_VMCLEAR_VMXON_POINTER);
6085                         skip_emulated_instruction(vcpu);
6086                         return 1;
6087                 }
6088                 break;
6089         default:
6090                 return 1; /* shouldn't happen */
6091         }
6092
6093         if (vmpointer)
6094                 *vmpointer = vmptr;
6095         return 0;
6096 }
6097
6098 /*
6099  * Emulate the VMXON instruction.
6100  * Currently, we just remember that VMX is active, and do not save or even
6101  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6102  * do not currently need to store anything in that guest-allocated memory
6103  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6104  * argument is different from the VMXON pointer (which the spec says they do).
6105  */
6106 static int handle_vmon(struct kvm_vcpu *vcpu)
6107 {
6108         struct kvm_segment cs;
6109         struct vcpu_vmx *vmx = to_vmx(vcpu);
6110         struct vmcs *shadow_vmcs;
6111         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6112                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6113
6114         /* The Intel VMX Instruction Reference lists a bunch of bits that
6115          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6116          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6117          * Otherwise, we should fail with #UD. We test these now:
6118          */
6119         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6120             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6121             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6122                 kvm_queue_exception(vcpu, UD_VECTOR);
6123                 return 1;
6124         }
6125
6126         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6127         if (is_long_mode(vcpu) && !cs.l) {
6128                 kvm_queue_exception(vcpu, UD_VECTOR);
6129                 return 1;
6130         }
6131
6132         if (vmx_get_cpl(vcpu)) {
6133                 kvm_inject_gp(vcpu, 0);
6134                 return 1;
6135         }
6136
6137         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6138                 return 1;
6139
6140         if (vmx->nested.vmxon) {
6141                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6142                 skip_emulated_instruction(vcpu);
6143                 return 1;
6144         }
6145
6146         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6147                         != VMXON_NEEDED_FEATURES) {
6148                 kvm_inject_gp(vcpu, 0);
6149                 return 1;
6150         }
6151
6152         if (enable_shadow_vmcs) {
6153                 shadow_vmcs = alloc_vmcs();
6154                 if (!shadow_vmcs)
6155                         return -ENOMEM;
6156                 /* mark vmcs as shadow */
6157                 shadow_vmcs->revision_id |= (1u << 31);
6158                 /* init shadow vmcs */
6159                 vmcs_clear(shadow_vmcs);
6160                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6161         }
6162
6163         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6164         vmx->nested.vmcs02_num = 0;
6165
6166         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6167                      HRTIMER_MODE_REL);
6168         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6169
6170         vmx->nested.vmxon = true;
6171
6172         skip_emulated_instruction(vcpu);
6173         nested_vmx_succeed(vcpu);
6174         return 1;
6175 }
6176
6177 /*
6178  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6179  * for running VMX instructions (except VMXON, whose prerequisites are
6180  * slightly different). It also specifies what exception to inject otherwise.
6181  */
6182 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6183 {
6184         struct kvm_segment cs;
6185         struct vcpu_vmx *vmx = to_vmx(vcpu);
6186
6187         if (!vmx->nested.vmxon) {
6188                 kvm_queue_exception(vcpu, UD_VECTOR);
6189                 return 0;
6190         }
6191
6192         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6193         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6194             (is_long_mode(vcpu) && !cs.l)) {
6195                 kvm_queue_exception(vcpu, UD_VECTOR);
6196                 return 0;
6197         }
6198
6199         if (vmx_get_cpl(vcpu)) {
6200                 kvm_inject_gp(vcpu, 0);
6201                 return 0;
6202         }
6203
6204         return 1;
6205 }
6206
6207 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6208 {
6209         u32 exec_control;
6210         if (vmx->nested.current_vmptr == -1ull)
6211                 return;
6212
6213         /* current_vmptr and current_vmcs12 are always set/reset together */
6214         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6215                 return;
6216
6217         if (enable_shadow_vmcs) {
6218                 /* copy to memory all shadowed fields in case
6219                    they were modified */
6220                 copy_shadow_to_vmcs12(vmx);
6221                 vmx->nested.sync_shadow_vmcs = false;
6222                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6223                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6224                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6225                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6226         }
6227         kunmap(vmx->nested.current_vmcs12_page);
6228         nested_release_page(vmx->nested.current_vmcs12_page);
6229         vmx->nested.current_vmptr = -1ull;
6230         vmx->nested.current_vmcs12 = NULL;
6231 }
6232
6233 /*
6234  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6235  * just stops using VMX.
6236  */
6237 static void free_nested(struct vcpu_vmx *vmx)
6238 {
6239         if (!vmx->nested.vmxon)
6240                 return;
6241
6242         vmx->nested.vmxon = false;
6243         nested_release_vmcs12(vmx);
6244         if (enable_shadow_vmcs)
6245                 free_vmcs(vmx->nested.current_shadow_vmcs);
6246         /* Unpin physical memory we referred to in current vmcs02 */
6247         if (vmx->nested.apic_access_page) {
6248                 nested_release_page(vmx->nested.apic_access_page);
6249                 vmx->nested.apic_access_page = 0;
6250         }
6251         if (vmx->nested.virtual_apic_page) {
6252                 nested_release_page(vmx->nested.virtual_apic_page);
6253                 vmx->nested.virtual_apic_page = 0;
6254         }
6255
6256         nested_free_all_saved_vmcss(vmx);
6257 }
6258
6259 /* Emulate the VMXOFF instruction */
6260 static int handle_vmoff(struct kvm_vcpu *vcpu)
6261 {
6262         if (!nested_vmx_check_permission(vcpu))
6263                 return 1;
6264         free_nested(to_vmx(vcpu));
6265         skip_emulated_instruction(vcpu);
6266         nested_vmx_succeed(vcpu);
6267         return 1;
6268 }
6269
6270 /* Emulate the VMCLEAR instruction */
6271 static int handle_vmclear(struct kvm_vcpu *vcpu)
6272 {
6273         struct vcpu_vmx *vmx = to_vmx(vcpu);
6274         gpa_t vmptr;
6275         struct vmcs12 *vmcs12;
6276         struct page *page;
6277
6278         if (!nested_vmx_check_permission(vcpu))
6279                 return 1;
6280
6281         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6282                 return 1;
6283
6284         if (vmptr == vmx->nested.current_vmptr)
6285                 nested_release_vmcs12(vmx);
6286
6287         page = nested_get_page(vcpu, vmptr);
6288         if (page == NULL) {
6289                 /*
6290                  * For accurate processor emulation, VMCLEAR beyond available
6291                  * physical memory should do nothing at all. However, it is
6292                  * possible that a nested vmx bug, not a guest hypervisor bug,
6293                  * resulted in this case, so let's shut down before doing any
6294                  * more damage:
6295                  */
6296                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6297                 return 1;
6298         }
6299         vmcs12 = kmap(page);
6300         vmcs12->launch_state = 0;
6301         kunmap(page);
6302         nested_release_page(page);
6303
6304         nested_free_vmcs02(vmx, vmptr);
6305
6306         skip_emulated_instruction(vcpu);
6307         nested_vmx_succeed(vcpu);
6308         return 1;
6309 }
6310
6311 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6312
6313 /* Emulate the VMLAUNCH instruction */
6314 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6315 {
6316         return nested_vmx_run(vcpu, true);
6317 }
6318
6319 /* Emulate the VMRESUME instruction */
6320 static int handle_vmresume(struct kvm_vcpu *vcpu)
6321 {
6322
6323         return nested_vmx_run(vcpu, false);
6324 }
6325
6326 enum vmcs_field_type {
6327         VMCS_FIELD_TYPE_U16 = 0,
6328         VMCS_FIELD_TYPE_U64 = 1,
6329         VMCS_FIELD_TYPE_U32 = 2,
6330         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6331 };
6332
6333 static inline int vmcs_field_type(unsigned long field)
6334 {
6335         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6336                 return VMCS_FIELD_TYPE_U32;
6337         return (field >> 13) & 0x3 ;
6338 }
6339
6340 static inline int vmcs_field_readonly(unsigned long field)
6341 {
6342         return (((field >> 10) & 0x3) == 1);
6343 }
6344
6345 /*
6346  * Read a vmcs12 field. Since these can have varying lengths and we return
6347  * one type, we chose the biggest type (u64) and zero-extend the return value
6348  * to that size. Note that the caller, handle_vmread, might need to use only
6349  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6350  * 64-bit fields are to be returned).
6351  */
6352 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6353                                         unsigned long field, u64 *ret)
6354 {
6355         short offset = vmcs_field_to_offset(field);
6356         char *p;
6357
6358         if (offset < 0)
6359                 return 0;
6360
6361         p = ((char *)(get_vmcs12(vcpu))) + offset;
6362
6363         switch (vmcs_field_type(field)) {
6364         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6365                 *ret = *((natural_width *)p);
6366                 return 1;
6367         case VMCS_FIELD_TYPE_U16:
6368                 *ret = *((u16 *)p);
6369                 return 1;
6370         case VMCS_FIELD_TYPE_U32:
6371                 *ret = *((u32 *)p);
6372                 return 1;
6373         case VMCS_FIELD_TYPE_U64:
6374                 *ret = *((u64 *)p);
6375                 return 1;
6376         default:
6377                 return 0; /* can never happen. */
6378         }
6379 }
6380
6381
6382 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6383                                     unsigned long field, u64 field_value){
6384         short offset = vmcs_field_to_offset(field);
6385         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6386         if (offset < 0)
6387                 return false;
6388
6389         switch (vmcs_field_type(field)) {
6390         case VMCS_FIELD_TYPE_U16:
6391                 *(u16 *)p = field_value;
6392                 return true;
6393         case VMCS_FIELD_TYPE_U32:
6394                 *(u32 *)p = field_value;
6395                 return true;
6396         case VMCS_FIELD_TYPE_U64:
6397                 *(u64 *)p = field_value;
6398                 return true;
6399         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6400                 *(natural_width *)p = field_value;
6401                 return true;
6402         default:
6403                 return false; /* can never happen. */
6404         }
6405
6406 }
6407
6408 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6409 {
6410         int i;
6411         unsigned long field;
6412         u64 field_value;
6413         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6414         const unsigned long *fields = shadow_read_write_fields;
6415         const int num_fields = max_shadow_read_write_fields;
6416
6417         vmcs_load(shadow_vmcs);
6418
6419         for (i = 0; i < num_fields; i++) {
6420                 field = fields[i];
6421                 switch (vmcs_field_type(field)) {
6422                 case VMCS_FIELD_TYPE_U16:
6423                         field_value = vmcs_read16(field);
6424                         break;
6425                 case VMCS_FIELD_TYPE_U32:
6426                         field_value = vmcs_read32(field);
6427                         break;
6428                 case VMCS_FIELD_TYPE_U64:
6429                         field_value = vmcs_read64(field);
6430                         break;
6431                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6432                         field_value = vmcs_readl(field);
6433                         break;
6434                 }
6435                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6436         }
6437
6438         vmcs_clear(shadow_vmcs);
6439         vmcs_load(vmx->loaded_vmcs->vmcs);
6440 }
6441
6442 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6443 {
6444         const unsigned long *fields[] = {
6445                 shadow_read_write_fields,
6446                 shadow_read_only_fields
6447         };
6448         const int max_fields[] = {
6449                 max_shadow_read_write_fields,
6450                 max_shadow_read_only_fields
6451         };
6452         int i, q;
6453         unsigned long field;
6454         u64 field_value = 0;
6455         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6456
6457         vmcs_load(shadow_vmcs);
6458
6459         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6460                 for (i = 0; i < max_fields[q]; i++) {
6461                         field = fields[q][i];
6462                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6463
6464                         switch (vmcs_field_type(field)) {
6465                         case VMCS_FIELD_TYPE_U16:
6466                                 vmcs_write16(field, (u16)field_value);
6467                                 break;
6468                         case VMCS_FIELD_TYPE_U32:
6469                                 vmcs_write32(field, (u32)field_value);
6470                                 break;
6471                         case VMCS_FIELD_TYPE_U64:
6472                                 vmcs_write64(field, (u64)field_value);
6473                                 break;
6474                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6475                                 vmcs_writel(field, (long)field_value);
6476                                 break;
6477                         }
6478                 }
6479         }
6480
6481         vmcs_clear(shadow_vmcs);
6482         vmcs_load(vmx->loaded_vmcs->vmcs);
6483 }
6484
6485 /*
6486  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6487  * used before) all generate the same failure when it is missing.
