KVM: VMX: Move fixup_rmode_irq() to avoid forward declaration
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affilates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
73         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
74 #define KVM_GUEST_CR0_MASK                                              \
75         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
76 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
77         (X86_CR0_WP | X86_CR0_NE)
78 #define KVM_VM_CR0_ALWAYS_ON                                            \
79         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
80 #define KVM_CR4_GUEST_OWNED_BITS                                      \
81         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
82          | X86_CR4_OSXMMEXCPT)
83
84 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
85 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
86
87 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
88
89 /*
90  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
91  * ple_gap:    upper bound on the amount of time between two successive
92  *             executions of PAUSE in a loop. Also indicate if ple enabled.
93  *             According to test, this time is usually small than 41 cycles.
94  * ple_window: upper bound on the amount of time a guest is allowed to execute
95  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
96  *             less than 2^12 cycles
97  * Time is measured based on a counter that runs at the same rate as the TSC,
98  * refer SDM volume 3b section 21.6.13 & 22.1.3.
99  */
100 #define KVM_VMX_DEFAULT_PLE_GAP    41
101 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
102 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
103 module_param(ple_gap, int, S_IRUGO);
104
105 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
106 module_param(ple_window, int, S_IRUGO);
107
108 #define NR_AUTOLOAD_MSRS 1
109
110 struct vmcs {
111         u32 revision_id;
112         u32 abort;
113         char data[0];
114 };
115
116 struct shared_msr_entry {
117         unsigned index;
118         u64 data;
119         u64 mask;
120 };
121
122 struct vcpu_vmx {
123         struct kvm_vcpu       vcpu;
124         struct list_head      local_vcpus_link;
125         unsigned long         host_rsp;
126         int                   launched;
127         u8                    fail;
128         u32                   exit_intr_info;
129         u32                   idt_vectoring_info;
130         struct shared_msr_entry *guest_msrs;
131         int                   nmsrs;
132         int                   save_nmsrs;
133 #ifdef CONFIG_X86_64
134         u64                   msr_host_kernel_gs_base;
135         u64                   msr_guest_kernel_gs_base;
136 #endif
137         struct vmcs          *vmcs;
138         struct msr_autoload {
139                 unsigned nr;
140                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
141                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
142         } msr_autoload;
143         struct {
144                 int           loaded;
145                 u16           fs_sel, gs_sel, ldt_sel;
146                 int           gs_ldt_reload_needed;
147                 int           fs_reload_needed;
148         } host_state;
149         struct {
150                 int vm86_active;
151                 ulong save_rflags;
152                 struct kvm_save_segment {
153                         u16 selector;
154                         unsigned long base;
155                         u32 limit;
156                         u32 ar;
157                 } tr, es, ds, fs, gs;
158                 struct {
159                         bool pending;
160                         u8 vector;
161                         unsigned rip;
162                 } irq;
163         } rmode;
164         int vpid;
165         bool emulation_required;
166
167         /* Support for vnmi-less CPUs */
168         int soft_vnmi_blocked;
169         ktime_t entry_time;
170         s64 vnmi_blocked_time;
171         u32 exit_reason;
172
173         bool rdtscp_enabled;
174 };
175
176 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
177 {
178         return container_of(vcpu, struct vcpu_vmx, vcpu);
179 }
180
181 static int init_rmode(struct kvm *kvm);
182 static u64 construct_eptp(unsigned long root_hpa);
183 static void kvm_cpu_vmxon(u64 addr);
184 static void kvm_cpu_vmxoff(void);
185
186 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
187 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
188 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
189 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
190
191 static unsigned long *vmx_io_bitmap_a;
192 static unsigned long *vmx_io_bitmap_b;
193 static unsigned long *vmx_msr_bitmap_legacy;
194 static unsigned long *vmx_msr_bitmap_longmode;
195
196 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
197 static DEFINE_SPINLOCK(vmx_vpid_lock);
198
199 static struct vmcs_config {
200         int size;
201         int order;
202         u32 revision_id;
203         u32 pin_based_exec_ctrl;
204         u32 cpu_based_exec_ctrl;
205         u32 cpu_based_2nd_exec_ctrl;
206         u32 vmexit_ctrl;
207         u32 vmentry_ctrl;
208 } vmcs_config;
209
210 static struct vmx_capability {
211         u32 ept;
212         u32 vpid;
213 } vmx_capability;
214
215 #define VMX_SEGMENT_FIELD(seg)                                  \
216         [VCPU_SREG_##seg] = {                                   \
217                 .selector = GUEST_##seg##_SELECTOR,             \
218                 .base = GUEST_##seg##_BASE,                     \
219                 .limit = GUEST_##seg##_LIMIT,                   \
220                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
221         }
222
223 static struct kvm_vmx_segment_field {
224         unsigned selector;
225         unsigned base;
226         unsigned limit;
227         unsigned ar_bytes;
228 } kvm_vmx_segment_fields[] = {
229         VMX_SEGMENT_FIELD(CS),
230         VMX_SEGMENT_FIELD(DS),
231         VMX_SEGMENT_FIELD(ES),
232         VMX_SEGMENT_FIELD(FS),
233         VMX_SEGMENT_FIELD(GS),
234         VMX_SEGMENT_FIELD(SS),
235         VMX_SEGMENT_FIELD(TR),
236         VMX_SEGMENT_FIELD(LDTR),
237 };
238
239 static u64 host_efer;
240
241 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
242
243 /*
244  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
245  * away by decrementing the array size.
246  */
247 static const u32 vmx_msr_index[] = {
248 #ifdef CONFIG_X86_64
249         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
250 #endif
251         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
252 };
253 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
254
255 static inline bool is_page_fault(u32 intr_info)
256 {
257         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
258                              INTR_INFO_VALID_MASK)) ==
259                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
260 }
261
262 static inline bool is_no_device(u32 intr_info)
263 {
264         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
265                              INTR_INFO_VALID_MASK)) ==
266                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
267 }
268
269 static inline bool is_invalid_opcode(u32 intr_info)
270 {
271         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
272                              INTR_INFO_VALID_MASK)) ==
273                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
274 }
275
276 static inline bool is_external_interrupt(u32 intr_info)
277 {
278         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
279                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
280 }
281
282 static inline bool is_machine_check(u32 intr_info)
283 {
284         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
285                              INTR_INFO_VALID_MASK)) ==
286                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
287 }
288
289 static inline bool cpu_has_vmx_msr_bitmap(void)
290 {
291         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
292 }
293
294 static inline bool cpu_has_vmx_tpr_shadow(void)
295 {
296         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
297 }
298
299 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
300 {
301         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
302 }
303
304 static inline bool cpu_has_secondary_exec_ctrls(void)
305 {
306         return vmcs_config.cpu_based_exec_ctrl &
307                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
308 }
309
310 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
311 {
312         return vmcs_config.cpu_based_2nd_exec_ctrl &
313                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
314 }
315
316 static inline bool cpu_has_vmx_flexpriority(void)
317 {
318         return cpu_has_vmx_tpr_shadow() &&
319                 cpu_has_vmx_virtualize_apic_accesses();
320 }
321
322 static inline bool cpu_has_vmx_ept_execute_only(void)
323 {
324         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
325 }
326
327 static inline bool cpu_has_vmx_eptp_uncacheable(void)
328 {
329         return vmx_capability.ept & VMX_EPTP_UC_BIT;
330 }
331
332 static inline bool cpu_has_vmx_eptp_writeback(void)
333 {
334         return vmx_capability.ept & VMX_EPTP_WB_BIT;
335 }
336
337 static inline bool cpu_has_vmx_ept_2m_page(void)
338 {
339         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
340 }
341
342 static inline bool cpu_has_vmx_ept_1g_page(void)
343 {
344         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
345 }
346
347 static inline bool cpu_has_vmx_ept_4levels(void)
348 {
349         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
350 }
351
352 static inline bool cpu_has_vmx_invept_individual_addr(void)
353 {
354         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
355 }
356
357 static inline bool cpu_has_vmx_invept_context(void)
358 {
359         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
360 }
361
362 static inline bool cpu_has_vmx_invept_global(void)
363 {
364         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
365 }
366
367 static inline bool cpu_has_vmx_invvpid_single(void)
368 {
369         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
370 }
371
372 static inline bool cpu_has_vmx_invvpid_global(void)
373 {
374         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
375 }
376
377 static inline bool cpu_has_vmx_ept(void)
378 {
379         return vmcs_config.cpu_based_2nd_exec_ctrl &
380                 SECONDARY_EXEC_ENABLE_EPT;
381 }
382
383 static inline bool cpu_has_vmx_unrestricted_guest(void)
384 {
385         return vmcs_config.cpu_based_2nd_exec_ctrl &
386                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
387 }
388
389 static inline bool cpu_has_vmx_ple(void)
390 {
391         return vmcs_config.cpu_based_2nd_exec_ctrl &
392                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
393 }
394
395 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
396 {
397         return flexpriority_enabled && irqchip_in_kernel(kvm);
398 }
399
400 static inline bool cpu_has_vmx_vpid(void)
401 {
402         return vmcs_config.cpu_based_2nd_exec_ctrl &
403                 SECONDARY_EXEC_ENABLE_VPID;
404 }
405
406 static inline bool cpu_has_vmx_rdtscp(void)
407 {
408         return vmcs_config.cpu_based_2nd_exec_ctrl &
409                 SECONDARY_EXEC_RDTSCP;
410 }
411
412 static inline bool cpu_has_virtual_nmis(void)
413 {
414         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
415 }
416
417 static inline bool cpu_has_vmx_wbinvd_exit(void)
418 {
419         return vmcs_config.cpu_based_2nd_exec_ctrl &
420                 SECONDARY_EXEC_WBINVD_EXITING;
421 }
422
423 static inline bool report_flexpriority(void)
424 {
425         return flexpriority_enabled;
426 }
427
428 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
429 {
430         int i;
431
432         for (i = 0; i < vmx->nmsrs; ++i)
433                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
434                         return i;
435         return -1;
436 }
437
438 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
439 {
440     struct {
441         u64 vpid : 16;
442         u64 rsvd : 48;
443         u64 gva;
444     } operand = { vpid, 0, gva };
445
446     asm volatile (__ex(ASM_VMX_INVVPID)
447                   /* CF==1 or ZF==1 --> rc = -1 */
448                   "; ja 1f ; ud2 ; 1:"
449                   : : "a"(&operand), "c"(ext) : "cc", "memory");
450 }
451
452 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
453 {
454         struct {
455                 u64 eptp, gpa;
456         } operand = {eptp, gpa};
457
458         asm volatile (__ex(ASM_VMX_INVEPT)
459                         /* CF==1 or ZF==1 --> rc = -1 */
460                         "; ja 1f ; ud2 ; 1:\n"
461                         : : "a" (&operand), "c" (ext) : "cc", "memory");
462 }
463
464 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
465 {
466         int i;
467
468         i = __find_msr_index(vmx, msr);
469         if (i >= 0)
470                 return &vmx->guest_msrs[i];
471         return NULL;
472 }
473
474 static void vmcs_clear(struct vmcs *vmcs)
475 {
476         u64 phys_addr = __pa(vmcs);
477         u8 error;
478
479         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
480                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
481                       : "cc", "memory");
482         if (error)
483                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
484                        vmcs, phys_addr);
485 }
486
487 static void vmcs_load(struct vmcs *vmcs)
488 {
489         u64 phys_addr = __pa(vmcs);
490         u8 error;
491
492         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
493                         : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
494                         : "cc", "memory");
495         if (error)
496                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
497                        vmcs, phys_addr);
498 }
499
500 static void __vcpu_clear(void *arg)
501 {
502         struct vcpu_vmx *vmx = arg;
503         int cpu = raw_smp_processor_id();
504
505         if (vmx->vcpu.cpu == cpu)
506                 vmcs_clear(vmx->vmcs);
507         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
508                 per_cpu(current_vmcs, cpu) = NULL;
509         list_del(&vmx->local_vcpus_link);
510         vmx->vcpu.cpu = -1;
511         vmx->launched = 0;
512 }
513
514 static void vcpu_clear(struct vcpu_vmx *vmx)
515 {
516         if (vmx->vcpu.cpu == -1)
517                 return;
518         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
519 }
520
521 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
522 {
523         if (vmx->vpid == 0)
524                 return;
525
526         if (cpu_has_vmx_invvpid_single())
527                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
528 }
529
530 static inline void vpid_sync_vcpu_global(void)
531 {
532         if (cpu_has_vmx_invvpid_global())
533                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
534 }
535
536 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
537 {
538         if (cpu_has_vmx_invvpid_single())
539                 vpid_sync_vcpu_single(vmx);
540         else
541                 vpid_sync_vcpu_global();
542 }
543
544 static inline void ept_sync_global(void)
545 {
546         if (cpu_has_vmx_invept_global())
547                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
548 }
549
550 static inline void ept_sync_context(u64 eptp)
551 {
552         if (enable_ept) {
553                 if (cpu_has_vmx_invept_context())
554                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
555                 else
556                         ept_sync_global();
557         }
558 }
559
560 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
561 {
562         if (enable_ept) {
563                 if (cpu_has_vmx_invept_individual_addr())
564                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
565                                         eptp, gpa);
566                 else
567                         ept_sync_context(eptp);
568         }
569 }
570
571 static unsigned long vmcs_readl(unsigned long field)
572 {
573         unsigned long value;
574
575         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
576                       : "=a"(value) : "d"(field) : "cc");
577         return value;
578 }
579
580 static u16 vmcs_read16(unsigned long field)
581 {
582         return vmcs_readl(field);
583 }
584
585 static u32 vmcs_read32(unsigned long field)
586 {
587         return vmcs_readl(field);
588 }
589
590 static u64 vmcs_read64(unsigned long field)
591 {
592 #ifdef CONFIG_X86_64
593         return vmcs_readl(field);
594 #else
595         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
596 #endif
597 }
598
599 static noinline void vmwrite_error(unsigned long field, unsigned long value)
600 {
601         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
602                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
603         dump_stack();
604 }
605
606 static void vmcs_writel(unsigned long field, unsigned long value)
607 {
608         u8 error;
609
610         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
611                        : "=q"(error) : "a"(value), "d"(field) : "cc");
612         if (unlikely(error))
613                 vmwrite_error(field, value);
614 }
615
616 static void vmcs_write16(unsigned long field, u16 value)
617 {
618         vmcs_writel(field, value);
619 }
620
621 static void vmcs_write32(unsigned long field, u32 value)
622 {
623         vmcs_writel(field, value);
624 }
625
626 static void vmcs_write64(unsigned long field, u64 value)
627 {
628         vmcs_writel(field, value);
629 #ifndef CONFIG_X86_64
630         asm volatile ("");
631         vmcs_writel(field+1, value >> 32);
632 #endif
633 }
634
635 static void vmcs_clear_bits(unsigned long field, u32 mask)
636 {
637         vmcs_writel(field, vmcs_readl(field) & ~mask);
638 }
639
640 static void vmcs_set_bits(unsigned long field, u32 mask)
641 {
642         vmcs_writel(field, vmcs_readl(field) | mask);
643 }
644
645 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
646 {
647         u32 eb;
648
649         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
650              (1u << NM_VECTOR) | (1u << DB_VECTOR);
651         if ((vcpu->guest_debug &
652              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
653             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
654                 eb |= 1u << BP_VECTOR;
655         if (to_vmx(vcpu)->rmode.vm86_active)
656                 eb = ~0;
657         if (enable_ept)
658                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
659         if (vcpu->fpu_active)
660                 eb &= ~(1u << NM_VECTOR);
661         vmcs_write32(EXCEPTION_BITMAP, eb);
662 }
663
664 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
665 {
666         unsigned i;
667         struct msr_autoload *m = &vmx->msr_autoload;
668
669         for (i = 0; i < m->nr; ++i)
670                 if (m->guest[i].index == msr)
671                         break;
672
673         if (i == m->nr)
674                 return;
675         --m->nr;
676         m->guest[i] = m->guest[m->nr];
677         m->host[i] = m->host[m->nr];
678         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
679         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
680 }
681
682 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
683                                   u64 guest_val, u64 host_val)
684 {
685         unsigned i;
686         struct msr_autoload *m = &vmx->msr_autoload;
687
688         for (i = 0; i < m->nr; ++i)
689                 if (m->guest[i].index == msr)
690                         break;
691
692         if (i == m->nr) {
693                 ++m->nr;
694                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
695                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
696         }
697
698         m->guest[i].index = msr;
699         m->guest[i].value = guest_val;
700         m->host[i].index = msr;
701         m->host[i].value = host_val;
702 }
703
704 static void reload_tss(void)
705 {
706         /*
707          * VT restores TR but not its size.  Useless.
708          */
709         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
710         struct desc_struct *descs;
711
712         descs = (void *)gdt->address;
713         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
714         load_TR_desc();
715 }
716
717 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
718 {
719         u64 guest_efer;
720         u64 ignore_bits;
721
722         guest_efer = vmx->vcpu.arch.efer;
723
724         /*
725          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
726          * outside long mode
727          */
728         ignore_bits = EFER_NX | EFER_SCE;
729 #ifdef CONFIG_X86_64
730         ignore_bits |= EFER_LMA | EFER_LME;
731         /* SCE is meaningful only in long mode on Intel */
732         if (guest_efer & EFER_LMA)
733                 ignore_bits &= ~(u64)EFER_SCE;
734 #endif
735         guest_efer &= ~ignore_bits;
736         guest_efer |= host_efer & ignore_bits;
737         vmx->guest_msrs[efer_offset].data = guest_efer;
738         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
739
740         clear_atomic_switch_msr(vmx, MSR_EFER);
741         /* On ept, can't emulate nx, and must switch nx atomically */
742         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
743                 guest_efer = vmx->vcpu.arch.efer;
744                 if (!(guest_efer & EFER_LMA))
745                         guest_efer &= ~EFER_LME;
746                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
747                 return false;
748         }
749
750         return true;
751 }
752
753 static unsigned long segment_base(u16 selector)
754 {
755         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
756         struct desc_struct *d;
757         unsigned long table_base;
758         unsigned long v;
759
760         if (!(selector & ~3))
761                 return 0;
762
763         table_base = gdt->address;
764
765         if (selector & 4) {           /* from ldt */
766                 u16 ldt_selector = kvm_read_ldt();
767
768                 if (!(ldt_selector & ~3))
769                         return 0;
770
771                 table_base = segment_base(ldt_selector);
772         }
773         d = (struct desc_struct *)(table_base + (selector & ~7));
774         v = get_desc_base(d);
775 #ifdef CONFIG_X86_64
776        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
777                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
778 #endif
779         return v;
780 }
781
782 static inline unsigned long kvm_read_tr_base(void)
783 {
784         u16 tr;
785         asm("str %0" : "=g"(tr));
786         return segment_base(tr);
787 }
788
789 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
790 {
791         struct vcpu_vmx *vmx = to_vmx(vcpu);
792         int i;
793
794         if (vmx->host_state.loaded)
795                 return;
796
797         vmx->host_state.loaded = 1;
798         /*
799          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
800          * allow segment selectors with cpl > 0 or ti == 1.
801          */
802         vmx->host_state.ldt_sel = kvm_read_ldt();
803         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
804         savesegment(fs, vmx->host_state.fs_sel);
805         if (!(vmx->host_state.fs_sel & 7)) {
806                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
807                 vmx->host_state.fs_reload_needed = 0;
808         } else {
809                 vmcs_write16(HOST_FS_SELECTOR, 0);
810                 vmx->host_state.fs_reload_needed = 1;
811         }
812         savesegment(gs, vmx->host_state.gs_sel);
813         if (!(vmx->host_state.gs_sel & 7))
814                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
815         else {
816                 vmcs_write16(HOST_GS_SELECTOR, 0);
817                 vmx->host_state.gs_ldt_reload_needed = 1;
818         }
819
820 #ifdef CONFIG_X86_64
821         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
822         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
823 #else
824         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
825         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
826 #endif
827
828 #ifdef CONFIG_X86_64
829         if (is_long_mode(&vmx->vcpu)) {
830                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
831                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
832         }
833 #endif
834         for (i = 0; i < vmx->save_nmsrs; ++i)
835                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
836                                    vmx->guest_msrs[i].data,
837                                    vmx->guest_msrs[i].mask);
838 }
839
840 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
841 {
842         if (!vmx->host_state.loaded)
843                 return;
844
845         ++vmx->vcpu.stat.host_state_reload;
846         vmx->host_state.loaded = 0;
847         if (vmx->host_state.fs_reload_needed)
848                 loadsegment(fs, vmx->host_state.fs_sel);
849         if (vmx->host_state.gs_ldt_reload_needed) {
850                 kvm_load_ldt(vmx->host_state.ldt_sel);
851 #ifdef CONFIG_X86_64
852                 load_gs_index(vmx->host_state.gs_sel);
853                 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
854 #else
855                 loadsegment(gs, vmx->host_state.gs_sel);
856 #endif
857         }
858         reload_tss();
859 #ifdef CONFIG_X86_64
860         if (is_long_mode(&vmx->vcpu)) {
861                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
862                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
863         }
864 #endif
865         if (current_thread_info()->status & TS_USEDFPU)
866                 clts();
867         load_gdt(&__get_cpu_var(host_gdt));
868 }
869
870 static void vmx_load_host_state(struct vcpu_vmx *vmx)
871 {
872         preempt_disable();
873         __vmx_load_host_state(vmx);
874         preempt_enable();
875 }
876
877 /*
878  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
879  * vcpu mutex is already taken.
880  */
881 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
882 {
883         struct vcpu_vmx *vmx = to_vmx(vcpu);
884         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
885
886         if (!vmm_exclusive)
887                 kvm_cpu_vmxon(phys_addr);
888         else if (vcpu->cpu != cpu)
889                 vcpu_clear(vmx);
890
891         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
892                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
893                 vmcs_load(vmx->vmcs);
894         }
895
896         if (vcpu->cpu != cpu) {
897                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
898                 unsigned long sysenter_esp;
899
900                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
901                 local_irq_disable();
902                 list_add(&vmx->local_vcpus_link,
903                          &per_cpu(vcpus_on_cpu, cpu));
904                 local_irq_enable();
905
906                 /*
907                  * Linux uses per-cpu TSS and GDT, so set these when switching
908                  * processors.
909                  */
910                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
911                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
912
913                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
914                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
915         }
916 }
917
918 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
919 {
920         __vmx_load_host_state(to_vmx(vcpu));
921         if (!vmm_exclusive) {
922                 __vcpu_clear(to_vmx(vcpu));
923                 kvm_cpu_vmxoff();
924         }
925 }
926
927 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
928 {
929         ulong cr0;
930
931         if (vcpu->fpu_active)
932                 return;
933         vcpu->fpu_active = 1;
934         cr0 = vmcs_readl(GUEST_CR0);
935         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
936         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
937         vmcs_writel(GUEST_CR0, cr0);
938         update_exception_bitmap(vcpu);
939         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
940         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
941 }
942
943 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
944
945 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
946 {
947         vmx_decache_cr0_guest_bits(vcpu);
948         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
949         update_exception_bitmap(vcpu);
950         vcpu->arch.cr0_guest_owned_bits = 0;
951         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
952         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
953 }
954
955 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
956 {
957         unsigned long rflags, save_rflags;
958
959         rflags = vmcs_readl(GUEST_RFLAGS);
960         if (to_vmx(vcpu)->rmode.vm86_active) {
961                 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
962                 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
963                 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
964         }
965         return rflags;
966 }
967
968 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
969 {
970         if (to_vmx(vcpu)->rmode.vm86_active) {
971                 to_vmx(vcpu)->rmode.save_rflags = rflags;
972                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
973         }
974         vmcs_writel(GUEST_RFLAGS, rflags);
975 }
976
977 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
978 {
979         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
980         int ret = 0;
981
982         if (interruptibility & GUEST_INTR_STATE_STI)
983                 ret |= KVM_X86_SHADOW_INT_STI;
984         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
985                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
986
987         return ret & mask;
988 }
989
990 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
991 {
992         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
993         u32 interruptibility = interruptibility_old;
994
995         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
996
997         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
998                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
999         else if (mask & KVM_X86_SHADOW_INT_STI)
1000                 interruptibility |= GUEST_INTR_STATE_STI;
1001
1002         if ((interruptibility != interruptibility_old))
1003                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1004 }
1005
1006 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1007 {
1008         unsigned long rip;
1009
1010         rip = kvm_rip_read(vcpu);
1011         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1012         kvm_rip_write(vcpu, rip);
1013
1014         /* skipping an emulated instruction also counts */
1015         vmx_set_interrupt_shadow(vcpu, 0);
1016 }
1017
1018 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1019                                 bool has_error_code, u32 error_code,
1020                                 bool reinject)
1021 {
1022         struct vcpu_vmx *vmx = to_vmx(vcpu);
1023         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1024
1025         if (has_error_code) {
1026                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1027                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1028         }
1029
1030         if (vmx->rmode.vm86_active) {
1031                 vmx->rmode.irq.pending = true;
1032                 vmx->rmode.irq.vector = nr;
1033                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
1034                 if (kvm_exception_is_soft(nr))
1035                         vmx->rmode.irq.rip +=
1036                                 vmx->vcpu.arch.event_exit_inst_len;
1037                 intr_info |= INTR_TYPE_SOFT_INTR;
1038                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1039                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1040                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
1041                 return;
1042         }
1043
1044         if (kvm_exception_is_soft(nr)) {
1045                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1046                              vmx->vcpu.arch.event_exit_inst_len);
1047                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1048         } else
1049                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1050
1051         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1052 }
1053
1054 static bool vmx_rdtscp_supported(void)
1055 {
1056         return cpu_has_vmx_rdtscp();
1057 }
1058
1059 /*
1060  * Swap MSR entry in host/guest MSR entry array.
1061  */
1062 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1063 {
1064         struct shared_msr_entry tmp;
1065
1066         tmp = vmx->guest_msrs[to];
1067         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1068         vmx->guest_msrs[from] = tmp;
1069 }
1070
1071 /*
1072  * Set up the vmcs to automatically save and restore system
1073  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1074  * mode, as fiddling with msrs is very expensive.
1075  */
1076 static void setup_msrs(struct vcpu_vmx *vmx)
1077 {
1078         int save_nmsrs, index;
1079         unsigned long *msr_bitmap;
1080
1081         vmx_load_host_state(vmx);
1082         save_nmsrs = 0;
1083 #ifdef CONFIG_X86_64
1084         if (is_long_mode(&vmx->vcpu)) {
1085                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1086                 if (index >= 0)
1087                         move_msr_up(vmx, index, save_nmsrs++);
1088                 index = __find_msr_index(vmx, MSR_LSTAR);
1089                 if (index >= 0)
1090                         move_msr_up(vmx, index, save_nmsrs++);
1091                 index = __find_msr_index(vmx, MSR_CSTAR);
1092                 if (index >= 0)
1093                         move_msr_up(vmx, index, save_nmsrs++);
1094                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1095                 if (index >= 0 && vmx->rdtscp_enabled)
1096                         move_msr_up(vmx, index, save_nmsrs++);
1097                 /*
1098                  * MSR_STAR is only needed on long mode guests, and only
1099                  * if efer.sce is enabled.
1100                  */
1101                 index = __find_msr_index(vmx, MSR_STAR);
1102                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1103                         move_msr_up(vmx, index, save_nmsrs++);
1104         }
1105 #endif
1106         index = __find_msr_index(vmx, MSR_EFER);
1107         if (index >= 0 && update_transition_efer(vmx, index))
1108                 move_msr_up(vmx, index, save_nmsrs++);
1109
1110         vmx->save_nmsrs = save_nmsrs;
1111
1112         if (cpu_has_vmx_msr_bitmap()) {
1113                 if (is_long_mode(&vmx->vcpu))
1114                         msr_bitmap = vmx_msr_bitmap_longmode;
1115                 else
1116                         msr_bitmap = vmx_msr_bitmap_legacy;
1117
1118                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1119         }
1120 }
1121
1122 /*
1123  * reads and returns guest's timestamp counter "register"
1124  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1125  */
1126 static u64 guest_read_tsc(void)
1127 {
1128         u64 host_tsc, tsc_offset;
1129
1130         rdtscll(host_tsc);
1131         tsc_offset = vmcs_read64(TSC_OFFSET);
1132         return host_tsc + tsc_offset;
1133 }
1134
1135 /*
1136  * writes 'offset' into guest's timestamp counter offset register
1137  */
1138 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1139 {
1140         vmcs_write64(TSC_OFFSET, offset);
1141 }
1142
1143 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1144 {
1145         u64 offset = vmcs_read64(TSC_OFFSET);
1146         vmcs_write64(TSC_OFFSET, offset + adjustment);
1147 }
1148
1149 /*
1150  * Reads an msr value (of 'msr_index') into 'pdata'.
1151  * Returns 0 on success, non-0 otherwise.
1152  * Assumes vcpu_load() was already called.
1153  */
1154 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1155 {
1156         u64 data;
1157         struct shared_msr_entry *msr;
1158
1159         if (!pdata) {
1160                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1161                 return -EINVAL;
1162         }
1163
1164         switch (msr_index) {
1165 #ifdef CONFIG_X86_64
1166         case MSR_FS_BASE:
1167                 data = vmcs_readl(GUEST_FS_BASE);
1168                 break;
1169         case MSR_GS_BASE:
1170                 data = vmcs_readl(GUEST_GS_BASE);
1171                 break;
1172         case MSR_KERNEL_GS_BASE:
1173                 vmx_load_host_state(to_vmx(vcpu));
1174                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1175                 break;
1176 #endif
1177         case MSR_EFER:
1178                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1179         case MSR_IA32_TSC:
1180                 data = guest_read_tsc();
1181                 break;
1182         case MSR_IA32_SYSENTER_CS:
1183                 data = vmcs_read32(GUEST_SYSENTER_CS);
1184                 break;
1185         case MSR_IA32_SYSENTER_EIP:
1186                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1187                 break;
1188         case MSR_IA32_SYSENTER_ESP:
1189                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1190                 break;
1191         case MSR_TSC_AUX:
1192                 if (!to_vmx(vcpu)->rdtscp_enabled)
1193                         return 1;
1194                 /* Otherwise falls through */
1195         default:
1196                 vmx_load_host_state(to_vmx(vcpu));
1197                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1198                 if (msr) {
1199                         vmx_load_host_state(to_vmx(vcpu));
1200                         data = msr->data;
1201                         break;
1202                 }
1203                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1204         }
1205
1206         *pdata = data;
1207         return 0;
1208 }
1209
1210 /*
1211  * Writes msr value into into the appropriate "register".