6488  */
6489 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6490 {
6491         struct vcpu_vmx *vmx = to_vmx(vcpu);
6492         if (vmx->nested.current_vmptr == -1ull) {
6493                 nested_vmx_failInvalid(vcpu);
6494                 skip_emulated_instruction(vcpu);
6495                 return 0;
6496         }
6497         return 1;
6498 }
6499
6500 static int handle_vmread(struct kvm_vcpu *vcpu)
6501 {
6502         unsigned long field;
6503         u64 field_value;
6504         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6505         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6506         gva_t gva = 0;
6507
6508         if (!nested_vmx_check_permission(vcpu) ||
6509             !nested_vmx_check_vmcs12(vcpu))
6510                 return 1;
6511
6512         /* Decode instruction info and find the field to read */
6513         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6514         /* Read the field, zero-extended to a u64 field_value */
6515         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6516                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6517                 skip_emulated_instruction(vcpu);
6518                 return 1;
6519         }
6520         /*
6521          * Now copy part of this value to register or memory, as requested.
6522          * Note that the number of bits actually copied is 32 or 64 depending
6523          * on the guest's mode (32 or 64 bit), not on the given field's length.
6524          */
6525         if (vmx_instruction_info & (1u << 10)) {
6526                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6527                         field_value);
6528         } else {
6529                 if (get_vmx_mem_address(vcpu, exit_qualification,
6530                                 vmx_instruction_info, &gva))
6531                         return 1;
6532                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6533                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6534                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6535         }
6536
6537         nested_vmx_succeed(vcpu);
6538         skip_emulated_instruction(vcpu);
6539         return 1;
6540 }
6541
6542
6543 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6544 {
6545         unsigned long field;
6546         gva_t gva;
6547         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6548         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6549         /* The value to write might be 32 or 64 bits, depending on L1's long
6550          * mode, and eventually we need to write that into a field of several
6551          * possible lengths. The code below first zero-extends the value to 64
6552          * bit (field_value), and then copies only the approriate number of
6553          * bits into the vmcs12 field.
6554          */
6555         u64 field_value = 0;
6556         struct x86_exception e;
6557
6558         if (!nested_vmx_check_permission(vcpu) ||
6559             !nested_vmx_check_vmcs12(vcpu))
6560                 return 1;
6561
6562         if (vmx_instruction_info & (1u << 10))
6563                 field_value = kvm_register_readl(vcpu,
6564                         (((vmx_instruction_info) >> 3) & 0xf));
6565         else {
6566                 if (get_vmx_mem_address(vcpu, exit_qualification,
6567                                 vmx_instruction_info, &gva))
6568                         return 1;
6569                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6570                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6571                         kvm_inject_page_fault(vcpu, &e);
6572                         return 1;
6573                 }
6574         }
6575
6576
6577         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6578         if (vmcs_field_readonly(field)) {
6579                 nested_vmx_failValid(vcpu,
6580                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6581                 skip_emulated_instruction(vcpu);
6582                 return 1;
6583         }
6584
6585         if (!vmcs12_write_any(vcpu, field, field_value)) {
6586                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6587                 skip_emulated_instruction(vcpu);
6588                 return 1;
6589         }
6590
6591         nested_vmx_succeed(vcpu);
6592         skip_emulated_instruction(vcpu);
6593         return 1;
6594 }
6595
6596 /* Emulate the VMPTRLD instruction */
6597 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6598 {
6599         struct vcpu_vmx *vmx = to_vmx(vcpu);
6600         gpa_t vmptr;
6601         u32 exec_control;
6602
6603         if (!nested_vmx_check_permission(vcpu))
6604                 return 1;
6605
6606         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6607                 return 1;
6608
6609         if (vmx->nested.current_vmptr != vmptr) {
6610                 struct vmcs12 *new_vmcs12;
6611                 struct page *page;
6612                 page = nested_get_page(vcpu, vmptr);
6613                 if (page == NULL) {
6614                         nested_vmx_failInvalid(vcpu);
6615                         skip_emulated_instruction(vcpu);
6616                         return 1;
6617                 }
6618                 new_vmcs12 = kmap(page);
6619                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6620                         kunmap(page);
6621                         nested_release_page_clean(page);
6622                         nested_vmx_failValid(vcpu,
6623                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6624                         skip_emulated_instruction(vcpu);
6625                         return 1;
6626                 }
6627
6628                 nested_release_vmcs12(vmx);
6629                 vmx->nested.current_vmptr = vmptr;
6630                 vmx->nested.current_vmcs12 = new_vmcs12;
6631                 vmx->nested.current_vmcs12_page = page;
6632                 if (enable_shadow_vmcs) {
6633                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6634                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6635                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6636                         vmcs_write64(VMCS_LINK_POINTER,
6637                                      __pa(vmx->nested.current_shadow_vmcs));
6638                         vmx->nested.sync_shadow_vmcs = true;
6639                 }
6640         }
6641
6642         nested_vmx_succeed(vcpu);
6643         skip_emulated_instruction(vcpu);
6644         return 1;
6645 }
6646
6647 /* Emulate the VMPTRST instruction */
6648 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6649 {
6650         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6651         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6652         gva_t vmcs_gva;
6653         struct x86_exception e;
6654
6655         if (!nested_vmx_check_permission(vcpu))
6656                 return 1;
6657
6658         if (get_vmx_mem_address(vcpu, exit_qualification,
6659                         vmx_instruction_info, &vmcs_gva))
6660                 return 1;
6661         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6662         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6663                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6664                                  sizeof(u64), &e)) {
6665                 kvm_inject_page_fault(vcpu, &e);
6666                 return 1;
6667         }
6668         nested_vmx_succeed(vcpu);
6669         skip_emulated_instruction(vcpu);
6670         return 1;
6671 }
6672
6673 /* Emulate the INVEPT instruction */
6674 static int handle_invept(struct kvm_vcpu *vcpu)
6675 {
6676         u32 vmx_instruction_info, types;
6677         unsigned long type;
6678         gva_t gva;
6679         struct x86_exception e;
6680         struct {
6681                 u64 eptp, gpa;
6682         } operand;
6683
6684         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6685             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6686                 kvm_queue_exception(vcpu, UD_VECTOR);
6687                 return 1;
6688         }
6689
6690         if (!nested_vmx_check_permission(vcpu))
6691                 return 1;
6692
6693         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6694                 kvm_queue_exception(vcpu, UD_VECTOR);
6695                 return 1;
6696         }
6697
6698         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6699         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6700
6701         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6702
6703         if (!(types & (1UL << type))) {
6704                 nested_vmx_failValid(vcpu,
6705                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6706                 return 1;
6707         }
6708
6709         /* According to the Intel VMX instruction reference, the memory
6710          * operand is read even if it isn't needed (e.g., for type==global)
6711          */
6712         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6713                         vmx_instruction_info, &gva))
6714                 return 1;
6715         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6716                                 sizeof(operand), &e)) {
6717                 kvm_inject_page_fault(vcpu, &e);
6718                 return 1;
6719         }
6720
6721         switch (type) {
6722         case VMX_EPT_EXTENT_GLOBAL:
6723                 kvm_mmu_sync_roots(vcpu);
6724                 kvm_mmu_flush_tlb(vcpu);
6725                 nested_vmx_succeed(vcpu);
6726                 break;
6727         default:
6728                 /* Trap single context invalidation invept calls */
6729                 BUG_ON(1);
6730                 break;
6731         }
6732
6733         skip_emulated_instruction(vcpu);
6734         return 1;
6735 }
6736
6737 /*
6738  * The exit handlers return 1 if the exit was handled fully and guest execution
6739  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6740  * to be done to userspace and return 0.
6741  */
6742 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6743         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6744         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6745         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6746         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6747         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6748         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6749         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6750         [EXIT_REASON_CPUID]                   = handle_cpuid,
6751         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6752         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6753         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6754         [EXIT_REASON_HLT]                     = handle_halt,
6755         [EXIT_REASON_INVD]                    = handle_invd,
6756         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6757         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6758         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6759         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6760         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6761         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6762         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6763         [EXIT_REASON_VMREAD]                  = handle_vmread,
6764         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6765         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6766         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6767         [EXIT_REASON_VMON]                    = handle_vmon,
6768         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6769         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6770         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6771         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6772         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6773         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6774         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6775         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6776         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6777         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6778         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6779         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
6780         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
6781         [EXIT_REASON_INVEPT]                  = handle_invept,
6782 };
6783
6784 static const int kvm_vmx_max_exit_handlers =
6785         ARRAY_SIZE(kvm_vmx_exit_handlers);
6786
6787 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6788                                        struct vmcs12 *vmcs12)
6789 {
6790         unsigned long exit_qualification;
6791         gpa_t bitmap, last_bitmap;
6792         unsigned int port;
6793         int size;
6794         u8 b;
6795
6796         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6797                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6798
6799         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6800
6801         port = exit_qualification >> 16;
6802         size = (exit_qualification & 7) + 1;
6803
6804         last_bitmap = (gpa_t)-1;
6805         b = -1;
6806
6807         while (size > 0) {
6808                 if (port < 0x8000)
6809                         bitmap = vmcs12->io_bitmap_a;
6810                 else if (port < 0x10000)
6811                         bitmap = vmcs12->io_bitmap_b;
6812                 else
6813                         return 1;
6814                 bitmap += (port & 0x7fff) / 8;
6815
6816                 if (last_bitmap != bitmap)
6817                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6818                                 return 1;
6819                 if (b & (1 << (port & 7)))
6820                         return 1;
6821
6822                 port++;
6823                 size--;
6824                 last_bitmap = bitmap;
6825         }
6826
6827         return 0;
6828 }
6829
6830 /*
6831  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6832  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6833  * disinterest in the current event (read or write a specific MSR) by using an
6834  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6835  */
6836 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6837         struct vmcs12 *vmcs12, u32 exit_reason)
6838 {
6839         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6840         gpa_t bitmap;
6841
6842         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6843                 return 1;
6844
6845         /*
6846          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6847          * for the four combinations of read/write and low/high MSR numbers.
6848          * First we need to figure out which of the four to use:
6849          */
6850         bitmap = vmcs12->msr_bitmap;
6851         if (exit_reason == EXIT_REASON_MSR_WRITE)
6852                 bitmap += 2048;
6853         if (msr_index >= 0xc0000000) {
6854                 msr_index -= 0xc0000000;
6855                 bitmap += 1024;
6856         }
6857
6858         /* Then read the msr_index'th bit from this bitmap: */
6859         if (msr_index < 1024*8) {
6860                 unsigned char b;
6861                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6862                         return 1;
6863                 return 1 & (b >> (msr_index & 7));
6864         } else
6865                 return 1; /* let L1 handle the wrong parameter */
6866 }
6867
6868 /*
6869  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6870  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6871  * intercept (via guest_host_mask etc.) the current event.
6872  */
6873 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6874         struct vmcs12 *vmcs12)
6875 {
6876         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6877         int cr = exit_qualification & 15;
6878         int reg = (exit_qualification >> 8) & 15;
6879         unsigned long val = kvm_register_readl(vcpu, reg);
6880
6881         switch ((exit_qualification >> 4) & 3) {
6882         case 0: /* mov to cr */
6883                 switch (cr) {
6884                 case 0:
6885                         if (vmcs12->cr0_guest_host_mask &
6886                             (val ^ vmcs12->cr0_read_shadow))
6887                                 return 1;
6888                         break;
6889                 case 3:
6890                         if ((vmcs12->cr3_target_count >= 1 &&
6891                                         vmcs12->cr3_target_value0 == val) ||
6892                                 (vmcs12->cr3_target_count >= 2 &&
6893                                         vmcs12->cr3_target_value1 == val) ||
6894                                 (vmcs12->cr3_target_count >= 3 &&
6895                                         vmcs12->cr3_target_value2 == val) ||
6896                                 (vmcs12->cr3_target_count >= 4 &&
6897                                         vmcs12->cr3_target_value3 == val))
6898                                 return 0;
6899                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6900                                 return 1;
6901                         break;
6902                 case 4:
6903                         if (vmcs12->cr4_guest_host_mask &
6904                             (vmcs12->cr4_read_shadow ^ val))
6905                                 return 1;
6906                         break;
6907                 case 8:
6908                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6909                                 return 1;
6910                         break;
6911                 }
6912                 break;
6913         case 2: /* clts */
6914                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6915                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6916                         return 1;
6917                 break;
6918         case 1: /* mov from cr */
6919                 switch (cr) {
6920                 case 3:
6921                         if (vmcs12->cpu_based_vm_exec_control &
6922                             CPU_BASED_CR3_STORE_EXITING)
6923                                 return 1;
6924                         break;
6925                 case 8:
6926                         if (vmcs12->cpu_based_vm_exec_control &
6927                             CPU_BASED_CR8_STORE_EXITING)
6928                                 return 1;
6929                         break;
6930                 }
6931                 break;
6932         case 3: /* lmsw */
6933                 /*
6934                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6935                  * cr0. Other attempted changes are ignored, with no exit.
6936                  */
6937                 if (vmcs12->cr0_guest_host_mask & 0xe &
6938                     (val ^ vmcs12->cr0_read_shadow))
6939                         return 1;
6940                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6941                     !(vmcs12->cr0_read_shadow & 0x1) &&
6942                     (val & 0x1))
6943                         return 1;
6944                 break;
6945         }
6946         return 0;
6947 }
6948
6949 /*
6950  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6951  * should handle it ourselves in L0 (and then continue L2). Only call this
6952  * when in is_guest_mode (L2).
6953  */
6954 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6955 {
6956         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6957         struct vcpu_vmx *vmx = to_vmx(vcpu);
6958         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6959         u32 exit_reason = vmx->exit_reason;
6960
6961         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6962                                 vmcs_readl(EXIT_QUALIFICATION),
6963                                 vmx->idt_vectoring_info,
6964                                 intr_info,
6965                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6966                                 KVM_ISA_VMX);
6967
6968         if (vmx->nested.nested_run_pending)
6969                 return 0;
6970
6971         if (unlikely(vmx->fail)) {
6972                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6973                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6974                 return 1;
6975         }
6976
6977         switch (exit_reason) {
6978         case EXIT_REASON_EXCEPTION_NMI:
6979                 if (!is_exception(intr_info))
6980                         return 0;
6981                 else if (is_page_fault(intr_info))
6982                         return enable_ept;
6983                 else if (is_no_device(intr_info) &&
6984                          !(vmcs12->guest_cr0 & X86_CR0_TS))
6985                         return 0;
6986                 return vmcs12->exception_bitmap &
6987                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6988         case EXIT_REASON_EXTERNAL_INTERRUPT:
6989                 return 0;
6990         case EXIT_REASON_TRIPLE_FAULT:
6991                 return 1;
6992         case EXIT_REASON_PENDING_INTERRUPT:
6993                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6994         case EXIT_REASON_NMI_WINDOW:
6995                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6996         case EXIT_REASON_TASK_SWITCH:
6997                 return 1;
6998         case EXIT_REASON_CPUID:
6999                 return 1;
7000         case EXIT_REASON_HLT:
7001                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7002         case EXIT_REASON_INVD:
7003                 return 1;
7004         case EXIT_REASON_INVLPG:
7005                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7006         case EXIT_REASON_RDPMC:
7007                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7008         case EXIT_REASON_RDTSC:
7009                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7010         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7011         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7012         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7013         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7014         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7015         case EXIT_REASON_INVEPT:
7016                 /*
7017                  * VMX instructions trap unconditionally. This allows L1 to
7018                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7019                  */
7020                 return 1;
7021         case EXIT_REASON_CR_ACCESS:
7022                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7023         case EXIT_REASON_DR_ACCESS:
7024                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7025         case EXIT_REASON_IO_INSTRUCTION:
7026                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7027         case EXIT_REASON_MSR_READ:
7028         case EXIT_REASON_MSR_WRITE:
7029                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7030         case EXIT_REASON_INVALID_STATE:
7031                 return 1;
7032         case EXIT_REASON_MWAIT_INSTRUCTION:
7033                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7034         case EXIT_REASON_MONITOR_INSTRUCTION:
7035                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7036         case EXIT_REASON_PAUSE_INSTRUCTION:
7037                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7038                         nested_cpu_has2(vmcs12,
7039                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7040         case EXIT_REASON_MCE_DURING_VMENTRY:
7041                 return 0;
7042         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7043                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7044         case EXIT_REASON_APIC_ACCESS:
7045                 return nested_cpu_has2(vmcs12,
7046                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7047         case EXIT_REASON_EPT_VIOLATION:
7048                 /*
7049                  * L0 always deals with the EPT violation. If nested EPT is
7050                  * used, and the nested mmu code discovers that the address is
7051                  * missing in the guest EPT table (EPT12), the EPT violation
7052                  * will be injected with nested_ept_inject_page_fault()
7053                  */
7054                 return 0;
7055         case EXIT_REASON_EPT_MISCONFIG:
7056                 /*
7057                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7058                  * table (shadow on EPT) or a merged EPT table that L0 built
7059                  * (EPT on EPT). So any problems with the structure of the
7060                  * table is L0's fault.
7061                  */
7062                 return 0;
7063         case EXIT_REASON_WBINVD:
7064                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7065         case EXIT_REASON_XSETBV:
7066                 return 1;
7067         default:
7068                 return 1;
7069         }
7070 }
7071
7072 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7073 {
7074         *info1 = vmcs_readl(EXIT_QUALIFICATION);
7075         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7076 }
7077
7078 /*
7079  * The guest has exited.  See if we can fix it or if we need userspace
7080  * assistance.
7081  */
7082 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7083 {
7084         struct vcpu_vmx *vmx = to_vmx(vcpu);
7085         u32 exit_reason = vmx->exit_reason;
7086         u32 vectoring_info = vmx->idt_vectoring_info;
7087
7088         /* If guest state is invalid, start emulating */
7089         if (vmx->emulation_required)
7090                 return handle_invalid_guest_state(vcpu);
7091
7092         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7093                 nested_vmx_vmexit(vcpu, exit_reason,
7094                                   vmcs_read32(VM_EXIT_INTR_INFO),
7095                                   vmcs_readl(EXIT_QUALIFICATION));
7096                 return 1;
7097         }
7098
7099         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7100                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7101                 vcpu->run->fail_entry.hardware_entry_failure_reason
7102                         = exit_reason;
7103                 return 0;
7104         }
7105
7106         if (unlikely(vmx->fail)) {
7107                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7108                 vcpu->run->fail_entry.hardware_entry_failure_reason
7109                         = vmcs_read32(VM_INSTRUCTION_ERROR);
7110                 return 0;
7111         }
7112
7113         /*
7114          * Note:
7115          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7116          * delivery event since it indicates guest is accessing MMIO.
7117          * The vm-exit can be triggered again after return to guest that
7118          * will cause infinite loop.
7119          */
7120         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7121                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7122                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
7123                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
7124                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7125                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7126                 vcpu->run->internal.ndata = 2;
7127                 vcpu->run->internal.data[0] = vectoring_info;
7128                 vcpu->run->internal.data[1] = exit_reason;
7129                 return 0;
7130         }
7131
7132         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7133             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7134                                         get_vmcs12(vcpu))))) {
7135                 if (vmx_interrupt_allowed(vcpu)) {
7136                         vmx->soft_vnmi_blocked = 0;
7137                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7138                            vcpu->arch.nmi_pending) {
7139                         /*
7140                          * This CPU don't support us in finding the end of an
7141                          * NMI-blocked window if the guest runs with IRQs
7142                          * disabled. So we pull the trigger after 1 s of
7143                          * futile waiting, but inform the user about this.
7144                          */
7145                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7146                                "state on VCPU %d after 1 s timeout\n",
7147                                __func__, vcpu->vcpu_id);
7148                         vmx->soft_vnmi_blocked = 0;
7149                 }
7150         }
7151
7152         if (exit_reason < kvm_vmx_max_exit_handlers
7153             && kvm_vmx_exit_handlers[exit_reason])
7154                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7155         else {
7156                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
7157                 vcpu->run->hw.hardware_exit_reason = exit_reason;
7158         }
7159         return 0;
7160 }
7161
7162 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7163 {
7164         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7165
7166         if (is_guest_mode(vcpu) &&
7167                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7168                 return;
7169
7170         if (irr == -1 || tpr < irr) {
7171                 vmcs_write32(TPR_THRESHOLD, 0);
7172                 return;
7173         }
7174
7175         vmcs_write32(TPR_THRESHOLD, irr);
7176 }
7177
7178 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7179 {
7180         u32 sec_exec_control;
7181
7182         /*
7183          * There is not point to enable virtualize x2apic without enable
7184          * apicv
7185          */
7186         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7187                                 !vmx_vm_has_apicv(vcpu->kvm))
7188                 return;
7189
7190         if (!vm_need_tpr_shadow(vcpu->kvm))
7191                 return;
7192
7193         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7194
7195         if (set) {
7196                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7197                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7198         } else {
7199                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7200                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7201         }
7202         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7203
7204         vmx_set_msr_bitmap(vcpu);
7205 }
7206
7207 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7208 {
7209         u16 status;
7210         u8 old;
7211
7212         if (!vmx_vm_has_apicv(kvm))
7213                 return;
7214
7215         if (isr == -1)
7216                 isr = 0;
7217
7218         status = vmcs_read16(GUEST_INTR_STATUS);
7219         old = status >> 8;
7220         if (isr != old) {
7221                 status &= 0xff;
7222                 status |= isr << 8;
7223                 vmcs_write16(GUEST_INTR_STATUS, status);
7224         }
7225 }
7226
7227 static void vmx_set_rvi(int vector)
7228 {
7229         u16 status;
7230         u8 old;
7231
7232         status = vmcs_read16(GUEST_INTR_STATUS);
7233         old = (u8)status & 0xff;
7234         if ((u8)vector != old) {
7235                 status &= ~0xff;
7236                 status |= (u8)vector;
7237                 vmcs_write16(GUEST_INTR_STATUS, status);
7238         }
7239 }
7240
7241 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7242 {
7243         if (max_irr == -1)
7244                 return;
7245
7246         /*
7247          * If a vmexit is needed, vmx_check_nested_events handles it.
7248          */
7249         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
7250                 return;
7251
7252         if (!is_guest_mode(vcpu)) {
7253                 vmx_set_rvi(max_irr);
7254                 return;
7255         }
7256
7257         /*
7258          * Fall back to pre-APICv interrupt injection since L2
7259          * is run without virtual interrupt delivery.