1212  * Returns 0 on success, non-0 otherwise.
1213  * Assumes vcpu_load() was already called.
1214  */
1215 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1216 {
1217         struct vcpu_vmx *vmx = to_vmx(vcpu);
1218         struct shared_msr_entry *msr;
1219         int ret = 0;
1220
1221         switch (msr_index) {
1222         case MSR_EFER:
1223                 vmx_load_host_state(vmx);
1224                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1225                 break;
1226 #ifdef CONFIG_X86_64
1227         case MSR_FS_BASE:
1228                 vmcs_writel(GUEST_FS_BASE, data);
1229                 break;
1230         case MSR_GS_BASE:
1231                 vmcs_writel(GUEST_GS_BASE, data);
1232                 break;
1233         case MSR_KERNEL_GS_BASE:
1234                 vmx_load_host_state(vmx);
1235                 vmx->msr_guest_kernel_gs_base = data;
1236                 break;
1237 #endif
1238         case MSR_IA32_SYSENTER_CS:
1239                 vmcs_write32(GUEST_SYSENTER_CS, data);
1240                 break;
1241         case MSR_IA32_SYSENTER_EIP:
1242                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1243                 break;
1244         case MSR_IA32_SYSENTER_ESP:
1245                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1246                 break;
1247         case MSR_IA32_TSC:
1248                 kvm_write_tsc(vcpu, data);
1249                 break;
1250         case MSR_IA32_CR_PAT:
1251                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1252                         vmcs_write64(GUEST_IA32_PAT, data);
1253                         vcpu->arch.pat = data;
1254                         break;
1255                 }
1256                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1257                 break;
1258         case MSR_TSC_AUX:
1259                 if (!vmx->rdtscp_enabled)
1260                         return 1;
1261                 /* Check reserved bit, higher 32 bits should be zero */
1262                 if ((data >> 32) != 0)
1263                         return 1;
1264                 /* Otherwise falls through */
1265         default:
1266                 msr = find_msr_entry(vmx, msr_index);
1267                 if (msr) {
1268                         vmx_load_host_state(vmx);
1269                         msr->data = data;
1270                         break;
1271                 }
1272                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1273         }
1274
1275         return ret;
1276 }
1277
1278 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1279 {
1280         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1281         switch (reg) {
1282         case VCPU_REGS_RSP:
1283                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1284                 break;
1285         case VCPU_REGS_RIP:
1286                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1287                 break;
1288         case VCPU_EXREG_PDPTR:
1289                 if (enable_ept)
1290                         ept_save_pdptrs(vcpu);
1291                 break;
1292         default:
1293                 break;
1294         }
1295 }
1296
1297 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1298 {
1299         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1300                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1301         else
1302                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1303
1304         update_exception_bitmap(vcpu);
1305 }
1306
1307 static __init int cpu_has_kvm_support(void)
1308 {
1309         return cpu_has_vmx();
1310 }
1311
1312 static __init int vmx_disabled_by_bios(void)
1313 {
1314         u64 msr;
1315
1316         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1317         if (msr & FEATURE_CONTROL_LOCKED) {
1318                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1319                         && tboot_enabled())
1320                         return 1;
1321                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1322                         && !tboot_enabled())
1323                         return 1;
1324         }
1325
1326         return 0;
1327         /* locked but not enabled */
1328 }
1329
1330 static void kvm_cpu_vmxon(u64 addr)
1331 {
1332         asm volatile (ASM_VMX_VMXON_RAX
1333                         : : "a"(&addr), "m"(addr)
1334                         : "memory", "cc");
1335 }
1336
1337 static int hardware_enable(void *garbage)
1338 {
1339         int cpu = raw_smp_processor_id();
1340         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1341         u64 old, test_bits;
1342
1343         if (read_cr4() & X86_CR4_VMXE)
1344                 return -EBUSY;
1345
1346         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1347         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1348
1349         test_bits = FEATURE_CONTROL_LOCKED;
1350         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1351         if (tboot_enabled())
1352                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1353
1354         if ((old & test_bits) != test_bits) {
1355                 /* enable and lock */
1356                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1357         }
1358         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1359
1360         if (vmm_exclusive) {
1361                 kvm_cpu_vmxon(phys_addr);
1362                 ept_sync_global();
1363         }
1364
1365         store_gdt(&__get_cpu_var(host_gdt));
1366
1367         return 0;
1368 }
1369
1370 static void vmclear_local_vcpus(void)
1371 {
1372         int cpu = raw_smp_processor_id();
1373         struct vcpu_vmx *vmx, *n;
1374
1375         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1376                                  local_vcpus_link)
1377                 __vcpu_clear(vmx);
1378 }
1379
1380
1381 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1382  * tricks.
1383  */
1384 static void kvm_cpu_vmxoff(void)
1385 {
1386         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1387 }
1388
1389 static void hardware_disable(void *garbage)
1390 {
1391         if (vmm_exclusive) {
1392                 vmclear_local_vcpus();
1393                 kvm_cpu_vmxoff();
1394         }
1395         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1396 }
1397
1398 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1399                                       u32 msr, u32 *result)
1400 {
1401         u32 vmx_msr_low, vmx_msr_high;
1402         u32 ctl = ctl_min | ctl_opt;
1403
1404         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1405
1406         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1407         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1408
1409         /* Ensure minimum (required) set of control bits are supported. */
1410         if (ctl_min & ~ctl)
1411                 return -EIO;
1412
1413         *result = ctl;
1414         return 0;
1415 }
1416
1417 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1418 {
1419         u32 vmx_msr_low, vmx_msr_high;
1420         u32 min, opt, min2, opt2;
1421         u32 _pin_based_exec_control = 0;
1422         u32 _cpu_based_exec_control = 0;
1423         u32 _cpu_based_2nd_exec_control = 0;
1424         u32 _vmexit_control = 0;
1425         u32 _vmentry_control = 0;
1426
1427         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1428         opt = PIN_BASED_VIRTUAL_NMIS;
1429         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1430                                 &_pin_based_exec_control) < 0)
1431                 return -EIO;
1432
1433         min = CPU_BASED_HLT_EXITING |
1434 #ifdef CONFIG_X86_64
1435               CPU_BASED_CR8_LOAD_EXITING |
1436               CPU_BASED_CR8_STORE_EXITING |
1437 #endif
1438               CPU_BASED_CR3_LOAD_EXITING |
1439               CPU_BASED_CR3_STORE_EXITING |
1440               CPU_BASED_USE_IO_BITMAPS |
1441               CPU_BASED_MOV_DR_EXITING |
1442               CPU_BASED_USE_TSC_OFFSETING |
1443               CPU_BASED_MWAIT_EXITING |
1444               CPU_BASED_MONITOR_EXITING |
1445               CPU_BASED_INVLPG_EXITING;
1446         opt = CPU_BASED_TPR_SHADOW |
1447               CPU_BASED_USE_MSR_BITMAPS |
1448               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1449         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1450                                 &_cpu_based_exec_control) < 0)
1451                 return -EIO;
1452 #ifdef CONFIG_X86_64
1453         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1454                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1455                                            ~CPU_BASED_CR8_STORE_EXITING;
1456 #endif
1457         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1458                 min2 = 0;
1459                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1460                         SECONDARY_EXEC_WBINVD_EXITING |
1461                         SECONDARY_EXEC_ENABLE_VPID |
1462                         SECONDARY_EXEC_ENABLE_EPT |
1463                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1464                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1465                         SECONDARY_EXEC_RDTSCP;
1466                 if (adjust_vmx_controls(min2, opt2,
1467                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1468                                         &_cpu_based_2nd_exec_control) < 0)
1469                         return -EIO;
1470         }
1471 #ifndef CONFIG_X86_64
1472         if (!(_cpu_based_2nd_exec_control &
1473                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1474                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1475 #endif
1476         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1477                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1478                    enabled */
1479                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1480                                              CPU_BASED_CR3_STORE_EXITING |
1481                                              CPU_BASED_INVLPG_EXITING);
1482                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1483                       vmx_capability.ept, vmx_capability.vpid);
1484         }
1485
1486         min = 0;
1487 #ifdef CONFIG_X86_64
1488         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1489 #endif
1490         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1491         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1492                                 &_vmexit_control) < 0)
1493                 return -EIO;
1494
1495         min = 0;
1496         opt = VM_ENTRY_LOAD_IA32_PAT;
1497         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1498                                 &_vmentry_control) < 0)
1499                 return -EIO;
1500
1501         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1502
1503         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1504         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1505                 return -EIO;
1506
1507 #ifdef CONFIG_X86_64
1508         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1509         if (vmx_msr_high & (1u<<16))
1510                 return -EIO;
1511 #endif
1512
1513         /* Require Write-Back (WB) memory type for VMCS accesses. */
1514         if (((vmx_msr_high >> 18) & 15) != 6)
1515                 return -EIO;
1516
1517         vmcs_conf->size = vmx_msr_high & 0x1fff;
1518         vmcs_conf->order = get_order(vmcs_config.size);
1519         vmcs_conf->revision_id = vmx_msr_low;
1520
1521         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1522         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1523         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1524         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1525         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1526
1527         return 0;
1528 }
1529
1530 static struct vmcs *alloc_vmcs_cpu(int cpu)
1531 {
1532         int node = cpu_to_node(cpu);
1533         struct page *pages;
1534         struct vmcs *vmcs;
1535
1536         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1537         if (!pages)
1538                 return NULL;
1539         vmcs = page_address(pages);
1540         memset(vmcs, 0, vmcs_config.size);
1541         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1542         return vmcs;
1543 }
1544
1545 static struct vmcs *alloc_vmcs(void)
1546 {
1547         return alloc_vmcs_cpu(raw_smp_processor_id());
1548 }
1549
1550 static void free_vmcs(struct vmcs *vmcs)
1551 {
1552         free_pages((unsigned long)vmcs, vmcs_config.order);
1553 }
1554
1555 static void free_kvm_area(void)
1556 {
1557         int cpu;
1558
1559         for_each_possible_cpu(cpu) {
1560                 free_vmcs(per_cpu(vmxarea, cpu));
1561                 per_cpu(vmxarea, cpu) = NULL;
1562         }
1563 }
1564
1565 static __init int alloc_kvm_area(void)
1566 {
1567         int cpu;
1568
1569         for_each_possible_cpu(cpu) {
1570                 struct vmcs *vmcs;
1571
1572                 vmcs = alloc_vmcs_cpu(cpu);
1573                 if (!vmcs) {
1574                         free_kvm_area();
1575                         return -ENOMEM;
1576                 }
1577
1578                 per_cpu(vmxarea, cpu) = vmcs;
1579         }
1580         return 0;
1581 }
1582
1583 static __init int hardware_setup(void)
1584 {
1585         if (setup_vmcs_config(&vmcs_config) < 0)
1586                 return -EIO;
1587
1588         if (boot_cpu_has(X86_FEATURE_NX))
1589                 kvm_enable_efer_bits(EFER_NX);
1590
1591         if (!cpu_has_vmx_vpid())
1592                 enable_vpid = 0;
1593
1594         if (!cpu_has_vmx_ept() ||
1595             !cpu_has_vmx_ept_4levels()) {
1596                 enable_ept = 0;
1597                 enable_unrestricted_guest = 0;
1598         }
1599
1600         if (!cpu_has_vmx_unrestricted_guest())
1601                 enable_unrestricted_guest = 0;
1602
1603         if (!cpu_has_vmx_flexpriority())
1604                 flexpriority_enabled = 0;
1605
1606         if (!cpu_has_vmx_tpr_shadow())
1607                 kvm_x86_ops->update_cr8_intercept = NULL;
1608
1609         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1610                 kvm_disable_largepages();
1611
1612         if (!cpu_has_vmx_ple())
1613                 ple_gap = 0;
1614
1615         return alloc_kvm_area();
1616 }
1617
1618 static __exit void hardware_unsetup(void)
1619 {
1620         free_kvm_area();
1621 }
1622
1623 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1624 {
1625         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1626
1627         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1628                 vmcs_write16(sf->selector, save->selector);
1629                 vmcs_writel(sf->base, save->base);
1630                 vmcs_write32(sf->limit, save->limit);
1631                 vmcs_write32(sf->ar_bytes, save->ar);
1632         } else {
1633                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1634                         << AR_DPL_SHIFT;
1635                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1636         }
1637 }
1638
1639 static void enter_pmode(struct kvm_vcpu *vcpu)
1640 {
1641         unsigned long flags;
1642         struct vcpu_vmx *vmx = to_vmx(vcpu);
1643
1644         vmx->emulation_required = 1;
1645         vmx->rmode.vm86_active = 0;
1646
1647         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1648         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1649         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1650
1651         flags = vmcs_readl(GUEST_RFLAGS);
1652         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1653         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1654         vmcs_writel(GUEST_RFLAGS, flags);
1655
1656         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1657                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1658
1659         update_exception_bitmap(vcpu);
1660
1661         if (emulate_invalid_guest_state)
1662                 return;
1663
1664         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1665         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1666         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1667         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1668
1669         vmcs_write16(GUEST_SS_SELECTOR, 0);
1670         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1671
1672         vmcs_write16(GUEST_CS_SELECTOR,
1673                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1674         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1675 }
1676
1677 static gva_t rmode_tss_base(struct kvm *kvm)
1678 {
1679         if (!kvm->arch.tss_addr) {
1680                 struct kvm_memslots *slots;
1681                 gfn_t base_gfn;
1682
1683                 slots = kvm_memslots(kvm);
1684                 base_gfn = slots->memslots[0].base_gfn +
1685                                  kvm->memslots->memslots[0].npages - 3;
1686                 return base_gfn << PAGE_SHIFT;
1687         }
1688         return kvm->arch.tss_addr;
1689 }
1690
1691 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1692 {
1693         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1694
1695         save->selector = vmcs_read16(sf->selector);
1696         save->base = vmcs_readl(sf->base);
1697         save->limit = vmcs_read32(sf->limit);
1698         save->ar = vmcs_read32(sf->ar_bytes);
1699         vmcs_write16(sf->selector, save->base >> 4);
1700         vmcs_write32(sf->base, save->base & 0xfffff);
1701         vmcs_write32(sf->limit, 0xffff);
1702         vmcs_write32(sf->ar_bytes, 0xf3);
1703 }
1704
1705 static void enter_rmode(struct kvm_vcpu *vcpu)
1706 {
1707         unsigned long flags;
1708         struct vcpu_vmx *vmx = to_vmx(vcpu);
1709
1710         if (enable_unrestricted_guest)
1711                 return;
1712
1713         vmx->emulation_required = 1;
1714         vmx->rmode.vm86_active = 1;
1715
1716         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1717         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1718
1719         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1720         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1721
1722         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1723         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1724
1725         flags = vmcs_readl(GUEST_RFLAGS);
1726         vmx->rmode.save_rflags = flags;
1727
1728         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1729
1730         vmcs_writel(GUEST_RFLAGS, flags);
1731         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1732         update_exception_bitmap(vcpu);
1733
1734         if (emulate_invalid_guest_state)
1735                 goto continue_rmode;
1736
1737         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1738         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1739         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1740
1741         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1742         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1743         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1744                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1745         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1746
1747         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1748         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1749         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1750         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1751
1752 continue_rmode:
1753         kvm_mmu_reset_context(vcpu);
1754         init_rmode(vcpu->kvm);
1755 }
1756
1757 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1758 {
1759         struct vcpu_vmx *vmx = to_vmx(vcpu);
1760         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1761
1762         if (!msr)
1763                 return;
1764
1765         /*
1766          * Force kernel_gs_base reloading before EFER changes, as control
1767          * of this msr depends on is_long_mode().
1768          */
1769         vmx_load_host_state(to_vmx(vcpu));
1770         vcpu->arch.efer = efer;
1771         if (efer & EFER_LMA) {
1772                 vmcs_write32(VM_ENTRY_CONTROLS,
1773                              vmcs_read32(VM_ENTRY_CONTROLS) |
1774                              VM_ENTRY_IA32E_MODE);
1775                 msr->data = efer;
1776         } else {
1777                 vmcs_write32(VM_ENTRY_CONTROLS,
1778                              vmcs_read32(VM_ENTRY_CONTROLS) &
1779                              ~VM_ENTRY_IA32E_MODE);
1780
1781                 msr->data = efer & ~EFER_LME;
1782         }
1783         setup_msrs(vmx);
1784 }
1785
1786 #ifdef CONFIG_X86_64
1787
1788 static void enter_lmode(struct kvm_vcpu *vcpu)
1789 {
1790         u32 guest_tr_ar;
1791
1792         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1793         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1794                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1795                        __func__);
1796                 vmcs_write32(GUEST_TR_AR_BYTES,
1797                              (guest_tr_ar & ~AR_TYPE_MASK)
1798                              | AR_TYPE_BUSY_64_TSS);
1799         }
1800         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1801 }
1802
1803 static void exit_lmode(struct kvm_vcpu *vcpu)
1804 {
1805         vmcs_write32(VM_ENTRY_CONTROLS,
1806                      vmcs_read32(VM_ENTRY_CONTROLS)
1807                      & ~VM_ENTRY_IA32E_MODE);
1808         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1809 }
1810
1811 #endif
1812
1813 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1814 {
1815         vpid_sync_context(to_vmx(vcpu));
1816         if (enable_ept) {
1817                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1818                         return;
1819                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1820         }
1821 }
1822
1823 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1824 {
1825         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1826
1827         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1828         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1829 }
1830
1831 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1832 {
1833         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1834
1835         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1836         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1837 }
1838
1839 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1840 {
1841         if (!test_bit(VCPU_EXREG_PDPTR,
1842                       (unsigned long *)&vcpu->arch.regs_dirty))
1843                 return;
1844
1845         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1846                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1847                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1848                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1849                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1850         }
1851 }
1852
1853 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1854 {
1855         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1856                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1857                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1858                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1859                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1860         }
1861
1862         __set_bit(VCPU_EXREG_PDPTR,
1863                   (unsigned long *)&vcpu->arch.regs_avail);
1864         __set_bit(VCPU_EXREG_PDPTR,
1865                   (unsigned long *)&vcpu->arch.regs_dirty);
1866 }
1867
1868 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1869
1870 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1871                                         unsigned long cr0,
1872                                         struct kvm_vcpu *vcpu)
1873 {
1874         if (!(cr0 & X86_CR0_PG)) {
1875                 /* From paging/starting to nonpaging */
1876                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1877                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1878                              (CPU_BASED_CR3_LOAD_EXITING |
1879                               CPU_BASED_CR3_STORE_EXITING));
1880                 vcpu->arch.cr0 = cr0;
1881                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1882         } else if (!is_paging(vcpu)) {
1883                 /* From nonpaging to paging */
1884                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1885                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1886                              ~(CPU_BASED_CR3_LOAD_EXITING |
1887                                CPU_BASED_CR3_STORE_EXITING));
1888                 vcpu->arch.cr0 = cr0;
1889                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1890         }
1891
1892         if (!(cr0 & X86_CR0_WP))
1893                 *hw_cr0 &= ~X86_CR0_WP;
1894 }
1895
1896 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1897 {
1898         struct vcpu_vmx *vmx = to_vmx(vcpu);
1899         unsigned long hw_cr0;
1900
1901         if (enable_unrestricted_guest)
1902                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1903                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1904         else
1905                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1906
1907         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1908                 enter_pmode(vcpu);
1909
1910         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1911                 enter_rmode(vcpu);
1912
1913 #ifdef CONFIG_X86_64
1914         if (vcpu->arch.efer & EFER_LME) {
1915                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1916                         enter_lmode(vcpu);
1917                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1918                         exit_lmode(vcpu);
1919         }
1920 #endif
1921
1922         if (enable_ept)
1923                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1924
1925         if (!vcpu->fpu_active)
1926                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1927
1928         vmcs_writel(CR0_READ_SHADOW, cr0);
1929         vmcs_writel(GUEST_CR0, hw_cr0);
1930         vcpu->arch.cr0 = cr0;
1931 }
1932
1933 static u64 construct_eptp(unsigned long root_hpa)
1934 {
1935         u64 eptp;
1936
1937         /* TODO write the value reading from MSR */
1938         eptp = VMX_EPT_DEFAULT_MT |
1939                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1940         eptp |= (root_hpa & PAGE_MASK);
1941
1942         return eptp;
1943 }
1944
1945 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1946 {
1947         unsigned long guest_cr3;
1948         u64 eptp;
1949
1950         guest_cr3 = cr3;
1951         if (enable_ept) {
1952                 eptp = construct_eptp(cr3);
1953                 vmcs_write64(EPT_POINTER, eptp);
1954                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1955                         vcpu->kvm->arch.ept_identity_map_addr;
1956                 ept_load_pdptrs(vcpu);
1957         }
1958
1959         vmx_flush_tlb(vcpu);
1960         vmcs_writel(GUEST_CR3, guest_cr3);
1961 }
1962
1963 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1964 {
1965         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1966                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1967
1968         vcpu->arch.cr4 = cr4;
1969         if (enable_ept) {
1970                 if (!is_paging(vcpu)) {
1971                         hw_cr4 &= ~X86_CR4_PAE;
1972                         hw_cr4 |= X86_CR4_PSE;
1973                 } else if (!(cr4 & X86_CR4_PAE)) {
1974                         hw_cr4 &= ~X86_CR4_PAE;
1975                 }
1976         }
1977
1978         vmcs_writel(CR4_READ_SHADOW, cr4);
1979         vmcs_writel(GUEST_CR4, hw_cr4);
1980 }
1981
1982 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1983 {
1984         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1985
1986         return vmcs_readl(sf->base);
1987 }
1988
1989 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1990                             struct kvm_segment *var, int seg)
1991 {
1992         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1993         u32 ar;
1994
1995         var->base = vmcs_readl(sf->base);
1996         var->limit = vmcs_read32(sf->limit);
1997         var->selector = vmcs_read16(sf->selector);
1998         ar = vmcs_read32(sf->ar_bytes);
1999         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2000                 ar = 0;
2001         var->type = ar & 15;
2002         var->s = (ar >> 4) & 1;
2003         var->dpl = (ar >> 5) & 3;
2004         var->present = (ar >> 7) & 1;
2005         var->avl = (ar >> 12) & 1;
2006         var->l = (ar >> 13) & 1;
2007         var->db = (ar >> 14) & 1;
2008         var->g = (ar >> 15) & 1;
2009         var->unusable = (ar >> 16) & 1;
2010 }
2011
2012 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2013 {
2014         if (!is_protmode(vcpu))
2015                 return 0;
2016
2017         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2018                 return 3;
2019
2020         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2021 }
2022
2023 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2024 {
2025         u32 ar;
2026
2027         if (var->unusable)
2028                 ar = 1 << 16;
2029         else {
2030                 ar = var->type & 15;
2031                 ar |= (var->s & 1) << 4;
2032                 ar |= (var->dpl & 3) << 5;
2033                 ar |= (var->present & 1) << 7;
2034                 ar |= (var->avl & 1) << 12;
2035                 ar |= (var->l & 1) << 13;
2036                 ar |= (var->db & 1) << 14;
2037                 ar |= (var->g & 1) << 15;
2038         }
2039         if (ar == 0) /* a 0 value means unusable */
2040                 ar = AR_UNUSABLE_MASK;
2041
2042         return ar;
2043 }
2044
2045 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2046                             struct kvm_segment *var, int seg)
2047 {
2048         struct vcpu_vmx *vmx = to_vmx(vcpu);
2049         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2050         u32 ar;
2051
2052         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2053                 vmx->rmode.tr.selector = var->selector;
2054                 vmx->rmode.tr.base = var->base;
2055                 vmx->rmode.tr.limit = var->limit;
2056                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2057                 return;
2058         }
2059         vmcs_writel(sf->base, var->base);
2060         vmcs_write32(sf->limit, var->limit);
2061         vmcs_write16(sf->selector, var->selector);
2062         if (vmx->rmode.vm86_active && var->s) {
2063                 /*
2064                  * Hack real-mode segments into vm86 compatibility.
2065                  */
2066                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2067                         vmcs_writel(sf->base, 0xf0000);
2068                 ar = 0xf3;
2069         } else
2070                 ar = vmx_segment_access_rights(var);
2071
2072         /*
2073          *   Fix the "Accessed" bit in AR field of segment registers for older
2074          * qemu binaries.
2075          *   IA32 arch specifies that at the time of processor reset the
2076          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2077          * is setting it to 0 in the usedland code. This causes invalid guest
2078          * state vmexit when "unrestricted guest" mode is turned on.
2079          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2080          * tree. Newer qemu binaries with that qemu fix would not need this
2081          * kvm hack.
2082          */
2083         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2084                 ar |= 0x1; /* Accessed */
2085
2086         vmcs_write32(sf->ar_bytes, ar);
2087 }
2088
2089 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2090 {
2091         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2092
2093         *db = (ar >> 14) & 1;
2094         *l = (ar >> 13) & 1;
2095 }
2096
2097 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2098 {
2099         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2100         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2101 }
2102
2103 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2104 {
2105         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2106         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2107 }
2108
2109 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2110 {
2111         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2112         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2113 }
2114
2115 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2116 {
2117         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2118         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2119 }
2120
2121 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2122 {
2123         struct kvm_segment var;
2124         u32 ar;
2125
2126         vmx_get_segment(vcpu, &var, seg);
2127         ar = vmx_segment_access_rights(&var);
2128
2129         if (var.base != (var.selector << 4))
2130                 return false;
2131         if (var.limit != 0xffff)
2132                 return false;
2133         if (ar != 0xf3)
2134                 return false;
2135
2136         return true;
2137 }
2138
2139 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2140 {
2141         struct kvm_segment cs;
2142         unsigned int cs_rpl;
2143
2144         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2145         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2146
2147         if (cs.unusable)
2148                 return false;
2149         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2150                 return false;
2151         if (!cs.s)
2152                 return false;
2153         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2154                 if (cs.dpl > cs_rpl)
2155                         return false;
2156         } else {
2157                 if (cs.dpl != cs_rpl)
2158                         return false;
2159         }
2160         if (!cs.present)
2161                 return false;
2162
2163         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2164         return true;
2165 }
2166
2167 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2168 {
2169         struct kvm_segment ss;
2170         unsigned int ss_rpl;
2171
2172         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2173         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2174
2175         if (ss.unusable)
2176                 return true;
2177         if (ss.type != 3 && ss.type != 7)
2178                 return false;
2179         if (!ss.s)
2180                 return false;
2181         if (ss.dpl != ss_rpl) /* DPL != RPL */
2182                 return false;
2183         if (!ss.present)
2184                 return false;
2185
2186         return true;
2187 }
2188
2189 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2190 {
2191         struct kvm_segment var;
2192         unsigned int rpl;
2193
2194         vmx_get_segment(vcpu, &var, seg);
2195         rpl = var.selector & SELECTOR_RPL_MASK;
2196
2197         if (var.unusable)
2198                 return true;
2199         if (!var.s)
2200                 return false;
2201         if (!var.present)
2202                 return false;
2203         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2204                 if (var.dpl < rpl) /* DPL < RPL */
2205                         return false;
2206         }
2207
2208         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2209          * rights flags
2210          */
2211         return true;
2212 }
2213
2214 static bool tr_valid(struct kvm_vcpu *vcpu)
2215 {
2216         struct kvm_segment tr;
2217
2218         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2219
2220         if (tr.unusable)
2221                 return false;
2222         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2223                 return false;
2224         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2225                 return false;
2226         if (!tr.present)
2227                 return false;
2228
2229         return true;
2230 }
2231
2232 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2233 {
2234         struct kvm_segment ldtr;
2235
2236         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2237
2238         if (ldtr.unusable)
2239                 return true;
2240         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2241                 return false;
2242         if (ldtr.type != 2)
2243                 return false;
2244         if (!ldtr.present)
2245                 return false;
2246
2247         return true;
2248 }
2249
2250 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2251 {
2252         struct kvm_segment cs, ss;
2253
2254         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2255         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2256
2257         return ((cs.selector & SELECTOR_RPL_MASK) ==
2258                  (ss.selector & SELECTOR_RPL_MASK));
2259 }
2260
2261 /*
2262  * Check if guest state is valid. Returns true if valid, false if
2263  * not.