7260          */
7261         if (!kvm_event_needs_reinjection(vcpu) &&
7262             vmx_interrupt_allowed(vcpu)) {
7263                 kvm_queue_interrupt(vcpu, max_irr, false);
7264                 vmx_inject_irq(vcpu);
7265         }
7266 }
7267
7268 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7269 {
7270         if (!vmx_vm_has_apicv(vcpu->kvm))
7271                 return;
7272
7273         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7274         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7275         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7276         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7277 }
7278
7279 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7280 {
7281         u32 exit_intr_info;
7282
7283         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7284               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7285                 return;
7286
7287         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7288         exit_intr_info = vmx->exit_intr_info;
7289
7290         /* Handle machine checks before interrupts are enabled */
7291         if (is_machine_check(exit_intr_info))
7292                 kvm_machine_check();
7293
7294         /* We need to handle NMIs before interrupts are enabled */
7295         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7296             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7297                 kvm_before_handle_nmi(&vmx->vcpu);
7298                 asm("int $2");
7299                 kvm_after_handle_nmi(&vmx->vcpu);
7300         }
7301 }
7302
7303 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7304 {
7305         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7306
7307         /*
7308          * If external interrupt exists, IF bit is set in rflags/eflags on the
7309          * interrupt stack frame, and interrupt will be enabled on a return
7310          * from interrupt handler.
7311          */
7312         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7313                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7314                 unsigned int vector;
7315                 unsigned long entry;
7316                 gate_desc *desc;
7317                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7318 #ifdef CONFIG_X86_64
7319                 unsigned long tmp;
7320 #endif
7321
7322                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7323                 desc = (gate_desc *)vmx->host_idt_base + vector;
7324                 entry = gate_offset(*desc);
7325                 asm volatile(
7326 #ifdef CONFIG_X86_64
7327                         "mov %%" _ASM_SP ", %[sp]\n\t"
7328                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7329                         "push $%c[ss]\n\t"
7330                         "push %[sp]\n\t"
7331 #endif
7332                         "pushf\n\t"
7333                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7334                         __ASM_SIZE(push) " $%c[cs]\n\t"
7335                         "call *%[entry]\n\t"
7336                         :
7337 #ifdef CONFIG_X86_64
7338                         [sp]"=&r"(tmp)
7339 #endif
7340                         :
7341                         [entry]"r"(entry),
7342                         [ss]"i"(__KERNEL_DS),
7343                         [cs]"i"(__KERNEL_CS)
7344                         );
7345         } else
7346                 local_irq_enable();
7347 }
7348
7349 static bool vmx_mpx_supported(void)
7350 {
7351         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7352                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7353 }
7354
7355 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7356 {
7357         u32 exit_intr_info;
7358         bool unblock_nmi;
7359         u8 vector;
7360         bool idtv_info_valid;
7361
7362         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7363
7364         if (cpu_has_virtual_nmis()) {
7365                 if (vmx->nmi_known_unmasked)
7366                         return;
7367                 /*
7368                  * Can't use vmx->exit_intr_info since we're not sure what
7369                  * the exit reason is.
7370                  */
7371                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7372                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7373                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7374                 /*
7375                  * SDM 3: 27.7.1.2 (September 2008)
7376                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7377                  * a guest IRET fault.
7378                  * SDM 3: 23.2.2 (September 2008)
7379                  * Bit 12 is undefined in any of the following cases:
7380                  *  If the VM exit sets the valid bit in the IDT-vectoring
7381                  *   information field.
7382                  *  If the VM exit is due to a double fault.
7383                  */
7384                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7385                     vector != DF_VECTOR && !idtv_info_valid)
7386                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7387                                       GUEST_INTR_STATE_NMI);
7388                 else
7389                         vmx->nmi_known_unmasked =
7390                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7391                                   & GUEST_INTR_STATE_NMI);
7392         } else if (unlikely(vmx->soft_vnmi_blocked))
7393                 vmx->vnmi_blocked_time +=
7394                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7395 }
7396
7397 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7398                                       u32 idt_vectoring_info,
7399                                       int instr_len_field,
7400                                       int error_code_field)
7401 {
7402         u8 vector;
7403         int type;
7404         bool idtv_info_valid;
7405
7406         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7407
7408         vcpu->arch.nmi_injected = false;
7409         kvm_clear_exception_queue(vcpu);
7410         kvm_clear_interrupt_queue(vcpu);
7411
7412         if (!idtv_info_valid)
7413                 return;
7414
7415         kvm_make_request(KVM_REQ_EVENT, vcpu);
7416
7417         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7418         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7419
7420         switch (type) {
7421         case INTR_TYPE_NMI_INTR:
7422                 vcpu->arch.nmi_injected = true;
7423                 /*
7424                  * SDM 3: 27.7.1.2 (September 2008)
7425                  * Clear bit "block by NMI" before VM entry if a NMI
7426                  * delivery faulted.
7427                  */
7428                 vmx_set_nmi_mask(vcpu, false);
7429                 break;
7430         case INTR_TYPE_SOFT_EXCEPTION:
7431                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7432                 /* fall through */
7433         case INTR_TYPE_HARD_EXCEPTION:
7434                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7435                         u32 err = vmcs_read32(error_code_field);
7436                         kvm_requeue_exception_e(vcpu, vector, err);
7437                 } else
7438                         kvm_requeue_exception(vcpu, vector);
7439                 break;
7440         case INTR_TYPE_SOFT_INTR:
7441                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7442                 /* fall through */
7443         case INTR_TYPE_EXT_INTR:
7444                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7445                 break;
7446         default:
7447                 break;
7448         }
7449 }
7450
7451 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7452 {
7453         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7454                                   VM_EXIT_INSTRUCTION_LEN,
7455                                   IDT_VECTORING_ERROR_CODE);
7456 }
7457
7458 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7459 {
7460         __vmx_complete_interrupts(vcpu,
7461                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7462                                   VM_ENTRY_INSTRUCTION_LEN,
7463                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7464
7465         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7466 }
7467
7468 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7469 {
7470         int i, nr_msrs;
7471         struct perf_guest_switch_msr *msrs;
7472
7473         msrs = perf_guest_get_msrs(&nr_msrs);
7474
7475         if (!msrs)
7476                 return;
7477
7478         for (i = 0; i < nr_msrs; i++)
7479                 if (msrs[i].host == msrs[i].guest)
7480                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7481                 else
7482                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7483                                         msrs[i].host);
7484 }
7485
7486 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7487 {
7488         struct vcpu_vmx *vmx = to_vmx(vcpu);
7489         unsigned long debugctlmsr;
7490
7491         /* Record the guest's net vcpu time for enforced NMI injections. */
7492         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7493                 vmx->entry_time = ktime_get();
7494
7495         /* Don't enter VMX if guest state is invalid, let the exit handler
7496            start emulation until we arrive back to a valid state */
7497         if (vmx->emulation_required)
7498                 return;
7499
7500         if (vmx->ple_window_dirty) {
7501                 vmx->ple_window_dirty = false;
7502                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7503         }
7504
7505         if (vmx->nested.sync_shadow_vmcs) {
7506                 copy_vmcs12_to_shadow(vmx);
7507                 vmx->nested.sync_shadow_vmcs = false;
7508         }
7509
7510         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7511                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7512         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7513                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7514
7515         /* When single-stepping over STI and MOV SS, we must clear the
7516          * corresponding interruptibility bits in the guest state. Otherwise
7517          * vmentry fails as it then expects bit 14 (BS) in pending debug
7518          * exceptions being set, but that's not correct for the guest debugging
7519          * case. */
7520         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7521                 vmx_set_interrupt_shadow(vcpu, 0);
7522
7523         atomic_switch_perf_msrs(vmx);
7524         debugctlmsr = get_debugctlmsr();
7525
7526         vmx->__launched = vmx->loaded_vmcs->launched;
7527         asm(
7528                 /* Store host registers */
7529                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7530                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7531                 "push %%" _ASM_CX " \n\t"
7532                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7533                 "je 1f \n\t"
7534                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7535                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7536                 "1: \n\t"
7537                 /* Reload cr2 if changed */
7538                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7539                 "mov %%cr2, %%" _ASM_DX " \n\t"
7540                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7541                 "je 2f \n\t"
7542                 "mov %%" _ASM_AX", %%cr2 \n\t"
7543                 "2: \n\t"
7544                 /* Check if vmlaunch of vmresume is needed */
7545                 "cmpl $0, %c[launched](%0) \n\t"
7546                 /* Load guest registers.  Don't clobber flags. */
7547                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7548                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7549                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7550                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7551                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7552                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7553 #ifdef CONFIG_X86_64
7554                 "mov %c[r8](%0),  %%r8  \n\t"
7555                 "mov %c[r9](%0),  %%r9  \n\t"
7556                 "mov %c[r10](%0), %%r10 \n\t"
7557                 "mov %c[r11](%0), %%r11 \n\t"
7558                 "mov %c[r12](%0), %%r12 \n\t"
7559                 "mov %c[r13](%0), %%r13 \n\t"
7560                 "mov %c[r14](%0), %%r14 \n\t"
7561                 "mov %c[r15](%0), %%r15 \n\t"
7562 #endif
7563                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7564
7565                 /* Enter guest mode */
7566                 "jne 1f \n\t"
7567                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7568                 "jmp 2f \n\t"
7569                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7570                 "2: "
7571                 /* Save guest registers, load host registers, keep flags */
7572                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7573                 "pop %0 \n\t"
7574                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7575                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7576                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7577                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7578                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7579                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7580                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7581 #ifdef CONFIG_X86_64
7582                 "mov %%r8,  %c[r8](%0) \n\t"
7583                 "mov %%r9,  %c[r9](%0) \n\t"
7584                 "mov %%r10, %c[r10](%0) \n\t"
7585                 "mov %%r11, %c[r11](%0) \n\t"
7586                 "mov %%r12, %c[r12](%0) \n\t"
7587                 "mov %%r13, %c[r13](%0) \n\t"
7588                 "mov %%r14, %c[r14](%0) \n\t"
7589                 "mov %%r15, %c[r15](%0) \n\t"
7590 #endif
7591                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7592                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7593
7594                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7595                 "setbe %c[fail](%0) \n\t"
7596                 ".pushsection .rodata \n\t"
7597                 ".global vmx_return \n\t"
7598                 "vmx_return: " _ASM_PTR " 2b \n\t"
7599                 ".popsection"
7600               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7601                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7602                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7603                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7604                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7605                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7606                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7607                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7608                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7609                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7610                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7611 #ifdef CONFIG_X86_64
7612                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7613                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7614                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7615                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7616                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7617                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7618                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7619                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7620 #endif
7621                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7622                 [wordsize]"i"(sizeof(ulong))
7623               : "cc", "memory"
7624 #ifdef CONFIG_X86_64
7625                 , "rax", "rbx", "rdi", "rsi"
7626                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7627 #else
7628                 , "eax", "ebx", "edi", "esi"
7629 #endif
7630               );
7631
7632         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7633         if (debugctlmsr)
7634                 update_debugctlmsr(debugctlmsr);
7635
7636 #ifndef CONFIG_X86_64
7637         /*
7638          * The sysexit path does not restore ds/es, so we must set them to
7639          * a reasonable value ourselves.
7640          *
7641          * We can't defer this to vmx_load_host_state() since that function
7642          * may be executed in interrupt context, which saves and restore segments
7643          * around it, nullifying its effect.
7644          */
7645         loadsegment(ds, __USER_DS);
7646         loadsegment(es, __USER_DS);
7647 #endif
7648
7649         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7650                                   | (1 << VCPU_EXREG_RFLAGS)
7651                                   | (1 << VCPU_EXREG_PDPTR)
7652                                   | (1 << VCPU_EXREG_SEGMENTS)
7653                                   | (1 << VCPU_EXREG_CR3));
7654         vcpu->arch.regs_dirty = 0;
7655
7656         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7657
7658         vmx->loaded_vmcs->launched = 1;
7659
7660         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7661         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7662
7663         /*
7664          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7665          * we did not inject a still-pending event to L1 now because of
7666          * nested_run_pending, we need to re-enable this bit.