2264  * We assume that registers are always usable
2265  */
2266 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2267 {
2268         /* real mode guest state checks */
2269         if (!is_protmode(vcpu)) {
2270                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2271                         return false;
2272                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2273                         return false;
2274                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2275                         return false;
2276                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2277                         return false;
2278                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2279                         return false;
2280                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2281                         return false;
2282         } else {
2283         /* protected mode guest state checks */
2284                 if (!cs_ss_rpl_check(vcpu))
2285                         return false;
2286                 if (!code_segment_valid(vcpu))
2287                         return false;
2288                 if (!stack_segment_valid(vcpu))
2289                         return false;
2290                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2291                         return false;
2292                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2293                         return false;
2294                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2295                         return false;
2296                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2297                         return false;
2298                 if (!tr_valid(vcpu))
2299                         return false;
2300                 if (!ldtr_valid(vcpu))
2301                         return false;
2302         }
2303         /* TODO:
2304          * - Add checks on RIP
2305          * - Add checks on RFLAGS
2306          */
2307
2308         return true;
2309 }
2310
2311 static int init_rmode_tss(struct kvm *kvm)
2312 {
2313         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2314         u16 data = 0;
2315         int ret = 0;
2316         int r;
2317
2318         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2319         if (r < 0)
2320                 goto out;
2321         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2322         r = kvm_write_guest_page(kvm, fn++, &data,
2323                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2324         if (r < 0)
2325                 goto out;
2326         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2327         if (r < 0)
2328                 goto out;
2329         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2330         if (r < 0)
2331                 goto out;
2332         data = ~0;
2333         r = kvm_write_guest_page(kvm, fn, &data,
2334                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2335                                  sizeof(u8));
2336         if (r < 0)
2337                 goto out;
2338
2339         ret = 1;
2340 out:
2341         return ret;
2342 }
2343
2344 static int init_rmode_identity_map(struct kvm *kvm)
2345 {
2346         int i, r, ret;
2347         pfn_t identity_map_pfn;
2348         u32 tmp;
2349
2350         if (!enable_ept)
2351                 return 1;
2352         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2353                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2354                         "haven't been allocated!\n");
2355                 return 0;
2356         }
2357         if (likely(kvm->arch.ept_identity_pagetable_done))
2358                 return 1;
2359         ret = 0;
2360         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2361         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2362         if (r < 0)
2363                 goto out;
2364         /* Set up identity-mapping pagetable for EPT in real mode */
2365         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2366                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2367                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2368                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2369                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2370                 if (r < 0)
2371                         goto out;
2372         }
2373         kvm->arch.ept_identity_pagetable_done = true;
2374         ret = 1;
2375 out:
2376         return ret;
2377 }
2378
2379 static void seg_setup(int seg)
2380 {
2381         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2382         unsigned int ar;
2383
2384         vmcs_write16(sf->selector, 0);
2385         vmcs_writel(sf->base, 0);
2386         vmcs_write32(sf->limit, 0xffff);
2387         if (enable_unrestricted_guest) {
2388                 ar = 0x93;
2389                 if (seg == VCPU_SREG_CS)
2390                         ar |= 0x08; /* code segment */
2391         } else
2392                 ar = 0xf3;
2393
2394         vmcs_write32(sf->ar_bytes, ar);
2395 }
2396
2397 static int alloc_apic_access_page(struct kvm *kvm)
2398 {
2399         struct kvm_userspace_memory_region kvm_userspace_mem;
2400         int r = 0;
2401
2402         mutex_lock(&kvm->slots_lock);
2403         if (kvm->arch.apic_access_page)
2404                 goto out;
2405         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2406         kvm_userspace_mem.flags = 0;
2407         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2408         kvm_userspace_mem.memory_size = PAGE_SIZE;
2409         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2410         if (r)
2411                 goto out;
2412
2413         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2414 out:
2415         mutex_unlock(&kvm->slots_lock);
2416         return r;
2417 }
2418
2419 static int alloc_identity_pagetable(struct kvm *kvm)
2420 {
2421         struct kvm_userspace_memory_region kvm_userspace_mem;
2422         int r = 0;
2423
2424         mutex_lock(&kvm->slots_lock);
2425         if (kvm->arch.ept_identity_pagetable)
2426                 goto out;
2427         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2428         kvm_userspace_mem.flags = 0;
2429         kvm_userspace_mem.guest_phys_addr =
2430                 kvm->arch.ept_identity_map_addr;
2431         kvm_userspace_mem.memory_size = PAGE_SIZE;
2432         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2433         if (r)
2434                 goto out;
2435
2436         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2437                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2438 out:
2439         mutex_unlock(&kvm->slots_lock);
2440         return r;
2441 }
2442
2443 static void allocate_vpid(struct vcpu_vmx *vmx)
2444 {
2445         int vpid;
2446
2447         vmx->vpid = 0;
2448         if (!enable_vpid)
2449                 return;
2450         spin_lock(&vmx_vpid_lock);
2451         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2452         if (vpid < VMX_NR_VPIDS) {
2453                 vmx->vpid = vpid;
2454                 __set_bit(vpid, vmx_vpid_bitmap);
2455         }
2456         spin_unlock(&vmx_vpid_lock);
2457 }
2458
2459 static void free_vpid(struct vcpu_vmx *vmx)
2460 {
2461         if (!enable_vpid)
2462                 return;
2463         spin_lock(&vmx_vpid_lock);
2464         if (vmx->vpid != 0)
2465                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2466         spin_unlock(&vmx_vpid_lock);
2467 }
2468
2469 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2470 {
2471         int f = sizeof(unsigned long);
2472
2473         if (!cpu_has_vmx_msr_bitmap())
2474                 return;
2475
2476         /*
2477          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2478          * have the write-low and read-high bitmap offsets the wrong way round.
2479          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2480          */
2481         if (msr <= 0x1fff) {
2482                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2483                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2484         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2485                 msr &= 0x1fff;
2486                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2487                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2488         }
2489 }
2490
2491 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2492 {
2493         if (!longmode_only)
2494                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2495         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2496 }
2497
2498 /*
2499  * Sets up the vmcs for emulated real mode.
2500  */
2501 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2502 {
2503         u32 host_sysenter_cs, msr_low, msr_high;
2504         u32 junk;
2505         u64 host_pat;
2506         unsigned long a;
2507         struct desc_ptr dt;
2508         int i;
2509         unsigned long kvm_vmx_return;
2510         u32 exec_control;
2511
2512         /* I/O */
2513         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2514         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2515
2516         if (cpu_has_vmx_msr_bitmap())
2517                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2518
2519         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2520
2521         /* Control */
2522         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2523                 vmcs_config.pin_based_exec_ctrl);
2524
2525         exec_control = vmcs_config.cpu_based_exec_ctrl;
2526         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2527                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2528 #ifdef CONFIG_X86_64
2529                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2530                                 CPU_BASED_CR8_LOAD_EXITING;
2531 #endif
2532         }
2533         if (!enable_ept)
2534                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2535                                 CPU_BASED_CR3_LOAD_EXITING  |
2536                                 CPU_BASED_INVLPG_EXITING;
2537         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2538
2539         if (cpu_has_secondary_exec_ctrls()) {
2540                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2541                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2542                         exec_control &=
2543                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2544                 if (vmx->vpid == 0)
2545                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2546                 if (!enable_ept) {
2547                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2548                         enable_unrestricted_guest = 0;
2549                 }
2550                 if (!enable_unrestricted_guest)
2551                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2552                 if (!ple_gap)
2553                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2554                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2555         }
2556
2557         if (ple_gap) {
2558                 vmcs_write32(PLE_GAP, ple_gap);
2559                 vmcs_write32(PLE_WINDOW, ple_window);
2560         }
2561
2562         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2563         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2564         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2565
2566         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
2567         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2568         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2569
2570         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2571         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2572         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2573         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
2574         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
2575         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2576 #ifdef CONFIG_X86_64
2577         rdmsrl(MSR_FS_BASE, a);
2578         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2579         rdmsrl(MSR_GS_BASE, a);
2580         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2581 #else
2582         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2583         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2584 #endif
2585
2586         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2587
2588         native_store_idt(&dt);
2589         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
2590
2591         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2592         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2593         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2594         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2595         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2596         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2597         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2598
2599         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2600         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2601         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2602         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2603         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2604         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2605
2606         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2607                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2608                 host_pat = msr_low | ((u64) msr_high << 32);
2609                 vmcs_write64(HOST_IA32_PAT, host_pat);
2610         }
2611         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2612                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2613                 host_pat = msr_low | ((u64) msr_high << 32);
2614                 /* Write the default value follow host pat */
2615                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2616                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2617                 vmx->vcpu.arch.pat = host_pat;
2618         }
2619
2620         for (i = 0; i < NR_VMX_MSR; ++i) {
2621                 u32 index = vmx_msr_index[i];
2622                 u32 data_low, data_high;
2623                 int j = vmx->nmsrs;
2624
2625                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2626                         continue;
2627                 if (wrmsr_safe(index, data_low, data_high) < 0)
2628                         continue;
2629                 vmx->guest_msrs[j].index = i;
2630                 vmx->guest_msrs[j].data = 0;
2631                 vmx->guest_msrs[j].mask = -1ull;
2632                 ++vmx->nmsrs;
2633         }
2634
2635         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2636
2637         /* 22.2.1, 20.8.1 */
2638         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2639
2640         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2641         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2642         if (enable_ept)
2643                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2644         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2645
2646         kvm_write_tsc(&vmx->vcpu, 0);
2647
2648         return 0;
2649 }
2650
2651 static int init_rmode(struct kvm *kvm)
2652 {
2653         int idx, ret = 0;
2654
2655         idx = srcu_read_lock(&kvm->srcu);
2656         if (!init_rmode_tss(kvm))
2657                 goto exit;
2658         if (!init_rmode_identity_map(kvm))
2659                 goto exit;
2660
2661         ret = 1;
2662 exit:
2663         srcu_read_unlock(&kvm->srcu, idx);
2664         return ret;
2665 }
2666
2667 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2668 {
2669         struct vcpu_vmx *vmx = to_vmx(vcpu);
2670         u64 msr;
2671         int ret;
2672
2673         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2674         if (!init_rmode(vmx->vcpu.kvm)) {
2675                 ret = -ENOMEM;
2676                 goto out;
2677         }
2678
2679         vmx->rmode.vm86_active = 0;
2680
2681         vmx->soft_vnmi_blocked = 0;
2682
2683         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2684         kvm_set_cr8(&vmx->vcpu, 0);
2685         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2686         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2687                 msr |= MSR_IA32_APICBASE_BSP;
2688         kvm_set_apic_base(&vmx->vcpu, msr);
2689
2690         ret = fx_init(&vmx->vcpu);
2691         if (ret != 0)
2692                 goto out;
2693
2694         seg_setup(VCPU_SREG_CS);
2695         /*
2696          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2697          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2698          */
2699         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2700                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2701                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2702         } else {
2703                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2704                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2705         }
2706
2707         seg_setup(VCPU_SREG_DS);
2708         seg_setup(VCPU_SREG_ES);
2709         seg_setup(VCPU_SREG_FS);
2710         seg_setup(VCPU_SREG_GS);
2711         seg_setup(VCPU_SREG_SS);
2712
2713         vmcs_write16(GUEST_TR_SELECTOR, 0);
2714         vmcs_writel(GUEST_TR_BASE, 0);
2715         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2716         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2717
2718         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2719         vmcs_writel(GUEST_LDTR_BASE, 0);
2720         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2721         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2722
2723         vmcs_write32(GUEST_SYSENTER_CS, 0);
2724         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2725         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2726
2727         vmcs_writel(GUEST_RFLAGS, 0x02);
2728         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2729                 kvm_rip_write(vcpu, 0xfff0);
2730         else
2731                 kvm_rip_write(vcpu, 0);
2732         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2733
2734         vmcs_writel(GUEST_DR7, 0x400);
2735
2736         vmcs_writel(GUEST_GDTR_BASE, 0);
2737         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2738
2739         vmcs_writel(GUEST_IDTR_BASE, 0);
2740         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2741
2742         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2743         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2744         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2745
2746         /* Special registers */
2747         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2748
2749         setup_msrs(vmx);
2750
2751         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2752
2753         if (cpu_has_vmx_tpr_shadow()) {
2754                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2755                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2756                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2757                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2758                 vmcs_write32(TPR_THRESHOLD, 0);
2759         }
2760
2761         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2762                 vmcs_write64(APIC_ACCESS_ADDR,
2763                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2764
2765         if (vmx->vpid != 0)
2766                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2767
2768         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2769         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2770         vmx_set_cr4(&vmx->vcpu, 0);
2771         vmx_set_efer(&vmx->vcpu, 0);
2772         vmx_fpu_activate(&vmx->vcpu);
2773         update_exception_bitmap(&vmx->vcpu);
2774
2775         vpid_sync_context(vmx);
2776
2777         ret = 0;
2778
2779         /* HACK: Don't enable emulation on guest boot/reset */
2780         vmx->emulation_required = 0;
2781
2782 out:
2783         return ret;
2784 }
2785
2786 static void enable_irq_window(struct kvm_vcpu *vcpu)
2787 {
2788         u32 cpu_based_vm_exec_control;
2789
2790         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2791         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2792         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2793 }
2794
2795 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2796 {
2797         u32 cpu_based_vm_exec_control;
2798
2799         if (!cpu_has_virtual_nmis()) {
2800                 enable_irq_window(vcpu);
2801                 return;
2802         }
2803
2804         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2805         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2806         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2807 }
2808
2809 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2810 {
2811         struct vcpu_vmx *vmx = to_vmx(vcpu);
2812         uint32_t intr;
2813         int irq = vcpu->arch.interrupt.nr;
2814
2815         trace_kvm_inj_virq(irq);
2816
2817         ++vcpu->stat.irq_injections;
2818         if (vmx->rmode.vm86_active) {
2819                 vmx->rmode.irq.pending = true;
2820                 vmx->rmode.irq.vector = irq;
2821                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2822                 if (vcpu->arch.interrupt.soft)
2823                         vmx->rmode.irq.rip +=
2824                                 vmx->vcpu.arch.event_exit_inst_len;
2825                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2826                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2827                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2828                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2829                 return;
2830         }
2831         intr = irq | INTR_INFO_VALID_MASK;
2832         if (vcpu->arch.interrupt.soft) {
2833                 intr |= INTR_TYPE_SOFT_INTR;
2834                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2835                              vmx->vcpu.arch.event_exit_inst_len);
2836         } else
2837                 intr |= INTR_TYPE_EXT_INTR;
2838         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2839 }
2840
2841 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2842 {
2843         struct vcpu_vmx *vmx = to_vmx(vcpu);
2844
2845         if (!cpu_has_virtual_nmis()) {
2846                 /*
2847                  * Tracking the NMI-blocked state in software is built upon
2848                  * finding the next open IRQ window. This, in turn, depends on
2849                  * well-behaving guests: They have to keep IRQs disabled at
2850                  * least as long as the NMI handler runs. Otherwise we may
2851                  * cause NMI nesting, maybe breaking the guest. But as this is
2852                  * highly unlikely, we can live with the residual risk.
2853                  */
2854                 vmx->soft_vnmi_blocked = 1;
2855                 vmx->vnmi_blocked_time = 0;
2856         }
2857
2858         ++vcpu->stat.nmi_injections;
2859         if (vmx->rmode.vm86_active) {
2860                 vmx->rmode.irq.pending = true;
2861                 vmx->rmode.irq.vector = NMI_VECTOR;
2862                 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2863                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2864                              NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2865                              INTR_INFO_VALID_MASK);
2866                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2867                 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2868                 return;
2869         }
2870         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2871                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2872 }
2873
2874 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2875 {
2876         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2877                 return 0;
2878
2879         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2880                         (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
2881 }
2882
2883 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2884 {
2885         if (!cpu_has_virtual_nmis())
2886                 return to_vmx(vcpu)->soft_vnmi_blocked;
2887         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2888 }
2889
2890 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2891 {
2892         struct vcpu_vmx *vmx = to_vmx(vcpu);
2893
2894         if (!cpu_has_virtual_nmis()) {
2895                 if (vmx->soft_vnmi_blocked != masked) {
2896                         vmx->soft_vnmi_blocked = masked;
2897                         vmx->vnmi_blocked_time = 0;
2898                 }
2899         } else {
2900                 if (masked)
2901                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2902                                       GUEST_INTR_STATE_NMI);
2903                 else
2904                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2905                                         GUEST_INTR_STATE_NMI);
2906         }
2907 }
2908
2909 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2910 {
2911         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2912                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2913                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2914 }
2915
2916 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2917 {
2918         int ret;
2919         struct kvm_userspace_memory_region tss_mem = {
2920                 .slot = TSS_PRIVATE_MEMSLOT,
2921                 .guest_phys_addr = addr,
2922                 .memory_size = PAGE_SIZE * 3,
2923                 .flags = 0,
2924         };
2925
2926         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2927         if (ret)
2928                 return ret;
2929         kvm->arch.tss_addr = addr;
2930         return 0;
2931 }
2932
2933 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2934                                   int vec, u32 err_code)
2935 {
2936         /*
2937          * Instruction with address size override prefix opcode 0x67
2938          * Cause the #SS fault with 0 error code in VM86 mode.
2939          */
2940         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2941                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2942                         return 1;
2943         /*
2944          * Forward all other exceptions that are valid in real mode.
2945          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2946          *        the required debugging infrastructure rework.
2947          */
2948         switch (vec) {
2949         case DB_VECTOR:
2950                 if (vcpu->guest_debug &
2951                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2952                         return 0;
2953                 kvm_queue_exception(vcpu, vec);
2954                 return 1;
2955         case BP_VECTOR:
2956                 /*
2957                  * Update instruction length as we may reinject the exception
2958                  * from user space while in guest debugging mode.
2959                  */
2960                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
2961                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2962                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2963                         return 0;
2964                 /* fall through */
2965         case DE_VECTOR:
2966         case OF_VECTOR:
2967         case BR_VECTOR:
2968         case UD_VECTOR:
2969         case DF_VECTOR:
2970         case SS_VECTOR:
2971         case GP_VECTOR:
2972         case MF_VECTOR:
2973                 kvm_queue_exception(vcpu, vec);
2974                 return 1;
2975         }
2976         return 0;
2977 }
2978
2979 /*
2980  * Trigger machine check on the host. We assume all the MSRs are already set up
2981  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2982  * We pass a fake environment to the machine check handler because we want
2983  * the guest to be always treated like user space, no matter what context
2984  * it used internally.
2985  */
2986 static void kvm_machine_check(void)
2987 {
2988 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2989         struct pt_regs regs = {
2990                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2991                 .flags = X86_EFLAGS_IF,
2992         };
2993
2994         do_machine_check(&regs, 0);
2995 #endif
2996 }
2997
2998 static int handle_machine_check(struct kvm_vcpu *vcpu)
2999 {
3000         /* already handled by vcpu_run */
3001         return 1;
3002 }
3003
3004 static int handle_exception(struct kvm_vcpu *vcpu)
3005 {
3006         struct vcpu_vmx *vmx = to_vmx(vcpu);
3007         struct kvm_run *kvm_run = vcpu->run;
3008         u32 intr_info, ex_no, error_code;
3009         unsigned long cr2, rip, dr6;
3010         u32 vect_info;
3011         enum emulation_result er;
3012
3013         vect_info = vmx->idt_vectoring_info;
3014         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3015
3016         if (is_machine_check(intr_info))
3017                 return handle_machine_check(vcpu);
3018
3019         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3020             !is_page_fault(intr_info)) {
3021                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3022                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3023                 vcpu->run->internal.ndata = 2;
3024                 vcpu->run->internal.data[0] = vect_info;
3025                 vcpu->run->internal.data[1] = intr_info;
3026                 return 0;
3027         }
3028
3029         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3030                 return 1;  /* already handled by vmx_vcpu_run() */
3031
3032         if (is_no_device(intr_info)) {
3033                 vmx_fpu_activate(vcpu);
3034                 return 1;
3035         }
3036
3037         if (is_invalid_opcode(intr_info)) {
3038                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
3039                 if (er != EMULATE_DONE)
3040                         kvm_queue_exception(vcpu, UD_VECTOR);
3041                 return 1;
3042         }
3043
3044         error_code = 0;
3045         rip = kvm_rip_read(vcpu);
3046         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3047                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3048         if (is_page_fault(intr_info)) {
3049                 /* EPT won't cause page fault directly */
3050                 if (enable_ept)
3051                         BUG();
3052                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3053                 trace_kvm_page_fault(cr2, error_code);
3054
3055                 if (kvm_event_needs_reinjection(vcpu))
3056                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3057                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
3058         }
3059
3060         if (vmx->rmode.vm86_active &&
3061             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3062                                                                 error_code)) {
3063                 if (vcpu->arch.halt_request) {
3064                         vcpu->arch.halt_request = 0;
3065                         return kvm_emulate_halt(vcpu);
3066                 }
3067                 return 1;
3068         }
3069
3070         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3071         switch (ex_no) {
3072         case DB_VECTOR:
3073                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3074                 if (!(vcpu->guest_debug &
3075                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3076                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3077                         kvm_queue_exception(vcpu, DB_VECTOR);
3078                         return 1;
3079                 }
3080                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3081                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3082                 /* fall through */
3083         case BP_VECTOR:
3084                 /*
3085                  * Update instruction length as we may reinject #BP from
3086                  * user space while in guest debugging mode. Reading it for
3087                  * #DB as well causes no harm, it is not used in that case.
3088                  */
3089                 vmx->vcpu.arch.event_exit_inst_len =
3090                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3091                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3092                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3093                 kvm_run->debug.arch.exception = ex_no;
3094                 break;
3095         default:
3096                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3097                 kvm_run->ex.exception = ex_no;
3098                 kvm_run->ex.error_code = error_code;
3099                 break;
3100         }
3101         return 0;
3102 }
3103
3104 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3105 {
3106         ++vcpu->stat.irq_exits;
3107         return 1;
3108 }
3109
3110 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3111 {
3112         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3113         return 0;
3114 }
3115
3116 static int handle_io(struct kvm_vcpu *vcpu)
3117 {
3118         unsigned long exit_qualification;
3119         int size, in, string;
3120         unsigned port;
3121
3122         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3123         string = (exit_qualification & 16) != 0;
3124         in = (exit_qualification & 8) != 0;
3125
3126         ++vcpu->stat.io_exits;
3127
3128         if (string || in)
3129                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
3130
3131         port = exit_qualification >> 16;
3132         size = (exit_qualification & 7) + 1;
3133         skip_emulated_instruction(vcpu);
3134
3135         return kvm_fast_pio_out(vcpu, size, port);
3136 }
3137
3138 static void
3139 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3140 {
3141         /*
3142          * Patch in the VMCALL instruction:
3143          */
3144         hypercall[0] = 0x0f;
3145         hypercall[1] = 0x01;
3146         hypercall[2] = 0xc1;
3147 }
3148
3149 static void complete_insn_gp(struct kvm_vcpu *vcpu, int err)
3150 {
3151         if (err)
3152                 kvm_inject_gp(vcpu, 0);
3153         else
3154                 skip_emulated_instruction(vcpu);
3155 }
3156
3157 static int handle_cr(struct kvm_vcpu *vcpu)
3158 {
3159         unsigned long exit_qualification, val;
3160         int cr;
3161         int reg;
3162         int err;
3163
3164         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3165         cr = exit_qualification & 15;
3166         reg = (exit_qualification >> 8) & 15;
3167         switch ((exit_qualification >> 4) & 3) {
3168         case 0: /* mov to cr */
3169                 val = kvm_register_read(vcpu, reg);
3170                 trace_kvm_cr_write(cr, val);
3171                 switch (cr) {
3172                 case 0:
3173                         err = kvm_set_cr0(vcpu, val);
3174                         complete_insn_gp(vcpu, err);
3175                         return 1;
3176                 case 3:
3177                         err = kvm_set_cr3(vcpu, val);
3178                         complete_insn_gp(vcpu, err);
3179                         return 1;
3180                 case 4:
3181                         err = kvm_set_cr4(vcpu, val);
3182                         complete_insn_gp(vcpu, err);
3183                         return 1;
3184                 case 8: {
3185                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3186                                 u8 cr8 = kvm_register_read(vcpu, reg);
3187                                 kvm_set_cr8(vcpu, cr8);
3188                                 skip_emulated_instruction(vcpu);
3189                                 if (irqchip_in_kernel(vcpu->kvm))
3190                                         return 1;
3191                                 if (cr8_prev <= cr8)
3192                                         return 1;
3193                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3194                                 return 0;
3195                         }
3196                 };
3197                 break;
3198         case 2: /* clts */
3199                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3200                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3201                 skip_emulated_instruction(vcpu);
3202                 vmx_fpu_activate(vcpu);
3203                 return 1;
3204         case 1: /*mov from cr*/
3205                 switch (cr) {
3206                 case 3:
3207                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
3208                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
3209                         skip_emulated_instruction(vcpu);
3210                         return 1;
3211                 case 8:
3212                         val = kvm_get_cr8(vcpu);
3213                         kvm_register_write(vcpu, reg, val);
3214                         trace_kvm_cr_read(cr, val);
3215                         skip_emulated_instruction(vcpu);
3216                         return 1;
3217                 }
3218                 break;
3219         case 3: /* lmsw */
3220                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3221                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3222                 kvm_lmsw(vcpu, val);
3223
3224                 skip_emulated_instruction(vcpu);
3225                 return 1;
3226         default:
3227                 break;
3228         }
3229         vcpu->run->exit_reason = 0;
3230         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3231                (int)(exit_qualification >> 4) & 3, cr);
3232         return 0;
3233 }
3234
3235 static int handle_dr(struct kvm_vcpu *vcpu)
3236 {
3237         unsigned long exit_qualification;
3238         int dr, reg;
3239
3240         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3241         if (!kvm_require_cpl(vcpu, 0))
3242                 return 1;
3243         dr = vmcs_readl(GUEST_DR7);
3244         if (dr & DR7_GD) {
3245                 /*
3246                  * As the vm-exit takes precedence over the debug trap, we
3247                  * need to emulate the latter, either for the host or the
3248                  * guest debugging itself.
3249                  */
3250                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3251                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3252                         vcpu->run->debug.arch.dr7 = dr;
3253                         vcpu->run->debug.arch.pc =
3254                                 vmcs_readl(GUEST_CS_BASE) +
3255                                 vmcs_readl(GUEST_RIP);
3256                         vcpu->run->debug.arch.exception = DB_VECTOR;
3257                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3258                         return 0;
3259                 } else {
3260                         vcpu->arch.dr7 &= ~DR7_GD;
3261                         vcpu->arch.dr6 |= DR6_BD;
3262                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3263                         kvm_queue_exception(vcpu, DB_VECTOR);
3264                         return 1;
3265                 }
3266         }
3267
3268         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3269         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3270         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3271         if (exit_qualification & TYPE_MOV_FROM_DR) {
3272                 unsigned long val;
3273                 if (!kvm_get_dr(vcpu, dr, &val))
3274                         kvm_register_write(vcpu, reg, val);
3275         } else
3276                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3277         skip_emulated_instruction(vcpu);
3278         return 1;
3279 }
3280
3281 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3282 {
3283         vmcs_writel(GUEST_DR7, val);
3284 }
3285
3286 static int handle_cpuid(struct kvm_vcpu *vcpu)
3287 {
3288         kvm_emulate_cpuid(vcpu);
3289         return 1;
3290 }
3291
3292 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3293 {
3294         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3295         u64 data;
3296
3297         if (vmx_get_msr(vcpu, ecx, &data)) {
3298                 trace_kvm_msr_read_ex(ecx);
3299                 kvm_inject_gp(vcpu, 0);
3300                 return 1;
3301         }
3302
3303         trace_kvm_msr_read(ecx, data);
3304
3305         /* FIXME: handling of bits 32:63 of rax, rdx */
3306         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3307         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3308         skip_emulated_instruction(vcpu);
3309         return 1;
3310 }
3311
3312 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3313 {
3314         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3315         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3316                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3317
3318         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3319                 trace_kvm_msr_write_ex(ecx, data);
3320                 kvm_inject_gp(vcpu, 0);
3321                 return 1;
3322         }
3323
3324         trace_kvm_msr_write(ecx, data);
3325         skip_emulated_instruction(vcpu);
3326         return 1;
3327 }
3328
3329 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3330 {
3331         kvm_make_request(KVM_REQ_EVENT, vcpu);
3332         return 1;
3333 }
3334
3335 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3336 {
3337         u32 cpu_based_vm_exec_control;
3338
3339         /* clear pending irq */
3340         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3341         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3342         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3343
3344         kvm_make_request(KVM_REQ_EVENT, vcpu);
3345
3346         ++vcpu->stat.irq_window_exits;
3347
3348         /*
3349          * If the user space waits to inject interrupts, exit as soon as
3350          * possible
3351          */
3352         if (!irqchip_in_kernel(vcpu->kvm) &&
3353             vcpu->run->request_interrupt_window &&
3354             !kvm_cpu_has_interrupt(vcpu)) {
3355                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3356                 return 0;
3357         }
3358         return 1;
3359 }
3360
3361 static int handle_halt(struct kvm_vcpu *vcpu)
3362 {
3363         skip_emulated_instruction(vcpu);
3364         return kvm_emulate_halt(vcpu);
3365 }
3366
3367 static int handle_vmcall(struct kvm_vcpu *vcpu)
3368 {
3369         skip_emulated_instruction(vcpu);
3370         kvm_emulate_hypercall(vcpu);
3371         return 1;
3372 }
3373
3374 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3375 {
3376         kvm_queue_exception(vcpu, UD_VECTOR);
3377         return 1;
3378 }
3379
3380 static int handle_invlpg(struct kvm_vcpu *vcpu)
3381 {
3382         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3383
3384         kvm_mmu_invlpg(vcpu, exit_qualification);
3385         skip_emulated_instruction(vcpu);
3386         return 1;
3387 }
3388
3389 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3390 {
3391         skip_emulated_instruction(vcpu);
3392         kvm_emulate_wbinvd(vcpu);
3393         return 1;
3394 }
3395
3396 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3397 {
3398         u64 new_bv = kvm_read_edx_eax(vcpu);
3399         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3400
3401         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3402                 skip_emulated_instruction(vcpu);
3403         return 1;
3404 }
3405
3406 static int handle_apic_access(struct kvm_vcpu *vcpu)
3407 {
3408         return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
3409 }
3410
3411 static int handle_task_switch(struct kvm_vcpu *vcpu)
3412 {
3413         struct vcpu_vmx *vmx = to_vmx(vcpu);
3414         unsigned long exit_qualification;
3415         bool has_error_code = false;
3416         u32 error_code = 0;
3417         u16 tss_selector;
3418         int reason, type, idt_v;
3419
3420         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3421         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3422
3423         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3424
3425         reason = (u32)exit_qualification >> 30;
3426         if (reason == TASK_SWITCH_GATE && idt_v) {
3427                 switch (type) {
3428                 case INTR_TYPE_NMI_INTR:
3429                         vcpu->arch.nmi_injected = false;
3430                         if (cpu_has_virtual_nmis())
3431                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3432                                               GUEST_INTR_STATE_NMI);
3433                         break;
3434                 case INTR_TYPE_EXT_INTR:
3435                 case INTR_TYPE_SOFT_INTR:
3436                         kvm_clear_interrupt_queue(vcpu);
3437                         break;
3438                 case INTR_TYPE_HARD_EXCEPTION:
3439                         if (vmx->idt_vectoring_info &
3440                             VECTORING_INFO_DELIVER_CODE_MASK) {
3441                                 has_error_code = true;
3442                                 error_code =
3443                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
3444                         }
3445                         /* fall through */
3446                 case INTR_TYPE_SOFT_EXCEPTION:
3447                         kvm_clear_exception_queue(vcpu);
3448                         break;
3449                 default:
3450                         break;
3451                 }
3452         }
3453         tss_selector = exit_qualification;
3454
3455         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3456                        type != INTR_TYPE_EXT_INTR &&
3457                        type != INTR_TYPE_NMI_INTR))
3458                 skip_emulated_instruction(vcpu);
3459
3460         if (kvm_task_switch(vcpu, tss_selector, reason,
3461                                 has_error_code, error_code) == EMULATE_FAIL) {
3462                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3463                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3464                 vcpu->run->internal.ndata = 0;
3465                 return 0;
3466         }
3467
3468         /* clear all local breakpoint enable flags */
3469         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3470
3471         /*
3472          * TODO: What about debug traps on tss switch?
3473          *       Are we supposed to inject them and update dr6?