7667          */
7668         if (vmx->nested.nested_run_pending)
7669                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7670
7671         vmx->nested.nested_run_pending = 0;
7672
7673         vmx_complete_atomic_exit(vmx);
7674         vmx_recover_nmi_blocking(vmx);
7675         vmx_complete_interrupts(vmx);
7676 }
7677
7678 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7679 {
7680         struct vcpu_vmx *vmx = to_vmx(vcpu);
7681         int cpu;
7682
7683         if (vmx->loaded_vmcs == &vmx->vmcs01)
7684                 return;
7685
7686         cpu = get_cpu();
7687         vmx->loaded_vmcs = &vmx->vmcs01;
7688         vmx_vcpu_put(vcpu);
7689         vmx_vcpu_load(vcpu, cpu);
7690         vcpu->cpu = cpu;
7691         put_cpu();
7692 }
7693
7694 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7695 {
7696         struct vcpu_vmx *vmx = to_vmx(vcpu);
7697
7698         free_vpid(vmx);
7699         leave_guest_mode(vcpu);
7700         vmx_load_vmcs01(vcpu);
7701         free_nested(vmx);
7702         free_loaded_vmcs(vmx->loaded_vmcs);
7703         kfree(vmx->guest_msrs);
7704         kvm_vcpu_uninit(vcpu);
7705         kmem_cache_free(kvm_vcpu_cache, vmx);
7706 }
7707
7708 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7709 {
7710         int err;
7711         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7712         int cpu;
7713
7714         if (!vmx)
7715                 return ERR_PTR(-ENOMEM);
7716
7717         allocate_vpid(vmx);
7718
7719         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7720         if (err)
7721                 goto free_vcpu;
7722
7723         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7724         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
7725                      > PAGE_SIZE);
7726
7727         err = -ENOMEM;
7728         if (!vmx->guest_msrs) {
7729                 goto uninit_vcpu;
7730         }
7731
7732         vmx->loaded_vmcs = &vmx->vmcs01;
7733         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7734         if (!vmx->loaded_vmcs->vmcs)
7735                 goto free_msrs;
7736         if (!vmm_exclusive)
7737                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7738         loaded_vmcs_init(vmx->loaded_vmcs);
7739         if (!vmm_exclusive)
7740                 kvm_cpu_vmxoff();
7741
7742         cpu = get_cpu();
7743         vmx_vcpu_load(&vmx->vcpu, cpu);
7744         vmx->vcpu.cpu = cpu;
7745         err = vmx_vcpu_setup(vmx);
7746         vmx_vcpu_put(&vmx->vcpu);
7747         put_cpu();
7748         if (err)
7749                 goto free_vmcs;
7750         if (vm_need_virtualize_apic_accesses(kvm)) {
7751                 err = alloc_apic_access_page(kvm);
7752                 if (err)
7753                         goto free_vmcs;
7754         }
7755
7756         if (enable_ept) {
7757                 if (!kvm->arch.ept_identity_map_addr)
7758                         kvm->arch.ept_identity_map_addr =
7759                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7760                 err = -ENOMEM;
7761                 if (alloc_identity_pagetable(kvm) != 0)
7762                         goto free_vmcs;
7763                 if (!init_rmode_identity_map(kvm))
7764                         goto free_vmcs;
7765         }
7766
7767         vmx->nested.current_vmptr = -1ull;
7768         vmx->nested.current_vmcs12 = NULL;
7769
7770         return &vmx->vcpu;
7771
7772 free_vmcs:
7773         free_loaded_vmcs(vmx->loaded_vmcs);
7774 free_msrs:
7775         kfree(vmx->guest_msrs);
7776 uninit_vcpu:
7777         kvm_vcpu_uninit(&vmx->vcpu);
7778 free_vcpu:
7779         free_vpid(vmx);
7780         kmem_cache_free(kvm_vcpu_cache, vmx);
7781         return ERR_PTR(err);
7782 }
7783
7784 static void __init vmx_check_processor_compat(void *rtn)
7785 {
7786         struct vmcs_config vmcs_conf;
7787
7788         *(int *)rtn = 0;
7789         if (setup_vmcs_config(&vmcs_conf) < 0)
7790                 *(int *)rtn = -EIO;
7791         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7792                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7793                                 smp_processor_id());
7794                 *(int *)rtn = -EIO;
7795         }
7796 }
7797
7798 static int get_ept_level(void)
7799 {
7800         return VMX_EPT_DEFAULT_GAW + 1;
7801 }
7802
7803 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7804 {
7805         u64 ret;
7806
7807         /* For VT-d and EPT combination
7808          * 1. MMIO: always map as UC
7809          * 2. EPT with VT-d:
7810          *   a. VT-d without snooping control feature: can't guarantee the
7811          *      result, try to trust guest.
7812          *   b. VT-d with snooping control feature: snooping control feature of
7813          *      VT-d engine can guarantee the cache correctness. Just set it
7814          *      to WB to keep consistent with host. So the same as item 3.
7815          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7816          *    consistent with host MTRR
7817          */
7818         if (is_mmio)
7819                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7820         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7821                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7822                       VMX_EPT_MT_EPTE_SHIFT;
7823         else
7824                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7825                         | VMX_EPT_IPAT_BIT;
7826
7827         return ret;
7828 }
7829
7830 static int vmx_get_lpage_level(void)
7831 {
7832         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7833                 return PT_DIRECTORY_LEVEL;
7834         else
7835                 /* For shadow and EPT supported 1GB page */
7836                 return PT_PDPE_LEVEL;
7837 }
7838
7839 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7840 {
7841         struct kvm_cpuid_entry2 *best;
7842         struct vcpu_vmx *vmx = to_vmx(vcpu);
7843         u32 exec_control;
7844
7845         vmx->rdtscp_enabled = false;
7846         if (vmx_rdtscp_supported()) {
7847                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7848                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7849                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7850                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7851                                 vmx->rdtscp_enabled = true;
7852                         else {
7853                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7854                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7855                                                 exec_control);
7856                         }
7857                 }
7858         }
7859
7860         /* Exposing INVPCID only when PCID is exposed */
7861         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7862         if (vmx_invpcid_supported() &&
7863             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7864             guest_cpuid_has_pcid(vcpu)) {
7865                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7866                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7867                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7868                              exec_control);
7869         } else {
7870                 if (cpu_has_secondary_exec_ctrls()) {
7871                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7872                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7873                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7874                                      exec_control);
7875                 }
7876                 if (best)
7877                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7878         }
7879 }
7880
7881 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7882 {
7883         if (func == 1 && nested)
7884                 entry->ecx |= bit(X86_FEATURE_VMX);
7885 }
7886
7887 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7888                 struct x86_exception *fault)
7889 {
7890         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7891         u32 exit_reason;
7892
7893         if (fault->error_code & PFERR_RSVD_MASK)
7894                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
7895         else
7896                 exit_reason = EXIT_REASON_EPT_VIOLATION;
7897         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7898         vmcs12->guest_physical_address = fault->address;
7899 }
7900
7901 /* Callbacks for nested_ept_init_mmu_context: */
7902
7903 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7904 {
7905         /* return the page table to be shadowed - in our case, EPT12 */
7906         return get_vmcs12(vcpu)->ept_pointer;
7907 }
7908
7909 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7910 {
7911         kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7912                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7913
7914         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7915         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7916         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7917
7918         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7919 }
7920
7921 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7922 {
7923         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7924 }
7925
7926 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7927                 struct x86_exception *fault)
7928 {
7929         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7930
7931         WARN_ON(!is_guest_mode(vcpu));
7932
7933         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7934         if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7935                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7936                                   vmcs_read32(VM_EXIT_INTR_INFO),
7937                                   vmcs_readl(EXIT_QUALIFICATION));
7938         else
7939                 kvm_inject_page_fault(vcpu, fault);
7940 }
7941
7942 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
7943                                         struct vmcs12 *vmcs12)
7944 {
7945         struct vcpu_vmx *vmx = to_vmx(vcpu);
7946
7947         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
7948                 /* TODO: Also verify bits beyond physical address width are 0 */
7949                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
7950                         return false;
7951
7952                 /*
7953                  * Translate L1 physical address to host physical
7954                  * address for vmcs02. Keep the page pinned, so this
7955                  * physical address remains valid. We keep a reference
7956                  * to it so we can release it later.
7957                  */
7958                 if (vmx->nested.apic_access_page) /* shouldn't happen */
7959                         nested_release_page(vmx->nested.apic_access_page);
7960                 vmx->nested.apic_access_page =
7961                         nested_get_page(vcpu, vmcs12->apic_access_addr);
7962         }
7963
7964         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
7965                 /* TODO: Also verify bits beyond physical address width are 0 */
7966                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
7967                         return false;
7968
7969                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
7970                         nested_release_page(vmx->nested.virtual_apic_page);
7971                 vmx->nested.virtual_apic_page =
7972                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
7973
7974                 /*
7975                  * Failing the vm entry is _not_ what the processor does
7976                  * but it's basically the only possibility we have.
7977                  * We could still enter the guest if CR8 load exits are
7978                  * enabled, CR8 store exits are enabled, and virtualize APIC
7979                  * access is disabled; in this case the processor would never
7980                  * use the TPR shadow and we could simply clear the bit from
7981                  * the execution control.  But such a configuration is useless,
7982                  * so let's keep the code simple.
7983                  */
7984                 if (!vmx->nested.virtual_apic_page)
7985                         return false;
7986         }
7987
7988         return true;
7989 }
7990
7991 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
7992 {
7993         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
7994         struct vcpu_vmx *vmx = to_vmx(vcpu);
7995
7996         if (vcpu->arch.virtual_tsc_khz == 0)
7997                 return;
7998
7999         /* Make sure short timeouts reliably trigger an immediate vmexit.
8000          * hrtimer_start does not guarantee this. */
8001         if (preemption_timeout <= 1) {
8002                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8003                 return;
8004         }
8005
8006         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8007         preemption_timeout *= 1000000;
8008         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8009         hrtimer_start(&vmx->nested.preemption_timer,
8010                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8011 }
8012
8013 /*
8014  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8015  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8016  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
8017  * guest in a way that will both be appropriate to L1's requests, and our
8018  * needs. In addition to modifying the active vmcs (which is vmcs02), this
8019  * function also has additional necessary side-effects, like setting various
8020  * vcpu->arch fields.
8021  */
8022 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8023 {
8024         struct vcpu_vmx *vmx = to_vmx(vcpu);
8025         u32 exec_control;
8026
8027         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8028         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8029         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8030         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8031         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8032         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8033         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8034         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8035         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8036         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8037         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8038         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8039         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8040         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8041         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8042         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8043         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8044         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8045         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8046         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8047         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8048         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8049         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8050         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8051         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8052         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8053         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8054         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8055         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8056         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8057         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8058         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8059         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8060         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8061         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8062         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8063
8064         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8065                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8066                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8067         } else {
8068                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8069                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8070         }
8071         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8072                 vmcs12->vm_entry_intr_info_field);
8073         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8074                 vmcs12->vm_entry_exception_error_code);
8075         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8076                 vmcs12->vm_entry_instruction_len);
8077         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8078                 vmcs12->guest_interruptibility_info);
8079         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
8080         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
8081         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8082                 vmcs12->guest_pending_dbg_exceptions);
8083         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8084         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8085
8086         vmcs_write64(VMCS_LINK_POINTER, -1ull);
8087
8088         exec_control = vmcs12->pin_based_vm_exec_control;
8089         exec_control |= vmcs_config.pin_based_exec_ctrl;
8090         exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8091                           PIN_BASED_POSTED_INTR);
8092         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
8093
8094         vmx->nested.preemption_timer_expired = false;
8095         if (nested_cpu_has_preemption_timer(vmcs12))
8096                 vmx_start_preemption_timer(vcpu);
8097
8098         /*
8099          * Whether page-faults are trapped is determined by a combination of
8100          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8101          * If enable_ept, L0 doesn't care about page faults and we should
8102          * set all of these to L1's desires. However, if !enable_ept, L0 does
8103          * care about (at least some) page faults, and because it is not easy
8104          * (if at all possible?) to merge L0 and L1's desires, we simply ask
8105          * to exit on each and every L2 page fault. This is done by setting
8106          * MASK=MATCH=0 and (see below) EB.PF=1.