3474          */
3475
3476         return 1;
3477 }
3478
3479 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3480 {
3481         unsigned long exit_qualification;
3482         gpa_t gpa;
3483         int gla_validity;
3484
3485         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3486
3487         if (exit_qualification & (1 << 6)) {
3488                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3489                 return -EINVAL;
3490         }
3491
3492         gla_validity = (exit_qualification >> 7) & 0x3;
3493         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3494                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3495                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3496                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3497                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3498                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3499                         (long unsigned int)exit_qualification);
3500                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3501                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3502                 return 0;
3503         }
3504
3505         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3506         trace_kvm_page_fault(gpa, exit_qualification);
3507         return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3508 }
3509
3510 static u64 ept_rsvd_mask(u64 spte, int level)
3511 {
3512         int i;
3513         u64 mask = 0;
3514
3515         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3516                 mask |= (1ULL << i);
3517
3518         if (level > 2)
3519                 /* bits 7:3 reserved */
3520                 mask |= 0xf8;
3521         else if (level == 2) {
3522                 if (spte & (1ULL << 7))
3523                         /* 2MB ref, bits 20:12 reserved */
3524                         mask |= 0x1ff000;
3525                 else
3526                         /* bits 6:3 reserved */
3527                         mask |= 0x78;
3528         }
3529
3530         return mask;
3531 }
3532
3533 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3534                                        int level)
3535 {
3536         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3537
3538         /* 010b (write-only) */
3539         WARN_ON((spte & 0x7) == 0x2);
3540
3541         /* 110b (write/execute) */
3542         WARN_ON((spte & 0x7) == 0x6);
3543
3544         /* 100b (execute-only) and value not supported by logical processor */
3545         if (!cpu_has_vmx_ept_execute_only())
3546                 WARN_ON((spte & 0x7) == 0x4);
3547
3548         /* not 000b */
3549         if ((spte & 0x7)) {
3550                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3551
3552                 if (rsvd_bits != 0) {
3553                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3554                                          __func__, rsvd_bits);
3555                         WARN_ON(1);
3556                 }
3557
3558                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3559                         u64 ept_mem_type = (spte & 0x38) >> 3;
3560
3561                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3562                             ept_mem_type == 7) {
3563                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3564                                                 __func__, ept_mem_type);
3565                                 WARN_ON(1);
3566                         }
3567                 }
3568         }
3569 }
3570
3571 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3572 {
3573         u64 sptes[4];
3574         int nr_sptes, i;
3575         gpa_t gpa;
3576
3577         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3578
3579         printk(KERN_ERR "EPT: Misconfiguration.\n");
3580         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3581
3582         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3583
3584         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3585                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3586
3587         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3588         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3589
3590         return 0;
3591 }
3592
3593 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3594 {
3595         u32 cpu_based_vm_exec_control;
3596
3597         /* clear pending NMI */
3598         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3599         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3600         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3601         ++vcpu->stat.nmi_window_exits;
3602         kvm_make_request(KVM_REQ_EVENT, vcpu);
3603
3604         return 1;
3605 }
3606
3607 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3608 {
3609         struct vcpu_vmx *vmx = to_vmx(vcpu);
3610         enum emulation_result err = EMULATE_DONE;
3611         int ret = 1;
3612
3613         while (!guest_state_valid(vcpu)) {
3614                 err = emulate_instruction(vcpu, 0, 0, 0);
3615
3616                 if (err == EMULATE_DO_MMIO) {
3617                         ret = 0;
3618                         goto out;
3619                 }
3620
3621                 if (err != EMULATE_DONE)
3622                         return 0;
3623
3624                 if (signal_pending(current))
3625                         goto out;
3626                 if (need_resched())
3627                         schedule();
3628         }
3629
3630         vmx->emulation_required = 0;
3631 out:
3632         return ret;
3633 }
3634
3635 /*
3636  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3637  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3638  */
3639 static int handle_pause(struct kvm_vcpu *vcpu)
3640 {
3641         skip_emulated_instruction(vcpu);
3642         kvm_vcpu_on_spin(vcpu);
3643
3644         return 1;
3645 }
3646
3647 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3648 {
3649         kvm_queue_exception(vcpu, UD_VECTOR);
3650         return 1;
3651 }
3652
3653 /*
3654  * The exit handlers return 1 if the exit was handled fully and guest execution
3655  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3656  * to be done to userspace and return 0.
3657  */
3658 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3659         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3660         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3661         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3662         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3663         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3664         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3665         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3666         [EXIT_REASON_CPUID]                   = handle_cpuid,
3667         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3668         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3669         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3670         [EXIT_REASON_HLT]                     = handle_halt,
3671         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3672         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3673         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3674         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3675         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3676         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3677         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3678         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3679         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3680         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3681         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3682         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3683         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3684         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3685         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
3686         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3687         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3688         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3689         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3690         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3691         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3692         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3693 };
3694
3695 static const int kvm_vmx_max_exit_handlers =
3696         ARRAY_SIZE(kvm_vmx_exit_handlers);
3697
3698 /*
3699  * The guest has exited.  See if we can fix it or if we need userspace
3700  * assistance.
3701  */
3702 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3703 {
3704         struct vcpu_vmx *vmx = to_vmx(vcpu);
3705         u32 exit_reason = vmx->exit_reason;
3706         u32 vectoring_info = vmx->idt_vectoring_info;
3707
3708         trace_kvm_exit(exit_reason, vcpu);
3709
3710         /* If guest state is invalid, start emulating */
3711         if (vmx->emulation_required && emulate_invalid_guest_state)
3712                 return handle_invalid_guest_state(vcpu);
3713
3714         /* Access CR3 don't cause VMExit in paging mode, so we need
3715          * to sync with guest real CR3. */
3716         if (enable_ept && is_paging(vcpu))
3717                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3718
3719         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3720                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3721                 vcpu->run->fail_entry.hardware_entry_failure_reason
3722                         = exit_reason;
3723                 return 0;
3724         }
3725
3726         if (unlikely(vmx->fail)) {
3727                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3728                 vcpu->run->fail_entry.hardware_entry_failure_reason
3729                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3730                 return 0;
3731         }
3732
3733         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3734                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3735                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3736                         exit_reason != EXIT_REASON_TASK_SWITCH))
3737                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3738                        "(0x%x) and exit reason is 0x%x\n",
3739                        __func__, vectoring_info, exit_reason);
3740
3741         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3742                 if (vmx_interrupt_allowed(vcpu)) {
3743                         vmx->soft_vnmi_blocked = 0;
3744                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3745                            vcpu->arch.nmi_pending) {
3746                         /*
3747                          * This CPU don't support us in finding the end of an
3748                          * NMI-blocked window if the guest runs with IRQs
3749                          * disabled. So we pull the trigger after 1 s of
3750                          * futile waiting, but inform the user about this.
3751                          */
3752                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3753                                "state on VCPU %d after 1 s timeout\n",
3754                                __func__, vcpu->vcpu_id);
3755                         vmx->soft_vnmi_blocked = 0;
3756                 }
3757         }
3758
3759         if (exit_reason < kvm_vmx_max_exit_handlers
3760             && kvm_vmx_exit_handlers[exit_reason])
3761                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3762         else {
3763                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3764                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3765         }
3766         return 0;
3767 }
3768
3769 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3770 {
3771         if (irr == -1 || tpr < irr) {
3772                 vmcs_write32(TPR_THRESHOLD, 0);
3773                 return;
3774         }
3775
3776         vmcs_write32(TPR_THRESHOLD, irr);
3777 }
3778
3779 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
3780 {
3781         u32 exit_intr_info = vmx->exit_intr_info;
3782
3783         /* Handle machine checks before interrupts are enabled */
3784         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3785             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3786                 && is_machine_check(exit_intr_info)))
3787                 kvm_machine_check();
3788
3789         /* We need to handle NMIs before interrupts are enabled */
3790         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3791             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3792                 kvm_before_handle_nmi(&vmx->vcpu);
3793                 asm("int $2");
3794                 kvm_after_handle_nmi(&vmx->vcpu);
3795         }
3796 }
3797
3798 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
3799 {
3800         u32 exit_intr_info = vmx->exit_intr_info;
3801         bool unblock_nmi;
3802         u8 vector;
3803         bool idtv_info_valid;
3804
3805         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3806
3807         if (cpu_has_virtual_nmis()) {
3808                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3809                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3810                 /*
3811                  * SDM 3: 27.7.1.2 (September 2008)
3812                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3813                  * a guest IRET fault.
3814                  * SDM 3: 23.2.2 (September 2008)
3815                  * Bit 12 is undefined in any of the following cases:
3816                  *  If the VM exit sets the valid bit in the IDT-vectoring
3817                  *   information field.
3818                  *  If the VM exit is due to a double fault.
3819                  */
3820                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3821                     vector != DF_VECTOR && !idtv_info_valid)
3822                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3823                                       GUEST_INTR_STATE_NMI);
3824         } else if (unlikely(vmx->soft_vnmi_blocked))
3825                 vmx->vnmi_blocked_time +=
3826                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3827 }
3828
3829 /*
3830  * Failure to inject an interrupt should give us the information
3831  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
3832  * when fetching the interrupt redirection bitmap in the real-mode
3833  * tss, this doesn't happen.  So we do it ourselves.
3834  */
3835 static void fixup_rmode_irq(struct vcpu_vmx *vmx, u32 *idt_vectoring_info)
3836 {
3837         vmx->rmode.irq.pending = 0;
3838         if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3839                 return;
3840         kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3841         if (*idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3842                 *idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3843                 *idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3844                 return;
3845         }
3846         *idt_vectoring_info =
3847                 VECTORING_INFO_VALID_MASK
3848                 | INTR_TYPE_EXT_INTR
3849                 | vmx->rmode.irq.vector;
3850 }
3851
3852 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
3853                                       u32 idt_vectoring_info,
3854                                       int instr_len_field,
3855                                       int error_code_field)
3856 {
3857         u8 vector;
3858         int type;
3859         bool idtv_info_valid;
3860
3861         if (vmx->rmode.irq.pending)
3862                 fixup_rmode_irq(vmx, &idt_vectoring_info);
3863
3864         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3865
3866         vmx->vcpu.arch.nmi_injected = false;
3867         kvm_clear_exception_queue(&vmx->vcpu);
3868         kvm_clear_interrupt_queue(&vmx->vcpu);
3869
3870         if (!idtv_info_valid)
3871                 return;
3872
3873         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
3874
3875         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3876         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3877
3878         switch (type) {
3879         case INTR_TYPE_NMI_INTR:
3880                 vmx->vcpu.arch.nmi_injected = true;
3881                 /*
3882                  * SDM 3: 27.7.1.2 (September 2008)
3883                  * Clear bit "block by NMI" before VM entry if a NMI
3884                  * delivery faulted.
3885                  */
3886                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3887                                 GUEST_INTR_STATE_NMI);
3888                 break;
3889         case INTR_TYPE_SOFT_EXCEPTION:
3890                 vmx->vcpu.arch.event_exit_inst_len =
3891                         vmcs_read32(instr_len_field);
3892                 /* fall through */
3893         case INTR_TYPE_HARD_EXCEPTION:
3894                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3895                         u32 err = vmcs_read32(error_code_field);
3896                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3897                 } else
3898                         kvm_queue_exception(&vmx->vcpu, vector);
3899                 break;
3900         case INTR_TYPE_SOFT_INTR:
3901                 vmx->vcpu.arch.event_exit_inst_len =
3902                         vmcs_read32(instr_len_field);
3903                 /* fall through */
3904         case INTR_TYPE_EXT_INTR:
3905                 kvm_queue_interrupt(&vmx->vcpu, vector,
3906                         type == INTR_TYPE_SOFT_INTR);
3907                 break;
3908         default:
3909                 break;
3910         }
3911 }
3912
3913 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3914 {
3915         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
3916                                   VM_EXIT_INSTRUCTION_LEN,
3917                                   IDT_VECTORING_ERROR_CODE);
3918 }
3919
3920 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
3921 {
3922         __vmx_complete_interrupts(to_vmx(vcpu),
3923                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
3924                                   VM_ENTRY_INSTRUCTION_LEN,
3925                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
3926
3927         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
3928 }
3929
3930 #ifdef CONFIG_X86_64
3931 #define R "r"
3932 #define Q "q"
3933 #else
3934 #define R "e"
3935 #define Q "l"
3936 #endif
3937
3938 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3939 {
3940         struct vcpu_vmx *vmx = to_vmx(vcpu);
3941
3942         /* Record the guest's net vcpu time for enforced NMI injections. */
3943         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3944                 vmx->entry_time = ktime_get();
3945
3946         /* Don't enter VMX if guest state is invalid, let the exit handler
3947            start emulation until we arrive back to a valid state */
3948         if (vmx->emulation_required && emulate_invalid_guest_state)
3949                 return;
3950
3951         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3952                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3953         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3954                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3955
3956         /* When single-stepping over STI and MOV SS, we must clear the
3957          * corresponding interruptibility bits in the guest state. Otherwise
3958          * vmentry fails as it then expects bit 14 (BS) in pending debug