8107          * Note that below we don't need special code to set EB.PF beyond the
8108          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8109          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8110          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8111          *
8112          * A problem with this approach (when !enable_ept) is that L1 may be
8113          * injected with more page faults than it asked for. This could have
8114          * caused problems, but in practice existing hypervisors don't care.
8115          * To fix this, we will need to emulate the PFEC checking (on the L1
8116          * page tables), using walk_addr(), when injecting PFs to L1.
8117          */
8118         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8119                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8120         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8121                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8122
8123         if (cpu_has_secondary_exec_ctrls()) {
8124                 exec_control = vmx_secondary_exec_control(vmx);
8125                 if (!vmx->rdtscp_enabled)
8126                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
8127                 /* Take the following fields only from vmcs12 */
8128                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8129                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8130                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
8131                 if (nested_cpu_has(vmcs12,
8132                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8133                         exec_control |= vmcs12->secondary_vm_exec_control;
8134
8135                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
8136                         /*
8137                          * If translation failed, no matter: This feature asks
8138                          * to exit when accessing the given address, and if it
8139                          * can never be accessed, this feature won't do
8140                          * anything anyway.
8141                          */
8142                         if (!vmx->nested.apic_access_page)
8143                                 exec_control &=
8144                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8145                         else
8146                                 vmcs_write64(APIC_ACCESS_ADDR,
8147                                   page_to_phys(vmx->nested.apic_access_page));
8148                 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8149                         exec_control |=
8150                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8151                         vmcs_write64(APIC_ACCESS_ADDR,
8152                                 page_to_phys(vcpu->kvm->arch.apic_access_page));
8153                 }
8154
8155                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8156         }
8157
8158
8159         /*
8160          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8161          * Some constant fields are set here by vmx_set_constant_host_state().
8162          * Other fields are different per CPU, and will be set later when
8163          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8164          */
8165         vmx_set_constant_host_state(vmx);
8166
8167         /*
8168          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8169          * entry, but only if the current (host) sp changed from the value
8170          * we wrote last (vmx->host_rsp). This cache is no longer relevant
8171          * if we switch vmcs, and rather than hold a separate cache per vmcs,
8172          * here we just force the write to happen on entry.
8173          */
8174         vmx->host_rsp = 0;
8175
8176         exec_control = vmx_exec_control(vmx); /* L0's desires */
8177         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8178         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8179         exec_control &= ~CPU_BASED_TPR_SHADOW;
8180         exec_control |= vmcs12->cpu_based_vm_exec_control;
8181
8182         if (exec_control & CPU_BASED_TPR_SHADOW) {
8183                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8184                                 page_to_phys(vmx->nested.virtual_apic_page));
8185                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8186         }
8187
8188         /*
8189          * Merging of IO and MSR bitmaps not currently supported.
8190          * Rather, exit every time.
8191          */
8192         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8193         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8194         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8195
8196         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8197
8198         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8199          * bitwise-or of what L1 wants to trap for L2, and what we want to
8200          * trap. Note that CR0.TS also needs updating - we do this later.
8201          */
8202         update_exception_bitmap(vcpu);
8203         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8204         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8205
8206         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8207          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8208          * bits are further modified by vmx_set_efer() below.
8209          */
8210         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8211
8212         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8213          * emulated by vmx_set_efer(), below.
8214          */
8215         vm_entry_controls_init(vmx, 
8216                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8217                         ~VM_ENTRY_IA32E_MODE) |
8218                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8219
8220         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8221                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8222                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8223         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8224                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8225
8226
8227         set_cr4_guest_host_mask(vmx);
8228
8229         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8230                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8231
8232         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8233                 vmcs_write64(TSC_OFFSET,
8234                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8235         else
8236                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8237
8238         if (enable_vpid) {
8239                 /*
8240                  * Trivially support vpid by letting L2s share their parent
8241                  * L1's vpid. TODO: move to a more elaborate solution, giving
8242                  * each L2 its own vpid and exposing the vpid feature to L1.
8243                  */
8244                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8245                 vmx_flush_tlb(vcpu);
8246         }
8247
8248         if (nested_cpu_has_ept(vmcs12)) {
8249                 kvm_mmu_unload(vcpu);
8250                 nested_ept_init_mmu_context(vcpu);
8251         }
8252
8253         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8254                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
8255         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8256                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8257         else
8258                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8259         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8260         vmx_set_efer(vcpu, vcpu->arch.efer);
8261
8262         /*
8263          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8264          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8265          * The CR0_READ_SHADOW is what L2 should have expected to read given
8266          * the specifications by L1; It's not enough to take
8267          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8268          * have more bits than L1 expected.
8269          */
8270         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8271         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8272
8273         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8274         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8275
8276         /* shadow page tables on either EPT or shadow page tables */
8277         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8278         kvm_mmu_reset_context(vcpu);
8279
8280         if (!enable_ept)
8281                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8282
8283         /*
8284          * L1 may access the L2's PDPTR, so save them to construct vmcs12
8285          */
8286         if (enable_ept) {
8287                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8288                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8289                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8290                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8291         }
8292
8293         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8294         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8295 }
8296
8297 /*
8298  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8299  * for running an L2 nested guest.
8300  */
8301 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8302 {
8303         struct vmcs12 *vmcs12;
8304         struct vcpu_vmx *vmx = to_vmx(vcpu);
8305         int cpu;
8306         struct loaded_vmcs *vmcs02;
8307         bool ia32e;
8308
8309         if (!nested_vmx_check_permission(vcpu) ||
8310             !nested_vmx_check_vmcs12(vcpu))
8311                 return 1;
8312
8313         skip_emulated_instruction(vcpu);
8314         vmcs12 = get_vmcs12(vcpu);
8315
8316         if (enable_shadow_vmcs)
8317                 copy_shadow_to_vmcs12(vmx);
8318
8319         /*
8320          * The nested entry process starts with enforcing various prerequisites
8321          * on vmcs12 as required by the Intel SDM, and act appropriately when
8322          * they fail: As the SDM explains, some conditions should cause the
8323          * instruction to fail, while others will cause the instruction to seem
8324          * to succeed, but return an EXIT_REASON_INVALID_STATE.
8325          * To speed up the normal (success) code path, we should avoid checking
8326          * for misconfigurations which will anyway be caught by the processor
8327          * when using the merged vmcs02.
8328          */
8329         if (vmcs12->launch_state == launch) {
8330                 nested_vmx_failValid(vcpu,
8331                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8332                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8333                 return 1;
8334         }
8335
8336         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8337             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8338                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8339                 return 1;
8340         }
8341
8342         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8343                         !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8344                 /*TODO: Also verify bits beyond physical address width are 0*/
8345                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8346                 return 1;
8347         }
8348
8349         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
8350                 /*TODO: Also verify bits beyond physical address width are 0*/
8351                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8352                 return 1;
8353         }
8354
8355         if (vmcs12->vm_entry_msr_load_count > 0 ||
8356             vmcs12->vm_exit_msr_load_count > 0 ||
8357             vmcs12->vm_exit_msr_store_count > 0) {
8358                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8359                                     __func__);
8360                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8361                 return 1;
8362         }
8363
8364         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8365                                 nested_vmx_true_procbased_ctls_low,
8366                                 nested_vmx_procbased_ctls_high) ||
8367             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8368               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8369             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8370               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8371             !vmx_control_verify(vmcs12->vm_exit_controls,
8372                                 nested_vmx_true_exit_ctls_low,
8373                                 nested_vmx_exit_ctls_high) ||
8374             !vmx_control_verify(vmcs12->vm_entry_controls,
8375                                 nested_vmx_true_entry_ctls_low,
8376                                 nested_vmx_entry_ctls_high))
8377         {
8378                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8379                 return 1;
8380         }
8381
8382         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8383             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8384                 nested_vmx_failValid(vcpu,
8385                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8386                 return 1;
8387         }
8388
8389         if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8390             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8391                 nested_vmx_entry_failure(vcpu, vmcs12,
8392                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8393                 return 1;
8394         }
8395         if (vmcs12->vmcs_link_pointer != -1ull) {
8396                 nested_vmx_entry_failure(vcpu, vmcs12,
8397                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8398                 return 1;
8399         }
8400
8401         /*
8402          * If the load IA32_EFER VM-entry control is 1, the following checks
8403          * are performed on the field for the IA32_EFER MSR:
8404          * - Bits reserved in the IA32_EFER MSR must be 0.
8405          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8406          *   the IA-32e mode guest VM-exit control. It must also be identical
8407          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8408          *   CR0.PG) is 1.
8409          */
8410         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8411                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8412                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8413                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8414                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8415                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8416                         nested_vmx_entry_failure(vcpu, vmcs12,
8417                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8418                         return 1;
8419                 }
8420         }
8421
8422         /*
8423          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8424          * IA32_EFER MSR must be 0 in the field for that register. In addition,
8425          * the values of the LMA and LME bits in the field must each be that of
8426          * the host address-space size VM-exit control.
8427          */
8428         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8429                 ia32e = (vmcs12->vm_exit_controls &
8430                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8431                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8432                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8433                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8434                         nested_vmx_entry_failure(vcpu, vmcs12,
8435                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8436                         return 1;
8437                 }
8438         }
8439
8440         /*
8441          * We're finally done with prerequisite checking, and can start with
8442          * the nested entry.
8443          */
8444
8445         vmcs02 = nested_get_current_vmcs02(vmx);
8446         if (!vmcs02)
8447                 return -ENOMEM;
8448
8449         enter_guest_mode(vcpu);
8450
8451         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8452
8453         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8454                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8455
8456         cpu = get_cpu();
8457         vmx->loaded_vmcs = vmcs02;
8458         vmx_vcpu_put(vcpu);
8459         vmx_vcpu_load(vcpu, cpu);
8460         vcpu->cpu = cpu;
8461         put_cpu();
8462
8463         vmx_segment_cache_clear(vmx);
8464
8465         vmcs12->launch_state = 1;
8466
8467         prepare_vmcs02(vcpu, vmcs12);
8468
8469         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8470                 return kvm_emulate_halt(vcpu);
8471
8472         vmx->nested.nested_run_pending = 1;
8473
8474         /*
8475          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8476          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8477          * returned as far as L1 is concerned. It will only return (and set
8478          * the success flag) when L2 exits (see nested_vmx_vmexit()).
8479          */
8480         return 1;
8481 }
8482
8483 /*
8484  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8485  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8486  * This function returns the new value we should put in vmcs12.guest_cr0.
8487  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8488  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8489  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8490  *     didn't trap the bit, because if L1 did, so would L0).
8491  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8492  *     been modified by L2, and L1 knows it. So just leave the old value of
8493  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8494  *     isn't relevant, because if L0 traps this bit it can set it to anything.
8495  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8496  *     changed these bits, and therefore they need to be updated, but L0
8497  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8498  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8499  */
8500 static inline unsigned long
8501 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8502 {
8503         return
8504         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8505         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8506         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8507                         vcpu->arch.cr0_guest_owned_bits));
8508 }
8509
8510 static inline unsigned long
8511 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8512 {
8513         return
8514         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8515         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8516         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8517                         vcpu->arch.cr4_guest_owned_bits));
8518 }
8519
8520 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8521                                        struct vmcs12 *vmcs12)
8522 {
8523         u32 idt_vectoring;
8524         unsigned int nr;
8525
8526         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8527                 nr = vcpu->arch.exception.nr;
8528                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8529
8530                 if (kvm_exception_is_soft(nr)) {
8531                         vmcs12->vm_exit_instruction_len =
8532                                 vcpu->arch.event_exit_inst_len;
8533                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8534                 } else
8535                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8536
8537                 if (vcpu->arch.exception.has_error_code) {
8538                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8539                         vmcs12->idt_vectoring_error_code =
8540                                 vcpu->arch.exception.error_code;
8541                 }
8542
8543                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8544         } else if (vcpu->arch.nmi_injected) {
8545                 vmcs12->idt_vectoring_info_field =
8546                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8547         } else if (vcpu->arch.interrupt.pending) {
8548                 nr = vcpu->arch.interrupt.nr;
8549                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8550
8551                 if (vcpu->arch.interrupt.soft) {
8552                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8553                         vmcs12->vm_entry_instruction_len =
8554                                 vcpu->arch.event_exit_inst_len;
8555                 } else
8556                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8557
8558                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8559         }
8560 }
8561
8562 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8563 {
8564         struct vcpu_vmx *vmx = to_vmx(vcpu);
8565
8566         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8567             vmx->nested.preemption_timer_expired) {
8568                 if (vmx->nested.nested_run_pending)
8569                         return -EBUSY;
8570                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8571                 return 0;
8572         }
8573
8574         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8575                 if (vmx->nested.nested_run_pending ||
8576                     vcpu->arch.interrupt.pending)
8577                         return -EBUSY;
8578                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8579                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
8580                                   INTR_INFO_VALID_MASK, 0);
8581                 /*
8582                  * The NMI-triggered VM exit counts as injection:
8583                  * clear this one and block further NMIs.
8584                  */
8585                 vcpu->arch.nmi_pending = 0;
8586                 vmx_set_nmi_mask(vcpu, true);
8587                 return 0;
8588         }
8589
8590         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8591             nested_exit_on_intr(vcpu)) {
8592                 if (vmx->nested.nested_run_pending)
8593                         return -EBUSY;
8594                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8595         }
8596
8597         return 0;
8598 }
8599
8600 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8601 {
8602         ktime_t remaining =
8603                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8604         u64 value;
8605
8606         if (ktime_to_ns(remaining) <= 0)
8607                 return 0;
8608
8609         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8610         do_div(value, 1000000);
8611         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8612 }
8613
8614 /*
8615  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8616  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8617  * and this function updates it to reflect the changes to the guest state while
8618  * L2 was running (and perhaps made some exits which were handled directly by L0
8619  * without going back to L1), and to reflect the exit reason.
8620  * Note that we do not have to copy here all VMCS fields, just those that
8621  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8622  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8623  * which already writes to vmcs12 directly.
8624  */
8625 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8626                            u32 exit_reason, u32 exit_intr_info,
8627                            unsigned long exit_qualification)
8628 {
8629         /* update guest state fields: */
8630         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8631         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8632
8633         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8634         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8635         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8636
8637         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8638         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8639         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8640         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8641         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8642         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8643         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8644         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8645         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8646         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8647         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8648         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8649         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8650         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8651         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8652         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8653         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8654         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8655         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8656         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8657         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8658         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8659         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8660         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8661         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8662         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8663         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8664         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8665         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8666         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8667         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8668         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8669         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8670         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8671         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8672         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8673
8674         vmcs12->guest_interruptibility_info =
8675                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8676         vmcs12->guest_pending_dbg_exceptions =
8677                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8678         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8679                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8680         else
8681                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8682
8683         if (nested_cpu_has_preemption_timer(vmcs12)) {
8684                 if (vmcs12->vm_exit_controls &
8685                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8686                         vmcs12->vmx_preemption_timer_value =
8687                                 vmx_get_preemption_timer_value(vcpu);
8688                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8689         }
8690
8691         /*
8692          * In some cases (usually, nested EPT), L2 is allowed to change its
8693          * own CR3 without exiting. If it has changed it, we must keep it.
8694          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8695          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8696          *
8697          * Additionally, restore L2's PDPTR to vmcs12.
8698          */
8699         if (enable_ept) {
8700                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8701                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8702                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8703                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8704                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8705         }
8706
8707         vmcs12->vm_entry_controls =
8708                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8709                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8710
8711         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8712                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8713                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8714         }
8715
8716         /* TODO: These cannot have changed unless we have MSR bitmaps and
8717          * the relevant bit asks not to trap the change */
8718         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8719                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8720         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8721                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8722         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8723         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8724         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8725         if (vmx_mpx_supported())
8726                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8727
8728         /* update exit information fields: */
8729
8730         vmcs12->vm_exit_reason = exit_reason;
8731         vmcs12->exit_qualification = exit_qualification;
8732
8733         vmcs12->vm_exit_intr_info = exit_intr_info;
8734         if ((vmcs12->vm_exit_intr_info &
8735              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8736             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8737                 vmcs12->vm_exit_intr_error_code =
8738                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8739         vmcs12->idt_vectoring_info_field = 0;
8740         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8741         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8742
8743         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8744                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8745                  * instead of reading the real value. */
8746                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8747
8748                 /*
8749                  * Transfer the event that L0 or L1 may wanted to inject into
8750                  * L2 to IDT_VECTORING_INFO_FIELD.
8751                  */
8752                 vmcs12_save_pending_event(vcpu, vmcs12);
8753         }
8754
8755         /*
8756          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8757          * preserved above and would only end up incorrectly in L1.
8758          */
8759         vcpu->arch.nmi_injected = false;
8760         kvm_clear_exception_queue(vcpu);
8761         kvm_clear_interrupt_queue(vcpu);
8762 }
8763
8764 /*
8765  * A part of what we need to when the nested L2 guest exits and we want to
8766  * run its L1 parent, is to reset L1's guest state to the host state specified
8767  * in vmcs12.
8768  * This function is to be called not only on normal nested exit, but also on
8769  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8770  * Failures During or After Loading Guest State").
8771  * This function should be called when the active VMCS is L1's (vmcs01).
8772  */
8773 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8774                                    struct vmcs12 *vmcs12)
8775 {
8776         struct kvm_segment seg;
8777
8778         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8779                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8780         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8781                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8782         else
8783                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8784         vmx_set_efer(vcpu, vcpu->arch.efer);
8785
8786         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8787         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8788         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8789         /*
8790          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8791          * actually changed, because it depends on the current state of
8792          * fpu_active (which may have changed).
8793          * Note that vmx_set_cr0 refers to efer set above.
8794          */
8795         vmx_set_cr0(vcpu, vmcs12->host_cr0);
8796         /*
8797          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8798          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8799          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8800          */
8801         update_exception_bitmap(vcpu);
8802         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8803         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8804
8805         /*
8806          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8807          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8808          */
8809         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8810         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8811
8812         nested_ept_uninit_mmu_context(vcpu);
8813
8814         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8815         kvm_mmu_reset_context(vcpu);
8816
8817         if (!enable_ept)
8818                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8819
8820         if (enable_vpid) {
8821                 /*
8822                  * Trivially support vpid by letting L2s share their parent
8823                  * L1's vpid. TODO: move to a more elaborate solution, giving
8824                  * each L2 its own vpid and exposing the vpid feature to L1.
8825                  */
8826                 vmx_flush_tlb(vcpu);
8827         }
8828
8829
8830         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8831         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8832         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8833         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8834         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8835
8836         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
8837         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8838                 vmcs_write64(GUEST_BNDCFGS, 0);
8839
8840         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8841                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8842                 vcpu->arch.pat = vmcs12->host_ia32_pat;
8843         }
8844         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8845                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8846                         vmcs12->host_ia32_perf_global_ctrl);
8847
8848         /* Set L1 segment info according to Intel SDM
8849             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8850         seg = (struct kvm_segment) {
8851                 .base = 0,
8852                 .limit = 0xFFFFFFFF,
8853                 .selector = vmcs12->host_cs_selector,
8854                 .type = 11,
8855                 .present = 1,
8856                 .s = 1,
8857                 .g = 1
8858         };
8859         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8860                 seg.l = 1;
8861         else
8862                 seg.db = 1;
8863         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8864         seg = (struct kvm_segment) {
8865                 .base = 0,
8866                 .limit = 0xFFFFFFFF,
8867                 .type = 3,
8868                 .present = 1,
8869                 .s = 1,
8870                 .db = 1,
8871                 .g = 1
8872         };
8873         seg.selector = vmcs12->host_ds_selector;
8874         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8875         seg.selector = vmcs12->host_es_selector;
8876         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8877         seg.selector = vmcs12->host_ss_selector;
8878         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8879         seg.selector = vmcs12->host_fs_selector;
8880         seg.base = vmcs12->host_fs_base;
8881         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8882         seg.selector = vmcs12->host_gs_selector;
8883         seg.base = vmcs12->host_gs_base;
8884         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8885         seg = (struct kvm_segment) {
8886                 .base = vmcs12->host_tr_base,
8887                 .limit = 0x67,
8888                 .selector = vmcs12->host_tr_selector,
8889                 .type = 11,
8890                 .present = 1
8891         };
8892         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8893
8894         kvm_set_dr(vcpu, 7, 0x400);
8895         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8896 }
8897
8898 /*
8899  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8900  * and modify vmcs12 to make it see what it would expect to see there if
8901  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8902  */
8903 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8904                               u32 exit_intr_info,
8905                               unsigned long exit_qualification)
8906 {
8907         struct vcpu_vmx *vmx = to_vmx(vcpu);
8908         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8909
8910         /* trying to cancel vmlaunch/vmresume is a bug */
8911         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8912
8913         leave_guest_mode(vcpu);
8914         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8915                        exit_qualification);
8916
8917         vmx_load_vmcs01(vcpu);
8918
8919         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
8920             && nested_exit_intr_ack_set(vcpu)) {
8921                 int irq = kvm_cpu_get_interrupt(vcpu);
8922                 WARN_ON(irq < 0);
8923                 vmcs12->vm_exit_intr_info = irq |
8924                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
8925         }
8926
8927         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8928                                        vmcs12->exit_qualification,
8929                                        vmcs12->idt_vectoring_info_field,
8930                                        vmcs12->vm_exit_intr_info,
8931                                        vmcs12->vm_exit_intr_error_code,
8932                                        KVM_ISA_VMX);
8933
8934         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8935         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8936         vmx_segment_cache_clear(vmx);
8937
8938         /* if no vmcs02 cache requested, remove the one we used */
8939         if (VMCS02_POOL_SIZE == 0)
8940                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8941
8942         load_vmcs12_host_state(vcpu, vmcs12);
8943
8944         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8945         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8946
8947         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8948         vmx->host_rsp = 0;
8949
8950         /* Unpin physical memory we referred to in vmcs02 */
8951         if (vmx->nested.apic_access_page) {
8952                 nested_release_page(vmx->nested.apic_access_page);
8953                 vmx->nested.apic_access_page = 0;
8954         }
8955         if (vmx->nested.virtual_apic_page) {
8956                 nested_release_page(vmx->nested.virtual_apic_page);
8957                 vmx->nested.virtual_apic_page = 0;
8958         }
8959
8960         /*
8961          * Exiting from L2 to L1, we're now back to L1 which thinks it just
8962          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8963          * success or failure flag accordingly.