3959          * exceptions being set, but that's not correct for the guest debugging
3960          * case. */
3961         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3962                 vmx_set_interrupt_shadow(vcpu, 0);
3963
3964         asm(
3965                 /* Store host registers */
3966                 "push %%"R"dx; push %%"R"bp;"
3967                 "push %%"R"cx \n\t"
3968                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3969                 "je 1f \n\t"
3970                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3971                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3972                 "1: \n\t"
3973                 /* Reload cr2 if changed */
3974                 "mov %c[cr2](%0), %%"R"ax \n\t"
3975                 "mov %%cr2, %%"R"dx \n\t"
3976                 "cmp %%"R"ax, %%"R"dx \n\t"
3977                 "je 2f \n\t"
3978                 "mov %%"R"ax, %%cr2 \n\t"
3979                 "2: \n\t"
3980                 /* Check if vmlaunch of vmresume is needed */
3981                 "cmpl $0, %c[launched](%0) \n\t"
3982                 /* Load guest registers.  Don't clobber flags. */
3983                 "mov %c[rax](%0), %%"R"ax \n\t"
3984                 "mov %c[rbx](%0), %%"R"bx \n\t"
3985                 "mov %c[rdx](%0), %%"R"dx \n\t"
3986                 "mov %c[rsi](%0), %%"R"si \n\t"
3987                 "mov %c[rdi](%0), %%"R"di \n\t"
3988                 "mov %c[rbp](%0), %%"R"bp \n\t"
3989 #ifdef CONFIG_X86_64
3990                 "mov %c[r8](%0),  %%r8  \n\t"
3991                 "mov %c[r9](%0),  %%r9  \n\t"
3992                 "mov %c[r10](%0), %%r10 \n\t"
3993                 "mov %c[r11](%0), %%r11 \n\t"
3994                 "mov %c[r12](%0), %%r12 \n\t"
3995                 "mov %c[r13](%0), %%r13 \n\t"
3996                 "mov %c[r14](%0), %%r14 \n\t"
3997                 "mov %c[r15](%0), %%r15 \n\t"
3998 #endif
3999                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4000
4001                 /* Enter guest mode */
4002                 "jne .Llaunched \n\t"
4003                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4004                 "jmp .Lkvm_vmx_return \n\t"
4005                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4006                 ".Lkvm_vmx_return: "
4007                 /* Save guest registers, load host registers, keep flags */
4008                 "xchg %0,     (%%"R"sp) \n\t"
4009                 "mov %%"R"ax, %c[rax](%0) \n\t"
4010                 "mov %%"R"bx, %c[rbx](%0) \n\t"
4011                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
4012                 "mov %%"R"dx, %c[rdx](%0) \n\t"
4013                 "mov %%"R"si, %c[rsi](%0) \n\t"
4014                 "mov %%"R"di, %c[rdi](%0) \n\t"
4015                 "mov %%"R"bp, %c[rbp](%0) \n\t"
4016 #ifdef CONFIG_X86_64
4017                 "mov %%r8,  %c[r8](%0) \n\t"
4018                 "mov %%r9,  %c[r9](%0) \n\t"
4019                 "mov %%r10, %c[r10](%0) \n\t"
4020                 "mov %%r11, %c[r11](%0) \n\t"
4021                 "mov %%r12, %c[r12](%0) \n\t"
4022                 "mov %%r13, %c[r13](%0) \n\t"
4023                 "mov %%r14, %c[r14](%0) \n\t"
4024                 "mov %%r15, %c[r15](%0) \n\t"
4025 #endif
4026                 "mov %%cr2, %%"R"ax   \n\t"
4027                 "mov %%"R"ax, %c[cr2](%0) \n\t"
4028
4029                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
4030                 "setbe %c[fail](%0) \n\t"
4031               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4032                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
4033                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4034                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4035                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4036                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4037                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4038                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4039                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4040                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4041                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4042 #ifdef CONFIG_X86_64
4043                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4044                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4045                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4046                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4047                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4048                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4049                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4050                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4051 #endif
4052                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
4053               : "cc", "memory"
4054                 , R"bx", R"di", R"si"
4055 #ifdef CONFIG_X86_64
4056                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4057 #endif
4058               );
4059
4060         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4061                                   | (1 << VCPU_EXREG_PDPTR));
4062         vcpu->arch.regs_dirty = 0;
4063
4064         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4065
4066         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4067         vmx->launched = 1;
4068
4069         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4070         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4071
4072         vmx_complete_atomic_exit(vmx);
4073         vmx_recover_nmi_blocking(vmx);
4074         vmx_complete_interrupts(vmx);
4075 }
4076
4077 #undef R
4078 #undef Q
4079
4080 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4081 {
4082         struct vcpu_vmx *vmx = to_vmx(vcpu);
4083
4084         if (vmx->vmcs) {
4085                 vcpu_clear(vmx);
4086                 free_vmcs(vmx->vmcs);
4087                 vmx->vmcs = NULL;
4088         }
4089 }
4090
4091 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4092 {
4093         struct vcpu_vmx *vmx = to_vmx(vcpu);
4094
4095         free_vpid(vmx);
4096         vmx_free_vmcs(vcpu);
4097         kfree(vmx->guest_msrs);
4098         kvm_vcpu_uninit(vcpu);
4099         kmem_cache_free(kvm_vcpu_cache, vmx);
4100 }
4101
4102 static inline void vmcs_init(struct vmcs *vmcs)
4103 {
4104         u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4105
4106         if (!vmm_exclusive)
4107                 kvm_cpu_vmxon(phys_addr);
4108
4109         vmcs_clear(vmcs);
4110
4111         if (!vmm_exclusive)
4112                 kvm_cpu_vmxoff();
4113 }
4114
4115 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4116 {
4117         int err;
4118         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4119         int cpu;
4120
4121         if (!vmx)
4122                 return ERR_PTR(-ENOMEM);
4123
4124         allocate_vpid(vmx);
4125
4126         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4127         if (err)
4128                 goto free_vcpu;
4129
4130         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4131         if (!vmx->guest_msrs) {
4132                 err = -ENOMEM;
4133                 goto uninit_vcpu;
4134         }
4135
4136         vmx->vmcs = alloc_vmcs();
4137         if (!vmx->vmcs)
4138                 goto free_msrs;
4139
4140         vmcs_init(vmx->vmcs);
4141
4142         cpu = get_cpu();
4143         vmx_vcpu_load(&vmx->vcpu, cpu);
4144         vmx->vcpu.cpu = cpu;
4145         err = vmx_vcpu_setup(vmx);
4146         vmx_vcpu_put(&vmx->vcpu);
4147         put_cpu();
4148         if (err)
4149                 goto free_vmcs;
4150         if (vm_need_virtualize_apic_accesses(kvm))
4151                 if (alloc_apic_access_page(kvm) != 0)
4152                         goto free_vmcs;
4153
4154         if (enable_ept) {
4155                 if (!kvm->arch.ept_identity_map_addr)
4156                         kvm->arch.ept_identity_map_addr =
4157                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4158                 if (alloc_identity_pagetable(kvm) != 0)
4159                         goto free_vmcs;
4160         }
4161
4162         return &vmx->vcpu;
4163
4164 free_vmcs:
4165         free_vmcs(vmx->vmcs);
4166 free_msrs:
4167         kfree(vmx->guest_msrs);
4168 uninit_vcpu:
4169         kvm_vcpu_uninit(&vmx->vcpu);
4170 free_vcpu:
4171         free_vpid(vmx);
4172         kmem_cache_free(kvm_vcpu_cache, vmx);
4173         return ERR_PTR(err);
4174 }
4175
4176 static void __init vmx_check_processor_compat(void *rtn)
4177 {
4178         struct vmcs_config vmcs_conf;
4179
4180         *(int *)rtn = 0;
4181         if (setup_vmcs_config(&vmcs_conf) < 0)
4182                 *(int *)rtn = -EIO;
4183         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4184                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4185                                 smp_processor_id());
4186                 *(int *)rtn = -EIO;
4187         }
4188 }
4189
4190 static int get_ept_level(void)
4191 {
4192         return VMX_EPT_DEFAULT_GAW + 1;
4193 }
4194
4195 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4196 {
4197         u64 ret;
4198
4199         /* For VT-d and EPT combination
4200          * 1. MMIO: always map as UC
4201          * 2. EPT with VT-d:
4202          *   a. VT-d without snooping control feature: can't guarantee the
4203          *      result, try to trust guest.
4204          *   b. VT-d with snooping control feature: snooping control feature of
4205          *      VT-d engine can guarantee the cache correctness. Just set it
4206          *      to WB to keep consistent with host. So the same as item 3.
4207          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4208          *    consistent with host MTRR
4209          */
4210         if (is_mmio)
4211                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4212         else if (vcpu->kvm->arch.iommu_domain &&
4213                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4214                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4215                       VMX_EPT_MT_EPTE_SHIFT;
4216         else
4217                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4218                         | VMX_EPT_IPAT_BIT;
4219
4220         return ret;
4221 }
4222
4223 #define _ER(x) { EXIT_REASON_##x, #x }
4224
4225 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4226         _ER(EXCEPTION_NMI),
4227         _ER(EXTERNAL_INTERRUPT),
4228         _ER(TRIPLE_FAULT),
4229         _ER(PENDING_INTERRUPT),
4230         _ER(NMI_WINDOW),
4231         _ER(TASK_SWITCH),
4232         _ER(CPUID),
4233         _ER(HLT),
4234         _ER(INVLPG),
4235         _ER(RDPMC),
4236         _ER(RDTSC),
4237         _ER(VMCALL),
4238         _ER(VMCLEAR),
4239         _ER(VMLAUNCH),
4240         _ER(VMPTRLD),
4241         _ER(VMPTRST),
4242         _ER(VMREAD),
4243         _ER(VMRESUME),
4244         _ER(VMWRITE),
4245         _ER(VMOFF),
4246         _ER(VMON),
4247         _ER(CR_ACCESS),
4248         _ER(DR_ACCESS),
4249         _ER(IO_INSTRUCTION),
4250         _ER(MSR_READ),
4251         _ER(MSR_WRITE),
4252         _ER(MWAIT_INSTRUCTION),
4253         _ER(MONITOR_INSTRUCTION),
4254         _ER(PAUSE_INSTRUCTION),
4255         _ER(MCE_DURING_VMENTRY),
4256         _ER(TPR_BELOW_THRESHOLD),
4257         _ER(APIC_ACCESS),
4258         _ER(EPT_VIOLATION),
4259         _ER(EPT_MISCONFIG),
4260         _ER(WBINVD),
4261         { -1, NULL }
4262 };
4263
4264 #undef _ER
4265
4266 static int vmx_get_lpage_level(void)
4267 {
4268         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4269                 return PT_DIRECTORY_LEVEL;
4270         else
4271                 /* For shadow and EPT supported 1GB page */
4272                 return PT_PDPE_LEVEL;
4273 }
4274
4275 static inline u32 bit(int bitno)
4276 {
4277         return 1 << (bitno & 31);
4278 }
4279
4280 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4281 {
4282         struct kvm_cpuid_entry2 *best;
4283         struct vcpu_vmx *vmx = to_vmx(vcpu);
4284         u32 exec_control;
4285
4286         vmx->rdtscp_enabled = false;
4287         if (vmx_rdtscp_supported()) {
4288                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4289                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4290                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4291                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4292                                 vmx->rdtscp_enabled = true;
4293                         else {
4294                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4295                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4296                                                 exec_control);
4297                         }
4298                 }
4299         }
4300 }
4301
4302 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4303 {
4304 }
4305
4306 static struct kvm_x86_ops vmx_x86_ops = {
4307         .cpu_has_kvm_support = cpu_has_kvm_support,
4308         .disabled_by_bios = vmx_disabled_by_bios,
4309         .hardware_setup = hardware_setup,
4310         .hardware_unsetup = hardware_unsetup,
4311         .check_processor_compatibility = vmx_check_processor_compat,
4312         .hardware_enable = hardware_enable,
4313         .hardware_disable = hardware_disable,
4314         .cpu_has_accelerated_tpr = report_flexpriority,
4315
4316         .vcpu_create = vmx_create_vcpu,
4317         .vcpu_free = vmx_free_vcpu,
4318         .vcpu_reset = vmx_vcpu_reset,
4319
4320         .prepare_guest_switch = vmx_save_host_state,
4321         .vcpu_load = vmx_vcpu_load,
4322         .vcpu_put = vmx_vcpu_put,
4323
4324         .set_guest_debug = set_guest_debug,
4325         .get_msr = vmx_get_msr,
4326         .set_msr = vmx_set_msr,
4327         .get_segment_base = vmx_get_segment_base,
4328         .get_segment = vmx_get_segment,
4329         .set_segment = vmx_set_segment,
4330         .get_cpl = vmx_get_cpl,
4331         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4332         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4333         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4334         .set_cr0 = vmx_set_cr0,
4335         .set_cr3 = vmx_set_cr3,
4336         .set_cr4 = vmx_set_cr4,
4337         .set_efer = vmx_set_efer,
4338         .get_idt = vmx_get_idt,
4339         .set_idt = vmx_set_idt,
4340         .get_gdt = vmx_get_gdt,
4341         .set_gdt = vmx_set_gdt,
4342         .set_dr7 = vmx_set_dr7,
4343         .cache_reg = vmx_cache_reg,
4344         .get_rflags = vmx_get_rflags,
4345         .set_rflags = vmx_set_rflags,
4346         .fpu_activate = vmx_fpu_activate,
4347         .fpu_deactivate = vmx_fpu_deactivate,
4348
4349         .tlb_flush = vmx_flush_tlb,
4350
4351         .run = vmx_vcpu_run,
4352         .handle_exit = vmx_handle_exit,
4353         .skip_emulated_instruction = skip_emulated_instruction,
4354         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4355         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4356         .patch_hypercall = vmx_patch_hypercall,
4357         .set_irq = vmx_inject_irq,
4358         .set_nmi = vmx_inject_nmi,
4359         .queue_exception = vmx_queue_exception,
4360         .cancel_injection = vmx_cancel_injection,
4361         .interrupt_allowed = vmx_interrupt_allowed,
4362         .nmi_allowed = vmx_nmi_allowed,
4363         .get_nmi_mask = vmx_get_nmi_mask,
4364         .set_nmi_mask = vmx_set_nmi_mask,
4365         .enable_nmi_window = enable_nmi_window,
4366         .enable_irq_window = enable_irq_window,
4367         .update_cr8_intercept = update_cr8_intercept,
4368
4369         .set_tss_addr = vmx_set_tss_addr,
4370         .get_tdp_level = get_ept_level,
4371         .get_mt_mask = vmx_get_mt_mask,
4372
4373         .exit_reasons_str = vmx_exit_reasons_str,
4374         .get_lpage_level = vmx_get_lpage_level,
4375
4376         .cpuid_update = vmx_cpuid_update,
4377
4378         .rdtscp_supported = vmx_rdtscp_supported,
4379
4380         .set_supported_cpuid = vmx_set_supported_cpuid,
4381
4382         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4383
4384         .write_tsc_offset = vmx_write_tsc_offset,
4385         .adjust_tsc_offset = vmx_adjust_tsc_offset,
4386
4387         .set_tdp_cr3 = vmx_set_cr3,
4388 };
4389
4390 static int __init vmx_init(void)
4391 {
4392         int r, i;
4393
4394         rdmsrl_safe(MSR_EFER, &host_efer);
4395
4396         for (i = 0; i < NR_VMX_MSR; ++i)
4397                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4398
4399         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4400         if (!vmx_io_bitmap_a)
4401                 return -ENOMEM;
4402
4403         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4404         if (!vmx_io_bitmap_b) {
4405                 r = -ENOMEM;
4406                 goto out;
4407         }
4408
4409         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4410         if (!vmx_msr_bitmap_legacy) {
4411                 r = -ENOMEM;
4412                 goto out1;
4413         }
4414
4415         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4416         if (!vmx_msr_bitmap_longmode) {
4417                 r = -ENOMEM;
4418                 goto out2;
4419         }
4420
4421         /*
4422          * Allow direct access to the PC debug port (it is often used for I/O
4423          * delays, but the vmexits simply slow things down).
4424          */
4425         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4426         clear_bit(0x80, vmx_io_bitmap_a);
4427
4428         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4429
4430         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4431         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4432
4433         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4434
4435         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4436                      __alignof__(struct vcpu_vmx), THIS_MODULE);
4437         if (r)
4438                 goto out3;
4439
4440         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4441         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4442         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4443         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4444         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4445         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4446
4447         if (enable_ept) {
4448                 bypass_guest_pf = 0;
4449                 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4450                         VMX_EPT_WRITABLE_MASK);
4451                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4452                                 VMX_EPT_EXECUTABLE_MASK);
4453                 kvm_enable_tdp();
4454         } else
4455                 kvm_disable_tdp();
4456
4457         if (bypass_guest_pf)
4458                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4459
4460         return 0;
4461
4462 out3:
4463         free_page((unsigned long)vmx_msr_bitmap_longmode);
4464 out2:
4465         free_page((unsigned long)vmx_msr_bitmap_legacy);
4466 out1:
4467         free_page((unsigned long)vmx_io_bitmap_b);
4468 out:
4469         free_page((unsigned long)vmx_io_bitmap_a);
4470         return r;
4471 }
4472
4473 static void __exit vmx_exit(void)
4474 {
4475         free_page((unsigned long)vmx_msr_bitmap_legacy);
4476         free_page((unsigned long)vmx_msr_bitmap_longmode);
4477         free_page((unsigned long)vmx_io_bitmap_b);
4478         free_page((unsigned long)vmx_io_bitmap_a);
4479
4480         kvm_exit();
4481 }
4482
4483 module_init(vmx_init)
4484 module_exit(vmx_exit)