8964          */
8965         if (unlikely(vmx->fail)) {
8966                 vmx->fail = 0;
8967                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8968         } else
8969                 nested_vmx_succeed(vcpu);
8970         if (enable_shadow_vmcs)
8971                 vmx->nested.sync_shadow_vmcs = true;
8972
8973         /* in case we halted in L2 */
8974         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8975 }
8976
8977 /*
8978  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
8979  */
8980 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
8981 {
8982         if (is_guest_mode(vcpu))
8983                 nested_vmx_vmexit(vcpu, -1, 0, 0);
8984         free_nested(to_vmx(vcpu));
8985 }
8986
8987 /*
8988  * L1's failure to enter L2 is a subset of a normal exit, as explained in
8989  * 23.7 "VM-entry failures during or after loading guest state" (this also
8990  * lists the acceptable exit-reason and exit-qualification parameters).
8991  * It should only be called before L2 actually succeeded to run, and when
8992  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8993  */
8994 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8995                         struct vmcs12 *vmcs12,
8996                         u32 reason, unsigned long qualification)
8997 {
8998         load_vmcs12_host_state(vcpu, vmcs12);
8999         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9000         vmcs12->exit_qualification = qualification;
9001         nested_vmx_succeed(vcpu);
9002         if (enable_shadow_vmcs)
9003                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
9004 }
9005
9006 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9007                                struct x86_instruction_info *info,
9008                                enum x86_intercept_stage stage)
9009 {
9010         return X86EMUL_CONTINUE;
9011 }
9012
9013 void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
9014 {
9015         if (ple_gap)
9016                 shrink_ple_window(vcpu);
9017 }
9018
9019 static struct kvm_x86_ops vmx_x86_ops = {
9020         .cpu_has_kvm_support = cpu_has_kvm_support,
9021         .disabled_by_bios = vmx_disabled_by_bios,
9022         .hardware_setup = hardware_setup,
9023         .hardware_unsetup = hardware_unsetup,
9024         .check_processor_compatibility = vmx_check_processor_compat,
9025         .hardware_enable = hardware_enable,
9026         .hardware_disable = hardware_disable,
9027         .cpu_has_accelerated_tpr = report_flexpriority,
9028
9029         .vcpu_create = vmx_create_vcpu,
9030         .vcpu_free = vmx_free_vcpu,
9031         .vcpu_reset = vmx_vcpu_reset,
9032
9033         .prepare_guest_switch = vmx_save_host_state,
9034         .vcpu_load = vmx_vcpu_load,
9035         .vcpu_put = vmx_vcpu_put,
9036
9037         .update_db_bp_intercept = update_exception_bitmap,
9038         .get_msr = vmx_get_msr,
9039         .set_msr = vmx_set_msr,
9040         .get_segment_base = vmx_get_segment_base,
9041         .get_segment = vmx_get_segment,
9042         .set_segment = vmx_set_segment,
9043         .get_cpl = vmx_get_cpl,
9044         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
9045         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
9046         .decache_cr3 = vmx_decache_cr3,
9047         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
9048         .set_cr0 = vmx_set_cr0,
9049         .set_cr3 = vmx_set_cr3,
9050         .set_cr4 = vmx_set_cr4,
9051         .set_efer = vmx_set_efer,
9052         .get_idt = vmx_get_idt,
9053         .set_idt = vmx_set_idt,
9054         .get_gdt = vmx_get_gdt,
9055         .set_gdt = vmx_set_gdt,
9056         .get_dr6 = vmx_get_dr6,
9057         .set_dr6 = vmx_set_dr6,
9058         .set_dr7 = vmx_set_dr7,
9059         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
9060         .cache_reg = vmx_cache_reg,
9061         .get_rflags = vmx_get_rflags,
9062         .set_rflags = vmx_set_rflags,
9063         .fpu_deactivate = vmx_fpu_deactivate,
9064
9065         .tlb_flush = vmx_flush_tlb,
9066
9067         .run = vmx_vcpu_run,
9068         .handle_exit = vmx_handle_exit,
9069         .skip_emulated_instruction = skip_emulated_instruction,
9070         .set_interrupt_shadow = vmx_set_interrupt_shadow,
9071         .get_interrupt_shadow = vmx_get_interrupt_shadow,
9072         .patch_hypercall = vmx_patch_hypercall,
9073         .set_irq = vmx_inject_irq,
9074         .set_nmi = vmx_inject_nmi,
9075         .queue_exception = vmx_queue_exception,
9076         .cancel_injection = vmx_cancel_injection,
9077         .interrupt_allowed = vmx_interrupt_allowed,
9078         .nmi_allowed = vmx_nmi_allowed,
9079         .get_nmi_mask = vmx_get_nmi_mask,
9080         .set_nmi_mask = vmx_set_nmi_mask,
9081         .enable_nmi_window = enable_nmi_window,
9082         .enable_irq_window = enable_irq_window,
9083         .update_cr8_intercept = update_cr8_intercept,
9084         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
9085         .vm_has_apicv = vmx_vm_has_apicv,
9086         .load_eoi_exitmap = vmx_load_eoi_exitmap,
9087         .hwapic_irr_update = vmx_hwapic_irr_update,
9088         .hwapic_isr_update = vmx_hwapic_isr_update,
9089         .sync_pir_to_irr = vmx_sync_pir_to_irr,
9090         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
9091
9092         .set_tss_addr = vmx_set_tss_addr,
9093         .get_tdp_level = get_ept_level,
9094         .get_mt_mask = vmx_get_mt_mask,
9095
9096         .get_exit_info = vmx_get_exit_info,
9097
9098         .get_lpage_level = vmx_get_lpage_level,
9099
9100         .cpuid_update = vmx_cpuid_update,
9101
9102         .rdtscp_supported = vmx_rdtscp_supported,
9103         .invpcid_supported = vmx_invpcid_supported,
9104
9105         .set_supported_cpuid = vmx_set_supported_cpuid,
9106
9107         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
9108
9109         .set_tsc_khz = vmx_set_tsc_khz,
9110         .read_tsc_offset = vmx_read_tsc_offset,
9111         .write_tsc_offset = vmx_write_tsc_offset,
9112         .adjust_tsc_offset = vmx_adjust_tsc_offset,
9113         .compute_tsc_offset = vmx_compute_tsc_offset,
9114         .read_l1_tsc = vmx_read_l1_tsc,
9115
9116         .set_tdp_cr3 = vmx_set_cr3,
9117
9118         .check_intercept = vmx_check_intercept,
9119         .handle_external_intr = vmx_handle_external_intr,
9120         .mpx_supported = vmx_mpx_supported,
9121
9122         .check_nested_events = vmx_check_nested_events,
9123
9124         .sched_in = vmx_sched_in,
9125 };
9126
9127 static int __init vmx_init(void)
9128 {
9129         int r, i, msr;
9130
9131         rdmsrl_safe(MSR_EFER, &host_efer);
9132
9133         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
9134                 kvm_define_shared_msr(i, vmx_msr_index[i]);
9135
9136         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
9137         if (!vmx_io_bitmap_a)
9138                 return -ENOMEM;
9139
9140         r = -ENOMEM;
9141
9142         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
9143         if (!vmx_io_bitmap_b)
9144                 goto out;
9145
9146         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
9147         if (!vmx_msr_bitmap_legacy)
9148                 goto out1;
9149
9150         vmx_msr_bitmap_legacy_x2apic =
9151                                 (unsigned long *)__get_free_page(GFP_KERNEL);
9152         if (!vmx_msr_bitmap_legacy_x2apic)
9153                 goto out2;
9154
9155         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
9156         if (!vmx_msr_bitmap_longmode)
9157                 goto out3;
9158
9159         vmx_msr_bitmap_longmode_x2apic =
9160                                 (unsigned long *)__get_free_page(GFP_KERNEL);
9161         if (!vmx_msr_bitmap_longmode_x2apic)
9162                 goto out4;
9163         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9164         if (!vmx_vmread_bitmap)
9165                 goto out5;
9166
9167         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9168         if (!vmx_vmwrite_bitmap)
9169                 goto out6;
9170
9171         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
9172         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
9173
9174         /*
9175          * Allow direct access to the PC debug port (it is often used for I/O
9176          * delays, but the vmexits simply slow things down).
9177          */
9178         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
9179         clear_bit(0x80, vmx_io_bitmap_a);
9180
9181         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
9182
9183         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
9184         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
9185
9186         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
9187
9188         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9189                      __alignof__(struct vcpu_vmx), THIS_MODULE);
9190         if (r)
9191                 goto out7;
9192
9193 #ifdef CONFIG_KEXEC
9194         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9195                            crash_vmclear_local_loaded_vmcss);
9196 #endif
9197
9198         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
9199         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
9200         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
9201         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
9202         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
9203         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
9204         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
9205
9206         memcpy(vmx_msr_bitmap_legacy_x2apic,
9207                         vmx_msr_bitmap_legacy, PAGE_SIZE);
9208         memcpy(vmx_msr_bitmap_longmode_x2apic,
9209                         vmx_msr_bitmap_longmode, PAGE_SIZE);
9210
9211         if (enable_apicv) {
9212                 for (msr = 0x800; msr <= 0x8ff; msr++)
9213                         vmx_disable_intercept_msr_read_x2apic(msr);
9214
9215                 /* According SDM, in x2apic mode, the whole id reg is used.
9216                  * But in KVM, it only use the highest eight bits. Need to
9217                  * intercept it */
9218                 vmx_enable_intercept_msr_read_x2apic(0x802);
9219                 /* TMCCT */
9220                 vmx_enable_intercept_msr_read_x2apic(0x839);
9221                 /* TPR */
9222                 vmx_disable_intercept_msr_write_x2apic(0x808);
9223                 /* EOI */
9224                 vmx_disable_intercept_msr_write_x2apic(0x80b);
9225                 /* SELF-IPI */
9226                 vmx_disable_intercept_msr_write_x2apic(0x83f);
9227         }
9228
9229         if (enable_ept) {
9230                 kvm_mmu_set_mask_ptes(0ull,
9231                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
9232                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
9233                         0ull, VMX_EPT_EXECUTABLE_MASK);
9234                 ept_set_mmio_spte_mask();
9235                 kvm_enable_tdp();
9236         } else
9237                 kvm_disable_tdp();
9238
9239         update_ple_window_actual_max();
9240
9241         return 0;
9242
9243 out7:
9244         free_page((unsigned long)vmx_vmwrite_bitmap);
9245 out6:
9246         free_page((unsigned long)vmx_vmread_bitmap);
9247 out5:
9248         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9249 out4:
9250         free_page((unsigned long)vmx_msr_bitmap_longmode);
9251 out3:
9252         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9253 out2:
9254         free_page((unsigned long)vmx_msr_bitmap_legacy);
9255 out1:
9256         free_page((unsigned long)vmx_io_bitmap_b);
9257 out:
9258         free_page((unsigned long)vmx_io_bitmap_a);
9259         return r;
9260 }
9261
9262 static void __exit vmx_exit(void)
9263 {
9264         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9265         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9266         free_page((unsigned long)vmx_msr_bitmap_legacy);
9267         free_page((unsigned long)vmx_msr_bitmap_longmode);
9268         free_page((unsigned long)vmx_io_bitmap_b);
9269         free_page((unsigned long)vmx_io_bitmap_a);
9270         free_page((unsigned long)vmx_vmwrite_bitmap);
9271         free_page((unsigned long)vmx_vmread_bitmap);
9272
9273 #ifdef CONFIG_KEXEC
9274         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
9275         synchronize_rcu();
9276 #endif
9277
9278         kvm_exit();
9279 }
9280
9281 module_init(vmx_init)
9282 module_exit(vmx_exit)